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ABSTRACT

Treating patients with cardiogenic shock is definitely a medical challenge. Physicians in the cardiac

intensive care unit have to constantly face a stressful environment where they have to make quick

decisions on a vast amount of patients. They must reason about the complex physiology of critical

illness and take actions based on a mental model of the patient’s physiology, together with men-

tal predictions of possible patient’s outcomes to interventions. This approach is clearly life-saving

and irreplaceable, yet it can lead to errors and compromise patient results. A computational tool

equipped with quantitative knowledge of physiology with the ability to systematically evaluate the

patient’s state, could help physicians with valuable suggestions for action.

In this master’s thesis it has been proposed to train a policy with reinforcement learning to make

therapy decisions on simulated patients with cardiogenic shock due to decompensated heart failure.

The Burkhoff and Tyberg cardiovascular hemodynamics model was implemented to simulate cardio-

genic shock patients. The deep Q-network with experience replay algorithm was developed to train

policies interacting with the simulator. Improvements on the policy performance were carried out

by introducing the domain randomization technique during the training phase. Such a technique

demands a set of parameter ranges to define the domain. Therefore, these parameter ranges were

obtained from real patient’s data by means of a system identification tool.

Results showed that using an encoder to identify parameters from patient’s data can be promising,

yet improvements are needed. Furthermore, it was demonstrated that domain randomization in-

creases robustness on policies, giving their ability to operate in unseen environments. The variation

of penalty terms on the reward showed different behaviors on the trained policies, suggesting the

need for such penalties to obtain the desired policy performance. Overall, a policy was trained and

tested satisfactorily on a simulated patient with cardiogenic shock.

These findings suggested that a policy can learn from simulated data and propose therapy decisions

that in some cases could resemble to the actions made by physicians. The outcomes obtained from

this approach are encouraging and further analysis and assessment on policies with real data should

be performed.
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Applying Reinforcement Learning in Treatment Strategies for Cardiogenic Shock Patients Page 3

CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Project scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Project objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 BACKGROUND AND STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . 15

2.1 The Cardiovascular System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 The Heart and Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Decompensated Heart Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Tailored Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Cardiovascular System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Multiscale Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Cardiovascular Hemodynamics Modeling Approaches . . . . . . . . . . . . . . 22

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Reinforcement Learning in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Clinical Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Massachusetts General Hospital Databases . . . . . . . . . . . . . . . . . . . 27

3.1.2 Data Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Cohort of Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 Preprocessing and Final Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Cardiovascular Hemodynamics Model . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Page 4 Master’s Thesis - Roger Pallarès López
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1. INTRODUCTION

1.1. Motivation

Heart failure (HF) affects more than 64 million people worldwide. In the US, the incidence of HF

was 6.9 million in 2020 and is expected to increase to nearly 8.5 million in 2030. Moreover, the

financial burden of HF on healthcare systems is high and will increase in the future. In the US, the

total cost of care for HF in 2020 was estimated at $43.6 billion. The annual total cost of care is

projected to $69.7 billion by 2030 if no improvements are achieved [31].

Caring for a patient with heart failure can be challenging, especially when critically ill in a decom-

pensated state known as cardiogenic shock. Physicians in the cardiac intensive care unit (CCU)

make decisions in a complex and stressful environment, rarely assisted by decision support tools.

Currently, each physician makes these decisions based on their mental model of the patient’s phys-

iology, often oversimplified, together with mental predictions of possible outcomes of treatment.

Furthermore, they must act fast in data rich environments, where the data are also complex, in-

cluding patients’ vital signs, imaging data, and continuous waveforms such as intravascular pressure

monitoring or ECG telemetry. This can lead to fatigue and cognitive overload. Moreover, in addi-

tion to treatment decisions physicians deal with patient families and life or death decision planning.

These challenges and more, such as physician-to-physician variation in decision making, can lead to

errors and compromise patient results.

These challenges motivate projects that aim to predict patient outcomes, group patients with sim-

ilar characteristics or even identify optimal treatment strategies adapted to each patient, projects

that are being developed in the Aguirre-Houstis Lab in the Center of Systems Biology (CSB) group

at Massachusetts General Hospital (MGH), Harvard Medical School (HMS). All these studies are

approved by the Mass General Brigham Human Research Committee (MGBHRC), under the IRB

number: #2020P003053. Concretely, there is a current project that proposes to train an algorithm

to make therapy decisions in patients with cardiogenic shock due to decompensated heart failure

(DHF).As discussed above, costs associated with hospitalizations for DHF can reach up to 60% of

the total expenditures for the treatment of HF [19]. Therefore, this project addresses a common,

resource intensive healthcare problem.

The present work, entitled “Applying Reinforcement Learning in Treatment Strategies for Cardio-

genic Shock Patients”, corresponds to the Master’s Thesis of the Dual Master’s Degree in Industrial
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Engineering and Automatic Control and Robotics. This work is framed within the aforementioned

project, in which the main goal is to develop a computational tool for helping physicians with

a focused subset of decisions known as tailored therapy which is used to treat DHF. This tool,

equipped with quantitative knowledge of physiology, past action-outcome events and the ability to

systematically evaluate all the data, could aid physicians with valuable tailored therapy decisions,

which could treat the patient’s DHF state. The present Master’s thesis is aligned with the objective

of developing such a tool.

1.2. Project scope

This project is an initial study to derive a computational tool that could help physicians make

optimal therapy decisions for patients with cardiogenic shock. In brief, patient data are extracted

and employed to estimate the space of CV parameters that the simulator should work to reproduce

patient states. Then, a policy is trained in simulation (modeling cardiogenic shock in heart failure

patients), whose actions directly affect the parameters of the simulator. Finally, results from the

policy behavior and the training process are assessed. The whole project implementation is per-

formed in Python 3.

Because of the time frame and the circumstances that involve this project, some limitations must be

kept in mind: First, the simulator implemented to train the policy is a simplified version of the final

simulator. The one used in this project only includes the modelization of hemodynamics. However,

the complete simulator will also include a model of oxygen transportation, in order to capture effects

of oxygen delivery. Second, actions of the obtained policy affect directly to parameters of the CV

model. In a future step, a mapping between drug administration and CV parameter changes will

be developed. Thereby, policy actions will be realistic therapy decisions. Finally, patient’s data are

used to define the CV parameter space in which the simulator should work. In a next step, out of

the scope of this project, data will also be used to further train and evaluate policies.

To sum up, the scope of this project is the implementation in Python 3 of an algorithm that through

simulation trains a policy to perform a simplification version of therapy decisions, affecting directly

to the parameters of the CV model. Therefore, it is a first step towards the final implementation

of a controller that would learn from a more realistic simulator, its training would be refined with

patient-outcome historical data, and its actions would be truly physicians’ decisions, such as certain

drug administrations.
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1.3. Project objectives

The general objective of this thesis is to obtain a policy with reinforcement learning (RL) to make

therapy decisions in simulated patients with cardiogenic shock due to decompensated heart failure.

This broad goal is subdivided into the following specific objectives:

� Implement a cardiovascular (CV) hemodynamics model. Concretely, understand and repro-

duce the Burkhoff and Tyberg cardiovascular model.

� Implement the Deep Q-Network (DQN) reinforcement learning algorithm to train policies

employing the CV model as simulator.

� Develop a system identification (SI) tool for estimating CV model parameters from MGH

patient data.

� Employ the DQN algorithm with optimized hyperparameters to train policies that learn

therapy strategies from simulated cardiogenic shock patients, in which the parameters of the

CV simulator are obtained from real patient data.
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2. BACKGROUND AND STATE OF THE ART

Theoretical background related to the project is explained and presented in this chapter. Fur-

thermore, this information is complemented with examples from published works, with a section

specifically dedicated to reinforcement learning applied to the healthcare field (Section 2.4).

2.1. The Cardiovascular System

Basic physiological concepts that appear throughout this thesis are explained in this section. More-

over, decompensated heart failure and tailored therapy are introduced and described in more detail.

2.1.1. The Heart and Circulation

The cardiovascular system consists of the heart, which is a muscular pump, and a closed system of

vessels called arteries, veins, and capillaries. It has four main functions, as explained below:

� The main function is the rapid convective transport of O2, glucose, aminoacids and other

components to the tissues, and the rapid washout of metabolic waste, such as CO2 or urea.

� Another function is that acts as a control system. It distributes hormones to the tissues and

secretes bioactive agents itself.

� Moreover, the cardiovascular system is essential for the regulation of body temperature,

bringing heat from deep organs to the skin.

� Finally, in reproduction, it is also responsible of the hydraulic mechanism for genital erection.

The heart is a muscular organ about the size of a fist and it is the most complex component of

the cardiovascular system. Its function is to pump the blood and circulate it through the vascular

system. It is formed by four distinct chambers: the right atrium, the right ventricle, the left atrium

and the left ventricle.

The right atrium receives blood from the superior and inferior vena cava, which through the tricuspid

valve, ejects that blood into the right ventricle. The right ventricle is in charge of ejecting the

received blood to the pulmonary artery, which passes the pulmonary valve. On the left side of the

heart, the left atrium receives blood from the pulmonary veins and transmit it to the left ventricle

through the mitral valve. Finally, the left ventricle ejects blood to the aorta, through the aortic

valve. In Figure 2.1, a simplified illustration of the heart is shown.
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Figure 2.1 Schematic diagram of the heart with the four chambers and valves. Extracted from [12].

In addition to the heart, a vascular system is needed to deliver oxygenated blood to tissues and

transport waste products to removal centers such as the lungs, liver, and kidneys. This circulatory

system forms a closed loop for the blood flow. The left heart receives blood rich in O2 from the

lungs and pumps this blood into the systemic arteries. The systemic arteries, beginning with the

aorta, branch out to smaller arteries that finally become the capillaries, where the exchange of O2

and CO2 takes place. Leaving the systemic capillaries, the blood enters the systemic veins, through

which it flows in vessels that progressively augment their size to the vena cava. Then, the right

heart pumps blood into the pulmonary arteries that distribute the blood to the lungs. The smallest

branches of these arteries are the pulmonary capillaries, where CO2 leaves and O2 enters the blood.

Finally, the oxygenated blood leaves the pulmonary capillaries and enters the pulmonary veins,

through which it flows back to the left heart. A red blood cell takes approximately one minute to

complete this circuit in an individual at rest.

The circulation described above is illustrated in Figures 2.2a and 2.2b. In Figure 2.2a the distri-

bution of blood volume over the circuit is shown. Note that most of the volume is gathered in the

systemic veins. On the other hand, in Figure 2.2b, a more illustrative circulatory system is shown,

where the most important vital organs are presented. Note that vessels colored red carry blood rich

in O2 and vessels in blue carry blood depleted of O2 and enriched in CO2.
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(a) (b)

Figure 2.2 Illustrations of the circulatory system. a) Schematic diagram, showing both the systemic and
pulmonary circulations, the heart and the distribution of blood volume. Extracted from [12]. b) Illustration
of human circulation with some vital organs. Red lines are blood rich in O2 and the blue lines blood that

contains more CO2. Extracted from[8].

In addition to its topology, the function of the cardiovascular system is characterized by a set of

physiologic variables. Since the blood is nearly incompressible, the volume (V ) is a convenient

measure of its quantity. In general, blood volume is measured in milliliters [mL]. Moreover, its

time derivative is another key variable: the blood flow (Q), usually measured in liters per minute

[L/min]. Also, the pressure (P ) is used to describe the blood inside vessels, which in general is

measured in millimeters of mercury [mmHg].

The total blood flow generated by the heart, termed the cardiac output (CO) and measured in liters

per minute [L/min], is especially important as it determines the rate of oxygen delivery to tissues.

It is decomposed further into two cardiac state variables, heart rate and stroke volume. Heart rate

(HR) refers to the number of muscle contractions the heart completes per minute, measured in

beats per minute [bpm]. Stroke volume (SV ) refers to the volume of blood ejected with each beat.
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Hence, cardiac output can be quantified as the product of these variables:

CO = SV ×HR (2.1)

Additional relations exist between the physical variables defined above. Blood vessels are considered

to have a resistance to blood flow, and a compliance in response to distending pressure. The simplest

models of these relationships are linear [9]:

Q =
∆P

R
(2.2)

V = CP (2.3)

where R is known as the resistance of the vessel, in general measured in [mmHg · s/mL]; and C is

the compliance of the vessel, usually measured in [mL/mmHg].

The heart generates flow by repeatedly ejecting blood in a characteristic “cardiac cycle”. Each cycle

(heart beat) consists of a contraction (systole) and a relaxation (diastole) that results in the ejection

of a quantity of blood, the previously defined stroke volume (SV ). The entire cycle is divided into

four phases, based on the position of the heart valves: ventricular filling, isovolumetric contraction,

ejection and isovolumetric relaxation.

Figure 2.3 The four phases of the cardiac cycle. From top and clockwise: filling, isovolumetric contraction,
ejection and isovolumetric filling. Adapted from [8].

In ventricular filling, both tricuspid and mitral valves are open, and pulmonary and aortic valves are

closed. The heart is relaxed and filled with blood. It is usually the longest phase of the cycle, taking

two thirds of it. In isovolumetric contraction, all four valves are closed. The heart starts contracting
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and because of ventricles have temporarily become a closed chamber, pressure of blood rises quickly.

During ejection, mitral and tricuspid valves are closed, and pulmonary and aortic valves are open.

The heart is contracted and blood is ejected to the arteries. Finally, in isovolumetric relaxation,

again all four valves are closed. Heart relaxes and since it is again a closed chamber, pressure drops

rapidly. The explained cycle can be appreciated in Figure 2.3, in which the four phases are depicted.

The state of a cardiac chamber during the cardiac cycle, e.g. the left ventricle, can be represented by

the so called PV loop. This loop expresses the chamber’s state in terms of its volume and pressure as

a function of time. It is very useful for discussing the heart performance in a quantitative manner.

Moving counter-clockwise, the four phases can be appreciated. Figure 2.4 shows an example of

PV loop of a subject resting. For example, the stroke volume (SV ) can be determined, since it is

defined as the end-diastolic minus the end-systolic volumes.

Figure 2.4 Example of a left ventricle pressure volume loop (PV loop). Adapted from. [8]

2.1.2. Decompensated Heart Failure

Heart failure can be defined as the inability of the heart to pump sufficient blood to meet the body’s

full range of demands and/or to do so at abnormally high pressure. Decompensated heart failure

(DHF) is a more advanced form when O2 delivery by the heart no longer meets the body’s minimum

demands and requires immediate therapeutic intervention. As presented in the introduction (Section

1.1), costs in healthcare for DHF reach approximately 60% of the total costs related to the treatment

of heart failure. It is estimated that its prevalence is around 10 % in the population over 70 years of

age. Moreover, mortality rate among patients discharged during the first 90 days is approximately

of 10%, with about 25% of readmission in this period [19].
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The most severe form of DHF is cardiogenic shock (CS). In CS O2 delivery by the heart is so

impaired that rapid organ damage occurs, in particular those organs with higher O2 demands such

as the kidneys and brain. As a result CS is rapidly fatal. The treatment strategy for CS should be

carefully guided by patient’s vital signs, physical examination, laboratory tests, echocardiography,

etc. in order to reverse the decompensated state [14]. Tailored therapy [29] is a clinical algorithm

that follows this strategy.

2.1.3. Tailored Therapy

As presented Section 2.1.2, tailored therapy is a clinical algorithm that uses patient’s physiology data

to choose treatments that reverse the decompensated state avoiding CS. The goal is to restore O2

transport by restoring the heart’s normal loading conditions (preload and afterload) and inotropic

state. This is achieved by dosing vasoactive medications and using artificial mechanical support.

However, what are the heart’s loading conditions and inotropic state? Preload, also known as the

left ventricular end-diastolic pressure (LVEDP), is the amount of ventricular stretch at the end of

diastole. It directly affects the ventricular filling of the heart. Therefore, a high preload is related

with increased stroke volume (SV ), and vice versa, a low preload results in a lower SV . Afterload is

the condition that affects the amount of resistance that the heart must overcome to open the aortic

valve and eject the blood volume into the aorta. It is both related to the aortic pressure and the

SV . Thereby, an increased afterload results in a high resistance and thus, a lower stroke volume

and higher pressures. If the afterload is low, the opposite happens. Finally, inotropy is the heart

state related to the heart’s force of contraction and its elastance. It is mainly linked to the SV , and

an increment of inotropy causes a reduction of the end-systolic volume and thus a higher SV [15].

Left ventricular pressure volume (PV) loops mentioned in Section 2.1.1 are a very useful tool for

visualizing such effects mentioned in the previous paragraph. In Figure 2.5, both preload and

afterload as well as inotropy effects are schematized.

(a) (b) (c)

Figure 2.5 PV loops showing the effect of the heart’s loading conditions and inotropic state. Extracted
from [15]. a) Effect of preload related to SV . b) Effect of afterload related to both SV and pressure. c)

Effect of inotropy related to SV .
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2.2. Cardiovascular System Modeling

A cardiovascular (CV) system model is a mathematical abstraction of cardiovascular physiology

that is used to understand and quantify the system and its functions. Many modeling choices are

available, and as described in Section 2.1.1 the CV system may have multiple functions. As a

result, one may ask themselves what function or part of the cardiovascular system wants to model.

Is the heat transfer from organs to the skin desired to be modeled? Or the fluid dynamics of the

blood? Furthermore, one must determine the scale at which to model the system. Should the model

describe interactions between cells? Or are macro-scale measurements such as pressure sufficient?

Cardiovasculer system modeling therefore embraces many types of models and distinct scales. In

this section a brief review of some modeling approaches is presented, with an emphasis on the type

of model that is employed in this project.

2.2.1. Multiscale Modeling Approaches

The cardiovascular system can be modeled at different length and time scales [35]. For example,

one could model at the scale of a cell in order to study and predict effects of perturbations such

as genetic mutations, the effects of certain drugs, or disease consequences on cells. One could also

model at the scale of tissue. These models are used to study and quantify arrhythmias, which can

be viewed as emergent properties of the cardiac system at the scale of tissue. Such models can also

be used to investigate anatomical abnormalities and interactions with devices. Zooming out, there

are organ scale models which can be used to model patient-specific geometry and cardiac structure.

Finally, there are the whole body models, which can quantify functional variables such as pressure

or volume in a cardiovascular compartment. Examples of the aforementioned models can be seen

in Figure 2.6.

Figure 2.6 Multiscale modeling. From bottom to the top: cell scale modeling, tissue/fiber scale modeling,
organ (cardiac electrical and mechanical) modeling and finally whole body modeling. Adapted from [35].

In this work, a whole body model is used to simulate the physical variables that describe the blood

circulation.
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2.2.2. Cardiovascular Hemodynamics Modeling Approaches

Models that describe the physical variables that quantify cardiovascular characteristics are called

hemodynamic models. A range of such models describe the CV system at distinct levels of detail.

There are three main classes of hemodynamics models. These include, in order of decreasing com-

plexity: three dimensional (3D) hemodynamic models, one dimensional (1D) hemodynamic models

and zero dimensional (0D, or lumped parameter) hemodynamic models [18].

3D hemodynamic models are those that study the blood as a vector field. Blood can be represented

as an incompressible fluid. Its fluid dynamic behaviour can then be approximated by a Newtonian

fluid model governed by the Navier-Stokes equations. Arterial vessels usually have compliant walls,

which deform significantly due to the pulsation of blood pressure. In order to model this compliance,

elastodynamic equations are coupled with Navier-Stokes equations. Due to their complexity, such

models are usually used to describe local hemodynamic information of vessels in detail. However,

they are rarely used to simulate the entire circulatory system.

1D hemodynamic models are those that study the blood as a wave propagating in a tube. Again,

blood is considered an incompressible fluid. The 1D partial differential equations that govern this

wave can be obtained by integrating the Navier-Stokes equations over the vessel’s cross-section.

These models, much less complex than the 3D models, are usually used to simulate pressure and

flow waveforms at any point of the arterial network, such as the central aortic pressure. Neverthe-

less, their complexity and computational demands make them challenging to use for simulating an

entire circulatory system.

0D hemodynamic or lumped parameter models are those in which the circulatory system is often

modeled by applying Windkessel theory [37]. The hypothesis underlying this theory is that the

pressure in a deformable fluid container is homogeneous in space. Consequently, the circulatory

system is grouped into different compartments that represent a specific part of it. These models are

defined with ordinary differential equations, making them relatively simple to solve. Due to their

simplicity, these models are not employed to study wave propagation or pressure waves in detail,

but rather they are useful to estimate blood pressure changes [1], simulate the whole circulatory

system [3] or for teaching purposes [13].

The type of model implemented in this project is a lumped parameter model, as it serves as a

simulator used by a reinforcement learning algorithm to train policies. This model is explained in

detail in Section 3.2.
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2.3. Machine Learning

This section is devoted to describe the basics of machine learning topics that appear in this thesis.

A brief introduction to artificial neural networks is explained, together with the fundamental theory

related to reinforcement learning.

2.3.1. Artificial Neural Networks

Artificial neural networks (ANNs) are a type of supervised learning method that aim to learn a

function from a set of input-output (or label) data. The simplest entity of an ANN is the so called

perceptron. A perceptron is a linear combination of variables passed to an activation function (f):

y = f(xωT + b) (2.4)

where x is the vector of inputs, ω the vector of weights and b the bias. Regarding activation

functions, there are many different types, including ReLu, Sigmoid or ELU [7].

Therefore, an ANN is formed by a set of perceptrons (or nodes) that are organized into different

layers and linked among them. Those layers are: the input layer, the output layer and the hidden

layers. The simplest architecture of ANN is called a multilayer perceptron (MLP) or feedforward

neural network. In these kind of networks, the nodes of each layer are connected to the next layer,

thus information travels forward, from the input layer to the output layer. In Figure 2.7 a simple

architecture of a MLP is shown.

Figure 2.7 Schema of a simple artificial neural network. Input nodes are denoted with x, hidden nodes
with h and output node with y. Adapted from [7].

In order to train (optimize) an ANN, a function that quantifies the difference between the labels

(or data outputs) and the outputs of the ANN is needed. This function is generally called the loss

function:

L(y(ω), ỹ) (2.5)

in which y(ω) are the outputs of the ANN that depend on its weights ω and ỹ are the labels.

Finally, the training (optimization) of the ANN is carried out by employing the backpropagation

algorithm. This algorithm is based on updating the weights of the ANN “backwards” using the
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gradient descent method. It computes the gradient of the loss function with respect to the weights

and propagates this error updating them:

ωt+1 = ωt − α∂L(y(ω), ỹ)

∂ω
(2.6)

where t denotes the update iteration and α is the learning rate. Iterating over the whole dataset,

backpropagation is applied each time a batch (subset) of data is introduced to the ANN, and

repeated a certain amount of epochs. An epoch is defined as the moment when all the dataset has

been introduced to the ANN in batches.

2.3.2. Reinforcement Learning

Reinforcement learning (RL) is one of three well-known machine learning paradigms, alongside

supervised learning and unsupervised learning. It is an area of machine learning concerned with

how a virtual agent should choose actions when interacting with an environment, with the goal of

maximizing the notion of a cumulative reward [30] (Figure 2.8).

Figure 2.8 Reinforcement learning framework agent-environment. Extracted from [30].

The environment is typically modeled as a Markov Decision Process (MDP). A MDP is a discrete-

time stochastic control process. It provides a mathematical framework for modeling decision making

in situations where outcomes are partly random and partly under the control of an agent. A MDP

is composed of a tuple of 4 elements:

(S, A, Pa(s, s′), Ra(s, s′)) (2.7)

where S is the set of states called the state space; A is the set of actions called the action space;

Pa(s, s′) : S ×S ×A → [0, 1] is called the transition function, it determines the probability of going

from state s to state s′ taking action a; finally, Ra(s, s′) : S × S × A → R is the instantaneous

reward, and it defines the reward for going from state s to state s′ when taking action a.

Two key functions in RL are the policy and the value functions. The policy is a mapping between

states and actions that determines what action the agent has to take given the state and the set of

possible actions. The optimal policy determines the actions that maximize a cumulative reward.

Policy: π(s, a) : S ×A → A (2.8)
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On the other hand, the value function is defined as the expected return starting from state s0 and

successively following the policy π:

Vπ(s) = E[R] = E

[
T∑
t=0

γtrt | s0 = s

]
(2.9)

where R is the return, T is the horizon, γ ∈ [0, 1) is the discount factor and rt ∈ Rat(s, s′|s =

st, s
′ = st+1), given transition from s to s′ by at = π(st, a) is the reward at step t. Note that

an episode is defined as the whole agent interaction with the environment until the horizon T is

reached.

The concepts described above are shared across a wide range of RL algorithms. However, there are

also many important distinction between algorithms. For instance, there are algorithms that have

discrete state and action spaces, others that have both continuous and others that can have contin-

uous state space and discrete action space. Moreover, algorithms can be on-policy if they optimize

the policy using actual values of it, or off-policy if they do not use them. Finally, algorithms can

be model-based if they have a model of the environment while training (optimizing) the policy, or

model-free, if they train the policy without a model and learn directly from the environment.

With respect to the distinction between model-free vs. model-based algorithms, model-free algo-

rithms are usually employed for those tasks where the underlying dynamics can be difficult to model.

For example, in [21] a model-free RL algorithm was used to play Atari games. Also, the rubik’s cube

problem was solved with a robotic hand vastly trained in simulation [22]. The authors reported

the RL had achieved meta-learning, meaning that their model-free RL algorithm was able to learn

the dynamics of the environment, rather than memorizing all pair of cause-effect relations. On the

other hand, problems that are easy to simulate such as board games have been better solved with

model-based RL algorithms. For example AlphaZero was able to outperform any human or engine

in chess, shogi and Go [28].

Nevertheless, it must be pointed out that during the last years, model-based RL algorithms have

also been able to solve problems where the underlying dynamics are complex. For example, in

[34] they could find “universal” policies for robotic tasks where the dynamics were not completely

known. By introducing a system identification model that was capable of detecting the parame-

ters of the environment, they could introduce the estimated parameters to the policy and therefore

optimize it over different environment setups. However, the most astonishing achievement is the

case of MuZero [27]. MuZero is the successor of AlphaZero that builds itself the model that uses to

run the RL algorithm and optimize its policy. It learns a model that predicts the quantities most

directly relevant to planning, which makes it outperform on not only board games like AlphaZero,

but also in Atari games, where previously model-based RL algorithms have historically struggled.
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2.4. Reinforcement Learning in Healthcare

In recent years, RL techniques have been introduced into healthcare applications for use as decision

support tools. There are different clinical settings in the intensive care unit (ICU) where RL has

been studied. For example, RL was used for the management of invasive mechanical ventilation in

the ICU [24, 33], for learning optimal treatment strategies for sepsis [17] or even for learning effective

cancer treatment regimes that dynamically adapt to patients [36]. However, no applications have

been reported for the critical care unit (CCU) or specifically for cardiogenic shock.

Regardless of any application of RL to ICU problems, there are constraints that affect on those and

must be taken into consideration. First, RL algorithms cannot learn through experimentation (trial

and error) on actual patients. Learning from patient data and evaluation of trained policies must

only happen through training on databases of past physician actions and their associated patient

outcomes (off-policy learning and evaluation [10]).

Second, these databases tend to have a small number of examples relative to the needs of RL to train

a policy. For example, for complex tasks, RL may need millions of examples or more to obtain a

trained policy. This motivates the need to either find algorithms that are extremely sample-efficient

[6], or to use simulators to create many more cause-effect samples.

Furhtermore, RL approaches to ICU problems have tended to use model-free algorithms, wherein

they begin with no explicit knowledge of physiology or medicine. They learned to make decisions

about patients simply by observing a complex dataset generated by a collection of physicians in

thousands of patients. Published results reflect the limitations of this approach, for example making

decisions that ignore basic cause effect relationships well understood by physicians [11].

Although there are some studies in recent years that have applied RL approaches to the healthcare

field, many challenges remain in order to build robust policies that could operate in the real-world.

In particular, RL applied to cardiogenic shock is a novel and promising area of RL development.
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3. MATERIALS AND METHODS

This chapter describes the tools and techniques used in this thesis. Detailed explanations are

provided for data acquisition, simulation of cardiovascular physiology, the reinforcement learning

framework, and finally the system identification tool.

3.1. Clinical Data Acquisition

The patient data used to train the system identification tool were obtained from two Massachusetts

General Hospital (MGH) databases. The step-by-step process, beginning with data extraction from

bedside monitors and ending with the final dataset, is presented next.

3.1.1. Massachusetts General Hospital Databases

MGH systematically monitors and records all patient data in an electronic medical record (EMR).

Data come from different sources, e.g. vitals signs recorded at the bedisde, past clinic visits,

medication administration, etc. Once data are recorded, they are stored in two principle databases:

Electronic Data Warehouse (EDW) and Bedmaster (BM).

Figure 3.1 Data workflow. From ICU patient to EDW and Bedmaster databases. Framed in red both
EDW and BM databases.
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The workflow from the extraction of ICU patient’s data to their storage into the aforementioned

databases is schematized in Figure 3.1. Patient data such as ECG telemetry or blood pressure

are tracked by a bedside monitor and displayed onto remote stations for physicians and nurses to

review. A subset of these data are checked and approved by a nurse or physician and then sent

to EPIC Hyperspace (a commercial EMR) and subsequently to EDW. Other sources of data, like

lab measurements or physician notes are also incorporated into EPIC and EDW. There are also a

collection of densely-sampled physiologic signals recorded from patients that are viewed in real-time

and sent to the BM database without filtering by a nurse or physician.

The first of these databases, EDW, is a SQL-based database that contains information from EPIC

and other data sources. Data formats range from numerical values to dates, notes or labels. Infor-

mation is organized in several tables that can be queried, obtaining a set of csv files. Typical patient

information found in this database includes: vital signs at hospital admission, their movements be-

tween MGH departments, demographics, diagnoses, chart-review-items (vital signs measurements,

among others), laboratory value measurements, medication administration, surgeries, important

events and patient history data (such as tobacco consumption).

The second database, BM, contains two types of data: patient vital signs and patient waveforms.

The data are stored in a collection of mat files that can be accessed on a server (MAD3). These

files are stored in subfolders corresponding to each MGH department and stripped of any patient

identifiers; the only identifying information that is retained is the hospital bed number from which

the data were recorded and the start time of recording. Vital signs are sampled every two seconds,

and have information such as a patient’s heart rate, systolic blood pressure, respiration rate, etc.

On the other hand, waveforms are sampled at 120Hz or 240HzHz and contain signals such as ECG,

systemic arterial pressure, central venous pressure, etc.

3.1.2. Data Curation

Data curation is the act of organizing and integrating data collected from various sources, so as

to preserve it over time and make it available for applications. Part of the Houstis-Aguirre Lab

team dedicated time and effort to curate the data by developing a pipeline to extract information

from both EDW and BM databases and create hd5 files (Figure 3.2). Two key components of this

pipeline are the matching algorithm and the tensorization process.

As mentioned in the previous section (Section 3.1.1) BM data are de-identified. In order to associate

a BM file with the patient from which it was measured, it must be matched with patient identifiers

in the EDW database. The matching algorithm does this task by comparing hospital bed and start

time information in BM files against bed movement information stored in EDW.
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Figure 3.2 Data workflow. From EDW and Bedmaster databases to HD5 files.

Once a patient’s data from both databases are matched, the tensorization process follows. Tensoriza-

tion is the operation of getting the desired data from EDW and BM and organizing it hierarchically

in hd5 files, one for each patient. Two important operations in this process include: time alignment

between data from both databases, since EDW data is stored in local time but BM data in UTC;

and corrections on BM time arrays, as sometimes there are non-monotonicities such as jumps back

in time.

Storing the data in hd5 files has several advantages. First, there is one file per patient; so if a cohort

of patients is desired, it is easy to collect the desired data. Second, information in hd5 is easy to

organize hierarchically and has the flexibility to be compressed into different formats. Moreover,

hd5 files have the characteristic of only loading in RAM memory the desired data, instead of the

entire patient record. These features and more make this type of files suitable for data analysis

applications.

3.1.3. Cohort of Patients

The cohort of patients chosen for this project are MGH patients who underwent coronary artery

bypass grafting (CABG). CABG is a type of surgery that improves blood flow to the heart. It is

used for people who have severe coronary artery disease, a condition that narrows the lumen of the

coronary arteries, thereby reducing blood flow to the heart muscle. Patients who undergo CABG

surgery sometimes develop complications, in particular cardiogenic shock (CS) [20]. Therefore, this

cohort is interesting and relevant for this thesis as it has data that can describe CS patient states.
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Figure 3.3 shows a flowchart for selecting CABG patients who satisfy criteria of data availability

and data quality. The initial CABG cohort consisted of 2774 patients and 2812 encounters that

occurred in MGH from March 2016 to February 2021. Note that an encounter refers to a specific

instance when a patient was admitted to the hospital. Therefore, a given patient that underwent

more than one CABG operation, during separate hospital stays, will have more than one encounter.

Moreover, only the first 12 hours after the surgery were analyzed, since it is the period of time in

which patients are heavily monitored in order to diagnose any complications that may occur.

From the initial cohort, 1002 patients and 1039 encounters were removed from the data set because

they did not have all the desired signals used in this work. Moreover, those patients who had signals

which overlapped less than 20% of the total time, i.e., less than 2.5 hours, were also removed from

the cohort. Finally, after outlier removal, patients whose signals overlapped for less than 20% of the

12 hours time window were again removed from the data set. The end result of patient selection cut

down the initial cohort of 2774 patients and 2812 encounters to 1372 patients and 1373 encounters,

which equals 48.8% of the initial cohort.

Figure 3.3 Cohort reduction due to signal missingness and outlier removal.

Demographic information for the final cohort is presented in Table 3.1. Patients were predominantly

male (80%), at a mean age of 69 years, with a mean length of hospital stay of about 12 days.

Moreover, the mortality of this cohort is nearly 6%.
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Table 3.1 Demographic data of the final cohort (n = 1373).

3.1.4. Preprocessing and Final Dataset

As justified and explained in Section 3.4, the signals used in this project are the patient’s systemic

arterial pressure, central venous pressure, pulmonary artery pressure, cardiac output, and heart

rate (Table 3.2). All of these signals come from BM database, although it must be noted that

information from EDW was also employed to determine which patients underwent CABG, as well

as to obtain demographic information (Table 3.1).

Table 3.2 List of signals used in the project. Included information: the signal type and between
parentheses their sample frequency, the equivalent mathematical symbol used throughout the whole study,

the units, and a brief description of how they are measured.

Once the final cohort of patients was selected, a set of preprocessing steps were performed in order to

clean and transform the data required for CV parameter estimation using the system identification

tool. First, signals were cleaned out of outliers by determining those values that were outside

physiological ranges (Table 3.3 present these ranges). Second, all five signals were resampled at

120Hz and cut so as to have the same sample points and start/end time. Third, a Butterworth

low-pass filter with a cut-off frequency of 8Hz was passed on the waveforms to remove remaining

noise. The cut-off frequency of 8Hz was chosen as it is double of the highest heart rate, in this

way ensuring no information from the cardiac cycles could be lost. Fourth, the signals were cut

into cardiac cycles, by detecting the local minima of the arterial pressure signal (i.e. the diastolic

pressure). Finally, corrupted or noisy signals that did not correspond to true cardiac cycles were

removed, since artifacts in the signal sometimes introduced local minima that did not correspond to
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the diastolic pressure. This was achieved by employing the dynamic time warping (DTW) technique,

computing the similarity between a template cardiac cycle and the cycles cut from the signals.

Table 3.3 Minimum and maximum achievable values for each cardiovascular system measurement, used to
define ranges for outlier removal.

As a final step, systemic arterial pressure, central venous pressure and pulmonary artery pressure

were resampled at 50 samples per cardiac cycle. On the other hand, for cardiac output and heart

rate, the mean over all the cycle was computed, taking only one value for the entire cycle. After

performing all the aforementioned preprocessing steps, the final dataset used for parameter esti-

mation contained 776341 cardiac cycles with information from all five signals. Summary statistics

from the final dataset is shown in Table 3.4.

Table 3.4 Summary statistics for the final dataset (n=776341) with systemic arterial pressure (Pa,s),
central venous presure (Pv,s), pulmonary artery pressure (Pa,p), heart rate (HR) and cardiac output (CO)

signals.

3.2. Cardiovascular Hemodynamics Model

The cardiovascular (CV) model used to simulate the whole body hemodynamics during reinforce-

ment learning training is the Burkhoff and Tyberg model [1]. This model is a 0D or lumped

parameter model (see Section 2.2.2), in which the whole CV circulatory system is divided and

grouped into 6 compartments: the left ventricle, the systemic arteries, the systemic veins, the right

ventricle, the pulmonary arteries, and the pulmonary veins. Each compartment has its own cardio-

vascular parameters. Also, note that atria are included as part of the venous compartments and

not modeled independently.

In order to model each compartment, it is assumed that large arteries and veins are primarily

compliance vessels, meaning that only small pressure gradients are needed to propel blood flow

(cardiac output) through them. In contrast, their change in volume can be highly significant. On
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the other hand, resistance to blood flow is concentrated in the tissues themselves (mainly arterioles

and valves), where volume changes are less important but resistances give rise to large blood pres-

sure drops. Moreover, compliance and resistance effects are modeled linearly (Equations 2.2 and

2.3, respectively). In Figure 3.4a the six compartments with the main CV parameters are schema-

tized. In Figure 3.4b an equivalent electrical model is shown, which is helpful for understanding the

equations presented in Section 3.2.2.

(a)

(b)

Figure 3.4 Diagrams of the Burkhoff and Tyberg model. a) Six compartment model (parameters
explained in Section 3.2.1). RV and LV stand for right and left ventricles, respectively. Extracted from [1].
b) Equivalent electrical circuit of the CV model (parameters explained in Section 3.2.1). RV and LV stand
for right and left ventricles, respectively. SA and SV, systemic arteries and veins, respectively. PA and PV,

pulmonic arteries and veins, respectively. MV, AoV, TV and PV, mitral, aortic, tricuspid and pulmonar
valves, respectively. Adapted from [26].

3.2.1. Model Parameters

Model parameters can be divided into three groups, including those that characterize the heart, the

circulation, or both. Heart parameters are those related to the time-varying ventricular contraction,

as described next. The end-systolic elastance (Ees) denotes the highest elastance of the heart during

the cardiac cycle. The moment of time at which this occurs is the end of the systole (Tes). The

unstressed volume (V0) is the volume at which end-systolic pressure (Pes) is equal to zero. The heart

relaxes with exponential decay with a time constant of relaxation (τ). Finally, there are scaling and

exponent factors that characterize the end-diastolic pressure-volume relationship (EDPVR) A and

B, respectively. Note that each half (right and left) of the heart has its its own values for these
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parameters.

The circulation parameters are those related to the vessels and tissues. The characteristic resis-

tance (Rc) is the resistance of the aortic and pulmonar valves, and proximal arteries. The arterial

resistance (Ra) is the resistance of the arterioles. The venous resistance (Rv) is the resistance to

venous return, and mitral and tricuspid valves. The arterial compliance (Ca) is the compliance of

the arteries. The venous compliance (Cv) is the compliance of the veins. Note that each half of the

CV circuit (systemic and pulmonic) has its own values for these parameters.

Finally, there are a set of parameters common to multiple components of the circulatory system.

These include the heart rate (HR) and the circulatory volumes: total blood volume (VT ); stressed

blood volume (VS), which is related to the volume that determines intravascular pressure; and un-

stressed blood volume (VU ), which is the volume that remains constant regardless the circulatory

pressure. A summary of all the model parameters are presented in Table 3.5, including their symbol

as used in this project, their units, and typical values for a healthy man.

Table 3.5 Baseline parameters. CV parameters with values appropriate for a healthy 75 kg man. RV and
LV stand for right and left ventricle, respectively. Pul and Sys stand for pulmonic and systemic circulation,

respectively.

By tuning the values of these parameters, different CV states can be defined, such as a healthy

subject at rest or during exercise, a patient with specific CV pathologies, a patient recovering from
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surgery, and so on. These parameters can also be modified by drugs. As explained in Section 3.3.2,

the reinforcement learning policy varied several of these parameters to simulate physician actions

in the treatment of patients.

3.2.2. Model Equations

The equations describing the CV model are explained in this section. In order to denote the pressure

or volumen in a specific CV compartment the following subscripts are used:“a” for arteries, “v” for

veins, “s” for systemic circulation, “p” for pulmonic circulation, “LV ” for left ventricle, and “RV ”

for right ventricle. Moreover, specific moments in the cardiac cycle are denoted by the subscripts

“es” and “ed” which stand for end-systole and end-diastole, respectively.

The ventricular pumping characteristics are represented by a time varying function (ε(t)) that relates

the ventricular pressure (P (t)) with the ventricular volume (V (t)). The ε(t) function is modeled

as an increasing sine wave during systole and an exponential decay during diastole. Moreover,

the ventricular pressure (P (t)) is split up into the end-systolic pressure (Pes(t)) and end-diastolic

pressure (Ped(t)). The end-systolic pressure (Pes(t)) is linearly related to the ventricular volume

(V (t)) by the end-systolic elastance (Ees). The end-diastolic pressure (Ped(t)) is related to the

ventricular volume (V (t)) non-linearly with an exponential function.

The equations for the left ventricle are the following:

εLV (t) =


1
2

(
sin
(

π
Tes
t− π

2

)
+ 1
)

for t < 3Tes
2

1
2 exp

(
− t−3Tes/2

τ

)
for t ≥ 3Tes

2

(3.1)

Pes,LV (t) = Ees,LV (VLV (t)− V0,LV ) (3.2)

Ped,LV (t) = ALV
(

exp
(
BLV (VLV (t)− V0,LV )

)
− 1
)

(3.3)

PLV (t) =
(
Pes,LV (t)− Ped,LV (t)

)
εLV (t) + Ped,LV (t) (3.4)

On the other hand, the equations for the right ventricle are:

εRV (t) =


1
2

(
sin
(

π
Tes
t− π

2

)
+ 1
)

for t < 3Tes
2

1
2 exp

(
− t−3Tes/2

τ

)
for t ≥ 3Tes

2

(3.5)

Pes,RV (t) = Ees,RV (VRV (t)− V0,RV ) (3.6)

Ped,RV (t) = ARV
(

exp
(
BRV (VRV (t)− V0,RV )

)
− 1
)

(3.7)

PRV (t) =
(
Pes,RV (t)− Ped,RV (t)

)
εRV (t) + Ped,RV (t) (3.8)

The pressure (P (t)) and volume (V (t)) from the systemic and pulmonic arteries and veins are
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related linearly by their respective compliances (C):

Pa,s(t) = Va,s(t)/Ca,s (3.9)

Pv,s(t) = Vv,s(t)/Cv,s (3.10)

Pa,p(t) = Va,p(t)/Ca,p (3.11)

Pv,p(t) = Vv,p(t)/Cv,p (3.12)

Changes in pressure (P (t)) and volume (V (t)) in the six compartments are described with a set of

six differential equations, where flow (derivative of volume) is related linearly to the pressure by the

appropriate resistance:

dVLV (t)

dt
=
Pv,p(t)− PLV (t)

Rv,p
αLV −

PLV (t)− Pa,s(t)
Rc,s

βLV (3.13)

dVa,s(t)

dt
=
PLV (t)− Pa,s(t)

Rc,s
βLV −

Pa,s(t)− Pv,s(t)
Ra,s

(3.14)

dVv,s(t)

dt
=
Pa,s(t)− Pv,s(t)

Ra,s
− Pv,s(t)− PRV (t)

Rv,s
αRV (3.15)

dVRV (t)

dt
=
Pv,s(t)− PRV (t)

Rv,s
αRV −

PRV (t)− Pa,p(t)
Rc,p

βRV (3.16)

dVa,p(t)

dt
=
PRV (t)− Pa,p(t)

Rc,p
βRV −

Pa,p(t)− Pv,p(t)
Ra,p

(3.17)

dVv,p(t)

dt
=
Pa,p(t)− Pv,p(t)

Ra,p
− Pv,p(t)− PLV (t)

Rv,p
αLV (3.18)

where αLV , βLV , αRV and βRV are the representation of mitral, aortic, tricuspid and pulmonary

valves, respectively. All valves are modeled as ideal valves allowing flow in only one direction:

αLV =

1 if PLV (t) < Pv,p

0 otherwise
(3.19)

βLV =

1 if PLV (t) > Pa,s

0 otherwise
(3.20)

αRV =

1 if PRV (t) < Pv,s

0 otherwise
(3.21)

βRV =

1 if PRV (t) > Pa,p

0 otherwise
(3.22)
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Finally, the sum of the volume (V (t)) in all six compartments remains constant over time, and it is

equal to the stressed volume (Vs):

Vs = VLV (t) + Va,s(t) + Vv,s(t) + VRV (t) + Va,p(t) + Vv,p(t) (3.23)

3.2.3. Model Implementation and Assessment

The whole CV model was implemented as a Python class in order to be modular and easily embed-

dable in the reinforcement learning framework. Differential equations were discretized and solved

using the Euler’s method. For example, for any volume (V (t)):

dV (t)

dt
= Q(t)→ Vk+1 − Vk

tk
= Qk → Vk+1 = Vk + tk ·Qk (3.24)

where tk is the time step, which was chosen to be adaptive to the heart rate (HR). This time step

adaptation was implemented because it was desired to simulate as fast as possible, while avoiding

integration step instabilities. Since HR determines the speed of the cycle, and thus, the speed of

the evolution of the dynamic variables (P (t) and V (t)), adapting the time step to this parameter

was suitable. Time step adaptation corresponded to HR ranges:

tk[ms] =



8 for HR < 75

5 for 75 ≤ HR < 140

3 for 140 ≤ HR < 180

1 for 180 ≤ HR < 200

0.5 for HR ≥ 200

(3.25)

In order to assess the correctness of the implementation and debug possible errors, the Harvi

simulator was used. Harvi is a more complex CV model also developed by Burkhoff, which is

based on the model described in this thesis. Available to the lab team, its use helped determine

the correctness of the model by comparing the evolution of pressures and volumes with baseline

parameters.

In the Results chapter (Section 4.1) PV loops from a healthy and unhealthy subject are presented

and explained. Furthermore, a qualitative analysis comparing the arterial pressure obtained in

simulation and from a real patient is performed. Advantages, similarities, and limitations of this

CV model are discussed.



Page 38 Master’s Thesis - Roger Pallarès López

3.3. Reinforcement Learning Framework

The desired policy that performs therapy decisions on simulated patients was obtained by reinforce-

ment learning (RL) training. RL was chosen over any other control techinque as it was considered

suitable for the cardiogenic shock problem. The decision making nature of tailored therapy, together

with the need to build a controller that is adaptive, learns from historical and data, and can handle

both continuous and discrete actions, lead to consider RL appropriated for this problem. Therefore,

a RL framework was developed to implement the deep Q-Network (DQN) algorithm that using the

presented CV model as simulator, was able to train policies in different conditions. This section is

meant to explain all the methodology related to the RL framework developed in this project.

3.3.1. Deep Q-Network Algorithm

The DQN algorithm [21] is a model-free RL algorithm that tries to find the policy that maximizes

the total return (see Equation 2.9). It works with continuous state spaces (S) and discrete action

spaces (A) where action-triggered state transitions can be stochastic. In order to maximize the

total return and find the optimal policy, DQN optimizes the action-value or Q-function (Q(s, a)).

This function determines the expected return achievable by following a policy from given state

(s ∈ S) and then taking some action (a ∈ A). Computing the optimal Q-function (Q∗(s, a)) can be

challenging, thus the Bellman equation is commonly employed to optimize it recursively:

Qi+1(st, at) = Qi(st, at) + α · (rt + γ ·max
a∈A

Qi(st+1, a)−Qi(st, at)) (3.26)

where Qi(st, at) is the current Q-function, α ∈ (0, 1] is the learning rate, γ ∈ [0, 1) is the discount

factor, and maxaQi(st+1, a) is the estimate of optimal future value. This value iteration algorithm

converges to the optimal Q-function if enough iterations are performed: Qi(s, a) → Q∗(s, a) if

i→∞, and the optimal policy can be computed from the optimal Q-function as:

π∗(s, a) = argmax
a∈A

Q∗(s, a) (3.27)

In DQN, the Q-function is approximated with a neural network (NN) (Q(s, a)→ Q(s, a, ω)) where ω

are the weights of the NN. To train this NN and find the optimal Q-function, DQN takes advantage

of the Bellman equation convergence, thereby, with enough iterations Qi+1(st, at) = Qi(st, at) and

Equation 3.26 becomes:

rt + γ ·max
a∈A

Qi(st+1, a)−Qi(st, at) = 0→ Qi(st, at) = rt + γ ·max
a∈A

Qi(st+1, a) (3.28)

The equality from Equation 3.28 can be used to define a loss function for NN training:

L = E[(ŷ −Q(s, a, θ))2] (3.29)
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where ŷ = r+γmaxa Q̂(s′, a, θ) are the labels obtained from the target Q-function (Q̂(s′, a, θ)). The

target Q-function (Q̂(s′, a, θ)) is a copy of the trained Q-function (Q(s′, a, θ)) updated at periodic

increment steps of the algorithm. Note that this implies that the training labels are changing over

time as Q(s, a) evolves. The purpose of this target Q-function is to hold the training labels constant

for a tunable number of iterations to help the algorithm converge. Finally, the data used to train the

Q-function are obtained from a technique called experience replay. This technique uses the agent’s

experiences at each time step as data for training, which include: the current state and action, the

reward obtained and the next state (et = (st, at, rt, st+1)).

Algorithm 1: Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N ;

Initialize Q-function Q(s, a, ω) with random weights;

Initialize target Q-function Q̂(s, a, ω) with same weights as Q(s, a, ω);

for episode = 1, M do

Initialize environment with states s0;

for t = 1, T do
With probability ε select a random action at

otherwise select at = maxa∈AQ(st, a, ω) ;

Execute action at and observe reward rt and next state st+1;

Store experience et = (st, at, rt, st+1) in D;

Sample random batch of experiences e1, . . . , eJ from D;

For each experience ej set:

ŷj =

rj , for terminal sj+1

rj + γ ·maxaQ̂(sj+1, a, ω) for non-terminal sj+1

Perform a gradient descent step on E(ŷj −Q(φj , aj , ω))2, j = 1, . . . , J ;

Every C steps, copy Q̂(s, a, ω) with same weights as Q(s, a, ω);

end

end

Combining the pieces of the DQN results in the full algorithm schematized in Algorithm 1. First,

both trained and target Q-function are initialized with random weights, as well as a buffer (replay

memory D) with capacity N . Then, M episodes are performed. Note that an episode consists of

an agent’s entire interaction with the environment, from initial to final interaction step. For each

episode, the environment is initialized and the agent starts interacting with it. Action selection is

carried out according to an ε-greedy policy, in which a random action is taken with probability ε and

policy action (at = maxa∈AQ(st, a, ω)) is taken with probability 1 − ε. At each environment step,

the whole experience (et = (st, at, rt, st+1)) is stored in the replay memory (D). Finally, a batch

of experiences are taken and the policy is updated performing a gradient descent step according to

the loss function in Equation 3.29. This is done until reaching the horizon T , when this process is
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repeated for the next episode. Moreover, every C steps of the algorithm Q̂(s, a, ω) is updated with

the same weights as Q(s, a, ω).

3.3.2. Reinforcement Learning for Cardiogenic Shock

In this project the RL framework was adapted to the cardiogenic shock (CS) problem with the aim

of computing policies that will restore cardiac output, a central function of the heart. The Markov

Decision Process (MDP) was determined in terms of the cardiovascular (CV) model defined in

Section 3.2 and actions that would emulate the therapeutic decisions a clinician makes to treat CS,

often referred to as tailored therapy (see Section 2.1.3). The elements of an MDP, namely the state

space (S), the action space (A) and the instantaneous reward function (Ra) are specified below.

Note that the fourth element, the transition function (Pa) is the cardiovascular model itself.

State space

The state space included all pressures (P (t)) and volumes (V (t)) from the six compartments plus

the cardiac output (CO). Concretely, cardiac output was computed with Equation 2.1, and the

mean of each pressure and volume was taken over one cycle:

X̄ =
1

Lcycle

Lcycle∑
k=1

Xk (3.30)

being Lcycle the length of the cardiac cycle in terms of samples, and X any of the pressures and vol-

umes of the six compartments: X ∈ {VLV , Va,s, Vv,s, VRV , Va,p, Vv,p,PLV , Pa,s, Pv,s, PRV , Pa,p, Pv,p}.

Hence, the state space contained 13 different continuous states (cardiac output plus pressures and

volumes for the 6 compartments), becoming a 13-dimensional continuous state space (S ∈ R13).

Action space

The action space was defined to mimic tailored therapy in a simplified way. Rather than reproduc-

ing the actions of specific medications given to patients, the actions here were modeled as direct

changes to a subset of the CV model parameters. Drugs and other therapies (fluid administration,

blood transfusion) also modify the physiology but often in complex ways, for example by altering,

in effect, multiple parameters simultaneously. What is more, drug effects can be highly specific to

an individual and complex to model, so they were considered beyond the scope of this project.

Given that some of the most important targets of tailored therapy include the loading conditions

and the inotropic state of the heart (as explained in Section 2.1.3), the parameters chosen to be var-

ied by the policy actions were the end-systolic elastance (Ees), the heart rate (HR) and the stressed

blood volume (Vs). Changes to those parameters would simulate the effect of vasoactive medica-

tions used in tailored therapy, such as norepinephrine [4], dobutamine [25], intravenous fluids, and
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diuretics [16]. Moreover, the policy could choose whether these parameters should be increased,

decreased or remain constant. The entire action space therefore, consists of 27 possible discrete

actions (A ∈ {0, . . . , 26}). Table 3.6 shows all combinations of parameter changes that lead to the

27-action space.

Table 3.6 Action space of 27 possible discrete actions as combinations of increasing, decreasing or
remaining constant to the stressed volume (Vs), heart rate (HR) and end-systolic elastance (Ees)

parameters.

Regarding the numerical degree of change elicited by each action, stochastic variation was intro-

duced, following a Gaussian distribution (N (µ, σ2)). To make this variation as realistic as possible,

the change was based on the study in [25], which reported a statistical analysis of the impact of

the drug dobutamine on heart rate. For the end-systolic elastance and stressed volume, similar

variation in the effect size was employed. Specifically, the parameter change induced by an action

were defined as follows: 
|∆Vs| = N (30.0, 2.6752)mL

|∆HR| = N (4.0, 0.3572) bpm

|∆Ees| = N (0.15, 0.01342)mmHg/mL

(3.31)

Note that the effect size is expressed as an absolute value, since a policy action can either increase

or decrease the parameter value.
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Reward function

The instantaneous reward function was implemented as a shaped function to resemble how physi-

cians evaluate their goals. The most common approach is to track the deviation of a physiological

parameter from a goal value and then act accordingly. The reward included both a positive reward

term as well as penalty terms.

The positive reward (R+(s, a)) tracked the cardiac output since the main objective was to restore

it to a normal value. To encourage the policy to achieve this, a sigmoid-like function that gives

reward of +1 when cardiac output is higher than 5.2L/min and 0 when it is below 3.8L/min was

implemented. The shape of such a function can be appreciated in Figure 3.5.
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Figure 3.5 Shape of the reward function related to cardiac output.

Conversely, two penalty terms were included to restrict policy behavior in certain ways. The first

of these was a “drug penalty” (R−dp(s, a)) for those actions that changed a parameter value. A

value of 0.2, 0.4 and 0.6 was subtracted from the reward every time an action was chosen that

modified one, two or three of the CV model parameters, respectively. This penalty was meant to

encourage the policy to use as few drug actions as possible. The second penalty term was for states

of high cardiac power. This power penalty term (R−pp(s, a)) considered the cardiac power output

(CPO = P̄a,s × CO/451), which is a measure of how much power the heart is consuming. It was

shaped as a ReLu-like function that started to subtract reward, proportional to the CPO, above

1.1W . It is well appreciated clinically that operating the heart at high power outputs is detrimental

to myocardial recovery and is often unsustainable. This penalty therefore encouraged the policy to

avoid high power outputs when choosing actions to augment cardiac output. Figure 3.6 represents

both penalty functions.
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Figure 3.6 Shape of penalty terms. a) Drug action penalty term (R−
dp(s, a)). b) Power penalty term

(R−
pp(s, a)).

To sum up, the resulting instantaneous reward was a sum of the positive reward plus a combination

of the penalties explained above:

R(s, a) = R+(s, a) +R−i (s, a) (3.32)

where R+(s, a) stands for the positive reward and R−i (s, a) for any combination of the penalties

introduced in the previous paragraph (i ∈ {pp, dp, dp+ pp}).

To complete the MDP, terminal states were included that would end an episode before reaching the

simulation horizon (T ). These states were added to simulate patient mortality in the event that

a bad strategy was followed by the policy. Specifically, the terminal state occurred if one of the

following criteria were met:

� The cardiac output (CO) was lower than 2 L/min.

� The stressed volume (Vs) was below 300 mL or above 2500 mL.

� The heart rate (HR) was lower than 20 bpm or higher than 250 bpm.

� The end-systolic elastance (Ees) was lower than 0.1mmHg/mL and higher than 10mmHg/mL.

3.3.3. Policy Transfer to Real World

An important challenge that a policy must face is transfer to the real world. Simplifications and

deviations that the simulator may have from reality could lead to catastrophic policy behaviors,

and likely failing to perform the desired task. Healthcare applications carry additional challenges,

as real patient data tends to be limited relative to the training needs of RL, and training policies

on real patients is not feasible or ethical. These challenges are commonly known as the sim2real
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gap, and exist due to inconsistencies between the physical world and the model. In order to close

or at least narrow this gap, there are strategies that can be performed in simulation [32].

A first strategy is to develop a system identification tool, which can improve the physical model and

make the simulator more realistic. Another strategy is domain randomization (DR), an approach

that trains a policy using a whole set of simulated environments, each with different properties. In

the CS application, this would be analogous to training a policy on a range of patients, each with a

unique set of parameters that determine the properties of their CV system. Training a policy that

works across such a spectrum of environments increases the likelihood it will perform well in the

real world environment. This is plausible because the real system may be close to a subset of those

simulated environments, or because training a single policy in multiple environments increases its

robustness.

The simplest strategy for randomizing the domain is to use uniform sampling. Each randomized

parameter (ξi) is bounded by an interval (ξi ∈ [ξlowi , ξhighi ] i = 1, . . . , N ) where N are the total

number of randomization parameters. During policy training, each parameter is uniformly sampled

within the range.

In the present thesis, uniform DR was used to train the policy. Parameter ranges were found

by employing a system identification tool on the CABG cohort (described in Section 3.1.3). The

parameters randomized and the strategy followed to identify their ranges are explained in detail in

Section 3.4.

3.3.4. Reinforcement Learning Implementation and Assessment

The whole RL framework was implemented in Python. The Gym environment library was utilized to

define the MDP, and combine the CV simulator with the DQN + experience replay algorithm. The

policy was modeled with a neural network (NN). Both modeling and NN training were performed

with TensorFlow (TF). The ε-greedy action selection strategy was defined with an exponential

decay, decreasing the ε value as training moved forward. The exponential function contained a

decay rate (δ) and maximum/minimum values (εmax, εmin). As a result, policy training explored

using a greater fraction of random actions at the beginning of training, and it exploited the best

policy actions at the end of training.

Regarding the simulation of CS patients, this was achieved by reducing the end-systolic elastance

(Ees) and/or increasing the resistance of the systemic veins (Rv,s) in the CV simulator. Changing

those parameters led to a very low cardiac output, where the policy had to learn how to restore it

at every episode of the training process. The goal was to restore the cardiac output to, at least,

5.0L/min.
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The RL training workflow was set up to perform the following tasks at each step of an episode:

take an action according to ε-greedy strategy; apply the action to the CV simulator by changing

the appropriate parameters; simulate with the new set of parameters until convergence; compute

the 13 states, the reward and evaluate terminal state criteria; store experience et = (st, at, rt, st+1);

get batch of experiences and update policy. Figure 3.7 schematizes this workflow.

Figure 3.7 Schematic workflow of the RL framework to train policies in simulated CS patients.

The RL framework contained several hyperparameters that configured the training environment,

the DQN algorithm and the NN to approximate the Q-function. The set of hyperparameters in-

cluded: the total number of episodes (M); the simulation horizon (T ); the capacity (N) of the

replay memory (D); the amount of steps where the target Q-function (Q̂(s′, a, θ)) is copied (C); the

discount factor (γ); the maximum and minimum epsilon (εmax, εmin) of the ε-greedy strategy; the

decay rate (δ) of the ε-greedy strategy; the batch size of experiences (et); the learning rate (α) for

NN training; the NN activation function; the NN hidden architecture (number of hidden layers and

neurons per layer); and the parameters (β1 and β2) of the NN optimizer.

The majority of hyperparameters were optimized in order to obtain the best training results. How-

ever, some were already preset. Concretely, the number of episodes (M) to ensure policy conver-

gence; the simulation horizon (T ) so the policy had enough time to treat the patient; and finally,

the maximum and minimum epsilon values (εmax, εmin), balancing the ε-greedy strategy during all

the training process.

The hyperparameter optimization was performed through Bayesian Optimization using Gaussian

Processes as function approximators [5]. SkOpt library was used for this optimization task. More-
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over, the process was parallelized over all computer resources with the help of Ray library, as this

optimization is quite time consuming. The optimization was performed by maximizing the accumu-

lated reward (
∑T

t=0R(s, a)) averaged over the last 50 episodes. A list of all the hyperparameters

with their final value is presented in Table 3.7.

Table 3.7 RL hyperparameters with optimized values through Bayesian Optimization.

Several analyses were performed to assess the results of the presented implementation (Section 4.3).

These were grouped into the following sets:

1. Assessment of DR robustness. Trained policies with and without DR were compared to

evaluate the importance to include DR during the training phase of the policy.

2. Comparison of restricted policies. Three policies with restricted actions (one without

actions that change Vs, another without actions that change HR. and another without actions

that change Ees) were trained and compared in order to assess their limitations to reverse the

decompensated state of CS patients, and thus, find out what are the most important actions.

3. Importance of penalty terms. Three policies with different reward functions were ana-

lyzed to evaluate the value of the penalty terms explained above. To do so, a policy with

only the cardiac output reward (R(s, a) = R+(s, a)), a policy with both cardiac output and

power penalty term reward (R(s, a) = R+(s, a)+R−pp(s, a)), and a policy with cardiac output,

power and drug penalty term reward (R(s, a) = R+(s, a) + R−pp+dp(s, a)) were trained and

compared.

4. Final policy assessment. As a final evaluation, the policy that performed the best on the

previous analyses was tested in a more complex environment. A CS patient was not only

simulated with initial low cardiac output, but also disturbances while the policy was treating

the patient were included.

In all cases, sample efficiency during training was compared by counting how many episodes were

needed for convergence, as well as the maximum accumulated reward achieved. Also, performance

of the policy was assessed by determining how many policy steps (or actions) it needed to restore

the cardiac output, as well as its behavior once it reached the goal of 5.0L/min. Assessments

included the analysis of cardiac output (CO), mean arterial pressure (P̄a,s), end-systolic elastance

(Ees), stressed volume (Vs) and heart rate (HR) evolution, as well as the actions taken by the policy

at each step. In some cases, it has not been necessary to assess all these variables to discuss the

results, and figures of such variables have been included in the Appendix, Section A.2.
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3.4. System Identification for Parameter Estimation

In order to reduce the sim2real gap with domain randomization, realistic parameter ranges derived

from patients must be found. To identify these ranges, a system identification tool was developed for

the purpose of estimating a subset of the Burkhoff CV model parameters (Section 3.2.1), employing

the data from the CABG cohort (Section 3.1.3). Concretely, the subset of parameters that were

estimated included: the left and right end-systolic elastances (EesLV and EesRV ); the systemic and

pulmonic arterial resistances (Ra,s and Ra,p); the four compliances (Ca,s, Cv,s, Ca,p and Cv,p); and

finally, the stressed volume (Vs). Nine parameters in all.

As stated in [23], the Burkhoff and Tyberg CV model is structural identifiable for the aforementioned

subset of parameters if the following physiological variables are known: the systemic arterial pressure

(Pa,s(t)), the pulmonary artery pressure (Pa,p(t)), the stroke volume (SV ) and the heart rate (HR).

This fact justifies the selection of signals in the final dataset (Section 3.1.4). Furthermore, the central

venous pressure (Pv,s(t)) was also included as it was available on the patient’s recorded signals.

It was thought that including this last signal could add valuable information for the parameter

estimation.

3.4.1. Modification of Autoencoder for System Identification

System identification was framed as a supervised learning problem. A deep multilayer perceptron

(MLP) was trained to estimate the parameters from the signals on the dataset. However, it should

be noted that no labels were available, as these CV parameters are not estimated in the hospital (if

they were, the identification problem would have been already solved). Therefore, a strategy based

on a modified autoencoder was implemented to train the deep MLP.

Briefly, an autoencoder is a specific architecture of neural network (NN) based on an encoder,

decoder and a latent space. Usually, the aim of an autoencoder is to learn a representation (latent

space) of a set of data by encoding it. It is trained by introducing the same information as input

and labels, thus the autoencoder learns to encode the data and then to decode it. In Figure 3.8 a

representation of an autoencoder is shown.

In the approach taken in this project, an autoencoder was trained to estimate the CV parameters

by forcing the latent space to be the specific space of nine parameters described above. This

specification could be achieved by training the decoder and the encoder separately. First, the

decoder was trained with simulated data to mimic the CV simulator – given the nine parameters it

would produce a cardiac cycle’s worth of state data. It should be noted that ideally, the simulator

could have been used as decoder. However, due to the parallelization needs over a GPU and the

backpropagation algorithm for NN training, this other approach was followed.

With the decoder able to generate state data from parameters, the encoder could be trained to
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generate parameters using real patient data as input. In this framework only the encoder was

trained with real data. It was assumed that the decoder, which reproduces the CV simulator

output, would be capable of generating state data (e.g. intracardiac and intravascular pressures

and volumes) that are sufficiently similar to real patient data, provided that the encoder converted

these data to a latent space close to the nine CV parameters. Thus, the trained encoder in this

setup can be seen as a system identificatation algorithm for estimating the subset of CV parameters.

Figure 3.8 Schematic representation of an autoencoder architecture.

3.4.2. System Identification Implementation and Assessment

Both the architecture and the training of the autoencoder were performed with TensorFlow (TF)

library. In order to train the decoder with simulated data, 0.7 million cardiac cycles that contained

information about the arterial pressure (Pa,s(t)), the central venous pressure (Pv,s(t)) the pulmonary

artery pressure (Pa,p(t)), the stroke volume (SV ) and heart rate (HR) were generated using the

simulator. Moreover, the corresponding CV parameters employed to generate these data were stored

for the training process.

The input vector of the decoder was the subset of nine CV parameters plus the heart rate:

xdec = [EesLV , EesRV , Ra,p, Ra,s, Ca,s, Cv,s, Ca,p, Cv,p, Vs,HR]T ∈ R10 (3.33)

The output vector consisted of the three pressures resampled at 50 samples per cycle plus the stroke

volume repeated 10 times:

ydec = [Pa,s,Pv,s,Pa,p,SV]T ∈ R160 (3.34)
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The loss function was the mean squared error between the output vector and the data (simulated

pressures and stroke volume) ŷsim:

L = MSE(ydec, ŷsim) (3.35)

In contrast to the decoder, the encoder was trained with both simulated data and the patients

dataset. Recalling that the dataset contained the mean value of the cardiac output and heart rate,

but not the stroke volume, this last was computed using Equation 2.1. The input vector of the

encoder was the three pressures resampled at 50 samples per cycle, the stroke volume repeated 10

times and the heart rate repeated also 10 times:

xenc = [Pa,s,Pv,s,Pa,p,SV,HR]T ∈ R170 (3.36)

The output vector consisted of the subset of nine CV parameters:

yenc = [EesLV , EesRV , Ra,p, Ra,s, Ca,s, Cv,s, Ca,p, Cv,p, Vs]
T ∈ R9 (3.37)

Given that the encoder was trained within the whole autoencoder architecture, the loss function

used for training was the mean squared error between the decoder’s output (state) vector and the

patient’s state data (pressures and stroke volume) ŷreal:

L = MSE(ydec, ŷreal) (3.38)

Once the encoder was trained, the entire CABG dataset was passed to it again to find the cor-

responding latent space vector, i.e, estimates of the nine CV parameters across the whole patient

dataset. Figure 3.9 schematizes the entire process.

Figure 3.9 Process followed to obtain the system identification tool. Step 1: train the decoder with
simulated data. Step 2: train the encoder with the whole autoencoder architecture using both simulated

and real patient data. Step 3: estimate the 9 CV parameters from the CABG dataset.
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Note that in order to improve the training process for both encoder and decoder, the data were

normalized. Parameter vectors (xdec and yenc) were normalized so that the min and max values fell

in the range of [−1, 1]. Cardiac cycle vectors (ydec and xenc) were standardized to have zero mean

and unit standard deviation. Values for doing such normalization processes were found from the

simulated data (Table A.1 in the Appendix (Section A.1) shows these values). Moreover, dropout,

L2 regularization and the early stopping technique were applied to improve encoder and decoder

generalization. Note that early stopping is a method that determines the number of epochs to train

the NN. It does so by finding when the validation loss starts to increase, a sign that the model

starts to overfit.

Just as in the RL framework, hyperparameters of the encoder and decoder were optimized with

Bayesian Optimization (again employing SkOpt and Ray libraries). In this case, the optimization

was performed by maximizing the accuracy of the validation set. Concretely, data was split into a

training set of 75% and a validation set of 25%. A five fold cross validation process was performed

and the resulting validation accuracy was the score to maximize. Note that the accuracy was

measured with the cosine similarity between the output vector and labels, as the NN generates a

vector of data:

acc = cos(θ) =
ydec · ŷreal

‖ydec‖‖ŷreal‖
(3.39)

A list of all the hyperparameters with their final value is presented in Table 3.8. Moreover, an

scheme of the architecture used for both encoder and decoder is shown in Figure 3.10.

Table 3.8 Autoencoder hyperparameters with optimized values through Bayesian Optimization.

Figure 3.10 NN architectures of both encoder and decoder. Each box represents a layer. Between
parenthesis are presented the number of neurons and the activation function.
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In order to assess the autoencoder implementation and get the estimation of the nine CV parameters,

diverse stages were defined and evaluated separately. First, the decoder training was apprised with

its training curves and comparing the waves obtained with baseline parameters (Table 3.5). Pressure

waves and stroke volume were compared with the ones obtained using the simulator. The root mean

square error (RMSE) was used to get quantitative results. Then, the encoder training was assessed

also with its training curves. Again, baseline parameters were compared to the ones obtained

by the encoder, when introducing simulated waves. The absolute relative error was obtained to

quantitatively describe differences. Finally, the encoder was employed to estimate the distribution

of the nine CV parameters using CABG data. Mean and standard deviation of the distribution of

each parameter were computed and compared to literature parameters. The estimated mean and

standard deviation were also used to define the ranges of the domain randomization technique.



Page 52 Master’s Thesis - Roger Pallarès López
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4. RESULTS AND DISCUSSION

Results from this project are presented and discussed in this chapter. First, results related to the

implementation of the Burkhoff and Tyberg cardiovascular (CV) model are presented. Second, the

training of the system identification tool and the set of CV parameters it produces is shown. Finally,

the results of reinforcement learning (RL) for treating cardiogenic shock are described, including

both policy training and performance.

4.1. Cardiovascular Simulation with Burkhoff and Tyberg Model

In this section the CV model implemented as a simulator is presented. Simulations from a typical

healthy and a typical heart failure patient are described and compared. Next, limitations of the

model are pointed out by comparing a simulated arterial pressure wave to a real waveform from a

CABG patient.

4.1.1. Analysis of Simulated Patients

A healthy individual and patient with a cardiomyopathy were simulated with the Burkhoff and

Tyberg CV model. Healthy values of the CV parameters (Table 3.5) were employed to simulate the

healthy subject. In contrast, the patient with a cardiomyopathy was modeled by a decreasing the

value of the left ventricle end-systolic elastance (EesLV = 1mmHg/mL); the remaining parameters

were fixed at healthy values. Figure 4.1 presents the left ventricle pressure-volume (PV) loop from

both patients.

The PV loop presents relevant information about the heart’s state. The changes in ventricular

pressure associated with changes in volume that occur during a cycle have valuable information

to determine whether a subject’s heart function is impaired. For instance, information about the

volume can be assessed. A healthy patient (Figure 4.1a) exhibits a stroke volume (SV ) equal to

the difference between end-diastolic and end-systolic volumes (vertical lines) of almost 70mL, which

when multiplied by the heart rate (HR), gives a cardiac output (CO) of 5.2L/min. On the other

hand, the patient (Figure 4.1b) with a cardiomyopathy exhibits a SV of about 46mL, which when

multiplied by the HR, gives a CO of 3.4L/min. Cardiac outputs lower than 4L/min with HR above

60bpm are abnormal and may reflect cardiac pathology.

In addition to cardiac state, the PV loop captures information on the pressure and the relationships
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between pressure and volume during the cardiac cycle. Systolic pressure can be approximated by

the highest pressure value on the PV loop, and diastolic pressure when the aortic valve opens

(top of the right vertical line). The end systolic pressure-volume relationship (ESPVR), which

describes contractility (end-systolic elastance Ees), can be obtained by dividing the pressure by the

volume when the aortic valve closes, i.e., end-systolic pressure and volume (top of the left vertical

line). For example, the healthy subject exibits an end-systolic pressure (Pes) of 100mmHg and an

end-systolic volume (Ves) of 34mL. The ratio of these values gives the LV end-systolic elastance

(EesLV = 3mmHg/mL). The same can be done for the sick patient (Pes = 70mmHg, Ves = 70mL),

giving an LV end-systolic elastance that is characteristic of cardiomyopathy (EesLV = 1mmHg/mL).
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Figure 4.1 Left ventricle pressure-volume loop. a) Healthy subject with baseline parameters. b) Subject
with cardiomyopathy represented by a reduction of the left ventricle end-systolic elastance

(EesLV
= 1mmHg/mL).
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Figure 4.2 Simulated arterial pressure (Pa,s). a) Healthy subject with baseline parameters. b) Subject
with cardiomyopathy represented by a reduction of the left ventricle end-systolic elastance

(EesLV
= 1mmHg/mL).
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The arterial pressure is the one of the most common waveforms used by physicians. It also includes

important information about the patient’s state. Figure 4.2 displays arterial pressure tracings

generated by the simulator for a healthy subject and for a patient. Typical features that are

extracted from this tracing include the HR, the systolic (maximum), diastolic (minimum) and

mean pressures. Normal values for systolic pressure range between 90 − 120mmHg, for diastolic

pressure between 50− 80mmHg, and for the mean between 70− 100mmHg. It can be appreciated

that in the simulated healthy patient, all pressure values lie inside the normal ranges (Psys =

104mmHg, Pdias = 40mmHg, Pmean = 54.5mmHg). However, the patient with cardiomyopathy

exhibits hypotension: systolic, diastolic and mean pressures are all below the normal ranges (Psys =

69mmHg, Pdias = 40mmHg, Pmean = 54.5mmHg). This is due to the fact that this patient is

assigned a low contractility (low end-systolic elastance) in simulation, which results in a low stroke

volume and therefore a low arterial pressure.

4.1.2. Comparison with Real Data

A typical arterial pressure wave from a CABG patient was extracted and compared with a simulated

one to evaluate limitations of the Burkhoff and Tyberg CV model. Note that the focus of the

comparison is on the shape of the waves rather than the exact pressure values. Both waves are

showed in Figure 4.3.
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Figure 4.3 Comparison of real and simulated arterial pressure (Pa,s). a) Real arterial pressure from one
CABG cohort patient. b) Simulated arterial pressure.

Three main differences between the real wave and the simulated one can be identified: variation

in the amplitude of the real patient, a second peak when the pressure is decreasing, and a smaller

curvature at the diastolic pressure during the transition between diastole and systole. The variation

in the amplitude present in the real arterial pressure is due to respiration and its interactions with

the CV system, an effect that is not considered in this CV model. As stated in [2], respiration

varies the amplitude of the arterial pressure wave and this can be appreciated as a low frequency
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component (respiratory rate) of the signal. The second peak that appears in the wave is known as

the dicrotic notch, which is a consequence of the aortic valve closing. Detecting the dicrotic notch

allows one to differentiate between systole and diastole in the aortic pressure wave. The lumped

parameter nature of the CV model used in this project does not permit simulation of this second

peak. Finally, the smother diastolic pressure transition in the real patient might be due to a non-

ideal aortic valve, which unlike the CV model, does not open instantaneously.

In conclusion, it could be said that the Burkhoff and Tyberg CV model can represent reasonable

values and relationships between diastolic, systolic, and mean pressures and volumes from all six

compartments (left ventricle, systemic arteries, systemic veins, right ventricle, pulmonic arteries and

pulmonic veins). Moreover, a good approximation of the these states results in a good description

of physiological variables such as cardiac output, stroke volume or even cardiac power output,

which are central to this project. At the same time, finer details in the shape of the waveform

may be poorly represented or simply not modeled at all. Therefore, the effects of respiration and

the dicrotic notch, among others, cannot be assessed in this particular model. To do so, one could

extend the model to include a pulmonary system and its interactions with the heart and vasculature.

Alternatively, it could be more suitable to develop a 1D or 3D model, as presented in Section 2.2.2.

4.2. System Identification

Results related to the autoencoder and estimation of CV parameters are presented and discussed in

this section. First, the results related to the training and evaluation of the decoder are presented.

Then, the results of training and evaluation of the encoder are described. Finally, the estimated

CV parameters are discussed and ranges are defined for use with domain randomization during RL

policy training.

4.2.1. Decoder Training

The decoder used in the autoencoder to estimate the CV parameters was trained with simulated

data to reproduce the behavior of the CV simulator. Recall that 0.7 million samples were generated

for this training process. Each sample contained as input data the CV parameters and the labels

were a single cardiac cycle of the three pressures (Pa,s, Pv,s ,Pa,p) and the stroke volume (SV )

(explained in detail in Section 3.4). Figure 4.4 shows the decoder training curves with the optimized

hyperparameters presented in Table 3.8.

From the evolution of the validation loss (Figure4.4a) it can be appreciated that the neural network

(NN) starts to overfit at around 12 epochs. Following the early stopping technique, 12 epochs were

chosen for training the decoder. Furthermore, one aspect of these curves that is worth noting is

the fact that at the beginning, the validation loss is lower than the training loss. This may happen
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because of the regularization used in training, in particular dropout and L2 regularization. Also,

the accuracy achieved (at 12 epochs) is around 0.996. Considering that the accuracy in this project

is computed as the cosine similarity between the NN output vector and the label vector, this value

represents a difference of about 5.1o between these two vectors.
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Figure 4.4 Decoder training curves. a) Loss evolution of training (blue) and validation (orange) sets. b)
Accuracy evolution of validation set.

To further evaluate the decoder, a set of baseline parameters (Table 3.5), not used for training,

were tested as inputs to the NN to generate the expected pressure waves and stroke volume. A

comparison of the generated waves from both the decoder and simulator is shown in Figure 4.5.

Also, the root mean squared error (RMSE) of the pressure waves and stroke volume are presented

in Table 4.1.
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Figure 4.5 Comparison of generated pressure waves from simulator (blue) and decoder (orange). Baseline
parameters used. a) Arterial pressure (Pa,s). b) Central venous pressure (Pv,s). c) Pulmonary artery

pressure (Pa,p).
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Table 4.1 Root mean squared error (RMSE) between generated pressure waves (arterial pressure (Pa,s),
central venous pressure (Pv,s), pulmonary artery pressure (Pa,p)) and stroke volume (SV ) from simulator

and decoder.

The arterial pressure wave is very similar with a modest error at the systolic value, where the

decoder predicts a maximum of 100mmHg when the true value is 105mmHg. The RMSE is low

compared to the scale of this signal, with a value of 2.0455mmHg. Regarding the central venous

pressure, the most notable errors occur at the maximum and minimum of the wave. However,

these differences are low, at 0.1mmHg. Together with the low RMSE (0.0822mmHg), it is fair

to say that the decoder generated an accurate central venous pressure wave. With respect to the

pulmonary artery pressure wave, the highest difference appears at the end of the wave, though again

the absolute magnitude of this error was small. The RMSE of this predicted wave compared to the

simulated one is 0.563mmHg. Finally, the decoder generated a stroke volume of 63.88mL, which

is quite comparable to the true value (SV = 69.24mL), with a difference of only 5.36mL. Overall,

the training results and the decoder’s performance on a set of baseline CV parameters demonstrate

that it approximates the CV simulator quite well.

4.2.2. Encoder Training and Cardiovascular Parameter Estimation

Once the decoder learned to reproduce the CV simulator, the encoder used in the autoencoder was

trained in two stages. First it was trained with simulated data, and then it was trained with the

real data from CABG cohort (776341 samples). Recall that in this case both input and output data

were a cycle of the three pressures (Pa,s, Pv,s ,Pa,p) and the stroke volume (SV ), as the encoder

was trained within the full autoencoder architecture (explained in detail in Section 3.4). Figure 4.4

shows the encoder training curves using real data with the optimized hyperparameters presented in

Table 3.8.

From the trajectory of the validation loss curve (Figure4.4a) it is clear that the encoder NN starts

to overfit at around 40 epochs. As a result, 40 epochs were chosen for training the encoder. As

with training the decoder, the validation loss is smaller than the training loss, likely due to the

regularization effect explained previously. The accuracy achieved (at 40 epochs) with the encoder

is around 0.993, which in terms of cosine similarity between the NN output vector and the label

vector, equates to a difference of about 6.8o between these two vectors.
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Figure 4.6 Encoder training curves with real data. a) Loss evolution of training (blue) and validation
(orange) sets. b) Accuracy evolution of validation set.

To evaluate the encoder, the baseline CV parameters (Table 3.5) were first used to generate a set

of the expected pressure waves and stroke volume. This state data was then used as input for the

the encoder to generate a set of predicted parameters. A comparison of the nine CV parameters

estimated by the encoder with the true values is presented in Table 4.2. Right ventricle end-systolic

elastance (EesRV ) is the parameter with the greatest estimation error, with an absolute relative error

(RE) of 237%. This poor approximation may occur because the estimated left ventricle end-systolic

elastance (EesLV ) is lower than the true value, so that a larger value of EesRV may compensate for

this loss. Pulmonic arterial resistance (Ra,p) and pulmonic arterial compliance (Ca,p) also exhibit

notable estimation errors, with an absolute RE of 40.4% and 30.1%, respectively. In contrast,

systemic arterial resistance (Ra,s), systemic venous compliance (Cv,s) and stressed volume (Vs) are

properly approximated, with absolute RE of 0.32%, 2.17% and 4.92%, respectively.

Table 4.2 Comparison of true and estimated parameters from simulated waves. Absolute relative error
(RE) is also computed.

Further evaluation of the full autoencoder output was carried out. The pressure waves and stroke

volume obtained from the baseline parameter set were compared to the generated ones from the

autoencoder. Results are plotted in Figure 4.7. Also, the root mean squared error (RMSE) of the

pressure waves and stroke volume are presented in Table 4.3.
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Figure 4.7 Comparison of generated pressure waves from simulator (blue) and autoencoder (orange).
Baseline parameters used. a) Arterial pressure (Pa,s). b) Central venous pressure (Pv,s). c) Pulmonary

artery pressure (Pa,p).

Table 4.3 Root mean squared error (RMSE) between generated pressure waves (arterial pressure (Pa,s),
central venous pressure (Pv,s), pulmonary artery pressure (Pa,p)) and stroke volume (SV ) from simulator

and autoencoder.

The generated waves from the full autoencoder exhibit greater differences than when only the

decoder was used, as might be expected. The accumulation of error from the encoder together

with the decoder could explain this effect. The arterial and central venous pressure waves are

lower in all the cycle. The pulmonary artery pressure is higher in general, except for the maxima

values. Even though differences between estimated and true values are more noticeable, the RMSE

metrics indicate that the autoencoder still performs quite well. Arterial pressure prediction gives an

RMSE of 5.14mmHg, which compared to its amplitude is quite modest. Predictions of the central

venous pressure and pulmonary artery pressures result in RMSE’s that are less than 1mmHg.

Finally, the autoencoder predicted a stroke volume of 65.43mL, which compared to the true value

(SV = 69.24mL) it is a difference of 3.81mL.

After evaluating the autoencoder on simulated data, the encoder was used to find the latent space

of the real CABG cohort, that is, estimate the nine CV parameters for each patient in the cohort.

Recall that one motivation for performing this estimation was to find realistic parameter ranges

to set bounds for domain randomization (DR) applied to reinforcement learning (explained in

Section 3.4). Summary statistics of the nine CV parameters estimated, as well as comparison

with literature parameters are presented in Table 4.4. Moreover, probability distributions of the

estimated parameters are represented in Figure 4.8.
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Table 4.4 Comparison of literature [1] and estimated parameters from CABG cohort. Mean, standard
deviation (std dev) and absolute relative error (RE) between baseline and mean are presented.
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Figure 4.8 Estimated CV parameters from CABG cohort (n = 776341) employing the encoder. From left
to right and top to bottom: Right ventricular end-systolic elastance (Ees rv); Left ventricular end-systolic
elastance (Ees lv); Pulmonic arterial resistance (Ra pul); Systemic arterial resistance (Ra sys); Pulmonic

arterial compliance (Ca pul); Systemic arterial compliance (Ca sys); Pulmonic venous compliance (Cv pul);
Systemic venous compliance (Cv sys); Stressed volume (Vs).

The means of the parameters estimated by the autoencoder on the real-world CABG cohort data

exhibit striking similarities with literature parameters [1] from a healthy 75kg subject. The similarity

with healthy values is not surprising given that CABG is commonly performed on patients whose
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hearts have not yet been significantly damaged by coronary artery disease. As a result, the means

of these distributions in such patients would be expected to be close to healthy values. However,

right ventricle end-systolic elastance does differ markedly from the literature value (absolute RE

of 380% between estimated mean and literature parameter). Also, pulmonic venous compliance is

significantly different, with an absolute RE of 127%. Another problem with the estimation that can

be appreciated from Figure 4.8 is that some parameters distributions have left tails with negative

values. Negative CV parameter values are not physiologic, and might be the result of limitations of

the decoder working as the simulator. During training the encoder may have learned that producing

negative values of the CV parameters (latent variables) and passing them to the decoder nevertheless

generated reasonable approximations to the pressure waves.

To sum up, although the estimated mean of the nine CV parameters looks promising, this system

identification tool needs to be refined and improved. Future work considers to put efforts on

improving this strategy to be able to get only positive parameters and a better estimation of

certain parameters such as the right ventricle end-systolic elastance. In summary, although the

estimated means of the nine CV parameters look promising, this system identification tool needs to

be improved. Future work will focus on constraining the output of the encoder to be positive and

improving the estimation of certain parameters such as the right ventricle end-systolic elastance.

In order to obtain parameter ranges for the DR, the first approach that was tried was to use the

estimated mean ± standard deviation from Table 4.4. However, those ranges proved to be too wide

to for the policy to converge. In fact, as shown in [22], a strategy of gradually enlarging the DR

ranges as the policy was learning was an effective way to achieve convergence over a wide ranges

of system parameters. In future work, such a strategy will be implemented. For this project the

approach that was successful was to reduce the parameter ranges further. Specifically, parameter

ranges were set at the estimated mean ± one third of the standard deviation. Furthermore, the

right and left ventricular end-systolic elastances and stressed volume were permitted to change to

arbitrarily small or large values to simulate a patient in cardiogenic shock whose cardiac output

was low. The final ranges of the nine CV parameters used in the DR were:

EesRV [mmHg/mL] ∈ [0.42, 0.98], EesLV [mmHg/mL] ∈ [0.8, 1.4],

Ra,p[mmHg · s/mL] ∈ [0.023, 0.053], Ra,s [mmHg · s/mL] ∈ [0.658, 0.852],

Ca,p [mL/mmHg] ∈ [8.16, 13.84], Ca,s [mL/mmHg] ∈ [1.07, 1.66],

Cv,p [mL/mmHg] ∈ [15.29, 21.05], Cv,s [mL/mmHg] ∈ [43.57, 59.23], Vs [mL] ∈ [650, 850]
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4.3. Reinforcement Learning for Cardiogenic Shock Patients

This final section presents the results from the reinforcement learning (RL) experiments. First, the

effect of DR on policy robustness is assessed. Second, policies with restricted actions are analyzed

and compared. Third, the importance of penalty terms is evaluated. Finally, the performance of

the best policy is discussed in detail. Note that in all cases, modeling a patient in cardiogenic shock

(CS) was achieved by setting the CV parameters of the model in a configuration that resulted in

an initial state with a low cardiac output (below 3.5L/min). The learning objective was to identify

a policy that could restore cardiac output to a normal range (at least 5.0L/min) by modulating a

subset of the CV parameters (explained in detail in Section 3.3.4). Moreover, the hyperparameters

used to train the policies are presented in 3.7.

4.3.1. Assessment of Domain Randomization Robustness

Assessment of the importance of domain randomization (DR) was carried out by training a policy

without DR and a policy with DR. The policy trained without DR always interacted with a CV

model with the same parameter values (corresponding to shock) at the beginning of every episode.

In both cases, the reward function included the reward for cardiac output plus the power penalty

term (R(s, a) = R+(s, a) +R−pp(s, a)).
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Figure 4.9 Policy training curves with reward per episode (blue), averaged reward over 10 episodes
(orange) and training horizon (dashed black). a) Policy trained without domain randomization (DR). b)

Policy trained with domain randomization (DR).

The training curves for the two approaches are shown in Figure 4.9. Both policies converge at

practically the same moment, at around 150 episodes. However, the policy trained without DR

exhibits less noise during training and achieves a slightly higher accumulated reward, 146, compared

to 142 with DR. This slight reduction in reward might be expected, as DR creates variability in

the CV parameters, forcing the policy to generalize over different CV environments at some cost to
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overall performance.

To directly compare the two policies each one was evaluated on a CV environment with the same

parameters: the baseline values (Table 3.5) together with low LV end-systolic elastance (EesLV =

1mmHg/mL), which is the same CV environment used to train the policy without DR. Results show

that both policies are able to restore the cardiac output (Figure 4.10a) and mean arterial pressure

(Figure 4.10b) in the simulated patient, getting final values of around 5.5L/min and 90mmHg,

respetively. However, the policy trained with DR achieves the goal with moderately more noise and

somewhat higher values of cardiac output compare to the policy trained without DR. This may be

happening due to a trade-off between robustness achieved by the DR and performance. The policy

with DR should be more robust, but at the same time could have poorer performance.
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Figure 4.10 Policy performance from training initial conditions without domain randomization (baseline
parameters with low LV end-systolic elastance (EesLV

= 1mmHg/mL)). Comparison of policies trained
without (blue) and with (orange) DR. a) Cardiac output (CO). b) Mean arterial pressure (P̄a,s).

In order to assess DR robustness, both policies were evaluated on a set of initial CV parameters not

seen by either approach during training. The CV parameters were set at the baseline parameters

with even lower LV end-systolic elastance (EesLV = 0.6mmHg/mL) and pathological high systemic

venous resistance (Rv,s = 0.06mmHg · s/mL). As can be seen in Figure 4.11, the policy trained

without DR is not able to restore the cardiac output to a normal value above 5.0L/min. On the

other hand, the policy trained with DR, despite facing a new environment, is capable of recovering

the cardiac output by rising it to 5.3L/min. The value of DR is highlighted by this example, in which

a policy can still perform well when operating in an unexpected environment. Therefore, training a

policy with DR may be a valuable approach for closing the sim2real gap in the management of CS.



Applying Reinforcement Learning in Treatment Strategies for Cardiogenic Shock Patients Page 65

0 10 20 30 40 50
Policy Steps

2.5

3.0

3.5

4.0

4.5

5.0

5.5
Ca

rd
ia

c 
Ou

tp
ut

 [L
/m

in
]

Evolution of Cardiac Output

Without DR
With DR

(a)

0 10 20 30 40 50
Policy Steps

50

60

70

80

90

Pr
es
su
re
 [m

m
Hg

]

Evolution of Mean Arterial Pressure

Without DR
With DR

(b)

Figure 4.11 Policy performance from initial conditions not used during training (baseline parameters with
low LV end-systolic elastance (EesLV

= 0.6mmHg/mL) and high systemic venous resistance
(Rv,s = 0.06mmHg · s/mL)). Comparison of policies trained without (blue) and with (orange) DR. a)

Cardiac output (CO). b) Mean arterial pressure (P̄a,s).

4.3.2. Comparison of Restricted Policies

Policies with restricted actions were trained and evaluated to assess the relative importance of

different actions. This experiment could also be viewed as modeling a scenario wherein a particular

intervention was contraindicated (off-limits, e.g. due to allergy) for a patient. Three different

policies were trained: a policy without actions to change the stressed volume (Vs), a policy without

actions to change the heart rate (HR), and a policy without actions to change the end-systolic

elastance (Ees). All three policies were trained with DR and the reward function included both the

positive reward for cardiac output plus the power penalty term (R(s, a) = R+(s, a)+R−pp(s, a)). For

each policy, five rounds of training were performed and the trained policy with the best performance

was used for evaluation.

Training curves are presented in Figure 4.12. The policy without HR actions converges faster during

training and achieves a final accumulated reward of 141. On the other hand, the policy without Ees

converges more gradually and achieves a lower accumulated reward of about 120. An open question

to be analyzed in the future is whether optimizing the hyperparameters for each choice of action

space would improve policy convergence and accumulated reward.
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Figure 4.12 Policy training curves with mean (line) ± standard deviation (shaded region) of averaged
reward over 10 episodes. 5 policies trained for each case: policy without stressed volume (Vs) actions (blue),

policy without heart rate (HR) actions (orange), and policy without end-systolic elastance (Ees) actions
(red). Horizon represented with black dashed line.
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Figure 4.13 Policy performance from the three restricted policies. Initial conditions: baseline parameters
with low LV end-systolic elastance (EesLV

= 0.8mmHg/mL) and high systemic venous resistance
(Rv,s = 0.04mmHg · s/mL). Comparison of policies trained without stressed volume (Vs) actions (blue),

without heart rate (HR) actions (orange), and without end-systolic elastance (Ees) actions (red). a)
Cardiac output (CO). b) Mean arterial pressure (P̄a,s).

The performance of the three policies was compared by setting up the following initial conditions:

baseline parameters with low LV end-systolic elastance (EesLV = 0.8mmHg/mL) and high systemic

venous resistance (Rv,s = 0.04mmHg · s/mL). Results show that the policy without actions to

change HR restores the cardiac output (Figure 4.13a) and mean arterial pressure (Figure 4.13b)
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the fastest, obtaining final values of around 5.7L/min and 93mmHg. On the other hand, policies

without Vs and Ees actions have greater difficulty to treating the simulated patient with CS. In

fact, both policies achieve similar performance, taking 30 policy steps to raise the cardiac output

to 5L/min. These results imply that actions that change HR are less important than the actions

that change either Vs or Ees.
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Figure 4.14 Actions from the three restricted policies. a) Policy without stressed volume (Vs) actions. b)
Policy without heart rate (HR) actions. c) Policy without end-systolic elastance (Ees) actions.

A closer look at the actions taken by each policy (Figure 4.14) reveals further insights. First, the

policy without Vs actions (Figure 4.14a) increases the cardiac output simply by continually rising the

end-systolic elastance all the time, and it rarely ever uses the HR action. This behavior reinforces

the conclusion that changes in HR have smaller impact on cardiac output and thus, actions that

manipulate it are less important. Regarding the policy without HR actions (Figure 4.14b), it first

increases both Ees and Vs to reach the desired cardiac output as fast as possible. Then, in order to

maintain the cardiac output at the healthy value, the policy keeps Ees constant and oscillates Vs,
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increasing and decreasing it successively. This oscillatory behavior occurs because the policy, when

reaches the goal cardiac output of 5.5L/min, it has freedom to do whatever it wants, provided that

the cardiac output is maintained. This undesirable behavior is addressed in the next section by

introducing a “drug” (action) penalty term. Finally, the policy without Ees actions (Figure 4.14c)

raises the cardiac output by increasing both HR and Vs. In this case HR actions are successfully

employed, which might reflect the fact that at higher blood volumes (increase of Vs), rising HR has

a greater effect on increasing cardiac output.

4.3.3. Importance of Penalty Terms

The importance of penalty terms was assessed by training three different policies: one without any

penalty terms (R(s, a) = R+(s, a)), another with the power penalty term (R(s, a) = R+(s, a) +

R−pp(s, a)), and a third with both power and drug penalty terms (R(s, a) = R+(s, a)+R−pp+dp(s, a)).

All three policies were trained with DR and for each policy, five rounds of training were performed;

the trained policy with the best performance was chosen for further evaluation.

Training curves are presented in Figure 4.15. The policy without penalty terms converged much

faster than the other two, after only 60 episodes. On the other hand, the policy with only a power

penalty term needed about 200 episodes to converge. Interestingly, the policy with both a power

penalty and a drug penalty term took 150 episodes to converge, showing that drug penalty may help

on convergence. Regarding total reward, all three policies achieved a similar accumulated reward

of 140 upon convergence.
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Figure 4.15 Policy training curves with mean (line) ± standard deviation (shaded region) of averaged
reward over 10 episodes. 5 policies trained for each case: policy without penalty terms (blue), policy with

only power penalty term (orange), and policy with both drug and power penalty terms (red). Horizon
represented with black dashed line.
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The three policies were evaluated by setting up the same initial conditions as before: baseline

parameters with low LV end-systolic elastance (EesLV = 0.8mmHg/mL) and high systemic venous

resistance (Rv,s = 0.04mmHg · s/mL). Results show that the policy without any penalty terms has

freedom to increase cardiac output (Figure 4.16a) as much as it wants, reaching a value of around

6.5L/min. This in turn induces hypertension in the simulated patient, a pathologic condition, with

values of mean arterial pressure (Figure 4.16b) reaching 110mmHg. On the other hand, introducing

the power penalty term encourages the policy to not increase the cardiac output excessively (around

5.6L/min) and thus avoiding hypertension. However, an undesirable oscillatory behavior occurs as

seen in previous experiments. These oscillations can be removed by including the drug penalty

term, which penalizes the policy for taking many actions. This last penalty forces the policy to only

take actions when necessary, and once the cardiac output level is reached, it is encouraged to take

no further parameter altering actions.
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Figure 4.16 Policy performance from the three policies with different penalty terms. Initial conditions:
baseline parameters with low LV end-systolic elastance (EesLV

= 0.8mmHg/mL) and high systemic venous
resistance (Rv,s = 0.04mmHg · s/mL). Comparison of policies trained without penalty terms (blue), with
only power penalty term (orange), and with both drug and power penalty terms (red). a) Cardiac output

(CO). b) Mean arterial pressure (P̄a,s).

Taking a closer look at cardiac power output (4.17), which is a measure of how much power the

heart is consuming, it can be seen that the policy without penalty terms exceeds 1.2W . Such high

cardiac power outputs are likely detrimental to the heart itself and its recovery. Moreover they

result in adverse systemic effects such as hypertension. On the other hand, policies with the power

penalty maintained power outputs below 1.2W .

Finally, the effect of the drug penalty term can be appreciated in Figure 4.18. Without this penalty

(4.18a), the policy behaves in an oscillatory way. First, it takes the appropriate actions to increase

the cardiac output fast to 5.5L/min, but then it alternates opposing actions (e.g. increase/decrease

Vs) to maintain the desired cardiac output level. On the other hand, when adding the drug penalty,
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the policy only acts when necessary. As shown in Figure 4.18b, once the policy raises the cardiac

output to the desired level, it does not apply any other action.
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Figure 4.17 Cardiac power output (CPO) comparison from the three policies: without penalty terms
(blue), with only power penalty term (orange), and with both drug and power penalty terms (red).
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Figure 4.18 Actions from policies with power and with both penalty terms. a) Policy without penalty
terms. b) Policy with both power and drug penalty terms.

4.3.4. Final Policy Assessment

A final test was created to assess the policy trained with DR and a reward that included both

penalty terms plus the reward to cardiac output (R(s, a) = R+(s, a) +R−pp+dp(s, a)). In particular,

the policy’s performance was evaluated on a more complex environment with time-dependent dis-
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turbances. As before, the simulated patient (environment) was initialized with parameters leading

to cardiogenic shock. But after the policy had interacted with the environment, two of the parame-

ters were altered, simulating a “relapse” and subsequently “healing”. Concretely, initial conditions

were set with baseline parameters, a low LV end-systolic elastance (EesLV = 0.8mmHg/mL), and

a high systemic venous resistance (Rv,s = 0.03mmHg · s/mL). Relapse was modeled with a dis-

turbance after 40 policy steps and consisted of a: sudden reduction in LV end-systolic elastance

(EesLV = 1.0mmHg/mL) and increment of systemic venous resistance (Rv,s = 0.05mmHg · s/mL).

Finally, the healing was modeled with a second disturbance at 80 policy steps, consisting of a:

sudden reduction in systemic venous resistance to its healthy value (Rv,s = 0.015mmHg · s/mL).

These disturbances are depicted in orange in Figure 4.20.

The evolution of cardiac output and mean arterial pressure are shown in Figure 4.19. From the

initial conditions, the policy increases both cardiac output and mean arterial pressure to restore the

patient from the decompensated state, achieving values of 5.6L/min and 91mmHg, respectively.

Once the disturbance simulating the patient’s relapse appears, the policy reacts to it counteracting

the effect and restoring the cardiac output and mean arterial pressure to target values. Finally,

after introducing the disturbance that represents healing, the policy notices a high cardiac output

and mean arterial pressure and reduces them, obtaining a final cardiac output close to 5.5L/min

and a mean arterial pressure of 88mmHg.
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Figure 4.19 Final policy performance with disturbances. Initial conditions: baseline parameters with low
LV end-systolic elastance (EesLV

= 0.8mmHg/mL) and high systemic venous resistance
(Rv,s = 0.03mmHg · s/mL). First disturbance at 40 policy steps: sudden reduction of LV end-systolic

elastance (EesLV
= 1.0mmHg/mL) and increment of systemic venous resistance

(Rv,s = 0.05mmHg · s/mL). Second disturbance at 80 policy steps: sudden reduction of systemic venous
resistance to its healthy value (Rv,s = 0.015mmHg · s/mL). a) Cardiac output (CO). b) Mean arterial

pressure (P̄a,s).

Looking carefully at the evolution of parameters changed by the policy (4.20), one can appreciate

that in order to counteract the decompensated state with high systemic venous resistance (Rv,s)
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and low LV end-systolic elastance (EesLV ), the policy increases EesLV , HR and Vs. Specifically,

to compensate for the initial conditions, the policy restores EesLV to 2.4mmHg/mL, raises HR

to 94bpm and increases the V s to 1025 mL. After the patient relapses, in order to counteract the

increase of Rv,s and decrease of EesLV , the policy raises the heart rate (HR= 113bpm) and stressed

volume (Vs=1180mL) even further. Finally, when Rv,s is restored to its healthy value, the policy

reduces all three EesLV , HR and Vs to 1.42mmHg/mL, 102bpm and 1090mL, respectively. This

results in decreasing and maintaining the cardiac output close to 5.5L/min. Moreover, as shown

in Figure 4.21, the policy takes actions only when necessary, remaining neutral when appropriate

values of cardiac output are reached.
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Figure 4.20 Evolution of changed parameters by policy actions plus simulated changes in the systemic
venous resistance and LV end-systolic elastance. Changes performed by the policy in blue. Changes

performed by the simulator to simulate the patient in orange. a) Systemic venous resistance (Rv,s). b) Left
ventricular end-systolic elastance (EesLV

). c) Heart rate (HR). d) Stressed volume (Vs).
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Figure 4.21 Actions from final policy.

After performing all the above experiments, it can be concluded that a policy trained with DR

and considering a reward that included both drug and power penalty terms achieves a level of

performance notoriously good. This policy can face environments (CV states) not seen before.

Also, it can learn patterns that physicians follow, such as introducing intravenous fluids as a first

action to rapidly increase cardiac output. Furthermore, this policy learns which actions are the

most important, for instance, not changing HR until blood volume increases. Finally, such a policy

knows the precise moments to make the actions, only when cardiac output is too low or too high.

In future work, this findings must be tested with real patient data, where the policy will be assessed

with records of real world environments.
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5. PROJECT IMPACT AND PLANNING

In this chapter, the environmental and social impacts that this project may cause are considered.

Furthermore, the project timeline, the project management methodoogy and the project costs

breakdown are detailed.

5.1. Environmental Impact

The environmental impact of the present project is minimal, as its implementation does not contem-

plate any increment or reduction of consumption of any energy or material resources. In reference

to the work performed and the consequent impact this might cause, it was basically based on doc-

umentation and code writing, simulations, training and optimizations using a computer. Thereby,

electricity and computers needed to carry out the different parts of the project can be considered.

First, it should be noted that the electrical consumption was low. As estimated in Section 5.5,

the power needed for the project was around 1 kW, which is marginal compared to the power that

consumes the Simches Building, where the lab is located. Therefore, it can be said that the devel-

opment of this project did not significantly change any electrical consumption.

On the other hand, deterioration of the electronic equipment (workstations and personal laptop)

must be borne in mind. Once their useful life is finished, they become the so called e-waste.

They must be treated individually, in agreement with the Regulation 310 CMR 30.000: Hazardous

Waste Regulations ordered by the Massachusetts Department of Environmental Protection of the

Massachusetts Government. They can be recycled following the Responsible Recycling Practices

(R2), the e-Stewards standards and the standard ISO 14001.

5.2. Social Impact

The work developed in this thesis constitutes a step forward towards the automation of a set of

therapy decisions that physicians take during the treatment of their patients. Therefore, the imple-

mentation of these kind of methods to the ICU and CCU involves an important breakthrough to

the patient care automation, allowing professionals to get assistance during their work.

Patient’s health state could be predicted before medical actions were taken, thus, giving insight
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to physicians on which might be the outcome obtained depending on the strategy implemented.

Patient’s health evolution could be tracked and analyzed to learn optimal therapy decisions. There-

fore, certain trial and error methodologies when giving drugs may be avoided or at least, reduced.

Furthermore, information about patients could be shared between professionals that work in differ-

ent time shifts. This would end with quick and sometimes incomplete meetings where they exchange

the patient’s health state.

It could be also argued that optimal treatments would be learned from the best physicians or hospi-

tals, and then, be deployed to other hospitals where resources and knowledge are yet limited. The

best treatments may be universally achievable for all world population.

In short, the progress in healthcare automation may cause a huge impact that could be quantified

in both economic savings (reducing medical resources and time), and social benefits, as those pa-

tients who are treated might take advantage of those optimal strategies. Moreover, the physical

and mental well-being of professionals would be improved, as they would get help and reduce their

stress in their working environment.

5.3. Project Timeline

The project timeline is illustrated with a Gantt diagram (Figure 5.1) in the next page. The whole

project was carried out during a complete year, in fact, from April 2020 to April 2021. In total, this

counts up to 51 weeks of work, 5 days a week, 8 hours per day (note that on August and December

2 weeks were subtracted, as they were taken for vacations). The main activities performed during

the project are separated into reading, implementation and writing tasks.

As appreciated, the first months were primarily dedicated to understanding and documenting the

EDW and BM databases, as well as the pipeline development. Concretely, the documentation task

took from April to July, and the data curation and pipeline development from May to November.

Simultaneously to the previous tasks, the project core started too. From June to July, the readings

of cardiovascular system as well as the simulator implementation took place. Next, from July to

November the activities related to the Reinforcement Learning algorithm were performed. First,

reading reinforcement learning state of the art papers (July - September). Then, implementing the

DQN algorithm embedded to the CV simulator (September - October). And finally, to end with this

part of the project, developing a domain randomization strategy within the algorithm (November).

Following, from December to January, strategies and tools for hyperparameter optimization were

learned and implemented. Moreover, the task related to the system identification tool was executed

from mid January to mid March. Also, from March to mid April, results from all the different parts

of the project were obtained. And last but not least, during the period of February to April, all the

work developed in this project was written.
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5.4. Project Management Methodology

The methodology followed to organize and distribute the work over the whole year was based on

Agile. The Agile methodology is a way to manage a project by breaking it up into several phases.

It involves constant collaboration with all the group and continuous improvement at every stage.

Group teams cycle through a process of planning, executing, and evaluating.

Concretely, the Scrum methodology was followed. GitHub served as the environment where the

project was developed. With a canvas that contained the work to do, the work in progress and the

work done, small tasks called issues were assigned to develop this project. Stand up meetings were

carried out biweekely, and retro meetings were held once a month. A postdoctoral researched had

the role of scrum manager in order to lead the team through the common goals. Moreover, weekely

meetings with the lab team and principal investigators were scheduled.

Primary resources needed to carry out the explained methodology were the following. First, a lab

space and a meeting room were used to held personal meetings and group work. Moreover, Zoom

and Slack applications were provided to do videocalls and organize tasks virtually. Second, GitHub

served as the platform to share and unify each student project, building a powerful machine learning

environment with different tools. Finally, powerful workstations were bought to perform time and

compute consuming tasks related to the project.

5.5. Project Costs

The economic cost of the project consists of four different aspects: the depreciation of the laboratory

and personal computers, the cost of the Harvi simulator license, the cost of the supervisors’ and

student’s working time, and finally, an estimation of the electrical energy consumed.

Depreciation of computers is calculated from its total price, their lifespan and the total time they

were working. For this project, two workstations (a personal one and a shared one with lab members)

as well as a personal laptop were used. A useful life of 8 years and 5 years for the workstations

and laptop have been considered, respectively. Workstations and personal laptop are thought to be

used 8 hours per day, 5 days a week and 48 weeks a year. Taking the 8 years, it is a total of 15360

hours of useful life for the workstations. On the other hand, considering the 5 years for the personal

laptop, it is a total of 9600 hours of useful life.

The lab workstation was only employed when training and optimizing, which has estimated to be a

total of 14 entire days, i.e., 336 hours. Regarding the personal workstation and laptop, both were

used the whole workday simultaneously. As stated in the previous section (Section 5.3), the total

worked time was composed by 8 hours per day, 5 days a week during 51 weeks. Hence, a total of
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2040 hours within the project.

Harvi simulator license expires after one year. Taking the hours of a whole year (24 hours per

day, 7 days per week, 52 weeks per year), the license lasts 8736 hours. Since the simulator is not

depreciated, it has been assumed that its entire price is attributed to the project.

As for the costs related to the student and supervisors, the student worked the 2040 hours derived in

the above paragraph. Also, during the task of developing the pipeline, other three students helped

on doing so. Therefore, taking from May to November, those three students contributed on 224

hours each. On the other hand, the main supervisor, the director of this thesis, dedicated 2 hours

per week in meetings as well as 15 hours of supervision of the thesis writing, which sums up to

117 hours. Moreover, another principal investigator with the role of coadvisor and a postdoctoral

researcher also helped on the supervision of this thesis, about 50 hours each. As presented in [38],

a graduate research assistant in Massachusetts makes 20 $/h in average. On the other hand, a

postdoctoral researcher is paid 28 $/h in average. Finally, principal investigators are paid 66 $/h

in average. Furthermore, it must be taken into account that the Massachusetts General Hospital

charges with the 68% of all expenses in order to perform research on-site.

Finally, the cost of the electricity consumed has been estimated. Power of all equipment has been

upper bounded by its respective power supply. The lab workstation has a power supply of 1600 W,

the personal workstation a power supply of 650 W and finally, the personal laptop has a charger of

120 W. Furthermore, a light bulb of 40 W has been considered open all the time the student was

working. Finally, the price of electricity in Massachusetts has been averaged during 2020 and taken

constant, with a resulting value of 0.2 $/kWh.

Note that the variable cost of electricity in Table 5.2 is computed by multiplying the price of

electricity by the total power consumed. As the lab workstation was used much less than the other

computers and light bulb, a fraction of 336/2040 of its total power is taken. Thus, the total power

can be calculated as:

Ptot = 1600 · 336/2040 + 650 + 120 + 40 = 1073.53W.

The two workstations used were mounted in parts, Table 5.1 shows the summary of their price.

Furthermore, in Table 5.2 the total cost of the project is presented. Each cost related to the factors

described above is detailed. The total cost of the project is 114009.26 $ (94535.91 e).
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Table 5.1 Calculation of workstations cost from each component bought. Price of each component is
shown on the middle left column.
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Table 5.2 Calculation of the final project cost. Variable costs of computers and licenses are obtained from
dividing their fixed cost by their life expectancy in hours. Variable cost of electrical energy is found from its

price multiplied by the power consumption of computers and light.
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CONCLUSIONS

Reinforcement learning (RL) for decision support has recently emerged for applications into health-

care. For instance, managing invasive mechanical ventilation, learning optimal treatment strategies

for sepsis or treating cancer. This thesis focuses on the application of RL in supporting therapy

strategies in cardiogenic shock (CS) patients due to decompensated heart failure.

In this study, a policy was trained in simulated CS patients in order to learn simplified tailored

therapy decisions that recovered the patient’s decompensated state. First, the Burkhoff and Tyberg

cardiovascular (CV) hemodynamics model was implemented to simulate CS patients. This model

served as environment in which the policy interacted and learned therapy strategies.

Second, a system identification tool was developed to estimate nine CV model parameters from

real data. In particular, a dataset consisting of 1372 patients who underwent CABG surgery was

created. From it, 776341 cardiac cycles with relevant hemodynamic information were extracted

and used to first, train an autoencoder, and then, use the encoder to estimate the aforementioned

parameters. Results showed that the means of the parameters distribution were strikingly similar

to literature parameters.

Finally, the deep Q-network (DQN) algorithm was used to train policies on simulated CS patients.

Robustness of policies was reinforced by introducing domain randomization during training. Ranges

of domain randomization were determined based on the nine estimated CV parameter distributions.

Then, an assessment of action importance was carried out by limiting policies to a subset of the

whole action space. It was evidenced that actions changing heart rate were less important for restor-

ing cardiac output. Moreover, certain strategies implemented by physicians were also appreciated:

the policy learned that introducing intravenous fluids to the patient to increase their blood volume

is a relevant strategy to improve cardiac output. On the other hand, evaluation of different reward

functions was performed by including different penalty terms. This demonstrated that penalties

related to cardiac power consumption and drug administration were necessary to obtain better

treatment strategies. Such strategies only included the necessary actions while avoiding undesirable

patient states like hypertension.

Having presented the obtained outcomes, some limitations of this work should be addressed. Re-

garding the system identification tool, the ability of the decoder to reproduce simulated pressures

was limited to its training domain. The fact that negative CV parameters were estimated, pointed

out the lack of generalization of the decoder outside from its training range.
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Related to the RL framework, the simplification of therapy actions directly affecting the CV pa-

rameters reduced high variability in patient-to-patient drug administrations. Although stochastic

actions were introduced, a drug administration model sensitive to changes in parameters must be

developed to account for the interpatient variability that physicians face. Such a model would allow

evaluating whether a policy would be robust enough to face patient-to-patient drug effects when

making therapy decisions. In addition, it was demonstrated that domain randomization provides

robustness in front of unseen and unexpected environments. However, relying on only simulated

data limits the assessment of the policy performance in a real scenario.

Future work contemplates first an improvement of the autoencoder. Specifically, retraining the

decoder to generalize and achieve better similarity with the simulator. Ideally, it would be desirable

to substitute the decoder with the actual simulator. However, this one should be implemented in

such a way that could be parallelizable over a GPU and suitable to backpropagate the loss error

for neural network training. Moreover, switching to another RL algorithm that accepts continuous

actions is also considered. This change, together with a model of the effect of drug administration

on CV parameters, would provide a more complex environment that a policy should face to. Finally,

a dataset of patient-outcome historical data is sought to be generated. This dataset would serve as

a tool to retrain and refine the policy with real physician-to-patient causality relationships, as well

as to evaluate the policy performance.

The fundamental value of this thesis lies in the implementation and evaluation of a policy that learns

tailored therapy decisions from hemodynamic data. Although these strategies have been studied

in simulation, the long term goal contemplates the use of clinical data to assess its potential in a

real world scenario. A future implementation is envisioned to work on patient’s real time data. By

learning the patient’s CV physiology, a policy would recommend therapy decisions to improve and

counteract decompensated states that lead to CS.
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