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Abstract: The present work proposes a joint model for two sequential times to
events together with longitudinal information, as an extension of the joint model
by Wolfsohn and Tsiatis (1997) for one time to event and one longitudinal vari-
able. The model is applied to the TIBET, a clinical trial in which antiretroviral
therapy interruptions guided by CD4 counts and plasma HIV-1 RNA levels in
chronically HIV-1-infected patients are under evaluation. Details on the modelling
strategy and the resulting estimates are given.
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1 Introduction and the Motivating Clinical Trial

This research is motivated by the TIBET clinical trial (Ruiz et al., 2007)
and we want to model two sequential times to event with longitudinal
measurements. T1 is the time to re-initiate HAART therapy and T2 is the
time to suspend therapy from the first re-initiation, and the longitudinal
measurements are the levels of CD4 cell counts each four weeks. The goal
is to use the longitudinal measurements as a marker for the times to event.
The joint model will allows us to give prognosis for a time to event given
covariates, the longitudinal process and the previous event time.

2 Notation

The variables of interest for each subject i = 1, ..., n followed over an in-
terval [0, τ) are {T1i, T2i, Ri(u), 0 ≤ u ≤ τ,Xi}, where T1i and T2i are
event times, {Ri(u), 0 ≤ u ≤ τ} is the longitudinal response trajectory
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for all times u ≥ 0 and Xi = [XT
1i XT

2i]
T is a vector of baseline (time 0)

covariates, X1i with influence over T1, and X2i over T2.
We will consider only a situation where T1 and T2 may be right censored
by the censoring times C1 and C2 respectively, so instead of Tji we observe
(Yji, δji), j = 1, 2, where Yji = min{Tji, Cji} and δji = I(Tji ≤ Cji)
which indicates whether Yji is an uncensored right value of Tji. On the
other hand, for some set of times tij , j = 1, ..., ni, instead of the true values
Ri(tij) we observe Zi(tij), then the observed data for subject i is Oi =
{Xi, Yi, δi, Zi, t̃i}, where t̃i = (ti1, ..., tini

)T , Zi = (Zi(ti1), ..., Zi(tini
))T ,

Yi = (Y1i, Y2i), and δi = (δ1i, δ2i).

3 Semi-parametric Joint Model of Two Sequential
Times to Event and One Longitudinal Variable

We approach the problem of two sequential times to event with a sequence
of conditional distributions (Lawless, 2003, Section 11.3). A natural choice
for the survival model is to consider a distribution for a time to event
given previous observed event times. Moreover, the sequence of conditional
distributions for the times to event is jointly modeled with a mixed model,
adapting the model of Wulfsohn and Tsiatis (1997).

3.1 Linear Trend for the Longitudinal Variable

First, we assume that the longitudinal variable is monotone not increasing
(or viceversa) with linear trend as we show in the Figure 1 part (a). This
is the simplest case for the longitudinal variable that we consider. Due to
the existing association between the longitudinal and survival processes,
there is a high probability that the longitudinal trend changes with the
occurrence of the first event. Nevertheless we treat it because might happen
cases where the monotonous trend over time persists. In the TIBET clinical
trial we found that the GPT enzyme has linear trend over T1 and T2, so we
need the methodology with longitudinal linear trend to analyze whether
the effect of the enzyme in the times to event is significant.
We analyze our proposal linking the longitudinal and survival sub-models
with the current value, and assuming a linear trend for the longitudinal
data without fix part. A particular joint model analyzed, is

Zij = b0i + b1i tij + ei(tij) (1)

λT1(t1 | bi, X1i; η1, β1) = λ1,0(t1) exp{η1X1i + β1(b0i + b1it1)} (2)

λT2(t2 | t1i, bi, X2i; η2, β2, γ) = λ2,0(t2) exp{η2X2i+β2(b0i+b1i(t1i+t2))+γt1i},
(3)

where η1 and η2 are vectors of parameters associated to baseline covari-
ates, β1 and β2 are parameters of association between the longitudinal and
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FIGURE 1. Two types of trends for the longitudinal data over T1 and T2

survival processes, γ describes the relation among the times to event, and
both baseline risks λ1,0(·) and λ2,0(·) are left unspecified, and different.
For the likelihood function we apply the same assumptions made by Wulf-
sohn and Tsiatis (1997). The assumption of non-informative censoring ex-
tend to this case of censoring process. The errors ei are assumed to be
mutually independent, normally distributed with mean 0 and variance σ2

e ,
and independent of bi and conditionally independent of all other variables
given (bi, Xi). If we assume that, given random effects and covariates, Z,
T1, and T2 | T1, are all independent, then the observed likelihood is

L(Ω) =

n∏

i=1

∫

bi

{ ni∏

j=1

f(zij | bi;σ2
e)

}
f(Yi, δi | bi, Xi;ψT |b)f(bi;B,Γ)dbi, (4)

where Ω = (ψT |b, B,Γ, σ
2
e) and ψT |b = (η1, η2, β1, β2, γ, λ1,0, λ2,0). The vec-

tor of random effects bi = [b0i b1i]
T is taken to be normally distributed

with mean B and covariance matrix Γ.
The algorithm by Wulfsohn and Tsiatis (1997) is extended in many cases of
joint models with longitudinal and survival data. In our case the model is
extended and applied in two parts. The first step models Z and T1+T2 using
the Wulfsohn and Tsiatis’s algorithm ignoring the sequence of the times to
event, and the second step fits T1 and T2 | T1 likely the modelling was direct
and jointly with Z. We named this method as EM modified algorithm for
joint model with longitudinal information and sequential times to event.

3.2 Non Linear Trend for the Longitudinal Variable

When the first time to event occurs the conditions in the statistical units
may change, affecting the evolution of the longitudinal variables. For our
TIBET dataset, the CD4 cell counts changes its trend when the therapy is
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restated. Figure 1 part (b) shows how the trend may be linear in two pieces
or parabolic. We focus the analysis for this two cases of non linear trend.

a)
Zij = b0i + (b1i tij + b2i(tij − t1i)I(tij ≥ t1i)) + ei(tij) (5)

λ(t1 | bi;β1) = λ1,0(t1) exp{β1(b0i + b1it1)} (6)

λ(t2 | t1i, bi;β2, γ) = λ2,0(t2) exp{β2(b0i+b1i·t1i+(b1i+b2i)t2)+γ t1i}.
(7)

b)
Zij = b0i + b1i tij + b2i t

2
ij + ei(tij) (8)

λ(t1 | bi;β1) = λ1,0(t1) exp{β1(b0i + b1it1 + b2it
2
1)} (9)

λ(t2 | t1i, bi;β2, γ) = λ2,0(t2) exp{β2(b0i+b1i(t1i+t2)+b2i(t1i+t2)2)+γt1i},
(10)

4 Application to the TIBET Dataset

In the TIBET dataset T1 is the time to the first restart of therapy, and
T2 is the time from the first restart of therapy to the suspension of it. We
have 74% observed cases for T1 and 68% observed cases for T2.
The evolution of the CD4 is decreasing until the first time to event, and
then is increasing, so we model it with a two piecewise based on (5)-(7),
and with a parabolic trend based on (8)-(10). The analysis of these models
only aims to compare them in order to determine the best alternative to
model the longitudinal variable for prognosis. Table 1 shows the results for
both models fitted with the EM modified algorithm, and Figure 2 shows
some fitted cases with these models.

The selected joint model is as follow, and the results obtained with the EM
modified algorithm are shown in Table 2.

Zij = b0i + (b1i tij + b2i(tij − t1i)I) + ei(tij) (11)

λ(t1 | bi, V Li; η1, β1) = λ1,0(t1) exp{η1V Li + β11(b0i + b1it1) + β12b1i} (12)

λ(t2 |t1i, bi, V Li; η2, β2, γ) =
λ2,0(t2) exp{η2V Li + β21(b0i + b1i(t1i + t2) + b2it2) + β22(b1i + b2i) + γ t1i}.

(13)

The influence of the intercepts b0 and b0 + b1t1 in T1 and T2 respectively,
are not significative. It is logic since patients start the trial without therapy
with good and similar conditions, and the restart of therapy is due to the
threshold reached in the levels of CD4 and viral load.
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TABLE 1. Joint models for T1 and T2 with two different model for CD4. It is
assumed semi parametric form in the hazard risks.

Two Piecewise Parabolic
Parameter Estimate s.e. p− value Estimate s.e. p− value

Mixed
B0 25.8263 0.4569 < 0.0001 26.5564 0.4709 < 0.0001
B1 -0.0502 0.0041 < 0.0001 -0.0732 0.0092 < 0.0001
B2 0.1248 0.0080 < 0.0001 0.0007 0.0001 < 0.0001
σ11 20.8764 2.9524 < 0.0001 22.1763 3.1362 < 0.0001
σ12 -0.1186 0.0221 0.6483 -0.1964 0.0477 0.7388
σ13 0.0166 0.0364 < 0.0001 0.0001 0.0003 < 0.0001
σ22 0.0017 0.0002 < 0.0001 0.0085 0.0012 < 0.0001
σ23 -0.0016 0.0004 < 0.0001 -4E-5 6E-6 < 0.0001
σ33 0.0063 0.0009 < 0.0001 3E-7 4E-8 < 0.0001
σ2
e 6.1463 0.1881 < 0.0001 5.5382 0.1695 < 0.0001

Survival T1

β1 (Assoc.) -0.1881 0.0361 <0.0001 -0.1060 0.0335 0.0016

Survival T2

β2 (Assoc.) 0.0465 0.0414 0.2614 -0.0002 0.0386 0.9958
γ (T1) -0.0172 0.0063 0.0063 -0.0178 0.0072 0.0134

TABLE 2. Survival result for the joint model for T1 and T2 with two piecewise
mixed model for the CD4 evolution, based in EM modified algorithms. It is
assumed semi parametric form in the hazard risks.

Parameter Estimate s.e. p− value
Survival T1

β11 (b0i + b1it1) -0.2044 0.0405 < 0.0001
β12 (b1i) -14.3298 3.5632 < 0.0001
η1 (V Li) 0.6521 0.1858 0.0004

Survival T2

β21 (b0i + b1i(t1i + t2) + b2it2) 0.0257 0.0430 0.5500
β22 (b1i + b2i) 6.7904 2.4090 0.0048
η1 (V Li) -0.0169 0.2302 0.9414
γ (t1i) -0.0210 0.0079 0.0079

The slope is the only significative random effect in T2, and due to the fact
that the effect of the viral load pre-therapy is diluted in T2, then we have
the slope of the longitudinal variable along T2 and the observed values of
T1, the only significative covariate in the survival model for T2.
The negative sign for γ̂ indicates that for long times to restart therapy, we
have long times to suspend therapy.
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FIGURE 2. Evolution of the CD4 with models based in two piecewise and
parabolic trend, for some cases of the TIBET dataset
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Ruiz, L., Paredes, R., Gómez, G., Romeu, J., Domingo, P., Pérez-Alvarez,
N., Tambussi, G., Llibre, J.M., Martnez-Picado, J., Vidal, F., Fumaz,
C.R., Clotet, B., and Group, T.I.B.E.T.S. (2007). Antiretroviral ther-
apy interruption guided by CD4 cell counts and plasma HIV-1 RNA
levels in chronically HIV-1-infected patients. AIDS, 21(2), 169–178.

Wulfsohn, M.S., and Tsiatis, A.A. (1997). A joint model for survival and
longitudinal data measured with error. Biometrics, 53, 330–339.


