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Abstract: As the current standardization for the 5G networks nears completion, work towards
understanding the potential technologies for the 6G wireless networks is already underway. One of
these potential technologies for the 6G networks is reconfigurable intelligent surfaces. They offer
unprecedented degrees of freedom towards engineering the wireless channel, i.e., the ability to
modify the characteristics of the channel whenever and however required. Nevertheless, such
properties demand that the response of the associated metasurface is well understood under all
possible operational conditions. While an understanding of the radiation pattern characteristics can
be obtained through either analytical models or full-wave simulations, they suffer from inaccuracy
and extremely high computational complexity, respectively. Hence, in this paper, we propose a
neural network-based approach that enables a fast and accurate characterization of the metasurface
response. We analyze multiple scenarios and demonstrate the capabilities and utility of the proposed
methodology. Concretely, we show that this method can learn and predict the parameters governing
the reflected wave radiation pattern with an accuracy of a full-wave simulation (98.8–99.8%) and
the time and computational complexity of an analytical model. The aforementioned result and
methodology will be of specific importance for the design, fault tolerance, and maintenance of the
thousands of reconfigurable intelligent surfaces that will be deployed in the 6G network environment.

Keywords: metasurface; machine learning; neural networks; beam steering; radiation pattern;
5G and beyond

1. Introduction

Sixth-generation (6G) wireless networks will be even more heterogeneous and dense
as compared to fifth-generation (5G) and other legacy networks. Thus, the 6G architecture
will need to be adapted to serve the ever-evolving capacity and quality of service require-
ments [1,2]. To satisfy these ever-increasing demands, multiple enablers, such as visible
light communication [3], light fidelity [4], Reconfigurable Intelligent Surfaces (RISs), Tera-
Hertz (THz) communications, etc., have been proposed. Amongst these techniques, RISs
have gained special attention. The reason being, through rapid tuning of the associated
metasurfaces (MSFs), they transform the physical environment from being an adversary
to being an ally in the communication process. Concretely, they enable the operators to
engineer the channel propagation characteristics [5–9]. Such functionalities will be critical
towards meeting the requirements being laid out for 6G networks [3,10,11].

Specifically, RISs, through their programmable characteristics, can perform the fine-
grained manipulation of the radio signals being generated by the myriad transmitter
devices/access points for their corresponding receivers. Such manipulations include ab-
sorption of certain components of the impinging radio signals, as well as fine-grained
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control of these signals in terms of direction, polarization, phase, and power in a frequency-
selective manner [12–15]. Moreover, research efforts presenting experimental prototypes,
such as [16–18], further provision insights into how the RISs can engineer the channel
and demonstrate the feasibility of the RIS approach and its significant improvements for
wireless communications in complex transmission environments. RISs also find their appli-
cation in other use-cases such as the indoor geo-localization, which has been elaborated
in [19–21]. Note that indoor geo-localization will be extremely critical for future networks
as the use of mmWaves/THz band will necessitate detailed knowledge of the mobile
device’s location for precise beamforming/beam-steering.

Further, the associated MSFs in RISs are electromagnetically thin-film and planar
artificial structures that have resulted in the realization of Electromagnetic (EM) and
optical components with engineered and even atypical functionalities [22–25]. In modern
communication systems, MSFs have lots of applications such as phase correction [26], beam
reconfigurability [27], and spatial filter [28]. MSFs can be made of all-dielectric structures
such as printed layers of substrates [29] or all-metal structures [30].

It must be noted that the RIS consists of a device that controls the behavior of the
EM waves, alongside devices that provide the tuning mechanism and the intelligence to
control it. Furthermore, this device that controls the EM wave behavior can be realized
using an MSF. Hence, the MSF is a component of the RIS. On a more granular level, an MSF
is composed of subwavelength building blocks known as unit cells or meta-atoms. In this
study, we also consider the case of tunable MSFs. From a general modeling perspective,
unit cells consist of tunable resistors, R, and capacitances, C. This allows the unit cells to
take multiple states and grants the MSFs their tunability characteristics. Notably, given a
fixed EM functionality, the design of a static MSF is a complex task. Thus, the design and
operation of a tunable MSF will be even more challenging. A significant development in
this regard has been made through multiple research efforts, such as [9,31,32], in which
possible architectures and characteristics of such programmable MSFs are discussed.

Besides, while tunability is an advantageous property of the programmable MSFs,
an important challenge associated with them is obtaining the characteristics of a reflected
wave given the parameters of the incident wave and the states of each composing unit
cell. As illustrated in Figure 1, a fast yet accurate estimation of the radiation pattern will
facilitate multiple applications for 6G networks, such as the design, reliable functioning,
and maintenance of MSFs. Unit cells are multi-layer structures and in some cases posses
embedded tuning elements for reconfiguration. Therefore, computing the characteristics of
the reflected wave, given an MSF configuration, is a challenge. The reason being that they
are obtained by either utilizing analytical methods with multiple limiting assumptions or
by conducting computationally intensive simulations through full-wave EM solvers.

Knowing the EM characteristics of each unit cell facilitates the calculation of the cor-
responding EM field. In most cases, the unit cell and thus the MSF is reflective (the
transmission coefficient is zero). Therefore, we just need to possess reflective features
(reflection amplitude and phase) of the unit cell to estimate the far-field pattern. Analytical
models exist for describing and predicting the reflected EM field in some well-defined
cases, such as beam steering [33] and focusing [34] of planar impinging waves. Still,
these models introduce simplifications which can result in limitations in realistic setups
and, consequently, reduced precision of results compared to the direct solution from
Maxwell’s equations [35]. Moreover, the iterative numerical full-wave simulations, which
are widely adopted today and provide accurate predictions [36], are severely memory and
time-consuming. Additionally, the design process largely relies on empirical reasoning or
trial-and-error [37], which is inefficient and often ineffective.
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Performance
Metrics

Challenges

Application in 6G Networks

Our NN-based Methodology
• Prediction of reflected wave characteristics

• Q(NxM) MSF configuration states

• Limiting assumptions in analytical methods

• High time and computational complexity
for full wave solvers

Note: N = rows of unit cells in MSF; M =
columns of unit cells in MSF; Q = number of
states per unit cell

• A priori knowledge of radiation pattern
characteristics for fast tuning of MSF in a
highly dynamic wireless environment

• Self-healing capabilities for MSF via self-
verification of radiation pattern parameter
values

• Detection of faults in MSF during
maintenance via the verification of
radiation pattern parameters
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Figure 1. Neural Network-based approach for radiation pattern prediction: Challenges, Methodology and Application.

On the other hand, machine learning (ML) techniques, and particularly Neural Net-
works (NNs), owing to their ability to learn complex relationships between input and
output data, are capable of solving differential equations, thereby circumventing the need
for numerical calculations [35,38,39]. This fact provides the intuition towards another
direction: Since the MSF EM response is essentially the solution to Maxwell’s differential
equations, it could be possible to design an ML construct that predicts the EM response
much faster. In Table 1, we have compared calculation time of the EM response for different
methods. It can be seen that NNs take around a minute to compute the EM response,
whereas full-wave simulators such as CST Microwave Studio take almost one hour to
compute the same field with the same resolution. Note that we utilize the MSF design
and NNs studied in this work as well as the CST simulator to determine the order of
computation time. It is important to state that, the numbers can vary depending on the
dimension of MSF and configuration of NNs, but the order of magnitude will remain
similar. Moreover, this has been corroborated by multiple studies such as [40–42]. For a
more in-depth analysis into the computational complexity of NNs, analytical methods,
and full-wave simulators, we refer the reader to Appendix B.

Table 1. Estimation of computation time for radiation pattern calculation with different methods>
For general overview refer to Appendix B.

Methods Computation Time

Analytical Methods ∼1 s

Full-Wave Simulators ∼1 h

Neural Networks ∼1 min

RIS empowered with artificial intelligence is capable of different functionalities such
as programmable holography and focusing. While many works use RIS in optimized
but random-looking configurations [16] and sometimes truly random configurations [20],
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we emphasize a relevant application for wireless communications (i.e., beam steering)
to maintain the communication link for a moving target. Proposed NN models the far-
field radiation pattern and/or metrics. However, the dimensionality is large, and thus,
completely random patterns will lead to random scattering patterns. Training the NN for
all of them ends up with overfitting and complicates the training process. Moreover, we are
interested in directive beams; hence, it is reasonable to discard chaotic radiation patterns.
Nevertheless, for the sake of generality, we do not discard all the random inputs. Instead,
we use an entropy control to guarantee a representative portion of random-looking and
non-random-looking configurations. This approach not only speeds up the training but
also reduces the Mean Squared Error (MSE).

Overall, this work provisions a data-driven NN-based approach for determining
an accurate estimation of the radiation pattern or performance metrics that enable the
full characterization of the radiation pattern. As an example in Figure 1, the MSF is
represented by the reconfiguration pattern, and unit cells are modeled with the ON-OFF
states. We study the performance of our data-driven methodology using different NNs,
i.e., Radial Basis Function NN (RBFNN), Multi-layer Perceptron NN (MLPNN), and the
Convolutional NN (CNN). We describe the structure and functioning of these NNs in more
detail in Section 4. We now elaborate on the salient contributions of this paper, as follows:

• We develop an NN-based radiation pattern predictor, which, through our analysis, is
established to be nearly as accurate as a full-wave simulation but with the computa-
tional complexity of an analytical method.

• To the best of our knowledge, this is the first method wherein certain important fea-
tures of the reflected beam radiation pattern for a given MSF, i.e., Directivity, Principal-
to-side-lobe ratio, Direction of maximum energy radiation and Half power beam width, have
been predicted and effectively utilized for the complete characterization of the re-
flected beam radiation pattern. Consequently, this also provisions the capacity of our
methodology in 6G networks (Figure 1).

• We provide an analysis based on the accuracy of prediction of the aforesaid parameters,
for the locally tunable MSF scenario. Through the incremental design methodology, we
establish a concrete framework and benchmark towards the selection of a CNN-based
predictor for the reflected beam radiation pattern. Specifically, we compare the perfor-
mance of a CNN-based predictor with an MLP based predictor. The comparative study
reveals that the CNN predictor provisions an accuracy similar to the MLP predictor.
It is imperative to state here that a CNN incurs significantly lower computational
complexity as compared to an MLPNN. To this end, we have also provided a short
discussion on the computational complexity of the NN models, analytical method,
and the CST full-wave simulator in Appendix B.

The remainder of this paper is organized as follows: In Section 2, we present the
current state of the art. In Section 3, we describe the incremental design framework,
including the multiple scenarios that we have analyzed. In Section 4, we elaborate upon
the methodology that we have utilized for evaluating the multiple scenarios studied.
In Section 5, we evaluate the NNs, and we conclude the paper in Section 6.

2. State of the Art

ML methods over the past decade have gained significant importance in multiple
sectors such as aerospace, medicine, and telecommunications [43–45]. Further, since the
laws of electromagnetism, fluid and aerodynamics are governed by well-known differential
equation sets, the success of ML techniques in such domains is prospective [35,38,39]. Re-
cently, several works in the research community proposed ML-based algorithms to design
and validate EM response of MSFs [22,41,46–51]. Additionally, there are other data-driven
approaches, such as the Particle Swarm Optimization (PSO) method for designing a wide
range of MSFs. For example, PSO-based methods are used for designing artificial mag-
netic conductors, designing time-delay equalizer MSF for EM band-gap resonator antenna,



Sensors 2021, 21, 2765 5 of 25

and realization of a low profile bandpass frequency selective surface [52]. The aforesaid ap-
proaches are consolidated into a schematic diagram and are compared with our proposed
method in Figure 2. Furthermore, we have organized the existing approaches into two
distinct categories, i.e., forward design approaches and inverse/MSF design approaches. Whilst
forward design approaches consist of methods wherein the MSF coding is used to predict
the reflected wave radiation pattern, the inverse/MSF design approaches utilize the reflected
wave radiation pattern as a feedback to optimize the MSF coding.

MSF 

Configuration
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Wasserstein 

GANs

Output 

Spectrum

Simulation

Inverse Design

(b) General flow diagram for GAN based Forward/ Inverse design 

Methods [45]-[48]
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(c) CNN based output radiation pattern predictor [49]
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(a) General flow diagram for Intelligent EM sensing methods [22]
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(e) Neural Tensor Network based Forward/Inverse design method [50]

Figure 2. Schematic representation of state of the art approaches and the proposed method.

2.1. Forward Design Approaches

In Reference [50], an evolutionary algorithm that generates cell configurations and
evaluates the fitness of each configuration by predicting the reflection phase with a trained
CNN (a 101 layer deep residual network) for its given specific pattern has been proposed
(Figure 2c). However, this CNN, which serves as a speedup of the optimization process
of the evolutionary algorithm, is trained by previously encoding the output phases into a
one-hot vector of length 360. Each element of the vector represents a discrete degree.
Consequently, a problem that is purely based on regression is now converted into a
classification problem. This results in a loss of resolution and thus crucial information with
regards to the order and distance between degrees. Furthermore, in [50], the proposed
CNN approach only provides good results for output radiation patterns with one, two,
or three beams. Therefore, to use this approach as a reflected phase predictor, the user
needs to know a priori how many lobes the resulting pattern will have, and given the
fact that a method to a priori deduce the number of lobes has not been proposed in the
aforementioned work, it thus limits the ability to generalize this approach to predict any
reflected beam pattern.

Notably, other works, such as [53], have used ML tools for solving different EM
problems as a replacement of conventional numerical simulations. In Reference [53],
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an encoder–decoder structure was employed for inferring the internal fields of arbitrary
three-dimensional discretized nanostructures.

2.2. Inverse/MSF Design Approaches

In Reference [22], the authors propose a smart EM sensing mechanism, wherein the
MSF coding pattern, as well as the information decoding parameters, are jointly optimized
(deduced) to extract the latent scene (human gesture) information. To perform the same,
the authors propose to utilize two deep NNs and an optimizer (Figure 2a). The deep NNs
are termed as measurement ANN (m-ANN) and reconstruction ANN (r-ANN), wherein
the m-ANN employs two CNNs. Further the m-ANN, in collaboration with the optimizer,
determines the optimal MSF coding pattern. The r-ANN, on the other hand, employs
three CNNs, and in coordination with the optimizer identifies the latent scene information
from the received EM data. Next, in [46–49], Generative Adversarial Networks (GANs)
have been used to solve the inverse problem, i.e., to determine the MSF unit cell structure,
given the desired frequency response (Figure 2b). Additionally, in [46], a CNN is utilized
as a simulator to verify the accuracy of the frequency response of transmittance from the
generated structures during the training phase of the GANs generator component. Similarly
in [47], a GAN-based simulator, faster than the conventional numerical simulation tools,
has been proposed. This simulator is one of the components of a system that performs
an inverse design to select an MSF pattern from a user-defined dataset to match the
required input optical spectrum. Additionally, in [48], GANs have been employed to
design the MSFs that can generate complex tensorial Radio Frequency (RF) responses.
Further, and similar to previous methods, it also uses a CNN-based simulator to validate
the RF response of the generated MSF configurations. Concretely, the CNN simulates and
generates the scattering parameters for a given unit cell shape. However, the proposed
simulator does not evaluate the complete radiation pattern of a locally or globally tunable
MSF. Lastly, amongst the GAN-based methods, Ref. [49] works with a variant of the
conventional GANs, i.e., Wasserstein GAN (W-GAN), to achieve its goal of identifying the
most suitable MSF design.

Further, other research efforts such as [41] and [51] exploit other deep learning tech-
niques to perform the task of MSF design. Concretely, in [41], an auto-encoder based
approach has been adopted (Figure 2d). In this method, the auto-encoder enables capturing
the most significant aspects of the input data, i.e., the desired reflected beam radiation
spectrum. Subsequently, it facilitates the fully connected MLP network in determining the
requisite MSF profile for the demanded radiation pattern. Moreover, in [51], a combination
of the traditional NN, such as MLP, and Neural Tensor Network (NTN) based approach
has been adopted for designing the MSF (Figure 2e). However, to do the same, an initial
simulation framework consisting of two NNs, which employs the NTN, has been prepared.
These NNs aim to predict the amplitude and phase of the reflected wave from the MSF.
This is performed by using these two NNs to predict the real and imaginary part of the
desired EM response, respectively. Following this accurate prediction, inverse design
methodologies are then adopted to formulate MSFs conforming to a wide variety of design
objectives, thus highlighting the versatility of the proposed approach.

Given the aforesaid studies, to the best of our knowledge, we claim that for estima-
tion of the reflected wave radiation pattern our methodology provides a simpler solution.
This can be highlighted from the fact that the study in [22] utilizes a set of two different
deep ANNs, both comprising multiple CNN layers. Specifically, the m-ANN, which provi-
sions the MSF coding for the optimal illumination of the field of interest, applies two deep
CNNs. The CNN we use in the third scenario may end up generalizing to an NN with a
similar architecture than m-ANN, but in this paper, we prove that with a simpler CNN
architecture, we can obtain relevant features of the radiation pattern instead of the full
radiation pattern. Moreover, in this study, MSF coding pattern is optimized for a specific
application (shaping planar incident wavefront) while we conducted a general study (i.e.,
prediction of radiation pattern or performance metrics for any reconfiguration pattern).
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Next, the models defined in studies [46–49] work with GANs/W-GANs. These are again
more complex DNN architectures as compared to the relatively simple CNN framework
that we propose. Further, in [46–49], the objective is to study the inverse problem, i.e., to de-
termine the MSF configuration from a set of input radiation patterns. Hence, such solutions
do not apply to the objective of the problem that we aim to solve in this work. Moreover,
the work done in [50] results in a loss of resolution and applies to only some well-known
cases. Additionally, in [41,51], the proposed methodologies either suffer from scalability
issues (MLP is not scalable for large MSF configurations) or develop multiple complex
DNN architectures (such as two DNNs with the first layer being an NTN), respectively.
Hence, from Figure 2f, it can be observed that proposed methodology, which we will
detail next, is unique compared to the state-of-the-art approaches (Figure 2a–e) in terms of
its structure and approach towards predicting the output radiation pattern/parameters.
Table 2 lists the state-of-the-art papers comparing design approach, application, and year
of the publication.

Table 2. Summarizing the state of the art data-driven approaches.

Design Approach Application Year Reference

Optimizer Time-delay equalizer 2017 [52]

Two Deep NN and optimizer Smart sensing 2020 [22]

GAN and CNN Frequency response prediction 2018 [46]

GAN Inverse design 2019 [47]

GAN and CNN MSF design 2019 [48]

GAN MSF design 2021 [49]

CNN Reflection phase prediction 2019 [50]

Auto-encoder MSF design 2019 [41]

MLP and NTN MSF design 2019 [51]

Encoder-decoder Field prediction 2020 [53]

3. Incremental Design Framework

We now describe the framework for our radiation pattern predictor, wherein we
consider two broad scenarios, i.e., homogeneous and heterogeneous MSF configurations,
and incrementally demonstrate that it is possible to predict the features of the reflected
wave from a given MSF configuration through data-driven learning approaches. Note that
depending on the scenario, the MSF is represented by a matrix of unit cell states. Since the
unit cells are not extremely small compared to the wavelength (λ0/3) and phase reflection
is the only parameter that is different for each unit cell, the coupling effect between the
unit cells is negligible. The accuracy of this approximation is in excellent agreement with
full-wave simulations [33,36,42] and has been used in different analyses [54–56].

Next, the homogeneous MSF configuration scenario is further expanded to two specific
scenarios. These scenarios are established based on the underlying unit cell configurations
of the MSF and are listed as follows:

• The non-tunable scenario consists of a non-tunable unit cell configuration across the
MSF. Such a configuration is termed a non-tunable MSF.

• The globally tunable scenario consists of a matrix of unit cells across the MSF, wherein
the unit cells have the same values for the tunable resistance R and capacitance C.
Such a configuration is termed a globally tunable MSF.

The unit cell design is a modified version of the previous work [57] which can be
a tunable perfect absorber for different incidence angles and have tunable anomalous
reflection toward different directions at 5 GHz. Figure 3 presents the schematic of the
unit cell in which two metallic patches are connected via tunable R and C elements.
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The PCB thickness is 3.18 mm, the relative permittivity is ε = 2.2, and loss tangent is
δ = 0.0009. A plane wave impinges on the unit cell. Then,s by comparing the reflected
wave’s amplitude and phase, reflection coefficients of the unit cell are computed. This is
computed with full-wave simulation.

Figure 3. Schematic of the unit cell for the proposed MSF. The dimensions are L = 30 mm,
W = 12 mm, H = 3.18 mm, a = 7.85 mm, b = 7.50 mm and g = 1 mm.

Subsequently, the heterogeneous MSF configuration scenario, or the locally tunable
MSF, refers to the scenario where the unit cells can have different values of R and C as-
sociated with them. An illustration of these three scenarios that we have analyzed in
this work is presented in Figure 4. It is worth stating here that in our framework, we
analyze the efficacy of NN-based approaches by starting from a simple scenario, i.e., the
non-tunable (static) MSF, to a more generic and complex scenario, i.e., the locally tunable
(Programmable) MSF. Hence, we now describe these scenarios and the associated method-
ologies for radiation pattern prediction in detail through Sections 3 and 4, respectively.

Figure 4. Diagram of the three scenarios utilized in the Incremental Design framework. Non-tunable and Globally
tunable scenarios correspond to the broader homogeneous MSF configuration category, while the locally tunable scenario
corresponds to the heterogeneous MSF configuration category.

3.1. Homogeneous MSF Configuration

In this scenario, we elaborate upon the two scenarios, i.e., the non-tunable MSF and
the globally tunable MSF, in the text that follows.

3.1.1. Non-Tunable Scenario (Non-Tunable, Single Unit Cell/Full Radiation
Pattern Estimation)

Interaction coefficients for the general analysis of MSFs can be very complicated [58].
Note that such MSFs can be used for focusing [59] and polarization selection [60]. Next,
based on the Floquet theory, we can approximate large enough (>>λ0/2) periodic struc-
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tures with an infinite array of the same unit cell configuration (Figure 4, Case 1). This is
because the fields propagate only with phase delays together with multiplication by peri-
odic coefficients. This translation is considered automatically with the usage of periodic
boundary conditions in the simulations, thus reducing the complexity. This is a very ex-
tended practice in this kind of study [61]. Thereby, we just consider one unit cell and apply
periodic boundary conditions to model the whole MSF. Plus, in the prediction process, it is
presumed that the azimuth and elevation angles of the incident EM wave are given.

3.1.2. Globally Tunable Scenario (Tunable Single Unit Cell/Full Radiation
Pattern Estimation)

In this scenario, we introduce a data-driven model to predict the complete reflected
wave radiation pattern for a globally tunable MSF. One of the reasons for studying the
globally tunable MSF configurations is the role that they will play in applications such
as perfect absorber [62], frequency-tunable absorber [63], amplitude modulator [64] and
polarization control [65]. Same as before, in this scenario the MSF consists of an infinite
array of unit cells, wherein the same tuned unit cell configuration is repeated ad infinitum
(Figure 4, Case 2).

3.2. Heterogeneous MSF Configuration
3.2.1. Locally Tunable Scenario (Tunable Full Surface/Radiation Pattern Attribute Estimation)

Here, we elaborate upon the locally tunable scenario, which expands our incremental
framework to a locally tunable MSF (Figure 4, Case 3). Such MSFs enable applications such
as object tracking [19–21] and sensing [22,24]. Hence, they will be of significant importance
in 6G networks.

In this scenario, the inputs for our NN-based framework are two-dimensional matrices,
with each value representing the 8 possible states of the unit cell at the corresponding
position in the MSF. Additionally, the corresponding MSF is a 12× 12 matrix of unit cells.
The framework thus attempts to predict, for normal incident angles, the measures of the
reflected beam radiation pattern for an MSF with a set of given unit cell state configurations.
Note that the number of possible configurations for the MSF under study, is 8144. Due to
the large dimensionality, we investigate a data-driven model to predict four measures
of interest that characterize the reflected wave radiation pattern instead of the radiation
pattern itself. These measures of interest are the Directivity, Principal-to-side-lobe ratio, Angle
of maximum radiation and Half power beam width.

4. Methodology

Training an NN with environmental parameters like the location and geometry of the
obstacles requires specific information. Simulation of this complex medium is a challenge
and modeling it with analytical methods is not accurate. Therefore, in this framework, we
assumed the RIS in free space whereas the environment does not affect the RIS response
(i.e., objects are not in the reactive near-field of the RIS). Nevertheless, this does not mean
the scenario under study is unrealistic because the input of the NN is the reconfiguration
profile of the MSF, and the output is the radiation pattern. Therefore, by learning this
relationship between the reconfiguration profile and the MSF response, we can manipulate
the radiation pattern to optimize the communication channel. Moreover, free space RIS
was the subject of several recent works such as free space optical systems [66], smart
radio environments [67–69], vehicular communication systems [70,71], and a line of sight
wireless communications [5]. Regardless of the actual characteristics of the source (e.g.,
horn antenna), far-field impinging waves upon the MSF can be considered to be locally
planar [69]. Therefore, we assumed a plane wave with a normal incident that illuminates
the MSF area uniformly.
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4.1. Homogeneous MSF Configuration
4.1.1. Non-Tunable Scenario

For the simulations in the non-tunable scenario, we sweep the azimuth and elevation
angles from 0 to 89 degrees with respect to normal incidence direction alongside a resolution
of 1 degree. Given that the transmittance is 0, we do not need to evaluate negative elevation
angles. Moreover, due to the assumed unit cell symmetries, we do not need to explore all
the azimuth angles.

The NN model that we explore for our data-driven framework is RBFNN. It is a
three-layer fully connected NN, wherein the inputs from the input layer are fed to a hidden
layer via weighted links. At the hidden layer, a euclidean distance between the input and
the link weight vector, also known as neuron’s center, is computed [72]. The activation
function of the neurons is the Gaussian function, and these are also known as the basis
functions [72]. Consequently, the output of the neurons in the hidden layer is determined
by the output of the Gaussian function operated over the distance between the input and
neuron’s center. The final output is obtained by combining the weighted outputs of the
neurons in the hidden layer [72]. Such a paradigm is a priori very interesting for our
approach since it models spatial variables. This is in contrast to the MLPNN, in which the
basis functions are based on the dot product. Concretely, this enables the RBFNN to learn
the non-linear relationship between the incident and reflection angles of the EM wave more
effectively than an MLPNN, which is inherently based on a linear transformation.

Note that for the accuracy of evaluation of the RBFNN, we set the MSE goal to be
10−11 and the spread constant to 1. The spread constant here refers to the spread (or
variance) of the Gaussian radial basis functions. This hyper-parameter consequently plays
a crucial role in determining how the input layer is mapped onto these basis functions [73].
Further, 8100 samples were collected using an EM simulator, which in this work is the
CST Microwave Studio, of which 85% were spend for training and validation and the rest,
i.e., 15%, for evaluating the model generalization (which is usually referred to as the testing
process). For non-deep learning scenarios, the aforementioned set of hyper-parameters lies
within the range of values that are chosen usually [50].

4.1.2. Globally Tunable Scenario

In the globally tunable scenario, we vary the values of the parameters that character-
ize the physical structure of the unit cell, i.e., resistance R and capacitance C. However,
as described earlier, the entire MSF consists of the same unit cell configuration throughout,
i.e., all tuned unit cells will have the same value for R and C. For brevity, we studied only
normal incident wave direction. However, if required, our model can be extended to any
incident wave direction (incident angle). Further, we sweep the values of R from 1 Ω
to 100 Ω with a resolution of 1 Ω, and that of C from 0.1 pF to 1 pF with a resolution of
0.01 pF. The framework we use in this scenario for our data-driven approach is the MLPNN.

Moreover, unlike scenario 1, wherein the spatial characteristics of the incidence and
reflected angles of the impinging wave were to be learned, in scenario 2, the input features
R and C lack any spatial characteristics. Thus, we do not evaluate RBFNN for this case.
Furthermore, and owing to its relatively poor performance in scenario 1, we do not explore
CNN for scenario 2.

For the MLPNN, we utilize a single hidden layer of 20 neurons. The training algorithm
used was scaled conjugate gradient [74] without any regularization. The non-requirement
of any regularization in our model was due to the fact that it has a very small amount
of parameters. Similar to the non-tunable scenario, we obtained the samples from an
EM simulator and delimited 85% of them for training and the rest for testing purposes.
We collected 9191 samples, which is slightly more than the number of samples collected for
the non-tunable scenario.
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4.2. Heterogeneous MSF Configuration (Locally Tunable Scenario)

As mentioned in Section 3.2.1, for locally tunable MSF (Figure 5), we have to deal
with a large input dimensionality (8144). To train an NN and test it, we need numerous
input data (106). Since unit cells are tuned differently, it is not possible to adopt periodic
boundary condition. This increases the computation time. Given our computational
limitations, collecting enough samples through an EM simulator would take an extremely
long time. Therefore, in addition of hundreds of simulated samples, we collected thousands
of samples through an analytical method. With this technique, we trained an NN as fast
as analytical solutions (c.f. Appendix B) and as accurate as EM solvers (c.f. Section 5).
Therefore, in this paper, and for this scenario, we demonstrate that

• Our ML approach predicts the measures of the reflected beam pattern accurately.
• Provided that there is enough computational power, we can extrapolate the same

model and methodology to the scenario where we have more samples from an
EM solver.

Figure 5. Graphical exhibition of the system model: Base station at the far zone radiates with an omnidirectional pattern.
Planar impinging wave on the MSF reflected toward the target with a precise configuration of the MSF imposed by the
well-trained NN.

Analytical Model—Fourier transform can be used to estimate the MSF radiation
properties for simple cases in which 1-bit coding governs two states ∈ [0, 1] representing
full reflection (PEC) and no reflection [75]. We can model the current distribution on
the unit cells with complex shapes [76] and even use circuit modeling to imitate the
feed [77]. However, we do not need such complexity for unit cell patches. In our case,
the omnidirectional radiation pattern from the far-field becomes planar after traveling for
a couple of wavelengths distance [69]. Hence, MSF is illuminated by an incident plane
wave. Knowing the incident angles, i.e., the elevation angle θi and the azimuth angle φi, we
can engineer the direction of reflection by an appropriate linear phase gradient [57,78,79].
Assuming that the MSF imposes the phase profile Φ(x, y), we assign the virtual wave
vector kΦ = ∇Φ = ∂xΦ x̂ + ∂yΦ ŷ (∂x and ∂y denote partial derivatives). The momentum
conservation law can then be expressed as [36]

k sin θi cos ϕi + ∂xΦ = k sin θr cos ϕr
k sin θi sin ϕi + ∂yΦ = k sin θr sin ϕr

(1)
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where ∂xΦ and ∂yΦ describe the imposed phase gradients in the x and y directions, re-
spectively, and the subscripts i and r denote incident and reflected (scattered) waves,
respectively. Assuming air as the transmission medium, the required phase shift then reads

Φij =
2πDu(i cos ϕr sin θr + j sin ϕr sin θr)

λ0
(2)

Next, given that the size of the unit cells in an MSF is small, surface current on them
can be accurately modeled as a collection of sources [33]. Then, we can compute the
reflected wave radiation pattern by applying the Huygens principle and the principle of
superposition of waves, wherein the far-field is the sum of the contributions of all unit cells.
For linearly polarized incidence, the scattered field can be expressed as [80].

E(θ, ϕ) =
M

∑
i=1

N

∑
j=1

Aije
jαij fij(θij, ϕij)

Γije
jΦij fij(θ, ϕ)ejk0ζij(θ,ϕ)

(3)

where M and N are the number of unit cells in a row or a column, k0 is the wave number,
ϕ and θ are the azimuth and elevation angles, Aij and αij are the amplitude and phase
of the wave incident on the ij-th unit cell, Γij and Φij are amplitude and phase reflection
coefficient for the ij-th unit cell, and fij denotes the scattering pattern of the ij-th unit cell,
which, according to reciprocity, is identical for scattering toward the (θ, ϕ) direction and the
interception of incoming waves from the (θij, ϕij) direction. Here, we assume fmn(θ, ϕ) =
cos(θ) which describes real-world dipolar scatterers. Finally, ζij(θ, φ) is the relative phase
shift of the unit cells with respect to the radiation pattern coordinates (φ, θ) [42,80],

ζij(θ, φ) = Du sin θ[(i− 1
2 ) cos φ + (j− 1

2 ) sin φ] (4)

Training and Testing dataset generation—Next, for ML, normally random selection is
used to generate samples for training. However, random inputs of the gradient for unit
cells will always end up in a random scattering pattern. These patterns, in addition to being
non-learnable, will not be of significance for design purposes. Thus, the samples collected
for training are not entirely random combinations within the whole space, wherein the
total number of combinations, as mentioned earlier, is Q(N×M) = 8144.

Additionally, in our approach, a sample generation space is defined to control the
entropy of the input data [75]. Specifically, low entropy regimes will only be useful to
train specific options, i.e., those that require ordered codings (focusing, beam steering),
but they will not suffice scenarios that need near-to-random codings (Radar Cross Section
(RCS) reduction). Hence, a wide entropy range, such as the one as we have described
above, will be essential to train the NN and enables it to generalize effectively. Using
a simple algorithm to generate random samples for MSF configuration, there is a huge
chance to get high entropy data. In most cases, the products of the algorithm are unrelated
configurations. Due to the huge number of possibilities, we cannot iterate the data gener-
ation frequent enough to make sure the low entropy data is produced as well. Here, we
introduced a method to overcome this issue. In this procedure, a configuration is acquired
with Equation (2) for a random pair of reflection angles. Thereafter, an entropy factor
is introduced into the matrix of configuration with an adjustable size that allows us to
control the entropy of the final configuration ranging from 0 to 100%. With this method,
generated data includes configurations with uncorrelated data with high entropy as well
as meaningful configurations with low entropy. Therefore, we obtained a vast range of
entropy with a reasonable number of iterations (e.g., 106) which is precisely what we need
to prevent overfitting.

Subsequently, a criterion on the radiation pattern (e.g., Directivity) can be applied to
discriminate interpretative configurations. This criterion translates the qualification of the
NN on a specific configuration. Therefore, we have a system that automatically checks if
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the new configurations used for predicting its measures can be used (with a reasonable
granted accuracy) in the NN for prediction.

Adopting the aforementioned procedure, the number of samples that were collected
for training and testing the model of the locally tunable scenario was 105. Amongst these
samples and similar to the first two scenarios, 85% of them were used for training and
validation whereas the remaining 15% were stored in a completely separate set for the
testing phase of the model. Further from the training and validation set, 80% of the samples
were used for training, while the remaining 20% were used for validation. The values
of the pixels in the input images were normalized by performing a max-min escalation,
without modifying their variance. This is not the case for our input variables, as the
variance of each pixel is part of the relevant information the model uses for prediction.

However, it is important to state that standardizing the features is important when
we compare measurements that have different units, as variables that are measured at
different scales will not contribute equally and could end up creating a bias, and since this
is the case for the target variables, the target samples for both training and testing sets were
standardized by subtracting the mean of each of the measures and dividing them by their
respective variances.

Prediction System Operation—Following this, once our model is trained for a given
upcoming configuration, it performs an analytical check of the given configuration and
determines if it is totally random or not. If after the analytical check it is determined that the
MSF configuration is not totally random, the trained model is used to predict the measures
of interest. Instead, if it is determined otherwise during the analytical check, meaning
that the configuration outputs a random radiation pattern, it is discarded as the model
cannot provide suitable results for this configuration. Concretely, since NN training is
time-consuming, inputs that are not suitable for the application under study are removed.
Moreover, and as we have already stated, we employ the entropy control methodology
for ensuring diversity in the inputs for NN training. However, during the prediction
stage, configurations that are not suitable for the specified application are eliminated via
the analytical check. Figure 6 illustrates the aforesaid steps performed in our system for
predicting the measures of interest from an upcoming MSF configuration, once the model
is trained.

Figure 6. Diagram of the steps performed inside the system once the model is trained for the locally tunable scenario.

NN Models—With this background, we now delve deeper into the setup of the two
NN models that we use for our evaluations within the locally tunable scenario. Note that
for this scenario, unlike the non-tunable scenario of the homogeneous MSF configura-
tion (Section 4.1.1) where the spatial characteristics of the incidence and reflected angles
were to be learned, we do not use the RBFNN since we are not considering any spatial
characteristics in our input space.
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4.2.1. Multi-Layer Perceptron Neural Network

As part of our methodology, illustrated in Figure 6, we adopt NNs for predicting
the measures of interest of the reflected beam radiation pattern. Note that we consider
measures of interest here as against the full radiation pattern, given the prohibitively large
nature of the search space in highly scattering environments for predicting the complete
reflected wave radiation pattern. Next, in this section, we consider MLP as our candidate
NN. For the MLP case, the input images of 12× 12 pixels which represent the unit cell
configurations are flattened into vectors of 144 variables before being introduced into
the NN.

Figure 7 shows the structure of the MLPNN approach for the locally tunable scenario.
The number of hidden layers and the neurons per layer was set to 2 and 100, respectively.
A conclusion, with regards to the aforesaid parameter values, was reached after extensive
user-driven exploration since sweeping across all the possible combinations was not
computationally feasible. The rest of the parameters for the MLPNN are listed in Table 3.

Figure 7. Structure of the Multi-Layer Perceptron Neural Network in the locally tunable scenario.

Table 3. Multi-Layer Perceptron Neural Network parameters.

Parameter Name Value

Regularization type L2

λ 0.8

Training algorithm scaled conjugate gradient

Number of hidden layers 2

Neurons of 1st hidden layer 100

Neurons of 2nd hidden layer 100

As we can observe from Table 3, the training algorithm selected is the scaled conjugate
gradient which accelerates the convergence rate for first-order algorithms, like the steepest
descent, while avoiding the high computational cost of second-order methods, such as
Newton’s method. Since the default learning rate parameter worked reasonably well for
the NN training, i.e., it provided a reasonable convergence time and performance, we did
not deem it necessary to tune it further. Whilst this could be a point of optimization, we
leave it for a future work as our objective in this paper is to demonstrate the efficacy of
the method.

Next, regularization is a way to limit the complexity of a model and hence reduce
the chances of overfitting by penalizing the most complex solutions in the cost function.
Thus, we employ an L2 regularization in our methodology. Specifically, in the model, this
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is enforced via the λ hyper-parameter. For a more detailed discussion on the regularization
aspect, regularization method selection, and the associated hyper-parameter value selection
in our model, we refer the reader to Appendix A.

4.2.2. Convolutional Neural Network

Another NN that we explore for our methodology is the CNN. For the CNN case,
the input images of 12× 12 pixels and additionally a channel, which represents the unit
cell configurations, are directly introduced to the NN.

Figure 8 illustrates the structure of the CNN-based approach for the locally tunable
scenario. It is composed of three convolutional layers that consist of 64, 32, and 32 filters,
respectively. Further, a max-pooling process is performed after each of them. For all
the convolutional layers, the filter size is 3× 3 pixels, and the stride is 1. As we do not
use zero paddings, the dimensionality of the intermediate images which represent the
activations is reduced at each layer. They are followed by a fully-connected layer with 100
neurons and an output layer with a linear activation function. Similar to the MLPNN case,
the architectural parameters of the CNN are a result of extensive user-driven exploration,
since sweeping around all the possible combinations was not computationally feasible.
We enlist the most significant CNN architecture-related parameters in Table 4.

Figure 8. Structure of the Convolutional Neural Network in the locally tunable scenario.

Table 4. Convolutional Neural Network architecture parameters.

Parameter Name Value

Regularization type Dropout

Dropout factor 3rd conv. layer 0.2

Dropout factor FC layer 0.25

Training algorithm Stochastic Gradient Descent

Learning rate 0.001
ineMomentum 0.9

Decay 10−4

Num. of conv. layers 3

Num. of FC layers 1

As we can observe, the training algorithm selected is the stochastic gradient descent
(Table 4). As it is a first-order optimizer, the steps of the optimization process are linearly
done concerning the direction of the maximum gradient. Thus, the length of the steps needs
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to be defined by the learning rate hyper-parameter. The learning rate, decay, momentum,
and the number of both convolutional and fully connected layers, specified in Table 4, are
set following a user-driven exploration. It is important to state here that we do not use zero
paddings as it would introduce noise to the data, by essentially forcing a boundary that
would be non-existent on a continuous MSF plane.

Additionally, the third convolutional layer and the fully connected layer are regular-
ized through a dropout process. This process consists of randomly ignoring a given number
of layer outputs during the training process. Therefore, the layer with the dropout process
is treated as a layer with a lower number of nodes and connectivity to the previous layer.
In effect, each update to a layer during training is performed with a different “view” of the
configured layer. Dropout factor controls the number of nodes and is ignored randomly.
For the third convolutional layer and the fully connected layer, the dropout factors are 0.2
and 0.25, respectively. These values were selected following the same procedure explained
for selecting the λ regularization parameter in the MLP.

5. Evaluation

Given the framework discussed in Sections 3 and 4, we now present the evaluation
for each of the scenarios discussed within this framework and highlight the relevant
outcomes and insights. The results obtained from our NN-based prediction system have
been compared to the ground truth results obtained via the CST simulator.

5.1. Homogeneous MSF Configuration
5.1.1. Non-Tunable Scenario

For the non-tunable, single unit cell/full radiation pattern case, the trained RBFNN
was able to predict the radiation pattern for any given angle of incidence with an R2

test of 0.9994. Therefore, this assists us in validating our hypothesis that ML models can
accurately predict the reflected wave radiation pattern from a single unit cell for every
angle of the incident wave. Figure 9 illustrates a visual comparison between the predicted
radiation pattern by the trained RBFNN and the true diagram obtained through EM
simulation, for the azimuth and elevation angles that were not present in the training set.
Therefore, our prediction system can accurately learn and generalize for untrained/unseen
angles within the training dataset.

Figure 9. Comparison between the predicted normalized radiation pattern by the RBFNN of the
non-tunable scenario (left) and the true diagram (right) for azimuth an elevation values of 89.5
and 88.7 degrees with respect to the normal direction, respectively.

Further, when a CNN was applied for this case, the observed MSE was 10−7, which is
significantly worse as compared to the accuracy obtained via the RBFNN approach (the
MSE goal to measure the RBFNN accuracy was set to 10−11). Hence, for the sake of brevity,
for scenario 1 we only highlight the results from the evaluations carried out using the
RBFNN approach.
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5.1.2. Globally Tunable Scenario

For the tunable, single unit cell/full radiation pattern case, the trained MLP was able
to predict the radiation pattern for any given R and C value with an R2 test of 0.9849.
Therefore, our hypothesis that ML models can accurately predict the radiation pattern
of the reflected wave in a single unit cell for each R and C combination has also been
validated. Figure 10 shows the visual comparison between the predicted radiation pattern
by the trained MLPNN and the true diagram obtained through EM simulation, for R and C
values that were not present in the training set. This reinforces the fact that our predictor
can learn and generalize to scenarios with untrained/unseen values of R and C within the
training dataset.

Figure 10. Comparison between the predicted normalized radiation pattern by the MLP of the
Globally tunable scenario (left) and the true diagram (right) for R and C values of 2.5 Ω and
0.25 pF, respectively.

Further, here, we do not present a discussion of results for this scenario with the
RBFNN and CNN setups. Specifically, given that RBFNN is not suitable for the globally
tunable scenario, and the CNN performs poorly for the non-tunable scenario, we do not
detail a discussion on the performance of these setups here.

5.2. Heterogeneous MSF Configuration (Locally Tunable Scenario)

The radiation pattern attribute prediction problem for the locally tunable scenario
is essentially a regression problem. Hence, the cost/error function to minimize during
the training process is the MSE. However, this error function does not provide a very
good interpretability of the performance. Alternatively, we define a tolerance (or a set of
tolerances) specific for each measure of interest. Subsequently, we evaluate the percentage
of the predictions that fall within this tolerance limit. This is termed as the accuracy measure
in this paper. Thus, in the following Sections 5.2.1–5.2.4, we discuss the performance of the
MLPNN and CNN over the different measures of interest that we aim to predict using our
methodology ((Figure 4). The results associated with the ensuing discussions are reported
in Table 5.
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Table 5. Accuracy Measure: MLPNN vs CNN.

Parameter MLPNN CNN

Tolerance Accuracy Tolerance Accuracy

Directivity
0.5 dB 0.999 0.5 dB 0.998

0.25 dB 0.950 0.25 dB 0.906

0.1 dB 0.563 0.1dB 0.488

Principle-to-side 0.5 dB 0.999 0.5 dB 0.994

lobe ratio 0.25 dB 0.983 0.25 dB 0.943

0.1 dB 0.861 0.1 dB 0.801

Angle of maximum 5◦ 0.998 5◦ 0.989

radiation 2◦ 0.727 2◦ 0.607

1◦ 0.406 1◦ 0.319

Half Power Beam Width
1◦ 0.995 1◦ 0.988

0.5◦ 0.973 0.5◦ 0.926

0.25◦ 0.792 0.25◦ 0.618

5.2.1. Directivity

For Directivity, we observed that the MLPNN provided near-perfect prediction, subject
to certain tolerance limits. Concretely, from Table 5, it can be seen that 95% of the test
samples have been accurately predicted when the tolerance is set to 0.25 dB. Moreover,
when the tolerance is relaxed further, i.e., to 0.5 dB, we observe an improved accuracy of
99.99%. However, when the tolerance limit is reduced to 0.1 dB, we notice that the accuracy
of the MLPNN degrades drastically to 56.3%.

On the other hand, when the CNN is used as the predictor, the accuracy of prediction
with a 0.25 dB tolerance limit is set on 90.6% (Table 5). Further, when the tolerance
is increased to 0.5 dB, the accuracy of prediction is improved to 99.8%. Additionally,
when the tolerance limit is reduced to 0.1 dB, similar to the MLPNN case, the accuracy
of prediction for the CNN is deteriorated significantly to 48.8%. These aforementioned
accuracy measures are lower than those offered by the MLPNN. This is because, an MLP
based method, due to the fully connected architecture, can learn almost any feature space
accurately. On the other hand, a CNN tries to extract the most significant features through
its convolution-based processing, and hence, it is a lossy method.

However, a point of contention with the MLPNN is that the fully connected archi-
tecture is not scalable for bigger MSF configurations. This will progressively become
detrimental to the system performance, as the cost of computation will increase exponen-
tially. In contrast, a CNN utilizes significantly less computational and memory resources
and will scale better, whilst providing an accuracy measure that is close to that offered by
the MLPNN.

5.2.2. Principle-to-Side Lobe Ratio

For the Principle-to-side lobe ratio, we obtain similar observations from Table 5, as we
did for the Directivity parameter. Specifically, for the MLPNN, when we vary the tolerance
from 0.5 dB to 0.25 dB and finally to 0.1 dB, the corresponding accuracy measures are
registered at 99.9%, 98.3%, and 86.1%, respectively. On the other hand, for the same
tolerance value ensemble, the CNN method produces accuracy measures of 99.4%, 94.3%,
and 80.1%, respectively.

Therefore, we can see that the MLPNN performs slightly better than the CNN. How-
ever, as mentioned earlier, this comes at a significant computational cost, thus hampering
its scalability. Besides, it is understood that the correlation between the neighboring unit
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cells is far less as compared to those that are found in images in general [50]. Consequently,
this corroborates the findings from Table 5, with regards to the CNN performing slightly
worse as compared to the MLPNN. Concretely, an MLPNN can learn the interactions
between the distinctly related neighboring unit cells much more effectively due to the fully
connected architecture. However, a CNN treats the MSF like an image, thus considering
the neighboring unit cells to be correlated. However, in reality, this is seldom the case.

It is imperative to state here that, the aforesaid non-relational nature of nearby unit
cells is also responsible for the visibly subdued performance of the CNN, as compared to
the MLPNN, for other measures of interest.

5.2.3. Angle of Maximum Radiation

The results for the angle of maximum radiation in Table 5 are obtained by averaging
the accuracy of prediction of the elevation and azimuth angles, to provide a single view
over this feature. Subsequently, we observe that the MLPNN performs slightly better than
the CNN, the reasons for which have been expressed in Section 5.2.2.

To elaborate, for this measure, we consider tolerance values of 5º, 2º, and 1º. Next,
from Table 5 we observe that the MLPNN has an accuracy of 99.8%, 72.7%, and 40.6%
for the corresponding tolerance values, respectively. Further, the CNN approach has an
accuracy of 98.9%, 60.7%, and 31.9%, given the same tolerance value ensemble, respectively.
As can be seen, the accuracy drops as we reduce the tolerance limit, which is in line with
our observations from the other measures of interest. Additionally, it can be deduced that
irrespective of the NN utilized for the prediction step, the accuracy for the lower tolerance
values is significantly less as compared to the other measures of interest.

5.2.4. Half Power Beam Width

For this measure, we consider the tolerance values of 1º, 0.5º, and 0.25º. From
Table 5, we observe that the MLPNN has the corresponding accuracy measures of 99.5%,
97.3%, and 79.2%, respectively. Further, the CNN has accuracy measures of 98.8%, 92.6%,
and 61.8%, respectively. The trend for the accuracy values is similar to that observed for
the other measures of interest (Sections 5.2.1–5.2.3).

Hence, from the discussions so far, we can deduce that the proposed methodology can
accurately predict the reflected beam radiation pattern or the measures that can fully char-
acterize the same. To further reinforce this idea, we present Figures 11 and 12. Concretely,
Figure 11 shows in detail the evolution of the accuracy of the predictions for the Directivity
and Principal-to-side-lobe ratio as the tolerance in dB grows, for both MLP and CNN cases.
We observe that the trend for the accuracy is exactly what we have deduced through our
discussions in Sections 5.2.1–5.2.4. Further, we see that as the tolerance approaches 0.5 dB,
the accuracy of the CNN predictor approaches that of the MLP.

Lastly, Figure 12 illustrates the evolution of the accuracy of the predictions for the
Angle of incidence and Half Power Beam Width as the tolerance in degrees grows, for both
MLP and CNN cases. Again, here we observe that the accuracy percentage improves as the
tolerance is increased. However, we also notice that the Beam width prediction approaches
near 100% accuracy at very low tolerance values, whilst the angle of radiation measure
necessitates higher tolerance limits for the predictors to achieve better accuracy.
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Figure 11. Accuracy vs tolerance in dB for both MLPNN and CNN. The curves shown correspond to
Directivity and Principal-to-side-lobe Ratio.
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Figure 12. Accuracy vs tolerance in degrees for both MLPNN and CNN. The curves shown corre-
spond to the Angle of maximum radiation and Beam width.

6. Conclusions

In this paper, we have presented a data-driven methodology, wherein we developed
an NN-based approach for characterizing the reflected beam radiation pattern from an MSF.
One of the most important advantages of such an approach is that, while its accuracy is close
to the full-wave simulation, the time complexity to achieve the same is significantly smaller.
Additionally, it can also serve as a methodology that enables self-healing characteristics
and facilitates maintenance aspects of MSFs in the 6G wireless network environment.

As part of this methodology, we have provisioned an incremental design framework.
Through this framework, we analyzed three specific scenarios, wherein we estimated
radiation pattern of non-tunable MSFs and globally tunable MSFs. Further, through our
analysis, we have demonstrated the efficacy of the NN-based approaches. Concretely,
it was observed that the NN-based approaches could predict the radiation pattern with
very high accuracy in a significantly reduced time frame as compared to the full-wave
simulator counterparts.

Moreover, through the locally tunable scenario, we demonstrated that our CNN-
based prediction framework performs as well as the fully connected MLPNN framework.
However, it does so with a significantly reduced computational complexity as compared
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to the fully connected MLPNN framework. This will especially be critical when the
framework is scaled up to even larger MSF.

Further, through the last scenario, we have provisioned the first study, wherein,
instead of estimating the entire radiation pattern, we have predicted the most important
parameters that govern any radiation pattern, i.e., Directivity, Principle-to-side lobe ratio,
Angle of maximum radiation, and Beam width. This process will not only ensure the
required reliability in estimation, but it will also allow for a faster convergence time for
such estimations.

Since the objective of this paper was to understand the feasibility of the discussed
approaches, only a simulation-based analysis was performed. Hence, as part of future
work, a more realistic framework based on true data (measurement) should be carried out.

Author Contributions: Conceptualization and Methodology, All authors; software, validation, data
curation and formal analysis, H.T. and X.T.; investigation, resources, visualization and writing—
original draft preparation H.T., A.J., X.T. and S.A.; writing—review and editing, A.J., H.T. and S.A.;
supervision, project administration, and funding acquisition, S.A., E.A., A.C.-A. and C.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Commission grant number H2020-FETOPEN-
736876 (VISORSURF) and by ICREA under the ICREA Academia program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the MLP case, the typical regularization methods are L1 and L2. These methods
add a new term in the cost function that sums all the non-zero weights. The significance of
this term is governed by the regularization parameter λ, and while the main advantage of
L1 regularization is that it forces sparsity into the models by forcing most of the weights
to zero, for our case, we do not require feature selection since the number of input pixels
is quite limited. Consequently, L2 regularization is selected, and the new loss function is
defined as

L(X, y) = MSE(X, y) + λ
N

∑
i=1

w2
i

where X represents the input images, y the target metrics, λ the regularization parameter,
N the total number of neurons of the MLP, and w each weight of all the layers.

Furthermore, for selecting the optimal L2 regularization parameter λ, we performed
10-fold cross-validation. For each parameter value, we split the dataset into 10 groups,
and for each group, we train a model with the remaining 9 groups and validate with the
selected group. Then, the validation errors of each combination are averaged. Finally,
the parameter value that provides the lowest cross-validation MSE is selected for the
final model.

Appendix B

Considering the size of the MSF as an N ×M matrix of unit cells and the MLPNN
configuration in Section 3, the complexity of executing the MLPNN is O(NMη), where η is
the number of neurons in the first layer of the MLPNN. Next, for the CNN architecture
(Section 4) the complexity is O(NMpq), where p and q are the width and height of the filter
utilized in the convolutional layer. It is imperative to state here that, in general, pq << η.
In this work, p = q = 3 and η = 100, thus provisioning two orders of magnitude difference
between the product pq and η. On the other hand, for the analytical model specified in
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Equation (1) (Section 4.2), the computational complexity is O(NM). Moreover, practical
implementation defines that the values of p and q are usually chosen as 3 or 5 [81]. Hence,
from the aforesaid complexity analysis and the NN models used in our work, it is clear
that the CNN approach achieves complexity close to the analytical approach whereas the
complexity of the MLPNN is at least two orders of a magnitude greater than that of the
analytical and CNN model. Furthermore, for the MSF size considered in our work the CST
full-wave simulator needs nearly 2 million mesh blocks to be computed. Concretely, this
translates to more than O(NM · 104) computations. Thus, the CST full-wave simulator
requires nearly 4 and 6 orders of magnitude more computations as compared to the NN
models utilized in this work.
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