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Abstract

High Performance Computing (HPC) systems have been evolving over time to
adapt to the scientific community requirements. We are currently approaching
to the Exascale era. Exascale systems will incorporate a large number of nodes,
each of them containing many computing resources. Besides that, not only the
computing resources, but memory hierarchies are becoming more deep and
complex. Overall, Exascale systems will present several challenges in terms of
performance, programmability and fault tolerance.

Regarding programmability, the more complex a system architecture is, the
more complex to properly exploit the system. The programmability is closely
related to the performance, because the performance a system can deliver is
useless if users are not able to write programs that obtain such performance.
This stresses the importance of programming models as a tool to easily write
programs that can reach the peak performance of the system. Finally, it is well
known that more components lead to more errors. The combination of large ex-
ecutions with a low Mean Time To Failure (MTTF) may jeopardize application
progress. Thus, all the efforts done to improve performance become pointless
if applications hardly finish. To prevent that, we must apply fault tolerance.

The main goal of this thesis is to enable non-expert users to exploit com-
plex Exascale systems. To that end, we have enhanced state-of-the-art parallel
programming models to cope with three key Exascale challenges: programma-
bility, performance and fault tolerance.

The first set of contributions focuses on the efficient management of modern
multicore/manycore processors. We propose a new kind of task that combines
the key advantages of tasks with the key advantages of worksharing techniques.
The use of this new task type alleviates granularity issues, thereby enhancing
performance in several scenarios. We also propose the introduction of depen-
dences in the taskloop construct so that programmers can easily apply blocking
techniques. Finally, we extend taskloop construct to support the creation of
the new kind of tasks instead of regular tasks.

The second set of contributions focuses on the efficient management of mod-
ern memory hierarchies, focused on NUMA domains. By using the informa-
tion that users provide in the dependences annotations, we build a system that
tracks data location. Later, we use this information to take scheduling decisions
that maximize data locality.

Our last set of contributions focuses on fault tolerance. We propose a pro-
gramming model that provides application-level checkpoint/restart in an easy
and portable way. Our programming model offers a set of compiler directives
to abstract users from system-level nuances. Then, it leverages state-of-the-art
libraries to deliver high performance and includes several redundancy schemes.

ix



Resumen

Los supercomputadores han ido evolucionando alo largo del tiempo para adap-
tarse a las necesidades de la comunidad cientifica. Actualmente, nos acercamos
a la era Exascale. Los sistemas Exascale incorporaran un numero de nodos
enorme. Ademas, cada uno de esos nodos contendra una gran cantidad de
recursos computacionales. También la jerarquia de memoria se esta volviendo
mas profunda y compleja. En conjunto, los sistemas Exascale plantearan varios
desafios en términos de rendimiento, programabilidad y tolerancia a fallos.

Respecto a la programabilidad, cudnto mas compleja es la arquitectura de un
sistema, mas dificil es aprovechar sus recursos de forma adecuada. La program-
abilidad estd intimamente ligada al rendimiento, ya que por mucho rendimiento
que un sistema pueda ofrecer, no sirve de nada si nadie es capaz de conseguir
ese rendimiento porque es demasiado dificil de usar. Esto refuerza la impor-
tancia de los modelos de programacién como herramientas para desarrollar
programas que puedan aprovechar al maximo estos sistemas de forma sencilla.
Por tltimo, es bien sabido que tener méas componentes conlleva mas errores.
La combinacién de ejecuciones muy largas y un tiempo medio hasta el fallo
(MTTF) bajo ponen en peligro el progreso de las aplicaciones. Asi pues, todos
los esfuerzos realizados para mejorar el rendimiento son nulos si las aplica-
ciones dificilmente terminan. Para evitar esto, debemos desarrollar tolerancia
a fallos.

El objetivo principal de esta tesis es permitir que usuarios no expertos puedan
aprovechar de forma éptima los complejos sistemas Exascale. Para ello, hemos
mejorado algunos de los modelos de programacion paralela mds punteros para
que puedan enfrentarse a tres desafios clave de los sistemas Exascale: programa-
bilidad, rendimiento y tolerancia a fallos. El primer conjunto de contribuciones
de esta tesis se centra en la gestion eficiente de procesadores multicore/many-
core. Proponemos un nuevo tipo de tarea que combina los puntos clave de las
tareas con los de las técnicas de worksharing. Este nuevo tipo de tarea permite
aliviar los problemas de granularidad, mejorando el rendimiento en algunos
escenarios. También proponemos la introduccion de dependencias en la di-
rectiva taskloop, de forma que los programadores puedan aplicar blocking de
forma sencilla. Finalmente, extendemos la directiva taskloop para que pueda
crear nuestro nuevo tipo de tareas, ademas de las tareas normales.

El segundo conjunto de contribuciones esta enfocado a la gestion eficiente
de jerarquias de memoria modernas, centrado en entornos NUMA. Usando la
informacion de las dependencias que anota el usuario, hemos construido un
sistema que guarda la ubicacion de los datos. Después, con esa informacion,
decidimos dénde ejecutar el trabajo para maximizar la localidad de datos.



El dltimo conjunto de contribuciones se centra en tolerancia a fallos. Pro-
ponemos un modelo de programacion que ofrece checkpoint/restart a nivel de
aplicacion, de forma sencilla y portable. Nuestro modelo ofrece una serie de
directivas de compilador que permiten al usuario abstraerse de los detalles del
sistema. Ademas, gestionamos librerias punteras en tolerancia a fallos para con-
seguir un alto rendimiento, incluyendo varios niveles y tipos de redundancia.
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Chapter

Introduction

Historically, as observed by Dennard, the transistors can get smaller while keep-
ing the power density constant. Reducing the area of transistors results in a re-
duction of circuit delays, thereby increasing operating frequency, while the power
consumption remains unchanged. Moore predicted in his law that the number of
transistors of a chip doubles about every two years, thereby, considering Dennard
scaling, increasing the performance of the chip. This fact has been true during
many years. However, at some point, the frequency stopped increasing, and the
single thread performance started to grow much slowly. Thus, chip manufacturers
introduced the multiprocessor architecture to keep increasing the processor per-
formance.

Figure 1.1 shows the trend of the amount of transistors, the single thread per-
formance, the frequency, the power and the number of logical cores of processors
in the last years. The figure shows the facts explained previously.

Although parallelism was already popular to exploit distributed systems, it was
not used in shared-memory environments. The introduction of multiprocessor ar-
chitecture forced users to employ parallelism in shared-memory environments to
adequately exploit the full power of the processors. Given the high-level of exper-
tise that programmers require to optimally exploit multiprocessor architectures,
shared-memory programming models born. The objective of such programming
models was abstracting end-users with no expertise in computing (e.g. physicists,
biologists, etc.) from the low-level details of machines, while delivering acceptable
performance.

Over time, architectures became more and more complex with processors in-
creasingly containing more and more cores, and overall performance considerably
increasing. However, the memory performance did not scale as much as the CPU
did. This problem is widely known as Memory Wall [120]. As a result, there is
an increasing gap between processor and memory performance that manufactur-
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Figure 1.1: Trends of processors in the last years. Figure extracted from [59]

ers try to minimize by using several levels of cache memories, usually known as
memory hierarchy. The mentioned gap can be observed in Figure 1.2.

The idea is to place faster but smaller memories (cache) close to the compute
resources, to reduce the mentioned gap. Nowadays, it is quite frequent to ob-
serve up to three levels of cache, some of them shared between several compute
resources, and the main memory. Some architectures goes beyond and add High
Bandwidth Memories (HBM), which are faster than main memory, but slower than
cache memories.

Nevertheless, the memory hierarchy also comes at a cost. Caches are more ex-
pensive, require more area in the chip layout, and consume more power per byte.
Moreover, caches require advanced optimizations in applications to optimally ex-
ploit them. Otherwise, performance can be negatively affected.

Currently, data movement is a big bottleneck in applications. The easier way
to program is moving data to where compute is running. One example of this is
Non-Uniform Memory Access NUMA). In NUMA environments, the whole system
memory is addressed using a single address space that is shared to all the cores, to
ease the programming. That way, cores from different sockets can access remote
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Figure 1.2: CPU-memory gap in the last years. Figure extracted from [29]

memories transparently. However, it is more expensive than accessing the local
memory.

Newest architectures are incorporating on-chip NUMA. Apart from having dif-
ferent sockets that can be accessed using NUMA, they are introducing several
memory controllers within the chip to reduce memory latencies and increase mem-
ory bandwidth. Those memory controllers work also as a NUMA domain, in the
sense that all the cores within the chip can use them, but at different costs.

To sum up, a lot of time is wasted moving data from one location to another,

downgrading performance. Not only performance is worse, but also power con-
sumption.

Overall, the current complexity of HPC systems is already very high, and it keeps
increasing as we approach to the Exascale era. We focus on three concrete factors of
this increasing complexity. The first factor is the increase in the number of cores per
node. The increase in the intranode parallelism causes that traditional approaches
do not deliver as good performance as in previous sytems. Additionally, as a natural
consequence of the increase in the number of cores per node, newest processors
are incorporating more memory controllers to reduce the memory latencies and
maximize the memory bandwidth. These memory controllers behave in a NUMA



way: all the cores can access all the memory controllers, but at different costs. The
proper management of the different memory channels is crucial to maximize the
performance. Finally, there is an increase in the overall number of nodes of HPC
systems. Such an increase in the number of nodes leads to an increased error rate,
requiring fault tolerance mechanisms more than ever to guarantee the progress of
applications.

1.1 Objectives

The main goal of this thesis is to enable non-expert users to exploit complex Exas-
cale systems. To that end, we have enhanced state-of-the-art parallel programming
models to cope with three key Exascale challenges: the increase in the number of
cores per node, the increase of NUMA domains per processor, and the increase in
the overall number of nodes. Our enhancements focus on improving performance,
programmability and fault tolerance.

Performance is the most important, most of the efforts focus on improving per-
formance. However, with programmability being a critical issue nowadays due to
systems increasingly becoming more and more complex, we must find a compro-
mise between performance and programmability. Usually, the focus is on perfor-
mance, but it does not matter the performance a system can deliver, if nobody is
able to get such performance because it is too hard to handle the system. State-of-
the-art programming models still have room for impromevent in some issues that
will become critical in Exascale systems, namely efficient management of multi-
core/manycore processors, and efficient management of memory hierarchies, es-
pecifically NUMA domains.

Finally, fault tolerance is as important as the two previous challenges in Exas-
cale. Exascale systems will incorporate an enormous amount of components. It
is broadly known that the more components, the more likely to experience faults.
Thus, if we are not able to adequately manage faults, it does not matter how fast our
system is, because applications have a high possibility of not completing. There-
fore, converting all our efforts in programmability and performance in meaningless
efforts.

In this thesis, we leverage modern directive-based parallel programming mod-
els. These are easy to use, portable, and deliver good performance. Our contribu-
tions extend the programming models with novel features that are not present in
the state-of-the-art.



1.2 Efficient Management of Modern Multicore/Manycore Proces-
sors

The first contribution of this thesis focuses on the efficient management of multi-
core/manycore modern processors. Two popular paradigms for managing paral-
lelism are Bulk Synchronous Parallel (BSP) and Data-Flow.

BSP contains three main stages. In the first one, each of the cores performs
concurrent local computation. Then, in the second one, there is data exchange and
communication. Finally, the third step is a barrier where all the participants are
synchronized.

Data-Flow, in contrast, models executions as directed graphs. The computations
are nodes of the graph, and the data are the edges. Computations using the same
data are connected in the graph, and they cannot run concurrently. Consequently,
there is no need for a global barrier that synchronizes all the cores. So, in other
words, Data-Flow provides lightweight synchronization.

State-of-the-art programming models provide two incarnations of these paradigms:
fork-join is an implementation of BSP, while task-based is an implementation of
Data-Flow.

The fork-join execution model introduces few overhead and delivers very good
performance when workloads are regular, structured and well-balanced. However,
this model has a very rigid synchronization mechanism and does not fit the re-
quirements of irregular, unstructured and imbalanced parallelism. This rigid syn-
chronization mechanism is not good either for systems with massive amount of
cores.

Task-based parallelism naturally copes with irregular, unstructed and imbal-
anced parallelism, due to its lightweight data-flow synchronization. Nevertheless,
task management costs are a noticeable source of overhead, especially for fine gran-
ularities.

In terms of programmability, the fork-join approach is easier for the user. Usu-
ally, a single construct is enough to parallelize a full loop. In the case of tasking,
we need to create several tasks to feed all the available cores. For this purpose, it is
frequent to apply blocking techniques to loops, where each of the blocks is a task.
This is not a difficult process, but it is more complex compared to the fork-join
alternative.

We believe that tasking is the right way to program modern systems, specially
considering the drawbacks of the fork-join models and the current trends in sys-



tem’s architecture. For this reason, we try to enhance the tasking model to over-
come current limitations. We contribute with two proposals in this topic: work-
sharing tasks and taskloop with dependences.

Worksharing tasks are a new kind of task that combines the key advantages of
tasks with the key advantages of worksharing techniques. They behave as a task in
almost all the aspects, except that regular tasks run in a single thread while work-
sharing tasks can run in several threads concurrently. Worksharing tasks uncover
hidden parallelism leveraging worksharing techniques, resulting in a better usage
of the computational resources. The use of this kind of tasks alleviates granularity
issues, thereby enhancing performance in several scenarios.

The taskloop construct is a concept already present in the OpenMP standard.
It distributes the iteration space of a loop into several tasks. Thus, programmers
can easily apply blocking techniques. However, currently, the taskloop construct
does not accept data dependences between the tasks created by the taskloop, lim-
iting the applicability of the construct. We extend the taskloop construct to accept
dependences based on the induction variable of the loop, so that tasks created by
the taskloop can include dependences to other tasks, either created by the same
taskloop or not. Finally, we extend the taskloop construct to support the creation
of worksharing tasks instead of regular tasks.

With these contributions, we enhance the tasking model both in performance
and programmability, becoming a good choice for Exascale system by addressing
the challenge related to the increase in the number of cores per node.

1.3 Efficient Management of Memory Hierarchies (NUMA)

The second set of contributions of this thesis focuses on the efficient management
of memory hierarchies, especifically NUMA domains. We already introduced the
CPU-memory gap, and the idea of memory hierarchy to mitigate the effects of such
a gap. We also mentioned the increasing complexity in programming such archi-
tectures to adequately exploit such memory hierarchies. There is a lot of work in
the literature demonstrating that a good memory hierarchy management is cru-
cial to obtain peak performance in modern systems, becoming data movement an
important source of overhead.

We propose a mechanism to prevent data motion, by moving compute to where
data is, rather than the other way around. Our proposal focuses on systems with
Non-Uniform-Memory-Access (NUMA). Modern processor architectures frequently



include more than one socket in a single shared-memory address space. Notwith-
standing, accessing from one socket to another has a penalty depending on the
distance between them. This is frequently known as the NUMA effect.

Besides that, there is a new trend that incorporates several memory controllers
inside a single socket. All the cores within the socket can access the different mem-
ory controllers, but at different costs, similarly to what happens in regular NUMA
with different sockets. This is known as on-chip NUMA.

We propose a NUMA-aware system to mitigate the NUMA effect both in multi-
socket architectures and on-chip NUMA architectures. Our solution includes an
API to manage the memory allocation, a data tracking system which stores data
location during the whole execution, and a scheduling system able to schedule tasks
where it requires fewer data movements. Our proposal requires very low effort
from the user side and is able to mitigate the NUMA effect, thereby improving
performance.

With this contribution, we address the second challenge related to the increase
of the memory controllers (NUMA domains) in modern systems.

1.4 Fault Tolerance

The last set of contributions of this thesis focuses on resilience. We mentioned that
one of the factors that increase complexity in Exascale systems is the increase in the
number of nodes. Increasing the number of nodes means increasing the total num-
ber of components in the system, increasing also the error rate. An increased er-
ror rate requires devoting efforts to develop fault tolerance mechanisms. We focus
our work on applicaton-level checkpoint/restart (CR). State-of-the-art application-
level CR tools provide advanced I/O capabilities and several redundancy schemes.
Nonetheless, there is still room for improvement in terms of programmability and
portability, because end-users must manually serialize and deserialize application
state using low-level APIs, modify the flow of the application to consider restarts,
or rewrite CR code whenever the backend library changes

We designed and implemented OpenCHK, a programming model based on com-
piler directives and clauses that allows users to specify CR operations in a simple
way. Our approach relies on state-of-the-art libraries to provided advanced 1/0
capabilities and redundancy schemes, and an additional level of abstraction using
compiler directives. As a result, both programmability and portability improves.

With this final contribution, we address the last challenge related to the increase



of the overall number of nodes.

1.5 Thesis Outline

The structure of this thesis is as follows: Chapter 2 contains a high-level back-
ground to understand the contributions of this thesis; Chapter 3 reviews relevant
related work; Chapter 4 details the contributions done related to the efficient man-
agement of multicore/manycore processors, including specific motivation and con-
text; Chapter 5 explains the contributions related to the efficient management of
memory hierarchies, focused on NUMA domains, also including specific motiva-
tion and context; after that, Chapter 6 describe the important of fault tolerance in
Exascale systems, and presents the contributions done in this thesis related to this
topic; and, finally, Chapter 8 summarizes the work done throughout this thesis,
and provides concluding remarks, and Chapter 9 introduces possible future work
directions.
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Chapter

Background

This chapter contains a background of parallel programming models, and fault
tolerance techniques. Additionally, it explains the main pieces of software used in
this thesis.

2.1 Programming Models

Programming models appeared to abstract users from low level details that were
difficult to manage and highly tied to underlying characteristics of the system.
There are different kinds of programming models pursuing different objectives. In
this work, we focus on parallel programming models. Although parallel program-
ming models existed before the multiprocessor architecture to exploit distributed
systems, they became more prominent when the first multiprocessor architectures
arrived. Multiprocessors require several threads to exploit the available compute
resources they incorporate. Nevertheless, there are different ways of using thread-
based programming. Operating Systems (OS) provide threading implementations,
such as POSIX threads in Linux or Win32 threads in Windows OS. Many pro-
gramming languages also include their own threading implementation, like C++,
Python or Java. Each of these implementations provide different APIs, and usually,
they are not compatible with others. Consequently, programmers have to write a
different version for each of the possibilities, in case they want to test multiple op-
tions.

Programming models help users with this kind of issue. A programming model
abstracts the user from low-level details, providing an API that works regardless of
the underlying OS, language or architecture.

There are many different parallel programming models nowadays. Some of the
most important are Intel TBB [65], OpenMP [84], CUDA [69] or MPI [117]. They
can be classified in several different ways: shared or distributed memory, sup-
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Figure 2.1: Representation of Bulk Synchronous Parallel (BSP) paradigm.

port for heterogeneity, target architecture, task-based, type of synchronization,
directive-based or API-based, etc.

In this thesis, we contribute to two programming models: OmpSs-2 [14] and
OpenCHK [15]. OmpSs-2 is an already existing programming model that we en-
hanced with novel features. In the case of OpenCHK, this is a new programming
model we designed and developed from scratch. They aim for very different ob-
jectives: OmpSs-2 is a programming model devoted to parallelize programs, while
OpenCHK is a programming model devoted to add fault tolerance to programs.

In the following sections, we explore the state of the art in programming models
for parallelize programs. As well, we explore the different solutions and approaches
available in the state of the art of fault tolerance.

2.1.1  Parallel Programming Models

As introduced, parallel programming models are tools that enable users to paral-
lelize programs while abstracting them from low level details and system nuances.
There are two main paradigms for parallelism: Bulk Synchronous Parallel (BSP),
and Data-Flow.

Figure 2.1 shows a representation of the BSP paradigm. As we can observe there,
there are three main stages. In the first stage, all the different threads perform a
concurrent computation. After that, they can communicate with other threads.
Finally, there is a barrier for synchronization where all the threads wait for the
slowest. This is a very simple paradigm but implies very rigid synchronization.

Figure 2.2 shows a representation of the Data-Flow paradigm. In this paradigm,
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Figure 2.2: Representation of Data-Flow paradigm.

the execution can be modeled using a directed acyclic graph. The nodes of the
graph represent the computations while the edges represent the data. When several
different computations require the same data, the latest must wait for the previous
to finish before starting. This is known as data-flow synchronization, and it is much
more flexible than BSP. In this case, each computation can start as soon as its data
is ready.

We can find incarnations of both BSP and Data-Flow paradigms in state-of-the-
art programming models. The fork-join execution model is an implementation of
the BSP paradigm, while the task-based execution model is an implementation of
the Data-Flow paradigm. OpenMP, Intel TBB, CUDA, Cilk [67], Habanero [31],
etc., support both execution models. Others, like OmpSs-2 are purely task-based.

2.1.2  Parallel Programming Models for Shared-Memory Environments

Despite the high number of existing parallel programming models for shared-
memory environments, such as Intel TBB, OmpSs-2, and Cilk, OpenMP is the
de facto standard in HPC. It is a directive-based programming model, that means
users define actions through compiler annotations, also known as pragmas. Directive-
based programming models are easy to use and allow incremental parallelization.
Additionally, the compiler annotations can be easily ignored by compilers, enabling
programmers to have multiple versions (serial and parallel) in a single code.

As introduced previously, OpenMP supports both fork-join and task-based par-
allelism. The most popular way of parallelizing programs using OpenMP is using
worksharing constructs. They distribute the available work into several threads,
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that run concurrently. At the end, all the threads wait until the last of them fin-
ished in what is known as a barrier.

In version 3.0, OpenMP introduced the task concept. A task is basically a por-
tion of serial code that can be run asynchronously. Several tasks can run con-
currently, achieving parallelism. Tasks can contain data annotations to define de-
pendences. Given two sibling tasks, A and B, being B created after A, if task A
annotates variable X as an output, and task B annotates the same variable either as
input, output or both; task B depends on task A, and so, task B cannot run until
task A has finished.

Worksharing constructs are frequently used over loops, and more generally, to
exploit structured parallelism. They introduce very few overhead. However, the
barrier at the end makes worksharings susceptible to load imbalance. Thus, they
are not a good choice for unstructured parallelism.

Tasks provide more flexibility. The synchronization when using tasks (+ data
dependences) is data-driven. Thus, threads can get new work as soon as there is
more work available (unlike worksharings). Nevertheless, tasks introduce more
overhead than worksharing constructs.

2.1.3  OmpSs-2

OmpSs-2 is a programming model designed and developed by the Programming
Models group of the Barcelona Supercomputing Center (BSC). It is a directive-
based programming model. Currently, OmpSs-2 is a purely task-based program-
ming model, which means that the only way of partitioning work is using tasks.

OmpSs-2 is the second generation of the OmpSs programming model. Both
generations are research-oriented. In fact, they acted as a forerunner of OpenMP
in the sense that many features that are currently part of the OpenMP standard has
been firstly proposed by OmpSs/OmpSs-2.

The OmpSs [19] parallel programming model is an integration of features from
the different programming models of the StarSs family into a single programming
model. Also, OmpSs born with the objective of extending OpenMP with new di-
rectives to support new features such as asynchronous parallelism and heterogene-
ity (devices like GPUs). In fact, the name OmpSs is a combination of the names of
the above-mentioned programming models pointing out the relationship between
them.

OmpSs inherits from OpenMP the philosophy to develop parallel programs:
start from a sequential code and add compiler directives to uncover parallelism.
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Therefore, OmpSs, like OpenMP, uses compiler directives. These compiler direc-
tives are just annotations in the code. The main advantage of these annotations is
that they do not affect at all to the program semantics, while they allow the com-
piler to produce a parallel version of it. Using this philosophy, application devel-
opers can parallelize their applications incrementally: starting from a sequential
version, they can add directives to different parts of the code obtaining parallelism
on them.

On the other hand, OmpSs inherits from StarSs the possibility of targetting het-
erogeneous architectures (included also in OpenMP 4.0), and the use of tasks as the
main mechanism to express parallelism. Nevertheless, OmpSs still support fork-
join parallelism in the same way than OpenMP, using worksharing constructs.

OmpSs-2 is the natural evolution of OmpSs. At BSC we believe that task-based
parallelism is the right choice to address several challenges of modern systems, so
OmpSs-2 completely focuses on task-based parallelism. Thus, no support for fork-
join parallelism is provided at all, so worksharing constructs are not present. In
OmpSs-2, tasks are the only way of parallelizing applications.

Basics of OmpSs-2

As introduced, OmpSs-2 is a parallel programming model for shared-memory en-
vironments. It enables parallelization by means of a set of compiler directives and
library routines. OmpSs-2 can be used with C/C++ and Fortran. As OmpSs did
in the past, OmpSs-2 seeks to extend the OpenMP standard with new features that
provide users a simple and productive way of exploiting modern HPC systems.

We already mentioned that OmpSs-2 is a purely task-based model, where the
tasks are the elementary and unique unit of work. The synchronization of tasks can
be done using data dependences or explicit synchronization points (i.e. taskwait).
OmpSs-2 highlights are listed following:

m Extended lifetime of task data environment. Tasks complete when they fin-
ish their execution, and deeply complete when all their children tasks deeply
completed or there are no childs, and the task completed As a result, the
data environment of a task (i.e. the variables captured at task creation) is
only destroyed when a task is deeply completed.

B Connection of nested dependence domains. The dependences of a task are
propagated to its children tasks. Thus, when a task finish, we replace their
outgoing dependences by those generated by its children.
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B Dependences’ early release. Dependences that are not included in any un-
completed children task are released as soon as the task completes. This
default behavior can be modified using a clause that postpones the release
until the task is deeply completed.

B Weak dependences. OmpSs-2 distinguishes between strong and weak de-
pendences. The strong dependences are the regular dependences that spec-
ify that a task actually requires some data, while the weak dependences spec-
ify that their children will require the data. As a result, a task that only con-
tains weak dependences is immediately ready.

Annotating OmpSs-2 Programs

A subtle but important difference of OmpSs-2 compared to its predecessor, and
also OpenMP, is that the sentinel used in the pragma is not omp anymore. OmpSs-
2 uses the oss sentinel. Listing 2.1 shows the format of OmpSs-2 annotations.

Listing 2.1: OmpSs-2 annotations format

#pragma oss directive [clause[ [,] clause] ...]

OmpSs-2 Execution Model

Unlike in OpenMP, in OmpSs-2 users do not require the parallel directive in
OmpSs-2, because the runtime creates the threads at startup. This threads are later
used to run the available tasks. In OmpSs-2, the user has no control of the pool of
threads, which is managed by the runtime.

The OmpSs-2 runtime system creates an initial pool of worker threads at startup.
The main function of the program becomes an implicit task called main task, and
it is enqueued in the ready queue as any other regular task. Once a thread gets the
task, it starts running the main function, while the rest of the threads keep waiting
until other tasks are ready for execution.

Nesting in OmpSs-2

Nesting is defined as the ability to create multiple levels of parallelism, one within
another. In OmpSs-2, tasks can create more tasks, enabling users to actually get
multiple levels of parallelism that can help to improve performance. Nesting is
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especially important for recursive algorithms, because it enables the parallelization
of such algorithms.

OmpSs-2 Dependency Model

As usual in task-based programming models, in OmpSs-2 the tasks can contain
data dependences between them. The runtime library uses the data annotations
specified by the user, and the task creation order to produce execution order con-
straints between tasks. These are known as data dependences.

The data annotations enable users to specify which data is accessed within a task,
and which kind of access it is (read, write or read-write). In the event of a task
creation, the data annotations of the task are matched against the data annotations
of other tasks. In case there is a dependency, either RaW (Read after Write), WaR
(Write after Read) or WaW (Write after Write), the recently created task becomes
a successor of the corresponding existing tasks, and its execution will be deferred
until its successors finish. Otherwise, when there are no dependences, the task is
immediately ready for execution.

Apart from the usual kind of data annotations (read, write, read-write), OmpSs-
2 provides the commutative and concurrent data annotations. When several tasks
have been annotated with the commutative clause over the same data, all of them
are eligible to run, but just a single one can run at a time. Note that the commutative
annotation forces tasks to wait for predecessors that use the same data with any
other kind of data annotation. The concurrent annotation allows multiple tasks
that have been annotated with a concurrent over the same data to run in parallel,
while forcing them to wait for predecessors with any other kind of data annotation.

The OmpSs-2 programming model provides two different dependency systems.
The first one enable users to define dependencies over regions of data, rather than
a single element. The second dependency system is equivalent to the OpenMP
one, where the dependences are defined only on the start address of the data speci-
fied. We usually refer to them as region dependences for the first one, and discrete
dependences for the second one.

The region dependency system is very useful because it looks for partial overlap-
ping of memory regions. This way, the user can annotate programs in a more natu-
ral way, specifying the whole region accessed by a task, and the runtime will ensure
that tasks are executed in the proper order, respecting the dependences. However,
in the case of discrete dependences, tasks accessing partially overlapped data may
run concurrently, producing incorrect results. A common way of preventing this
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problem is the use of sentinels. On the other hand, the discrete dependency sys-
tem is faster than the region dependency system, that introduces non-negligible
overhead, especially in fine granularities.

Two important features of the OmpSs-2 dependency model, already introduced,
are the early release of dependences and the weak dependences.

Early Release of DependencesinOmpSs-2  This feature is closely related to task nesting, en-
abling users to speedup some specific applications. In OpenMP and OmpSs, the
dependency domain of parent and children tasks can be connected by means of
taskwaits. Placing a taskwait at the end of the parent task, we ensure that all the
children tasks finished and so, the parent can release its dependences. Neverthe-
less, this may be deferring the release of dependences of some children that may
have finished before. As well, it prevents the parent from finishing its own execu-
tion.

OmpSs-2 enable users to connect the dependency domain of parent and children
tasks with no taskwaits. The runtime realizes that when a parent task finishes its
own execution, it does not require the enforcement of its own dependences, and
also that no further children tasks will be created. Consequently, all the depen-
dences defined by the parent that are not defined by any other alive child task, can
already be released, preserving only the dependences required by the alive children
tasks

Weak Dependences  This is an extension to the OmpSs and OpenMP dependency sys-
tem to improve the integration of task nesting and dependences. OmpSs-2 provide
two different kind of dependences: strong and weak. The strong dependences are
the regular dependences already present in OpenMP, while the weak dependences
are a new kind of dependency that enable users to specify data that is required by
the children tasks rather than by the task with the annotation. Usually, parent tasks
include dependences that are not required by them but by their children tasks, in
order to connect the outer dependency domain with the inner dependency do-
main. In these cases, it is not required to defer the parent task execution, because
it is not actually accessing data. As a result, tasks with only weak dependences
become immediately ready.

Using weak dependences, it is simpler to setup mechanisms to create tasks con-
currently, accelerating the task creation.
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Reference Implementation of OmpSs-2

The reference implementation of OmpSs-2 uses the Mercurium compiler [11], and
the Nanos6 runtime library [12].

Mercurium Compiler Mercurium is a source-to-source compiler infrastructure devel-
oped at BSC. It supports C/C++ and Fortran. Nowadays its main use is in com-
bination with Nanos++ in order to implement OpenMP and OmpSs program-
ming models, and Nanos6 in order to implement OmpSs-2 programming model.
Withal, given its extensible nature, it also has been used to implement other pro-
gramming models different than the mentioned ones, as well as performing differ-
ent compiler transformations. Some of them are Cell SuperScalar (CellSs), Soft-
ware Transactional Memory or Distributed Shared Memory.

Mercurium is designed using a plugin architecture. Each plugin of Mercurium
represents a compiler phase. All the Mercurium plugins are developed in C++, and
they are dynamically loaded according to the configuration chosen by the user.

Mercurium is in charge of processing OmpSs-2 directives and perform the ap-
propriate transformations to convert directives into runtime library calls. Further-
more, Mercurium is able to restructure code depending on its target device (CPU
or GPU, for instance). For that purpose, Mercurium includes a specific handler for
each device. If required, it can even generate device-specific code in different files
for each of the target devices. Mercurium also can invoke different device-specific
compilers such as nvcc to compile CUDA code.

Nanos6 Nanos6 is a runtime library designed to be used in parallel environments.
Nowadays, its main use is OmpSs-2. This library provides support for asynchronous
task-based parallelism relying on data-dependences. Although Nanos6 main goal
is to be used in research about parallel programming environments, it is a highly-
optimized runtime that has been already used in several EU projects.

On [1], Alvarez, et.al, detail several of the optimizations applied in the runtime
system, including a wait-free dependency system, a scheduling system using ad-
vanced locks with delegation techniques, optimizations in the memory manage-
ment, and a lightweight instrumentation mechanism.
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2.1.4 Parallel Programming Models for Distributed Environments

As with OpenMP in shared-memory environments, MPI has been a de facto stan-
dard in distributed environments. It is a library-based programming model, where
users define actions by calling methods from the library. It enables users to pass
messages between different processes using the network. As a result, programs can
run in many different nodes concurrently.

During many years, programmers used to parallelize applications with a pure
MPI implementation. The most frequent pattern is to decompose the data set of
the application into several chunks, each of them run by a single MPI process.
At some point, the processes communicate between them to exchange required
information to continue the execution. Another option is replicating the whole
data set in every single MPI process, but this is not a very popular choice because
it requires vast amounts of memory.

Pure MPI parallelizations have been delivering very good performance during
many years, but nowadays, due to the large core count that modern systems con-
tain, it is not always the best option. Thus, we are transitioning to a hybrid ap-
proach where MPI is combined with other programming models. In this hybrid
approach, MPI manages the inter-node parallelism, while another programming
model manages the intra-node parallelism. Examples of such an approach are the
combination of MPI+OpenMP or MPI+OmpSs-2. In the case of MPI+OpenMP,
we can use both fork-join parallelization or task-based parallelization for the intra-
node parallelism, while OmpSs-2 can only provide task-based parallelizations due
to its purely task-based nature.

Concretely, MPI+tasking is becoming a very popular approach recently. It can
combine the low latency and high throughput of the MPI library with the natural
ability of tasks to deal with load imbalance, and overlap computation and commu-
nication phases, overall providing opportunities to speedup applications.

There are other programming models that provide parallelism in distributed en-
vironments, but they are less popular than MPI. Examples are Charm++, Legion
or Chapel. In these programming models, the distributed memory management
is implicit and managed by the runtime.

2.1.5 MPI4+OmpSs-2 Interoperability

The programming models group at BSC has been working on MPI+OmpSs-2 in-
teroperability the last years. The Task-Aware MPI (TAMPI) [17] library is fruit of
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this work.

TAMPI is a library designed to improve the interoperability between task-based
programming models and MPI. Placing MPI calls inside tasks may cause deadlocks
due to the out-of-order execution of tasks. This library implements a cooperation
mechanism between the tasking runtime and MPI library that ensures a deadlock-
free and efficient execution.

TAMPI provides two different modes: blocking and non-blocking. In this the-
sis, we only use the non-blocking mode. This mode focuses on the use of non-
blocking asynchronous MPI operations inside tasks. When using TAMPI non-
blocking mode inside a task, the task binds its completion not only to the execu-
tion of its body, but also to the completion of all the MPI requests indicated. The
task completion implies the release of its dependences, as well as freeing its data
structures.

TAMPI offers two methods to describe which requests a task must wait for, both
of them asynchronous and non-blocking: TAMPI Iwait for a single request, and
TAMPI_Iwaitall for multiple requests. So, a task that binds its completion to one or
more MPI requests using the mentioned methods will not complete (and so release
its dependences) until its body is run and the MPI requests have completed. If a
task completes its body before one or more MPI requests finished, it will not release
its dependences, and so, the successors cannot become ready for execution. How-
ever, the core that was running the unfinished task can proceed to execute other
ready tasks, thus preventing the core to be idle waiting for the communication.

When the communication actually finishes, TAMPI notifies the task-based run-
time system that the task is actually completed. After that, the runtime can release
the dependences, and the successors become ready for execution. With this mech-
anism, progress is ensured. The effects are not only deadlock-free executions, but
there are also possible improvements in performance, because the CPU utilization
tends to be better.

In normal MPI programs, the programmer can try to overlap communication
and computation by placing non-blocking communication calls as early as possible
and the corresponding waits as late as possible, and hope that the MPI library pro-
gresses the communication while the intervening computation is being executed.
By using tasks and TAMPI, the MPI calls do not require such careful placing, avail-
able computation can be discovered dynamically via the task dependency system,
and reliance on the MPI progress engine is reduced.

21



2.2 Fault Tolerance

Large HPC systems can be affected by several different errors and faults, ranging
from network problems to node shutdown, including power breaks. In the event
of an error or fault, applications are aborted and its progress is lost. Given the
increasing number of components in modern HPC systems, that leads to an in-
creased error rate [38], it is important to introduce mechanisms that preserve the
progress and correctness of applications in the presence of failures. Fault tolerance
mechanisms provide such an ability.

HPC community has been doing a lot of research in fault tolerance techniques
for modern HPC systems. Most popular strategies rely on rollback-recovery, which
periodically save the process state while the application runs with no trouble. The
saved state is usually known as a checkpoint. Then, in the event of a failure, the
application can restart from one of the checkpoints rather than from the beginning.
It is important to keep consistency between all the processes when recovering from
a checkpoint.

Other implementations of rollback-recovery are based on message logging. They
try to reduce the overhead in non-faulty executions, as well as preventing the restart
on processes where no faults ocurred.

Next, we provide more details about checkpoint-based and log-based approaches.

2.2.1  Checkpoint-Based Fault Tolerance

Checkpoint-based fault tolerance is also known as checkpoint/restart (CR). Fault
tolerance techniques that rely on checkpoints must save global consistent states. In
the case of MPI programs, we require to take checkpoints in every single process
participating in the parallel execution. It is also important that all the processes
have matching communication messages. In other words, all the messages received
by receivers must have its corresponding emission from the senders. If there is a
single process that is missing one communication, for instance, it sends a message
that the other process already received before a restart, the execution result may be
incorrect.
Checkpoint-based approaches may be classified on coordinated and non-coordinated

approaches.
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Coordinated Checkpoint-Based Fault Tolerance

In coordinated approaches, every single process take the checkpoint at the same
moment. Usually, there is a global barrier after the checkpoint to ensure that ev-
ery single process took the checkpoint at the same point of the execution. With
this technique, we ensure that there are no missmatching communications, and
we achieve a global consistent state very easily. If a failure occurs, all the processes
stop and restart from the last correct checkpoint. On the other hand, coordinated
checkpoints introduce non-negligible overhead during the synchronization of all
the processes, especially with large processes count. Additionally, as all the pro-
cesses store the checkpoints simultaneously, the storage and network can become
a bottleneck.

In this thesis, we focus on coordinated checkpoint-based fault tolerance. There
are several kinds of CR. They can be classified using different criteria: application-
level or system-level, according to where it is implemented; persistent or diskless,
depending on the method of storing data; and coordinated or non-coordinated,
according to whether process coordination is required to create the checkpoints.

We target application-level CR because of its efficiency both in performance and
disk space compared to other approaches. There are many different libraries pro-
viding application-level CR. Most of them provide single-level checkpointing, and
few of them multi-level checkpointing. The difference is that multi-level check-
pointing solutions are able to write checkpoints in different storage layers rather
than using only the Parallel File System (PFS). Writing checkpoints only using the
PES easily introduce a lot of overhead. Using multi-level checkpointing, check-
points can be written in RAM disks, local-node storage or SSDs, reducing the over-
head introduced.

Non-Coordinated Checkpoint-Based Fault Tolerance

In non-coordinated approaches, each process is free to choose the best moment to
take a checkpoint. Thus, there is no synchronization between different processes
to take checkpoints. This is a great advantage in terms of overhead, because we
do not need to spend time synchronizing the processes to take every checkpoint.
Besides that, the possibility that all the processes take a checkpoint simultaneously
decreases, so the pressure on the storage and network is lower. Also, with non-
coordinated checkpoint, in the ideal case, only the faulty process has to recover,
while the rest can keep running as if nothing occurred.
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However, in this kind of approaches, it is much more difficult to recover a global
consistent state. When recovering from a checkpoint in the faulty process, we may
encounter lost or orphan messages. Lost messages are those sent by other pro-
cesses to the faulty process, that were never received. Orphan messages are those
sent by the faulty process more than once, before the fault and after the recovery.
The existence of orphan and lost messages may result in incorrect executions. To
prevent orphan and lost messages, we may end up applying rollback in non-faulty
processes. In the worst-case this may cause a domino effect that brings us to the
initial state. In order to avoid such domino effect, non-coordinated checkpoints
are usually combined with message logging techniques [104].

2.2.2  Message Logging

Message logging rely on the assumption that replaying messages in the correct or-
der leads to a global consistent state. In this approach, applications are a sequence
of deterministic (compute) and non-deterministic events (communication). As
said, it is frequently used in combination with non-coordinated checkpoint to pre-
vent the domino effect. The most important benefit of message logging is the ability
to rollback only the faulty process. Nevertheless, it introduces overhead on every
single message and is usually more difficult to develop and use than simple coor-
dinated checkpoint approaches.
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Chapter

Related Work

We present in this chapter the related work of this thesis. This chapter is subdivided
to group specific related work of the three main contribution sets.

3.1 Efficient Management of Modern Multicore/Manycore Proces-
sors

Modern multicore/manycoreprocessors are challenging traditional ways of exploit-
ing parallelism. The two main paradigms are fork-join and task-based parallelism
and both present some challenges to address related to the efficient management of
modern multicore/manycore processors. In the case of fork-join parallelism, the
synchronization is too rigid resulting in possible performance pitfalls, while in the
case of task-based parallelism the granularity must be well-tuned to prevent either
task management overheads or lack of parallelism.

The idea of hierarchical partitioning can help to overcome the challenges pre-
sented by modern multicore/manycore processors. This idea is broadly used in dis-
tributed environments to reduce overheads. Most applications firstly partition data
using inter-node parallelism, spreading such data among different nodes. Then, the
work is partitioned again using intra-node parallelism. There are several works in
the literature proposing several techniques based on this idea, such as [44][33][90].

Additionally, with regard to programmability, fork-join parallelism provides a
simple way of parallelizing loops. In contrast, task-based parallelism requires more
effort from the user side who has to apply blocking techniques to prevent lack of
parallelism.

As OpenMP is the standard for shared memory parallelism, we performed a
thorough review of the OpenMP environment to search related work. This can be
seen in Section 3.1.1. In addition, wider related work can be found in Section 3.1.2.
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3.1.1  OpenMP related work

We already mentioned in Chapter 2 that OpenMP supports both loop-based par-
allelism and task-based parallelism. The most common way of using loop-based
parallelism in OpenMP is by means of the worksharing constructs. In terms of
programmability, worksharing constructs enable users to parallelize loops using a
single construct. Thus, they are very simple to use. In terms of performance, work-
sharing constructs deliver good performance in the general case. Nevertheless,
they contain an implicit barrier at the end of the worksharing region, introducing
very rigid synchronization.

The task-based approach is a bit more complex in terms of programmability. It
usually requires blocking techniques to uncover parallelism, which require some
more code than a single construct. Regarding performance, tasks have a natural
ability to deal with load imbalance, but they have associated costs that may in-
troduce some overhead depending on the granularity. OpenMP provides also the
taskloop construct, that distributes the iteration space of a loop into several tasks.
There is the possibility of specifying a grainsize guaranteeing that each of the tasks
created executes no less than grainsize iterations. Thus, the taskloop construct sim-
plifies the use of task-based parallelism, enabling users to parallelize loops with
a single construct. Nevertheless, OpenMP does not support dependences in the
taskloop construct. As a result, users must rely on fork-join-like synchronization
with explicit synchronization points. Consequently, dropping the data-flow execu-
tion model of task-based parallelism, and its benefits. By enabling the use of data
dependences in the taskloop construct, we offer users the possibility of paralleliz-
ing loops in a single construct while keeping the benefits of the data-flow execu-
tion model. Additionally, the use of the taskloop construct, may reduce the tasking
overhead because allocations could be optimized to be done as a whole, instead of
one by one. However, the number of tasks that will be created and scheduled is still
proportional to the problem size.

Related to the hierarchical partition of the work, OpenMP offers some possibil-
ities too. In OpenMP we can use nesting techniques to reach hierarchical partition
of the work, for instance, combining worksharing and tasking constructs.

One of the possibilites is using tasks to perform a first partition of the work, and
then, each task contains a nested parallel region with a worksharing construct. The
reason for using tasks in the first level of partitioning is the flexibility given by the
data dependences. This implementation may increase the resource utilisation in
some scenarios, boosting performance. However, we end up introducing a barrier
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inside each task, at the end of the nested parallel region.

Barriers have been broadly treated in literature [78]. Currently, they are usually
highly optimized so that they introduce only a few overhead in some situations,
though, if the work is not perfectly balanced, the intrinsic rigidity of the fork-join
model may lead to undesired waiting times. OpenMP introduced the nowait clause
to palliate this issue. This clause omits the barrier at the end of a worksharing
region. Nonetheless, this mechanism is not useful to avoid the barrier at the end of
a parallel region inside a task. This is because the barrier is necessary to postpone
the release of the task dependences until the work is completed.

OpenMP also provides different scheduling policies for the worksharing con-
structs, alleviating load imbalance problems. Still, they are not enough for many
cases, and the rigidity of the fork-join model may lead to an underutilization of the
resources.

Itis possible to implement a different solution using task nesting. This is basically
creating tasks inside tasks. So, a first partitioning is done using coarse-grained tasks
with data dependences, which are then partitioned into fine-grained tasks without
data dependences. The second level of partitioning reduces the overhead compared
to a single level of partitioning where all the tasks have data dependences because
the nested tasks do not pay the dependence management costs. In addition, using
tasks improves load balance. However, tasking introduces other overheads associ-
ated with tasks management, such as dynamic allocations and task scheduling.

Another possible solution using OpenMP tasking model includes the taskloop
construct. We could have a first partitioning using coarse-grained tasks with data
dependences with taskloop constructs within. The overhead of the task creation
could be reduced in the inner level thanks to the use of the taskloop construct, as
we explained earlier. Still, this is very similar to the previous version using pure
task nesting, so, although alleviated, we keep having the same problems.

To address the challenges that modern multicore/manycore processors present,
we propose two contributions. Section 4.3 details worksharing tasks, our proposal
based on the idea of hierarchical partitioning. Worksharing tasks leverage work-
sharing techniques to mitigate granularity issues, while keeping the data-flow ex-
ecution model of tasks. The second is focused on programmability. We introduce
support for data dependences in the taskloop construct, to enable task-based par-
allelizations of a loop with data-driven synchronization using a single construct.
This second contribution is explained in Section 4.4.
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3.1.2  Non-OpenMP related work

There exist other works, such as StarPU [112] Parallel tasks [113]. A parallel task is
atask that can be run in parallel by a set of CPUs, which might sound similar to our
proposal of worksharing tasks. Nonetheless, these tasks are like the combination of
an OpenMP task with a worksharing construct inside. Thus, it contains an implicit
barrier at the end. Moreover, in many cases, only a single parallel task can run at
a time. The reason for this is that many environments and libraries they leverage
internally do not support concurrent calls to create several parallel regions without
nesting.

Intel Cilk presents the cilk_for [55], which is used to parallelize loops. The body
of the loop is converted into a function that is called recursively using a divide and
conquer strategy for achieving better performance. However, there is a cilk_sync
at the end of each iteration. Therefore, synchronization is quite rigid, similarly to
OpenMP worksharings.

3.1.3  Hybrid MPI+X

In this contribution set, we also explore the ability of worksharing tasks to speedup
applications at scale. For that purpose, we used the MPI+X approach. “MPI+X”
has become the dominant paradigm for hybrid parallel programming. This ap-
proach is based on the Message Passing Interface (MPI) plus a second approach/-
model leveraging the system- or the node- level capabilities of the HPC system. To
improve interoperability in between these two components (the MPI and the X),
the HPC community is actively exploring new opportunities and extensions. Some
of them have been already incorporated into the MPI standard: levels of threading
support (introduced in MPI 2.0 [74]), matched-probe operations or inter-process
shared memory (both included in MPI 3.0 [75]). Some of these ideas have not
yet been included into the standard, but they have proven their usability: Infini-
Band GPU-to-GPU communication [118], or the Endpoints [37] extensions. And
finally some of them directly impact on the X component: the collective offloading
at clusters [94], implemented in OmpSs, for instance.

Programming the X component may follow, intentionally dismissing the data-
parallelism, two different approaches: the fork-join model or the tasking model.
The fork-join model efficiently manages the overhead of the computational phase
parallelization, but it also imposes very strong restrictions with respect to the thread
synchronization (in the join phase). The tasking model (with dependences) allows
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the data-flow execution by means of taskifying the computation and communica-
tion phases and let the dependences to guide the execution. However, it adds a
non-negligible overhead that directly impacts in the performance.

m In Section 4.6.1, we explore the behavior of worksharing tasks, which lever-
age the benefits of the fork-join model with respect to the low overhead,
and remove the synchronization constraints imposed by OpenMP parallel
regions. However, the study does not analyze any interoperability option to
improve the communication behaviour between MPI processes.

m In [95, 96], the authors turn inside out the interoperability options between
the OmpSs-2 programming model and the MPI library. They extend the
functionalities of blocking and non-blocking services allowing the task-based
runtime system to context switch when a MPI communication service is not
ready yet. This approach minimizes the number of cycles a CPU begins to
idle (when there are still other tasks to execute). However, the study is com-
pletely based on the pure tasking model, imposing overheads that make it
impossible to work with very fine granularities.

In Section 4.6.2 we carried out a study combining both approaches, leveraging
the strengths, and minimizing the weaknesses, of each one.

3.2 Efficient Management of Memory Hierarchies (NUMA)

NUMA-awareness is a topic that have been studied for long time. Some of the
works done in this topic rely on the first touch policy such as the one of Al-Omairy
et. al. [82], based on the NUMA support of the first generation OmpSs program-
ming model [13]. In this work, the distribution of data relies on the distribution
of initialization tasks. The authors assume a first touch policy, and based on this
assumption, the runtime annotates the location of data. In other words, they as-
sume that data is in the NUMA node that ran the first task (initialization task) that
accesses a memory region. Users have two options for distributing initialization
tasks. The first option is relying on the runtime, that is able to identify initializa-
tion tasks and schedules them in a round robin fashion across the different NUMA
nodes. The second option is using an API call that provides a hint to the runtime
specifying the NUMA node where the task should run. This must be done per task,
as it only applies to the immediately next created task. Then, using the information

29



gathered when running initialization tasks, the runtime performs a NUMA-aware
scheduling, with distance-aware work stealing.

However, as they assume first touch policy, if the user already does a manual data
distribution, their assumption is not correct and their approach does not work.
Additionally, they rely on a proper distribution of data done by the distribution of
initialization tasks providing poor flexibility. As well, their API to provide hints is
tedious, as hints must be provided per task. Besides that, their implementations
keeps querying to a map, which may become a bottleneck, especially in fine gran-
ularities. Finally, the runtime library of OmpSs only steals work from adjacent
nodes, which could be a problem if there is load imbalance.

Sanchez et. al. [97] applied graph partitioning techniques to perform NUMA-
aware scheduling. They apply dynamic graph partitioning to the Task Dependency
Graph (TDG), where tasks represent code pieces, and edges represent data depen-
dences. As a result, tasks accessing the same data run in the same cores, reducing
data motion. Nevertheless, this work also relies on the first touch policy, present-
ing the same drawbacks than the previous works: it provides poor flexibility to
distribute data, and it does not work if the user does manual data distribution.

Others, like Tanaka and Tatebe [109] proposed static graph partitioning to sched-
ule workflows and reduce data movement. Notwithstanding, workflows frequently
use coarser granularities than shared-memory codes. As a result, a valid approach
for workflows, becomes too expensive in our environment.

OpenMP also put the focus on memory management in its latest release (5.0).
They included OpenMP allocators [83] to the standard. Although this is more
focused on deep memory hierarchies, they also provide some features that could
be used to perform data distribution in NUMA environments. However, the user
can only provide hints to the runtime, which is the one actually deciding where to
allocate data. In [108] the authors mention the idea of the OpenMP board to in-
clude support for distribution of allocations across NUMA domains. Additionally,
OpenMP allocators are not combined with a locality-aware scheduling.

Other works based on OpenMP focused on locality-aware scheduling. The au-
thors of [63] extend OpenMP to exploit task-to-data affinity. The authors introduce
a new clause where the user must specify the data considered for affinity in each
of the tasks, clearly separating data dependences and affinity. In our case, we use
the information specified in the data dependences rather than adding a new spe-
cific clause. When a task becomes ready, the runtime checks the physical location
of the data using the move_pages method from libnuma, and store the information
in a map. In successive tasks accessing the same data, they query the map rather
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than using move_pages again. The use of move_pages suggests that they do not offer
an API to distribute the data, but only perform locality-aware scheduling relying
on the data distribution performed by the OS. Thus, the only possible data distri-
bution policies are first touch or interleaved. Also, they keep querying a map per
memory access, which may become a bottleneck, especially in fine granularities.
Finally, their NUMA-aware task stealing considers only distance, prioritizing the
stealing from queues of threads residing in the same NUMA node. In our case, we
consider both distance and load balance, because stealing a task considering only
distance may lead to a domino effect in stealing, where a thread is stealing the last
task of another, causing the next to steal also, increasing the probability of harming
locality.

There are other approaches to minimize the NUMA effects provided by the Linux
kernel such as libnuma [3] or numactl [4]. libnuma provides an extensive API to
manage memory allocation and data movement, but the user is still in charge of
doing a proper work scheduling based on the data location. numactl is a command
that runs processes with a specific memory placement policy or NUMA schedul-
ing. It provides an easier way of managing data distribution than libnuma, but still
lacks support for schedule work based on data location.

To sum up, in literature there are different approaches trying to mitigate NUMA
effects. However, none of them combine a flexible data distribution mechanism
that enables multiple allocation policies, a highly optimized data tracking mech-
anism able to support fine granularities, and a NUMA-aware scheduler that con-
siders data location to perform task scheduling with task stealing considering both
distances and load balance. Our approach, explained in Chapter 5 combines all
this features, mitigating NUMA effects in several scenarios.

3.3 Fault Tolerance

In this section, We describe different CR approaches focusing on persistent solu-
tions. We discuss different kinds of checkpointing and examine some checkpoint-
ing tools, such as BLCR, FTI, SCR, and VeloC.

The CR technique consists in regularly storing application data and restoring it
in case of error, thereby benefiting from previous work rather than restarting from
scratch. For addressing soft errors, data can be saved in memory (non-persistent) [105],
whereas for hard faults, data must be stored persistently in storage.

CR approaches can be organized using several criteria: application-level or system-
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level, according to where it is implemented; persistent or diskless, depending on the
method of storing data; and coordinated or non-coordinated, according to whether
process coordination is required to create the checkpoints.

In coordinated checkpointing, the processes must coordinate to take their check-
points building a global state. In other words, all the processes must create check-
points simultaneously. This simplifies the recovery process because there is no
problem with possible rollback propagations. Additionally, coordinated mecha-
nisms only need one checkpoint for a successful recovery, reducing storage over-
head. Non-coordinated checkpointing, in contrast, allows processes to create check-
points at any moment. This is a great advantage because checkpoints can be created
when it is most convenient, but, on a restart, a globally consistent state must be
built by searching the whole set of saved checkpoints. Therefore, non-coordinated
checkpointing may be affected by rollback propagation, ending up resuming from
the beginning of the execution. Thus, overhead grows both in terms of perfor-
mance and especially storage space, because each process must keep several check-
points. CoCheck [102] is an example of coordinated checkpointing, while the work
presented in [24] is non-coordinated.

With the objective of removing the main source of overhead, diskless check-
pointing [88] [103] [106], [123] eliminated stable storage from checkpointing.
However, non-persistent approaches are less resilient than their persistent coun-
terparts, and they cannot tolerate complete system failures such as power outages.
Furthermore, they increase memory, processor, and network overhead.

There are several persistent checkpointing solutions, providing either system-
level or application-level checkpointing. The strongest point of system-level ap-
proaches, such as [42], [92], [41], [98], or [48] is the transparency: no changes in
the application code are required. However, this comes at the cost of higher over-
head in performance and disk space compared to application-level solutions.

There are some solutions that are halfway between system-level and application-
level, such as that proposed by Bronevetsky et al. [25] for shared memory environ-
ments. The authors present it as an application-level approach, but the user cannot
decide which data must be checkpointed nor the frequency of the checkpoints. In
fact, the user can only place some calls to a given method indicating that a check-
point must be taken. Then, the system saves the heap, call stack, and local and
global variables. Given the low degree of freedom provided to the user, it cannot
be considered a pure application-level solution. Apart from that, most applications
do not need to save all the data stored by this approach for a successful restart, but
only a subset of it. Thus, overhead is increased both in performance and disk space
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usage.

There are also a variety of solutions at application-level [122], [40], [89], [36].
At application-level we can find solutions that are specific of an application or kind
of application [57][57][30], and tools or libraries that can be applied to any kind
of application. Some provide single level checkpointing while a few provide multi-
level checkpointing. Applications that store all their checkpoints in the PFS may
introduce a large amount of overhead [47], [99], [81], [91], [100]. Given the gap
between the CPU and I/O performance, multi-level checkpointing [45], [115] be-
comes essential for reducing overhead. The key is using different—and faster—
components than PFS, such as RAM disks, local node storage, or SSDs to write the
checkpoints, and moving those checkpoints only when necessary, asynchronously
and transparently. FTI [22], SCR [77] and VeloC [5] are multi-level CR solutions.

Those libraries overlap in their multi-level character and their multiple redun-
dancy schemes, like partner checkpoints and erasure codes. However, they dif-
fer in the way these schemes are applied. In FTI and VeloC, the cluster topology
is detected automatically and the appropriate partner nodes for the redundancy
schemes are selected by the library. In contrast, SCR allows a slightly more flexible
setup. Besides the standard groups NODE and WORLD, users or system admin-
istrators may define additional groups (e.g., all nodes that share a common power
supply). This can be used to increase the likelihood of successful recoveries from
the various redundancy levels.

VeloC was started as a project to combine FTT and SCR into a single framework.
On the one hand, it offers a memory-based mode that is very similar to FTI. On the
other hand, there is a file-based mode that behaves much like SCR. However, VeloC
is still missing some features that FTI or SCR support, e.g., different checkpointing
types (i.e., full checkpoint, differential checkpoint, etc.).

Nevertheless, current CR libraries require a considerable effort from the user
side. As well, given that there is no standard library for CR, different clusters may
provide different CR libraries, forcing users to write their applications to be com-
pliant with different interfaces. Our approach, the OpenCHK model detailed in
Chapter 6, reduces the burden of programmers, enhancing portability and pro-
grammibility.

33






Chapter

Efficient Management of Modern Multicore/Manycore
Processors

In this chapter, we explore different approaches to enhance the management of
massive amount of computational resources using task-based parallelism. Con-
cretely, our enhancements focuses on performance and programmability. Exascale
systems will include very large amounts of computational resources both at the in-
ternode and intranode levels. Thus, it is important to provide tools that are able to
make the most of such resources while requiring low expertise from users.

4.1 Introduction and Motivation

The introduction of the first multiprocessor architectures led to the development
of shared memory programming models. One of those is OpenMP, which became
a de facto standard for parallelization on shared memory environments.

OpenMP [84], with its highly optimized fork-join execution model, is a good
choice to exploit structured parallelism, especially when the number of cores is
small. Worksharing constructs, like the well-known omp for construct, are good
examples of how OpenMP can efficiently exploit structured parallelism. However,
when the number of cores increase and the work distribution is not perfectly bal-
anced, the rigid fork-join execution model can hinder performance.

The omp for construct accepts different scheduling policies that can mitigate
load-balancing issues; and the nowait clause avoids the implicit barrier at the end
of an omp for. Still, both techniques are only effective in a few specific situations.
Moreover, the fork-join execution model is not well-suited for exploiting irregular,
dynamic, or nested parallelism.

Task-based programming models were developed to overcome some of the above-
mentioned limitations. The first tasking models were based solely on the tasks
and taskwaits primitives, which naturally support irregular, dynamic, and nested
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parallelism. However, these tasking models are still based on the fork-join execu-
tion model. The big step forward came with the introduction of data dependences.
Thus, replacing the rigid fork-join execution model by a more flexible data-flow
execution model that relies on fine-grained synchronizations among tasks. Mod-
ern task-based programming models such as as Cilk, OmpSs or OpenMP tasking
model have evolved with advanced features to exploit nested parallelism [86], hard-
ware accelerators [7][43][6], and seamless integration with message passing APIs
such as MPI [96][95].

The flexibility of the data-flow execution model relies on the dynamic man-
agement of data-dependences among tasks. However, dependences management
might introduce a non-negligible overhead depending on the granularity and num-
ber of tasks. Hence, finding the adequate task granularity becomes a key point to
get good performance: too many fine-grained tasks will increase task overheads,
but too few coarse-grained tasks will hinder the available parallelism. Yet, it is not
always possible to reach the optimal granularity that is coarse enough to compen-
sate for the overheads while opening sufficient parallelism. Moreover, the granu-
larity is limited by the problem size per core. Thus, if the problem size per core is
too small, the granularity might be suboptimal, hurting the performance.

We truly believe that data-flow model is the right choice for Exascale systems.
These systems will contain multicore/manycore processors with high core count in
each node. Therefore, using a model that relaxes the synchronization, such as data-
flow, is crucial to adequately exploit the potential of the hardware. However, we are
aware that tasking still presents some challenges, such as the recently mentioned
granularity problem, that must be solved in order to make them a real alternative
for a wide range of applications and problem sizes.

For those situations, it makes sense to combine both strategies—tasking and
worksharing—in a way that we can palliate the drawbacks of each strategy while
maximizing their strengths. To do so, we propose an enhanced combination of task
data-flow execution (outer level, coarse-grained) with fork-join (inner level, fine-
grained). The idea is to leverage the relaxed synchronization model of data-flow
execution, with the the efficient fork-join model to exploit structured parallelism
using a reduced number of cores. This innovative concept is the worksharing task.

Additionally, worksharing techniques are easier to apply compared to tasking.
A single worksharing construct is enough to parallelize a loop. In contrast, using
tasks, it requires more effort from the user. There must be at least a task per core, to
feed all the cores and prevent lack of parallelism. A frequent technique applied to
create enough tasks is blocking. This technique partitions a loop in several blocks,
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and each of the blocks is a task. Although this is not a complex technique, it re-
quires more effort than the worksharing alternative.

The OpenMP standard contains a directive able to distribute the iteration space
of a loop into tasks, which, theoretically, enables users to parallelize a whole loop
with a single construct using tasks. This is the taskloop construct. However, in
practice, it is not useful for a single reason: it does not support data dependences.
Thus, a taskloop creates a set of tasks that cannot have data dependences, and
so, the synchronization must be done using explicit synchronization points (i.e.
taskwaits). So, basically, we end up in a fork-join model but with increased over-
head compared to worksharing constructs.

We propose adding support for data dependences to the taskloop construct.
Our proposal enables users to use the induction variable of the loop to specify
data dependences. Thus, each task created by the taskloop will register the data
dependences specified by the user. If the induction variable is used to specify any
dependence, each task will register the dependence using its own value of the in-
duction variable. As a result, apply blocking is possible using a single construct,
enhancing programmability.

Finally, we present the taskloop for construct. This construct is a combination
of the worksharing tasks and the taskloop with dependences. It behaves like a regu-
lar taskloop but creating worksharing tasks instead of regular tasks. As a result, the
enhancements of performance of the worksharing tasks and the programmability
improvements of the taskloop with dependences join in a single construct.

4.2 Background

4.2.1 Tasking Performance Challenges

Structured parallelism can be found in most HPC applications. So, it is impor-
tant to develop techniques that perform well for this kind of parallelism. Harris et
al. [49], already explored the importance of properly supporting structured paral-
lelism.

Nowadays, developers can use loop-based parallelism or task-based parallelism
for coding their applications containing structured parallelism. Loop-based paral-
lelism is quite simple to write, and it performs well in architectures with a low num-
ber of cores and applications with a small load imbalance. Despite this, it implies a
rigid synchronization resulting in performance drops when facing many-core ar-
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chitectures and imbalanced applications. Task-based parallelism allows a data-flow
execution, which is more flexible than its loop-based counterpart. Additionally, it
provides several key benefits, previously mentioned in Section 4.1. Thus, it usually
performs well in many-core architectures and load imbalanced applications.

Still, an inherent problem of task programming is granularity choice. If task
granularity is not adequately set, overhead may penalize overall performance. The
overhead of tasks is caused by several different sources. The first one is the actual
task creation, which usually implies costly dynamic memory allocations. Secondly,
the computation of dependences between tasks, which involves the use of dynamic
and irregular data-structures. Finally, the scheduling of the tasks across many cores
can also become a bottleneck.

Task granularity and the number of created tasks are inversely proportional.
Consequently, a given problem can be solved either by using many fine-grained
tasks or a few coarse-grained ones. Thus, finding an adequate granularity is a key
point to optimally exploit resources when using tasks [80], alleviating the afore-
mentioned overheads, but still creating enough parallelism to maximize resource
utilization.

A typical granularity chart is shown in Figure 4.1. The x-axis varies the gran-
ularity of tasks, while the y-axis represents performance. The chart presents the
results of the synthetic benchmark shown in Code 4.1. There are three different
series representing different problem sizes. The chart also contains coloured parts
which represent different chart (not application) phases. Note that from X=256 to
X=1K, phases 1 and 3 are merged. This is because it is Phase 1 for PS=16K, but
Phase 3 for PS=128K and PS=1M.

When the problem size is 1M and 128K, there are three well-differentiated phases.
In the first phase, we can see how the performance is low because there are too
many very fine-grained tasks and the overheads of creation and management of
that amount of small tasks are too costly. In the second phase, performance grows
until reaching peak performance. Finally, in the third phase, performance de-
creases again because there is not enough parallelism (i.e., not enough tasks are
being created to feed all the CPUs).

Listing 4.1: OMP_F

for(size t block = 0; block < NUM BLOCKS; block++) {
size t start block*TSIZE;
size_t size = start+TSIZE > N ? N-start : TSIZE;
#pragma oss task inout(a[start;size]) priority(block)
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Typical granularity chart
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Figure 4.1: Typical granularity chart.
for(size t j2=start; j2 < start+size; j2++) {
a[j2] += b[j2]*c[]2];
}
}

Typically, a good granularity allows having, at least, one work unit per core to
occupy all the resources. Ideally, having more than one work unit per core is better
to mitigate potential load imbalance. Additionally, it is important setting a granu-
larity coarse enough to alleviate task management overheads. However, there is a
crucial factor that can limit the granularity choice: the problem size per core. The
problem size per core is the result of dividing the total problem size by the number
of available cores. In consequence, the problem size per core only depends on the
total problem size and the number of cores available in our system.

In an ideal case, like the problem sizes of 1M and 128K in Figure 4.1, the granu-
larity can grow until the overhead is not a problem. At that point, the problem size
per core is big enough to create sufficient tasks—of a granularity that is not affected
by the overhead—to feed all the resources. This happens in the second phase when
peak performance is reached.

In contrast, if the problem size per core is not big enough, the developer must
decide between a finer granularity that is still affected by the overhead but creates
sufficient parallelism, or a coarser-granularity that is less affected by the overhead
but causes a lack of parallelism. When this happens, the second phase of the typical
granularity chart does not appear, being unable to reach peak performance. This
phenomenon occurs in Figure 4.1 when the problem size is 16K.

Daily, developers are involved in situations where the problem size per core is
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not optimal, jeopardizing the use of tasks in their applications.

Strong scaling in distributed environments

This is a common scenario in HPC environments. Strong scaling starts from a
given problem size per core, and make it smaller either by augmenting the number
of resources or by decreasing the total problem size. As we have seen, reducing
the problem size per core while maintaining the granularity of the tasks can lead
to insufficient work.

Many-core architectures

Increasingly, architectures have more and more cores. This trend directly affects
the problem size per core, which becomes reduced because the same problem size
is divided among more resources. Thus, setting an adequate granularity becomes
harder or even impossible, leading us to either increased overhead or lack of par-
allelism.

Applications requiring different granularities

Many applications rely on different kernels to perform a computation, and each
of them may require a different task granularity to achieve optimal performance.
Finding an adequate granularity that fits all the different algorithms may be im-
possible. For this case, it is especially important to have a broad set of granularities
where peak, or at least acceptable, performance is reached because if all the ker-
nels have several granularities that reach peak performance, it is easier to find a
granularity that performs well for all the kernels than it would be if there is a single
granularity getting peak performance for each kernel.

Additionally, it may happen that an application with different kernels must share
the same granularity. The reason is that the data partitioning may implicitly set the
task granularity. When this happens, it is especially important having a wide set
of granularities performing well in all the kernels. This way, it is easier to find a
coincidence across all the sets.

Apart from this, granularity issues may prevent runtime libraries from develop-
ing sophitiscated and smart policies. Those policies may introduce few overhead
per task but could provide benefits in terms of programmability and performance.
However, if a program contains a huge number of tasks, the aforementioned small
overhead per task, rapidly becomes unaffordable. A good example is the support
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for region dependences. This kind of dependences enables users to annotate their
codes with the whole memory regions a task actually access. Then, the runtime
library computes the dependences with all the partial overlappings, actually pre-
venting any task that shares even a single byte to execute until the current task
finishes. In Listing 4.2, using region dependences, the second task depends on the
first task, while it does not when using discrete dependences (e.g., OpenMP de-
pendences) because those only consider the start address. Region dependences are
very useful to simplify codes, but they come at a cost. The computation of the de-
pendences is more expensive compared to discrete dependencies. In consequence,
if the number of tasks is huge, the overhead may become excessive.

Listing 4.2: Region deps
// a[0;8] means from 0 (included) to 8 (not included)

#pragma oss task inout(a[0;8])
task _body();

// a[2;6] means from 2 (included) to 6 (not included)
#pragma oss task inout(a[2;6])
task _body();

To sum up, task-based parallelism offers several key benefits that developers
want to keep. Notwithstanding, there are currently several difficulties or problems
when programming structured parallelism with tasks. (1) Granularity is critical:
for that purpose, a thorough and time-costly analysis must be done in order to
choose it adequately; (2) adequate granularity does not always exist: some sce-
narios may force developers to choose either overhead or lack of parallelism; and
(3) runtime libraries cannot develop sophisticated tasking management policies:
those could jeopardize the performance in programs with a very large task num-
ber. These challenges are addressed in Section 4.3.

4.2.2 Tasking Programmability Challenges

Compared to using worksharing techniques, tasks are more complicated to use. If
we simply replace worksharing constructs by task constructs, there is very few par-
allelism, and most of the cores are idle. This is because a worksharing construct
distributes the work among all the available cores, that run concurrently. In con-
trast, a task is a piece of code that runs only in a single core. Figure 4.2 shows such a
problem. The figure also shows one possible solution, which is the use of blocking.
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#pragma omp parallel for CPUO CPU 1 CPU 2 CPU 3
for (i = 0; 1 < 20; i++)
! (o4 J)|[ so ||| it10-14 ][ 1t15-19

#pragma omp task CPUO CPU 1 CPU 2 CPU3
for (i = 0; i < 20; i++)

for (i = 0; i < 20; i+=5) CPUO CPU 1 CPU 2 CPU 3
#pragma oss task
for (ii = 0; ii < 5; ii+t) |[ o4 J||[ w59 J|I[ w1014 ||| 1t15-19 |

{...}

Figure 4.2: lllustration of CPU occupation using different parallelism techniques.

Listing 4.3 shows a real code using worksharing constructs and task with block-
ing. It is possible to see that applying blocking techniques is simple, but also that it
requires more effort than using worksharing constructs. For a single loop, work-
sharing constructs require only three lines of code, while tasks with blockings re-
quire five lines of code.

Listing 4.3: Comparison of a simple code using worksharing constructs and tasks with blocking

// WORKSHARING

#pragma omp for

for(size t j = 0; j < N; j++)
b[j] = scalar*c[j];

// TASKS WITH BLOCKING
for(size t j = 0; j < N; j+=BS) {
size t size = j+BSIZE > N ? N-j : BSIZE;
#tpragma oss task in(c[j;size]) out(b[j;size]) label(scale)
priority(block)
for(size t j2=3j; j2 < j+size; j2++)
b[j2] = scalar*c[j2];

The OpenMP standard already provides a construct known as taskloop that dis-
tributes work into several tasks. This construct is the natural replacement of work-
sharing constructs to use tasks. Listing 4.4 shows the example of Listing 4.3 us-
ing the taskloop construct. Notwithstanding, the tasks created using the taskloop
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construct cannot have data dependences, so they can only be synchronized using
explicit synchronization points (i.e. taskwaits). As a result, we have a fork-join
pattern with its rigid synchronization. So, we moved from worksharing constructs
to tasks to benefit from a more lightweight data-flow synchronization, but the im-
possibility of using data dependences when using the taskloop construct prevents
us from obtaining all its benefits.

Listing 4.4: Simple code using the taskloop construct
#pragma oss taskloop chunksize(BSIZE)
for(size t j = 0; j < N; j++)
b[j] = scalar*c[j];
#pragma oss taskwait

In summary, tasks require more effort from users than worksharing constructs.
However, tasks provide key benefits that fit the requirements of Exascale systems
better than worksharing constructs. The taskloop construct enables programmers
to use tasks with a similar effort than the effort required by worksharing constructs.
Nevertheless, it does not support data dependences, and this prevent users from
getting the key benefits of tasking.

The challenges presented here are addressed in Section 4.4.

4.3 Worksharing Tasks

The concept of worksharing task is similar to insert a worksharing construct within
a task construct in OpenMP. Listing 4.5 shows an example. Nevertheless, this
OpenMP version presents several issues that worksharing tasks are able to miti-
gate. Firstly, this requires nested parallelism, which is not always well managed in
OpenMP, becoming a potential source of overhead. Besides that, in OpenMP, ev-
ery single thread that is part of the team is forced to enter the worksharing region,
even if there is no work to do. Finally, there is an implicit barrier at the end of the
worksharing region where all the threads must wait for the rest. In the following
sections, we will explain how worksharing tasks are able to overcome or alleviate
this issues. Concretely, we detail the syntax and semantics of our proposal, its con-
straints and how it fits into the tasking model. Also, we discuss its applicability and
utility.

Listing 4.5: OpenMP code to get similar behavior than a worksharing task
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#pragma omp task

{
#pragma omp parallel for

for (...) {...}

4.3.1 Syntax

We propose a new clause for the task construct. This is the for clause for C/C++
and the do for Fortran.

A task for—or worksharing task—accepts all the clauses accepted by a regular
task except the final clause because task for is always final. Note that being final
means that no tasks can be created inside the context of a worksharing task. Addi-
tionally, it accepts the chunksize(integer-expr) clause. The integer-expr specified
as a chunksize sets the minimum chunk of iterations that each worker is going to
execute when it requests work to the worksharing task, except for the last chunk
that might contain fewer iterations. If not set, the default value is defined in Equa-
tion 4.1. This default value causes that each collaborator has at least one chunk to
run.

chunksize = task_size/number_o f_collaborators (4.1)

The for clause can only be applied to a task that is immediately succeeded by a
loop statement. Codes 4.6 and 4.7 contain examples of code using the new clause.

Listing 4.6: Code of Figure 4.3

for(int i = 0; i < 2; i++) {
#pragma oss task for [inout(a)]

for(...){...}
#tpragma oss task for [inout(b)]

for(...){...}

#pragma oss task for [inout(c)]

for(...){...}

Listing 4.7: Fortran example

1$0ss task do
do i=0, N
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call do_work();
end do

4.3.2 Semantics

A worksharing task behaves like a regular task in almost everything. The main dif-
ference is illustrated in Figure 4.3 whose code is shown in Code 4.6. Regular tasks
are executed entirely by a single worker concurrently, while a task for may be exe-
cuted collaboratively by several workers, as a worksharing construct. Nevertheless,
one can see in Figure 4.3 that it does not imply any synchronization or barrier at
all. A worksharing task is like a regular task in this sense, and the synchronization
is done through data dependences or explicit synchronization points. Note that
the data dependences of the worksharing tasks are released when the last chunk is
finished by the thread that runs that last chunk. This can be seen in Figure 4.3, rep-
resented by the small yellow piece at the end of the last chunk of each worksharing
task.

As a worksharing construct, the iteration space of the for-loop is partitioned in
chunks of chunksize size. The key point is that these chunks do not have the usual
overheads associated with a task—such as memory allocation and dependences
management. To run a chunk, a thread only needs the boundaries of that chunk
and the data environment, much like worksharing constructs. So, in summary, a
worksharing task can be run in parallel by multiple threads, better amortizing the
task management overheads.

Usually, programmers use coarse granularities to overcome tasking overheads.
Using tasks, coarse granularities may limit parallelism, causing some resources to
be idle as in the bottom part of Figure 4.3. In contrast, using coarse-grained work-
sharing tasks, the work is split again into several fine-grained chunks that can be
run concurrently by several workers. Thus, preventing resources from becoming
idle and maximizing resource utilization, as shown in the top part of Figure 4.3.

Regarding chunk distribution, a worksharing task is highly flexible. The only
guarantee is that work is partitioned in chunks of chunksize size and it is executed
at most by N collaborators of the same team.

A worksharing task creates a worksharing region that is executed by a team of
workers. One important property of worksharing regions is illustrated in Fig-
ure 4.3: up to N threads may collaborate on the completion of the work, but they
are not forced to do so. This behavior happens with TF A0 and TF B0 which are
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Figure 4.3: lllustration of similar execution using OmpSs-2 worksharing tasks and OpenMP worksharings.

run only by three threads while their team contains four threads. This happens
because all the work has been assigned prior to the arrival of the last thread, so the
last thread just goes ahead and gets more work.

A further key feature can be observed in Figure 4.3. CPUs can leave the work-
sharing region before the actual completion of the whole worksharing task. CPUO
finishes its TF A0 chunk while CPU1 and CPU3 are still completing their chunks.
However, instead of waiting as a regular worksharing does in the middle part of the
figure, it moves forward to TF B0. In other words, worksharing regions do not con-
tain implicit barriers at the end. This behavior is equivalent to set a nowait clause
in OpenMP worksharing constructs.

This feature is especially important because it permits the pipelining of different
worksharing regions. This behavior can be observed in Figure 4.3. For instance,
when CPUI finishes its TF A0 chunk, there is no remaining work in TF A0. Hence,
it leaves that worksharing region and joins TF B0. However, TF A0 was still in
execution by CPU3.

In summary, worksharing tasks implicitly alleviate the effects of a possible load
imbalance through the ability of collaborators to leave a worksharing region when
there is no remaining work. Thus, threads can just go forward and get more work
instead of becoming idle waiting at a barrier. Worksharing tasks also palliate the
granularity issues by allowing the use of coarse granularities that are partitioned
anew at an additional level of parallelism. So, task management overheads are min-
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imized, and resource utilization is maximized.

4.3.3 Integration in OmpSs-2

The concept of worksharing task is completely integrated into the model since at
all levels it is like a task, except that it may be executed by several workers instead
of by a single one. For that reason, it can interact with regular tasks without further
problem using regular mechanisms: data dependences and explicit synchroniza-
tion points regarding synchronization; and data-sharings for managing how the
data is shared across different pieces of work.

4.3.4 Applicability

Worksharing tasks applicability is as wide as OpenMP worksharings. If the itera-
tions in a loop are independent, then worksharing tasks can be applied. Workshar-
ing tasks are especially useful to deal with applications containing multiple kernels
especially if those present different patterns (regular/irregular). Worksharing tasks
enables users to program using a pure data-flow model while efficiently exploiting
structured parallelism.

4.3.5 Utility

Worksharing tasks mitigate or solve the problems presented in Section 4.2. Firstly,
worksharing tasks enlarge the set of granularities that deliver good performance.
In scenarios where only a few tasks are created and if these are not enough to keep
all the resources busy, the use of worksharing tasks mitigate the lack of parallelism.
Thus, providing several extra granularities that still work well compared to regular
tasks, overall, easing the granularity choice.

Furthermore, as we already discussed in Section 4.2, there are scenarios when
a good granularity does not exist and developers incur either on overhead or lack
of parallelism. For that scenarios, worksharing tasks are especially useful because
developers can reduce overhead by setting coarser granularities, without fearing
a lack of parallelism. Given that worksharing tasks split the work among a whole
team of collaborators, the total number of tasks required to keep all the resources
busy is reduced from the total number of cores to the total number of teams. Hence,
offering a solution to scenarios where tasks are unable to perform well.
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Figure 4.4: Comparison of HPCCG benchmark using region dependences with regular tasks and worksharing tasks.

Finally, since worksharing tasks are able to reduce the number of tasks by making
them coarser without any significant performance loss, runtime libraries can de-
velop sophisticated mechanisms to deal with task management. One example can
be seen in Figure 4.4, where region dependences are in use. They are not suitable
to be used with regular tasks given its low performance. However, they become
suitable when combined with worksharing tasks.

4.3.6 Implementation

We have implemented the concept of worksharing tasks in the OmpSs-2 program-
ming model, which relies on the Mercurium source-to-source compiler [11] and
the Nanos6 runtime library [12]. In this section, we detail the extensions per-
formed in both components to support worksharing tasks.

Mercurium compiler

We have extended the Mercurium compiler to support the new for clause applied
to the task construct. Though, as this combination of task for can only be applied
to loop statements, Mercurium is also in charge of checking so. In the same line,
Mercurium also checks that final clause is not applied to a task for since it is not
valid.

Given that a worksharing task may be executed by several different threads, each
of them should have a correct data environment to avoid possible errors in the com-
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putations. Sometimes, this may imply firstprivate or private data-sharings. Mer-
curium has the responsibility of providing a valid data duplication method to the
runtime if firstprivate or private data-sharings have been set by the user. Other-
wise, the runtime may not know how to duplicate data.

Nanosé6 runtime library

Regarding the runtime library, firstly, we have extended the work descriptor of
a task to include some extra information that permits splitting and spreading of
the work. Basically, we add information about the boundaries of the loop and the
chunksize. This information is taken at task creation time.

Then, when the worksharing task becomes ready, it is enqueued as the rest of the
tasks. Eventually, the task is scheduled for execution. At this point, worksharing
tasks follow a different path from regular tasks. Regular tasks are assigned to a
worker thread, and it is in charge of executing the task and release its dependences
if any. Worksharing tasks are also initially assigned to a worker thread but, instead
of executing the whole task itself, it shares the task with its team.

Currently, in our implementation, the maximum size of the teams is defined at
the beginning of the execution and remain unchanged until the end. Moreover, all
the teams have the same maximum size. Currently, the default teams include all the
cores of a NUMA node to prevent NUMA effects, but this can be easily changed at
runtime using an environment variable. Nevertheless, as said, the size of the teams
is the same for all the teams, and during the whole execution. We realize that teams
with different sizes or even teams that can vary the size during the execution could
benefit in some scenarios. This is a future work line that remains open.

The way a worksharing task is actually executed also differs from regular tasks.
While for regular tasks we simply assign a work descriptor with its respective data
environment to a thread and it just runs; worksharing tasks need some further
steps. First of all, as several workers may collaborate to do the work, each of them
needs its own work descriptor and data environment to avoid interferences caused
by the concurrency.

Each CPU has a preallocated extended work descriptor. When this CPU re-
ceives a chunk, the preallocated extended work descriptor is filled with the actual
information of the chunk that has been assigned. This represents the control in-
formation for running its part of the worksharing task.

Regarding the data environment, given that we do not know in advance how
many collaborators will be—neither which of them—, each worker triggers the
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duplication of the data environment in a lazy way. The worker triggers the data
duplication when it has received work to do, and it has filled its preallocated work
descriptor with the control information. Using the data duplication method pro-
vided by the compiler, the runtime duplicates the data environment and assigns it
to the preallocated work descriptor of the thread.

Once a CPU already has the work descriptor and the data environment, it can
start running its part of the work. The assignment of work from a worksharing
task is done on a first-come-first-serve basis. It is guaranteed that a worker never
receives fewer iterations than those specified in the chunksize clause, except the
last chunk if there are not enough iterations to complete a chunk. However, it may
receive several chunks.

In the current implementation, the chunk scheduling policy is very similar to
the guided scheduling policy of OpenMP since the number of assigned chunks is
proportional to the number of unassigned chunks divided by the number of collab-
orators. Note that no matter how many chunks a collaborator receives, it performs
the work descriptor filling and the data environment duplication only once per
work request. After terminating the assigned chunks, a thread checks if it is the
last. If so, the worksharing task has finished all the chunks, and as a result, it has
finished as a whole. Data dependences, if any, are released at this moment.

Otherwise, when a worker finishes its assigned chunks but the whole workshar-
ing task has not finished there exist two possibilities: (1) all the work has been
assigned and other collaborators are still running; (2) there is still work to be as-
signed. In (1), the worker that finishes its chunks just leaves the team and tries to
get new work. In (2), the worker requests more chunks to the current worksharing
task.

It is also important to highlight that assigning chunks to a worker and finishing
those chunks imply some overheads that regular tasks do not have. Even though we
have tuned our implementation to allow fine-grained chunks, setting an adequate
chunksize is important for the proper exploitation of worksharing tasks as shown
in Section 4.6.1. Furthermore, the process of requesting work crosses the scheduler
path. So, it has some associated locks that may be taken into account when setting
the chunksize.
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for (t = 0; t < 5; t++) for (t = 0; t < 5; t++)
#pragma oss taskloop inout(x[i]) grainsize (5) for (i = 0; 1 < 20; i+=5)
for (i = 0; 1 < 20; i++) #pragma oss task inout (x[1])
{...} for (ii = i; 1ii < 1+5; ii++)
(...
(o4 ) [ w59 | [it10114 ] [t1519 ] T=0
(o4 | [ w59 | [it1014 ] [t1519 ] T=1
(o4 ) [ w59 | [1t10114 ] [it1519 | T=4

Figure 4.5: Partition of work and dependences between tasks created using taskloop

4.4 Taskloop with Dependences

In this section, we detail the syntax of our proposal to support data dependences
in the taskloop construct. We also provide implementation details.

4.4.1 Syntax

We propose the use of the induction variable to define data dependences in tasks
created by the taskloop construct. By using the induction variable, each task will
contain its own dependences based on the partition of work they received. Fig-
ure 4.5 shows an example. There is an outer loop and an inner loop parallelized
using the enhanced taskloop construct with data dependences. As we can see, the
data dependences contain the induction variable. In this case, it means that each
of the tasks register a dependence over the i-th element of x. As each of the tasks
receive a part of the iteration space, each of the tasks will have different values for i,
thereby allowing them to run concurrently, but defining a dependence with tasks
of the next and previous t iteration that work over the same data. Figure 4.5 also
includes the code to get equivalent behavior using regular tasks.

With this mechanism, expressivity is enhanced and the taskloop construct be-
comes usable in many real-world examples while keeping the key benefits of task-
ing.

Finally, we would like to point out that the mechanism to express the granularity
of the tasks created by a taskloop construct is the grainsize clause, as shown in
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#pragma oss taskloop inout(x[i]) grainsize(5) label( )
for (i = 0; i < 20; i++) {...}
#pragma oss taskloop inout(x[i]) grainsize(5) label( )
for (1 = 1; 1 < 21; i++) {...}

REGIONS DISCRETE
(x0-41 | [ xs-91 | (104141 ] [xrs-191 ) || [(xi01 ) (x50 ) (xct01] [ x115] )
NO DEPS

X[1-5] x[6-10] x[11-15] x[16-20] x[1] X[6] x[(1] | | x[16]

Figure 4.6: Comparison of taskloop with dependences using regions and discrete dependency systems.

Figure 4.5. If no grainsize is provided, the default value is one.

Integration with Different Dependency Systems

The OmpSs-2 programming model supports two different dependency systems:
discrete and regions. We already introduced the difference between both of them
in Section 4.2. Briefly explained, discrete dependences only register the start ad-
dress of the data specified by the user, while dependences based on regions register
the whole memory region annotated by the user. In Listing 4.2, using region de-
pendences, the second task depends on the first task, while it does not when using
discrete dependences because those only consider the start address.

We designed the taskloop to work with both dependency systems. For the dis-
crete dependency system, if the induction variable is used, it is replaced in each
of the tasks by the value of the induction variable in the first iteration run by the
task. In the case of regions dependences, if the induction variable is used, the de-
pendence is registered over the whole region comprised in the chunk assigned to
the task, rather than only the first element. This is shown in Figure 4.6. Using re-
gions, although tasks of the first and second loop do not start in the same iteration,
there are dependences between tasks; while using discrete, as tasks of the first and
second loop do not start in the same iteration, there are no dependences.

4.4.2 Implementation

Our proposal is done in the OmpSs-2 programming model, built on top of the Mer-
curium compiler and the Nanos6 runtime library. Following, we detail the exten-
sions done in both components to support dependences in the taskloop construct.
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#pragma oss taskloop inout(x[i]) grainsize(5)
for (1 = 0; 1 < 20; i++) {...}

#pragma oss taskloop inout(x[i]) grainsize (5) - Weak dep
for (1 = 0; 1 < 20; i++) {...}
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Figure 4.7: lllustration of the taskloop semantics in our implementation
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We also conceptually explain our implementation.

Semantics

The taskloop construct is a convenient syntactic sugar to ease the use of tasks. It can
be implemented just by applying an automatic blocking technique in the compiler
side, similar to a manual blocking done by the end-user. However, our implemen-
tation is a bit different. We defined the taskloop as an entity, being a special kind
of task that creates more tasks. Thus, the relationship between the taskloop and
the tasks created by itself is a parent-children relationship, so we will refer to the
taskloop entity as the parent, and the tasks created by itself as the children.
Figure 4.7 is an illustration of the behavior of our implementation of the taskloop
construct with dependences. In the figure there are two equal taskloops one after
the other. Therefore, we have two parents with four children each of them. In
our implementation, the parent registers a weak dependence, and each of the chil-
drens registers a strong dependence. As a reminder (more details about weak de-
pendences can be found in Section 2.1.3), weak dependences are a special type of
dependences available in the OmpSs-2 programming model. A task with a weak
dependence means that the task itself is not going to perform any action over the
data, but one or more of its nested subtasks will do so. Weak dependences do not
imply a real dependency, and so, they not do defer the execution of tasks. They
serve as a link between the dependency domains of different nesting levels. In
short, this makes that a parent is scheduled for execution as soon as it is created,
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but the children honor the dependencies, waiting until predecessors complete to
start running.

The taskloop constructs of Figure 4.7 specify a dependence over x[1]. As stated
in Section 4.4.1, our design is prepared to work with two different dependency
systems. In the case of regions dependences, the weak dependence of the parent
is registered using the whole range of the induction variable, and the strong de-
pendences of the childs using the whole range of its assigned chunk, as shown in
the figure. For the discrete dependences case, each of the childs register the de-
pendence using only the first iteration of its assigned chunk. As well, the parent
registers a weak dependence for each of the children, using only the first iteration
of each of the chunks assigned to the children. This behavior is also shown in Fig-
ure 4.7.

We chose this implementation because of three main reasons: (1) this way, sev-
eral taskloop entities can run concurrently, enabling users to have multiple creators
rather than a single one; (2) we give more control to the runtime, that can apply
further optimizations; and (3) we can easily identify taskloops when using our in-
strumentation libraries.

Mercurium compiler

The Mercurium compiler has been extended to support the use of data depen-
dences in the taskloop construct. Mercurium is a source to source compiler, mean-
ing that it receives code as an input, and generates code as an output. Mercurium
creates a function to register dependences per each task construct found in the user
code. To support the use of the induction variable in the taskloop dependences,
Mercurium has to accept a new parameter in the functions used to register depen-
dences. Given that in our implementation it is the runtime who partitions the work
and assigns iterations to the tasks, Mercurium must receive the information of the
assigned iterations to replace the induction variable by its real value.

Additionally, in the same line, Mercurium creates a function per task type in-
cluding the user code that the task has to run. In this case, it also has to receive an
additional parameter: the iterations that each task has to run.

Finally, when creating a taskloop entity, Mercurium has to enable some flags to
let the runtime system now that this is not a regular task, but a taskloop.
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Nanos6 runtime library

In the runtime system the first step is to extend the work descriptor of a task to
include the iteration space of the loop, and the grainsize specified by the user, if
any.

Then, after the taskloop is created, it registers the dependences. In the case of
regions dependences, it simply passes to the compiler the whole iteration space.
In contrast, in the discrete dependences case, it must mimic the partitioning of
the loop, to register the dependences using only the first iteration of each task.
Once the dependences of the parent are registered, it is immediately scheduled for
execution.

When the parent starts running, it creates the children assigning part of the it-
eration space to each of them, and registering strong dependences in their part of
the data. Depending on whether the predecessors have already finished or not, the
children remain pending or are scheduled for execution. Eventually, the children
will run only the iterations assigned by the parent.

We would like to point out that our current implementation focuses on pro-
grammability. Therefore, we are trying to provide a simpler way of using tasks that
introduces no significant overhead compared to using other techniques such as
manual blocking. Nevertheless, the taskloop construct provides the opportunity
to apply further optimizations that cannot be applied in the case of manual block-
ing. Such optimizations could include a single allocation for all the children tasks,
instead of allocating space for each of the children tasks individually; or the ap-
plication of throttle policies to mitigate memory overuse when there are too many
tasks in flight.

4.5 Combining Taskloop and Worksharing Tasks

In previous sections, we described the worksharing tasks and the taskloop with de-
pendences. We introduced some challenges that current task-based programming
models present, and how our contributions are able to mitigate or overcome such
challenges. Especifically, worksharing tasks mitigate granularity problems enhanc-
ing performance across several different workloads, systems and scenarios; while
taskloop with dependences eases the development of parallel programs using tasks,
introducing no significant overhead. The enhancements of both contributions are
demonstrated in our evaluation, in Section 4.6.
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In this section, we present the combination of both contributions in a single
construct that joins the enhancements in performance and productivity of the two
previous contributions. Such a combination is the taskloop for construct. Itis ba-
sically a taskloop with dependences support that creates worksharing tasks rather
than regular tasks.

4.5.1  Syntax

In this section we introduce the syntax of the taskloop for construct. Listing 4.8
shows a brief example of how to use this new construct and which clauses accepts.
A taskloop for accepts two clauses, apart from the dependences annotations. The
first one is grainsize, that defines the number of iterations that each of the children
tasks (except the last one) will run. The second one is chunksize, that specifies the
minimum number of iterations that each worker of the worksharing tasks will run,
except for the last chunk that might containg fewer iterations. If not set, the default
value for the grainsize is 1, while the default value for the chunksize is defined in
Equation 4.2. The taskloop for construct can only be applied to a loop statement.

chunksize = task_size/number_o f_collaborators (4.2)

Listing 4.8: Example of use of taskloop for construct

#fpragma oss taskloop for [grainsize(gs)] [chunksize(cs)] [deps]
for(int i = 0; 1 < 1024; i++) {...}

4.5.2 Semantics

The taskloop for construct partitions a loop in two different levels. Firstly, the
iteration space is partitioned into worksharing tasks of grainsize, which are later
partitioned again into chunks of chunksize. Figure 4.8 shows an example of such a
partitioning.

4.5.3 Implementation

Considering that we already extended the Mercurium compiler and the Nanos6
runtime system to support the taskloop construct with dependences and the work-
sharing tasks, the modifications required to support the taskloop for constructare
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#pragma oss taskloop for inout(x[i]) grainsize(4) chunksize (1)

for (i = 0; 1 < 20; i++) {...}
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Figure 4.8: lllustration of the taskloop for semantics

very few. From the compiler side, we only need to enable an additional flag to let
the runtime know that it must create worksharing tasks instead of regular tasks.

4.6 Evaluation and Discussion

4.6.1  Worksharing Tasks - Shared Memory Environment

In this section, we provide an evaluation of our proposal, as well as a discussion of
the results. First of all, we introduce the environments and platforms in which the
experiments were conducted. Following, the benchmarks used and the different
implementations developed are described. Then, for each experiment, we detail
the methodology followed along with the results and discussion about them.

We include three different experiments. The first one is a granularity analysis on
a many-core system. The objective is to show how the traditional ways of exploiting
parallelism may easily suffer from a lack of parallelism on many-core architectures.
The second experiment is a chunksize granularity analysis which aims to stress the
importance of an adequate chunksize. Finally, the third experiment is a pseudo
strong scaling experiment to illustrate some scenarios where the problem size per
core prevents setting a good task granularity.

We have used the OmpSs-2 discrete dependency system to make comparisons
with OpenMP fairer.

Environment

The experiments were carried out on two different platforms. The first platform is
composed of nodes with 2 sockets Intel Xeon Platinum 8160 2.1GHz 24-core and
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96GB of main memory [21]. The second platform is composed of nodes with 1
socket Intel Xeon Phi CPU 7230 1.3GHz 64-core and 96GB of main memory plus
16GB of high bandwdith memory [20]. As well, the second platform can run up
to 4 threads per core, reaching up to 256 threads. In our experiments, we did use
all the threads for two reasons. Firstly, because we checked the performance and
compute-bound benchmarks were obtaining noticeable benefit from using all the
threads, while memory-bound benchmarks were obtaining slightly (2%-3%) worse
performance using all the threads than using a single thread per core, so it is worth
to use all the threads. Secondly, as we want to show scenarios where traditional
approaches suffer from lack of parallelism, the higher amount of threads is helpful
for this purpose.

Regarding the software, we used the Mercurium compiler (v2.3.0), the Nanos6
runtime library, the gcc and gfortran compilers (v7.2.0), and the Intel compilers
(v17.0.4).

We would like to highlight that all the experiments have been run using the
interleaving policy offered by the numactl command, spreading the data evenly
across all the available NUMA nodes, in order to minimize the NUMA effect.

Benchmarks

We have considered four different benchmarks for the evaluation: the High Per-
formance Computing Conjugate Gradient (HPCCG) [76], the matrix multiplica-

tion kernel (MATMUL), the N-body simulation and the Stream benchmark [114].
HPCCG and the Stream benchmark were selected as representants of memory-
bounded benchmarks while MATMUL and the N-body simulation represent computed-
bounded workload.

Listing 4.9: OMP_F(S/D/G) Listing 4.10: OMP_T/0SS_T
#pragma omp for \ for(i=0; i<PS; i+=TS)
schedule( \ #pragma [omp/oss] task \
[static/dynamic/guided],TS) depend(inout: 1)
for(i=0; i<PS; i++) for(j=1i; j<i+TS; j++)
do_work(i); do_work(j);
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Listing 4.11: OMP_TTL Listing 4.12: OMP_TF(N)

for(i=0; i<PS; i+=TS) for(i=0; i<PS; i+=TS)

#pragma omp task \ #pragma omp task \

depend (inout: 1) depend(inout: 1)

{ {
#pragma omp taskloop \ #pragma omp parallel \
grainsize(cs) for schedule(guided,cs)
for(j=1i; j<i+TS; j++) for(j=1i; j<i+TS; j++)

do_work(j); do_work(j);
} }

Listing 4.13: 0SS_TF(N)

for(i=0; i<PS; 1i+=TS)

#pragma oss task for chunksize(cs) inout(i)

for(j=1i; j<i+TS; j++)
do_work(j);

For each of them, we have developed six different versions. Code 4.9 imple-
ments a version using OpenMP parallel for with the static (OMP_F(S)), dynamic
(OMP_E(D)) or guided (OMP_F(G)) scheduler. Code 4.10 shows a version using
tasks in both OpenMP and OmpSs-2. This is a blocked version where each task
computes a block of TS size. Code 4.11 is a version using the OpenMP taskloop.
However, as taskloops do not accept data dependences, there is a first decomposi-
tion using tasks with data dependences. Then, inside each task, the block of TS size
is partitioned anew using a taskloop. Code 4.12 is quite similar to the previous code
just replacing the taskloop inside the tasks by a parallel for with guided schedul-
ing, to make it similar to our worksharing tasks. Finally, Code 4.13 illustrates an
implementation done with worksharing tasks.

The N in codes 4.12 and 4.13 indicates the number of threads used in each work-
sharing construct and the maximum number of collaborators in a worksharing
task, respectively.

As a final remark, all the OpenMP implementations have been compiled and
run with Intel OpenMP.
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Figure 4.9: Granularity chart of different implementations of the N-body simulation.

Granularity evaluation in many-core architecture

This subsection is devoted to performing a deep evaluation of our proposal in a
many-core architecture such as the Intel KNL. So, the experiments were conducted
on the second platform.

In this section, we analyze the behavior of a compute-bound benchmark, the
N-body simulation; and a memory-bound benchmark, the Stream benchmark.

In this experiment, we wish to show how the traditional ways of exploiting parallelism—
worksharings and tasks—suffer from a lack of parallelism when the granularity is
coarse. In that scenario, the versions using nested levels of parallelism—OSS_TF,
OMP_TTL and OMP_TF—can perform better because they allow higher resource
utilization.

The results presented were obtained by averaging the execution times of 5 dif-
ferent runs per version.

N-body simulation  Left chart of Figure 4.9 compares how OMP_T, several OMP_F, and
0SS_T versions perform with different granularities. The x-axis determines the size
of the blocks. The y-axis represents performance. For the OMP_F version, TS means
the chunksize specified in the schedule(static,TS) clause.

OMP_F(S) and OMP_F(G) implementations perform well almost across the whole
set of granularities but the last one. This happens because the heaviest compu-
tational loop contains as many iterations as the number of blocks. Thus, when
the block size is 8K, there is a lack of parallelism because there is only work for
(IM/8K = 128) threads, so the other 128 are idle, and performance falls. Note
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that these versions performs well even when using quite small block sizes, where
tasks suffer. This is because worksharing constructs introduce a few overhead in
comparison with tasks. Notwithstanding, dynamic scheduler is performing quite
badly. The overhead is introduced by the dynamic handling of chunks. It also hap-
pens with guided scheduling, but dynamic uses exactly the chunksize set by the
user, while guided uses it as a minimum, and so may get bigger chunks, reducing
the overall number of chunks and consequently the overhead.

The OMP_T and 0SS_T versions start far from the worksharing because of the over-
head introduced by tasks where the granularity is too fine. Then, they get peak per-
formance until the last granularity when the performance falls for the same exact
reason than OMP_F: there is not enough parallelism.

The second and third chart of Figure 4.9 exhibit the results for 0SS_TF(N), and
OMP_TF(N) and OMP_TTL, respectively. There, one can see an important difference
with respect to the previous versions. The difference is that performance does not
fall for the biggest granularity when N is big enough. This means that these im-
plementations are able to prevent the lack of parallelism when the granularities are
too coarse. As all these implementations are using a nested level of parallelism,
the lack of parallelism in the outer level is alleviated by using the idle resources in
the inner level. Consequently, peak performance is maintained for a broader set of
granularities than traditional implementations do.

That being said, there are some other interesting points in the second and third
charts of Figure 4.9. Firstly, it is possible to observe divergences among the distinct
OpenMP series in the third chart. OMP_TTL adds no extra overhead compared with
using only tasks, in the lower granularities. Then, it gives a small boost to the
performance in the peak granularities. Finally, for the coarser granularities, it starts
falling, but the drop is less pronounced than the drop in the OMP_T version. In
contrast, all the OMP_TF versions are introducing extra overhead comparing with
OMP_T. Note that this extra overhead becomes bigger as N grows. However, they
are also able to provide a small increase in the peak, like OMP_TTL.

On the other hand, the 0SS_TF versions, shown in the second chart of Figure 4.9,
are not introducing further overhead with respect to 0SS_T, even with the biggest
N, while they are also introducing a small improvement in the peak performance.

Stream benchmark  The topmost chart of Figure 4.10 compares the performance of
OMP_T, OMP_F, and 0SS_T versions using different granularities. The x-axis deter-
mines the size of the blocks. The y-axis represents memory bandwidth. For the
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OMP_F version, TS means the chunksize specified in the schedule(static,TS) clause.

The main difference between the Stream benchmark and the N-body simulation
is the weight of the computation, which is much lighter for the Stream benchmark.
Therefore, it needs bigger granularities to hide the overhead of tasks. In the top-
most chart of Figure 4.10, the first granularity in which tasks get good performance
is 3072 Kbytes, while for the N-body simulation, it was 44 Kbytes, almost 70x more.
Given that we need bigger granularities, it is more likely to end up in a granularity
that constraints parallelism.

Looking at the topmost chart of Figure 4.10, it is interesting to point out that the
OMP_F versions performs well even for the lowest granularity, as happened in the N-
body simulation, confirming that it introduces very small overhead. All the OMP_F
versions perform very similarly except for the biggest granularities. The reason for
that remains in a small change in the source code: the version with static scheduler
can use the nowait clause. Hence, the OMP_F(S) version only waits once at the end
of the four loops while the rest waits four times, one per each loop. So, when gran-
ularities are fine, each thread runs several chunks and load balancing problems can
be solved by the dynamic/guided scheduler. However, with the biggest granulari-
ties, very few chunks, or even a single one, are run by each thread, so load balance
problems make a significant difference, happening 4 times against only 1.

Apart from this, in the same chart is possible to see the tasking versions outper-
forming all OMP_F versions at some specific granularities. The reason for this is that
tasking versions are able to exploit some data locality due to the immediate suc-
cessor mechanism of the scheduler. With this mechanism, when a task finishes, if
some other successor task becomes ready due to the data dependences release of
the finished task, the successor is bypassed to the same CPU to exploit data locality.
Finally, for the biggest granularities, there is a performance drop in all the versions
since there is insufficient parallelism given that few tasks are created. For instance,
for the biggest granularity, only (1M/256K) = 4) tasks are created, so 252 threads
are idle.

The center chart and the bottom chart of Figure 4.10 exhibit the results for 0SS_TF(N),
and OMP_TF(N) and OMP_TTL, respectively. Again, like for the N-body case, there ex-
istimportant dissimilarities comparing these versions with the ones in the topmost
chart of Figure 4.10. The main one is that the biggest granularities are not falling
so much. Again, the reason for this is that the additional level of parallelism intro-
duced in these implementations palliates the lack of parallelism in the outer level.
So, we end up having a wider set of granularities reaching good performance.

Interestingly, in the versions shown in the second and third chart of Figure 4.10
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there is a considerable speedup in comparison with its tasking counterparts. For
OmpSs-2, second chart, 0SS_TF64 gets a 1.25x against 05S_T. For OpenMP, the third
chart, OMP_TF16 gets a 1.5x speedup against OMP_T. The reason for this is that they
are able to better exploit the memory hierarchy. For instance, when the block size
is 8 KElements, using N=16, there are at most 16 tasks running concurrently, that
means 3GB. In contrast, tasks imply N=1, so that means 48 GB. The high bandwidth
memory of the KNL, which is acting as an L3, has 16GB of capacity. Then, for
N=16, the whole dataset fits in L3, while for N=1, it does not.

Unlike with the N-body case, the 05S_TF(N) versions, shown in the second chart
of Figure 4.10, do introduce further overhead with respect to 0SS_T when N starts
growing. The same happens with their OpenMP counterparts, shown in the third
chart, and in fact, OMP_TF(N) versions are introducing much more overhead than
0SS_TF(N). Anew, OMP_TTL does not introduce extra overhead comparing to OMP_T.

Overall, we would like to highlight how the set of granularities achieving peak
performance becomes wider as N increases. This is a consequence of better re-
source exploitation. When N is small and TS is big, few tasks are created. If
the number of created tasks is smaller than the number of concurrent teams, it
is guaranteed that several resources will do nothing because some teams never get
a task, hindering performance. When N grows, there are fewer teams—with many
more collaborators—, and so it becomes more difficult for a team to get no tasks.
Thus, it is unlikely that any of the resources remain idle. However, as the team size
increases, the contention inside it also increases and may threaten performance.
Overall, it looks like the best option is to use a big N, but still allow several concur-
rent teams.

The goal of this experiment is to show that traditional ways of exploiting paral-
lelism suffer from a lack of parallelism when using coarse granularities. We did
show that lack of parallelism on traditional approaches. However worksharing
tasks still perform well in scenarios where traditional approaches do not. We can
conclude that worksharing tasks offer a wider range of granularities delivering good
performance making granularity choice easier and not so critical, especially when
using large teams.

From this experiment, we can also conclude that the number of collaborators
(N) is important for achieving good performance. Users must take into account
several considerations for choosing it. The first one is the number of worksharing
tasks. As happens with regular tasks, the best performance is achieved when all
the resources are busy. Therefore, if there are many tasks, N can be lower, since the
teams will be still busy. Oppositely, if there are only a few tasks, N must be bigger,
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Figure 4.11: Chunksize granularity of an N-body simulation and the Stream benchmark.

so that the total number of teams is reduced, and they can be occupied with such
a low number of tasks. The second one is lock contention. Each team contains a
lock which is shared among all the collaborators. Although it is optimized, more
collaborators introduce more contention into the lock. Thus, using a single group
with all the available cores may result in performance degradation. The last one is
hardware layout. We do not recommend going beyond a CPU socket when setting
up teams. As a general recommendation, we suggest using one or two teams per
socket. In fact, the default value of our implementation is one team per socket.

Chunksize granularity

The objective of this experiment is to show that the chunksize may affect the perfor-
mance as much as the task granularity. Thus, it must be considered and adequately
tuned.

Figure 4.11 show an analysis for the N-body simulation and the Stream bench-
mark of different chunksizes for a fixed problem size. The block size may vary for
different versions, but it is the same for all the different chunksizes of a version.
In consequence, series cannot be compared against others, only points within the
same series can be compared. The block size is a point in the first phase of a typical
granularity chart, where tasking overheads still hinder performance.

In the charts, the x-axis stands for chunksize (CS) in number of iterations, while
the y-axis shows the performance for the N-body simulation, and the memory
bandwidth for the Stream benchmark. The chunksize must be lower or equal than
the TS, because a single chunk cannot do more iterations than those in the whole

block.
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Looking at the right chart of Figure 4.11, it can be seen that the chunksize does
not have any effect on the Stream benchmark. This happens because the limiting
resource in this benchmark is the memory. Thus, waiting to acquire some locks,
or letting some resources become idle, wasting CPU time, is not so critical like in
compute-bound benchmarks.

The chunksize is crucial in the N-body simulation, as can be seen in the left chart
of Figure 4.11. Regarding worksharing tasks, for medium and large values of N, an
adequate chunksize provides +2x of speedup compared with a bad chunksize. The
reason for this is that an excessively small chunksize may imply many more requests
to the scheduler, augmenting the contention on the scheduler locks. Making it too
large does not affect, because even if there are not enough chunks in a task for to
feed all the workers, new work can start.

In contrast, theleft chart of Figure 4.11 shows the opposite behavior for OpenMP.
It almost does not matter how small the chunksize is. The OpenMP guided policy
assigns chunks dynamically. The actual chunk size is proportional to the num-
ber of unassigned chunks divided by the number of threads in the team, with the
costraint that it can never be lower than the value set by the user. So, usually, big
chunks are assigned at the beginning. Then, they become smaller and smaller until
the last iterations where the restriction appears. So, when a user sets a chunksize
too small, it only affects a few chunks at the end of the execution, and so it does
not make a big difference. However, it is affected if the chunksize becomes too big
since it cannot feed all the cores and some of them may wait in the barrier until the
rest finish.

We have evidenced that chunksize may be important in some applications; while
completely nimium in others. As a general recommendation, we suggest using
CS = T'S/N so that each collaborator in the team has at least one chunk to execute.
Nonetheless, having at least one chunk per collaborator is not really important if we
have several ready tasks at the same time, because in that case, collaborators can get
new tasks. In contrast, when there are only a few ready tasks, it is important to have
as many chunks as collaborators or they will probably remain idle. Furthermore,
the cost of the computation is also important. Heavier computations can work well
with lower chunksizes while lighter computations will require bigger chunksizes to
palliate the overheads.
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Pseudo Strong scaling

In strong scaling experiments, there is a fixed problem size and the number of
computing resources increases, resulting in a smaller problem size per core at each
new point. Our pseudo strong-scaling experiment consists in fixing a given num-
ber of resources and decreasing the problem size, obtaining a smaller problem size
per core at each new point of the experiment like in regular strong scaling exper-
iments. The goal is to illustrate that there exist scenarios where the problem size
per core prevents the possibility of setting an adequate granularity. In these sce-
narios, either task management overheads—if the granularity is too fine— or lack
of parallelism—if the granularity is too coarse— hinders performance. Thus, by
using nested levels of parallelism that allow the use of coarse-grained tasks that
are then split into several chunks, performance improves. For this experiment, we
have used all the benchmarks presented in Section 4.6.1.

The results of the experiment are presented in two charts per benchmark, one
per platform. In these charts, in the x-axis, there are different problem sizes. The
left y-axis represents performance while the right y-axis stands for work units per
hardware thread. The charts show four different series (bars) for each problem
size. Those series are six different implementations, OMP_F(S), OMP_F(D), OMP_F(G),
OMP_T, 0SS_TF and, finally, the one obtaining best performance between OMP_TF(N)
and OMP_TTL. For each of the bars, there is also a circle pointing out the number
of work units per hardware thread for that specific configuration. Finally, there is
a horizontal line which corresponds to 1 work unit per hardware thread. Thus, it
is easy to see when there is at least work for all the resources (above the line) and
when there is not (below the line).

For all the versions, we have explored the whole set of combinations for each of
the parameters (TS, CS and N if applicable), and selected the best configuration.

Figure 4.12 shows the results for the N-body simulation. In the first platform, left
chart of Figure 4.12, all the implementations perform very similarly for the three
biggest problem sizes, with all OMP_F versions standing out a bit for the biggest prob-
lem size. Then, performance decreases for all the versions. For the biggest problem
sizes, all OMP_F versions deliver similar performance. Then, OMP_F(S) outperforms
its dynamic and guided counterparts. Dynamic and guided schedulers introduce
more overhead than static. They are worth if the application is highly imbalanced,
but this is not the case. Hence, they are introducing overhead but not getting any
benefit, hurting performance. It is not significant in the biggest problem sizes be-
cause the long execution time amortizes the overhead, but it pops up when the
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Figure 4.12: Pseudo strong scaling charts of the N-body simulation.

execution shortens.

Regarding OMP_F and OMP_T versions, except for the lowest problem size, there is
at least one work unit for each hardware thread, so only the lowest granularity has
a lack of parallelism. From 32K to 128K, there is a load balancing problem. There
are, respectively, 5.33, 2.67, and 1.33 work units per thread for 128K, 64K, and 32K.
This means that some threads are performing more work than others, and those
others are just idle wasting resources.

OMP_TF version has more than enough parallelism when considering both levels
of parallelism, but the nested parallel regions are introducing a lot of overhead,
and that hurts performance. Additionally, for the lowest problem size, there is not
enough parallelism in the first level to feed all the resources, so that even having
enough work units when considering combined parallelism, those work units are
concentrated in only half of the resources, remaining the rest idle.

In contrast, it can be seen how 0SS_TF is able to maintain the performance much
better than the other versions, reaching up to a 1.5x speedup for the lowest size
against the best competitor. Note that the problem size is reduced by up to 64x,
but 0SS_TF performance is still 70% of the peak performance while the rest are
below 50%. The main reason is that even for the lowest size, we reach high levels
of hardware resources ocuppancy thanks to having very few (concretely 2) teams
with a high amount of CPUs. This allows not only the parallelism to be maximized
but also to improve load balancing.

In the second platform, the right chart of Figure 4.12, the behavior is very similar
but accentuated because of the large number of cores available. The performance
of OMP_F and OMP_T falls very quickly because of the lack of parallelism. In contrast,
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Figure 4.13: Pseudo strong scaling charts of the matmul benchmark.

both OMP_TF and 0SS_TF are able to maintain acceptable performance even when
there is not enough parallelism in the first level, thanks to its nested level of par-
allelism. Nevertheless, 0SS_TF outperforms its OpenMP equivalent, becoming the
difference between them bigger as the problem size per core decreases. 0SS_TF is
able to get up to 2x speedup compared with OMP_TF and more than 5x compared
with OMP_T and OMP_F.

Figure 4.13 shows the results for the MATMUL benchmark.

Regarding the results of the first platform, displayed in the left chart of Fig-
ure 4.13 it is possible to observe one more time the performance reduction as the
problem size becomes smaller. The reasons are load balancing, like for the N-body
simulation, for PS=1024; and the lack of parallelism for PS=512. Yet, 0SS_TF keeps
performance better than the other versions, achieving up to a 2x speedup against
the best OpenMP version.

The nature of the chart of the second platform, shown in the right chart of Fig-
ure 4.13, is similar to the previous, but in this case, the main problem is actually the
lack of parallelism given the large number of available resources. In this platform,
nonetheless, 05SS_TF is able to reach up to a 2.7x speedup versus the best OpenMP
version.

The results of the Stream benchmark, available in Figure 4.14, are different than
the previous. In the previous benchmarks, there was a trend where lowering the
problem size led to a performance drop, especially in the OpenMP versions.

In the first platform, the topmost chart of Figure 4.14, this does not happen, or
at least, the drop is not as large. The main reason is that the limiting resource in
this benchmark is the memory bandwidth instead of the CPU. Thus, even without
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Figure 4.14: Pseudo strong scaling charts of the Stream benchmark.

using all the resources, peak performance can be achieved. For this reason, de-
creasing the problem size, leading to a lack of parallelism, is not so important in
this benchmark.

That being said, we can see how the OMP_F versions are even increasing its perfor-
mance, especially OMP_F(S). The increase stems from the data locality exploitation
given that in the lowest sizes, the whole problem or a large part of it fits in the
caches. This effect is seen in none of the other versions mainly due to two reasons.
The first one is the pollution of the caches caused by the runtime libraries. The sec-
ond one is that the static scheduling of the OMP_F(S), combined with the nowait
clause, allows that a CPU executes the same elements of each loop, maximizing
data reuse. In contrast, task-based versions, although they have immediate succes-
sor policy which favors locality, is not so perfect as the OMP_F(S) one. Regarding the
dynamic and guided versions, they need to run the whole loop, iterating over the
whole data arrays before moving forward to the next loop, preventing them from
any kind of data reuse.

In the second platform, the bottom chart of Figure 4.14, the effect of insufficient
parallelism is notable, like in the previous benchmarks. It is caused by the large

70



PS=200*200*3072

- T oMP
TF MPI

2000

FOM
(GFLOPS)
=
o
o
oS

24 48 96 192 384 768 1536 3072 6144 12288

Cores

Figure 4.15: Pseudo strong scaling charts of the HPCCG benchmark.

number of cores available in this platform, which needs a bigger value of problem
size to keep the problem size per core able to perform decently. In this platform,
there are four versions that stand out. Again, the reason is data locality. This plat-
form incorporates a 16GB high bandwidth memory used as L3. The problem sizes
where we get the best performance are those where the whole data set fits in cache
while there is enough parallelism.

Figure 4.15 introduces the results obtained in the HPCCG benchmark. In this
benchmark, each chart only contains two series instead of the four mentioned pre-
viously. The reason is that the HPCCG benchmark contains several reductions.
The Intel OpenMP compiler and runtime we have used do not support task reduc-
tions. Therefore, all the versions using tasks (OMP_T, OMP_TF and OMP_TTL) perform
poorly.

The results of the first platform are given in the left chart of Figure 4.15. In that
chart, it is possible to see again, like in the previous benchmark, how the perfor-
mance of all OMP_F versions drops when the problem size per core decreases. In
contrast, the performance of 0SS_TF remains very similar until the lowest problem
size where it finally drops. Despite the drop, 0SS_TF gets more than 9x speedup
compared to OMP_F for that problem size. The reason for the drop, one more time,
is the lack of parallelism. However, it is possible to see some of the circles below
the line while the performance is still peak. This happens for the same reason than
the Stream benchmark. HPCCG is also memory-bound, so it does not need to
occupy all the cores to reach peak performance. There are also some differences
depending on the scheduler for the OMP_F versions. Dynamic and guided seems to
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perform slightly better. The reason is load imbalance.

In the second platform, the right chart of Figure 4.15, the trends are similar.
OMP_F performance is deteriorated by the lack of parallelism. However, the 0SS_TF
performance in this platform, falls faster because there are many more resources
available, and even 0SS_TF is not able to exploit enough of them when the problem
size is reduced. Still, 0SS_TF outperforms OMP_F by up to 1.65x.

We have demonstrated that when performing strong scaling experiments we
can easily get into scenarios where the problem size per core prevents traditional
ways of exploiting parallelism to get good performance. At the same time, we have
shown how worksharing tasks mitigate the lack of parallelism issue being able to
perform well across several benchmarks on two different platforms, even in sce-
narios where traditional approaches suffer.

4.6.2  Worksharing Tasks - Distributed Environment

Our distributed environment evaluation uses two well known mini-apps: High
Performance Computing Conjugate Gradients (HPCCG) [76] and Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) [66]. Both
of them are well known proxy apps used to assess the performance of software and
hardware.

HPCCG is a simple conjugate gradient benchmark code for a 3D chimney do-
main. It is part of the Mantevo project [50]. This mini-app presents very well
structured parallelism, and it is memory-bound.

LULESH solves the Sedov blast wave problem for one material in three dimen-
sions [53]. Itis one of the five challenge problems in the DARPA UHPC program. It
is designed to test different tuning techniques and programming models. LULESH
contains different phases and includes load imbalance issues.

The reference versions for both apps are the pure MPI and the OpenMP+MPI
versions available in the public repositories of each of them. Starting from these
versions, we developed two new versions using regular tasks and worksharing tasks.
We would like to clarify that the version using regular tasks uses OmpSs-2, as does
the worksharing tasks version. Also, both of them make use of TAMPI, while the
OpenMP+MPI and the pure MPI versions do not.

Next we will detail the methodology followed in the evaluation. After that, we
present, analyze and discuss the results from the two mini-apps.
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Methodology

As already introduced, our evaluation involves four different versions. The names
that appear in the legends of figures as follows:

m MPI. The version using only MPI.
B OMP. The version using OpenMP worksharing loops and MPI.
m T. The version using regular tasks of OmpSs-2 and MPI. It includes TAMPI.

m TF. The version using worksharing tasks of OmpSs-2 and MPI. It includes
TAMPL

For each of the applications, we perform a granularity analysis in a single NUMA
node. This is because in the strong and weak scaling experiments we use one MPI
process per NUMA node. The objective is to determine the best granularity to be
used in the weak and strong scaling scenarios.

It may happen that a single granularity does not fit all the tasks. We support
our analysis with execution traces. In the traces, we show the weights of each task
so that it is possible to see if granularities are adequate for some tasks but not for
others. When this happens, we define a reference granularity and then we apply
multiplication factors for those tasks that need it. For instance, suppose there are
two tasks: task A and task B. The granularity is 10 iterations. This granularity is
good for task A, but it is too fine for task B and we spend as much time creating
the task as executing it. Therefore, we apply a multiplication factor of 2 for task B,
so its granularity is now 20 iterations. The points of the granularity analysis will
always refer to the reference granularity.

In addition, we motivate the decision of using worksharing tasks rather than
regular tasks using execution traces. For obvious reasons, task granularity analysis
does not apply to the MPI version. The OMP version uses only worksharing loops
with static scheduling, so the granularity analysis does not affect it either.

Once the optimal granularity is determined, we move forward to our second
analysis: scalability analysis in a distributed environment. This analysis incorpo-
rates two scenarios: weak scaling and strong scaling. Weak scaling starts from 1
node and a given problem size. At each new point, the number of nodes is in-
creased and so is the problem size. Strong scaling also starts from 1 node and a
given problem size. However, in this scenario, the problem size is fixed for all the
points, while the number of nodes is increased at each new point. As a last remark,
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in this experiment, we use one MPI rank per core for the pure MPI version, and
one MPI rank per NUMA node (to favour data locality) for the hybrid versions.

Regarding the execution environment, all the experiments were carried out on
Marenostrum 4. A node of Marenostrum 4 is composed of 2 sockets Intel Xeon
Platinum 8160 2.1GHz 24-core and 96GB of main memory [21]. Regarding the
software, we used the Mercurium compiler [11] (v2.3.0), the Nanos6 runtime [12]
(2020-05-15), the gcc and gfortran compilers (v7.2.0), and the Intel compilers (v17.0.4).
Regarding MPI, we used the Intel implementation (v17.0.4). We also use the In-
tel implementation of OpenMP. Finally, we used Extrae [10] (v3.7.1) to obtain the
execution traces, and Paraver [16] to visualize them.

Finally, we would like to highlight that each of the results is an average of 5 exe-
cutions. We did not observe any significant variation between different executions
(standard deviation <5%), so we think 5 executions is sufficient.

LULESH

LULESH is a quite big and complex mini-app. It contains two different main phases,
one devoted to perform operations over elements, and the other one devoted to
perform operations over nodes. There are several kernels, with very different com-
putational costs. This application has a high degree of parallelism across all the ex-
ecution, if correctly annotated with data dependences. Also, by design, it presents
load imbalance problems. These two facts, that can be seen in Figure 4.16, make
LULESH a very suitable application for tasking.

Figure 4.16 shows an execution trace of LULESH. The execution trace shows
what is being executed in each of the threads (y-axis) over time (x-axis). The white
color means that no task is being executed, and each of the other colors represent a
different task type. In this trace, we show a single iteration of the main loop: from
the red tasks to the next red tasks, which are already part of the next iteration. The
cyan tasks are the last tasks belonging to the first phase, and the purple tasks mark
the start of the second phase. The arrows on the top of the trace show approximately
the duration of each phase.

When using MP]I, there are four type of communications in the application. The
position of each of the them is approximately indicated in Figure 4.16. At the be-
ginning of an iteration, there is a MPI_Allreduce. Then there are two more point-
to-point communications before the small orange tasks, and after the cyan tasks.
Finally, the fourth and last communication, also point-to-point, can be found in
the white space between the green and the dark orange tasks.
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Figure 4.16: Execution trace of the LULESH T version using a single granularity for all the tasks with a big problem size
on 24 cores (1 NUMA socket)

The OpenMP+MPI implementation uses worksharing loops (i.e. parallel for).
Usually, there is a parallel for per loop. In some cases, the developers use the
nowait clause that eliminates the implicit barrier at the end of a worksharing loop.
As aside effect, this means that static scheduling is mandatory. Given that LULESH
presents load imbalance issues, the use of worksharing with static scheduling may
hinder performance. In contrast, tasks has an inherent ability to deal with load
imbalance.

Moving from OpenMP worksharing to tasks requires replacing each of the work-
sharing loops by several tasks. The most important consideration is to avoid the
use of taskwait, and rely on the data dependences to achieve lightweight synchro-
nization. Once we have the implementation with tasks using data dependences, we
need to determine how many different granularities there should be in the mini-
app. For that purpose, we use execution traces.

The trace of Figure 4.16 is an execution using a large problem size, which dis-
plays good behavior throughout. Figure 4.17 is the same trace but using a smaller
problem size. In this case, to have the same number of tasks, they must be more
fine-grained. In fact, they are too fine-grained, and the task management overhead
becomes too much. Specifically, in Figure 4.17 it is possible to see the white color
dominating the trace, meaning that most of the time the cores are idle. Looking at
the complete trace, it is possible to see the producer core (core 0, purple color) cre-
ating tasks during the entire execution. The consumers cores execute tasks faster
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Figure 4.17: Execution trace of the LULESH T version using a single granularity for all the tasks with a small problem
size on 24 cores (1 NUMA socket)

than the producer core can create them.

The scenario with a small problem size is important considering the strong scal-
ing experiment. Given that we set a fixed problem size and then we increase the
number of processors, at each new step the problem size per process will decrease,
ending up in scenarios such as the one in Figure 4.17 or with even smaller problem
sizes.

One possible solution to this problem is using different granularities for different
task types. Not all the task types have the same weight, even with the same granu-
larity. Thus, for tasks with low weights, it may be better to use bigger granularities.
Around a hundred microseconds is the minimum time we consider a task must
last to be worth paying the management costs. Table 4.1 presents the average time
atask of a given type requires to complete. In the table, each of the tasks types has a
small square with the same color the task has in the execution trace of Figure 4.17.
There are several task types whose average time that does not reach this threshold.
Thus, we should change the granularity of several task types.

We increased the granularity of each task type to reach the 100 microsecond
threshold. It is important to highlight that the increment of the granularity is not
always directly proportional to the increment of time. That gave us the multiplica-
tion factors shown in Table 4.1 for each of the task types.

When we implement this, there is a ~12x speedup in the execution time. Fig-
ure 4.18 shows how an iteration looks like using the listed factors. It is possible to
see that the duration of the iteration is ~440 ms in Figure 4.17 and ~36 ms in Fig-
ure 4.18. Even so, there is still a lot of white color, meaning cores are running no
tasks. In some regions of the execution trace this may be caused by dependences:
tasks are waiting for their predecessors to finish so they can start. However, there
are other regions where we know for sure there are no dependences between tasks,
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Table 4.1: Average task time, and multiplication factor, for each of the task types of LULESH mini-app using a small
problem size

Task type Average  Factor
CalcLagrangeElements 2225us 16
CalcVelocityAndPositionForNodes 46.07us 4
check_eosv_vc 13.10 us 16
InitStressTermsForElems 13.98us 24
UpdateVolumeForElems H 5.12 us 48
CalcHourglassControlForElems H 361.32us 1
CalcTimeConstraintsForElems 81.99us 2
CalcFBHourglassForceForElems H 615.50us 1
EvalEOSForElems H 2498us 16
CalcFBH_ collect 17545us 1
CalcMonotonicQRegionForElems H 16.50us 48
IntegrateStressTermsForElems H 386.66us 1
CalcMonotonicQGradientsForElems 212.95us 1
IntegrateStressTermsForElems_collect B 93.06us 2
CalcKinematicsForElems H 402.48us 1
ApplyAccelerationBoundaryConditionsForNodes M 3.86 us 96
CalcAccelerationForNodes 21.69us 16
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Figure 4.18: Execution trace of the LULESH T version using multiple granularities for different task types with a small
problem size on 24 cores (1 NUMA socket)

for instance in the big region with dark green tasks. Thus, we conclude that the
problem is that the thread creating tasks is not creating them fast enough. In other
words, we are creating too many tasks, so again we need to increase the granularity.

Figure 4.19 shows the granularity chart using a problem size of 50 elements
per dimension. In the x-axis we show the number of created tasks/worksharing
tasks per each of the different task types. The y-axis shows the figure of merit
(FOM) of the mini-app. The T version reaches the peak performance with a ref-
erence granularity of 48 tasks per type, and the TF version reaches the peak per-
formance using a reference granularity of 24 worksharing tasks per type. Con-
sidering thata NUMA node of the machine has 24 cores, there is 1 worksharing
task per core in the TF version, and 2 tasks per core in the T version. A significant
performance difference exists between using regular tasks and worksharing tasks.
Regarding the implementation, the difference between the two versions is using a
single worksharing task, rather than multiple tasks, in several portions of code. All
the methods listed previously, where we apply a multiplication factor, use a single
worksharing task, except CalcVelocityAndPositionForNodes, CalcLagrangeElements,
InitStressTermsForElems and CalcMonotonicQRegionForElems. With such a simple
change, the peak performance shows a speedup of ~2.1x.

The main reason for such a big impact in performance is the significant reduc-
tion in terms of the number of created tasks. Fewer tasks means fewer overheads,
and, usually, less parallelism. Notwithstanding, thanks to the use of worksharing
tasks, creating fewer tasks does not affect parallelism. The number of created tasks
is reduced to such an extent that the main thread is able to create enough work
for ten iterations in the time taken to execute five iterations. In other words, for
the regular tasks version, the main thread keeps creating tasks during the whole
execution, while using worksharing tasks it requires only ~50% of the execution

78



PS=50 elems per dimension

10000 A

FOM
(zones/s)

w1
o
o
o o
L L

1 3 6 12 24 48 96 192 384
Created regular/worksharing tasks per task type

Figure 4.19: Granularity chart of LULESH

Figure 4.20: Execution trace of the LULESH TF version using multiple granularities for different task types with a small
problem size on 24 cores (1 NUMA socket)

time. Additionally, this means that the core devoted completely to creating tasks
in the regular tasks version, can contribute to running some of the tasks in the
worksharing tasks version.

Figure 4.20 shows an iteration of the TF version. In this case, the granularity used
is the optimal one based on Figure 4.19. We can see there that an iteration takes
~12 ms to complete. Even so, there are some problems that should be addressed.
In particular, there are some regions suffering a lack of parallelism and others suf-
fering load imbalance. Considering that the granularity used causes the creation
of only 1 task per type per core, and that the introduction of multiplication fac-
tors reduces the number of created tasks, this makes sense. We can see that all the
regions suffering a lack of parallelism or load imbalance are using regular tasks.
Thus, a logical step forward is to replace those regular tasks by worksharing tasks.
By doing so, each of the worksharing tasks can be executed by several cores, thus
preventing lack of parallelism. Also, given that worksharing tasks allow threads
to move forward when there is no remaining work, load imbalance should be also
improved.
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Figure 4.21: Updated granularity chart of LULESH

Figure 4.22: Execution trace of the updated LULESH TF version using multiple granularities for different task types on
24 cores (1 NUMA socket)

As a consequence of replacing all the regular tasks by worksharing tasks, it is
likely that the optimal granularity is lower than the one used previously. Thus, we
repeated the granularity analysis keeping the same problem size (50 elements per
dimension), which is shown in Figure 4.21. The peak performance in this new ver-
sion occurs when using a reference granularity of three worksharing tasks per task
type. This is because the fewer tasks created, the fewer overheads are introduced.
Worksharing tasks enables us to create a lower amount of tasks per task type, while
keeping enough work to feed all the cores.

Figure 4.22 shows an iteration of the updated TF version (i.e. using worksharing
tasks wherever possible). The trace was obtained using the optimal granularity: 3
worksharing task per task type. Now an iteration only takes ~9 ms to complete.
So, to sum up, we started with a version where an iteration required ~440 ms to
complete, and ended up with a version where an iteration requires only ~9 ms to
complete.

After detailing the modifications done in the implementation, and selecting an
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Figure 4.23: Results of the LULESH weak scaling experiment

adequate granularity, we are able to move forward and perform the experiments
in a distributed environment. Figure 4.23 shows the results of the weak scaling
experiment, and Figure 4.24 shows the results of the strong scaling experiment.
This application restricts the number of MPI processes used to be a cube of an
integer number. That introduces difficulties in the comparison between the MPI
version and the rest because the total number of cores used does not match. For
this reason, we decided to use the FOM/core instead of the raw FOM metric.

Figure 4.23 shows in the x-axis the number of total cores used and in the y-axis
the FOM per core of the application. For this experiment, we used a problem size
of 200 elements per dimension per process. The OMP version is the worst across all
the different scenarios, while the TF is the best across all the different scenarios. The
MPI version begins close to the TF version but then it falls. Regarding the T version,
it is in between the OMP and the MPI version until the last point where it obtains
almost the same performance than the MPI version. Overall TF version is able to
reach speedups of up to ~1.4x, ~1.9x, and ~1.3x compared to the T, OMP, and MPI
versions, respectively.

Figure 4.24 shows in the x-axis the number of total cores used and in the y-axis
the FOM per core of the application. For this experiment, we used a problem size
of 300 elements per dimension. The TF and the MPI versions perform very similarly
across all the scenarios. Similarly, the T and the OMP versions behave very much
alike. However, there is a significant difference between the two groups, reaching
up to ~2.8x speedup.

The reason for the performance improvement of the TF version compared to the
T version is that the number of tasks is drastically reduced. Consequently, there is
a drastic reduction of overhead. In addition, by creating fewer tasks, the creator
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Figure 4.24: Results of the LULESH strong scaling experiment

can finish the creation earlier. Therefore, the cores rarely have to wait because the
creator cannot create fast enough. Finally, this fact also means that the creator can
start running tasks after finishing the creation.

Compared to the OMP version, the tasking versions introduces two key advan-
tages: (1) the flexibility given by the data-flow execution model, and (2) the over-
lapping of computation and communication phases given by the TAMPI library.
The OMP version is implemented using worksharing. At the end of each workshar-
ing loop there is a barrier, where all the threads must wait until all of them have
finished. This rigidness in the synchronization may introduce a significant perfor-
mance penalty, especially if there is load imbalance, which is the case here. Also,
the communication in the OMP version is always done outside parallel regions. Thus,
when the data is required, threads in this version are idle while waiting for the
communication to complete. In contrast, the T and the TF versions are able to keep
progressing running other ready tasks.

Compared to the MPI version, the tasking versions introduce the key advantage of
the overlapping of computation and communication phases. Figures 4.25 and 4.26
show the time performing computations and communications respectively. These
figures evidence the amount of time that MPI version wastes in communications.
In contrast, the tasking versions can keep progressing thanks to TAMPI. However,
for the T version this is not enough due to the task management overheads. The
TF version is able to reduce these overheads, and so, is able to outperform the MPI
version consistently in the weak scaling experiment, reaching up to ~1.3x speedup
in the scenario with more cores. Regarding the strong scaling experiment, the TF
version is competitive with the pure MPI version, and even obtains a slight speedup
of 1.03x.
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Figure 4.25: Execution trace of the LULESH MPT version showing the time performing computations

Figure 4.26: Execution trace of the LULESH MPI version showing the time performing communications
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HPCCG

HPCCG is a simpler application compared to LULESH. It contains a single phase
relying on three different kernels: ddot, waxpby and sparseMv. This application is
very well suited for OpenMP worksharing loops, given its fork-join pattern shown
in Figure 4.27. For each iteration, there is a ddot kernel that can run in parallel.
After that, it computes the residual and the alpha, using at most two cores. This
closes the parallelism because alpha is required by the following tasks. Then, par-
allelism is open again to run the waxpby, sparseMV, and ddot kernels. Following this
comes the compute of beta, which closes parallelism again because the following
tasks need beta. Finally, the waxpby kernels can run in parallel again.

When using MPI, there are three different communications. ThereisanMPI_Allreduce
after each of the two ddot kernels, and one point to point communication before
the sparseMv. The result of the reductions is required to compute beta, normr, and
alpha. Thus, the overlapping of computation and communication is only possible
in the point to point communication.

This structure is not well suited for tasks because it forces all the cores to wait
twice per iteration, as if there was a taskwait. As a consequence, there is not much
benefit from using data dependences because there are implicit barriers imposed
by the application structure.

The reference OpenMP+MPI implementation simply uses a parallel for in
each of the three kernels. In the tasking version we replaced each of the parallel
for by a set of tasks with the required data dependences. Even in an application
with a fork-join pattern is important to avoid the use of taskwaits. A taskwait im-
plies that no more tasks will be created until all the already created tasks finish. If
we use data dependences, the tasks are already created, and so, as soon as the data
is ready, they can run. By using taskwait, when the data is ready (all the previous
tasks finished), it starts creating tasks (one by one) again, increasing the overall
waiting time.

We again start our analysis by determining how many different granularities
there should be in the mini-app. For that purpose, we use the execution trace
shown in Figure 4.28. The execution trace shows what is being executed in each of
the threads (y-axis) over time (x-axis). The white color means no task is being ex-
ecuted and each of the other colors represent a different task type. In this trace, we
show a single iteration of the main loop: from the blue and green tasks to the next
blue and green tasks. Actually, in this application, the iterations are overlapped.
The green tasks and some of the blue tasks of the beginning belong to the previous
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Figure 4.27: Structure of the HPCCG application

Figure 4.28: Execution trace of the HPCCG T version using a single granularity for all the tasks with a big problem size
on 24 cores (1 NUMA socket)

iteration, and the interleaved dark red tasks and some other blue tasks belong to
the iteration we show. At the end, some of the blue tasks overlapped with the pink
tasks belong to the iteration we show, while the pink tasks, some other blue tasks
and the dark red tasks belong to the next iteration.

The trace of Figure 4.28 shows very good behavior. The execution was performed
using a big problem size. In contrast, Figure 4.29 was performed using a much
smaller problem size. It also shows a single iteration with the overlapping with the
previous and following iterations. In this case, to have the same amount of tasks,
they must be more fine-grained. In fact, they are too fine-grained, and the task
management overhead becomes too much. Specifically, in Figure 4.29 it is possible
to see the white color dominating the trace, meaning that most of the time the
cores are idle. Looking at the complete trace, it is possible to see core 0 creating
tasks during the entire execution. The other cores execute tasks faster than core 0
can creates them, and that is the reason to see so much white color in the trace.

The scenario with a small problem size is important, considering the strong scal-
ing experiment. Given that we set a fixed problem size and then we increase the
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Figure 4.29: Execution trace of the HPCCG T version using a single granularity for all the tasks with a small problem
size on 24 cores (1 NUMA socket)

Table 4.2: Average task time for each of the task types of HPCCG mini-app using a small problem size

Task type Average Factor | Task type Average Factor
HPCSparseMV B 7925us 1 ddot_xxH 445us 4
ddot_xy 3.73us 4 waxpby_betal 6.25us 4

waxpby_negative_beta 6.48us 4

number of processors, at each new step the problem size per process will decrease,
ending up in scenarios such as the one in Figure 4.29 or with even smaller problem
sizes.

We want to determine how many different granularities we need in this mini-
app. Looking at Figure 4.29 we see a big difference between the pink tasks and the
rest. Table 4.2 presents the average time a task of a given type requires to complete.
Also, each task type has a small square with the same color it has in the trace of Fig-
ure 4.29. Recall that around 100 microseconds is the minimum time we consider
a task must last to be worth paying the management costs. None of the task types
reaches the given threshold. Accordingly, we should use a higher granularity. How-
ever, then, lack of parallelism may appear. Apart from that, HPCSparseMV takes
much more time to complete than the rest. Consequently, we apply a multiplica-
tion factor of 4 to all the task types except HPCSparseMV as we show in Table 4.2.
We do this to balance the different task times.

After that, there is a ~1.2x speedup in the execution time. Figure 4.30 shows
what an iteration looks like using the listed factors. Still, there is a lot of white color,
meaning cores are running no tasks. This is caused by lack of parallelism: there
are not enough tasks to feed all the cores. In consequence, we need to decrease
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Figure 4.30: Execution trace of the LULESH T version using multiple granularities for different task types with a small
problem size on 24 cores (1 NUMA socket)

the granularity. However, if we do so, task management overheads may hinder
performance. Worksharing tasks offer us the possibility of keeping this granularity,
but not be affected by task management overheads, and increasing parallelism due
to its internal partitioning of work.

Figure 4.31 shows the granularity chart using a problem size of 50 elements per
dimension. In the x-axis we show the number of tasks/worksharing tasks created
per each of the different task types. The y-axis shows the figure of merit (FOM) of
the mini-app. The T version reaches its peak performance using a reference granu-
larity of 48 tasks per type, and the TF version reaches the peak performance using
a reference granularity of 1 worksharing task per type. Regarding the implemen-
tation, we simply replaced all the regular tasks by worksharing tasks. Figure 4.31
shows an interesting point. On the right part, when more fine-grained tasks are
created, regular tasks outperform worksharing tasks. The problem is that work-
sharing tasks partition the loop iteration space into as many chunks as cores. In
this case, the tasks are already fine-grained, and then they are partitioned even
more. As aresult, cores end up running really small chunks (< 5 us). Worksharing
tasks contain an internal mechanism of synchronization which is very lightweight,
but not enough to perform well with such small chunks.

Nevertheless, worksharing tasks offer a mechanism to mitigate this effect. A user
can set the minimum chunksize. We have selected a minimum chunksize based
on the point where the performance of the TF version starts to be worse than the
performance of the T version in Figure 4.31. We repeated the granularity analysis,
keeping the same problem size (50 elements per dimension), including this new
version. The results of the new analysis are shown in Figure 4.32. After setting the
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Figure 4.32: Granularity chart of HPCCG

minimum chunksize, both versions behave very similarly in the right-most part,
while the TF version keeps very good performance in the left-most part.

In this mini-app, unlike LULESH, there is no big difference in the peak per-
formance between the T version and the TF version using the optimal granularity.
In HPCCG, there are not so many tasks and the creator can create tasks rapidly
enough for the rest, which was the main issue in the LULESH. Figure 4.33 shows
an iteration of the TF version using the optimal granularity. There, it can be seen
the main problem that HPCCG presents. In the left part, between the dark red
tasks and the blue tasks, there are two very small tasks. This also happens in the
right part between the red tasks and the blue tasks. Those small tasks require the
data computed by all the previous ones, and the following tasks require the data
computed by those two small tasks. Basically, those tasks close the parallelism and
open it again, following a fork-join pattern. Apart from that, there are still some
other regions with cores running no tasks. The cause is the dependences between
different tasks. The runtime requires some time to release the dependences of a
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Figure 4.33: Execution trace of the HPCCG TF version using a single granularity for all the tasks on 24 cores (1 NUMA
socket)
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Figure 4.34: Results of the HPCCG weak scaling experiment

task and schedule the new ready tasks. Again, with higher granularities, this effect
would be mitigated, but the low problem size prevents us from increasing granu-
larity.

After detailing the modifications done in the implementation, and selecting an
adequate granularity, we are able to move forward and perform the experiments
in a distributed environment. Figure 4.34 shows the results of the weak scaling ex-
periment using a problem size of 200¥200%240 per process, and Figure 4.35 shows
the results of the strong scaling experiment using a problem size of 200*200*3072.

In the weak scaling scenario shown in Figure 4.34 all the versions perform very
similarly. The T version stands out over the rest, followed by the TF version. The
reason for this is the load imbalance introduced by the sparseMV kernel. Different
regions of the sparse matrix have different number of non-zeros. Tasks deal better
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Figure 4.35: Results of the HPCCG strong scaling experiment

with load imbalance, and are able to get computation and communication over-
lapping. Overall, it gives the tasking versions a small boost in performance of up
to 1.14x and 1.08x for the T and the TF versions, respectively. As a final remark,
we were not able to scale to more cores in this scenario because of some overflow
problems in the application indexes.

In the strong scaling scenario, all the versions perform very similarly until 3072
cores. Then, the T version cannot scale as much as OMP and TF. Regarding the MPI
version, it cannot scale further because the problem cannot be split in more MPI
processes. The TF version is competitive until 6144 cores, where it stops scaling,
while the OMP version keeps scaling up until the end (12288 cores). With such a
number of cores, the problem size per process becomes very small and most of
it fits in cache. The OMP version is able to exploit data locality thanks to the static
scheduling of the worksharing loops. However, the TF cannot do so because of two
reasons: worksharing tasks do not guarantee that the same core executes always
the same iterations, and the structures of the runtime pollute the cache.

All in all, the TF version is able to keep very competitive performance until a
large number of cores compared to OpenMP, in an application perfectly suited for
the fork-join execution. Compared to the T version, this experiment evidences the
problems of task granularity that regular tasks suffer, and that worksharing tasks
can mitigate, obtaining up to 1.33x speedup.
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4.6.3 Taskloop with Dependences

In this section, we wish to demonstrate that the taskloop with dependences pro-
vides an enhancement in programmability when using tasks, while introducing no
significant overhead compared to a manual equivalent implementation. For that
purpose, our evaluation will focus in both programmability and performance.

Regarding programmability, we used several different metrics to compare the
different implementations: Source Lines of Code (SLOC), Development Estimate
Effort (DEE) and Cyclomatic Complexity (CC). It is important to highlight that
for the SLOC metric, we only consider the code related to the parallelization. In
terms of performance, we compare the different implementations to demonstrate
that using the taskloop construct do not add any significant overhead.

Environment

The experiments were carried out on the Marenostrum 4 supercomputer. It is com-
posed of nodes with 2 sockets Intel Xeon Platinum 8160 2.1GHz 24-core and 96GB
of main memory.

Regarding the software, we used the Mercurium compiler (v2.3.0), the Nanos6
runtime library, the gcc and gfortran compilers (v7.2.0), and the Intel compilers
(v17.0.4).

Methodology

As previously introduced, we focus our evaluation in two different aspects: perfor-
mance and programmability. Our experiments will use two different versions of
each application/benchmark:

m T. Version using regular tasks. It requires manual blocking.
m TL. Version using the taskloop construct with dependences.

Regarding performance, for each of the benchmarks/applications, we select two
different problem sizes, one small-medium size, and one big size. For each of the
problem sizes, we try several block sizes to show that the differences between the T
and the TL are small or even non-existent in several different scenarios.

All the experiments ran using the interleaving policy offered by the numactl
command, spreading the data evenly across all the available NUMA nodes, in order
to minimize the NUMA effect.
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The results shown in the figures are averages of five different executions. We de-
cided to use only five executions because the variability across different executions
was very small.

Related to programmability, we count the SLOC required to parallelize the base-
line code for each of the versions, and use the SLOCCount tool and the Lizard tool
to retrieve the DEE and CC respectively.

Performance Evaluation

In this section, we evaluate several applications/benchmarks to demonstrate that
the use of the taskloop construct does not introduce overhead compared to a man-
ual alternative. All the figures show the Figure of Merit (FOM) of the application
in the y-axis, and different task granularities in the x-axis. All of them have four
series: one using the T version with a small-medium problem size, one using the
TL version with a small-medium problem size, one using the T version with a big
problem size, and one using the TL version with a big problem size. We would like
to highlight that the T versions use a naive approach where a single core creates all
the tasks.

Figure 4.36 shows the results of the dot product benchmark. In this case, we re-
peat the dotprod kernel a given number of iterations to make the execution longer.
For both problem sizes, the TL version performs better than the T version in the
small task sizes. The T version has only a single core creating tasks. When the
granularity is small, a single creator cannot create rapidly enough to feed all the
cores. In contrast, the TL version may have several cores creating tasks, speeding
up the creation, and increasing the overall performance. The TL version may have
several cores producing tasks because each iteration of the kernel is a taskloop in-
stance, that can be running in different cores concurrently, while the T version has
a single core creating all the iterations sequentially. Finally, from TS=8192, all the
versions perform very similarly.

Figure 4.37 shows the results of the Heat benchmark, where we can see no differ-
ences between the T and the TL versions. In this benchmark, a single core creating
tasks is enough because the tasks are more time-consuming than in the previous
benchmark even in the smallest granularities.

Figure 4.38 shows the results of the LULESH application. Note that this figure
reports the number of created tasks rather than the task size in the x-axis. The
number of created tasks is inversely proportional to the task size: the more created
tasks, the smaller task size. In this figure, we can see small differences between the
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Figure 4.39: Evaluation of taskloop using MATMUL benchmark

T and TL versions for both problem sizes for the same reason than in the previous
benchmark.

Figure 4.39 shows the results of the Matrix Multiplication benchmark. For this
benchmark, again, all the versions perform very similarly except in the smallest
granularity, where the TL versions outperform the T versions for both problem sizes.
Like with the Dot product benchmark, the TL version has several taskloops than can
run in parallel, and so, create tasks in parallel. In contrast, the T version has a single
core creating all the tasks, and it is not able to create rapidly enough to feed all the
cores.

Figure 4.40 shows the results of the Multisaxpy benchmark. Multisaxpy bench-
mark is a saxpy kernel repeated a given number of iterations. As with several of
the previous benchmarks, there are almost no differences between the different
versions.

Figure 4.41 shows the results of the N-body benchmark. For this benchmark,
we see again a difference in the smallest granularity, where the TL version outper-
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Figure 4.41: Evaluation of taskloop using NBODY benchmark

form the T version for both problem sizes. Like previously, this is because there are
several taskloops that can be creating tasks concurrently in the TL version, while
there is a single core creating tasks sequentially in the T version, and it is not quick
enough to feed all the cores.

Figure 4.42 shows the results of the Stream benchmark. In this benchmark, there
are some differences between the T and TL versions. Firstly, in the smallest gran-
ularity, the TL version outperforms the T version in both problem sizes. Like in
some previous benchmarks, this is because the TL version has multiple taskloops
that can create concurrently rather than a single one, and speeding up the creation
improves the overall performance. Then, when TS=64, for the small problem size
the T version outperforms the TL version, and the other way around for the big
problem size. Our runtime system has an immediate successor mechanism to ex-
ploit data locality between successor tasks. In this case, this mechanism is making
the difference. We repeated the experiment with no immediate successor, and the
results for both versions were very similar. For the big problem size, the TL version
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Figure 4.43: Evaluation of taskloop using WAXPBY benchmark

is able to find more immediate successor tasks than the T version, and the other
way around for the small problem size.

Finally, Figure 4.43 shows the results of the Waxpby benchmark. This bench-
mark computes the w = & * x + f * y equation a given number of iterations. The TL
version outperforms the T version in several granularities for both problem sizes.
For the smallest granularities, the key again is speeding up the creation of tasks. In
this case, for the big problem size, the TL version also delivers better performance
in the granularity obtaining peak performance. Like in the Stream benchmark, this
is caused by the immediate successor mechanism. In this specific scenario, the TL
version is able to find more immediate successor tasks than the T version.

Overall, we see that there are few differences between the T and TL versions,
with the TL versions generally outperforming the T versions in fine granularities,
thanks to the use of multiple creators. Thus, we can conlude that the TL is not
only introducing very few overhead, but it is able to enhance performance in some
specific scenarios.
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Table 4.3: Programmability metrics to compare the use of the taskloop construct with the manual use of tasks

T | TL

SLOC DEE CC |SLOC DEE CC
DOTPROD 7 007 5 |3 0.05 25
HEAT 12 0.09 5 |12 0.09 5
LULESH 503 644 82 | 437 632 7.8
MATMUL 13 015 5 |13 015 5
MULTISAXPY 5 0.06 25 |2 0.03 2
NBODY 10 029 26 |10 029 26
STREAM 25 037 135 |7 03 95
WAXPBY 10 016 4 |4 0.14 22

Programmability Evaluation

Table 4.3 shows the different programmability metrics evaluated in this analysis for
different benchmarks. The DEE is a metric that tries to estimate the effort that a
developer must spend to write a given code. In this case, it is measured in person-
months. The size of the code affects the DEE. The CC metric is higher when a code
can take more different paths. For instance, adding an if increases the CC.

In Table 4.3, some benchmarks show no difference between the T version and
the TL version. As previously explained, a frequent way of parallelize an applica-
tion with tasks is using blocking, thereby converting a single loop into two loops,
one to iterate over blocks, and one to iterate over the elements of each block. The
taskloop construct prevents users from requiring this twofold loop structure in
some cases, saving some lines of code. In the case of the Heat, Matmul, and Nbody
benchmarks, the data layout in our implementations is blocked,s o we cannot elim-
inate the twofold loop. Thus, there is no real improvement in programmability for
these benchmarks. In contrast, the Stream benchmark and the LULESH app show
improvements in all the different metrics, reaching up to a 3.57x reduction of code
lines for the Stream benchmark.
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4.7 Conclusions

In this chapter we propose two contributions to overcome limitations of the task-
ing model. On the one hand, focused on performance, a new concept called work-
sharing tasks that leverage the flexibility of tasks and the efficiency of worksharing
techniques to exploit structured parallelism. Our proposal introduces the new for
clause—do clause in Fortran—to the task construct. On the other hand, focused
on productivity, we add support for data dependences to the taskloop construct,
enabling users to fully parallelize loops with tasks using a single construct.

A worksharing task is like a regular task that encompasses a for loop. The key
difference is that this for loop can be run by several workers using worksharing
techniques that have been adapted to avoid any fork-join synchronization to pre-
serve the fine-grained data-flow execution model of regular tasks.

In general, task-based programming models require at least one task per core
to achieve the best performance. This fact provides an upper bound on the task
granularity, which proportionally increases with the problem size but proportion-
ally decreases with the number of cores. Thus, a small problem size combined with
a large number of cores limits task granularity and impacts performance.

Using too fine-grained tasks, the overheads related to task management hin-
der performance; while using too coarse-grained tasks, the number of tasks is not
enough to fully exploit all cores. The lower bound of task granularity that reaches
peak performance is determined by the efficiency of the runtime system to handle
tasks, while the upper bound of task granularity is determined by the problem size
per core.

Worksharing tasks overcome the requirement of one task per core to achieve
high resource utilization by allowing a small number of coarse-grained workshar-
ing tasks that are partitioned into several fine-grained chunks. Worksharing tasks
allow us to increase task granularity up to 64x without limiting the available paral-
lelism. Hence, a small number of worksharing tasks can efficiently exploit a many-
core processor.

Our evaluation shows that worksharing tasks not only outperform traditional
tasks and worksharing techniques, but also advanced combinations of both tech-
niques. Worksharing tasks get up to 9x speedup against the most performant OpenMP
alternative in some scenarios. Moreover, the use of worksharing tasks increases the
range of granularities that reach peak performance. Finally, our proposal does not
add any coding complexity over the traditional task-based implementation.
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The taskloop construct is a directive that distributes the iteration space of a loop
into several tasks. This gives a boost to productivity when using the tasking model.
However, the current implementation of this construct does not cover the vast ma-
jority of cases, because it is missing data dependences support. Therefore, users
are forced to use explicit synchronization points, like in the fork-join model. As
a result, users get a fork-join like structure, with increased overhead compared to
worksharing constructs.

By providing support for data dependences to the taskloop construct, we en-
able users to utilize this directive in the majority of cases. Thus, they are able to
fully convert their loops into tasks with a single directive, maximizing productiv-
ity, while keeping the main benefit of tasks, a lightweight synchronization based
on data dependences.

Our evaluation shows that taskloop with dependences delivers as much perfor-
mance as its manual counterpart, but with a reduced number of lines of code. The
number of lines of source code required to parallelize a code using taskloop with
dependences is 3.57x times smaller than its manual counterpart.

Finally, we provide a single construct that combines the two previous contribu-
tions: the taskloop for construct. This behaves like a regular taskloop but creating
worksharing tasks rather than regular tasks. With this construct, we enable users to
benefit from the performance enhancements of the worksharing tasks while keep-
ing the improvements in programmability introduced by the taskloop with depen-
dences.
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Chapter

Efficient Management of Memory Hierachies (NUMA)

In this chapter, we propose enhancements in the handling of memory hierarchies
focusing on NUMA domains. Increasingly, the memory hierarchies of HPC sys-
tems becomes more complex, and considering the performance gap between mem-
ory and CPU, moving data is too expensive. We propose techniques that can track
the location of data, and move compute rather than data.

5.1 Introduction and Motivation

Dennard scaling is a law that states with every new technology generation, transis-
tors can reduce their area to the half, while keeping their power density constant,
and increasing the frequency. Overall, every new generation, transistors gets faster
while power consumption remains unchanged.

This fact has been true during many years, and processors has been increasing
their performance thanks to this. However, it came to an end around 2006. As a
result, chip manufacturers focused on multiprocessor and multicore architectures
to keep increasing the performance of processors. Following this trend, proces-
sors have been incorporating more and more computing units, and, from several
years ago, it is frequent to find architectures with several sockets in a single shared-
memory space.

The idea of joining several sockets in a single address space simplifies the pro-
gramming of such architectures, but it comes at a cost: the NUMA (non-uniform
memory access) effect. The NUMA effect is a noticeable source of overhead if the
accesses are not correctly managed. We experienced the NUMA effect in some
of the experiments performed in Chapter 4. Concretely, we mentioned in Sec-
tion 4.3.6 that we took some design decisions (the size of teams for worksharing
tasks) to prevent NUMA effects. As well, in Section 4.6.2, we motivate the decision
of using 1 MPI rank per NUMA node in the NUMA effect.
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Additionally, newest trends in processor architectures are introducing on-chip
NUMA. In this, apart from having different sockets in a single memory address
space, each of the sockets include several memory controllers to improve memory
latencies and bandwidth. All the cores within the socket are able to access all the
memory controllers, but at different costs, similarly to the regular NUMA effect.
Some examples of this trend are the Intel Knights Landing processor (KNL) [101],
the IBM Power9 processor [93], the Fujitsu Post-K processor (A64FX) [64], and
the AMD Zen 2 (ROME) processor [107].

The NUMA library, or libnuma, offers an API to handle the NUMA policy in
the Linux kernel. This library provides a set of methods that enable expert users to
perform a proper setup to eliminate or minimize NUMA effects. Nevertheless, it
requires some expertise, reducing the share of users that can successfully utilize it.
Additionally, libnuma provides methods to handle the allocation of data, to place
data where it is best, or functions to move data, but the user is still in charge of
doing a proper work scheduling to reduce data movement or remote accesses from
one socket to others.

Linux also provides the numactl functionality. This is a command that enables
users to run a process with a specific NUMA scheduling or memory placement pol-
icy. Itis easier to use than libnuma, but still insufficient, leaving the work scheduling
to the user.

In this chapter, we propose a new approach that improves data locality on NUMA
systems. Our solution is based on the OmpSs-2 programming model, a directive-
based task-based parallel programming model, similar to OpenMP. We first pro-
vide a simple API to properly allocate memory in NUMA systems using different
policies. Then, using the information provided by the user to specify dependences
between tasks, combined with the information collected when application’s data is
allocated, the runtime library is able to perform a NUMA-aware work scheduling.

Our contribution includes:

1. a simple and flexible API to distribute memory among different NUMA
sockets in several possible ways (e.g., equally partitioned among all the nodes,
block-cyclic, etc.), that can be used in C++ STL

2. adata-tracking system to know exactly where is the application’s data

3. a NUMA-aware scheduling system that takes into account data locality and
system load to minimize data motion and load imbalance.
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5.2 Background

Architectures with several sockets in a single shared-memory address space are
ubiquitous in modern HPC systems. Thus, the importance of adequately managing
these architectures is crucial to maximize the performance of such systems.

One frequent problem of multi-socket systems is the NUMA effect. In this kind
of systems, each socket has its own memory, but the compute units can access all
the memories, regardless of the socket they belong to. Obviously, in the physical
layout of the processor, some memories are closer than others, and so accessing
remote memories is more expensive than accessing the local memory.

The default NUMA policy in Linux is first-touch. With this policy, when memory
is allocated, it is not actually placed until it is either read or written for the first
time. This policy places the memory in the NUMA node of the compute unit that
firstly touched data. This policy can easily lead to suboptimal distribution of data,
negatively affecting application performance. Thus, the first step to minimize the
NUMA effect is a proper distribution of data.

As we explained earlier in this document, a very common way of program-
ming shared-memory environments is using parallel programming models, such
as OpenMP. OpenMP provides two main ways of exploiting parallelism: using
worksharing constructs and using tasking constructs. Next, we provide a brief re-
call about those strategies.

Worksharing constructs distribute the work among all the available threads, and
wait at the end until all the threads have finished. This technique introduces very
few overhead, but implies a very rigid synchronization, that makes it a bad option
for imbalanced or irregular workloads.

Tasking constructs provide a more lightweight synchronization by using data
dependences. A task can run as soon as all of its data dependences are satisfied.
Thus, it is less frequent to waste time waiting for other threads to finish their work,
as happens with worksharing constructs. However, task management introduces
more overhead than worksharing constructs, especially when using small gran-
ularities. Notwithstanding, the issue of granularity has already been covered in
literature [80][72].

For the purposes of this work, tasking is specially the right choice because of
the extremely valuable information that data dependences provide to the runtime
system. As users already has to annotate the data that is read or written in a task,
we can use that information to perform a good scheduling, sending tasks to com-
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pute units in the right NUMA socket, which is the one with a biggest share of data
accessed in a task.

As said, tasks can run as soon as all of its dependences are satisfied. In fact, when
all the dependences of a task are satisfied, the task becomes ready. At this point,
the runtime system schedules it for execution, and the task will run as soon as a
compute unit gets it from the ready queue. If there is no specific scheduling policy,
the task may run in a compute unit of the wrong NUMA socket, experiencing an
important performance penalty for accessing to remote nodes. This is the second
key point to minimize NUMA effect, a proper work scheduling.

To sum up, there are two main challenges to minimize the NUMA effect, as
demonstrated in [27][26]:

1. A proper distribution of data.
2. A proper work scheduling based on data location.

Both are equally important, because if a single one fails, it could jeopardize the
performance of the application.

5.3 Nanos6 NUMA Allocation API

We already stated in previous sections the importance of a proper distribution of
data to minimize NUMA effects. In this section, we present the Nanos6 NUMA
allocation API. This is a simple API that offers a lot of possibilities to users. Con-
trasting with other contributions of the thesis where we used directives, we provide
here an API for two reasons. Firstly, an API gives users the possibility of distribut-
ing their data over the different NUMA domains without requiring a compiler.
Besides that, in our other contributions, the use of directives actually provides a
benefit, usually in terms of programmability requiring less effort from the user
side. In this case, the user would have to provide the same parameters to the com-
piler than it does directly to the runtime. The compiler would not be adding any
real value, only replacing the API call by a directive, but the rest would remain the
same.

Next, we introduce the methods included in the API, and detail their behavior.

nanos6_numa_alloc_block_interleave(size, bitmask, block_size): This method
serves to allocate data. Users should replace their regular allocation function (e.g.,
malloc, mmap, new, etc.) by this one. It allocates size bytes, interleaving blocks of
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block_size among the nodes specified in bitmask. This very simple function offers
a lot of possibilities. For instance, in Listing 5.1 we show (1) how to spread data
among all the available NUMA nodes, (2) how to allocate all the data in a single
NUMA node, (3) how to distribute data using a block-cyclic policy among all the
available NUMA nodes.

nanos6_numa_alloc_sentinels(size, bitmask, block_size): This method serves
to allocate sentinels or representatives. A detailed use case for this method is shown
in Section 5.3.1. Briefly, it allocates size bytes, but rather than actually interleaving
blocks of block_size among the nodes specified in bitmask, it allocates everything
in a single node but annotates it as if it was distributed.

nanos6_numa_free(ptr): Users can invoke this method to release memory. ptr
is the pointer to free, and it must be a pointer returned by the nanos6 NUMA
allocation function. Apart from the memory release, it also removes the associated
directory information.

nanos6_bitmask_clearall(bitmask): Sets all bits of bitmask to 0.

nanos6_bitmask_clearbit(bitmask, n): Sets the n-th bit of bitmask to 0.

nanos6_bitmask_setall(bitmask): Sets to 1 the N least significant bits of bit-
mask, being N the the available number of NUMA nodes in the machine.

nanos6_bitmask_setbit(bitmask, n): Sets the n-th bit of bitmask to 1.

nanos6_bitmask_set_wildcard(bitmask, wildcard): Sets bitmask to the corre-
sponding value depending on the wildcard. Supported wildcards are NUMA_ALL,
which represents all the nodes available in the system; NUMA_ALL_ACTIVE, which rep-
resents the nodes where we have all the cores assigned; and NUMA_ANY_ACTIVE, which
represents the nodes where we have any of the cores assigned..

nanos6_bitmask_isbitset(bitmask, n): Returns the value of the n-th bit of bit-
mask.

nanos6_count_setbits(bitmask): Returns the amount of enabled bits in bitmask.

The default value of the bitmask is unspecified. Thus, users must use the bitmask
manipulation methods to ensure a correct value.

Listing 5.1: Examples of nanos6 NUMA allocation method

nanos6_bitmask_t bitmask;
nanos6_bitmask set wildcard(&bitmask, NUMA ALL);
int NUMA nodes = nanos6_count_setbits(&bitmask);
size t size = 4096*sizeof(int);

// Case 1: Distribute data among all the NUMA nodes
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size_t block_size = size/NUMA_nodes;
void *A = nanos6 _numa_alloc_block interleave(size, &bitmask,
block size);

// Case 2: Allocate all data in a single NUMA node (node 0)

int node_id = 0;

nanos6_bitmask clearall(&bitmask);

nanos6_bitmask setbit(&bitmask, node_id);

size t block size = size;

void *B = nanos6_numa_alloc_block interleave(size, &bitmask,
block _size);

// Case 3: Block-cyclic among all the NUMA nodes

nanos6_bitmask set wildcard(8bitmask, NUMA _ALL);

size t block size = 512*sizeof(int);

void *C = nanos6_numa_alloc_block interleave(size, &bitmask,
block _size);

5.3.1 Support for Representatives

In our implementation, we leverage the libnuma to place memory where the user
requests. We first allocate the virtual memory using mmap, and then, we use some
libnuma methods to place the allocated memory where the user asked to. Never-
theless, the minimum granularity that can be moved is a memory page. In conse-
quence, if the user tries to allocate a chunk of memory smaller than page size, or
asks to interleave blocks that are smaller than page size, the OS cannot handle it.
This is a possible scenario in applications that are written using representatives/sen-

tinels instead of the actual data. Listing 5.2 shows a real example of such a scenario.
The code simulates the Heat equation using Gauss-Seidel solver.

Listing 5.2: Gauss-Seidel using representatives

static inline void gaussSeidelSolver(int64 t rows, int64_t cols,
int rbs, int cbs, int nrb, int ncb, double M[rows][cols], char
reps[nrb][ncb])

for (int R = 1; R < nrb-1; ++R) {

for (int C = 1; C < ncb-1; ++C) {
#pragma oss task label(block computation) \
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10C]) in(reps[R

+1]

C-1]) in(reps[R

\

inout (reps[R][C])

computeBlock (rows, cols, (R-1)*rbs+1, R*rbs
, (C-1)*cbs+1, C*cbs, M);

}

void solve(HeatConfiguration *conf, int64_t rows, int64_t cols, int
timesteps, void *extraData)
{
double (*matrix)[cols] = (double (*)[cols]) conf->matrix;
const int rbs = conf->rbs;
const int cbs = conf->cbs;

const int nrb = (rows-2)/rbs+2;
const int ncb = (cols-2)/cbs+2;
char representatives[nrb][ncb];

for (int t = 0; t < timesteps; ++t) {
gaussSeidelSolver (rows, cols, rbs, cbs, nrb, ncb,
matrix, representatives);

}

#pragma oss taskwait

The actual data is blocked, and the dependences are over a whole block, all of
them of the same size. To facilitate the writing of the dependences, it uses a matrix
of representatives where each block is represented by a single element. In this way,
regardless of the block size, or the matrix size, the dependences are always correct
and easy to understand. Representatives are similar to sentinels but present a key
difference: usually, sentinels are the first element of a block of the real accessed
data, while representatives are a new portion of memory with a single element per
block, representing the whole block. In both cases a single element represents a
whole block, but for sentinels it is an element of the real accessed data, while in
representatives it is not the real accessed data.

Notwithstanding, for our proposal, this is a problem because the representatives
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matrix is much smaller than the actual matrix, and so, we cannot actually distribute
data in different sockets, because the blocks are smaller than page size, and, as said,
libnuma does not provide any possibility of moving blocks smaller than page size.
As a result, when running the tasks with dependences expressed using representa-
tives, we would do a wrong scheduling, because data is not where we believe.

To overcome this limitation, we have decided to allocate data in a single node,
but annotate in our global directory (detailed in Section 5.4) the data regions as if
we could actually distribute them the way the user asked to. We can do so by us-
ing the nanos6_numa_alloc_sentinels method. As this is not the data that is being
actually accessed, it is not really important where it resides. In fact, the important
thing is to mimic as accurately as possible the distribution of the data actually ac-
cessed, and we truly believe that this is the best solution to support this scenario.
Note that the data actually accessed must be allocated using our API too.

5.4 Nanos6 Data Tracking System

To perform a proper work scheduling, we need to know (1) where is the data, and
(2) what data reads/writes each task. In this section, we detail how we obtain this
knowledge to be later used in the scheduling system.

Our data tracking system contains a global directory that stores in which NUMA
node resides all the data that has been allocated using the Nanos6 API. However,
a single allocation may reside in several different NUMA nodes, since each of the
pages can be placed in a different socket. Figure 5.1 shows the distribution of data
and its entries in the directory of the allocations done in Listing 5.1. In the direc-
tory, there is an entry for each of the regions that belong to a different socket.

Figure 5.2 shows a more complex situation, where rather than just dividing the
overall data region in as many blocks as the available NUMA nodes, the data is
divided in many more regions, performing a block-cyclic distribution. Again, the
directory stores an entry for each of the regions belonging to a different socket.

The global directory is protected with a lock, to prevent data corruption. This
could be a big source of overhead if not properly managed, because there could
be many concurrent interactions with the directory, but only a single thread can
access it at a time. Firstly, we use a read-writelock. This kind of lock allows multiple
readers to enter the protected area concurrently, while it only permits one single
writer (and no readers) at a time.

The most frequent pattern for memory allocation/deallocation is to perform the
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Directory

| Al0-1K] -> NUMA 0

| AI1K-2K] -> NUMA 1

NUMA 0 NUMA 1 NUMA 2 NUMA 3
AJ0-1K]

B[0-4K] A[2K-3K]

C[0-2K] A[1K-2K] C[2K-4K] ptr[3K-4K]

| Al2K-3K] -> NUMA 2

| AI3K-4K] -> NUMA 3

| BI0-4K] -> NUMA O

| Cl0-2K] -> NUMA 0

| C[2K-4K] -> NUMA 2

Figure 5.1: Nanos6 directory tracking different memory regions.

// Block-cyclic data distribution
nanos6_bitmask t bitmask;

nanos6_bitmask_ set_wildcard(&bitmask, NUMA_ ALL) ;
int NUMA nodes = nanos6_count_setbits (&bitmask);
size_t size = 8192*sizeof (int);

size_t block_size = 1024*sizeof (int);

void *A =

nanos6_numa_allocate_block interleave(size,
&bitmask, block_size);

Directory

| ptr{0-1K] -> NUMA 0

| pr1K-2K] -> NUMA 1

| ptr[2K-3K] -> NUMA 2

| ptr[3K-4K] - NUMA 3

| pr4K-5K] -> NUMA 0

NUMA 0 NUMA 1 NUMA 2 NUMA 3
ptr4K-5K] ptr{5K-6K] ptrBK-7K] ptr{7K-8K]
ptr[0-1K] ptr1K-2K] ptr2K-3K] ptr3K-4K]

| pir{5K-6K] -> NUMA 1

| pt6K-7K] -> NUMA 2

| ptr[7K-8K] -> NUMA 3

Figure 5.2: Nanos6 directory tracking different memory regions in a more complex scenario.
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Figure 5.3: Detailed analysis of differentimplementations of the Nanos6 Data Tracking System on different granularities
of the Cholesky benchmark

allocation at the beginning and the deallocation at the end of applications. With
such a pattern, all the modifications of the directory are done at the beginning
and at the end, because it is only modified to insert new entries on allocations,
and to erase entries on deallocations. Additionally, in this pattern of allocations
at the beginning and deallocations at the end, the usual case is that there is no
threading yet, so there is a single thread writing in the directory. Thus, theoretically,
no significant overhead is introduced up to this point.

Thanks to the data dependences of the tasks, we can easily know which data
accesses each task. Thus, we can simply query the directory to know where resides
the data of each task. Given that queries do not modify the directory, they can be
performed as a reader, and so as many threads as desired can enter the protected
area, minimizing the overhead. Nevertheless, we saw that it still introduced some
overhead, especially with fine-grained tasks.

Therefore, we implemented a further optimization to minimize the number of
queries to the directory. When tasks register their dependences, before querying
the directory, we try to propagate the location of data from parents or siblings. We
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use the same mechanism that propagates satisfiability (i.e. when a task becomes
ready) to propagate the location, so the overhead is kept very low. If no propagation
is possible, then, we do a query. In practice, this means that only the first task
that accesses a data region performs a query, and all the rest are able to get it by
propagation. Overall, introducing negligible overhead.

Figure 5.3 shows a comparison between several implementations of the track-
ing system. In the figure, BL is the baseline, a regular OmpSs-2 parallelization with
no numa-awareness at all; in the LOCK version, the global directory is protected by
a regular lock; in the RWLOCK version, a read-write lock protects the global direc-
tory; the DEPS version uses the propagation through the dependency system. In
these versions, there is no NUMA scheduling, they are just intended to measure
the overhead of the tracking using the different implementations. Finally, there is
the FINAL version, that uses the propagation through the dependency system, and
adds the NUMA scheduling. The chart shows speedup compared to the BL version
in the y-axis, and block size in the x-axis. It is possible to see how the tracking
introduces more overhead in the fine granularities. Also, we can observe that the
DEPS version is the one that introduces fewer overhead across all the granularities.
Finally, we see a boost in performance when adding the NUMA scheduling, actu-
ally reaching speedup against the baseline.

We measured the performance of the explained versions for all the benchmarks
of our evaluation. Based on the previous analysis, we selected a fine granularity to
see if the behavior remains across the different applications. We show the results of
this measurement in Figure 5.4. We can see almost no differences between the LOCK
and RWLOCK versions. Nonetheless, the DEPS version is able to outperform the other
two versions across all the benchmarks because it reduces considerably the number
of queries. Finally, we can observe the FINAL version increasing the performance
with respect to the DEPS version in most of the benchmarks.

5.5 Nanos6 NUMA-Aware Scheduling System

The scheduling system enables us to minimize remote memory accesses by schedul-
ing tasks to the NUMA node with better affinity. Our NUMA-aware scheduling
system contains one ready-queue per NUMA node available in the execution. To
decide in which ready queue we have to add a task, we compute an affinity score.
The NUMA node with the highest score, is the NUMA node where the runtime
system enqueues the task.
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Figure 5.4: Analysis of different implementations of the Nanos6 Data Tracking System

The runtime library computes the score of a task using the information of the
data tracking system detailed in Section 5.4. Each of the accesses of a task contains
the location where it resides. Using the locations, the type of access (in, out or
inout), and the weights of each access, we can easily compute the amount of bytes
that each NUMA node contains, and derive a score. Each task contains its own
accesses, and can get the location, type and weight of each access without any kind
of synchronization, introducing a minimal overhead. Concretely, the score is the
number of bytes of the task that a NUMA node contains. In case an access is an
inout access, then, the number of bytes of that access counts double. The pseudo-
code in Listing 5.3 shows how we compute the score.

Listing 5.3: Compute of NUMA score

for (node in NUMANodes)
score[node] = 0.0

for (access in task.getAccesses())

homenode = access.getHomenode()
if (access.isReadWrite())
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score[homenode] += access.getSize() * 2.0;
else
score[homenode] += access.getSize()

So the tasks are enqueued in the ready queue of the NUMA node that obtained
the highest score. Thus, when a compute unit requests work from the scheduling,
the runtime system checks its NUMA socket, and tries to get a task from the specific
ready queue of that socket. If it is not possible, because there are no ready tasks,
it steals tasks from the ready queues of other NUMA nodes. The stealing is done
based on two factors: (1) the distance between the NUMA nodes, and (2) the load
balance. We try to steal tasks from closer NUMA nodes to reduce the NUMA
effect penalty. However, if a NUMA node contains only a few tasks, we steal from
other queues with a higher number of tasks to prevent further stealing, due to the
associated NUMA effect penalty that it has.

Additionally, our runtime system implements an immediate successor mecha-
nism. This mechanism tries to exploit temporal locality by skipping the regular
logic of the scheduler and directly executing successor tasks. When a task finishes
and releases its dependences, some of its successor tasks may become ready. If that
is the case, the finished task and the successor task are obviously sharing some data,
soitisa good idea to run the successor task immediately in the same core to exploit
the temporal locality. This mechanism has priority over the NUMA mechanism,
because the temporal locality may expire while the spatial locality of the NUMA
does not.

Opverall, this system minimizes data motion by moving compute to where data
is rather than the other way around. As a result, the NUMA effect is mitigated, and
the performance improves.

5.6 Changes Required in the Application

To benefit from our approach, users require very few and simple changes in their
codes. They just have to replace regular allocation/deallocation calls by the alloca-
tion/deallocation functions of the Nanos6 NUMA API, and specity the size of the
regions accessed when writing task dependences. We would like to highlight that
users do not have to replace all the allocations/deallocations, but only those that
are used within tasks dependences, which is the information used by the runtime
to guide the scheduling.

113



ORIGINAL NUMA-AWARE

out (c[i*TS ; TS])

S]) out (b[i*TS;TS])

1, bli*Ts

S]) out(c[i*TS

), cli*Ts;Ts]) out(albloc

Figure 5.5: Changes required in the application to use the Nanos6 NUMA-aware system

Figure 5.5 show a baseline code in the left, and the same code with the modifi-
cations required to exploit our solution in the right. The code is a simplification of
the Stream benchmark. As can be seen, we replace the regular allocation/deallo-
cation by the Nanos6 NUMA API methods, and we add the size of the region in
each of the dependences.

5.6.1 Dealing with C++ Standard Library

Using the Nanos6é NUMA API is a bit more complicated if we use containers from
the C++ Standard Library, such as std::vector. In this case, we need to define
a STL-compliant allocator that uses the Nanos6 NUMA API for allocating/deal-
locating, and pass this allocator to each of the containers when they are created.
Listing 5.4 shows a simplified example of how to this.

Listing 5.4: Using Nanos6 NUMA APl with C(++ STL

template typename<T>
class STL allocator {

pointer allocate (size_ type n) {

size t size = n*sizeof(T);
size t block_size = size/numa_nodes;
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pointer ptr = (pointer) nanos6_numa_alloc block interleave(
size, &bitmask, block _size);

}

void deallocate (pointer p, size type n) {
nanos6_numa_free(p);
}
}s

std::vector<int , STL allocator<int> > v;

5.7 Evaluation and Discussion

In our evaluation, we include a detailed analysis of a well-known memory-bound
benchmark, the Stream benchmark. In this analysis, we add the different compo-
nents step by step to see their impact.

After that, we perform an analysis of several applications/benchmarks using all
the optimizations to prove that our approach is able to get benefit across different
scenarios.

5.7.1 Environment

Regarding the execution environment, all the experiments were carried out on two
different platforms. A node of platform A is composed of 2 sockets Intel Xeon Plat-
inum 8160 2.1GHz 24-core [21], eack socket containing a single NUMA node. A
node of platform B is composed of 2 sockets AMD EPYC 7H12 2.6Ghz 64-core,
each socket containing 4 NUMA nodes. Figure 5.6 shows the distances between
NUMA nodes of both platforms. Regarding the software, we used the Mercurium
compiler [11] (v2.3.0), the Nanos6 runtime [12] (v2.4.1), the gcc and gfortran com-
pilers (v7.2.0 in platform A, v10.1.0 in platform B), and the Intel compilers (v17.0.4
in platform A, and v19.0.5 in platform B).

5.7.2  Applications and Benchmarks

The applications and benchmarks used in the evaluation are listed following:
Cholesky. This benchmark performs a Cholesky factorization.
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Figure 5.6: Distances between NUMA nodes
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Heat (Gauss-Seidel). This benchmark performs a 2D heat transfer simulation
using a Gauss-Seidel solver.

HPCCG. This is a simple conjugate gradient benchmark code for a 3D chimney
domain. It is part of the Mantevo project.

HPCG. This application implements a preconditioned conjugate gradient. Itisa
well-known application used to benchmark HPC systems as a complement of the
High Performance Linpack (HPL).

LULESH. This application models the propagation of a Sedov blast wave. De-
veloped by the Lawlerence Livermore National Lab, it is one of the five challenge
problems in the DARPA UHPC program.

Matmul. This benchmark is a typical matrix multiplication kernel using Intel
Math Kernel Library.

MiniAMR. This application applies a stencil calculation on a unit cube compu-
tational domain. It supports adaptive mesh refinement. It is part of the Mantevo
project.

N-Body. This benchmark simulates a dynamical system of particles.

Stream: The Stream benchmark measures the sustainable bandwidth and the
corresponding computation rate for a simple vector kernel. It is part of the HPC
Challenge Benchmarks.

All of them have been ported to OmpSs-2, using a fully taskified paralleliza-
tion. Table 5.1 shows the number of lines of code changed to use the OmpSs-2
NUMA-aware system. Although, usually, it is only required to allocate the main
data structures of the applications to benefit from the OmpSs-2 NUMA-aware sys-
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Table 5.1: Number of lines of code changed to use the OmpSs-2 NUMA-aware system.

Number of lines changed

CHOLESKY 5
HEAT 10
HPCCG 41
HPCG 59
LULESH 157
MATMUL 9
MINIAMR 86
NBODY 12
STREAM 9

tem, we replaced all the regular allocations/deallocations by those of the Nanos6
NUMA APL

5.7.3 Performance

As previously introduced, we include two different experiments in this evaluation.
One detailed step-by-step analysis using the Stream benchmark, to see the impact
of the different components of the Nanos6 NUMA-aware system; and one experi-
ment using several applications and benchmarks with the whole set of components
of the Nanos6 NUMA-aware system to demonstrate that it is beneficial across dif-
ferent scenarios.

Detailed Analysis of Stream Benchmark

Figure 5.7 shows the results of the detailed analysis. In the x-axis, we show two
different block sizes, OPTIMAL BS and BIG BS. The first block size is one that reaches
the peak performance, thanks to a good exploitation of cache locality. The second
block size is one bigger block size that does not fit in cache, so it gets much lower
performance. The y-axis shows speedups, using 1-FT as the baseline. Each of the
bars represent a different version:

1-FT. Regular OmpSs-2 version using the default allocation policy (first touch)
running with a single NUMA node.
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Figure 5.7: Detailed analysis of Nanos6 NUMA-aware system using the Stream benchmark

2-FT. Regular OmpSs-2 version using the default allocation policy (first touch)
running with two NUMA nodes.

2-TRACK. OmpSs-2 version running with two NUMA nodes, with Nanos6
NUMA tracking system enabled. This version allows us to prove that the track-
ing introduces no significant overhead.

2-TRACK+ALLOC. OmpSs-2 version running with two NUMA nodes, with
Nanos6 NUMA tracking system enabled and NUMA-aware allocation using the
Nanos6 NUMA API. This version allows us to prove that a proper allocation is not
enough to mitigate the NUMA effect.

2-TRACK+SCHED. OmpSs-2 version running with two NUMA nodes, with
Nanos6 NUMA tracking system enabled and NUMA-aware scheduling. This ver-
sion shows that the NUMA-aware work scheduling is not effective without the in-
formation provided during the allocation.

2-TRACK+ALLOC+SCHED. OmpSs-2 version running with two NUMA nodes,
with complete Nanos6 NUMA-aware system enabled. This version shows that the
combination of a good data distribution and a proper NUMA-aware work schedul-
ing can mitigate the NUMA effect.
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This experiment has been performed in platform A, so the machine used in this
experiments contains two NUMA sockets. Therefore, ideally, we should be able to
double the performance of 1-FT when using two NUMA nodes. In Figure 5.7 we
can see different results for the two block sizes. In the case of OPTIMAL BS, none of
the versions is able to double the performance. The reason behind this is the cache
locality. This block size uses a data set that fits in cache, and so, there are very few
accesses to main memory, so the NUMA effect has a smaller impact. Even though,
we can see that 2-TRACK has very similar performance than 2-FT, so the overhead
of the tracking system is minimal.

2-TRACK+ALLOC presents worse performance than 2-FT. 2-TRACK+ALLOC distributes
data among the two available NUMA nodes, but then there is no NUMA-aware
scheduling, so there are many accesses to the remote node. In the case of 2-FT,
it relies on the default NUMA policy (i.e. first touch), so pages are placed in the
NUMA node of the CPU that runs the initialization tasks. Therefore, for 2-FT all
the initialization tasks suffer no NUMA effect, while the NUMA effect may penal-
ize 2-TRACK+ALLOC. In the rest of the execution, usually the same CPU that runs the
initialization tasks gets the successors, so, at least the first bunch of tasks usually
run in the right NUMA socket. In contrast, in the 2-TRACK+ALLOG, if the initial-
ization task ran in the wrong NUMA socket, probably the successors will do so,
overall being more penalized.

2-TRACK+SCHED bar is slightly worse than 2-FT. This is because we are paying the
penalty of performing the data tracking and the NUMA-aware scheduling, but it
is useless because we have no information about the data, since we get it from the
allocation.

Finally, 2-TRACK+ALLOC+SCHED gets 10% more performance than 2-FT. This proves
that with all the components enabled, the NUMA effect is mitigated, and perfor-
mance improves.

The trends are very similar for the BIG BS, and the explanations too. The only
significant difference is that 2- TRACK+ALLOC+SCHED actually gets very close to ideal
speedup (i.e. 2x speedup) because in this case the cache is useless, and the vast
majority of accesses use main memory. Thus, when we mitigate NUMA effect, we
are able to get all the bandwidth from both NUMA nodes.

Analysis of Several Applications/Benchmarks

This experiment involves several versions. The names that appears in the legends
of figures as follows: 1-FT. Regular OmpSs-2 version running with a single NUMA
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node.

N-FT. Regular OmpSs-2 version running with N! NUMA nodes.

N-INTERLEAVED. OmpSs-2 version using numactl to perform data interleav-
ing, running with N' NUMA nodes.

N-TRACKING). OmpSs-2 version with NUMA-awareness enabled running with
N! NUMA nodes. NUMA-awareness includes proper allocation using Nanos6
NUMA api, data tracking and NUMA-aware scheduling.

The versions 1-FT serve us as baseline. The optimal scenario is to get as many
speedup, compared to the baseline (a single NUMA node), as NUMA nodes avail-
able in the system.

For each of the benchmarks/applications, we selected a big problem size that
does not fit in none of the levels of cache. We selected big block sizes as well, also
to prevent them from fitting in cache. The overall objective of these choices is to
focus on NUMA ignoring caches. Nevertheless, is fair to point out that for the
used benchmarks/applications, the optimal block size (i.e. the one that reaches
peak performance) does not fit in cache except for the Stream benchmark, which
we already analyzed in detail in the previous experiment. So, in this experiment,
we are using the optimal block size for all the benchmarks/applications but the
Stream benchmark.

Figure 5.8 shows the results for the benchmarks in platform A, and Figure 5.9
shows the results of the applications/benchmarks platform B. In the x-axis there
are different benchmarks, and in the y-axis there are speedups. The speedups are
computed using 1-FT as the baseline.

Regarding Figure 5.8, for Cholesky, 2-FT reaches almost 1.75x speedup com-
pared to 1-FT, that is quite good considering that the optimal is 2x. 2-TRACKING
slightly enhances the speedup up to 1.85x, close to the optimal. Finally, 2- INTERLEAVED
presents a small downgrade compared to 2-FT. This fact stresses the importance of
combining a good data distribution with a proper work scheduling, showing that
simply distributing data is not enough.

For Heat, 2-FT performs very similarly to 1-FT. This fact suggests a huge impact
of the NUMA effect in 2-FT. This is confirmed looking at the results of 2-TRACKING
and 2-INTERLEAVED, that are able to reach up to 1.86x and 1.95x speedup, respec-
tively.

In HPCCG, we see that 2-FT performs even worse than 1-FT, and so does 2-INTERLEAVED.
In contrast, 2- TRACKING reaches a 1.85x speedup, very close to the ideal speedup of

' N is the number of NUMA nodes available in the system
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Figure 5.8: Analysis of Nanos6 NUMA-aware system in platform A

2x.

The HPCG behaves similarly to the HPCCG. In this case, 1-FT outperforms 2-FT,
and performs similarly to 2-INTERLEAVED. Again, 2-TRACKING outperforms all the
versions, reaching up to 1.75x speedup.

In LULESH, none of the versions is able to reach more than 1.25x speedup.
LULESH presents a very complex access pattern that makes very difficult to prevent
accesses to the remote node. 2-FT is slightly better than 1-FT, but as said, due to the
complex access pattern of the application, there are many accesses to the remote
node, jeopardizing the performance. 2- INTERLEAVED shows a speedup very similar
to 2-FT. 2-FT(TRACKING) boosts performance a bit, but it is still far from the ideal
speedup. In this case, our system is not so effective because the parallelization of
this application is focused on maximizing the parallelism of the application while
assuring a correct result, but the data annotations do not always contain the data
that is really accessed because the parallelization is coded using sentinels.

In Matmul, 2-FT is very close to the optimal speedup with a 1.9x speedup, and
soo does 2-TRACKING. In contrast, 2- INTERLEAVED shows a significant performance
reduction, stressing again the importance of a good work scheduling.
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Figure 5.9: Analysis of Nanos6 NUMA-aware system in platform B

MiniAMR also presents a complex access pattern that difficults preventing ac-
cesses from remote nodes. As a result, 2-FT presents very low improvement com-
pared to 1-FT. Our NUMA-aware system is able to mitigate the NUMA effect, and
scale up to 1.68x. Regarding 2-INTERLEAVED introduces a very slight improvement
compared to 2-FT, but far from 2-TRACKING.

The N-body simulation is a compute-bound benchmark, so the NUMA effect
does not affect it, because the memory bandwidth is not the bottleneck. As a result,
all the versions using 2 NUMA nodes are very close to the ideal speedup.

For the Stream benchmark, 2-FT reaches 1.5x speedup, leaving some room for
improvement. 2-TRACKING is able to boost performance up to a 1.99x, reaching the
optimal speedup. Finally, 2- INTERLEAVED again show the necessity of a good work
scheduling.

Respecting Figure 5.9, trends are similar to those in platform A, where 8-FT usu-
ally suffers NUMA effect, and 8-TRACKING and 8-INTERLEAVED mitigate the men-
tioned NUMA effect, with 8-TRACKING usually delivering the best performance.

In Cholesky, 8-FT barely reaches a 2x speedup, while the ideal speedup is 8x.
Both 8-TRACKING and 8-INTERLEAVED heavily boost performance, reaching up to
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6.1x and 6.4x speedup, respectively.

Similarly, in the Heat benchmark, 8-FT only reaches a 2.35x speedup, while
8-TRACKING and 8-INTERLEAVED reach 6.6x and 4.73x respectively, mitigating the
NUMA eftect.

The trend continues in the HPCCG benchmark, where 8-FT does not even reach
a 2x speedup, while 8-TRACKING and 8- INTERLEAVED can mitigate the NUMA effect
and speed up the application up to 4.6x.

The NUMA effect is terrible in the HPCG benchmark, where 8-FT performs even
worse than 1-FT. One more time, 8-TRACKING and 8- INTERLEAVED are able to mitigate
the NUMA effect, but are still affected.

In platform B, the issue of LULESH is even more clear. None of the versions
is able to reach not even a 3x speedup, although the resources are multiplied by
8. Additionally, the problem with the parallelization not really specifying the ac-
cessed data already explained in platform A, makes that 8-TRACKING delivers worse
performance than 8-FT. This makes clear that our system only works well when the
data annotations contain the data that is accessed.

The Matmul benchmark shown no NUMA effect in platform A. In this case,
in platform B, it really affects, although its effect is much smoother than in other
benchmarks. Again, 8-TRACKING and 8-INTERLEAVED can mitigate the mentioned
effect, reaching speedups of 7.1x and 6.1x, respectively.

Like the Matmul benchmark, the N-body simulation shown no NUMA effect
in platform A. In platform B, there is a slight NUMA effect, that causes that an
increase of 8x in the resources only becomes a 6.4x speedup in performance.
8-TRACKING slightly boosts performance reaching up to a 6.6x speedup.

Finally, the Stream benchmark shows also a smooth NUMA effect. In this case,
8-INTERLEAVED barely improves the performance of 8-FT. However, 8-TRACKING is
able to reach up to 7x speedup.

Overall, our tracking system is able to mitigate the NUMA effect accross several
different applications/benchmarks and platforms, reaching the optimal speedup
in some of them. Additionally, it is able to outperform in most of the application-
s/benchmarks, in both platforms, the interleaving done using the numactl com-
mand even though this command is able to interleave also the memory managed
inside the runtime, while our approach only affects to application memory.
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5.8 Opportunities at Scale

In this work, we focused our evaluation on single-node environments. However,
based on the results shown on the evaluation, our work opens opportunities at
scale.

Usually, applications run at scale rely on MPI parellelizations or hybrid MPI+X
parallelizations. Based on previous works [73], the best configurations for MPI use
1 MPI process per core, and for MPI+X use 1 MPI process per NUMA node. In the
case of MPI+X, it is done to prevent NUMA effect from jeopardizing application
performance. With our approach, we could be using a single MPI process per node,
dramatically reducing the total number of MPI processes required. Considering
the platforms used in the evaluation of this work, while a pure MPI parallelization
would require 48 processes per node and 128 processes per node in platform A and
platform B, respectively, our approach would require only 1 process per node. An
MPI+X hybrid parallelization would require 2 process per node and 8 processes
per node in platform A and platform B, respectively, while our approach would
only require 1 process per node.

Reducing the number of MPI processes may have important implications in
terms of performance [51][52], correctness [68], and memory [9][52].

Several works report scalability issues related to the management of communi-
cators and groups [52][58][32] when the number of processes grow, affecting both
performance and memory. Based on the work done by Bernholdt, et. al., commu-
nicators and groups management is a feature widely used in current applications,
and it will continue to be in exascale applications [23]. Other works suggest that the
time spent in communication grows when the number of processes increases [62].
Vetter, et. al. [116] studied the impact of the number of processes in the total num-
ber of messages sent, finding a relationship between them: the more processes, the
more messages. In the same work, they found that, usually, increasing the number
of processes also causes to send smaller messages. Traditionally, the communica-
tion library introduces a constant penalty per communication, regardless of the
actual size of the message [116]. Therefore, if messages are smaller, the penalty is
proportionally bigger, incurring in an increased communication overhead.

In the future, we will study if our approach is able to mitigate this issues by its
ability to reduce the total number of MPI processes. Additionally, our approach
can also deal better with load imbalance. Fewer processes means coarser chunks
of the dataset per process. Besides that, within each process, we use a task-based
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programming model which inherently copes better with load imbalance. Coarser
chunks per process means more tasks per process, so our runtime system could do
a better handling of the load imbalance and mitigate its effect.

Finally, another advantage of reducing the number of processes is the ability to
scale to more cores. In strong scaling scenarios, it may happen that a dataset of
an application cannot be split in more MPI processes [73]. With our approach, we
require fewer MPI processes to use the same total core count.

5.9 Conclusions

The stagnation of single-thread performance led the industry to introduce multi-
processor architectures to keep enhancing performance of processors. This trend
of adding more compute units inside a single processor made frequent to find sev-
eral sockets working together in a single shared-memory space by using NUMA.
Nevertheless, the NUMA effect might jeopardize the performance of applications
if not properly handled.

In this work, we propose the Nanos6 NUMA-aware system that provides (1) a
simple memory management API to distribute data among different NUMA sock-
ets, (2) a data tracking system that keeps track of the location of the memory re-
gions allocated using (1), and (3) a NUMA-aware scheduler that schedules tasks
in the more appropriate NUMA node, based on their data dependences and data
location.

Our solution is very simple and require little effort from the user side, while re-
ducing the NUMA effect. Our evaluation shown that we are able to outperform
other state-of-the-art approaches such as the use of numactl across several differ-
ent benchmarks in different platforms, being able to reach the optimal speedup in
several of these benchmarks.
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Chapter

Fault Tolerance

In this chapter, we present the contributions done regarding fault tolerance. In
the past chapters, we presented several contributions to enhance performance and
productivity. However, all of them are meaningless if programs are not able to
complete. This is something that might happen in Exascale systems due to the
enormous amount of components they will include, which happen to increase the
likelihood of errors.

6.1 Introduction and Motivation

Given that exascale systems are expected to be composed of a large number of com-
ponents, the mean time between failures (MTBF) will drastically decrease from the
order of days in petascale systems [91] to the order of hours in exascale ones [28] [2].
It is expected that exascale systems present deep and complex memory/storage hi-
erarchies, hindering the possibility of non-expert users to exploit optimally. Con-
sidering these facts, the high-performance computing (HPC) research commu-
nity is focusing on resilience and fault tolerance to mitigate the impact of system
faults more easily. Accordingly, several libraries and tools are being developed that
leverage low-level details and system nuances to exploit exascale systems optimally,
regardless of a user’s expertise. Depending on the errors those systems address,
they can be application-specific [46], algorithm-specific [39], or more generic so-
lutions [48].

One technique that is increasing in popularity is application-level checkpoint/
restart (CR). The main reason is its efficiency in terms of space and performance
compared to other fault-tolerance techniques. However, current approaches of-
fering application-level CR require considerable effort from the user. Users are
in charge of identifying the application state, serializing and deserializing data for
checkpoints or recovery, and modifying the program flow to check whether the ex-
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ecution is a restart. Additionally, moving from one system to another may require
rewriting the code, at least for tuning.

Among the wide variety of tools and libraries available, three of them stand
out due to their support for multi-level checkpointing: Fault Tolerance Interface
(FTI) [22], Scalable Checkpoint and Restart (SCR) [77], and Very Low Overhead
Checkpointing System (VeloC) [5]. These state-of-the-art libraries also provide op-
timized I/O capabilities and several redundancy schemes. Each of them provides
its own flexible application programming interface (API). Nonetheless, compared
to other techniques, such as transparent CR (which requires no participation from
the user but introduces high overhead), they still demand significant work from
the user.

In this chapter, we contribute to the aforementioned set of libraries and tools
with an application-level CR mechanism based on compiler directives. Using com-
piler directives, we enhance portability and programmability. Our solution—as
FTI, SCR, and VeloC— supports fail-stop errors (i.e., process abortions or hard-
ware failures) and soft errors, although undetected errors are not tolerated.

We present the OpenCHK programming model [15] for C/C++ and Fortran,
based on our previous work presented in [71]. Our model is based on compiler
directives such as in OpenMP [84]. The sentinel used to recognize the directives
and clauses of the OpenCHK model is chk. Currently, the model supports sev-
eral clauses and directives, which are detailed in Section 6.3.1, providing users the
ability to:

m [nitialize and finalize the CR environment in an easy and portable way.
m Easily indicate the data to be protected.

m Specify checkpoint conditions (e.g., frequency).

m Set checkpoint properties, such as identifiers and levels.

m Select among different kinds of checkpoints (full/differential).

B Avoid the requirement of modifying the natural program flow to check whether
the current execution is a restart.
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6.2 Background

As introduced in the previous section, exascale systems threaten to jeopardize the
successful completion of large HPC applications. Therefore, fault-tolerance sys-
tems become crucial to mitigate the impact of errors and guarantee the completion
of applications. There are many HPC applications performing large simulations
based on iterative algorithms, usually requiring long execution times to complete
successfully. Such long execution times make them more likely to experience sys-
tem faults. In fact, given the increased likelihood of system faults in the exascale
era, it is possible to find applications requiring more execution time to finish than
the MTBF of the system. Figure 6.1 illustrates a scenario where an application takes
more than three times the system’s MTBF to complete. Thus, the application is very
unlikely to complete. In this kind of scenario, techniques providing resilience, like
CR, become essential.

’ MTBF > MTBF > MTBF >

‘ Time to complete application

Figure 6.1: Long-running applications hardly complete when MTBF is too small.

CR is a widely used technique for saving the full state of an application in such
a way that if an error occurs it can be restored, allowing the execution to con-
tinue from that point instead of from the beginning. Section 3.3 outlines several
approaches to provide this functionality. Our proposal focuses on providing per-
sistent CR. Persistent approaches store the data in a persistent way, usually in a
parallel file system (PFS). If a node fails and cannot be recovered, the checkpoints
are still accessible.

There are several approaches that provide CR, ranging from ad-hoc solutions
where developers face low-level details (such as I/O operations), to libraries of-
fering APIs for abstracting users from such low-level details and nuances. How-
ever, those tools still involve some difficulties, such as poor portability and complex
APIs.

Regarding complexity, current approaches require users to (1) serialize/deserial-
ize data, and (2) modify the natural program flow to check if a previous checkpoint
is available for restart or if the application must run from scratch. Serialization/de-
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serialization is the process of translating data structures or objects into a format that
can be stored efliciently. For instance, pointers cannot be stored directly. Instead,
their contents must first be retrieved and then stored. In a restart, the contents
must be read from disk and then assigned to the corresponding pointers. Regard-
ing the flow, current CR approaches require users to check for checkpoint existence
explicitly and, if any exist, explicitly ask to recover data. Listing 6.1 shows a very
brief example of these responsibilities. A more complete and real example can be
seen in the appendices, where a full example of a real application is included using
several state-of-the-art libraries, such as FTI, SCR, and VeloC. Furthermore, some
approaches force users to deal directly with I/O, as in Appendix A.4.

Listing 6.1: Brief example of the serialization/deserialization process and the modification in the program flow

int **data;
for(int i = 0; 1 < N; i++){

data[i] = (int *) malloc(i*sizeof(int));
}

// Modifying program flow
if(restart _available()) {
// Deserializing after restart
int *restarted data = nullptr;
size t restart size = 0;
int id = -1;
for(int i = 0; i < N; i++) {
restart(&restarted data, 8&restart size, &id);

assert(id == i);
assert(restart_size == i);
memcpy (data[i], restarted data, restart size);
}
}
else {
init_data(data, N);
}

// Serializing for checkpoint

int *cp_data = nullptr;

size t cp_size = 0;

for(int 1 = 0; 1 < N; i++) {
cp_data = data[i];
cp_size = 1i;
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checkpoint(cp_data, cp_size, i /* id */);

}

Second, the proliferation of several CR libraries with different interfaces hinders
portability between systems. As there is no standard software stack for CR, it is
possible that different systems offer different CR software. Thus, writing CR code
using native APIs may cause portability issues when moving to a different system.
In such a situation, a user’s options are constrained to the following: (a) rewriting
the code using the interface of the library available in the new system or (b) in-
stalling the original library. Notwithstanding, the installation of the CR libraries
requires deep knowledge of the storage hierarchy for adequately tuning the instal-
lation to maximize performance. Additionally, it may require special permissions
that common users do not have. In any case, both options are costly and non-
trivial, affecting portability.

Using a directive-based approach, the aforementioned problems disappear. The
model takes several of the user responsibilities (i.e., data serialization/deserializa-
tion and checking whether a restart is possible) and the users only need to spec-
ify which data must be checkpointed/restored in a simple way, maximizing pro-
grammability. Our solution adds a new abstraction layer with a unique interface
that enables us to leverage several backend libraries, thereby enhancing portabil-
ity. The enhancement of portability comes from enabling developers to use the al-
ready tuned installation present in every system without changing any code. This
approach enables users to focus on applications, thereby increasing productivity
and portability.

6.3 OpenCHK Model

In this section, we detail the specification of the OpenCHK programming model,
including the directives and clauses supported and the functionalities provided.
The aim of our model is to provide a standard way of coding CR. We offer a new
level of abstraction that hides implementation details from users, enabling them to
focus on the application. The approach presented in this chapter is similar to the
one used in some programming models, such as OpenMP, to exploit parallelism
in shared-memory environments. The rest of this section is structured as follows:
first, we present the directives and clauses of the OpenCHK model, and then we
detail the functionalities offered by the model.

131



6.3.1 Directives and Clauses

The model supports four directives. Some of these may also be annotated with
clauses that can modify their semantics in some way. Details on both directives
and clauses are provided as follows.

Directives

init [clauses]: The init directive defines the initialization of a checkpoint
context. A checkpoint context is necessary to use the other directives. It
accepts the clause:

m comm(comm-expr): comm-expr becomes the MPI communicator that
should be used by the user in the checkpoint context that is being cre-
ated. This clause is mandatory.

load(data-expr-list) [clauses]: This directive triggers a load of the data
expressed inside the parentheses. The load directive accepts the clause:

m if(bool-expr): The if clause is used as a switch-off mechanism: the
load will be ignored if the bool-expr evaluates to false.

store(data-expr-1ist) [clauses]: The store directive may request the li-
brary to save the specified data. It accepts the clauses:

m if(bool-expr): The if clause is used as a switch-off mechanism: the
store will be ignored if the bool-expr evaluates to false. This clause is
useful for specifying the desired checkpoint frequency.

m id(integer-expr): Assigns an identifier to the checkpoint. This clause
is mandatory for the store directive. The id of a checkpoint is helpful
for later identification of an application’s progress upon failure. For in-
stance, if users are checkpointing steps in a loop, and the id is the loop
induction variable, users can easily infer which step was last check-
pointed. However, only the last successful checkpoint is kept.

m level(integer-expr): Selects the checkpoint level which is associated
with where the data is stored (e.g., local node storage, PFS, etc.) and the
redundancy schemes applied. This clause is mandatory for the store di-
rective. Users must consider that the backend libraries provide a differ-
ent number of levels and different behaviors for equivalent levels. This
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is the only parameter that must be tuned depending on the underly-
ing backend library. In a future release, we plan to make this clause
optional and rely on the parameters passed in the configuration file.

B kind(kind-expr): Selects the checkpoint kind. Currently, two kinds
are supported. They are CHK_FULL, which performs a full checkpoint;
and CHK_DIFF, which performs a differential checkpoint.

shutdown: Closes a checkpoint context.

Listings 6.2, 6.3, and 6.4 show how the directives and clauses are used in C/C++
and Fortran. Specifically, Listing 6.2 shows how to initialize and shut down a check-
point context; Listing 6.3 shows how to load several types of data, ranging from
simple scalars to 2-dimensional arrays, including contiguous and non-contiguous
regions; and Listing 6.4 is the same as the previous listing but for storing instead of
loading. However, as it is a store, we must assign an identifier and a level, as shown
in the listing.

Listing 6.2: Use example of OpenCHK init and shutdown directives in (/C++ and Fortran

// C/C++ syntax
#tpragma chk init comm(mpi communicator)
#ipragma chk shutdown

// Fortran syntax
'$chk init comm(mpi_communicator)
I$chk shutdown

Listing 6.3: Use example of OpenCHK load directive in (/C++ and Fortran

// Load a) scalar;

// b) all array elements from 0 to size-1;
// c) array2 elements from 2 to 4;

// d) 2dArray elements from 2 to 4

// of all the rows from 0 to n-1

// C/C++ syntax

#tpragma chk load(scalar, array[o0;size],
array2[2:4], 2dArray[o;n][2:4])
[if(cond)]

\
\
// Fortran syntax
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!$chk load(scalar, array(o:size-1), &
& array2(2:4), 2dArray(o:n-1)(2:4) &
& [if(cond)]

Listing 6.4: Use example of OpenCHK store directive in (/C++ and Fortran

// Store a) scalar;

// b) all array elements from 0 to size-1;
// c) array2 elements from 2 to 4;

// d) 2dArray elements from 2 to 4

/7 of all the rows from 0 to n-1

// C/C++ syntax

#pragma chk store(scalar, array[o0;size], \
array2[2:4], 2dArray[o;n][2:4]) \
kind (CHK_FULL/CHK_DIFF) id(0) \
level (1) [if(cond)]

// Fortran syntax
!$chk store(scalar, array(0:size-1), &

& array2(2:4), 2dArray(0:n-1)(2:4) &
& kind (CHK_FULL/CHK_DIFF) id(0) &
& level(1) [if(cond)]

To see a full example, see Appendix A.1.

6.3.2 Functionalities

Our model is intended to standardize a common interface for the different existing
CR solutions, and we aim to provide the same functionalities that they all offer but
in a generic way. In what follows, we explain the main functionalities supported
in the OpenCHK model, and how they fit in the currently supported backend li-
braries.

Basic Checkpoint/Restart

As a basic functionality, OpenCHK supports checkpoint and recovery of user-
defined application data using the multi-level redundancy schemes of the backend
libraries. Users can define the levels and their respective checkpoint frequency
as desired. Currently, OpenCHK provides a coordinated CR mechanism because
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the backend libraries only support coordinated CR. However, given its flexibility,
OpenCHK could provide non-coordinated CR if required.

(P-dedicated Threads

This functionality consists of spawning a thread per node that is devoted only to
CR work. By doing so, work related to CR can be conducted in parallel with the
application work. This feature may be useful when running on hybrid CPU-GPU
systems or systems using coprocessors where the main part is executed on GPU/-
coprocessors and the CPUs are idle. The idle CPU time can be used to perform
CR tasks, relieving the GPU/coprocessors of doing such tasks and focusing on the
actual application work. Overall, resources are better used in this way, and we can
achieve performance gains. This may increase the memory pressure in some sce-
narios, but this effect can be mitigated using local node storage (SSD, NVMe).
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Figure 6.2: Comparison between a (P-dedicated threads scheme and a traditional scheme.

Figure 6.2 shows a comparison of an application using the traditional scheme
and the same application using this CP-dedicated thread scheme. A CP-dedicated
thread performs all the tasks related to fault tolerance, while the GPUs can devote
their resources to the application. Up to now, this feature of the model is only
supported by FTT and VeloC.
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Differential Checkpointing

Differential checkpointing is a method that decreases the I/O load of consecutive
checkpoints by updating only those data blocks that have changed since the last
checkpoint was created. Differential checkpointing has also been called incremen-
tal checkpointing [87]. For our purposes, incremental checkpointing is a differ-
ent technique that consists in building a checkpoint in pieces in several separated
write operations that are performed as soon as the data is ready. We plan to sup-
port incremental checkpointing in the future. More information on incremental
checkpointing can be found in Section 9.3. For a more detailed explanation of our
terminology, and why we prefer these terms, please refer to [61].
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Figure 6.3: Overhead reduction with differential checkpoint for a certain scenario (2400 processes write 1GB per process
to the PFS). n,; corresponds to the ratio of dirty data blocks to protected data blocks.

Differential checkpointing uses a user-defined block size to evaluate which sec-
tions of the checkpoint have changed. This granularity is important and offers a
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trade-oft: smaller block sizes can capture with higher precision small changes in
the dataset, which allows the backend to only update small sections and avoid hav-
ing to rewrite data that has not changed. However, performing hash calculations
on many small blocks and performing many small writes to the storage can reduce
performance. On the other hand, large blocks are more suited to file system per-
formance and lead to a reduction in the number of hashes to be calculated, but they
also lead to more unchanged data having to be rewritten. Besides the block size, the
performance of differential checkpointing also depends on the application itself.
Applications that update entire datasets at every iteration are not well suited for
differential checkpointing. Applications in which only parts of the dataset change,
might get more benefits from differential checkpointing.

For instance, FTI has recently demonstrated [61] that applications updating
less than 95% of their protected data due to changes within two consecutive check-
points will be able to reduce their checkpoint overhead using differential check-
pointing. In other words, a reduction in I/O size by as little as 5% already shows
significant benefits through differential checkpointing. The overhead reduction
depends linearly on the update rate. The slope of the regression characterizes this
linear relationship. The ratio between the I/O rate and the hashing determines the
slope. If the hashing is expensive and the I/O rate is low, the overhead reduction
will be low even for low update rates, whereas, if the hashing is cheap and the I/O
rate high, even high update rates could obtain a benefit. It was demonstrated for
the LULESH and xPic applications that differential checkpointing can reduce the
checkpointing overhead by 35% and 62%, respectively [61].

Given the model presented in [61], we can estimate the performance benefits
for a certain scenario. Figure 6.3 shows the behavior of the overhead depending
on the differential data ratio, n,, corresponding to the ratio of dirty data blocks to
protected data blocks. The x-axis represents the value of the differential data ra-
tio, while the y-axis represents the increment of time that differential checkpoint-
ing introduces with respect to a common full checkpoint. Thus, positive values
are additional overhead introduced by differential checkpointing with respect to a
common full checkpoint, while negative values are benefit against a common full
checkpoint. The presented scenario comprises 2400 processes that write 1 GB per
process to the PES. The time needed to complete a full checkpoint on all ranks is
about 88 seconds. The threshold is at around 95%, which is the point where differ-
ential checkpointing and common full checkpointing introduce the same amount
of overhead. If the differential data ratio is above this threshold, differential check-
pointing introduces a penalty of up to 5s compared to a common full checkpoint.
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In other words, if more than 95% of the data must be checkpointed, differential
checkpointing introduces more overhead than a common full checkpoint. Never-
theless, if the differential data ratio is below the threshold, there is a benefit. The
overhead reduction is about 9 seconds for every 10% of data that we do not have to
write due to differential checkpointing. Thus, differential checkpointing becomes
very quickly beneficial for updates below 95%. Of all the checkpointing libraries
studied in this work, the only backend library supporting this functionality is FTI.

HDF5 support

HDF5[110] allows the structuring of datasets inside of groups and to order groups
hierarchically as in a file system. The dimensionality of the datasets can also be
stored inside the file. HDF5 provides a vast functionality to archive scientific data
inside a file in persistent storage. In addition to this, HDF5 is optimized for both
sequential and parallel I/O.

Our model allows checkpoints to be stored using the HDF5 file format. The
protected datasets that serve for the successful restart are written in this format so
that users can use any tool that is capable of interacting with HDF?5 files for sci-
entific analyses. Thanks to this feature, resiliency and scientific data analysis can
be merged into one single I/O operation. Interacting with HDFS5 files can be rel-
atively complex and not always intuitive. Therefore, this feature to support HDF5
files enhances the flexibility of OpenCHK.

Listing 6.5 shows an example of the structure of a checkpoint file in the HDF5
format. The file contains three protected variables: Dataset_0and Dataset_1, which
are scalars, and Dataset_2, which is an array. Listing 6.6 provides two different
codes able to obtain a checkpoint like the one in Listing 6.5. The first one uses
OpenCHK while the second uses the native HDF5 API. Using OpenCHK, users
just need to use the store directive, indicating the data to be stored along with an id
and a level. Using the native HDF5 API, they must create a dataspace per variable,
indicating the size and shape; create a dataset per variable indicating the data ele-
ments, layout, and some other information necessary to write, read, and interpret
the data; write the data, and, finally, close the datasets and dataspaces. Looking at
the codes, it is possible to see how OpenCHK reduces the complexity compared to
the native implementation.

Listing 6.5: HDF5 checkpoint file structure using OpenCHK. The protected data consists of 2 scalars and one array
GROUP ”/” {
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DATASET ”Dataset 0” {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (1) / (1) }

DATA {
(0): 1
}

}
DATASET ”Dataset 1” {

DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (1) / (1) }

DATA {
(0): 1
}

}
DATASET ”Dataset 2” {

DATATYPE H5T _STD_ISLE

DATASPACE SIMPLE { ( 22279025 ) / ( 22279025 ) }
DATA {

(o): 50, 50, 32, 115, 101, 114, 105, 97, 108, 105,

(22279021): 0, 0, 0, O

}

Listing 6.6: Code snippet to produce an HDF5 file with a structure similar to the one shown in Listing 6.5. On top using
OpenCHK and below using native HDF5 routines

// OpenCHK implementation
#fpragma chk store(data_ptr[o], data ptr[1], \
data_ptr[2][o;N]) id(0) level(1)

// HDF5 Native implementation
hid t dataset id[3], dataspace _id[3];
hsize t dimso[1], dims1[0], dims2[0];

dimso[0] = 1; dims1[0] = 1; dims2[0] = N;

dataspace_id[0] = H5Screate simple(1, dimso, NULL);
dataspace_id[1] = H5Screate simple(1, dimsi, NULL);
dataspace_id[2] = H5Screate simple(1, dims2, NULL);
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dataset_id[0] H5Dcreate2(file _id, ”/Dataset 0”, ... );

dataset _id[1] = H5Dcreate2(file_id, ”/Dataset 1”7, ... );
dataset id[2] = H5Dcreate2(file id, ”/Dataset 2”7, ... );
H5Dwrite(dataset_id[o], ... , data_ptr[o0]);
H5Dwrite(dataset_id[1], ... , data_ptr[1]);
H5Dwrite(dataset id[2], ... , data_ptr[2]);

status = H5Dclose(dataset _id[0]);

status = H5Dclose(dataset_id[1]);

status = H5Dclose(dataset_id[2]);

status = H5Sclose(dataspace_id[0]);

status = H5Sclose(dataspace_id[1]);

status = H5Sclose(dataspace_id[2]);

6.4 Implementation Details

This section provides some insight into the implementation details of our proposed
solution. We provide our implementation of the model on top of the Mercurium
C/C++ and Fortran source-to-source compiler [11] and the Transparent Check-
point Library (TCL) [18] intermediate library. Currently, we support FTI, SCR,
and VeloC as backend libraries.

Following, we detail the architecture of our implementation, the changes effected
at the Mercurium compiler level, and the implementation of TCL.

6.4.1 Architecture

We have designed an implementation based on three components: a compiler
(Mercurium) that translates directives and clauses into calls to an intermediate li-
brary, an intermediate library (TCL) which oversees forwarding the user-requested
actions to the adequate backend library, and several backend libraries. Figure 6.4
shows our three-layer architecture. This approach allows us to extend the model
to support new features as the backend libraries evolve.
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Figure 6.4: Three-layer architecture.

6.4.2 Mercurium

For supporting the OpenCHK model, Mercurium must process the OpenCHK di-
rectives and clauses to enable the application-level CR functionalities. One of the
main duties of Mercurium is processing these directives and clauses to transform
them into calls to TCL. Following, we detail the compiler transformations done for
each of the directives and clauses.

B chk init [clauses]: The compiler triggers the initialization of TCL. Clauses
accepted:

- comm(comm-expr): Mercurium passes comm-expr, which is a pointer,
to TCL, which sets the MPI communicator that the user should use in
the checkpoint context.

B chk load(data-expr-list) [clauses]: The compilerintroducesa callto TCL
when it finds this statement informing it of the start of a restart. Then, Mer-
curium performs several calls registering the data to be restarted. Accord-
ingly, the compiler must also send some information about the data to be
restored, such as the sizes and the pointers, for overwriting the current data
with the recovered data. The compiler extracts all this information from the
data specified and its own knowledge of the program symbols. When all the
data is registered, Mercurium calls a TCL method that performs the restart.
This is part of the deserialization process that would otherwise be done by
the user. Additionally, this directive implies a transparent way of checking
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whether a restart exists, which would also be done by a user modifying the
program flow in other approaches. Clauses accepted:

- if(bool-expr): The calls to TCL are only effective when the condition
expressed in this clause is true. This means that none of the calls are
done if the condition is not satisfied.

chk store(data-expr-list) [clauses]: The compiler does very similar things
as those performed for the load directive. The compiler oversees doing a part
of the data serialization, equivalent to the deserialization process conducted
for the load directive. The only difference is that the action being performed
is a checkpoint instead of a restart, meaning some additional information
must be passed. In the first call, the one that notifies a checkpoint is starting,
Mercurium adds the kind, id, and level of the checkpoint. This information
is extracted from the following clauses:

if(bool-expr): The calls to TCL are only effective when the condition
expressed in this clause is true. Thus, no calls are executed if the con-
dition is not satisfied.

- id(integer-expr): The checkpoint thatisbeing performed has theiden-
tifier set in this clause. It is mandatory to specify an identifier.

- level(integer-expr): The checkpoint that is being performed will be
written at the specified level. It is mandatory to specify a level.

- kind(kind-expr): Chooses the kind of checkpoint to be done between
full or differential, which are the currently supported options. The de-
fault value is full.

m chk shutdown: The compiler triggers the finalization of TCL.

The order specified in the load/store clauses is critical. The compiler forwards
the data to TCL in the very same order set by the user when writing the load/store
clauses. Thus, if the order of the data in loads and stores does not match, there may
be problems when recovering data from a restart.

Also, it is important to mention that the three back-end libraries are capable of
deciding the checkpoint level automatically based on the configuration file. How-
ever, our current implementation in OpenCHK does require the user to supply the
checkpoint level. This is a small limitation that will be lifted in future versions of
OpenCHK.



A further duty of Mercurium, which is crucial for improving code programma-
bility, is extracting the information that must pass to TCL from the annotations
done by the user. In most cases, backend libraries need the base address and the
size of data to perform CR. For non-array expressions, this is just the size of the type
of the data. However, for more complex data structures, like array expressions, we
may need additional information, such as the accessed bounds of each dimension,
the size of each dimension, and the base element type of the data structure.

All the aforementioned information required by the backend libraries is only re-
trievable by a tool with a full understanding of the supported programming languages—
C, C++, and Fortran— such as the Mercurium compiler. Additionally, this is an
error-prone task. Thus, automatizing it minimizes the possibility of error while
reducing debugging time. Apart from that, it prevents developers from writing
boilerplate code.

A further functionality added by Mercurium is self-iterative data expressions. List-
ing 6.7 shows an example of this. This is a kind of for loop inside the load/store
clauses, which allows iterating over data structures instead of writing the data one
by one, simplifying users’ work. Self-iterative data expressions are useful in sce-
narios where many elements of a data structure must be checkpointed/loaded and
users must write it manually. In these cases, annotating the data that must be check-
pointed/restored becomes a tedious task. It also becomes error-prone, because
writing the same code several times, changing only a few characters, may cause
errors to be more difficult to find. Self-iterative data expressions enable users to
perform this work in a much easier way.

Listing 6.7: Use example of OpenCHK self-iterative data expressions

// Self iterative data expression
#tpragma chk store({data[i], i=0;4})

// Equivalent
#tpragma chk store(data[o], data[1], data[2], data[3])

To adequately point out the importance of the compiler in the OpenCHK model,
we have performed an analysis of the code complexity before and after the com-
piler transformation. For that purpose, we used the Lizard [121] tool to compute
the cyclomatic complexity (CC) metric and SLOCCount [119] to calculate the de-
velopment effort estimate (DEE). Table 6.1 shows the CC for a 2D heat simulation
code performing CR using OpenCHK before (BT) and after (AT) compiler trans-
formation. Moreover, it also presents the CC for the same code when using native
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Table 6.1: Cyclomatic complexity of a 2D heat simulation using OpenCHK (before and after compiler transformation),
FT1, SCR, and VeloC.

BT AT FTI SCR VeloC

CC 10.0 11.0 15.0 36.0 13.0
DEE (Person-Months) 034 0.76 0.36 0.51 0.35

FTI, SCR, and VeloC to perform CR. As can be seen, OpenCHK remains the sim-
plest before the compiler transformation in both metrics. After the compiler trans-
formation, its CC grows by 1 point while its DEE more than doubles, becoming the
most complex version.

The CC is higher for the native libraries because this metric is affected by the
number of different paths that a program can take. For instance, each additional
if increases the CC. The DEE, in contrast, is affected by the size of the code. In
that case, it is important to highlight that Mercurium generates very verbose code
when transforming code, so the size of it quickly becomes large, affecting the DEE.

6.43 TCL

To maximize the portability of our approach, TCL must process the information
passed by Mercurium and forward it to the adequate backend library. This way, we
enable users to write code agnostic from the backend library while allowing them
to use any of the supported backend libraries. TCL is responsible for adequately
formatting the information for each backend library and calling the appropriate
methods to perform the user-requested actions, depending on the backend library
chosen by the user.

Additionally, this library, in collaboration with the Mercurium compiler, serial-
izes and deserializes the data. The serialization and deserialization process is te-
dious and error-prone for users. Using our mechanism, users can perform it with
little or no effort.

Additionally, TCL prevents users from modifying the natural program flow to
check whether a restart has to be done. The library does it transparently. If a check-
point is available and a restart can be done, it recovers data. In consequence, codes
are cleaner and more readable.

The mechanism we propose is easily extensible. Our first implementation of
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TCL was providing support for only FTT and SCR. Now VeloC has been added as a
third backend library to TCL, and the addition of others would be straightforward.

6.5 Evaluation and Discussion

In this section we compare the performance of our approach with natively using
the backend libraries that we use in our model. The structure of this section is as
follows: first, we describe the methodology used; then, we detail the environment
in which the experiments were conducted, as well as the benchmarks and applica-
tions used. Finally, we provide the evaluation and discuss the results.

6.5.1 Methodology

First, the objectives of our evaluation are (1) demonstrating that our approach does
not add significant overhead compared to using any of the supported backend li-
braries natively, and (2) showing the improvement that our mechanism provides
in terms of code productivity.

For (1), we designed an experiment in which we launch a first run of an appli-
cation/benchmark, with an injected fault. Then, we restart the application/bench-
mark from the last checkpoint until successful completion. The whole process,
from the first run until successful completion, including the recovery, is timed.
We take measurements using both OpenCHK with a given backend library and
using the same backend library natively. Then, the OpenCHK time is divided by
the native library time. To demonstrate that no significant overhead is introduced,
the resulting number from the quotient should be 1 or close to 1.

Regarding (2), as there is no standard metric for measuring programmability, we
have decided to consider the number of source lines of code (SLOC) required to
express the CR functionality. Thus, we compare the number of code lines required
using native APIs with the number of code lines required with OpenCHK.

We will use the following nomenclature for our experiments:

B FTI/SCR/VeloC. This version is an implementation performing application-
level CR directly using the APIs provided by FTT, SCR or VeloC.

B OpenCHK. In this version, the application-level CR is conducted by the mech-
anism proposed in this work.
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We obtained the results of all our experiments by averaging the execution times
of 5 different runs per version.

The executions of the evaluation were run with 50 MPI processes, whenever it
was possible. Nevertheless, there are some applications/benchmarks that constrain
the number of processes to be used. For each of those applications, we specify
the number of processes used. We consider 50 MPI processes an adequate scale
for our experiments. Given that the possible sources of overhead in our approach
are constant rather than dependent on the number of nodes, nothing suggests the
possibility of scalability problems in larger experiments.

Some of the benchmarks/applications contain intra-node parallelism. In those,
the number of threads per process is 48, whereas, for the rest, it is 1.

The runs performed for our experiments took about 10 minutes. This means
that the whole process, from the first run until successful completion, including
the restart, took about 10 minutes. Regarding the checkpoint frequency, we forced
one checkpoint per minute, resulting in a total of ten checkpoints per run. The
frequency is expressed in terms of iterations, so that we checkpoint data every 10%
of the iterations of the program. This is a high checkpoint frequency, which was
selected on purpose to stress the checkpointing mechanisms and ease the perfor-
mance comparison between the different evaluated approaches. Coarser check-
point frequencies should result in even lower overheads.

Regarding the faults, all of them were deterministically injected at 90% of the
application progress. The faults introduced are exceptions that cause process abor-
tion, and the degree of progress was arbitrarily chosen. The reason for an evalua-
tion in the presence of faults is the possibility of measuring not only the overhead
introduced in checkpointing but also in the restart process.

6.5.2 Environment and applications

In this subsection, we detail the environment where the experiments were run, as
well as the applications and benchmarks that we used to evaluate our approach.
The experiments were carried out on a machine with the configuration given in
Table 6.2. More details about the hardware can be found in [21].
The software used for our experiments, along with their versions, can be seen in
Table 6.3.

'Hash of the commit used in the experiments.
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Table 6.2: Machine architecture

Component  Details

Nodes 3456
CPU 2x Intel Xeon Platinum 8160 2.1 GHz
Network 100 GB Intel Omni-Path Full-Fat Tree
& 10G bit Ethernet
Memory 3240x 96 GB/node & 216x 384 GB/node (Total: 384.75 TB)

Local storage 240 GB Intel s3520 SSD
File system 14 PB GPFS disk storage
OS Linux-SuSe Enterprise Server 12 SP2

Table 6.3: Software and versions used to perform the experiments

Software Version
Transparent Checkpoint Library 1.0
Mercurium source-to-source compiler  2.3.0

gcc and gfortran 7.2.0

icc and ifort 17.0.4
Intel MPI 2017.3.196
SCR 1.2.2

FTI d54a9e0!
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Following, we provide a brief explanation of the applications and benchmarks
used in the evaluation. The size of the applications ranges from ~ 500 to =~ 15000
lines of code. Note that there are 7 applications using FT1, 5 applications using
SCR, and 2 applications using VeloC. This is because we did not have the reference
versions (native FTT/SCR/VeloC) of all the applications to compare against.

BT-MZ [79]: BT-MZ, extracted from the NAS Parallel Benchmarks, is a pseudo
application that solves problems derived from CFD using a block tri-diagonal
solver. This implementation contains OpenMP+MPI.

Duct [34]: This pure MPI application, from the CFD domain, performs a large
eddy simulation of turbulent flow in a square duct.

GERShWIN [54]: The GERShWIN application was developed by INRIA under
the umbrella of the DEEP-ER project. It studies human exposure to elec-
tromagnetic fields. To do so, it solves a system of Maxwell equations. The
implementation, which contains OpenMP+MPI, presents some restrictions
regarding the number of processes to run. Thus, it must be run with 48 nodes
rather than 50.

Heat: This pure MPI benchmark performs a 2D heat transfer simulation.

LULESH2.0 [60]: This is a C++ OpenMP+MPI sample application from Lawrence
Livermore National Laboratory that models the propagation of a Sedov blast
wave. The problem is formulated using a three-dimensional unstructured
mesh.

N-Body: This benchmark, which simulates a dynamical system of particles, uses
OpenMP+MPI. Its implementation constrains the number of processes to
run, so only 32 nodes were used.

SPECFEM3D: The SPECFEM3D application simulates seismic wave propaga-
tion using a Galerkin spectral element method. Its implementation relies
on OpenMP+MPI, and presents some restrictions that force us to use only
32 nodes.

Stream [114]: Extracted from the HPC Challenge Benchmarks, the Stream bench-
mark measures the sustainable bandwidth and the corresponding computa-
tion rate for a simple vector kernel. It is implemented using OpenMP+MPI.
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TurboRVB [35]: This pure MPI application was also developed under the um-
brella of the DEEP-ER project, at SISSA. The goal of this application is to
understand high-temperature superconductivity through Quantum Monte
Carlo simulations.

xPic: This is a C++ OpenMP+MPI HPC application deduced from iPic3D [70].
It is designed for large scale production runs. xPic simulates space plasma
in three-dimensional parallel code.

6.5.3 Evaluation and discussion

As stated previously, our evaluation covers two different aspects. We want to demon-
strate that our model is introducing no significant overhead compared to using the
native backend libraries directly, and we want to evaluate the programmability of
our model.

Regarding the first aspect of the evaluation, Figure 6.5 shows three different
charts, one for each backend library. Each of the charts shows the different ap-
plications and benchmarks executed in the x-axis, while in the y-axis shows the
overhead calculated as previously described.

For the first chart starting from the left, which corresponds to FTI, it can be
seen that the differences between OpenCHK and native FTT are always < 2%. The
worst case, TurboRVB, has a difference of 1.63%, while the rest are < 1%. Moreover,
the differences are always within the standard deviation of the runs, which range
from =0.15% to ~2.6%, except for TurboRVB, which is ~#4.6%, so we conclude that
negligible overhead is introduced by OpenCHK compared to native FTI.

The center chart, corresponding to SCR, shows differences that are always <
0.5%, except for the GERShWIN application that was 1.48%. However, this value
fits within the standard deviation (1.49%), while the rest also remain within their
respective standard deviation values. Therefore, the overhead introduced by OpenCHK
is negligible compared to native SCR.

Finally, the right-most chart, which presents results for VeloC, exhibits differ-
ences of < 0.5%. Furthermore, these values are within their corresponding stan-
dard deviations. Consequently, no significant overhead is introduced by OpenCHK
compared to native VeloC.

Therefore, we can conclude that no significant overhead is introduced at all by
the OpenCHK model when compared to its native counterparts.
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Table 6.4: Number of lines of code required to perform application-level (R using FTI and OpenCHK.
FTI OpenCHK OpenCHK/FTI

DUCT 31 5 0.1613
HEAT 15 5 0.3333
LULESH 12 5 0.4167
NBODY 25 5 0.2
SPECFEM3D 28 6 0.2143
TURBORVB 80 6 0.075
XPIC 8 5 0.625
AVERAGE 0.2894

Now that we have demonstrated that our approach introduces negligible over-
head, we wish to focus on the most important point of our approach: the pro-
grammability. We based our analysis on the SLOC metric, which stands for source
lines of code. We measure it using SLOCCount [119]. We selected the lines of
code needed to implement each of the different versions to make this measure-
ment, the results of which are shown in Tables 6.4, 6.5, and 6.6 for FTI, SCR, and
VeloC, respectively. Here it is possible to see the lines of code required to write
application-level CR in FTI, SCR, VeloC, and OpenCHK. The code we evaluated
provides the same functionality between OpenCHK and the native versions, but
may not be 100% equivalent. This fact can be seen by checking the full example of
code provided in the appendices. Moreover, native implementations include error
handling, while OpenCHK manages errors inside the TCL library.

As can be observed in Table 6.4, our approach can drastically reduce the number
of lines required to perform application-level CR. On average, the number of lines
required by OpenCHK was reduced to around 30% of the lines required by FTT to
provide the same functionality.

The comparison with SCR shows even better results in terms of programmabil-
ity. Table 6.5 shows that OpenCHK can express CR in as little as 3% of the lines
used by SCR, allowing to express a CR mechanism in five lines while SCR needs
165 lines for the same purpose. The code lines needed by OpenCHK to provide the
same functionality as SCR represents, on average, only about 6% of those required
by SCR.

Note that these results are for new applications that do not contain output I/O or
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Table 6.5: Number of lines of code required to perform application-level CR using SCR and OpenCHK.
SCR OpenCHK OpenCHK/SCR

BT-MZ 118 12 0.1017
GERSHWIN 200 8 0.04

HEAT 78 5 0.0641
NBODY 109 5 0.0459
STREAM 165 5 0.0303
AVERAGE 0.0564

Table 6.6: Number of lines of code required to perform application-level CR using VeloC and OpenCHK.
VeloC OpenCHK OpenCHK/VeloC

HEAT 10 5 0.5
NBODY 23 5 0.2174
AVERAGE 0.3587

checkpointing. For those applications that already contain code to perform output
I/O or checkpointing, our results are inflated, because the I/O code already exists
and does not need to be added. For example, if we assume the output code already
exists, SCR involves only 40 additional lines of code for the NBODY benchmark.
In general, for legacy codes and applications that have already an I/O method im-
plemented in the code, using SCR and/or VeloC can be more beneficial than using
a new interface because it leverages existing code; however, for freshly developed
applications or to use features of different backend checkpoint libraries, OpenCHK
does provide an easy way to access those libraries through a simple interface.

As we are using VeloC in memory-based mode, the comparison results are very
similar to FTI. This is because VeloC memory-based mode is much like FTT. There-
fore, similarly to FTI, we only need around 36% of the lines required by VeloC to
express CR. If we were using VeloC in file-based mode, as it is very similar to SCR,
the comparison should be more like SCR.

In general, OpenCHK usually needs only five lines to express the entire CR code.
Two lines for initialization— one for creating the MPI communicator to be passed
to TCL, and one for the init directive—, another line for the load (unless there are
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many variables), another line for the store (again, unless there are many variables),
and, finally, another line for the shutdown directive. An additional important fea-
ture is that OpenCHK prevents users from modifying the natural program flow to
check whether an execution is a restart or not. Overall, in light of the results, we
can conclude that programmability is enhanced.
Finally, portability is also improved with our solution. Users can use their OpenCHK

applications with whichever of the three backends supported. Consequently, mov-

ing from a system with one backend (e.g., FTT) to a system with a different backend
(e.g., SCR or VeloC) requires no changes in the source code. Otherwise, if native
APIs are used, the code related to CR must be completely rewritten.

6.6 Conclusions

Throughout this chapter, we have detailed the extension of a directive-based ap-
proach designed for providing application-level CR: the OpenCHK programming
model. The model includes the new #pragma chk directive family, composed of
several directives and clauses. They allow users to specify data to be checkpointed
persistently, along with other details, such as checkpoint frequency, checkpoint
identifier, or checkpoint level. Additionally, the model enables users to recover
data from an existent checkpoint, in the case of a restart after failure, continuing
the execution from the recovered state rather than from the beginning.

The directive-based approach presented in this chapter eases the use of application-
level CR. The solution proposed (1) minimizes the modifications required in the
source code to perform CR, (2) transfers the responsibility of serializing and deseri-
alizing data required by traditional approaches from the user side to the model side,
and (3) prevents users from modifying the natural program flow to check whether
data can be recovered from a checkpoint. Our solution incorporates state-of-the-
art CR libraries (FTI, SCR, and VeloC) to maximize resiliency and performance,
benefiting from their advanced redundancy schemes and their highly optimized
I/O operations. Additionally, the OpenCHK model enables users to employ any
of the backend libraries without modifying a single line of source code, thereby
enhancing the portability of applications. The OpenCHK model can be combined
with other programming models, such as OpenMP, MPI, and other similar pro-
gramming models like OmpSs, as well as combinations of them.

Furthermore, the OpenCHK model not only supports the basic functionality
but also advanced functionalities: CP-dedicated threads to reduce checkpointing
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overhead in some architectures, differential checkpoints to store only the blocks
of data that have been modified, saving time and space, and support for HDF5
to allow merging CR with data analytics. Moreover, given its nature, OpenCHK
is easily extensible so that new features implemented in any of the backends can
be added to the model. Our contribution consists not only of the model, but also
an implementation. Our implementation provides robust features to help users
increase their productivity, such as self-iterative data expressions, which are useful
when dealing with arrays to avoid tedious and error-prone tasks.

Our evaluation, consisting of several benchmarks and production-level scien-
tific applications, showed (1) no significant overhead compared to using the native
APIs of state-of-the-art solutions such as FTI, SCR, and VeloC, and (2) a significant
reduction of the required number of source code lines to perform application-level
CR. On average, OpenCHK needs only 29%, 6%, and 36% of the code lines required
by FTT, SCR, and VeloC, respectively, to perform the same functionalities. Finally,
we enhanced portability, enabling users to choose among FTI, SCR, or VeloC at
runtime, with no changes in the source code.
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Chapter

Combining Contributions

In this chapter, we combine all the contributions presented in this thesis in a sin-
gle application. We start from a task-based Stream benchmark, and incrementally
apply the different contributions of this thesis. We also evaluate the performance
of the different versions. With this chapter, we show that all our contributions can
work together helping to overcome different Exascale challenges.

Listing 7.1: Task-based Stream benchmark

// Allocate vectors
double *a = new double[N];
double *b = new double[N];
double *c = new double[N];
double scalar = 3.0;

/* --- Initialization --- */
for(size t block = 0; block < NUM BLOCKS; block++) {
size_t aux = block*BSIZE;
size_t size = aux+BSIZE > N ? N-aux : BSIZE;
#pragma oss task out(a[aux;size], b[aux;size], c[aux;size])
for(size t j2=aux; j2 < aux+size; j2++) {...}

}

//* --- MAIN LOOP --- repeat test cases nTimes times --- */
for (int k=0; k<nTimes; k++) {
for(size t block = 0; block < NUM_BLOCKS; block++) {
size t aux = block*BSIZE;
size t size = aux+BSIZE > N ? N-aux : BSIZE;
#tpragma oss task in(a[aux;size]) out(c[aux;size])
for(size t j2=aux; j2 < aux+size; j2++)
c[32] - alj2l;
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for(size t block = 0; block < NUM BLOCKS; block++) {
size t aux = block*BSIZE;
size_t size = aux+BSIZE > N ? N-aux : BSIZE;
#pragma oss task in(c[aux;size]) out(b[aux;size])
for(size t j2=aux; j2 < aux+size; j2++)
b[j2] = scalar*c[j2];
}
for(size t block = 0; block < NUM_BLOCKS; block++) {
size t aux = block*BSIZE;
size t size = aux+BSIZE > N ? N-aux : BSIZE;
#tpragma oss task in(a[aux;size], b[aux;size]) out(c[aux;size])
for(size t j2=aux; j2 < aux+size; j2++)
c[32] = a[j2]+b[32];
}
for(size t block = 0; block < NUM BLOCKS; block++) {
size_t aux = block*BSIZE;
size_t size = aux+BSIZE > N ? N-aux : BSIZE;
#pragma oss task in(b[aux;size], c[aux;size]) out(a[aux;size])
for(size t j2=aux; j2 < aux+size; j2++)
a[j2] = b[j2]+scalar*c[j2];
}
}

#pragma oss taskwait

delete a;
delete b;
delete c;

We selected the Stream benchmark because it is a simple and well known bench-
mark broadly used to measure the memory bandwidth of systems. Listing 7.1
shows the baseline code of the stream benchmark. It is parallelized using tasks
with blocking. From this version, we will apply the different contributions pre-
sented throughout this thesis. Firstly, we will apply the for clause, presented in
Chapter 4, to replace regular tasks by worksharing tasks. With this small change,
we are able to mitigate granularity issues. The version using task for is shown in
Listing 7.2, with the changes highlighted in blue text.

Listing 7.2: Stream benchmark using worksharing tasks

// Allocate vectors
double *a = new double[N];
double *b = new double[N];
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double *c = new double[N];
double scalar = 3.0;

/* --- Initialization --- */
for(size t block = 0; block < NUM BLOCKS; block++) {
size t aux = block*BSIZE;
size t size = aux+BSIZE > N ? N-aux : BSIZE;
#tpragma oss task for out(a[aux;size], b[aux;size], c[aux;size])
for(size t j2=aux; j2 < aux+size; j2++) {...}

}

//* --- MAIN LOOP --- repeat test cases nTimes times --- */
for (int k=0; k<nTimes; k++) {
for(size t block = 0; block < NUM_BLOCKS; block++) {
size t aux = block*BSIZE;
size t size = aux+BSIZE > N ? N-aux : BSIZE;
#pragma oss task for in(a[aux;size]) out(c[aux;size])
for(size t j2=aux; j2 < aux+size; j2++)
cl32] = alj2];

for(size t block = 0; block < NUM BLOCKS; block++) {
size t aux = block*BSIZE;
size t size = aux+BSIZE > N ? N-aux : BSIZE;
#tpragma oss task for in(c[aux;size]) out(b[aux;size])
for(size t j2=aux; j2 < aux+size; j2++)
b[j2] = scalar*c[j2];
}
for(size t block = 0; block < NUM BLOCKS; block++) {
size t aux = block*BSIZE;
size t size = aux+BSIZE > N ? N-aux : BSIZE;
#pragma oss task
for in(alaux;size], b[aux;size]) out(c[aux;size])
for(size t j2=aux; j2 < aux+size; j2++)
c[32] = a[j2]+b[j2];
}
for(size t block = 0; block < NUM BLOCKS; block++) {
size t aux = block*BSIZE;
size_t size = aux+BSIZE > N ? N-aux : BSIZE;
#pragma oss task
for in(b[aux;size], c[aux;size]) out(a[aux;size])
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for(size t j2=aux; j2 < aux+size; j2++)
a[j2] = b[j2]+scalar*c[j2];
}
}

#pragma oss taskwait

delete a;
delete b;
delete c;

Listing 7.3 shows some more differences compared to the baseline code. Thanks
to the use of taskloop, we can remove the blocking technique, reducing the overall
lines of source code. Note that in this version, there is a single loop per kernel rather
than a nested loop as in the previous versions. Again, we highlight the differences
using blue text.

Listing 7.3: Stream benchmark using taskloop

// Allocate vectors

double *a = new double[N];
double *b = new double[N];
double *c = new double[N];
size t j;

double scalar = 3.0;

/* --- Initialization --- */
#pragma oss taskloop grainsize(BSIZE) out(a[j], b[j], c[j])
for(j = 0; j < N; j++) {...}

//* --- MAIN LOOP --- repeat test cases nTimes times --- */
for (int k=0; k<nTimes; k++) {
#pragma oss taskloop grainsize(BSIZE) in(a[j]) out(c[j])
for(j = 0; j < N; j++)
c[j] = aljil;

#pragma oss taskloop grainsize(BSIZE) in(c[j]) out(b[j])
for(j = 0; j < N; Jj++)
b[j] = scalar*c[j];

#pragma oss taskloop grainsize(BSIZE) in(a[j], b[j]) out(c[j])

for(j = 0; j < N; Jj++)
cljl = aljl+b[]];
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#pragma oss taskloop grainsize(BSIZE) in(b[j], c[j]) out(a[j])
for(j = 0; j < N; Jj++)
a[j] = b[jl+scalar*c[j];
}

#pragma oss taskwait

delete a;
delete b;
delete c;

Listing 7.4 shows a version of the Stream benchmark parallelized using the taskloop
for construct. In this case, as with the taskloop we are able to remove the block-
ing, having a single loop per kernel. However, adding the for clause to the taskloop
construct, it creates worksharing tasks rather than regular tasks. So, in this version,
we can improve the programmability thanks to the use of the taskloop construct,
and we are able to mitigate granularity issues by using worksharing tasks.

Listing 7.4: Stream benchmark using taskloop for

// Allocate vectors

double *a = new double[N];
double *b = new double[N];
double *c = new double[N];
size_t j;

double scalar = 3.0;

/* --- Initialization --- */
#pragma oss taskloop for grainsize(BSIZE) out(a[j], b[j], c[j])
for(j = 0; j < N; j++) {...}

//* --- MAIN LOOP --- repeat test cases nTimes times --- */
for (int k=0; k<nTimes; k++) {
#pragma oss taskloop for grainsize(BSIZE) in(a[j]) out(c[j])
for(j = 0; j < N; j++)
cj] - alil;
#tpragma oss taskloop for grainsize(BSIZE) in(c[j]) out(b[j])
for(j = 0; j < N; j++)
b[j] = scalar*c[j];

#pragma oss taskloop for grainsize(BSIZE) in(a[j], b[j]) out(c[j])
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#pragma oss taskloop for grainsize(BSIZE) in(b[j], c[j]) out(al[j])
for(j = 0; j < N; j++)
alj] = bljl+scalar*c[j1;
}

#pragma oss taskwait

delete a;
delete b;
delete c;

Up to this point, we applied the different contributions presented in Chapter 4.
In Chapter 5, we presented our contribution related to the management of NUMA
domains. We can apply the mentioned NUMA support to any of the versions al-
ready listed. For that purpose, we only require to replace the regular allocation-
s/deallocations by the Nanos6é NUMA API allocations/deallocations. So we did in
Listing 7.5, where we combine the taskloop for with the NUMA support. Thanks
to this, we can mitigate the impact of the NUMA effect in systems with several
NUMA domains.

Listing 7.5: Stream benchmark using taskloop for with NUMA support

// Allocate vectors

nanos6_bitmask t bitmask;

nanos6_bitmask set wildcard(&bitmask, NUMA ALL ACTIVE);

int numa_nodes = (int) nanos6_count setbits(8bitmask);

size t size = sizeof(double)*N;

size t block size = std::ceil((double) size/(double) numa nodes);

double *a = (double *) nanos6 numa_alloc_block interleave(size, 8bitmask,
block size);

double *b = (double *) nanos6 numa_alloc_block interleave(size, 8bitmask,
block size);

double *c = (double *) nanos6 _numa_alloc_block interleave(size, &bitmask,
block size);

size t j;

double scalar = 3.0;

/* --- Initialization --- */

#fpragma oss taskloop for grainsize(BSIZE) out(al[j], b[j], c[j])
for(j = 0; j < N; j++) {...}
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//* --- MAIN LOOP --- repeat test cases nTimes times --- */
for (int k=0; k<nTimes; k++) {
#pragma oss taskloop for grainsize(BSIZE) in(a[j]) out(c[j])
for(j = 0; j < N; j++)
c[j] = aljl;

#tpragma oss taskloop for grainsize(BSIZE) in(c[j]) out(b[j])
for(j = 0; j < N; Jj++)
b[j] = scalar*c[j];

#pragma oss taskloop for grainsize(BSIZE) in(a[j], b[j]) out(c[]

1
for(j = 0; j < N; Jj++)
cljl = a[jl+b[]];

#pragma oss taskloop for grainsize(BSIZE) in(b[j], c[j]) out(alj
D
for(j = 0; j < N; Jj++)
a[j] = b[jl+scalar*c[j];
}

#pragma oss taskwait

nanos6_numa_free(a);
nanos6_numa_free(b);
nanos6_numa_free(c);

Finally, in Chapter 6, we presented the OpenCHK model. This model provides
checkpoint/restart through compiler directives. Listing 7.6 includes OpenCHK
directives to introduce checkpoint/restart in the application. Concretely, we intro-
duced a directive to initialize the OpenCHK model, a directive to restore data from
a checkpoint in the event of a restart, a directive to store data, and finally, a direc-
tive to finalize the OpenCHK runtime library. These changes are highlighted in
blue. As a result, we have an application combining all the contributions presented
in this thesis.

Listing 7.6: Stream benchmark using taskloop for with NUMA support and OpenCHK

// Init MPI and OpenCHK

MPI Init thread(8argc, &argv, DESIRED THREAD LEVEL, &provided);
assert(provided == DESIRED THREAD LEVEL);

MPI_Comm comm = MPI_COMM_WORLD;
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#pragma chk init comm(comm)

// Allocate vectors

nanos6 bitmask t bitmask;

nanos6_bitmask set wildcard(&bitmask, NUMA ALL ACTIVE);

int numa_nodes = (int) nanos6_count_setbits (8bitmask);

size t size = sizeof(double)*N;

size t block _size = std::ceil((double) size/(double) numa_nodes);

double *a = (double *) nanos6 numa_alloc block interleave(size, &
bitmask, block size);

double *b = (double *) nanos6 _numa_alloc block interleave(size, &
bitmask, block size);

double *c = (double *) nanos6 _numa_alloc_block interleave(size, &
bitmask, block size);

size t j;

double scalar = 3.0;

/* --- Initialization --- */
#fpragma oss taskloop for grainsize(BSIZE) out(al[j], b[j], c[j])
for(j = 0; j < N; j++) {...}

// Try to recover data from checkpoint
#pragma chk load(a[0;N], b[o;N], c[0;N])

//* --- MAIN LOOP --- repeat test cases nTimes times --- */
for (int k=0; k<nTimes; k++) {
#pragma oss taskloop for grainsize(BSIZE) in(a[j]) out(c[j])
for(j = 0; j < N; j++)
c[jl = aljl;

#pragma oss taskloop for grainsize(BSIZE) in(c[j]) out(b[j])
for(j = 0; j < N; j++)
b[j] = scalar*c[j];

#fpragma oss taskloop for grainsize(BSIZE) in(a[j], b[j]) out(c[]
D

for(j = 0; j < N; Jj++)

c[j] = aljl+b[3];

#fpragma oss taskloop for grainsize(BSIZE) in(b[j], c[j]) out(a[j
D
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for(j = 0; j < N; j++)
alj] = b[jl+scalar*c[j];

#pragma oss task in(a[o;N], b[o;N], c[0;N])

{
// Save data at half the execution

#pragma chk store(a[o;N], b[0o;N], c[0;N]) level(o) id(k) if (k ==
nTimes/2)

}
}

#pragma oss taskwait

nanos6_numa_free(a);
nanos6_numa_free(b);
nanos6_numa_free(c);

// Shutdown OpenCHK and MPI
#ipragma chk shutdown
MPI Finalize();

We evaluated the different versions to check that the interaction between the dif-
ferent contributions works as expected. Figure 7.1 shows the performance of the
different versions. Y-axis shows the performance, which in this case is the memory
bandwidth, and x-axis shows the number of NUMA nodes used. The title of the
chart includes the problem size, block size, and number of iterations used. How-
ever, for the versions including OpenCHK we had to increment the number of
iterations to mitigate the impact of the checkpointing in the performance. In the
case of the versions including OpenCHK, the execution time was around ten min-
utes, with a single checkpoint. In the chart we can see that all the versions perform
very similarly running with a single NUMA node, with a small penalty for the ver-
sion using OpenCHK, due to the checkpointing. When using two NUMA nodes,
all the versions perform very similarly, except the two using the NUMA support.
The versions using the NUMA support are able to outperform the rest. As with a
single NUMA node, we can see a small penalty in the version using OpenCHK due
to the checkpointing.
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Figure 7.1: Evaluation of the combination of all the thesis contributions in platform A
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Chapter

Conclusions

In this chapter, we summarize the contributions presented throughout this thesis
and provide concluding remarks. We also discuss the interactions between the
different contributions.

8.1 Conclusions

This thesis focuses on easing the exploitation of Exascale systems. HPC systems are
increasingly more and more complex, and so, becoming more and more difficult to
program. Programming models are a good approach to reduce the complexity of
programming such complex sytems. Nevertheless, state-of-the-art programming
models are still missing key features related to both performance and programma-
bility. Specifically, the efficient management of massive compute resources and
memory hierarchies, concretely NUMA domains, are still open challenges. Addi-
tionally, we must consider the necessity of fault tolerance in Exascale systems, given
its enormous amount of components. HPC community has been doing a great job
in fault tolerante systems and software, but there is still room for improvement in
terms of programmability and portability.

The contributions of this thesis address the three challenges previously outlined,
always bearing in mind the final objective: ease the use of complex HPC systems,
enabling non-expert users to exploit the full power of the systems.

In Chapter 4, we address the issue of efficiently managing a modern multicore/-
manycore processor. We introduce the problems that current approaches present,
namely rigid synchronization in fork-join parallelism, and granularity issues in
task-based parallelism. We propose a solution combining the best of both ap-
proaches: worksharing tasks. This special kind of tasks enable users to benefit from
the data-flow lightweight synchronization of tasks, along with the low-overhead of
worksharing techniques. In this chapter, we also present an enhancement to the
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taskloop construct that simplifies the use of task-based parallelism, by enabling
the use of data dependences in the taskloop construct. Finally, we combine both
contributions in a single construct: taskloop for. This construct behaves as a reg-
ular taskloop but creating worksharing tasks rather thank regular tasks. In the light
of results, we can conclude that worksharing tasks are able to mitigate granularity
issues, converting task-based parallelism in the best alternative in modern HPC
systems; and the introduction of data dependences in the taskloop construct eases
the development of task-based programs.

In Chapter 5, we cover the management of memory hierarchies, focused on
NUMA domains. The Memory Wall is a well known issue in the HPC community.
The processor performance increased much more than memory performance, to
the point that memory accesses are a frequent bottleneck in applications. Chip
manufacturers have been including several layers of memory, known as memory
hierarchies, to mitigate the impact of the Memory Wall. Nevertheless, the man-
agement of the memory hierarchy is crucial to avoid spending too much time
on data movements. We focus our work on mitigating the NUMA effect. Cur-
rent processors may include several sockets in a single shared-memory address
space, and multiple memory controllers in a single socket accessible from all the
cores within the socket. Notwithstanding, accessing to remote sockets or memory
controllers is more expensive than local accesses. This is a frequent bottleneck in
memory-bound workloads. Analyzing the results of our evaluation, our NUMA-
aware mechanism, that combines a data distribution API, a data-tracking system,
the data dependences of tasks, and a NUMA-aware scheduler, is able to reduce
data motion, mitigating the impact of the NUMA effect, and so, enhancing perfor-
mance.

Finally, in Chapter 6 we focus on fault tolerance. It has been demonstrated that
more components lead to more errors. Modern HPC systems incorporate a vast
amount of components, and Exascale systems are expected to contain even more.
This trend causes that errors are more likely to occur in Exascale systems, jeopar-
dizing the progress of applications. Troughout the thesis we have contributed with
mechanisms to enhance the performance (and programmability) of applications
in modern HPC systems. Nonetheless, these contributions have no value if ap-
plications cannot progress. There are several state-of-the-art tools addressing fault
tolerance issues, but there is still room for improvement in terms of programmabil-
ity and portability. We propose the use of OpenCHK as a standard programming
model to perform application-level CR. Our evaluation demonstrated that it in-
troduces no additional overhead, while it reduces significantly the source lines of
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code required to introduce fault tolerance in applications. Additionally, it enhances
portability.

We would like to highlight the ability of our contributions to cooperate in a sin-
gle execution, as shown in Chapter 7. We already mentioned that modern proces-
sors are increasingly including more cores and more memory controllers. Thus,
we must be able to address both challenges at the same time. Our contributions re-
garding the efficient management of modern multicore/manycore processors and
memory hierarchies are both developed in the OmpSs-2 programming model. As
a result, they can be easily combined. We just have to parallelize the application
using worksharing tasks and/or taskloop with dependences, while performing the
memory management using the Nanos6 NUMA API. Given that both worksharing
tasks and taskloops have data dependences like regular tasks, the Nanos6 NUMA-
aware scheduling will be effective with no further effort. This combination could
be especially interesting in hybrid MPI+OmpSs-2 applications, where we could be
able to reduce the number of MPI processes per node because we would not have
to worry about the NUMA effect.

Besides the challenges within the node (increase in the core count per node
and the memory domains per node), we also mentioned the increase in the over-
all number of nodes and its corresponding increased error rate. So, fault toler-
ance should also be combined with the solutions to the previous challenges. The
OpenCHK model can be combined with different programming models with no
trouble. In fact, some of the applications used in the evaluation are using MPI+OpenMP
or MPI+OmpSs implementations, using both fork-join parallelism and task-based
parallelism. As our previous contributions rely on task-based parallelism, there
would be no trouble in combining all our contributions in a single execution as
shown in Chapter 7.

We wish to highlight also that all the contributions of this thesis have been in-
troduced, or are in process of being introduced, in the production version of the
OmpSs-2 programming model, except the OpenCHK programming model that is
an independent programming model that has been already released and is pub-
licly available. In other words, this is not a work focused only on research envi-
ronments that never impact the real world, but a work that is (or will be in the
near future) available to everyone. In fact, some of the contributions developed
in this thesis have already been used in different EU projects such as DEEP-ER,
DEEP-EST and INTERTWinE. Additionally, considering the presence of the BSC
in the OpenMP board, and the background of contributions from the BSC to the
OpenMP standard, especially to the tasking model, some of the developments of
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this thesis could influentiate or serve as a base to new features introduced by the
BSC in the OpenMP standard.
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Chapter

Future Work

In this chapter, we discuss possible future work regarding the concrete contribu-
tions presented and this thesis, and also more general suggestions to improve the
exploitation of future Exascale systems.

9.1 Efficient Management of Modern Multicore/Manycore Proces-
sors

Regarding the efficient management of modern multicore/manycore processors,
we presented two contributions in this thesis: worksharing tasks and taskloop
with dependences. Besides that, we also presented the taskloop for construct, that
combines both contributions. Nevertheless, there is still room for improvement.

Concretely, in Sections 4.6.1 and 4.6.2 we mentioned that OpenMP workshar-
ings were outperforming worksharing tasks in scenarios where the problem size
is very small. We explained that this effect was due to the better exploitation of
data locality in OpenMP worksharing constructs compared to worksharing tasks.
Thus, as an open line for the future, we should figure out strategies to improve the
locality exploitation of worksharing tasks that could boost the performance in sce-
narios like the one detailed. One possible solution would be implementing a work
partition and scheduling similar to the OpenMP worksharings (using the static
schedule) one. A further future line regarding worksharing tasks is the flexibility
in the number of cores that can collaborate in a single worksharing task. We ex-
plained in Section 4.3.6 that the teams of worksharing tasks are static, in the sense
that they are set at the beginning of the execution and they cannot change. As well,
we stated that all the teams have the same maximum size. Future work possibilites
could include the possibility of having teams of different sizes, or even the ability
to change the maximum size of teams dinamically during the execution.
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In Section 4.4.2 we stated that our current implementation of the taskloop with
dependences focuses on programmability and mention the possibility of applying
optimizations related to the memory management and throttle. In our current
implementation of the taskloop, the runtime library allocates space for each of the
tasks individually. However, given that we know the total number of iterations
and the grainsize, we can infer the total number of tasks that we must create. One
possible optimization for the future would be allocate the space for all the tasks
in a single allocation rather than performing one allocation per task. This could
have impact in the performance given that grouping allocations is a well known
technique to reduce overhead. Besides that, knowing the total number of tasks
that a taskloop contains, we can easily apply throttle techniques to prevent memory
overuse that may lead to performance degradation. In some scenarios, the runtime
has too many tasks in flight, consuming too much memory. Throttle mechanisms
seek to correct this behaviour by limiting the ability of the runtime to keep creating
tasks until the memory use is below a given threshold, but it is usually a reactive
mechanism. By using taskloops, we can know how many tasks are being created
by each taskloop, and we can limit the creation of tasks before the memory use is
too high that it leads to a degradation of the performance.

9.2 Efficient Management of Memory Hierarchies (NUMA)

We presented our OmpSs-2 NUMA-aware system to address the challenge related
to the efficient management of memory hierarchies, focused on NUMA domains.
One possibility of improvement is introducing more wildcards, if necessary.

A further future work could be adding the possibility of retrieving some key
information of the topology of the system using the Nanos6 NUMA API. Currently,
we already provide a method to retrieve thee number of NUMA nodes available in
the system, but it could be extended to retrieve more advanced information like
the distances between different numa nodes.

Another open line for the future could be the automation of the convertion of
regular mallocs/frees to methods of the Nanos6 NUMA API. One possibility could
be the interception of these methods with wrappers that calls the Nanos6 NUMA
API rather than the regular memory management library.

One more possibility for future work is considering page migration techniques.
We could use PEBS sampling to analyze the memory behavior of applications,
and under some scenarios, we could use page migration techniques, such as the
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move_pages method, to improve the distribution of data. Currently, the user is in
charge of specifying the data distribution, but it would be interesting to investigate
the automation of such a process. A possible way of doing so is the combination of
PEBS sampling to detect patterns and move_pages to dinamically move data across
different NUMA nodes.

In a more general view, we plan to extend the NUMA-aware system to support
CUDA accelerators. As OmpSs-2 is a programming model with heterogeneity sup-
port, we plan to provide an allocation/deallocation API similar to the NUMA API,
and extend the scheduling system to work with CUDA devices.

Besides that, we are working on an extension that enables us to track data not
only at NUMA level, but also at deeper levels of the memory hierarchy, such as L2
or L3. Nevertheless, this is much more complicated because it requires to mimic
the behavior of the cache replacement policy.

9.3 FaultTolerance

With regard to fault tolerance, we presented the OpenCHK model. This model pro-
vides the basic features of an application-level CR mechanism, and some advanced
features such as differential checkpoint. As future work, we would like to integrate
incremental checkpoints into OpenCHK. This is a technique where a checkpoint
is not fully written at one time, but incrementally built in several separated write
operations. An example of this is an N-body simulation dealing with particle po-
sitions, velocities, and forces. Each one of these is calculated at a different time,
starting with the forces, then the velocities, and finally the positions. When the
forces have been updated, they can be written in the checkpoint, possibly while the
velocities are being calculated. Then, when the velocities have been updated, they
can be written in the checkpoint, and the same finally with the positions. Overall,
all the variables are checkpointed, but the write operations are separated in time,
to decrease storage congestion and maximize parallelization.

Another idea is decoupling the actual operation (load/store) and the data reg-
istration. Currently, the model does these together because the data is registered
in the load/store clauses. However, it may become a problem when dealing with
C++ classes due to the visibility of some members in different contexts. Therefore,
allowing registration and actual load/store separately would help in some specific
cases.
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Finally, we plan to add GPU checkpointing to the model to accelerate fault-
tolerance tasks and better exploit the resources of heterogeneous systems.

9.4 Other Challenges

In this thesis, we focused on three specific challenges of the future Exascale systems,
and developed solutions to overcome them. In the previous sections of this chapter,
we discussed concrete proposals to improve the contributions presented in this
thesis or future work lines that are specifically related to the challenges addressed
in this thesis. Nonetheless, Exascale systems present more challenges than the three
addressed in this thesis.

One of them is the heterogeneity. Modern systems are increasingly incorporat-
ing accelerators within the compute nodes. Nowadays it is frequent to see com-
pute nodes with CPUs and GPUs, or other specific purpose accelerators. Usually,
the accelerators offer a great compute capacity with a reduced power budget, but
they are not always easy to program and handle. One important problem of using
accelerators is the presence of disjoint memory address spaces where the user is in
charge of properly handling the data movements between different address spaces.
As well, hardware accelerators usually have different architectures than CPUs in
the same node, making the cooperation difficult. Great efforts are being done in
this direction, but there is still room for improvement.

One further challenge of Exascale systems is the management of deep and com-
plex memory hierarchies. New layers have been introduced in the traditional mem-
ory hierarchy. Traditionally, we had some levels of cache (2 or 3 usually), the main
memory, and the storage. Nowadays, we can find a further layer between the caches
and the main memory, such as the HBM of the Intel’s Knights Landing processor.
Also, there is a layer between the traditional storage and the main memory where
we can find Non-Volatile Memories (NVM) or Storage Class Memories (SCM). To
maximize the performance of modern HPC systems, it is crucial to properly man-
age the whole memory hierarchy, including the newest layers. As with the hetero-
geinity, the HPC community is devoting considerable effort in this challenge, but
again, there is still room for improvement. The integration of such new layers in
state-of-the-art programming models could be great idea.
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Appendix

Using CR in N-body Simulation

In this Appendix, we provide full examples of how to introduce CR in an N-body
simulation kernel, using OpenCHK, FTI, VeloC, and SCR. In each of the codes,
the lines highlighted with a blue background are those required to implement CR.
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Full Example of N-body Simulation Kernel Using OpenCHK

d solve nbody(particles block t * local,
particles_block_t * tmp,
force block_t * forces,
const int n_blocks,
const int timesteps,
const float time_interval)

int rank, rank size;
MPI Comm_rank (MPI_COMM_WORLD, &rank);
MPI Comm_size(MPI_COMM_WORLD, 8&rank size);

int t = 0;

// Load local and t vars, if any.

for (; t < timesteps; t++) {
#pragma oss task inout([n_blocks] local)

{
// Store local and t vars, using t as id.
// Each checkpoint done must be at level 4.
// Checkpoint every 10 iterations.
\
1= 0)
}

particles block t * remote = local;
for(int i=0; i < rank_ size; i++){
#tpragma oss task in([n_blocks] local,[n_blocks] remote)
\
inout ([n_blocks] forces)
calculate forces(forces, local, remote, n_blocks);

#tpragma oss task in([n_blocks] remote) \
out([n_blocks] tmp)



exchange particles(remote, tmp, n_blocks, rank,
rank_size, i, t);

remote=tmp;

}

#pragma oss task inout([n_blocks] local) inout([n_blocks]
forces)
update particles(n _blocks, local, forces, time interval);

}

#pragma oss taskwait
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A.2  Full Example of N-body Simulation Kernel Using FTI

void solve nbody(particles block t * local,
particles block t * tmp,
force block _t * forces,
const int n_blocks,
const int timesteps,
const float time interval)

int rank, rank _size;
MPI_Comm_rank (MPI_COMM_WORLD, 8&rank);
MPI Comm_size(MPI_COMM_WORLD, 8rank_size);

int t = 0;
// Create a new FTI data type

// Initialize the new FTI data type

~
-

(; t < timesteps; t++) {
#tpragma oss task inout([n_blocks] local)

{

-+
o
=

tl=restarted t) {
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}

particles block t * remote = local;
for(int i=0; i < rank_size; i++){
#fpragma oss task in([n_blocks] local,[n_blocks] remote)
\
inout([n_blocks] forces)
calculate forces(forces, local, remote, n_blocks);

#pragma oss task in([n_blocks] remote) \
out([n_blocks] tmp)
exchange particles(remote, tmp, n_blocks, rank,
rank size, i, t);

remote=tmp;

}
#pragma oss task inout([n_blocks] local) inout([n_blocks]

forces)
update_particles(n_blocks, local, forces, time interval);

}

#pragma oss taskwait
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A.3  Full Example of N-body Simulation Kernel Using VeloC

void solve nbody(particles block t * local,
particles block t * tmp,
force block _t * forces,
const int n_blocks,
const int timesteps,
const float time_interval)

int rank, rank size;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI Comm_size(MPI_COMM_WORLD, 8rank_size);

=
>
—+
~+
I
o
-

~
-

ck_t)

VELOC_SUCCESS);

for (; t < timesteps; t++) {
#pragma oss task inout([n_blocks] local)
{

tl=restarted t) {
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}

particles block_t * remote = local;
for(int i=0; i < rank size; i++){

#fpragma oss task in([n_blocks] local,[n_blocks] remote)

\
inout([n_blocks] forces)
calculate forces(forces, local, remote, n_blocks);

#pragma oss task in([n_blocks] remote) \
out([n_blocks] tmp)
exchange particles(remote, tmp, n_blocks, rank,
rank size, i, t);

remote=tmp;

}

#pragma oss task inout([n_blocks] local) inout([n_blocks]
forces)
update particles(n _blocks, local, forces, time_ interval);

}

#pragma oss taskwait
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A.4  Full Example of N-body Simulation Kernel Using SCR

void solve nbody cp(const int n_blocks,
const int rank,
particles block t const* _ restrict _ local,
const int timestep);
int solve nbody rt(const int n_blocks,
const int rank,
particles block t*  restrict _ local,
int *timestep);

void solve nbody(particles block t * local,
particles block t * tmp,
force_block_t * forces,
const int n_blocks,
const int timesteps,
const float time_interval)

int rank, rank_size;
MPI_Comm_rank (MPI_COMM_WORLD, 8&rank);
MPI Comm_size(MPI_COMM_WORLD, 8&rank_size);

int t = 0;

for (; t < timesteps; t++) {
#pragma oss task inout([n_blocks] local)

{
if(t (timesteps/10)==0 && t != 0 &3 restarted t != 0 &&
tl=restarted t) {
}
}

particles block t * remote = local;
for(int i=0; i < rank_ size; i++){
#tpragma oss task in([n_blocks] local,[n_blocks] remote)
\
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inout ([n_blocks] forces)
calculate forces(forces, local, remote, n_blocks);

#pragma oss task in([n_blocks] remote) \
out([n_blocks] tmp)
exchange particles(remote, tmp, n_blocks, rank,
rank size, i, t);

remote=tmp;

}

#fpragma oss task inout([n_blocks] local) inout([n_blocks]
forces)
update_particles(n_blocks, local, forces, time interval);

}

#pragma oss taskwait

local,
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scr_prefix, n_blocks, BLOCK SIZE, rank);

S_TWUSR

S_INGRP | S_IWOTH);

[

particles block t)*n blocks);

-+
—~

particles block t)*n_blocks + sizeof(int));

num_read_particles, size;
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SCR_MAX_FILENAME];

~
1%]
-

BLOCK SIZE, rank);

restarts.”);
S_IWGRP | S_IWOTH);

)+sizeof(int),

(0]

USR

s _block_t

P_SHARED,
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checkpoint file */

_INT,
MPI_LAND,

INT,
MPI_BAND, MPI_COMM_WORLD);

MPI_BOR, MPI_COMM_WORLD);
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