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Tiger got to hunt, bird got to fly;
Man got to sit and wonder ’why, why, why?’

Tiger got to sleep, bird got to land;
Man got to tell himself he understand.

Kurt Vonnegut, Cat’s Cradle
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Summary

In this thesis, we study the application of symplectic geometry, regular and singular, to
symplectic dynamical systems. We start with a motivating case: the relation between
symplectic foliations and global transverse Poincaré sections, showing that meaningful
dynamical information can be gleaned by simple observations on the geometry of the
phase space - in this case, the existence of a symplectic foliation on a hypersurface of
the phase space.

We then go on study dynamical systems of particular importance in geometry -
those given by a group action on a manifold. In particular, we consider a singular
symplectic manifold (specifically, a manifold equipped with a symplectic form which
blows up in a controlled manner on a hypersurface of that manifold, namely, a b-
symplectic form) with a group action preserving the geometry and give a b-symplectic
slice theorem which provides an equivariant normal form of the b-symplectic form in
the neighbourhood of an orbit. Particular examples of b-symplectic group symmetries
are then explored: those given by the cotangent lift of group translation on so-called
b-Lie groups.

The second part of this thesis focuses on symplectic and b-symplectic dynamical
systems coming from celestial mechanics. In particular, the separatrix map of the sta-
ble and unstable manifolds of the fixed point at infinity of the planar circular restricted
three-body problem is examined and an estimate of the width of the stochastic layer is
given - that is the existence of a K.A.M. torus which acts as a boundary to bounded mo-
tions is proved. Due to the delicate nature of the problem - namely issues coming from
the parabolic nature of the fixed point and exponentially small nature of the splitting,
careful control of the errors of the separatrix map is paramount. This is achieved by
employing geometric methods, namely, by taking full advantage of generating func-
tions which exist by virtue of the symplectic nature of the system.

Finally, motivated by the important role of symplectic geometry in the systems of
celestial mechanics in mind, we give examples of degenerate and singular symplectic
structures occurring in systems of celestial mechanics which cannot be equipped with
a symplectic form.



Resumen

En esta tesis, estudiamos una aplicación de la geometrı́a simpléctica, regular y sin-
gular, a sistemas dinámicos simplécticos. Comenzamos con un caso motivador: la
relación entre foliaciones simplécticas y secciones transversales de Poincaré globales,
que muestra que se puede obtener información significativa de la dinámica mediante
simples observaciones sobre la geometrı́a del espacio de fase, en este caso, la existencia
de una foliación simpléctica en una hipersuperficie del espacio de fase.

Luego continuamos estudiando sistemas dinámicos de particular importancia en
geometrı́a, dados por una acción de grupo sobre una variedad. En particular, consider-
amos una variedad simpléctica singular (especı́ficamente, una variedad equipada con
una forma simpléctica que explota de manera controlada en una hipersuperficie de esa
variedad, es decir, una forma b-simpléctica ) con una acción de grupo que preserva la
geometrı́a y damos un teorema de rebanada b-simpléctico que proporciona una forma
normal equivariante de la forma b-simpléctica en una vecindad de una órbita. Luego
se exploran ejemplos particulares de simetrı́as de grupo b-simplécticas: las dadas por
el levantamiento cotangente de la translación (grupal) en los llamados b-grupos de Lie.

La segunda parte de esta tesis se enfoca en sistemas dinámicos simplécticos y b

-simplécticos provenientes de la mecánica celeste. En particular, se examina el ”sepa-
ratrix map” de variedades estables e inestables del punto fijo al infinito del problema
de los tres cuerpos restringido circular plano, y se da una estimación del ancho de
la capa estocástica, es decir, la existencia de un toro K.A.M. que actúa como frontera
para movimientos acotados. Debido a la naturaleza delicada del problema, es decir,
los problemas que provienen de la naturaleza parabólica del punto fijo y la naturaleza
exponencialmente pequeña de la separación, el control cuidadoso de los errores del
”separatrix map” es primordial. Esto se logra empleando métodos geométricos, es de-
cir, aprovechando al máximo las funciones generadoras que existen en virtud de la
naturaleza simpléctica del sistema.

Finalmente, motivados por el importante papel de la geometrı́a simpléctica en los
sistemas de mecánica celeste en mente, damos ejemplos de estructuras simplécticas
degeneradas y singulares que ocurren en sistemas de mecánica celeste que no pueden
equiparse con una forma simpléctica.



Chapter 1

Introduction

It is difficult to avoid the impression that a miracle confronts us here, quite
comparable in its striking nature to the miracle that the human mind can string a
thousand arguments together without getting itself into contradictions, or to the
two miracles of laws of nature and of the human mind’s capacity to divine them.

Eugene Wigner, The Unreasonable Effectiveness of Mathematics in

the Natural Sciences

Whether partial to a positivist or Platonic viewpoint, the effectiveness of mathemat-
ics in describing the “natural sciences” remains beyond doubt. Classical mechanics
is governed by (or, at least, described with uncanny accuracy by) the rules of differ-
ential equations. In turn, the qualitative dynamical characteristics of the solutions of
these equations can be decided by still more abstract geometric aspects of the system.
Nowhere is this more apparent than in the study of Hamiltonian systems and their
associated geometry, now an important subject of study in its own right. Symplectic
geometry is responsible for the many striking characteristics of Hamiltonian mechanics
- from the trivial dynamics of integrable systems to the stochastic layers surrounding
split separatrices. Further abstractions of phase space as a geometric object (for exam-
ple, reducing a phase space by a symmetry) leads naturally to Poisson geometry, in
which the phase space is foliated by symplectic leaves on which the dynamics occur.
Classical examples include the Lie-Poisson structures defined on the dual of the Lie
algebras, which describe systems ranging from the movement of a rigid body to the

1



flows of ideal fluids.
Recently, there has been a surge of interest in possible applications of other, some-

what less classical, Poisson structures to classical mechanics. Two of these – b-Poisson
and cosymplectic manifolds – will feature here. This thesis, then, will explore Poisson
and symplectic Hamiltonian dynamical systems ranging from the specific and quite-
abstract to the general and more-abstract, loosely tied by the following theme, already
considered an incontrovertible fact: an understanding of the geometry of any dynami-
cal system can provide invaluable dynamical insight.

As the subject matter is somewhat diverse, the chapters of this thesis are designed
to be self-contained: each come with their own necessary preliminaries, along with
some cross-references. This is with the exception of Chapter 5 and Chapter 6, which
should be read in order.

1.1 Outline

This thesis contains the following novel results:

1.1.1 Chapter 2: Preliminaries

Chapter 1 provides basic preliminaries of symplectic and Poisson geometry common
to all following chapters. We start with a motivating example, which shows that the
examination of more general Poisson structures can lead easily to dynamical results.
In particular, the following result is given:

Theorem A. Let (M,H, ω) be a Hamiltonian system and Z = H−1(c) a compact, regular
level energy set. Then Z possesses a global transverse Poincaré section for the flow of H if and
only if Z is cosymplectic.

1.1.2 Chapter 3: Group Actions on b-Symplectic Manifolds

b-Symplectic forms and their symmetries have attracted considerable interest since
their introduction in [1]. Chapter 2 continues the study of b-symplectic symmetries by
giving a semi-local normal form for the structure in a neighbourhood of a group orbit,
in the spirit of the symplectic slice theorem. In particular, we prove the following:

2



Theorem B. Let (M,ω,G) be a b-symplectic manifold together with an effective b-symplectic
action by a compact connected Lie group G. Let Z be the critical set of the b-symplectic form
and assume that the orbits of G are transverse to the symplectic foliation of Z and Hamiltonian
when restricted to the leaves of Z. Then

1. G is necessarily of the form G = (S1 × H)/Zk where Zk is a cyclic group and H is a
compact Lie group.

2. The action of G lifts to an action of a product group G̃ = S1 × H on a finite cover U
of a collar neighbourhood of Z, U := (−ε, ε) × Z̃, Z̃ ∼= S1 × L, where S1 acts on Z̃ by
translations on the S1-factor and H by symplectomorphisms on the symplectic leaf L.

3. Let z̃ ∈ Z̃. Denote by OG̃z̃ the orbit of z̃ in Z̃ under the action of G̃ and by Y H
z̃ the

bundle of Theorem 3.1.2 associated to the action of H on L. Then there is an equivariant
b-symplectomorphism from a neighbourhood of the orbit OG̃z̃ ∼= S1 × OHz̃ to the zero
section of the bundle Ẽ = T ∗S1 × Y H

z̃ where G̃/Hz̃ is embedded as the zero section and
the b-symplectic form on Ẽ is given by

ω = ωtw,c + ωMGS.

Here ωtw,c is the pullback of the twisted b-symplectic form of modular period c on the
manifold T ∗S1 (see Definition 3.1.7) under the projection Ẽ → T ∗S1 and ωMGS is the
pullback of the MGS normal form as given by Theorem 3.1.2 under the projection Ẽ →
Y H
z̃

4. There is an equivariant b-symplectomorphism from a neighbourhood of the orbit OGz to a
neighbourhood of the zero section of the bundle E = (T ∗S1 × Y H

z̃ )/(Zk) where Zk is a
finite cyclic group acting by the cotangent lifted action on T ∗s1.

To achieve the b-symplectic slice theorem, we additionally give some minor results
on cosymplectic and foliation preserving group actions which may be of independent
interest. The normal form is then computed for several examples of b-symplectic ac-
tions.

This work is joint with Anna Kiesenhofer and Eva Miranda
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1.1.3 Chapter 4: b-Lie Groups and b-Symplectic Reduction

Chapter 3 investigates a particular category of symmetric b-symplectic forms, those
defined on the cotangent bundle of certain Lie groups known as b-Lie groups. Theses
can be defined for and Lie group with a codimension-one subgroup. The existence
of a codimension one Lie subgroup allows the definition of the canonical b-symplectic
form on the tangent bundle. As in the symplectic case, the form is invariant under the
cotangent lifted action of the group acting on itself by translations and the reduces to
a Poisson structure on the quotient manifold.

Theorem 1.1.1. Let bT ∗G be endowed with the canonical b-Poisson structure. Then the Pois-
son reduction under the cotangent lifted action of H by left translations is

((bT ∗G)/H, Πred) ∼= (h∗ × bT ∗(G/H), Π−L-P + Πb-can)

where Π−L-P is the minus Lie-Poisson structure on h∗ and Πb-can is the canonical b-symplectic
structure on bT ∗(G/H), where G/H is viewed as a b-manifold with critical hypersurface the
point [e]∼.

Some examples of b-Lie groups, their reduction and the associated reduced b-symplectic
forms are computed.

This work is joint with Anna Kiesenhofer and Eva Miranda

1.1.4 Chapter 5: The Melnikov Potential and Poincaré Return Maps

for the PCR3BP

Chapter 5 and Chapter 6 contains the necessary material to find rigorously the ”bound-
ary of bounded motion” of the Planar Circular Restricted three-body Problem (PCR3BP).
In order to achieve this, a particular Poincaré map of the problem is analyzed. Chapter
5 considers a modified Melnikov potential which can be employed to control errors of
the associated separatrix map. This integral is calculated for the case of the parabolic
fixed point “at infinity” of the PCR3BP. Upon a rescaling of the complex plane, this in-
tegral is shown to be close to the usual Melnikov potential taken along the separatrices
(in this case, the parabolic orbits) of the Kepler problem. In particular, we consider the
following “Melnikov potential”:
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Consider the Kepler problem in rotating coordinates (r, φ) = (r, α − t). Consider a
parameterization (v, ξ) 7→ (re(v), φe(v, ξ)) of the orbits of the Kepler problem of eccen-
tricity e in a level set of the Jacobi constant J −1 (J0). Consider the PCR3BP and define
the Melnikov potential as the integral

L (ξ; e, µ,G) = G−2
∫ T

2

−T2
V (re(v), φe (ξ) ;µ) dv (1.1)

where T = T (J0, e) denotes the period of the Keplerian orbit of eccentricity e inJ −1 (J0),
µ is the ratio of the massive bodies in the PCR3BP andG−2V (re(v), φe(v, ξ);µ) is the dif-
ference in the potential between the Keplerian and restricted three body problem. The
following is then proved for G < J0 and G large enough,

Theorem 1.1.2. Let L (ξ;J0, G, µ) be the Melnikov potential function of equation (5.63) for
an orbit of angular momentum G and Jacobi constant J0. Then

L (ξ;J0, G, µ) = L[0] (ξ;J0, G, µ) + 2
+∞∑
`=1

L[`] (ξ;J0, G, µ) cos(`ξ) (1.2)

where

L[1] (G, µ) = −µ(1− µ)
√
π

1− 2µ
4
√

2
G−3/2e−

G3
3
(
1 +O

(
G−3/2,

√
1− e2

))
(1.3)

L[2] (G, µ) = −2µ(1− µ)
√
πG1/2e−

2G3
3
(
1 +O

(
G−1/2,

√
1− e2

))
(1.4)

L[`] (G, µ) = O
(
G`−3/2e−

`G3
3 ,
√

1− e2
)
, for ` ≥ 2. (1.5)

The integral is recast as the difference between approximate solutions to the Hamilton-
Jacobi equation in certain domains of the complex plane, by which the difference be-
tween the Melnikov potential and the difference of these solutions can be shown to be
exponentially small.

This work is joint with Amadeu Delshams

1.1.5 Chapter 6: Parabolic Return Maps and the PCR3BP

Separatrix maps suitable for modelling parabolic fixed points are examined and esti-
mates for the stochastic layer width are given by applying a classical invariant curve
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theorem. A quantitative K.A.M. theorem is applied, which gives estimates for the ap-
pearance of invariant curves in the non-asymptotic regime. The study of the parabolic
separatrix maps is then applied to the circular planar restricted three-body problem.
The geometric properties of the system (in particular, the area-preserving nature of the
Poincaré map) are used to prove the accuracy of a parabolic-type separatrix map in
this case. In particular, we bound the “boundary of bounded motions” of the PCR3BP
as follows:

Theorem 1.1.3. Let Th,J be a torus of the Kepler equation in rotating coordinates with Ke-
plerian energy h contained a level set J of the Jacobi constant, where the Jacobi constant is
assumed to be negative. Let µ be fixed, 0 < µ < 1 and µ 6= 1/2. Then for every ε0 > ε > 0 and
h(µ,J ) satisfying

h(µ,J ) = −(c1(µ)f1 (J )) 2
5−ε

where

• c1(µ) is a constant depending only on the mass ratio of the massive bodies given by

c1(µ) =
√
π

32
(
µ(1− µ)3 − (1− µ)µ3

)
• f1 (J ) depends only on the Jacobi constant and is given by

f1 (J ) = |J |3/2e−
|J |3

3

there exists some sufficiently large J ∗ such that for all |J | > |J ∗| there exists a Keplerian
torus Th0,J at some |h0| ≤ |h| which continues to an invariant torus of the PCR3BP.

The above theorem bounds the stochastic layer width as J → ∞. In order to exam-
ine the problem in the non-asymptotic regime, we examine an application of a param-
eterized K.A.M. theorem to non-optimal estimates open to optimization by computer-
assisted proofs are given using the parameterized K.A.M. theorem. Specifically, we
prove the following:

Theorem 1.1.4. Let Th0,J0 be a torus of the Kepler equation in rotating coordinates with Kep-
lerian energy h0 contained a level set J0 of the Jacobi constant. Suppose that

h0 = C̃∗c1(µ)2/17f (J0)2/17
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where

• C̃∗ is of the form C̃∗ = C∗ + O(J −1
0 ), where C∗ is a constant which will be given in

Theorem 6.4.13.

• c1(µ), f (J0) are as in Theorem 1.1.3.

Then for large J0 the torus persists in the PC3BP.

This work is joint with Amadeu Delshams

1.1.6 Chapter 7: Singular Symplectic Structures in Celestial Mechan-

ics

This chapter gives some examples of b-symplectic forms and the more degenerate bm-
symplectic forms which occur in Hamiltonian systems, often as the result of singular
coordinate transformations. The definition of folded symplectic forms is recalled, and
several examples of these occurring in systems coming from celestial mechanics.

This work is joint with Amadeu Delshams, Eva Miranda, Cédric Oms and Arnau Planas

1.2 Publications Resulting from this Thesis

The results of this thesis can be found in the following articles:

• An Invitation to Singular Symplectic Geometry, joint with Cédric Oms, Amadeu
Delshams, Eva Miranda, and Arnau Planas. International Journal of Geometric
Methods in Modern Physics 16, no. supp01 (2019): 1940008.

• b-Structures on Lie groups and Poisson reduction, joint with Anna Kiesenhofer and
Eva Miranda, (submitted for publication).

• A b-Symplectic Slice Theorem, joint with Anna Kiesenhofer and Eva Miranda, (sub-
mitted for publication).

• Non-Existence of Global Transverse Poincaré Sections, (submitted for publication).
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• The Boundary of Bounded Motions in the Restricted Planar Circular Three Body Prob-
lem, joint with Amadeu Delshams (in preparation).
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Chapter 2

Preliminaries

Let’s start at the very beginning. A very good place to start.

Maria, The Sound of Music

An encompassing view of Hamiltonian systems might be “the study of transfor-
mations preserving symplectic width” - a seemingly reductive definition with many
fundamental dynamical consequences.

The phase space of many classical systems is symplectic, a symplectic structure
being equivalent to a “non-degenerate” Poisson structure, however, there are examples
of dynamical systems occurring on more general Poisson manifolds. Two types of
Poisson manifolds will play a leading role in this thesis: cosymplectic and b-Poisson.

Here we very briefly recall the basics symplectic geometry and Poisson geometry
and recall the definitions

2.1 Symplectic manifolds

Symplectic geometry originated from the study of Hamiltonian dynamical systems but
has become an important branch of mathematics in its own right.

Definition 2.1.1. A Hamiltonian system is a triple (M,ω,H) where M is a manifold, ω is
closed, non-degenerate 2-form, called a symplectic form and H is a smooth function, H ∈
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C∞(M). The vector field defined by ιXfω = −dH , where ι denotes the interior product, is
called a Hamiltonian vector field.

Two important examples of symplectic forms are the Darboux symplectic form, and
the canonical symplectic form on a cotangent bundle.

Definition 2.1.2. LetM = R2n have coordinates (x1, y1, . . . , xn, yn). The Darboux symplectic
form ω is defined

ω =
n∑
i=1

dxi ∧ dyi.

Definition 2.1.3. LetM be a manifold of dimension n and consider the cotangent bundle T ∗M .
The Liouville one form λ is defined

〈λm, v〉 = 〈m, (πm)∗(v)〉

where we have v ∈ T (T ∗M),m ∈ T ∗M . and π is the projection π : T ∗M →M . The canonical
symplectic form on T ∗M is defined

ω = −dλ

These two examples are especially important as they provide basic normal forms
for symplectic structures. Proof of the local equivalence of symplectic forms is often
achieved by the application of the (relative) Moser theorem:

Theorem 2.1.4. Suppose ω0 and ω1 are two symplectic forms on a symplectic manifold M ,
that coincide on closed submanifold V . Then there is a neighbourhood U of V in M and a map
φ : U →M with φ|U = IdU and φ∗(ω0) = ω1.

The proof of this theorem is achieved by setting up an appropriate differential equa-
tion on the space of differential forms and using the Poincaré lemma to show the exis-
tence of a solution. An important corollary is the Darboux theorem, showing that all
symplectic forms locally look alike:

Corollary 2.1.5. Let p ∈M be a point in symplectic manifold (M,ω) There exists a system of
local coordinates (x1, y1, . . . , xn, yn) centred at p such that ω is in Darboux form (2.1.2).
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2.2 Poisson manifolds

As in the symplectic case, Poisson structures associate dynamical systems to the un-
derlying manifold by assigning vector fields, termed ”Hamiltonian vector fields”, to
smooth functions on the manifold. In this case, a Hamiltonian vector field is assigned
via a bracket on the algebra of smooth functions on the manifold:

Definition 2.2.1. A Poisson manifoldM is a smooth manifold equipped with a skew-symmetric
R-bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

that satisfies

1. Skew symmetry: {f, g} = −{g, f}

2. The Jacobi identity: ∀f, g, h ∈ C∞(M), {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0 and

3. Leibniz’s rule: ∀f, g ∈ C∞(M), {fg, h} = f{g, h}+ {f, h}g.

Definition 2.2.2. Let (M, {·, ·}) be a Poisson manifold and f ∈ C∞(M) a smooth function on
M . The Hamiltonian vector field, Xf of f is the derivation given by Xf (g) = {f, g}. f is then
called the Hamiltonian function. (M, {·, ·}, H) is referred to as the Hamiltonian system.

The Hamiltonian vector fields on a Poisson manifold define an involutive distri-
bution which integrates to a (not necessarily regular) foliation of the manifold. The
restriction of the Poisson structure to the leaves of the foliation defined by the Hamil-
tonian vector fields is non-degenerate and the associated isomorphism between the
tangent and cotangent bundles of the manifold defines a symplectic form on each leaf
of the foliation.

Poisson geometry, then, can be viewed as a combination of symplectic geometry,
which exists on the symplectic leaves of the Poisson manifold with some extra theory
not required in symplectic geometry, such as singularity theory. In general, it can be
difficult to say very much about general Poisson manifolds. For this reason, one ap-
proach to the study of Poisson manifolds is to choose some simple classes of Poisson
manifolds and try to describe their properties. One of the classes, known as, b-Poisson
manifolds will be discussed in the next section.
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2.2.1 b-Poisson Manifolds

In [1] the study of a certain class of mildly singular Poisson structures, known as b-
Poisson structures was initiated. The 2-dimensional case had been previously studied
in [2].

Definition 2.2.3. Let (M2n,Π) be an oriented Poisson manifold such that the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM) (2.1)

is transverse to the zero section, then Z = {p ∈M |(Π(p))n = 0} is a hypersurface and we say
that Π is a b-Poisson structure on (M2n, Z) and (M2n, Z,Π) is a b-Poisson manifold. The
hypersurface Z is called singular hypersurface.

These Poisson manifolds were shown have a particularly simple symplectic folia-
tion: the connected components of M\Z are open symplectic leaves of dimension 2n.
On Z there is a corank-1 Poisson structure, which in [3] was shown to be equivalent to
a cosymplectic structure, as defined by Libermann [4].

2.2.2 Cosymplectic Manifolds

In [3] corank one Poisson structures were studied via foliated forms. The following
were defined for codimension-one symplectic foliations:

Definition 2.2.4. A defining 1-form of the foliation is a nowhere vanishing one-form α ∈
Ω1(M) such that ι∗Lα = 0 for all leaves L of the foliation, where ιL is the canonical inclusion.
A defining 2-form of the foliation is a 2-form ω ∈ Ω2(M) such that ι∗Lω is the symplectic form
on each leaf of the foliation.

It was shown that such a Poisson structure is the singular hypersurface of a b-
Poisson manifold if and only if such forms can be chosen to be closed. This is equiva-
lent to the usual definition of cosymplectic structures:

Definition 2.2.5. A cosymplectic manifold is a manifold Z equipped with a closed one-form
η ∈ Ω1(Z) and closed two-form ω such that η ∧ (ι∗ω)n is a volume form for Z, where ι is the
embedding of Z in M .
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A cosymplectic manifold, then, has a codimension one foliation by symplectic leaves
such that the symplectic form on each leaf is the restriction of a form which is closed
on the ambient manifold.

When embedded as the critical set of a b-Poisson manifold, the cosymplectic mani-
fold comes with a foliation preserving Poisson vector field transverse to the symplectic
foliation given by the modular vector field of the Poisson structure:

Definition 2.2.6 (Modular vector field). Let M be a Poisson manifold and Ω a volume form
on M . The associated modular vector field is defined as the derivation:

C∞(M)→ R : f 7→
LXfΩ

Ω .

It can be shown that the modular vector field is a Poisson vector field and that the
modular vector fields associated to different volume forms only differ by a Hamilto-
nian vector field. In [3] the existence of this Poisson vector field was used to prove
some important topological results for corank-1 Poisson structures, in particular, the
following:

Definition 2.2.7. Let (M,Z) be a b-symplectic manifold and suppose that Z is compact and
connected and that its symplectic foliation has a compact leaf L. Then Z is a mapping torus
and taking any modular vector field vmod, there exists a number c > 0 such that

Z ∼=
[0, c]× L

(0, x) ∼ (c, φ(x))

where the time t-flow of vmod corresponds to translation by t in the first coordinate. In particu-
lar, φ is the time c-flow of u. c is called the modular period of Z.

The modular vector field has an interpretation in terms of Poisson cohomology. For
the case of b-Poisson manifolds, this class is given by the modular periods c of the
connected components of the critical set. Having chosen a modular vector field vmod,
we can choose defining one and two-forms of the cosymplectic structure uniquely by
imposing

α(vmod) = 1 and ι(vmod)ω = 0. (2.2)

Definition 2.2.8. Defining one- and two-forms fulfilling this are referred to as the defining
one- and two-forms of the foliation.

13



2.3 b-Geometry

Much progress on the study of b-Poisson forms has been made by reinventing the
mildly singular Poisson structure as a type of singular symplectic structure. This is
achieved by utilising the concepts of b-calculus as given in [5].

We will now go on to discuss b-geometry, which is used to import some of the
previous theorems on symplectic manifolds to the b-Poisson world.

Definition 2.3.1. A b-manifold is a pair (M,Z) of an oriented manifold M and an oriented
hypersurface Z ⊂M .

Definition 2.3.2. A b-vector field on a b-manifold (M,Z) is a vector field which is tangent to
Z at every point p ∈ Z.

If f is a local defining function for Z on some open set U ⊂ M and (f, z2, . . . , zn) is
a chart on U , then the set of b-vector fields on U is a free C∞(U)-module with basis

(f ∂

∂f
,
∂

∂z2
, . . . ,

∂

∂zn
). (2.3)

According to the Serre-Swan theorem ([6]), there exists a vector bundle whose local
sections are b-vector fields.

Definition 2.3.3. Let (M,Z) be a b-manifold. The b -tangent bundle bTM on (M,Z) is the
vector bundle whose sections are the b -vector fields on (M,Z).

Definition 2.3.4. The b -cotangent bundle bT ∗M is the dual bundle of bTM We call the vector
bundle associated to this locally free C∞M -module the b-tangent bundle and denote it bTM .

The classical exterior derivative d on the complex of (smooth) k-forms extends to
the complex of b-forms in a natural way. Indeed, any bm-form ω can locally be written
in the form

ω = α ∧ df
f

+ β

where α ∈ Ωk−1(M), β ∈ Ωk(M) where f is a local defining function of Z and df
f

is
the b-one-form dual to f ∂

∂f
in a frame of the form (2.3). We then define the exterior

derivative dω := dα ∧ df
f

+ dβ (see [1] for details).
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2.3.1 b-Symplectic Forms

Definition 2.3.5. Let (M,Z) be a b-manifold, where Z is the critical hypersurface as in Defi-
nition 2.3.1. Let ω ∈ bΩ2(M) be a closed b-two-form. We say that ω is b-symplectic if ωp is of
maximal rank as an element of Λ2(bT ∗pM) for all p ∈M .

Remarkably we can show that, similar to the correspondence between non-degenerate
Poisson structures and symplectic structures on a manifold, we can associate b-Poisson
structures to b-symplectic structures. This turns out to be remarkably fortuitous - us-
ing this association one can prove parallels of important and useful results using tech-
niques similar to those employed in symplectic geometry. We will now state analogues
of the classic Moser theorem and the Darboux theorems found in [1].

Theorem 2.3.6. Let ω0 and ω1 be two b-symplectic forms on (M,Z). If they induce on Z the
same restriction of the Poisson structure and their modular vector fields differ on Z by a Hamil-
tonian vector field, then there exist neighbourhoods U0, U1 of Z in M and a diffeomorphism
γ : U0 → U1 such that the γ|Z = idZ and γ∗ω1 = ω0.

Theorem 2.3.7. Let ω be a b-symplectic form on (M2n, Z). Let p ∈ Z. Then we can find a local
coordinate chart (x1, y1, . . . , xn, yn) centred at p such that hypersurface Z is locally defined by
y1 = 0 and the symplectic form is given by

ω = dx1 ∧
dy1

y1
+

n∑
i=2

dxi ∧ dyi.

In parallel with the case of local symplectic extensions of cosymplectic manifolds,
any cosymplectic manifold can be locally extended to a b-symplectic manifold. The
Moser path method ensures that any two such extensions are locally b-symplectomorphic
as long as their modular periods are equal.

Theorem 2.3.8. Let Π be a regular corank one Poisson structure on a compact manifold Z,
and F the induced foliation by symplectic leaves. Then cF = σF = 0 if and only if Z is the
exceptional hypersurface of a b-symplectic manifold (M,Z) whose b-symplectic form induces
on Z the Poisson structure Π. Furthermore, two such extensions (M0, Z) and (M1, Z) are b
-symplectomorphic on a tubular neighbourhood of Z if and only if the image of their modular
classes under the map [p∗] is the same.
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Using the above theorem, on a collar neighbourhood of the critical set we have the
following semi-local normal form for the b-symplectic form.

Theorem 2.3.9. Let α and β be the defining one and two forms of the b-symplectic stucture as
given by 2.2.8. Then in a collar neighbourhood of Z the b-symplectic form is equivalent to the
following normal form:

ω = π∗Zα ∧
da

a
+ π∗Zβ. (2.4)

where πZ : Z × R→ Z is the canonical projection and a the coordinate on R.

2.4 Motivation: Global Transverse Surfaces of Section

As a motivation for studying more general Poisson structures in Hamiltonian dynam-
ical systems, we will now give an application of cosymplectic geometry to the study of
global transverse Poincaré sections, also known as global transverse surfaces of section.
We recall the following definition:

Definition 2.4.1. A global surface of section for a flow on a closed manifold M is a compact,
embedded hypersurface Σ such that

• the boundary ∂Σ consists of periodic trajectories (or invariant sets, for higher dimen-
sions).

• Σ \ ∂Σ is transverse to the flow.

• Every orbit of the flow intersects Σ in forward and backward time.

In the case that M is a 3-manifold, then, the dynamics is essentially reduced to the
study of an area-preserving map of the interior of Σ which greatly simplifies the study
of the dynamics. Note, however, that the boundary ∂Σ can be quite wild. In the ideal
case, we can find a Σ such that the flow is everywhere transverse to Σ in which case
studying the dynamics reduces to the simple case of an area-preserving diffeomor-
phism of a Riemann surface. We wish to address the latter situation.

Proposition 2.4.2. Let Z be a compact energy level surface of a Hamiltonian system (H,ω,M)
which possesses a global complete Poincaré section Σ. Then Z is a cosymplectic manifold.
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Proof. Let p be a point in Σ. Denote by T (p) the first return time of p to the section
sigma. By assumption, T (p) is well-defined and finite. It is smooth as a function on Σ.
We will denote by φ the Poincaré map of the global transverse section Σ, explicitly

φ : Σ→ Σ (2.5)

φ(p) = ΦT (p)
XH

(p) (2.6)

where Φ is the flow of the vector field XH and T (p) is the first return time. As noted in
[7], the existence of a global Poincaré section equips Z with the structure of a mapping
torus. Moreover, φ is symplectic (see e.g. [8]) and so Z has the structure of a symplectic
mapping torus. Accordingly, as shown in [9] and [3], Z is cosymplectic.

This puts immediate obvious restrictions on the topology of an energy surface pos-
sessing a global transverse Poincaré section using a well-known fact on cosymplectic
manifolds.

Corollary 2.4.3. Let (M,ω,H) be a Hamiltonian system and Z = H−1(c) a closed level
energy set possessing a global transverse Poincaré section. The H i(Z) is non-trivial for all
0 ≤ i ≤ 2n− 1.

Proof. Let α and β be the defining one and two forms of the symplectic folation. Then
βi and α ∧ βi are nowhere vanishing for 0 ≤ i ≤ n− 1.

Another easy consequence is the following:

Theorem 2.4.4. Let (H,ω, T ∗M) be a Hamiltonian system on T ∗M equipped with the canon-
ical symplectic form. Then no level energy surface of H possesses a global transverse Poincaré
section.

Motivated by the previous sections, we ask which hypersurfaces of a symplectic
manifold possess a cosymplectic structure, and so a global transverse Poincaré section.
It was noted in [10] that a cosymplectic structure exists on a level energy surface if and
only if the hypersurface possesses a certain transverse vector field:

Proposition 2.4.5. ([10]) Let (M,ω) be a symplectic manifold and Z a codimension 1 hyper-
surface. Then Z has an induced cosymplectic structure if and only if Z possesses a transverse
symplectic vector field.

17



Interestingly, then, the existence of a global transverse Poincaré section depends
only on the level energy set of the Hamiltonian and not on the Hamiltonian itself.

Theorem 2.4.6. Let (M,H, ω) be a Hamiltonian system and Z = H−1(c) a regular, compact
submanifold which is cosymplectic. Assume that dH 6= 0 on Z. Then Z possesses a global
transverse Poincaré section for the flow of H .

Proof. By Theorem 2.4.5, as Z is cosymplectic there exists a symplectic vector field X

transverse to Z such that the defining one form of the symplectic foliation on Z is given
by α = ιX(ω). As dH(Z) 6= 0 and so α(XH) = ιXω(XH) = −ω(XH , X) = dH(X) 6= 0.
This implies that XH is everywhere transverse to the symplectic foliation. As Z is
compact infz∈Z α(XH)(z) = ε0, where ε0 > 0. Note that a leaf of the foliation for a
general α may not be compact. However, as in the proof of the Tischler theorem [11]
we can approximate α up to arbitrary precision by the rational sum of pullbacks of
generators of the circle. In particular, there exists some α′ so that

‖α− α′‖ < ε0

and α′ is of the form

α′ = 1
d

N∑
i=1

nif
∗
i dθ

For ni ∈ N, fi : M → S1 where dθ is the canonical generator of H1(S1). Furthermore,
as proved in [11], the foliation defined by such a one-form is a fibration, each fibre of
which is necessarily compact as Z is. The sum

α′k = 1
d

k∑
i=1

nif
∗
i dθ

defines a mapping torus for each k ∈ [1, N ] and this family of mapping tori tend the
torus defined by α′ as k → N . As Z is compact and XH is everywhere transverse
the symplectic foliation, an orbit of XH will intersect a chosen leaf L of the foliation
in forward and backward time. Whence, L is a global transverse Poincaré section for
XH .

Theorem 2.4.6 can be used to quickly infer the existence of a global transverse
section. Consider a Hamiltonian H on the cotangent bundle T ∗M of a manifold M
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equipped with the canonical symplectic form ω. Them, no level energy set of H pos-
sesses a global Poincare section. This is not the case for twisted symplectic forms as
the following example shows:

Example 2.4.7. Recall that a twisted symplectic form ωσ on a cotangent bundle of a manifold
M is given by ωσ = ω0 + π∗σ where ω0 is the canonical form on T ∗M , π is the projection
π : T ∗M →M and σ ∈ Ω2(M) is some closed two form on M , called the magnetic form.
Let M be a 2-torus T2 with coordinates (θ, ψ). Let T ∗T2 be the cotangent bundle equipped with
a twisted symplectic form, where the magnetic term is given by σ = dθ ∧ dφ. Consider the
usual kinetic HamiltonianH = 1

2(p2
θ+p2

φ). Recalling that the cotangent bundle of T2 is trivial,
T ∗T2 ∼= T2 ×R2 it is easy to see that that the level energy sets H−1(c) for c 6= 0 are foliated by
leaves L ∼= T2 which are symplectic, with symplectic form σ. As the manifold is cosymplectic,
H−1(c) possesses a global transverse Poincaré section.
Indeed, one example of a global section is simply the configuration space T2 embedded as the
zero section. To check this explicitly, one can calculate XH = pθ∂θ− pψ∂pθ + pψ∂ψ − pθ∂pθ and
remark that XH ∧ ∂θ ∧ ∂ψ 6= 0.

It is of value, then, to consider more general Poisson structures and their possible
application to the theory of dynamical systems. In the next chapter, we go on to study
the b-symplectic forms of Defintion 2.3.5.
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Chapter 3

A b-Symplectic Slice Theorem

Think left and think right and think low and think high. Oh, the thinks you can
think up if only you try!

Dr. Seuss, Oh the Places You’ll Go!

A distinguishing feature of Hamiltonian mechanics, as contrasted with the La-
grangian or Newtonian formulations, is particular emphasis on the role of symmetries
and the associated reductions of the phase space. It is of little surprise, then, that sym-
plectic group actions are the object of intense study (and a fruitful source of results) in
symplectic theory. One important facet of this theory is the symplectic slice theorem and
its generalizations, which give a normal form for a symplectic structure in a neigh-
bourhood of an orbit of a symplectic group action. The symplectic normal form is
constructed by taking the symplectic quotient of a certain symplectic vector bundle. In
the following chapter, we mimic this construction in the b-symplectic case.

b-Symplectic manifolds are particular instances of Poisson manifolds. Poisson re-
duction is somewhat easier to define than symplectic reduction: reducing a Poisson
structure by a group symmetry always results in a Poisson structure on the quotient
manifold. In contrast, in the case of symplectic reduction, one has to check the reduced
form is, in fact, symplectic. However, the natural cost of a more flexible reduction the-
ory is that the Poisson structure on the reduced space can look quite different from the
Poisson structure on the cover. One example is the reduction of the canonical sym-
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plectic form (corresponding to a non-degenerate Poisson structure) on the cotangent
bundle of a Lie group to the KKS form on the dual of the Lie Algebra, which is degen-
erate and, in the case of abelian Lie group, even trivial.

Poisson manifolds, then, have significantly more local structure than symplectic
manifolds and questions on the local equivalence of Poisson structures can require
sophisticated machinery to analyze. For general Poisson manifolds, normal form the-
orems are hard-won.

In contrast, the local flexibility of symplectic forms ensures that symplectic geom-
etry is replete with local normal forms. Many of these are proved by applying some
version of the Moser trick, which, given a manifold with symplectic forms satisfying
some (not particularly stringent) conditions, determines a vector field which one can
integrate to give a symplectomorphism. This has powerful consequences, such as the
constant rank embedding theorem, which ensures that in a neighbourhood of a sub-
manifold of a symplectic manifold, the symplectic form is determined by the restriction
of the form to the submanifold N and its symplectic normal bundle in M .

By choosing vector fields given by the Moser trick to be invariant with respect to
the group action, one can ensure that symplectomorphisms are equivariant with re-
spect to the group symmetries leading to the symplectic slice theorem. This compares
a symplectic form invariant under a group action in the neighbourhood of an orbit
to a standard normal form on a symplectic twist product. The normal form for the
symplectic form in is this case is constructed by standard symplectic reduction, from
the canonical symplectic form on the cotangent bundle of a Lie group, the image of
the momentum map (or, in the case of non-Hamiltonian symplectic actions the Chu
map) which assigns to orbits of the group action Lie 2-cocycles, and a locally constant
symplectic form on a so-called ”symplectic slice”. Using the constant rank embedding
theorem, then, one gets the result.

As b-Poisson or b-symplectic manifolds have an analogous b-Moser theorem, a study
of their symmetries puts them closer to the symplectic realm than that of more gen-
eral Poisson structures. A study of their geometry in the presence of symmetries
was initiated in [1] (see also [12]) which yielded global results on the structure of b-
symplectic manifolds equipped with a class of toric actions preserving the b-symplectic
form known as b-Hamiltonian actions. The result closely resembled the symplectic
case.
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Here, we focus on local results and reproduce the symplectic slice theorem for b-
symplectic manifolds. As in the symplectic slice theorem, the b-symplectic slice the-
orem is given by defining a simple b-symplectic form on a trivial vector bundle over
G and then reducing to get a b-symplectic form on a neighbourhood of the orbit. Us-
ing the Moser trick available for b-symplectic forms, one can conclude a b-symplectic
slice theorem. The normal form and necessary reduction are easily achieved by not-
ing the constricted nature of b-symplectic and cosymplectic symmetries. After proving
some propositions on foliation preserving symmetries of codimension one foliations,
the required normal form is given by the discrete reduction of a product b-symplectic
structure.

3.1 Symmetries of Poisson manifolds

There is a rich and interesting theory of local and global symmetries of symplectic
manifolds. The most important local result is the symplectic slice theorem. Consider
the following group action on a manifold M .

ρ : G×M →M

ρ : (g, p)→ ρg(p)

Denote the orbit of p ∈ M by Op and the isotropy group of p by Gp. We have a
natural representation Gp on the vector space TpM/TpOp given by the action of dρh(p)
on TpM/TpOp for h ∈ Gp. Consider the twisting action of Gp on the product G ×
Tp(M)/TpOp

σ(h)(g, v) = (gh−1, dρh(p)(v)) (3.1)

This action is free and therefore the quotient is a manifold (recall that the isotropy
group is automatically compact). It is a principal bundle over G/Gp, denoted G ×Gp
Tp(M)/TpOp. The slice theorem tells us that this bundle, the action on the fibre being
the trivial action, is equivariantly diffeomorphic to a neighbourhood of Op.

Theorem 3.1.1. Let M be a manifold equipped with a G action. The map G/Gp → M, [g] 7→
g · p extends to an invariant neighbourhood of G/Gp (viewed as a zero section) in G ×Gp
TpM/TpOp to a neighbourhood of the orbit Op.
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3.1.1 Symplectic Group actions

If the action of the group is symplectic then we can go further by equipping the twisted
product of the classical slice theorem 3.1.1 with a symplectic form symplectomorphic to
the invariant form in a neighbourhood of the orbit. This was originally formulated for
Hamiltonian group actions independently by Marle [13] and Guillemin and Sternberg
[14].

Construction of the slice coordinates

If W is a subspace of a symplectic vector space, let W ω denote the symplectic orthog-
onal of W . Let G be a compact group acting on a manifold M , p a point in M and as
before denote by Op the orbit of p and by Gp the isotropy group of p. The vector space
Vp = TpOωp /TpOp is symplectic, with the symplectic form induced by the form on TpM
i.e. ω([v], [w]) = ωp(v, w) for any v = π(v), π the projection to the quotient. We have
a natural representation Gp on the vector space Vp given by the action of dρh(p). Note
that this action is automatically symplectic.

Consider the action of Gp on T ∗G given by the cotangent lifted action of the right
action of Gp on G and as before form the quotient bundle T ∗G ×Gp Vp. The quotient
manifold T ∗G ×Gp Vp is symplectic, with the obvious form. Moreover, the action of
G on the bundle induced by the cotangent lifted action of G on T ∗G is Hamiltonian
with respect to the canonical symplectic form. In fact, according to the symplectic slice
theorem, this construction gives a model of the action of a group G on M close to the
orbit Op.

[15] for the more general symplectic case):

Theorem 3.1.2. Let (M,ω) be a symplectic manifold and let H be a Lie group acting properly
and by symplectomorphisms on M . Let m ∈ M . Denote the isotropy group of m by Hm and
the orbit of m by H ·m. Let Vm be the symplectic normal space

Vm := Tm(H ·m)ω/ (Tm(H ·m)ω ∩ Tm(H ·m)) .

Let h be the Lie algebra of H and define the following Lie subalgebra of h:

k := {η ∈ h | ηM(m) ∈ Tm(H ·m)ω}
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where ηM is the generating vector field of η. Let i be the Lie algebra of Hm. Then i ⊂ k. Denote
by m an AdHm-invariant complement of i in k. Then the twisted product

Y H
m := H ×Hm (m∗ × Vm) (3.2)

is a symplectic H-space and can be chosen such that there is an H-invariant neighbourhood U
of m in M , an H-invariant neighbourhood U ′ of [e, 0, 0] in Y H

m and an equivariant symplecto-
morphism φ : U → U ′ satisfying φ(m) = [e, 0, 0]. Equipping the bundle Y H

m with coordinates
[k, η, v] for k ∈ H, η ∈ m∗ and v ∈ Vm, H acts on Y H

m as h · [k, η, v] = [h · k, η, v].

In the case that the action is Hamiltonian, the symplectic form on the quotient bun-
dle is called the MGS-normal form1 and denoted by ωMGS . [13] We remark that the
aim here is to show the rigidity of b-symplectic group actions, for which the group ac-
tion and symplectic form are completely determined in a neighbourhood of an orbit by
the isotropy group and its representation on the symplectic normal space. Therefore
Theorem B does not reference the traditional moment map sometimes given as part of
the symplectic slice theorem, although there does exist a generalization of the moment
map to the b-symplectic case which could, in theory, be used to extend theorem further.

Definition 3.1.3. LetG be a Lie group and letM be any smooth manifold. Given a group action
ρ : G ×M −→ M , we define its cotangent lift as the action on T ∗M given by ρ̂g := ρ∗g−1,
g ∈ G. We then have a commuting diagram

T ∗M T ∗M

M M

//
ρ̂g

��

π

��

π

//
ρg

where π is the canonical projection from T ∗M to M .

3.1.2 Poisson Group Actions

A Poisson group action (that is. a group action preserving the Poisson form) is defined
in the obvious way:

1MGS for Marle [13] and Guillemin-Sternberg [16]
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Definition 3.1.4. Let (M, {·, ·}) be a Poisson manifold and let G be a Lie group acting on M
via the map Φ : G×M →M. An action is called Poisson (or canonical) if for any h ∈ G and

f, g ∈ C∞(M) one has
{f ◦ Φh, g ◦ Φh} = {f, g} ◦ Φh

If the quotient space M/G is a manifold (e.g. If the G-action is free and proper),
then automatically has a quotient Poisson structure

Definition 3.1.5. The quotient Poisson structure on the quotient manifold is the Poisson
bracket {·, ·}M/G, uniquely characterised by the relation

{f, g}M/G(π(m)) = {f ◦ π, g ◦ π}(m)

b-Symplectic Group Actions

b-Symplectic actions (that is, actions which preserve the b-symplectic form) are Poisson
in the sense of 3.1.4. b-symplectic actions, similar to symplectic actions, exhibit an in-
teresting combination of flexibility and rigidity. This can be understood by way of their
normal forms. In [17] b-symplectic form is discussed, called the twisted b-symplectic
form. For the special case of a torus:

Definition 3.1.6. Consider the cotangent bundle of the torus T ∗Tn endowed with the stan-
dard coordinates (θ, a), θ ∈ Tn and define the following one-form on the complement of the
hypersurface Z = {a1 = 0} of T ∗Tn

c log |a1|dθ1 +
n∑
i=2

aidθi.

This is called the twisted Liouville one-form (with modular period c ∈ R+).

The negative differential of the twisted Liouville form is a b-symplectic form on
T ∗Tn.

Definition 3.1.7. The negative differential of this form extends to a b-symplectic form on T ∗Tn,
which we call the twisted b-symplectic form on T ∗Tn given in coordinates as

ωtw,c := c

a1
dθ1 ∧ da1 +

n∑
i=2

dθi ∧ dai.
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As noted in [17], the construction can easily be generalised to the case T ∗(G), where
G is a product group G ∼= S1 ×H . This will form the basis of the normal form for the
b-symplectic slice theorem.

Cosymplectic Group Actions

In [18] it was observed that co-Kähler manifolds have a transverse S1 action which
renders the manifold a transversally equivariant fibration. This implies that the map-
ping torus of the co-Kähler structure possesses a finite cover with a product structure.
Here we take the transverse S1-action as a given. This allows us to apply a theorem of
Sadowski [19] to give a trivialising cover where we can construct the slice theorem.

A bundle map π : Z → S1 is a transversally equivariant fibration if there is a smooth
S1 -action on Z such that the orbits of the action are transversal to the fibres of π and
π(t · x) − π(x) depends on t ∈ S1 only. The following is a specialization of a theorem
by Sadowski that was applied to the case of co-Kähler manifolds in [18].

Theorem 3.1.8. Let Z π→ S1 be a smooth bundle projection from a closed manifold Z to the
circle. The following are equivalent:

1. Z π→ S1 is a mapping torus associated to a diffeomorphism of finite order

2. The bundle map π is transversally equivariant with respect to an S1-action on Z, ρ :
S1 × Z → Z.

Let L be the fibre of π. If the above conditions are satisfied then Z has a Zk-cover (k ∈ N)

p : Z̃ = S1 × L → Z

given by the action (t, l) 7→ ρt(l), where Zk acts diagonally on S1 × L and by translations on
S1.

3.1.3 Construction of the Equivariant Cover

The Zk action of 3.1.8 is described as follows: Consider the leaf-fixing subgroup of S1,

Γ = {s ∈ S1 : ρs(L) = L}. (3.3)
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Identifying S1 ∼= Rmod 1, the group Γ is of the form {0, 1
k
, . . . , k−1

k
} for some k ∈ N and

hence we can identify it with Zk in the natural way. Then form ∈ Zk = {0, 1, . . . , k−1},
the action ρm

k
restricts to a leaf automorphism

σm : L → L, σm(l) = ρm
k

(l). (3.4)

The mapping torus Z is then the quotient of the cover Z̃ by the following action of Zk
on Z̃

µm(t, l) = (t− m

k
, σm(l)), m ∈ Zk, (t, l) ∈ S1 × L. (3.5)

From the condition of transverse equivariance, it is clear that ρ maps leaves to
leaves. It induces an action on the base S1 given by translations t 7→ t + ks and the
equivariance condition reads

π(ρs(l)) = ks, l ∈ L := π−1({0}).

There is an associated S1-action ρ̃ on the cover Z̃ given by

ρ̃s(t, l) = (t+ s, l), s ∈ S1, (t, l) ∈ S1 × L. (3.6)

The projection Z̃ → Z is equivariant with respect to this action.
The existence of a finite trivializing cover of the critical hypersurface Z will play a

crucial role in the b-symplectic slice theorem.

3.2 A trivializing cover for the critical hypersurface

Now we consider (M,Z) a b-symplectic manifold. As we focus on a semi-local result,
we will assume M ∼= Z × (−ε, ε) where the critical hypersurface Z is compact and
connected with b-symplectic form given by Equation (2.4). We recall that on a semi-
local level the last assumption is not an additional restriction as b-symplectic manifold
satisfying the previous conditions is of this form in some local coordinates on a tubular
neighbourhood of its critical hypersurface. Finally, we will assume that the symplectic
foliation on Z has a compact leaf L.

Definition 3.2.1. A group action on a b-symplectic manifold is called transverse if it is trans-
verse to the symplectic foliation of the critical hypersurface. If the action, restricted to the crit-
ical hypersurface, preserves the cosymplectic structure we will call the action cosymplectic.
Finally, if the action preserves the b-symplectic form we will call the action b-symplectic.
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When considering the manifolds with the associated Poisson structures cosymplec-
tic and b-symplectic actions are special cases of Poisson actions.

As cosymplectic actions are automatically transversely equivariant the next propo-
sition follows directly from Theorem 3.1.8:

Proposition 3.2.2. Let Z be a cosymplectic manifold and suppose Z has a transverse S1-action
preserving the cosymplectic structure. Then Z has a finite cover Z̃ := S1 × L, L a leaf of the
foliation, equipped with an S1 action given by translation in the first coordinate for which the
projection p : S1 × L → Z is equivariant.

To get a cosymplectic structure on the cover, one simply lifts the associated defining
one and two-forms.

Proposition 3.2.3. In the setting of the previous proposition, the cosymplectic structure on Z
is given by the quotient of a cosymplectic structure on Z̃ = S1 × L by the action of a finite
cyclic group Zk.

Proof. Let p : Z̃ → Z be the finite cover given by Proposition 3.2.2. Denote the one
and two forms of the cosymplectic structure by α and β respectively. Then β̃ = p∗β

and α̃ = p∗α can easily be shown to define a cosymplectic structure on S1 × L and by
construction, the cosymplectic structure on the quotient agrees with the cosymplectic
structure on Z.

To extend this cover to a b-symplectic neighbourhood of Z we simply use the ex-
tension theorem (Corollary 2.3.8.):

Corollary 3.2.4. Let M = Z × (−ε, ε) come equipped with a transverse S1-action preserving
the b-symplectic form ω. Then the b-symplectic structure on M is b-symplectomorphic in a
neighbourhood of Z to the quotient of a b-symplectic structure on S1×L× (−ε, ε) by the action
of a finite cyclic group.

Proof. As before let p : Z̃ → Z be the finite cover. Let vmod be some choice of modular
vector field and denote the defining one and two-forms of Z fulfilling the condition
in Equation (2.2.8) by α and β respectively. Denote by α̃, β̃ the corresponding one and
two forms defined in Proposition 3.2.3. By the extension theorem we can assume that
the b-symplectic form on M is

ω = π∗Zα ∧
da

a
+ π∗Zβ.
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Let M̃ := Z̃ × (−ε, ε). Then we have a finite cover pM : M̃ → M for M given by the
product map of the cover p : Z̃ → Z and the identity on (−ε, ε). Let πZ̃ : M̃ → Z̃ be the
projection onto the first factor. Define for a ∈ (−ε, ε) the b-symplectic form on M̃

ω̃ = π∗Z̃α̃ ∧
da

a
+ π∗Z̃ β̃.

Then by construction (pM)∗ω = ω̃.

Remark 3.2.5. Note that the modular period of the associated b-symplectic form on the Zk
cover is k times the modular period of the b-symplectic form on the base.

Remark 3.2.6. Similarly, any b-symplectic structure with defining one and two-forms α̃ and
β̃ equipped with a discrete b-symplectic group action gives a b-symplectic structure on the
quotient. For such a group action there are well defined one and two-forms, α and β, on the base
manifold defined by p∗(α) = α̃ and p∗(β) = β̃, where p is the projection to the quotient. Then α
and β automatically fulfil the conditions to define a cosymplectic structure on the image of the
critical hypersurface. As the group action is discrete, the quotient of the symplectic structure
on leaves is likewise symplectic.

3.3 The b-symplectic slice theorem for an S1-action

First, we wish to simplify the expression of the b-symplectic form in the neighbourhood
of an orbit. In the case that the leaf L is simply connected, the b-symplectic form has a
particularly simple expression.

Proposition 3.3.1. Let M ∼= Z × (−ε, ε) be a b-symplectic manifold and suppose that Z is a
product, Z ∼= S1×L, L a leaf of the symplectic foliation. Suppose furthermore that L is simply
connected. Then for a suitable defining function f of Z the b-symplectic form is given by

ω = cdt ∧ df
f

+ π∗L(β) (3.7)

where t is the standard coordinate on S1, β is the symplectic form on L and πL is the projection
S1 × L → L.

Proof. A b-symplectic form on on S1 × L × (−ε, ε) equipped with coordinates (t, l, a)
can be written

ω = cdt ∧ da
a

+ dt ∧ η + π∗L(β)
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where β is the symplectic form on L. Since L is simply connected, η = dh for some
h ∈ C∞(M). The function f = aeh is then a defining function for Z and moreover

df

f
= da

a
+ dh

Whence we have
ω = cdt ∧ df

f
+ π∗L(β).

As in the symplectic slice theorem, the normal form of a b-symplectic form in the
neighbourhood of an orbit is given by virtue of an equivariant Moser theorem. Equiv-
ariant b-Moser theorems for isotopic forms invariant under S1-actions have been given
in [20] and for more general groups in [21]. As we wish to compare b-symplectic forms
in the neighbourhood of an orbit rather than on the whole of Z we require an equiv-
ariant b-Moser theorem of a slightly different nature:

Proposition 3.3.2. Suppose that ω1 and ω0 are b-symplectic forms on M , invariant under an
action of a group G on M which is transverse Poisson for ω1 and ω0. Denote by Oz the orbit
of some z ∈ Z and suppose that ω1 and ω0 coincide at z. Then ω1 and ω0 are equivariantly
b-symplectomorphic in some neighbourhood U of Oz.

Proof. As the defining one and two-forms associated to ω1 and ω0 are invariant under
the S1 action, it follows that on Oz we have α0 = α1 and β0 = β1. By the relative
Poincaré lemma, in a contractible neighbourhood of Oz we have that α0 − α1 = dg,
an exact one-form on U and similarly β0 − β1 = dη, an exact two-form on U . Whence
ω0 − ω1 = d(−g df

f
+ η). Then ωt = ω0 + (1 − t)ω1 is non degenerate on Oz and so on

a neighbourhood of Oz. We use this to define a b-vector field vt by ιvtωt = g df
f
− η.

As vt is zero on Oz, the time-one flow exists in a neighbourhood of Oz and gives the
required b-symplectomorphism. As both b-symplectic forms are invariant under the
group action, we can choose the b-symplectomorphism to be equivariant.

Theorem 3.3.3. Let M ∼= Z× (−ε, ε) be a b-symplectic manifold equipped with a b-symplectic
form ω of modular period c and a transverse b-symplectic S1-action. Let z ∈ L ⊂ Z, let Oz be
its orbit under the S1 action, let V := TzL and let Zl be the isotropy group of z. Then there
exists an S1-equivariant neighbourhood V of Oz in M and an S1-equivariant mapping

φ : V → (T ∗S1 × V )/Zl (3.8)
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Figure 3.1: A scheme of the trivialising finite cover with a regular orbit (Γz̃ = 0) in
black and exceptional orbit (Γz̃ = Z2) in red

where Oz is embedded as the zero section of the bundle S1 ×Zl R × V ∼= (T ∗S1 × V )/Zl
and where the action of Zl is given by the cotangent lifted action on T ∗S1 and by the isotropy
representation on V .

Moreover, if we equip the bundle T ∗S1 × V with the b-symplectic form:

ω̃0 = ωc′ + ωV

where ωc′ the b-symplectic normal form on T ∗S1 as given in Definition 3.1.7 with modular
period c′ = kc and ωV the linear symplectic form on V , and the quotient (T ∗S1 × V )/Zl with
the quotient b-symplectic form ω0 (see Remark 3.2.6) then the mapping becomes an equivariant
b-symplectomorphism onto its image.

Proof. Let z ∈ Z be a point in the critical set and Oz the orbit of z under the S1 action
ρ. Denote by Γz the isotropy group of z. Note that Γz is automatically a subgroup
of Zk and so Γz ∼= Zl for some l. By the slice theorem there exists a neighbourhood
U of Oz in Z equivariantly diffeomorphic to a neighbourhood of the zero section of
the vector bundle S1 ×Γz TzZ/TzOz, where S1 acts on the homogeneous space S1 ×Γz

TzZ/TzOz according to s · [t, v] = [t+s, v]. By choosing the invariant Riemannian metric
in such a way that TzL is orthogonal to TzOz, the slice theorem yields an equivariant
diffeomorphism

S1 ×Γz TzL → U : [t, v] 7→ ρt(expz v).

Denote by ψ the corresponding diffeomorphism on the neighbourhood (−ε, ε) × U of
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Oz in M :
ψ : (−ε, ε)× U → (−ε, ε)× S1 ×Γz TzL.

Restricting the defining one and two forms of ω to U , we have that U is a cosymplectic
manifold with a cosymplectic S1-action. The symplectic leaves of U are given by LU :=
U ∩ L and the leaf fixing subgroup as defined by Equation (3.3) is Γz. By Proposition
3.2.2 there is a trivial Γz-cover Ũ ∼= S1 × LU of U . Then ω|(−ε,ε)×U is the quotient of a
unique b-symplectic form ω̃ on (−ε, ε) × Ũ as given by Corollary 3.2.4. By Proposition
3.3.1 we may assume ω̃ is of the form

ω̃ = ckdt ∧ da
a

+ π∗LUβ

where a ∈ (−ε, ε) and β is a symplectic two-form given on a leaf UL. Consider the two
form βz on TzL. On (−ε, ε)× S1 × TzL define the b-symplectic form

ω̃0 = ckdt ∧ da
a

+ βz.

By a linear change of basis we may assume βz = ∑n
i=1 dxi ∧ dyi. Denote the quotient b-

symplectic form on ((−ε, ε)×S1×TzL))/Γz given in Remark 3.2.4 by ω0. Finally consider
the b-symplectic form ψ∗(ω0) on (−ε, ε) × U . This is a b-symplectic structure, invariant
under the S1 action agreeing with ω at z. By Theorem 3.3.2, there is an equivariant
b-symplectomorphism ϕ with ϕ∗(ψ∗ω0) = ω. Whence we have φ = ψ ◦ ϕ the required
b-symplectomorphism given in the statement of theorem.

Remark 3.3.4. Note that the modular period of the form ω0 is k
l
c where c is the modular period

of the b-symplectic form. This is not necessarily the modular period of the original form ω.

Example 3.3.5. Consider the following symplectic mapping torus: take as a symplectic leaf a
torus T2 with coordinates (ϕ, ψ), ϕ, ψ ∈ Rmod 1 equipped with the standard symplectic form
and the holonomy map given by the diffeomorphism of T2 which descends from the diffeomor-
phism of R2 given by φ ∈ GL(2,Z):

φ =
 0 −1

1 0

 .
The mapping on R2 corresponds to rotation by π

2 and so we have φ4 = Id. Denote the mapping
torus Z = ([0, 1]× T2)/(0, x) ∼ (1, φ(x)).
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Consider the following b-symplectic form on (t, ϕ, ψ, s) ∈ Z × S1:

ω = dt ∧ ds

sin(s) + β

where β is the standard symplectic form on T2. Consider the action of S1 on Z × S1 given by
translation in the t-coordinate. Then there is a neighbourhood of a regular orbit contained in
Z which is equivariantly diffeomorphic to a neighbourhood of the zero section (t, 0) of S1 × R3

where S1 acts by translations on the S1 factor of S1 × R3. Moreover, there exist coordinates
(t, x, y, a) on S1 × R3 so that the equivariant diffeomorphism becomes a symplectomorphism
where S1 × R3 is equipped with the b-symplectic form

ω = 4dt ∧ da
a

+ dx ∧ dy (3.9)

On the critical set there is also the exceptional orbit at φ = ψ = 0. In a neighbourhood of
the singular orbit the b-sympletic form is the quotient of the b-symplectic structure (3.9) given
above where the group action σn ∈ GL(2,Z) on the vector space (x, y) is given by

σn =
 0 −1

1 0

n .
Example 3.3.6. We can find examples from integrable systems having a naturally associated
S1-action model with non-trivial isotropy group.

Take M = T ∗S1 × R2 endowed with coordinates (p, t, x, y) and b-symplectic form ω =
1
p
dp ∧ dt + dx ∧ dy. Consider the b-integrable system on M given by F = (log(p), xy). This
b-integrable system has hyperbolic singularities. Now let Z/2Z act on M in the following way:
(−1) · (p, t, x, y) = (p, t,−x′,−y′) observe that this action leaves the hyperbola xy = cnst
invariant and switches its branches. The action clearly preserves the b-integrable system and
induces a new integrable system on the quotient space M/ ∼. Observe that the first component
of the integrable system naturally induces an S1-action given by the b-symplectic vector field
associated to the singular Hamiltonian function log(p) (named as b-function, see [20] for a
discussion). This circle action also descends to the quotient and the model for the circle action
has non-trivial isotropy group of order two.

This twisted hyperbolic case in b-symplectic manifolds is reminiscent of the twisted hyper-
bolic construction in the symplectic case in [22] and [23]2 and it is an invitation to study the

2This example shows up in physical examples and corresponds to the 1:2 resonance (see for instance
the example in page 32 of the monograph [24])
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Figure 3.2: The Curled Torus. Source: Konstantinos Efstathiou.

invariants of a non-degenerate singularity of a b-symplectic manifold. This example can be
extended to higher dimensions and the action of a Z/2Z can be considered for every hyperbolic
block added as long as the corank of the singularity is equal or bigger than one. The situation
can be visualized using the curled torus, the picture below showing the structure of the set
p = 0, xy = 0.

3.4 Actions of compact Lie Groups on cosymplectic man-

ifolds

We treat the case of more general group actions on a b-symplectic manifold close to
the critical set. First, we prove that only groups of a particular form can act on a b-
symplectic manifold. For now, we will treat group actions on a mapping torus Z and
then extend the results to a neighbourhood of the critical set.

In the following, we assume that the group G is compact and connected and acts
on a mapping torus Z via a transverse, effective and foliation preserving action ρ. For
a more general treatment of the lifting of group actions see [25].
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Proposition 3.4.1. Suppose an element h ∈ G fixes a leaf of the mapping torus, ρg(L0) = L0.
Then g fixes every leaf of the mapping torus.

This is an easy consequence of the fact that compact connected subgroups of Diffeo+(S1)
are conjugate to SO(2), which is itself a consequence of Diffeo+(S1) having a unique
maximal compact subgroup, see [26] for the case of orientation preserving homeomor-
phisms which can be adapted mutatis mutandis for the smooth case.

Proof. Let π : Z → S1 be the mapping torus projection. The action of the group G on
a symplectic mapping torus Z induces an action of G on the base S1 in the obvious
fashion

τ : G× S1 → S1 (3.10)

(g, π(x)) 7→ π(ρg(x)) =: τg(x) (3.11)

As G is compact and connected its image τ(G, ·) is a compact subgroup of Diffeo+(S1),
the group of orientation preserving diffeomorphisms of the circle. Whence τ(G, ·) is
conjugate by some w ∈ Diffeo+(S1) to SO(2). Suppose h ∈ G fixes a leaf L0. This
corresponds to a fixed point of the induced action τh on S1, and so a fixed point for
wτhw

−1 ∈ SO(2). Whence wτhw−1 = IdS1 and so τh = IdS1 . This corresponds to h fixing
all leaves of Z.

It can be checked easily that this defines a subgroup of G. We call

H = {h ∈ G | ρh(L0) = L0}

the leaf preserving subgroup of G.

Proposition 3.4.2. Let G be a group acting in a transverse and foliation preserving manner
on a symplectic mapping torus. Let H be the leaf preserving subgroup of G. Then

1. H is a normal subgroup of G.

2. H is a closed Lie subgroup of G.

3. The codimension of H in G is one.

Proof. 1. This follows immediately from the fact that for h ∈ H , g ∈ G we have
τghg−1 = τgτhτ

−1
g = τgτ

−1
g = IdS1 , hence ghg−1 ∈ H .
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2. Consider the projection

Φ : G→ SO(2)

Φ(g) = wτgw
−1

corresponding to the map from G to SO(2) given in Proposition 3.4.1. It is clear
that the level set Φ−1(Id) consists precisely of the elements of G which are leaf
preserving. Hence Φ−1(Id) = H is a closed subgroup of G.

3. The codimension of H is at most one since it is given as the level set Φ−1(Id) =
H . As G induces an action transverse to the foliation of Z it follows that the
codimension of H is exactly one.

Proposition 3.4.3. The action of G on the mapping torus Z lifts to an action of a product
group G̃ = S1 ×H0 on a finite trivializing cover of Z. Moreover, G is necessarily of the form
G = (S1 ×H0)/Γ for a finite cyclic subgroup Γ (which might be trivial).

Proof. Let h ⊂ g be the Lie algebra ofH , the leaf preserving subgroup ofG and consider
a complementary ideal k of h in g such that the subgroup K = exp(k) is closed. K is
then a one dimensional closed subgroup of the compact group G and so K ∼= S1. The
action of K is transverse to the foliation and so by Proposition 3.2.2 there exists a finite
trivializing cover Z̃ ∼= S1 × L of Z, such that Z is the quotient of Z̃ by the action of the
leaf fixing subgroup Γ ∼= Zk of K on Z̃ where Γ acts as

µm(t, l) = (t− m

k
, σm(l)), m ∈ Γ, (t, l) ∈ S1 × L

and σ is the leaf automorphism induced by the leaf-fixing elements of K on L. Denote
exp(h) ⊂ G by H0. Denote by G̃ the group K ×H0. Then we have an action ρ̃ of G̃ on
Z̃ given by

ρ̃ : G̃× Z̃ → Z̃, ρ̃(s,h)(t, l) = (t+ s, ρh(l)).

Suppose σm = ρh for some h ∈ H0, m ∈ Zk\{0}. As H0 is connected, σ1 = σh′ for some
h′ ∈ H0. Whence, the action µ of Γ on Z̃ is equivalent to the action ρ̃ of Γ′ ⊂ G̃ on Z̃

where Γ′ is the group

Γ′ =
{(
− m

k
, (h′)m

) ∣∣∣∣m = 0, . . . , k − 1
}
.
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Letting pZ̃ and pG̃ denote the projections to Z̃/Γ′ and G̃/Γ′ respectively, we have a
commutative diagram

G̃× Z̃ Z̃

G̃/Γ′ × Z Z

//
ρ̃

��

pG̃×pZ̃

��

pZ̃

//
ρ

By construction, the action of G̃/Γ′ on Z and the action of G on Z possess the same
fundamental vector fields. Moreover, the action of both groups is effective. Necessarily,
then, G̃/Γ′ = G.

Conversely, assume that σ1 6= ρh any h in H0. Then exp(k) ∩ exp(h) = 0 and so
G ∼= K ×H0. We can lift the action of this product group to an action of G on the finite
trivializing cover S1 × L in the obvious way.

Proposition 3.4.4. LetG = S1×H be a product group acting on a mapping torus Z such that
the S1 factor acts transverse to the foliation. Let z ∈ Z and denote by Gz the isotropy group of
z. Then Gz

∼= Zl ×Hz where Hz the isotropy group of z under the H0-action and Zl is a cyclic
subgroup.

Proof. Let L0 be a leaf of Z and as before denote by H0 the subgroup (0, exp(h)) ⊂
G, Denote by OH0

z ⊂ L0 the orbit of z under the action of (0, H0) ⊂ G. Denote the
subgroup (S1, eH0) ⊂ G by K. Let ρK be the action of the K on Z. Let Zk be the leaf
preserving subgroup of K and m

k
an element m

k
∈ Zk. Note that ρK(m

k
,OH0

z ) ∩ OH0
z = ∅

or ρK(m
k
,OH0

z )∩OH0
z = OH0

z . Moreover, elements m
k
∈ Zk satisfying ρK(m

k
,OHz )∩OH0

z =
OH0
z form a subgroup Zl of Zk.

If ρK(m
k
, z) /∈ OH0

z for all m
k
∈ Zk then Zl = {0} and Gz = {0} ×Hz where Hz is the

isotropy group of z under the action of (0, H0). Alternatively suppose Zl 6= {0}, so that
ρK(1

l
, z) = h ·z for some h ∈ H0. If h 6= eH0 , we can find a new K ′ ⊂ G which acts as the

identity on z as follows: let η in k be such that K = exp(tη) where t ∈ [0, 1). Let ν ∈ h

be such that exp(1
l
ν) = h−1. Consider the subgroup

K ′ = {exp(t(η + ν))| t ∈ [0, 1)}

then the isotropy group of z is of the form Zl × Hz where Zl = {exp
(
n
l
(η + ν)

)
|n =

0, . . . , k − 1}.
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3.5 A b-symplectic slice theorem

Let (M ∼= (−ε, ε) × Z, ω) be a b-symplectic manifold together with an effective b-
symplectic action by a compact connected Lie group G acting transversely to the sym-
plectic leaves inside the critical hypersurface Z. Moreover, assume that the action of
the leaf-preserving subgroup H is Hamiltonian on each leaf.

First we will construct the b-symplectic models which will give us a normal form
for the b-symplectic form about an orbit ofG. By Proposition 3.4.3 there are two distinct
cases

1. G is a group isomorphic to the product of Lie groups G = S1 ×H0.

2. G = (S1 ×H0)/Γ where Γ is a non-trivial cyclic subgroup of G̃ = S1 ×H0.

As there is a transverse S1-action on the critical hypersurface Z, we have the exis-
tence of a trivial finite cover Z̃ = S1 × L of Z equipped with a G̃ ∼= S1 × H0-action
which projects to the action of G on Z.

Let z ∈ L0 be a point in a symplectic leaf of Z and consider the orbit OH0
z of z

given by the group action of H0 = exp h on L0 and the symplectic form induced on
L0. Denote the isotropy group of z by Hz. By the symplectic slice theorem (Theorem
3.1.2), there is an H0-equivariant neighbourhood ŨH0 of OH0

z which is equivariantly
symplectomorphic to a neighbourhood of the zero section of the vector bundle (H0 ×
m∗ × Vz)/Hz with symplectic form ωMGS as given by Theorem 3.1.2. Recall that m is
a certain Lie subalgebra of h, the vector space Vz ⊂ TzL is the symplectic orthogonal
Vz = (TmOH0

z )ω/TmOH0
z and Hz acts on Vz by the isotropy representation.

Definition 3.5.1 (b-Symplectic models). Consider the b-symplectic form on Ẽ = T ∗S1 ×
(H0 ×Hz m∗ × Vz) given by

ω̃0 = ωck + ωMGS (3.12)

where ωck is the b-symplectic form on T ∗S1 given by Definition 3.1.7 of modular period ck, and
ωMGS is the symplectic form onH0×Hzm∗×Vz given by the symplectic slice theorem (Theorem
3.1.2). Consider the quotient b-symplectic structure on E = Ẽ/Zl where m

l
∈ Zl acts on T ∗s1

as the cotangent lift of Zl acting by translations on S1 and acts on the factor H0 ×Hz m∗ × Vz
equipped with the coordinates [k, η, v] of Theorem 3.1.2 either by
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1. m
l
· [k, η, v] = [k, η, σm(v)] for a linear symplectomorphism σ.

2. m
l
· [k, η, v] = [hm · k, η, v] where h is some element of H0.

ThenE has a unique b-symplectic structure such that the projection is a local b-symplectomorphism
(see Remark 3.2.6). We call these normal forms b-symplectic models with symplectic slice
Vz and modular period ck

l
.

Let Oz be an orbit by the action of G contained in the critical set of (M,ω). We
will now prove that there is a b-symplectomorphism from a neighbourhood of Oz to
a neighbourhood of the zero section of the model above with symplectic slice Vz to,
completing the proof of Theorem B, which we recall here in a succinct way:

Theorem 3.5.2. Let G be a compact Lie group acting on a b-symplectic manifold (M,ω) trans-
verse to the symplectic foliation. Suppose that the action of G is b-symplectic, effective and
Hamiltonian when restricted to the symplectic leaves of Z. Let Oz be an orbit of the group
action contained in the critical set of M . Then there is a neighbourhood V of Oz in M which is
b-symplectomorphic to a neighbourhood of the zero section of a bundle given by the b-symplectic
model E in Definition 3.5.1.

Proof. By Proposition 3.4.3 there exists a finite cover Z̃ ∼= S1×Lwhich comes equipped
with the action of a product group G̃ ∼= S1 × H0 which covers the action of G on
Z. Let z ∈ Z and z̃ ∈ Z̃ be a point projecting to z. Denote by OH0

z̃ the orbit of z̃
under the action of the subgroup H0 and by OG̃z̃ the orbit of z̃ under the action of
G̃ ∼= S1 × H0 on the cover Z̃. Then an invariant open neighbourhood of OG̃z̃ is of the
form Ṽ = S1 × (−ε, ε)× U where U is an invariant open neighbourhood of OH0

z̃ . Recall
that Z is the quotient of Z̃ by a cyclic subgroup Γ of G̃. By Proposition 3.4.3, we may
assume that Γ is of the form

Γ =
{(
−m
k
, hm

)
|m = 0, . . . , k − 1

}
(3.13)

We will distinguish the case h = eH and G is of the form S1×H0. We will treat the case
G ∼= S1 ×H0 first.

Let ω̃ be the lift of ω to Z̃ as given by Proposition 3.2.2. By theorem 3.3.1 we may
assume that ω̃(z̃) is of the form

ω̃(z̃) = ckdt ∧ da
a

+ βz̃
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where β is a symplectic form on the leafL. Denote byHz̃ the isotropy group of z̃ un-
der the action of H0. By the symplectic slice theorem, Theorem 3.1.2, a neighbourhood
U of OH0

z̃ is equivariantly symplectomorphic to a neighbourhood of the zero section of
the bundle YH0 = H0×Hzm∗×Vz on which the symplectic form on the leaf β is given by
the MGS normal form. Consider the vector bundle Ẽ = T ∗S1 × (H0 ×Hz m∗ × Vz) with
symplectic form given by ω̃0 in (3.12), where c is the modular period of ω and k is the
order of Γ. Let ψ̃ be the equivariant diffeomorphism given by the slice theorem. Then
ψ̃∗(ω̃0) is a b-symplectic form on a neighbourhood of OG̃z̃ and therefore by the equiv-
ariant relative Moser Theorem 3.3.2, as ψ̃∗ω̃0(z̃) = ω̃(z̃), we can conclude there is an
equivariant b-symplectomorphism from a neighbourhood of OG̃z̃ to a neighbourhood
of the zero section of the bundle Ẽ = S1×R×YH equipped with the b-symplectic form
ω̃0.

Denote the action of m ∈ Γ by ρ̃m. If ρ̃m(OH0
z ) ∩ OH0

z = 0 then the action is free
and, shrinking the neighbourhood if necessary, the projection p : Z̃ → Z restricts to an
equivariant symplectomorphism from a neighbourhood Ṽ of OG̃z̃ to a neighbourhood
V of OGz .

Otherwise, ρm(OHz ) ∩ OHz = OHz for m ∈ Zl some cyclic subgroup Γz of Γ. Γz ⊂ Γ is
then of the form

Γz =
{(
l, (h′)l

)
|m = 0, l − 1

}
for some h′ ∈ H0. Denote by pṼ , pẼ the projection to the quotients of Ṽ and Ẽ by
the action of Γ respectively. Define ψ by the condition that the following diagram
commutes:

Ṽ Ẽ

Ṽ/Γ E

//
ψ̃

��

pṼ

��

pẼ

//
ψ

First, consider the case where G ∼= S1 × H0. We may assume that by Proposition
3.4.4 that the action of Γz on the orbitOH0

z and so on the base of the bundle YH0 is trivial.
Moreover, it preserves the slice Vz and acts by linear symplectomorphisms and so ψ is
b-symplectomorphism to Model (1) of Definition 3.5.1.
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For h 6= eH in the group Γ from Equation 3.13 (that is, the case G ∼= (S1 ×H0)/Γ for
Γ non trivial), we can assume by the symplectic slice theorem, Theorem 3.1.2, that the
action of Γz on YH0 that given by Model (2) of Definition 3.5.1.

Example 3.5.3. Let G be a compact Lie group with non-trivial centre. Let ξ1 ∈ Z(g) be a
central element of the Lie algebra and ξ2, . . . , ξn ∈ g be such that ξ1, . . . , ξn form a basis of the
Lie algebra. Denote by ηi the basis of the Lie algebra dual such that (ηi, ξj) = δij. Denote the
associated invariant vector fields Lg∗ξi by vi and L∗gηi by mi respectively. At each point g ∈ G
these give a basis for the tangent and cotangent spaces at g. Consider the singular 2 -form on
T ∗G

ω = π∗m1 ∧
d (λ (v1))
λ (v1) +

n∑
i=2

π∗mi ∧ d (λ (vi)) (3.14)

where π the canonical projection T ∗G → G. It can be checked directly that ω is a b-symplectic
form on T ∗G invariant under the cotangent lifted action of G on T ∗G. By Proposition 3.4.3 G
has a finite cover of the form S1 × H . The b-symplectic model for the action of G on T ∗G is
given by Ẽ = T ∗S1 × T ∗H/Zk where Zk acts diagonally on T ∗S1 × T ∗H by the cotangent lift
of translations on S1.

ω = ωtw,c + ωH (3.15)

where

• ωtw,c is the twisted b-symplectic form of modular period c on the manifold T ∗S1, as given
in Definition 3.1.7.

• ωH is the canonical form on T ∗H .

Example 3.5.4. Consider the symplectic mapping torus

Z = L × [0, 1]
(l, 0) ∼ (φ(l), 1) (3.16)

where

• L ∼= S2×S2, where S2 is the two sphere equipped with the standard symplectic form and
L is equipped with the product symplectic form.

• φ : L → L is the diffeomorphism of L given by exchanging the S2 factors of L, i.e.,
φ(x, y) = (y, x).
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Consider the group S1 × SO(3) where SO(3) acts diagonally on the product L ∼= S2 × S2,
by rotation on each factor. Suppose x 6= ±y. Then the action of S1 × SO(3) on the orbit
Oz is free. Denoting the orbit of z under the action of SO(3) the leaf L by OLz There is a
neighbourhood U of OLz and a neighbourhood V of Oz equivariantly b-symplectomorphic to the
bundle E = T ∗S1 × Y SO(3)

z , where E is equipped with the b-symplectic form

ω = ωtw,2 + π∗ (ωMGS)

and ωMGS is a symplectic form on Y SO(3)
z given by Theorem 3.1.2. Now let x = y. Then z has

isotropy group Z2 × SO(2). The associated b-symplectic model is given by E = T ∗S1 × F ,
where F = (SO(3) ×SO(2) V ) is a bundle over the homogenous space SO(3)/SO(2) ∼= S2, V
a 2-dimensional vector space with Darboux symplectic form ωV . The b symplectic form on E is
given by

ω = ωtw,1 + 2ωS2 + ωV

where ωS2 is the usual symplectic form on the sphere and ωV the linear Darboux form on V .
Finally, suppose y = −x, Let ν ∈ k, k the Lie algebra of S1. Let exp(tξ) ∼= SO(2) be the 1-
parameter subgroup of SO(3) such that g = exp(ξ) acts on S2 by g(x) = −x and dρg = −Id.
Then the subgroup (exp(tν), exp(tξ)) ↪→ S1×SO(3) acts as the identity on the orbitOz ∼= S2

and b-symplectic model is given by the quotient bundle E = T ∗S1 × (SO(3) ×SO(2) V )/Z2

where Z2 acts on u, v ∈ V by (u, v)→ (−u,−v) and E is equipped with the symplectic form

ω = ωtw,1 + 2ωS2 + ωV
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Chapter 4

b-Lie Groups and b-Symplectic
Reduction

Symmetry is economy.

Alan Lightman

b-Poisson structures represent an opportunity to try and import symplectic results
and constructions to the Poisson case. In Chapter 3, the traditional symplectic slice
theorem was shown to have a close analogue in b-symplectic setting. In this chapter,
we will treat b-Lie groups. The cotangent bundle of a Lie group, as the cotangent bun-
dle of any manifold, comes equipped with a canonical b-symplectic form. This form is
invariant under the cotangent lifted action of the group acting on itself by (left) transla-
tions. The reduced space T ∗G/G ∼= g∗ has an associated linear Poisson structure. In the
following the cotangent bundle of a Lie group is equipped rather with a b-symplectic
form and the Poisson structure on the reduced space is examined.

4.1 The b-cotangent bundle of a Lie group

In [1] the canonical symplectic form (2.1.3) was noted to have a direct analogy in the
b-symplectic world.
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Definition 4.1.1. Let (M,Z) be a b-manifold. Then we define a b-one-form λ on bT ∗G, con-
sidered as a b-manifold with critical hypersurface bT ∗G|Z , in the following way:

〈λp, v〉 := 〈p, (πp)∗(v)〉, p ∈ bT ∗G, v ∈ bTp(bT ∗G)

We call λ the b-Liouville form. The negative differential

ω = −dλ

is the canonical b-symplectic form on bT ∗G.

Using this form the canonical b-cotangent lift was defined as follows [17]:

Definition 4.1.2. Consider the b-cotangent bundle bT ∗M endowed with the canonical b-symplectic
structure. Moreover, assume that the action of G on M preserves the hypersurface Z, i.e. ρg is
a b-map for all g ∈ G. Then the lift of ρ to an action on bT ∗M is well-defined:

ρ̂ : G×bT ∗M → bT ∗M : (g, p) 7→ ρ∗g−1(p).

Moreover, it is b-Hamiltonian with respect to the canonical b-symplectic structure on bT ∗M .
We call this action together with the underlying canonical b-symplectic structure the canonical
b-cotangent lift.

Considering bT ∗G instead of T ∗G, Definition 4.1.1 gives is a natural way to construct
a b-symplectic structure analogous to the definition of the canonical symplectic form
on T ∗G. This construction works for any b-manifold (M,Z), but in the case where
(M,Z) = (G,H) is a b-Lie group we can consider reduction of the canonical b-symplectic
structure. This will be explored in Section 4.1.3. In the symplectic case, reducing T ∗G
by the action of G yields the Lie-Poisson structure on g∗. However, in order to lift an
action to bT ∗G (Definition 4.1.2), we have to demand that the action leaves the critical
hypersurface invariant. This motivates us to consider the setting where the critical
hypersurface is a Lie subgroupH and we consider the action ofH onG by translations.

First we give the relevant definitions and preliminary results:

Definition 4.1.3. A b-manifold (G,H), where G is a Lie group and H ⊂ G is a closed sub-
group is called a b-Lie group.
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Example 4.1.4. The special Euclidean group of orientation-preserving isometries in the plane
is the semidirect product

SE(2) ∼= SO(2) n T (2)

where T (2) are translations in the plane. Recall that we can identify SE(2) with matrices of the
form A b

0 1

 , A ∈ SO(2), b ∈ R2

Then T (2) (identified with {I} × T (2) ⊂ SE(2)) is a closed codimension 1 subgroup and the
pair (SE(2), T (2)) is a b-Lie group.

Example 4.1.5. The Galilean group G is the group of transformations in space-time R3+1 (the
first three dimensions are interpreted as spatial dimensions and the last one is time) whose ele-
ments are given by composition of a spatial rotation A ∈ SO(3), uniform motion with velocity
v ∈ R3 and translations in space and time by a vector (a, s) ∈ R3+1. As a matrix group, the
elements are given by 

A v a

0 1 s

0 0 1

 , A ∈ SO(3), v, a ∈ R3, s ∈ R

The subgroup H given by s = 0 (which corresponds to fixing time) is a closed codimension one
subgroup and hence the pair (G,H) is a b-Lie group.

Example 4.1.6. We consider the (2n + 1)-dimensional Heisenberg group H2n+1(R) given by
matrices of the form


1 a c

0 In b

0 0 1

 , a ∈ R1×n, b ∈ Rn×1, c ∈ R

The subgroup Γ of matrices of the form


1 0 k

0 In 0
0 0 1

 , k ∈ Z
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is central, hence normal, and so we can consider G := H2n+1(R)/Γ. This is a well-known
example of a non-matrix Lie group. Now fixing one component ai = 0 or bi = 0 yields a closed
codimension one subgroup of G.

Let us consider the action of H on G by left translations. This action is obviously
free and since H is closed, it is also proper. Therefore, the left coset space G/H can
be given the structure of a smooth manifold such that the projection π : G → G/H

is a smooth submersion. Moreover, it is well-known that π turns G into a principal
H-bundle.

For future reference we summarize these facts in the following lemma:

Lemma 4.1.7. Let (G,H) be a b-Lie group. The projection π : G → G/H is a principal
H-bundle; in particular G is semilocally around H a product

π−1(V ) ∼= V ×H, [e]∼ ∈ V ⊂ G/H,

where π corresponds to the projection onto the first component.

Note that by taking a coordinate ϕ on V centered at [e]∼, we obtain a global defining
function ϕ ◦ π for the critical hypersurface H .

4.1.1 The H-action on bTG and bT ∗G

As in the previous section, let (G,H) be a b-Lie group and consider the action of H by
left translations.

We can lift this action to TG in the obvious way:

H × TG→ TG : (h, vg) 7→ (Lh)∗vg.

This action is again proper and free; therefore the quotient space is a manifold, which
we want to describe below.

Let us introduce the subbundle H of TG whose fibre Hg at g ∈ G is given by the
corresponding left-shift of the Lie algebra h of H , Hg = (Lg)∗h. Let πH : TG → H be
the projection ontoH. Recall that π : G→ G/H induces a surjective bundle morphism
π∗ : TG→ T (G/H) and at each fibre TgG the kernel isHg.
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Proposition 4.1.8. There is a diffeomorphism

(TG)/H ∼−→ h× T (G/H)

[vg]∼ 7→ ((Lg−1)∗(πH(vg)), π∗(vg)) .

Proof. The map is well-defined as it does not depend on the representative of [vg]∼ =
{(Lh)∗(vg) : h ∈ H}. It is obviously smooth and surjective. If [vg]∼ and [v′g′ ]∼ have
the same image, then π∗(vg) = π∗(v′g′) implies π(g) = π(g′) so by choosing a different
representative in [v′g′ ]∼ we can assume g = g′. Then vg − v′g ∈ ker(π∗)g = Hg and
combining this with πH(vg) = πH(v′g) we see vg = v′g.

The analogous result holds for the action of H on the b-tangent bundle,

H × bTG→ bTG : (h, vg) 7→ (Lh)∗vg.

Note that this action is well-defined since the left translation by h ∈ H preserves H i.e.
it is a b-map. Moreover, we define the projection πH : bTG→ H in the obvious way.

Proposition 4.1.9. There is a diffeomorphism

(bTG)/H ∼−→ h× bT (G/H)

[vg]∼ 7→ ((Lg−1)∗(πH(vg)), π∗(vg))

where bT (G/H) is the b-tangent bundle of the one-dimensional b-manifold G/H with critical
hypersurface [e]∼. Note that π : (G,H) → (G/H, [e]∼) is a b-map and therefore π∗ : bTG →
bT (G/H) is well-defined.

The right hand sides of the diffeomorphisms in Proposition 4.1.8 and 4.1.9 are vec-
tor bundles over G/H . This makes TG/H resp. bTG/H vector bundles over G/H as
well with bundle map [vg]∼ 7→ π(g) ∈ G/H :

Corollary 4.1.10. (TG)/H (resp. (bTG)/H) is a vector bundle of rank n overG/H isomorphic
to the direct sum of the trivial vector bundle h×G/H with T (G/H) (resp. bT (G/H)):

(TG)/H ∼= (h×G/H)⊕ T (G/H), (bTG)/H ∼= (h×G/H)⊕ bT (G/H).
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4.1.2 The b-cotangent lift

In Definition 4.1.2 we introduced the b-cotangent lift; in the present setting this is given
by the following action on the b-cotangent bundle bT ∗G:

H × bT ∗G→ bT ∗G : (h, αg) 7→ (Lh−1)∗αg.

The quotient space (bT ∗G)/H can be viewed as a vector bundle over G/H which is
isomorphic to

(
(bTG)/H

)∗
via the identification

(bT ∗G)/H ∼−→
(
(bTG)/H

)∗
: [αg]∼ 7→

(
[vg]∼ 7→ 〈αg, vg〉

)
, vg ∈ bTgG.

Therefore we can dualize the result for bTG/H of the previous section to obtain an
isomorphism of vector bundles

(bT ∗G)/H ∼= (h∗ ×G/H)⊕ bT ∗(G/H).

As smooth manifolds,
(bT ∗G)/H ∼= h∗ × bT ∗(G/H),

where the isomorphism is given by identifying an element of the right hand side
(α, β[g]∼) ∈ h∗ × bT ∗[g]∼(G/H) with the class of L∗g−1(α) + π∗β[g]∼ ∈ bT ∗gG on the left
hand side.

4.1.3 Reduction of the canonical b-symplectic structure

The cotangent bundle T ∗G has a canonical symplectic structure, which under the ac-
tion of G on itself by left translations reduces to the minus Lie-Poisson structure on
T ∗G/G ∼= g∗.

In Definition 4.1.1 we have seen how to endow the b-cotangent bundle bT ∗G with
a canonical b-symplectic structure (with critical hypersurface bT ∗G|H). What is the re-
duced Poisson structure on (bT ∗G)/H?

Theorem 4.1.11. Let bT ∗G be endowed with the canonical b-Poisson structure. Then the
Poisson reduction under the cotangent lifted action of H by left translations is

((bT ∗G)/H, Πred) ∼= (h∗ × bT ∗(G/H), Π−L-P + Πb-can)
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where Π−L-P is the minus Lie-Poisson structure on h∗ and Πb-can is the canonical b-symplectic
structure on bT ∗(G/H), where G/H is viewed as a b-manifold with critical hypersurface the
point [e]∼.

Proof. Let V ⊂ G/H be open and such that G trivializes as a principal H-bundle over
V (cf. Lemma 4.1.7), i.e.

G ⊃ U := π−1(V ) ∼−→ H × V

where the projection onto the second component corresponds to the quotient projec-
tion π; in particular the critical hypersurface H gets mapped to H × [e]∼ ⊂ H × V and
the b-cotangent bundle over U splits in the following way:

bT ∗U ∼= T ∗H × bT ∗V.

Then the canonical b-symplectic structure ω0 on bT ∗U is the product of the canonical
symplectic structure ω1 on T ∗H and the canonical b-symplectic structure ω2 on bT ∗V .
Denoting the Poisson tensor corresponding to ωi by Πi,

Π0 = Π1 + Π2.

The action of H on bT ∗U ∼= T ∗H × bT ∗V is given by the standard cotangent lift
of left translations by H on T ∗H times the identity on bT ∗V . For the corresponding
quotient projections π0 : bT ∗U → (bT ∗U)/H and π′0 : T ∗H → (T ∗H)/H we therefore
have π0 = π′0 × idbT ∗V . Hence the reduced Poisson structure on (bT ∗U)/H is

Πred = (π0)∗Π0 = (π0)∗(Π1 + Π2) = (π′0)∗Π1 + Π2.

Now note that (π′0)∗(Π1) is the minus Lie Poisson structure on h∗ if we identify (T ∗H)/H ∼=
h∗.

Example 4.1.12. We return to Example 4.1.5 of the special Euclidean group SE(2). Since T (2)
is abelian, the Lie-Poisson structure on the dual of its Lie algebra is zero. Hence bT ∗(SE(2))
reduces under the action of T (2) to

((bT ∗(SE(2)))/T (2), Πred) ∼= (R2 × bT ∗(SO(2)), 0 + Πb-can),

where Πb-can is the canonical b-Poisson structure on bT ∗(SO(2)), i.e. identifying SO(2) ∼=
S1 in the usual way and letting ϕ be the angle, (ϕ, p) a b-canonical chart in a neighbourhood of
{ϕ = 0}, then in these coordinates

Πred = ϕ
∂

∂ϕ
∧ ∂

∂p
.
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Chapter 5

Orbits Close to Parabolic in the PCR3BP

Internal time stretched and stilled, inattentive to the minutes and hours outside
of itself.

Zadie Smith, NW

We now apply the techniques of symplectic geometry to dynamical systems of a
more classical nature. The restricted three-body problem (R3BP) has played a central
role in the development of the theory of Hamiltonian dynamical systems, both as an
approximation to the full gravitational three-body problem and as a problem exhibit-
ing interesting dynamical phenomena in its own right. In this chapter and the follow-
ing, we will employ symplectic methods to bound the stochastic layer surrounding
the split separatrices associated to the fixed point “at infinity” of the planar circular
restricted three-body problem (PCR3BP).

5.1 Introduction

The PCR3BP models the motion of a massless body under the gravitational influence
of two massive bodies that follow circular orbits about their mutual centre of mass.
The two massive bodies are not affected by the gravitational force of the third and all
three bodies are assumed to be coplanar.

The R3BP is often studied as a perturbation of the Kepler problem, where this in-
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tegrable limit is given by setting the value of the mass ratio of the massive bodies
equal to zero. The particular nature of Hamiltonian systems which are close to in-
tegrable is a consequence of the celebrated K.A.M. theorem, that states that in sys-
tems close to integrable systems whose action-angle coordinates satisfy a certain non-
degeneracy condition, “most” invariant tori of the original integrable system survive
[27, 28, 29]. In marked contrast, between these preserved tori, one expects chaotic mo-
tions.

Figure 5.1: A schema of the R3BP with the

massless body far from the primaries

One of the most classical mechanisms
generating chaos is the transverse inter-
section of separatrices. The most studied
case is that of a hyperbolic fixed point (or
a multitude of these) together with their
associated stable and unstable manifolds.
In the integrable case, these invariant
manifolds coincide along a “separatrix”,
so-called because it defines a boundary
between domains with disparate dynam-
ical behaviour. After perturbation, these
stable and unstable manifolds may inter-
sect in transversely. It was first shown by

Poincaré [30] that such intersections can give rise to complicated dynamics. Later, is
was shown by Smale [31] that the transverse intersection of stable and unstable man-
ifolds implies the existence of a horseshoe and, in turn, chaos. In higher dimensions,
the correspondence between the intersection of stable and unstable manifolds (now of
dimension greater than one) and horseshoes remains.

Looking for chaos in a restricted three-body problem, then, usually involves search-
ing for saddles of the Kepler problem and proving the transverse intersection of the as-
sociated stable and unstable manifolds upon perturbation. The Kepler problem comes
with a family of saddles located at “parabolic infinity”, defined by setting the distance
from the origin r = ∞ and the associated momentum y = Pr to 0. This cylinder is
foliated by periodic orbits with constant angular momentum G, each with associated
2-dimensional stable and unstable manifolds. In the Kepler problem, the integrability
of the system guarantees that these invariant manifolds coincide. Upon adding the
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perturbation giving the PCR3BP it has been shown that these invariant manifolds split
and intersect transversally [32, 33].

Close to these split separatrices with transversal intersection the existence of chaotic
motions is guaranteed. The area surrounding the split separatrices where one finds
only chaotic motions is often referred to as the “stochastic layer”. It is natural to ask
about the width of the zone of chaotic motions, which generally extends to a width
larger than that of the split separatrices. In order to study this, we can appeal to the
K.A.M. theorem which guarantees the existence of some K.A.M. torus bounding this
region, at least for small perturbations of the integrable system. We now wish to es-
timate the location of the last invariant torus before the onset of the stochastic layer.
In the PCR3BP, such a torus has the following physical interpretation: the intersec-
tion of stable and unstable manifolds associated to fixed points “at infinity” leads to
oscillatory motions, which leave every bounded region but return infinitely often to
some bounded region. Conversely, the existence of a K.A.M. torus will prevent escape
for all motions in the enclosed region of phase space. For this reason, such a torus is
sometimes referred to as “the boundary of bounded motions” [34].

In order to specify this torus for the PCR3BP, we recall some concepts from the Ke-
pler problem. Denote by (r, α, y,G) the coordinate chart on T ∗R2 for which (r, α) are
polar coordinates on R2 and (y = Pr, G = Pα) their associated conjugate momenta.
Then all bounded solutions to the Kepler problem are ellipses specified uniquely by
their eccentricity e and semi-major axis a, up to a constant angle α0 giving the ini-
tial angle of the ellipse. In turn, we have that the eccentricity and semi-major axis of
the orbit are functions of the (constant) angular momentum G of the orbit and Keple-
rian energy h. The PCR3BP then adds a time-dependent perturbation to the Keplerian
Hamiltonian, so that the PCR3BP becomes, in principle, a two-and-a-half degree of
freedom system. Therefore, 2-dimensional K.A.M. tori do not necessarily prevent es-
cape. Moreover, as the Kepler problem is super-integrable and all orbits are periodic,
the existence of a K.A.M. torus cannot be inferred in Hamiltonian perturbations of the
system as no orbits are quasi-periodic. Both of these problems can be solved by view-
ing the system in a rotating coordinate system with a time-dependent angle φ = α− t.
The transformed Hamiltonian, J , also called the Jacobi constant can then be written as
a function of the original Hamiltonian and the angular momentum of the orbit:
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J = H −G.

The K.A.M. theorem proves the persistence of tori in close to integrable systems
by taking an invariant torus of the integrable system of irrational frequency and de-
forming it to a K.A.M. torus in the perturbed system, invariant under the flow of the
perturbed Hamiltonian. Whence in every 3-dimensional level set of the Jacobi con-
stant we look for the last torus which persists upon perturbing to the PCR3BP. This
torus consists of rotated Keplerian ellipses of the lowest possible Keplerian energy (or,
equivalently, longest possible semi-major axis).

It has been conjectured that for small mass ratio, µ (see [34]) a good cursory estimate
for this boundary torus is given by the energy level

h ≈
( 3
κG

)2/5 π3/5

2
J 14/5

0
32− J 3

0
µ2/5 exp

(
−J 3

0 /60
)

where κG is Greene’s constant. However, the purpose of this paper was to provide
a general theoretical basis with which to compare numerical results and the estimate
was not proven rigorously.

Our purpose here differs in two main ways. Firstly, the perturbation parameter
is related to the value of the Jacobi constant and consequently, the estimate is valid
for any mass ratio, µ. Secondly, we aim to prove the existence of such a torus rigor-
ously. To achieve this, we overcome two main difficulties. Firstly, the saddle of the
Keplerian problem “at infinity” is parabolic, rather than hyperbolic. To the author’s
knowledge, rigorous estimates for the width of the stochastic layer exist only in the
hyperbolic case and methods need to be extended to the parabolic case. Secondly, the
splitting of separatrices of the PCR3BP has been shown to be exponentially small with
respect to the perturbation parameter J −1, which comes with some technical difficul-
ties. To overcome these problems requires a study of the so-called “separatrix map”,
which expresses the Hamiltonian system close to split separatrices as a perturbation
of an integrable twist map of the cylinder, allowing one to make inferences about the
asymptotic width of the stochastic layer from the many available results on invariant
circles of twist maps. With this general framework in mind, we examine an interpre-
tation of the separatrix map via Hamilton-Jacobi theory, with an emphasis on rigorous
results and careful control of exponentially small errors, achieved by taking full ad-
vantage of the symplectic nature of the system. Our main result comes in two flavours:
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The first is an asymptotic statement giving the width of the layer as the Jacobi constant
J goes to infinity. This is a consequence of a classic invariant curve theorem.

Theorem 5.1.1. Let Th,J be a torus of the Kepler equation in rotating coordinates with Ke-
plerian energy h contained a level set J of the Jacobi constant, where the Jacobi constant is
assumed to be negative. Let µ be fixed and µ 6= 1/2. Then, given any ε there exists some
sufficiently large J ∗ such that for all |J | > |J ∗| and h(µ,J ) satisfying

h(µ,J ) = −(c1(µ)f1 (J )) 2
5−ε

there exists a Keplerian torus Th0,J at some |h0| ≤ |h| which continues to an invariant torus of
the PCR3BP, where

• c1(µ) is a constant depending only on the mass ratio of the massive bodies given by

c1(µ) =
√
π

32µ(1− µ)(1− 2µ)

• f1 (J ) depends only on the Jacobi constant and is given by

f1 (J ) = |J |3/2e−
|J |3

3

We remark that using the basic relations between the energy h, angular momen-
tum, semi-major axis and eccentricity of Keplerian ellipses (see Appendix A), these
tori correspond to rotated Keplerian ellipses of long semi-major axis

a ≈ 22/5e
2|J |3

15

c1(µ)2/5|J |3/5

or high eccentricity

1− e2 ≈ c1(µ)2/5

22/5 |J |16/5e
2|J|3

15

(
1 +O

(
|J |5/2e

2|J|3
15

))
.

The second theorem provides an estimate on the layer width for all |J | > |J ∗|
where J ∗ ensures that the separatrix mapping satisfies some hypothesis. While the
second estimate is far from optimal, it gives a result where the perturbation parame-
ter is not required to be arbitrarily small, a regime usually neglected when estimat-
ing stochastic layer width. Moreover, this method is suitable for optimization by
computer-assisted proofs, both to lower J ∗ or to lower h0. Specifically, we will prove:
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Theorem 5.1.2. Let Th0,J0 be a torus of the Kepler equation in rotating coordinates with Kep-
lerian energy h0 contained a level set J0 of the Jacobi constant. Suppose that

h0 = C̃∗c1(µ)2/17f (J0)2/17

where

• C̃∗ is of the form C̃∗ = C∗ +O(J −1
0 ), where C∗ is a constant given in 6.4.13.

• c1(µ), f (J0) are as in Theorem 5.1.1.

Then for large J0 the torus persists in the PC3BP.

5.1.1 The System

The Kepler Problem is a special case of the two-body problem, written in coordinates
in which problem reduces to the motion of a body in a central field. In suitably scaled
coordinates the Kepler problem possesses the Hamiltonian (see for instance [35])

H(r, y, α,G) = y2

2 + G2

2r2 −
1
r

(5.1)

where (r, α) are the coordinates of the massless body in polar coordinates and (y,G)
the corresponding canonical momenta. The associated equations of motion are given
by Hamilton’s equations, which for the Kepler problem are simply

ṙ = y, ẏ = G2

r3 −
1
r2

α̇ = G

r2 Ġ = 0.
(5.2)

G is then a constant of motion. A general solution for the Kepler problem in configu-
ration space is given by

1
r

= 1
G2 (1 + e cos (α− α0)) (5.3)

which defines a conic section. Solutions with e < 1 corresponding to an ellipses, e = 1
to parabolas and e > 1 to hyperbolas. All bounded solutions are periodic. For details
see appendix A.
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The full PCR3P (see [35]) is given by adding a time dependent perturbation, given
explicitly by

V (r, α, t;µ) = 1− µ
(r2 − 2µr cos(α− t) + µ2)1/2

+ µ

(r2 + 2(1− µ)r cos(α− t) + (1− µ)2)1/2 −
1
r

(5.4)

where µ is a parameter given by the ratio of masses of the two massive bodies. The
Hamiltonian (5.1) then becomes

H(r, y, α,G) = y2

2 + G2

2r2 −
1
r
− V (r, α, µ, t) (5.5)

The associated equations of motion are

ṙ = y ẏ = G2

r3 −
1
r2 + ∂rV (r, α, t;µ)

α̇ = G

r2 Ġ = ∂αV (r, α, t;µ)
(5.6)

In contrast to the Kepler problem, in the Hamiltonian system given by (5.6) neither
energy nor angular momentum are conserved.

The Rotating Coordinate System

The PCR3BP is often studied as a perturbation of the Kepler problem, where the dif-
ference in potential energies between the Kepler problem and the full restricted three
body problem, V (r, α, t;µ), is assumed to be small. In (r, y, α,G, t) coordinates the
R3BP is, in principle, a two and a half degree of freedom system, and so the existence
of two-dimensional invariant torus is not guaranteed to provide a barrier to escape
to infinity. This problem can be solved by observing that the perturbation poten-
tial V (r, α, t;µ) depends only on the difference between the angular variables α and
t. Therefore, upon putting the system in a rotating coordinate system rotating with
the two massive bodies, the perturbation potential (5.4) becomes an explicitly time-
independent function of a time-dependent angle φ = α − t. The Hamiltonian (5.5)
becomes

J (r, y, φ,G) = y2

2 + G2

2r2 −
1
r
− V (r, y, φ,G)−G

= H(r, y, φ,G)−G
(5.7)
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The system is then an autonomous 2 degree of freedom Hamiltonian system with
conserved energy given by the Jacobi constant, J . The existence of 2 dimensional
K.A.M. tori in a 3 dimensional level energy set then provides a barrier to escape to
infinity.

Moreover, upon viewing the Kepler problem in a rotating coordinate system, peri-
odic orbits of the system whose period is not a rational multiple of 2π become quasiperi-
odic motions on a torus when viewed from the rotating system of coordinates, so that
theory of Kolmogorov [27] can be applied directly in this case. Upon taking an appro-
priate Poincaré section in a high enough level set of the Jacobi constant, the system can
be reduced to an area-preserving map of the annulus for which the integrable system
is a monotone twist map, allowing the application of theorems on invariant circles of
the perturbations of such maps to be applied [36].

The (φ,G) Poincaré section

Poincaré sections greatly reduce the complexity of a dynamical system by relating
Hamiltonian flow on a level energy set to a symplectomorphism of a hypersurface in
that level energy set. A well-chosen Poincaré section taking into account, for example,
symmetry considerations, can simplify calculations. In [33], the angular coordinate φ
was fixed φ = φ0 and the system examined as a mapping of the (r, y) plane to itself. In
our case we will take advantage of the fact that we are in the region inside the parabolic
orbits (where all orbits of the Kepler problem are ”rotated ellipses”) and choose instead
a Poincaré section f = 0 where f is the true anomaly. In the Keplerian case, this sec-
tion is a cylinder with coordinates (φ,G) where φ = ξ + f − t for ξ an initial starting
angle for the orbit. This confers one main advantage: in the region in which we are
interested, that is, orbits which are rotated ellipses of high eccentricity, finding a time
parameterization of orbits (r(t), y(t), α(t), G) involves solving the Kepler equation

M = E − e sinE

forE, whereM is the mean anomaly (a parameterization of time) andE is the eccentric
anomaly (a parameterization of polar angle). Though one can get a series solution for
E, in practise this converges extremely slowly for e close to 1 and so a good expression
for (r(t), y(t), α(t), G), and so for the associated Poincaré mapping, is not available.

57



However, the period of a Keplerian orbit is simply (see appendix (A))

T (h) = π√
2

(−h)− 3
2 (5.8)

where h is the Keplerian energy of the orbit, i.e. the value of (5.1). On a level set of the
Jacobi constant J0, each Keplerian orbit is then defined uniquely by the initial angle ξ
and by either the angular momentum of the orbit or its associated Keplerian energy.
We have

TJ0(G) = π√
2

(−J0 −G)− 3
2 (5.9)

and the Poincaré map for the chosen cylinder f = 0 is simply

φ̄ = φ+ π√
2

(−J0 −G)−3/2

Ḡ = G
(5.10)

The PCR3BP can then be examined as a perturbation of this integrable twist map.
This Poincaré section is similar to that used in the integrable limit in [34]. However, un-
like the approach developed there we use in the perturbed problem a Poincaré section
which is the same Keplerian case when restricted to configuration space, rather than
the section y = 0. This is because our method of controlling errors relies on finding
orbits in the perturbed case can as graphs over the Keplerian orbits and so we allow
y to vary while keeping r fixed. Secondly, we use variables (φ,G) taking advantage of
the fact that on a level set of the Jacobi constant we can define h, the Keplerian energy,
uniquely as a function of J0 and G, which simplifies the mappings somewhat.

5.1.2 Perturbations of the Kepler Problem

The R3BP has been examined as a perturbation of the Kepler problem in various ways.
The most traditional perhaps is by setting the mass ratio µ = 0, for which the perturba-
tion potential (5.4) is zero. The potential then reduces to the Kepler potential UK = 1

r
.

However, other cases have been treated. Another possibility, in the case that the mass-
less body is far from collision, is to treat the distances between the two massive bodies
as a perturbation parameter. In the case that the massless body is close to parabolic
motion, the two massive bodies move quickly in comparison to the massless body and
we are dealing with a fast-oscillating small perturbation. In [33] this is made clear by
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considering a perturbation parameter ε = J −1
0 where J0 is the Jacobi constant. Upon

choosing a level energy set of the Jacobi constant J0 and performing a rescaling

r = J 2
0 r̃, y = J −1

0 ỹ, α = α, G = J0G̃, t = J 3
0 s

The Kepler Hamiltonian transforms to a Kepler-like Hamiltonian

H̃
(
r̃, α, ỹ, G̃, s;µ,J0

)
= ỹ2

2 + G̃2

2r̃2 −
1
r̃

with perturbation potential

U
(
r̃, α− J 3

0 s;µ,J0
)

= J 2
0 V

(
J 2

0 r̃, φ;µ
)

and it is now clear that we are dealing with a fast oscillating perturbation when J0 is
very large. In [33], this rescaling was employed as it ensured that the parameterisation
of the parabolic Kepler orbits was independent of J0, as the rescaled angular momen-
tum GJ −1

0 = G̃ is always equal to one. In our case, a similar rescaling will be applied
where the rescaling variable is the angular moment of the now elliptic orbits which
ensures that the parameterization of the orbits depends only on the ellipticity e. In this
case, as we are dealing with orbits which have angular moment close to J0 again for
J0 large, the perturbation will similarly be of fast oscillating nature. For fast oscillating
perturbations, the most important terms of the perturbation are given by the low-order
Fourier coefficients, as will be shown to be the case here.

5.1.3 The Surface at Parabolic Infinity

In the present study, the difference between the Keplerian potential energy and that of
the full problem will be controlled by ensuring that the massless body, often called the
comet, is always far from the two massive bodies. Additionally, we will be particularly
interested in motions close to parabolic, representing the furthest that the comet can
travel from the two bodies without escape. We recall the following object of interest
which plays a fundamental role in the Keplerian problem and its perturbations in this
regime: the manifold “at parabolic infinity” is defined by (r, y) = (+∞, 0). The set
is then a cylinder foliated by periodic orbits corresponding to level sets of angular
momentum

ΛG = {(r, α, y,G) : r =∞, y = 0, α ∈ T, G = G}
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To examine the nature of these periodic orbits, “McGehee variables” are often em-
ployed

McGeehee Variables

“McGeehee variables” [37] are defined by the non canonical transformation

r = 2
x2 , y = y, α = α, G = G

which sends r =∞ to x = 0. The Keplerian Hamiltonian is then equivalent to that of a
Duffing oscillator

H (x, α, y,G, t; εJ) = y2

2 + x4G2

8 − x2

2
One of the advantages of these variables is that the saddle nature of the fixed points
now becomes clear. However, the symplectic form is now a non-canonical b3-symplectic
form (see [1]).

T = − 1
x3dx ∧ dy + dα ∧ dG

which is associated to the singular Poisson bracket

{f, g} = −x
3

4

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+ ∂f

∂α

∂g

∂G
− ∂f

∂G

∂g

∂α

for which the Hamiltonian equations become

dx

dt
= −1

4x
3y

dy

dt
= 1

8G
2x6 (5.11)

dα

dt
= 1

4x
4G

dG

dt
= 0 (5.12)
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The fixed points, then, are degener-
ate topological saddles rather than true
hyperbolic fixed points. The fact that
these fixed points are parabolic rather
than hyperbolic makes their study del-
icate, as e.g. standard theorems guar-
anteeing the form of their stable and
unstable manifolds are not available.
Nevertheless, the union of these sta-
ble and unstable manifolds of these
parabolic fixed points has been shown
to be analytic [37, 33].

Figure 5.2: The phase space of the
Kepler problem in McGeehee coordi-
nates, union of the stable and unsta-
ble manifolds of the parabolic saddle
in purple. On a level energy set of the
Jacobi constant this orbit corresponds
to a level energy set of G in the cylin-
der (φ,G)

5.1.4 Splitting of Separatrices

A separatrix is an invariant manifold composed of coincident stable and unstable man-
ifolds of an invariant object of a dynamical system. When the system is integrable,
these manifolds are coincident as long as they intersect. When the system undergoes
a small perturbation, however, these separatrices generically split. If they intersect
transversally, one can prove the existence of a Smale horseshoe, which implies the ex-
istence of chaos. The splitting of separatrices is usually proven using the Melnikov
method.

The Case of Regular Splitting

The Melnikov method, sometimes known as the Poincaré-Melnikov method (see, e.g.
[38] for a detailed exposition) has been applied by Poincaré and Melnikov to measure
the distance between split separatrices [39, 30]. It reduces the problem of finding the
distance between the stable and unstable manifolds of a hyperbolic fixed point, which
are generally uncomputable globally, to an integral taken along the original separatrix
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known as the Melnikov integral. More specifically, consider a one and a half degree of
freedom Hamiltonian system on R2 with coordinates x = (x1, x2) with a Hamiltonian
H of the form

H(x, t) = H0(x) + εH1(x, t)

so that H0(x) is automatically integrable and possesses hyperbolic fixed points with
associated homoclinic orbits. Parameterize these homoclinic orbits (which are the co-
incident stable and unstable manifolds of the hyperbolic fixed points) by the variable
v, referred to as ”time along the unperturbed separatrix” so that

ϕtH0 (xh(v)) = xh(v + t) (5.13)

where ϕtH0 is the Hamiltonian flow associated to the integrable Hamiltonian H . Then
the Melnikov function is given by

M(v, τ) =
∫ +∞

−∞
{H0, H1} (xh(v + s), τ + s) ds

Due to the relation between τ and v given in equation (5.13), we can think of M(v, τ)
in two equivalent ways. One can either fix a section in space (by choosing v = v0) and
observe that Mv0(τ) = M(v0, τ) oscillates in time. Equivalently, one can fix time and
move the section along the separatrix to see Mτ (v0). We emphasize that both ways are
completely equivalent as for Hamiltonian systems

M(v, τ) = M(0, τ − v) =M(τ − v).

Nevertheless it is useful for us to keep both formulations in mind.
It can be shown using perturbation theory that the difference between the unper-

turbed energies of the stable manifold hu(v, τ) and the unstable manifold hs(v, τ) is
given by

hu(v, τ)− hs(v, τ) = εM(v, τ) +O
(
ε2
)

Whence, if the Melnikov integral is independent of ε and oscillates about 0 in τ (equiv-
alently with respect to v) one can infer the existence of transverse homoclinic points.
Here, as we deal with Hamiltonian systems, we will work rather with the Melnikov
potential.

L(v, τ) =
∫ +∞

−∞
(H1 (xh(v + s), τ + s)−H1 (x∗, τ + s)) ds
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which satisfies
M(v, τ) = ∂L

∂v
(v, τ)

and so can be thought of as giving an approximation of a generating function describ-
ing the splitting of the separatrices.

Exponentially Small Splitting

The case of exponentially small splitting of separatrices is much more delicate. This
typically occurs in the case of a fast oscillating small perturbation, e.g. one of the form
H1(x, t) = f(x, t

ε
, ε). In this case, the distance predicted by the Melnikov function is

generally expected to be of the form

M(v, τ) = M(v, τ
ε
, ε) = A(v, τ

ε
)e−

ρ
ε

and as
hu(v, τ)− hs(v, τ) = εM(v, τ) +O

(
ε2
)

we cannot conclude the transversal intersection of the manifolds by taking ε small
enough. The question then arises if the Melnikov formula does indeed give an asymp-
totic expression for the distances between the stable and unstable manifolds. It has
been shown, for example in [40], that indeed this is not always the case. In order to
prove that the Melnikov function does, in fact, indicate transversal intersection of sep-
aratrices one needs to prove that that the Melnikov function gives the splitting up to an
exponentially small error (smaller than that of the Melnikov function itself). Achieving
these exponentially small bounds is an important problem, for which various parallel
theories have been developed ([41],[42]).

5.1.5 Hamilton-Jacobi Parameterizations

One method of analysing the difference between the Melnikov function and the true
splitting of separatrices is by examining the stable and unstable manifolds of the Hamil-
tonian system as solutions to the Hamilton-Jacobi equation. Recall that given an au-
tonomous Hamiltonian system H(p, q), H ∈ C∞(T ∗M) equipped with the canonical
symplectic form the Hamilton-Jacobi equation reads

H (x, ∂xS) = c (5.14)
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solutions to the Hamilton-Jacobi equation are functions S : M → R whose graphs LS =
(q, ∂qS(q)) are Lagrangian submanifolds invariant under the flow of the Hamiltonian.
In particular the stable and unstable manifolds, at least locally, are graphs of solutions
of the Hamilton-Jacobi equation which satisfy the appropriate boundary conditions.

Suppose that the stable and unstable manifolds occur in a system close to integrable
and the generating function of the separatrix is given by S0(q). To look for solutions
S(q) of the perturbed system one can reparameterise the Hamilton-Jacobi equation
”through the unperturbed separatrix”. That is, given the variable v representing time
along the unperturbed separatrix defined by (5.13), one can write the Hamilton-Jacobi
equation in terms of v and search for solutions T (v) = S(q(v)) close to that of the
integrable case T0(v) = S0(q(v)). Writing the desired solution T (v) , as the sum of
the generating function of coincident stable and unstable manifolds of the integrable
system plus a perturbation term T1(v)

T (v) = T0(v) + T1(v)

one can write a Hamilton-Jacobi type equation for T1(v). The generating functions for
the stable manifold and unstable manifolds are then given by T s(v) = T0(v) + T s1 (v),
where T s,u1 (v) satisfy different asymptotic boundary conditions.

Finally, to validate that the Melnikov potential gives the correct splitting of the sta-
ble and unstable manifolds, one bounds the difference between the splitting as given
by the Melnikov integral and that given by the solutions to the Hamilton Jacobi equa-
tion above. Namely one tries to bound the expression

∂v(T u1 (v, τ)− T s1 (v, τ))− ε∂vL(v, τ) (5.15)

Hamilton-Jacobi and Exponentially Small Splitting

To prove exponentially small splitting of separatrices, then, one needs to show that the
Melnikov potential is exponentially close to the difference of solutions of the Hamilton-
Jacobi equation. That is, one needs to show the expression in (5.15) is exponentially
small. One method to achieve exponentially small bounds is by extending the Mel-
nikov potential and aforementioned solutions of the Hamilton-Jacobi equation to the
complex plane.
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A consequence of the Cauchy theorem is that functions on the torus analytic in a
complex strip possess exponentially decaying Fourier coefficients. Given an analytic
function which oscillates very quickly, with a frequency τ = t

ε
say, one can similarly

show that the Fourier coefficients decay exponentially in ε.
More specifically, let Λ(s) be a 2π periodic function and consider the Fourier series

Λ(s) =
∑
k∈Z

Λke
iks.

Suppose that Λ(s) extends to an analytic function in interior the complex strip

Dκ = {z ∈ C | |I(z)| < κ}.

Then one can bound
|Λk| ≤Me−κ|k|, (5.16)

where |Λ(z)| ≤M for all z in the complex strip of width κ′ < κ.
Now let us consider a function which oscillates quickly in t. That is, let g(v, τ) be 2π

periodic in τ with τ = t
ε

for some small ε. Suppose g(v, τ) satisfies g(v, τ) = g(0, τ − v
ε
).

This implies that

g(v, τ) = Λ
(
τ − v

ε

)
(5.17)

for some periodic function Λ. As g is 2π periodic in τ , Λ is 2π periodic in s = τ − v
ε
.

Write g(v, τ) in terms of the Fourier coefficients of Λ:

g(v, τ) =
∑
k∈Z

Λke
−ik v

ε eikτ .

Finally we can conclude
|g(v, τ)− Λ0| ≤Me−

κ′
ε (5.18)

where
|g(v, τ)| ≤M

on the (closed) complex strip

Dκ = {z ∈ C | |I(z)| ≤ κ′}.

and κ′ < κ.

In order to take advantage of this observation when dealing with exponentially
small splitting of separatrices, the unstable and stable manifolds are described as a
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graph over the unperturbed separatrices i.e. they are given by functions T u1 (v, ξ), T s1 (v, ξ)
which satisfy the Hamilton Jacobi equations and satisfy the initial conditions associ-
ated to the stable and unstable manifolds. These solutions are extended to some com-
mon of the complex plane which contains on the real axis two real values which corre-
spond to consecutive homoclinic points and which extends to O(ε) of the singularities
of the manifolds. Finally, the difference of these equations

∆(v, τ) = T u(u, τ)− T s(v, τ)

is shown to obey a partial differential equation close to (ε∂v + ∂τ )u(v, τ) = 0 i.e. one
finds a change of variable defined on the domain, C(v, τ) so that the function ∆̃ defined
by

∆(v, τ) = ∆̃(v + C(v, τ), τ)

is in the kernel of the following linear operator (ε∂v + ∂τ ). This is equivalent to ∆̃(v, τ) =
∆̃(0, τ − v

ε
) and so the Fourier coefficients of ∆̃ can be bounded using (5.18). Moreover,

as the Melnikov potential L(v, τ) also satisfies (5.17),if the change of variable is suffi-
ciently close enough to the identity, then by bounding the difference between ∆(v, τ)
and L(v, τ) in the complex one can conclude that the Melnikov method gives the cor-
rect first order of the splitting.

5.1.6 Splitting of Separatrices in the PCR3BP

In the PCR3BP numerous challenges to proving the transversal intersection of the sta-
ble and unstable manifolds of the periodic orbits at infinity arise. The first difficulty is
the parabolic nature of the fixed point. The second is that for very large Jacobi constant,
the perturbation is a fast-oscillating small perturbation and so the Melnikov function is
exponentially small in J 3

0 . Although, in this case, the correct first order of the splitting
is given by Melnikov function, to prove this requires significant effort.

The first result on the transversal splitting of separatrices was obtained by Libre
and Simo [32], but in order to conclude that the Melnikov function gave the correct
splitting the mass ratio µ between the massive bodies was required to be exponentially
small with respect to the Jacobi constant. A general result for arbitrary µ was given
by Guardia, Martı́n and Seara in [33] and employed methods from Hamilton-Jacobi
theory given in section 5.1.5.
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The Reparameterized Hamilton-Jacobi Equation

In order to solve the Hamilton-Jacobi equation giving the generating functions of the
perturbed stable and unstable manifolds, the first step is to write the generating func-
tions of the perturbed invariant sets as perturbations of those generating the stable and
unstable manifolds in the integrable case. This method was applied to the PCR3BP in
[33]. Here we recall their derivation, which we will adapt to orbits of the Kepler prob-
lem for e 6= 1. The equations are as follows:

LetJ0 be the Jacobi constant on the chosen level energy surface. Then the Hamilton-
Jacobi equation for the integrable mapping reads

J0 = (∂rS)2

2 + (∂φS)2

2r2 − 1
r
− ∂φS

Now, as G is conserved, we know that a solution of the above partial differential equa-
tion is given by

S = Gφ+ f(r)

where f(r) is some solution of the equation

1
2 (f ′(r))2 + G2

2r2 −
1
r

= h

Now one can look for solutions of the full Hamilton-Jacobi equation “close” to S0,
by writing S = S0 + S1, and substituting this into the energy equation. In the case of
the PCR3BP find that S1 satisfies the equation

∂rf∂rS1 + 1
2 (∂rS1)2 −G∂φS1 + G

r2∂φS1 + 1
2r2 (∂φS1)2 − V (r, φ;µ,G) = 0 (5.19)

where V (r, φ;µ,G) is the potential given in (5.4).
In order to compare with the Melnikov potentiall, the Hamilton-Jacobi equation

is reparameterized through the unperturbed separatrix as follows: let ξ parameter-
ize the family of parabolic orbits in the chosen level set of the Jacobi constant and
v be time along the unperturbed separatrix, i.e. ξ ∈ S1, v ∈ R, φ = ξ + αh(v) and
(rh(v), αh(v), yh(v), Gh(v))) satisfy the equations
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d

dv
rh(v) = yh(v)

d

dv
yh(v) = J 2

0
rh(v)3 −

1
rh(v)2

d

dv
φh(v, ξ) = J0

rh(v)2 − 1

d

dv
Gh(v) = 0

(5.20)

with initial condition φh(0, ξ) = ξ, where we recall that J0 is the value of the angular
momentum along the parabolic orbits in the chosen level set of the Jacobi constant J0

One then looks for a solution

T1 (v, ξ;µ,G) = S1 (r̃h(v), ξ + αh(v)− v;µ,J0)

of the reparameterized Hamilton-Jacobi equation

∂vT1 −G3∂ξT1 + 1
2ỹ2

h

(
∂vT1 −

1
r2

h
∂ξT1

)2

+ 1
2r2

h

(∂ξT1)2

− V (rhξ + αh − v;µ,G) = 0
(5.21)

satisfying the initial conditions of the stable and unstable manifolds, given explicitly
by

lim
v→−∞

∂vT
u
1 (v, ξ;µ,G) = 0, lim

v→−∞
∂vT

s
1 (v, ξ;µ,G) = 0

lim
v→∞

∂ξT
u
1 (v, ξ;µ,G) = 0, lim

v→∞
∂ξT

s
1 (v, ξ;µ,G) = 0.

(5.22)

The parameterized separatrices (rh(v), αh(v), yh(v), Gh(v))) are then extended to the
complex plane and the value of the Melnikov function is compared to solutions of the
Hamilton-Jacobi equation in the complex domain, which allows one to achieve expo-
nentially small bounds on the difference in the reals. In the case of the [33] several
difficulties needed to be overcome. Firstly, solutions to the above equations cannot be
extended analytically to the required domain, rather one has to extend Fourier coeffi-
cients and define the solution by way of a (formal but ultimately convergent) series.
Moreover, the fact that solutions are not graphs over r came with inherent difficulties
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as the distance between separatrices as defined on a section r = constant in the (r, y)
plane becomes undefined for turning points y = 0. For this reason, the difference be-
tween the stable and unstable manifolds is examined on a boomerang domain. In [33] it
is proven that

Theorem 5.1.3. There exist 0 < v− < v+,J ∗0 > 0 and K > 0 such that , for any J0 > J ∗0
and µ ∈ (0, 1/2] the invariant manifolds of infinity have parameterizations of the form ( 25) for
(v, ξ) ∈ (v−, v+)× T Moreover, the corresponding generating functions satisfy

|T u1 (v, ξ)− T s1 (v, ξ)− L(v, ξ)− E| ≤ Kµ2(1− 2µ)J −2
0 e−

J−3
0
3 +KJ −1/2

0 µ2e
2J−3

0
3

for a constant E ∈ R, which might depend on µ and J0, and

∣∣∣∂mv ∂nξ T u1 (v, ξ)− ∂mv ∂nξ T s1 (v, ξ)− ∂mv ∂nξ L(v, ξ)
∣∣∣

≤ Kµ2(1− 2µ)J −2+3m
0 e

J−3
0
3 +KJ −1/2+3m

0 µ2e
2J−3

0
3 (5.23)

where L(v, ξ) is the Melnikov potential of the PCR3BP

L (v, ξ;µ,J0) =
∫ +∞

−∞
V
(
r̃h(v + s), ξ −G3

0s+ αh(v + s);µ,G0
)
ds

In the current project, we generalize the method above to orbits of high eccentric-
ity where the generating functions of the stable and unstable manifolds become the
generating functions of circles of a fixed rotation number of the Poincaré section 5.1.1.
The Hamilton-Jacobi equation along orbits of high eccentricity is close to the equation
along the separatrix above in the complex plane and so we are able to deduce exponen-
tially small bounds in the reals. The aim of the next section is to define a Melnikov-like
integral as an approximate solution to the Hamilton-Jacobi equation.

5.2 Discussion of the Melnikov Integral

We note that in the parabolic case, the distance from the last invariant torus from the
separatrix becomes large (with respect to the exponentially small splitting of separa-
trices). Therefore, upon return to the Poincaré section, it is no longer true that the
difference in G is given to the required exactness by the splitting of the separatrices. In
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order to deal with this, we examine a family of Melnikov-like integrals, given by inte-
grating the perturbation potential V (r, α, t;µ) as given by (5.4) along Keplerian orbits
contained in TG,J0 . The result of these integrals will then be a two-parameter family of
generating functions, indexed by the quantities G and J0 and expressed as functions
of Keplerian time v and initial angle ξ which will give approximate solutions to the
Hamilton-Jacobi equation. These approximate solutions can then be used to estimate
the difference in the initial and final angular momentum of an orbit in a to-be-defined
Poincaré section to a sufficient degree of accuracy.

5.2.1 Parameterizations of Keplerian Tori

Consider the Kepler problem in rotating coordinates and a level set of the Jacobi con-
stant J −1(J0), where we assume J0 is large and negative. In this level energy set,
consider the set of orbits of positive angular moment G ∈ R satisfying J0 + G ≤ 0. In
the rotating coordinate system, the boundary of this set consists of a family of parabolic
orbits satisfying J0 + G = 0 parameterised by their angle at (say) the aphelion ξ. The
remaining phase space is foliated by a family of 2-tori, parameterized angular momen-
tum G, which represent elliptic solutions to the Keplerian problem rotated in time. We
write TG,J0 for the union of orbits of the Kepler problem in rotating coordinates with
angular momentum G, contained in a level set of the Jacobi constant J −1(J0). Such
tori can be parameterized by (ξ, v), where ξ is the angle of the body at the aphelion and
v the time along the Keplerian orbit. For convenience, we set v = 0 when the body is
at the aphelion. A parameterization of TG,J0 is then given by

TG,J0 = {(r, y, φ,G) : r = rG(v), y = yG(v), φ = ξ + αG(v)− v}

where we have
ξ ∈ Rmod 2π, v ∈ RmodTJ0(G)

where TJ0(G) is the period of a Keplerian orbit of angular momentumG in the level set
of the Jacobi constant J0 as defined in (5.9), and r = rG(v), y = yG(v), αG(v) are are the
unique solutions to the Keplerian equations of motion (5.2) with angular momentum
G satisfying the initial condition αG(0) = 0 with Keplerian energy h = J0 +G.

We will work always in a fixed level set of the Jacobi constant. We recall that in a
such a level set of the Jacobi constant each torus TG,J0 is specified uniquely by choosing
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one of:

• a specific value of angular momentum G

• the Keplerian energy of the orbit h

• the eccentricity of the orbit e

• the period of the Keplerian orbit T

With the previous discussion (section 5.1.6) in mind, we consider small perturbations
of the Kepler problem and take advantage of the fact that perturbed orbits may be
written (for some time) as a graph over the original Keplerian orbits. Whence, we fix
the path in configuration space and use the Hamilton-Jacobi equation to describe the
evolution of the conjugate variables. Accordingly, we will parameterize orbits in this
section by their return time which is, by design, the same in both the perturbed and
unperturbed case.

In later sections, we will often switch parameters depending on what is convenient,
writing e.g. (re(v), ye(v)) for the unique solutions to the integrable system 5.2 with
eccentricity e in the level set of the Jacobi constant J −1(J0). The conversions between
these parameters can be found in appendix A.

5.2.2 The Integrable Poincaré Mapping

We now reduce the system to one of an area-preserving map of a cylinder by the use
of a Poincaré section, which is chosen in the integrable case as follows: working in
the level set J −1(J0) consider the surface given by y = 0. This set comprises of two
cylinders transverse to the Hamiltonian flow for which the invariant circle J0 +G = 0
corresponds to the parabolic orbit of the Kepler problem. Label the two cylinders Ca,
Cp, where Ca is now a cylinder consisting of orbits at their aphelion and Cp a set of orbits
at their perihelion. Recall that the values of r at the aphelion, ra, and perhelion rp are
given by

ra = G2

1− e2 and rp = G2

1 + e2 (5.24)

respectively. Further recall that the eccentricity of the orbit e is given by e =
√

1− 2h2G

and that as we are in J −1(J0) we have G = h− J0. Finally recalling that the period of
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the orbit is a function of energy only, T = π√
2h
−3/2, we can parameterise the value of r

on Ca, Cp as functions r = ra(T ), r = rp(T ) respectively. Whence, in the Keplerian case,
we have

Ca = {(r, y, φ,G)|r = ra(T ), y = 0} (5.25)

Cp = {(r, y, φ,G)|r = rp(T ), y = 0} (5.26)

In the integrable case, the Hamilton-Jacobi equation reads

H (r, ∂rS, φ, ∂φs)−G = J0 (5.27)

where H (r, y, φ,G) is the Keplerian Hamiltonian as defined by (5.1). As G is constant
in the Keplerian case, finding a generating function for the integrable case is simply

S0(r, φ) = Gφ+ f(r) (5.28)

where where f(r) is some solution of the equation

1
2 (∂rf)2 + G2

2r2 −
1
r

= h

.

5.2.3 The Poincaré Section of the Perturbed Mapping

With the previous discussion in mind, we reformulate the Poincaré map following
way: Let Ca be the cylinder contained in J −1(J0) defined by

Ca = {(r, y, φ,G)|r = ra(T ), y = g(φ, ra(T ), G(T )), G = G(T )}

where g(φ, ra(T ), G(T )) is small and chosen so that the condition

J (ra(T ), g(φ, ra(T ), G(T )), φ,G(T )) = J0. (5.29)

is fulfilled. Define a family of circles ST (φ) in Ca by

ST (φ) = {(φ,G) ∈ Ca|G = G(T )} .

We now define the “forward and backward circles” of each ST as the images of ST in
forward and backward time respectively. Explicitly, denoting the Hamiltonian flow by
Φt
H we have
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Figure 5.3: An impression of a level energy set of J0. The Hamiltonian flow maps Ca to
Cp. Each ST is associated to an S1-parameterised set of Keplerian ellipses of eccentricity
e(T ) =

√
T 2−4π2

T
. We integrate along these orbits in forward and backward time to

estimate the Poincaré mapping Cp → Cp

SsT (φ, t) = Φ−tH (ST (φ)), SuT (φ, t) = Φ+t
H (ST (φ)) (5.30)

We can now define the Poincaré section

Cp = {(r, y, φ,G)|r = rp(T ), y = y(r, φ,G)} (5.31)

Note that now we have G as a free variable, and y = yp(r, φ,G) is then determined by
the condition

H (r, y, φ,G)−G = J0.

and denoting by T uR(φ) the time taken for p ∈ ST (φ) to reach the cylinder in forward
time and T sR(φ) the time taken for p ∈ ST (φ) to reach the cylinder in backward time,
the Poincaré map F : Cp → Cp as is given by

F (φ0, G0) = (φ1, G1) (5.32)

where
G0 = SsT (φ0, T

s
R) G1 = SuT (φ1, T

u
R) (5.33)
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As we expect solutions to be close to the integrable solutions, we expect T s,uR to be close
to T/2. Analogous to the setting in [33], we will search for the expression or these
backward and forward circles by writing solutions to the Hamilton-Jacobi as graphs of
generating functions close to that of the Kepler problem. That is, we will search for a
generating function S(φ, r) which satisfies the Hamilton-Jacobi equation

J (r, φ, ∂rs, ∂φs;µ) = J0.

where S(φ, r) is the unique solution to the Hamilton-Jacobi equation satisfying

∂φS(φ, rp(T ), 0)|rp(T ),φa = ST (φa) (5.34)

∂rS(φ, rp(T ), 0)|rp(T ),φa = f (φ, ra(T ), G(T )) (5.35)

and split the generating function into S = S0+S1 where S0 is a solution to the Hamilton
Jacobi equation of the integrable system as given in (5.28), positing that S1 is small.
To search for the solution S1, we will reparameterise the Hamilton-Jacobi equation
through the unperturbed Keplerian orbits writing

T0(ξ, v) = S0(φ(ξ, v), r(ξ, v)), T1(ξ, v) = S1(φ(ξ, v), r(ξ, v))

The change of variable (r, φ)→ (r(v), φ(v, ξ)) implies that the solutions of the equa-
tions of motion are given

r = re(v) (5.36)

y = ye(v) + ye(v)−1
(
∂vT

u,s
1 (v, ξ;µ,G0)− re(v)−2∂ξT

u,s
1 (v, ξ;µ,G0)

)
(5.37)

φ = ξ + αe(v) (5.38)

G = G0 + ∂ξT
u,s
1 (v, ξ;µ,G0) (5.39)

For each Keplerian torus consisting of Keplerian orbits of period T we will find a
generating function TT such that T1 = T0 + TT is the unique solution to the Hamilton
Jacobi equation with initial conditions

lim
v→−T/2

ye(v)−1∂vT uT (v, ξ;µ,G0) = f(φ(ξ), ra(T ), T ), ∂ξT uT (−T/2, ξ;µ,G0) = 0

lim
v→T/2

ye(v)−1∂vT sT (v, ξ;µ,G0) = f(φ(ξ), ra(T ), T ), ∂ξT sT (v, ξ;µ,G0) = 0
(5.40)

where f(φ(ξ), ra(T ), T ) is the function given by (5.29) and we recall T = T (G0). We
remark that g(φ, ra(T ), G(T )) is very small, but cannot be set to zero as we need the
Poincaré section to be contained in a level energy set.
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5.2.4 The Reparameterized Hamilton-Jacobi Equation

Following the method of [33], as discussed in section 5.1.6 we write the Hamilton-
Jacobi equation for a generating function TT (ξ, v)

∂vTT −G3∂ξTT + 1
2y2

T

(
∂vTT −

1
r2
T

∂ξTT
)2

+ 1
2r2

T

(∂ξTT )2

−V (rT , ξ + αT − v;µ,G) = 0
(5.41)

where (rT , yT , αT ) are the parameterizations of the r, y and α variables along the Kep-
lerian orbit of period T in the level set J −1(J0), which will given explicitly in section
5.3. Define the generating functions of the backward and forward circles on Cp as

T sT (ξ) = −TT (ξ,−T/2), T uT (ξ) = TT (ξ,+T/2) (5.42)

We can now write the Poincaré mapping (5.32) via the parameters T, ξ as

(φ0, G0)→ (φ1, G1) (5.43)

where φ0, φ1, G0, G1 are given by

φ0 = φ(ξ,−T/2), φ1 = φ(ξ,+T/2) (5.44)

−G0 = ∂T0

∂ξ
(ξ,−T/2) + ∂T sT

∂ξ
(ξ), G1 = ∂T0

∂ξ
(ξ, T/2) + ∂T uT

∂ξ
(ξ) (5.45)

To express the Poincaré map as the difference of T uT (ξ, v), T sT (ξ, v) we simply write
G1 = G0 + (G1 −G0)

φ1 = φ0 + T (φ0, G0)

G1 = G0 + ∂

∂ξ
(T uT (ξ, v)− T sT (ξ, v))

(5.46)

Observe that the functions T uT (ξ, v) as T sT (ξ, v) above satisfy the following

∂ξT uT (−T/2, ξ;µ,G) = 0 ∂ξT sT (T/2, ξ;µ,G) = 0 (5.47)

with conditions similar to (5.22).
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5.2.5 The Parameterized Melnikov Function

With the similarity of our generating functions and those of [33] in mind, we now posit
that the integrals LsT ,LuT are good approximations of the above generating functions
T s, T u where LsT ,LuT are defined by

LsT (ξ) =
∫ −T/2

0
V (rT (vT ) , ξ + αT (vT )− vT ) dvT

LuT (ξ) =
∫ T/2

0
V (rT (vT ) , ξ + αT (vT )− vT ) dvT

where rT (v), αT (v) are the solutions to the Keplerian equations of motion with initial
conditions in the circle ST (φ) ∈ Cp. The difference

LT (ξ) = LuT (ξ)− LsT (ξ) =
∫ T/2

−T/2
V (rT (v), ξ + αT (v)− v)dv

then gives a good approximation to the function T uT −T sT necessary to find the Poincaré
map (5.46). In the next section we concern ourselves with the calculation of the above
integral.

5.3 Calculation of the Melnikov Potential

We will now, for convenience, switch the variable parameterizing the Keplerian tori
to e. Consider the Kepler problem in rotating coordinates and a level energy set of
the Jacobi constant J −1(J0). As before, let v be a parameter parameterizing Keplerian
orbits of angular momentum G contained in J −1(J0), ξ the angle of the body at the
apoapsis and r(v), y(v), φ(v, ξ) the corresponding solutions to the Kepler problem, i.e.

d

dv
r(v) = y(v) (5.48)

d

dv
y(v) = G2

r(v)3 −
1

r(v)2 (5.49)

d

dv
φ(v) = dα(v)

dv
− 1 (5.50)

= G

r(v)2 − 1 (5.51)
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For convenience we set v = 0 at the perihelion (note that then v(v) = v − T/2). To
simplify calculations, we reparameterize time by

dt

dτ
= 2Gr (5.52)

so that the system (5.2) becomes

d

dτ
r = 2Gry d

dτ
y = 2G

( 1
r2 −

1
r

)
(5.53)

d

dτ
α = 2G2

r

d

dτ
G = 0 (5.54)

The advantage of this is a good parameterization for the orbits of the Kepler prob-
lem

Lemma 5.3.1. Let e < 1. Then for a Keplerian orbit of eccentricity e we have the following
expression for t(τ), where we choose the convention t = 0 when the body is at the periapsis,

t(τ) = 2G3

(1− e2)3/2 (
√

1− e2τ − e sin(
√

1− e2τ))

and the solutions of the Kepler problem have the following parameterizations in terms of τ :

r(τ) = G2

1− e2 (1− e cos
√

1− e2τ) (5.55)

α(τ) = 2 arctan
√1 + e

1− e tan
(√

1− e2 τ

2

)+ α0. (5.56)

Proof. Remark that for e < 1 we have E =
√

1− e2τ where E is the eccentric anomaly.
The below equations giving parameterizations of elliptic Keplerian orbits in terms of
the eccentric anomaly E are well known:

r = G2

1− e2 (1− e cosE) (5.57)

tan α2 =
√

1 + e

1− e tan E2 . (5.58)

The equation

t(E) = 2G3

(1− e2)3/2 (E − e sin(E)) (5.59)

can be found by direct integration, or by comparing t(E) to the mean anomaly M(E).
For details see appendix A. We will switch between the parameters τ andE depending
on convenience.
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Upon a similar rescaling to that in section 5.1.2 and translation of the angle

r = G2re, y = G−1ye, α− ξ − T

2 = αe, t = G3te (5.60)

The Keplerian equations of motion become

d

dτ
re(τ) = ye(τ), d

dτ
ye(τ) = 1

re(τ)3 −
1

re(τ)2 (5.61)

d

dτ
αe(τ, ξ) = 1

re(τ)2 ,
d

dτ
φe(τ, ξ) = 1

re(τ)2 −G
3, (5.62)

and the solutions re(τ), ye(τ), αe(τ) become functions of e only. We note that αe now
represents the true anomaly of the orbit. In the rescaled variables we have that the
potential is given by

V (re, φe;µ,G) = G2V (r, φ;µ) .

We then define the Melnikov potential as the integral

L (ξ; e, µ,J0) = G−2
∫ T

2

−T2
V (re(v), φe (ξ) ;µ) dv, (5.63)

where T = T (J0, e) denotes the period of the Keplerian orbit of eccentricity e and
G−2V (re(v), φe(v, ξ);µ) the difference in the potential between the Keplerian and re-
stricted three-body problem as defined in equation (5.4), evaluated along the unper-
turbed orbit.

The value of these integrals is most readily expressed in terms of the Keplerian
angular momentum G as a parameter rather than T or e. Therefore we will write
L (ξ; e, µ,J0) as a function L(ξ;J0, G, µ).

In order to calculate the above integrals, we split L(ξ;J0, G, µ) into the dominant
terms of its Fourier series in ξ and a remainder term.

L (ξ;J0, G, µ) = L[0] (J0, G, µ) + L[1] (ξ;J0, G, µ)

+ L[2] (ξ;J0, G, µ) + L[≥3] (ξ;J0, G, µ)

where L[0],L[1],L[2] represent the harmonics of order 0, 1 and 2 respectively and L[≥3]

those of higher order. The rest of the this section will be devoted to the calculation of
L (ξ;J0, G, µ). We will show:
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Theorem 5.3.2. . Let L (ξ;J0, G, µ) be the Melnikov potential function of equation (5.63) for
an orbit of angular momentum G and Jacobi constant J0. Then

L (ξ;J0, G, µ) = L[0] (ξ;J0, G, µ) + 2
+∞∑
`=1

L[`] (ξ;J0, G, µ) cos(`ξ) (5.64)

where

L[1] (G, µ) = −µ(1− µ)
√
π

1− 2µ
4
√

2
G−3/2e−

G3
3
(
1 +O

(
G−3/2,

√
1− e2

))
(5.65)

L[2] (G, µ) = −2µ(1− µ)
√
πG1/2e−

2G3
3
(
1 +O

(
G−1/2,

√
1− e2

))
(5.66)

L[`] (G, µ) = O
(
G`−3/2e−

`G3
3 (1 +O

√
1− e2)

)
, for ` ≥ 2. (5.67)

Here, L[2] will give the dominant term of the generating function for µ close to
1/2. To do this, in Section 5.3.1 we perform a rescaling of the perturbation potential of
the PCR3BP similar to that of [33]. Then in Section 5.3.3 we define the complex path
along which the integral will be taken. In Section 5.3.4 we compare the integral to the
usual Melnikov integral along the homoclinic orbit. Finally, in Sections 5.3.5 and 5.3.6
we calculate the integral by employing the results of [43] which calculate the integral
along the homoclinic orbit and bounding the difference.

5.3.1 Rescaling and Expansion of the Potential Function

We note that as we have an integral of a quickly oscillating perturbation V = V (αe(v)−
G3v), the dominant terms will be given by the lower order terms of the Fourier series
of the function. With this in mind, the potential function is expanded into a Fourier
series rather than a power series in the perturbation parameter as found in [33].

Lemma 5.3.3. The potential G−2V (re(v), φ(v, ξ)) admits the following expansion

1
G2V (re(v), φ(v, ξ)) =

∑
`∈Z

ei`φ(v,ξ) ∑
j≥max{0,−`}

cjcj+`

× (−1)`(1− µ)µ2j+` + µ(1− µ)2j+`

G4j+2`+2r2j+`+1
e (v)

− 1
G2re(v) ,

where cj =
 −1/2

j

, δ0(0) = 1 and δ0(`) = 0 for ` 6= 0.
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Using φe(v, ξ) = αe(v)−G3te(v) + ξ the Melnikov potential 5.63 is given by

L(ξ;G, e, µ) =
∑
`∈Z

ei`ξ
∑

j≥max{0,−`}
Ne(G, µ)(`, j)

where

Ne(G, µ)(`, j) = c(µ, `, j)
G4(j+1)

∫ T
2

−T2

ei`αe(v)e−i`G
3te(v)

rj+2
e (v)

dv (5.68)

= 2c(µ, `, j)
G4(j+1)−1

∫ π√
1−e2

− π√
1−e2

ei`αe(τ)e−i`G
3te(τ)

rj+1
e (τ)

dτ (5.69)

= 2c(µ, `, j)
G4(j+1)−1

∫ π√
1−e2

− π√
1−e2

ei`αe(t)e−i`G
3te(τ)

(1 + e cos(
√

1− e2τ))j+1
(5.70)

= 2c(µ, `, j)
G4(j+1)−1 Ie(`, j) (5.71)

where we have defined for convenience

c(µ, `, j) = cjcj+`
(
(−1)`(1− µ)µ2j+` + µ(1− µ)2j+`

)
,

Ie(`, j) =
∫ π√

1−e2

− π√
1−e2

ei`αe(t)e−i`G
3te(τ)

(1 + e cos(
√

1− e2τ))j+1
(5.72)

and we remark that the period of the Keplerian orbit can be found easily in the terms
of τ , from the relation E =

√
1− e2τ and T (E, h) = 2π.

This family of integrals becomes singular at e = 1. However, one can show that
upon taking limits

lim
e→1
Ie(`, j) =

∫ +∞

−∞

ei`(τ+τ3/3)G3/2

(τ − i)2j(τ + i)2j+2`dτ := I(`, j)

where I(`, j) is an integral corresponding to the usual Melnikov potential evaluated
along the homoclinic orbits of the Kepler problem, the value of which was computed
in [43].

5.3.2 Symmetries of the Potential Function

We note that the potential V (r, φ) satisfies the symmetry

V (r,−φ) = V (r, φ)
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As V (r,−φ) is an even function, then, the Fourier coefficients satisfy

V̂ [`](v) = V̂ [−`](v)

and so
I(`, j) = I(−`, j)

Thus it is sufficient to compute the integrals for the case ` < 1. We also note the
symmetries

re(−v) = re(v), te(−v) = −t(v), αe(−v) = −α(v) (5.73)

which will be employed later.

5.3.3 The Complex Path

We recall that the presence of the term exp(i`G3te(τ)) in the integrals (5.68) means that
we are dealing with a quickly oscillating integral for G large. To compute the integral,
we will rely on the method of [43], which computed a similar integral using the method
of steepest descent, which deforms the contour of integration so that it passes through
a stationary point of the phase te(τ) in such a way that highly-oscillating nature of the
integrand is eliminated. The dominant terms of the integral can then be derived from
the form of the function at the stationary point t′e(τ) = 0.

To define such a path, we note the functions te(τ), αe(τ), re(τ) defined by the equa-
tions (5.60, 5.3.1) all have a natural analytic extension to the complex plane and we
look for a path Γ in the complex plane satisfying

• te(τ) is purely imaginary

• Γ passes through the zeros of t′e(τ)

However, along this path the integrand has a singularity at t′e(τ) = 0 and it is necessary
to estimate the integral by deforming Γ in such a way as to avoid the singularity. This
is achieved by adding a circle Γ3 of radius ε around the singularity, as in figure 5.4.
Applying the Cauchy-Goursat theorem to the path in figure 5.4 we can conclude that

Ie(`, j) =
∫ T

2

−T2
Fe(`, j)dt =

∫
γ1∪γ2

Fe(`, j)dτ +
∫

Γ
Fe(`, j)dτ
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where we have defined for convenience

Fe(`, j) = ei`αe(t)e−i`te(τ)

(1 + e cos(
√

1− e2τ))j+1
(5.74)

Figure 5.4: The chosen path

To define the path Γ we write

he(τ) = ite(τ) = i

√1− e2τ − e sin(
√

1− e2τ)
(1− e2)

3
2

 (5.75)

Then, recalling the parameterization (5.52) we find

t′e(τ) = 0 ⇐⇒ re(τ) = 0

So that stationary points of the phase te(τ) then correspond to singularities of the po-
tential function which occur for r(τ) = 0. As noted in [33], these singularities then can
be considered as collisions for complex values of time.

To find such stationary points we use the expression for r(τ) given in equation (5.55)
to note that in the complex strip

BT = {τ ∈ C : |R(τ)| < T}

re(τ) has exactly two zeros

re(τ) = 0 ⇐⇒ τ = ±τ0(e)
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where

τ0(e) =
i arccosh

(
1
e

)
√

1− e2
(5.76)

We now define a function which will describe the phase along the contour Γ

uh(τ) = he(τ0)− he(τ)

where the path Γ is given by

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5

with components

Γ1 = {τ ∈ C : Im(ue(τ)) = 0} ∩
{
τ ∈ C : − π√

1− e2
≤ Re(τ) ≤ Re (−τ ∗)

}

Γ5 = {τ ∈ C : Im(ue(τ)) = 0} ∩
{
τ ∈ C : π√

1− e2
≥ Re(τ) ≥ Re (τ ∗)

}
Γ2 = {τ ∈ C : Im(ue(τ)) = 0} ∩ {τ ∈ C : Re (−τ̄ ∗) ≤ Re(τ) ≤ 0} ∩ {τ ∈ C : |τ − i| ≥ cε}

Γ4 = {τ ∈ C : Im(ue(τ)) = 0} ∩ {τ ∈ C : 0 ≤ Re(τ) ≤ Re (τ ∗)} ∩ {τ ∈ C : |τ − i| ≥ cε}

Γ3 = {τ ∈ C : Im(ue(τ)) ≤ 0} ∩ {τ ∈ C : |τ − τ0| = cε}

and τ ∗ is a (positive) constant to be specified.
Finally we define γ1 and γ2 by

γ1 = {τ ∈ C : Re(τ) = − π√
1− e2

, Im(τ) ≤ τ ∗∗} (5.77)

γ2 = {τ ∈ C : Re(τ) = π√
1− e2

, Im(τ) ≤ τ ∗∗} (5.78)

where τ ∗∗ is simply the imaginary part of intersection of the line R(τ) and Γ1 (equiva-
lently Γ5)

τ ∗∗ = Γ1 ∩ {τ ∈ C | Re(τ) = − π√
1− e2

},

To compute an integral similar to 5.63, [43] noted the fact that the integral is ulti-
mately ε independent and so the integral around Γ3 is given in the limit as ε → 0 by
2πi times the residue of the pole. For Γ1 ∪ Γ2 and Γ3 ∪ Γ5 one can then compare the ε-
independent terms of the paths Γ2 and Γ3 to a standard integral (that of the Γ-function)
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and bounding the difference. These terms give the dominant terms of the integral and
finally those of Γ1 and Γ5 are bounded. To compute the integrals Ie(`, j) found in (5.72)
we will compare the integrands Fe(`, j) to those of [43] in the complex plane, and use
the methods there to calculate Ie(`, j) up to terms of the form e−

G3
3
√

1− e2. For G large
and
√

1− e2 exponentially small in G, then, these terms can be safely discarded.
We will examine the integral only for those Fourier coefficients of V (r, φ;µ,G) giv-

ing the dominant terms in G and then bound the rest. As the integral is quickly oscil-
lating, the dominant terms will be associated to the lowest order terms in the Fourier
series, i.e. Ne(G, µ)(±1, j). Furthermore, these integrals will be shown to decrease with
increasing j. For µ 6= 1

2 the dominant term is then associated to the integral.

Ie(±1, 1) =
∫ T

2

−T2

e−iφe(τ)

re(τ)3 dτ (5.79)

For µ very close to 1/2 one needs to investigate higher order terms. The dominant
Fourier term will be given by

Ie(±2, 1) =
∫ T

2

−T2

e−i2φe(τ)

re(τ)5 dτ (5.80)

5.3.4 Comparisons to the Homoclinic Orbit

In order to calculate the integrals (5.72) we will compare the parameterizations (re(v), αe(v))
to those of the homoclinic solution (rh(v), αh(v)). We can then compare the integrals
(5.72) to those of the components of the true Melnikov potential

L(0, ξ) = L(ξ) =
∫ ∞
−∞

V (rh(v), ξ + αh(v)− v;µ)dv

as computed in ([43]). The expressions rh(v), αh(v), as solutions to the system 5.20 are
given by the following Lemma:

Lemma 5.3.4. Let τ(v) be the unique analytic function defined by

v = 1
2

(1
3τ

3 + τ
)

with the convention that τ is real for real values of v that is,

τ(v) = (3v +
√

9v2 + 1)1/3 − (3v +
√

9v2 + 1)−1/3.
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Then, the homoclinic orbit satisfying (5.20) has the following properties:

rh(v) = rh(τ(v)) (5.81)

and αh(v) = αh(τ(v)), where

rh(τ) = 1
2
(
τ 2 + 1

)
(5.82)

αh(τ) = 2 arctan(τ) = −i log
(
i− τ
i+ τ

)
. (5.83)

time along the homoclinic solution is then given by

t(τ) = v = 1
2

(1
3τ

3 + τ
)

We then have the following expressions for the quantities expressed in (5.3.3)

hh(τ) = i

(
τ 3

3 + τ

)

uh(τ) = hh(i)− hh(τ) = −2
3 − i

(
τ 3

3 + τ

)

= (τ − i)2 − i

3(τ − i)3

(5.84)

and we label the integrand along the homoclinic orbit as

Fh(`, j)(τ) = ei`αh(τ)e−i`J
3
0 th(τ)

rj+1
h (τ)

= ei`(τ+τ3/3)G3/2

(τ − i)2j(τ + i)2j+2` (5.85)

Expressing the difference between Fh(`, j) and Fe(`, j) comes with minor difficul-
ties not least because the expressions (5.55, 5.56, 5.3.1) all become singular at e = 1.
Moreover, the singularity of the Keplerian orbits are located close to, but not at the
singularities of the separatrix. For this reason, to compare the integrals in the section
of the complex path it is necessary to rescale the complex plane in a way that makes
the singularities coincident and compare the expressions of the elliptic and parabolic
integrands about their (now mutual singularities).

5.3.5 The Integral along Γ

We now expand the parameterizations of the Keplerian orbits (5.55,5.56,5.3.1 ) around
the singularity τ0.
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Lemma 5.3.5. u(τ) has the following expansion about τ = τ0

√
u(τ) = τ − τ0√

e
ũ(τ) + (

√
1− e2)

(
O (τ − τ0)2

ũ(τ)

)

where

ũ(τ) =
√

1− i

3(τ − τ0). (5.86)

Proof. By construction u(τ0) = 0. Also, u′(τ0) = 0 as

u′(τ) =
√

1− e2 du

dE
= −2i

(
1− e cos(E)

1− e2

)
= 2ir(τ)

and so u′(τ) has a zero whenever r(τ) has. Writing u as a Taylor series and taking the
square root we have

√
u(τ) =

√√√√ iu′′(τ0)√
1− e2

(τ − τ0)2 + iu′′′(τ0)
3 (τ − τ0)3 + (

√
1− e2)O(τ − τ0)4 (5.87)

= (τ − τ0)

√√√√− i sin(τ0)
2
√

1− e2
− i cos(τ0)(τ − τ0)

3 + (
√

1− e2)O((τ − τ0)2) (5.88)

= (τ − τ0)ũ(τ) + (
√

1− e2)
(
O (τ − τ0)2

ũ(τ)

)
(5.89)

where evaluating

sin
(
i cosh−1

(1
e

))
= i
√

1− e2

e

and
cos

(
i cosh−1

(1
e

))
= 1
e

gives expression (5.86) for ũ(τ).

We now perform a rescaling of the complex plane, This ensures that the singular-
ities of our integrand are at the same location as those of the homoclinic τ0 = ±i and
that our integral is comparable to that of [43].
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Lemma 5.3.6. Define τ̃ = −iττ0 Then we have the following expressions

u(τ̃) = (τ̃ − i)2
(

1− i

3(τ̃ − i)
)

+O(
√

1− e2) (5.90)

re(τ̃) = 1
2(τ̃ − i)(τ̃ + i) +O(

√
1− e2) (5.91)

αe(τ̃) = τ̃ − i
τ̃ + i

+O(
√

1− e2). (5.92)

Proof. The expression (5.90) is immediate upon considering the expression for u given
in Lemma 5.3.5 and the expansion for

−iτ =
arccosh

(
1
e

)
√

1− e2

given in Lemma B.0.1.
For equation (5.91) it is sufficient to note that

u(τ̃) = −iτ 3
0

(
τ̃ 3

3 + τ̃ − 2
3

)
+O(1− e2)

and recalling that r(τ) = 1
2iu
′(τ) the result follows. Finally, for equation (5.92) we

simply note using equation (5.62)

dαe
dτ̃

= i

τ0

2
r(τ̃) (5.93)

=⇒ αe = 2i
τ0

∫ 1
r(τ̃) = i

τ0
2 arctan(τ̃) +O(

√
1− e2) (5.94)

= 1
τ0

log
(
i− τ
i+ τ̃

)
+O(

√
1− e2) (5.95)

And again using Lemma B.0.1 to get i
τ0

= 1 + O(
√

1− e2) we have get (5.92) as
required.

Lemma 5.3.7. Let he(τ) be the function defined in 5.75 and τ0 the zero of r defined by expres-
sion 5.76. Then we have the following he(τ0) = −2

3 +O(1− e).
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Proof. We have

h (τ0) = 2i
√1− e2τ0 − e sin

(√
1− e2τ0

)
(1− e)3/2

 (5.96)

= −2
(1− e2)

arccosh
(

1
e

)
√

1− e2
− 1

 (5.97)

= −2
(1− e2)

(
1− e2

3 +O
((

1− e2
)2
))

. (5.98)

where we have have used the expansion for
arccosh( 1

e)√
1−e2 found in B.0.1.

We can now express the integrand Fe(`, j)(τ) of equation (5.74) as an integrand
close the Fh(`, j)(τ) of equation (5.85). First define the functions

ũe(τ) = ue(τ̃), r̃e(τ) = re(τ̃), α̃e(τ) = αe(τ̃)

and the rescaled integrand as

F̃e(`, j)(τ) = Fe(`, j)(τ̃) (5.99)

where τ̃ is the rescaling given in Lemma 5.3.1.

Lemma 5.3.8. Let F̃e(`, j)(τ) be as defined by equation (5.99). Let Fh(`, j) be as defined by
equation (5.85). Then we have

F̃e(`, j)(τ) = Fh(`, j)(τ) + e−2G3/3(O(
√

1− e2)). (5.100)

Proof. We write

F̃e(`, j)(τ) = ei`αe(τ̃)e−i`te(τ̃)

(re(τ̃))j+1 (5.101)

= e−2`G3/3
(
ei`αe(τ̃)e`ue(τ̃)

(re(τ̃))j+1 +O(1− e2)
)

(5.102)

= e−2`G3/3
(
ei`α̃e(τ)e`ũe(τ)

(r̃e(τ))j+1 +O(1− e2)
)

(5.103)

and the result then follows from Lemma 5.60.
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We now bound the difference between the rescaled integrals

Ĩe(`, j) =
∫ T

2

−T2
F̃e(`, j)dτ

and the usual Melnikov function as computed in [43].

Lemma 5.3.9. Let F̃e(`, j)(τ) be as defined in equation (5.74). Then∫
Γ̃1∪Γ̃2

F̃e(`, j)(τ)dτ =
∫ +∞

τ̃∗∗

ei`(τ+τ3/3)G3/2

(τ − i)2j(τ + i)2j+2`dτ + E`,j (5.104)

where E`,j satisfies

|E`,j| <
2e−`G

3
2

`G3

(
O(
√

1− e2)
)
. (5.105)

Proof. We note that∫
Γ5
F̃e(`, j)(τ)dτ =

∫ ∞
u(τ̃∗)
F̃e(`, j)(u)du−

∫ ∞
u(τ∗∗)

F̃e(`, j)(u)du (5.106)

where τ ∗∗ is the intersection of the path γ1 with Γ5. We can bound the second term
easily by∣∣∣e`h(i)E`,j

∣∣∣ =
∣∣∣∣∣
∫ ∞
u(T )
F̃j−1,`(u)du

∣∣∣∣∣ ≤
∫ ∞
τ̃(T )

e−`G3u/2

|(τ̃(u)− i)j−`+1(τ̃(u) + i)j+`+1|
du

≤ 2e−`G
3

2 (τ̃(h))

`G3
1

|τ̃(T )− i|j−`+1
1

|τ̃(T ) + i|j+`+1

≤ 2e−`G
3

2 (τ̃(h))

`G3

and using T = T (e) = π√
1−e2 we get result (5.105).

The result for the integral along Γ1 is equivalent. Applying the Cauchy-Goursat
theorem, then, and the expression for Fe(`, j) given in Lemma (5.3.9) we have that

Lemma 5.3.10. Let Ĩe(`, j) be defined by

Ĩe(`, j) = (−1)`22j+`
∫

Γ̃
F̃(`, j)dτ

where Γ̃ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 then

Ĩe(`, j) = (−1)`22j+`
∫ +∞

−∞
F̃(`, j)dτ + E`,j (5.107)

where E`,j satisfies

|E`,j| <
2e−`G

3
2

`G3

(
O(
√

1− e2)
)
. (5.108)
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We can now use the previous expansions to show that the integral along orbits of
high-eccentricity are similar to those of the homoclinic orbit:

Lemma 5.3.11. Let Ie(`, j) be as defined in 5.72 and ˜Ie(`, j) be as defined in Lemma 5.3.10.
Then we have

Ie(`, j) = Ĩe(`, j) +O(
√

1− e2) (5.109)

Proof. Using the expansion of Lemma B.0.1) we have

dτ

dτ̃
= 1 +O(

√
1− e2). (5.110)

Using the definition of F̃(`, j) in 5.99 we have∫ +T/2

−T/2
F(`, j)(τ)dτ =

∫ +T/2

−T/2
F(`, j)(τ̃)dτ

dτ̃
dτ̃ (5.111)

=
∫ +T/2

−T/2
F̃(`, j)(τ)dτ +O(

√
1− e2) (5.112)

5.3.6 The Integral along γ1 ∪ γ2

We now turn our attention to the integral along γ1, γ2 as defined by equations (5.77,5.78).
Let q(v) = (re(v), ye(v), φe(v), G(v)) represent a simple periodic orbit of the Kepler prob-
lem in rotating coordinates, i.e. in the chosen level set of the Jacobi constant assume
that G is such that

T (h(J0, G)) = 2nπ (5.113)

Then the integral defined by equation (5.63) corresponds to the subharmonic Mel-
nikov integral (see, e.g. [38]). Note that as αe(T ) = π = −αe(−T ) we have

φ(γ1(t))− φ(γ2(t)) = te(γ1(t))− te(γ2(t)) (5.114)

In this case that condition (5.113) is satisfied the integrals along γ1 and γ2 cancel,

Lemma 5.3.12. Let Ie(`, j) be the integrals defined by equation (5.72) evaluated along a peri-
odic orbits of the Kepler problem in rotating coordinates. Then

Ie(`, j) =
∫

Γ
Fe(`, j)dτ.
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Figure 5.5: extending the path

Proof. For I(τ) = nπ we have V (τ) = V (−τ̄). Therefore, when T satisfies condition
(5.113), V (τ) satisfies

V (γ1(t)) = V (−γ2(−t))

and so ∫
γ1∪γ2

V (τ)dτ =
∫ γ∗

0
V (τ(t))dt−

∫ 0

γ∗
V (−τ̄(t))dt = 0

Looking at equation (5.114) it is clear that in the case that if condition (5.113) is
not fulfilled we have that V (γ1(t)) 6= V (−γ2(−t)). In this case, in order to bound the
integral over γ1 ∪ γ2 we deform the path of integration slightly. Declare δ = φ(T/2) −
φ(−T/2) and define the following piece-wise smooth path

γ1,0(t) = {−T/2− t|t ∈ [0, δ]} (5.115)

γ1,1(t) = {−T/2− δ + it|t ∈ [0, γ∗]} (5.116)

γ1,2(t) = {γ∗ − δ + t|t ∈ [0, δ]} (5.117)

Clearly

∫
γ1
Fe(`, j)dτ =

∫
γ1,0∪γ1,1∪γ1,2

Fe(`, j)dτ

First we bound the integral over γ1,0 ∪ γ1,2 and then compare the integral of Fe(`, j)
over γ1,1 is close to that over γ2.
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Lemma 5.3.13. Let Fe(`, j) be as defined in equation (5.74) and γ1,0, γ1,2 be defined by equa-
tions (5.115,5.117) respectively. Then∣∣∣∣∣

∫
γ1,2
Fe(`, j)dτ

∣∣∣∣∣ <
∣∣∣∣∣
∫
γ1,0
Fe(`, j)dτ

∣∣∣∣∣ < δ
((√

1− e2
)2j
)
. (5.118)

(5.119)

Proof. First, we note that for ` > 1 we have

∣∣∣e−`iG3te(−T/2−δ+it)/2
∣∣∣ < ∣∣∣e−`iG3te(T/2+t)/2

∣∣∣
For the first inequality we simply note that for all t ∈ [0, δ]

|Fe(`, j)(γ1,0(t))| (5.120)

=
∣∣∣∣∣ e−`iG3te(−T/2−δ+it)/2

(−T − δ + i(t− 1))j−`(−T − δ + i(t+ 1))j+`

∣∣∣∣∣ (5.121)

<

∣∣∣e−`iG3te(T+t)/2
∣∣∣

|(T + t− i)j−`(T + t+ i)j+`| (5.122)

= |Fe(`, j)(γ1,2(t))| (5.123)

while a simple base by the height bound suffices for the integral over γ0,1∣∣∣∣∣
∫
γ1,0
Fe(`, j)dτ

∣∣∣∣∣ =
∫ T

2 +δ

T
2

e−`iG3te(τ)/2

|(τ̃ − i)j−`(τ̃ + i)j+`|dτ (5.124)

≤
∫ T

2 +δ

T
2

e−`iG3te(T/2+s)/2

|(T + t− i)j−`(T + t+ i)j+`|ds (5.125)

≤ δ

(
1
|T |2j

)
(5.126)

and recalling
T (e) = π√

1− e2
(5.127)

gives the result.

Lemma 5.3.14. Let Fe(`, j) be as defined in (5.74),γ1 be as defined in equation (5.77) and γ1,1

as defined in (5.116). Then

Fe(`, j)(γ1,1)(t) = Fe(`, j)(γ1(t)) +O
((√

1− e2
)j+1

)
.
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Proof. We have

Fe(`, j)(γ1,1(t)) (5.128)

= e−`iG3te(γ1,1(t))

(−T − δ + i(t− 1))j+l(−T − δ + i(t+ 1))j−l (5.129)

= 1
T 2j

e−`iG3te(γ1(t))e−`iG3δ

(−1− (δ/T ) + i(t− 1)/T )j+l(−1− δ/T + i(t+ 1)/T )j−l (5.130)

= Fe(`, j)(γ1(t)) + 1
T 2j+1 (5.131)

Lemma 5.3.15. Let Fe(`, j) be defined by equation (5.74), γ2 be as defined in equation (5.78)
and γ1,1 as defined in (5.116).∫

γ1∪γ2
Fe(`, j)dτ = O

((√
1− e2

)2j−1
)
. (5.132)

Proof. Using Lemma 5.3.13 we have

∫
γ1
Fe(`, j)dτ =

∫
γ1,0
Fe(`, j)dτ +O(T−2j)

By construction te(γ1,1(t)) = te(γ2(t)) mod 2π. Using Lemma 5.3.14 then, we have

Fe(`, j) (γ2(t)) = Fe(`, j) (γ1,1(t)) +O
(
T 3j+2|`|

)
Finally, noting that |γ2| = O(T ) we have bound (5.132) and we simply need to recall

relation (5.127) to conclude.

We can now employ directly the calculations in [43]. Define

N(`,m, n) = 2m+n

G2m+2n−1

 −1/2
m

 −1/2
n

∫ ∞
−∞

ei`G3(τ+τ3/3)/2

(τ − i)2m(τ + i)2ndτ (5.133)

Now we take the following results from [43] (Lemma 30, Proposition 19)

Lemma 5.3.16. Let N(`,m, n) be defined by equation (5.133) and let G > 32. Then
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N(1, 2, 1) = 1
4

√
π

2G
−1/2e−G3/3 + E1 (5.134)

N(1, 2, 0) =
√
π

2G
3/2e−G3/3 + E2 (5.135)

(5.136)

where |E1| ≤ 269G−2e−G3/3, |E2| ≤ 259e−G3/3.

Lemma 5.3.17. Let N(`,m, n) as defined in 5.133 for ` ≥ 1,m, n ≥ 0,m + n > 0, G > 1.
Then

|N(`,m, n)| ≤ 2n+m+3eqGm−2n−1/2e−`G3/3.

Using the form of the rescaled integral given in Lemma 5.3.9, bounding the integral
along the different path components using Lemmas 5.3.10, 5.3.13, 5.3.15 and finally
bounding the difference between the rescaled integral as per Lemma 5.3.11 we finally
have:

Lemma 5.3.18. Let Ne (G, µ) (`, j) be as defined in 5.68 and N(`, j) be as defined in 5.133.
Then

Ne(`, j) = N(l, j, j + l) + e−`G
3

2 (O
(√

1− e2)
)
. (5.137)

Now using Lemma 5.3.18 to bound the difference between the integral along the
homoclinic orbit and orbits of high eccentricity and Lemmas 5.3.16 and 5.3.17 giving
the value of these integrals, we can conclude the value of the Melnikov integral is given
by Theorem 5.3.2.

5.4 Controlling Errors with Hamilton Jacobi

In order to conclude Theorem 5.4.1, that is to get a Theorem similar to that of 5.1.3
of [33], we need to show that the generating functions Ss,Su approximate the gener-
ating functions of the images of the circle CG with sufficient accuracy and to bound
errors in the return time. As noted in section (5.1.5), an effective strategy to prove the
Melnikov-fuction correctly predicts the splitting of separatrices is to compare the result
to solutions of the Hamilton-Jacobi equation on the appropriate energy level. similarly,
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we posit that our Melnikov-like function predicts differences in the return energy of or-
bits with sufficient accuracy. More specifically, we require a theorem of the following
nature, close to Theorem 3.2 of [33]

Theorem 5.4.1. There exist 0 < v− < v+, G
∗ > 0 and K > 0 such that , for any G > G∗

and µ ∈ (0, 1/2] the invariant manifolds of infinity have parameterizations of the form (25) for
(v, ξ) ∈ (v−, v+)× T Moreover, the corresponding generating functions satisfy

|T u1 (v, ξ)− T s1 (v, ξ)− L(v, ξ)− E| ≤ Kµ2(1− 2µ)G−2

e
G−3

3 (1 +O(1− e2)) +KG−1/2µ2e
2G−3

3 (1 +O(1− e2)) (5.138)

for a constant E ∈ R, which might depend on µ and G, and

|∂mv ∂nξ T u1 (v, ξ)− ∂mv ∂nξ T s1 (v, ξ)− ∂mv ∂nξ L(v, ξ)|

≤ Kµ2(1− 2µ)G−2+3me
G−3

3 (1 +O(1− e2))

+KG−1/2+3mµ2e
2G−3

3 (1 +O(1− e2)) (5.139)

for 0 < m+ n ≤ 2, 0 ≤ m,n,.

Here we note that the Hamilton Jacobi equation along the separatix is close to the
Hamilton Jacobi equation along unperturbed orbits of the Kepler problem of suffi-
ciently high eccentricity, allowing us to conclude that the Melnikov integral (1.1.2) cor-
rectly gives the true splitting. It is important to note that this method works as the the
expression for rh (equation (5.81)) and re (equation (5.91)) are close also in the com-
plex plane and therefore using the methods of 5.1.5, one can use this to obtain super
exponentially small bounds in the reals.

5.4.1 The Fixed Point Equation

In many cases of exponentially small Fourier splitting, in order to extend the solutions
of the Hamilton-Jacobi equation to the complex plane one recasts the Hamilton-Jacobi
equation so that the generating functions of the stable and unstable manifolds corre-
spond to the fixed point of a certain operator. By showing that this operator is con-
tractive on some appropriate Banach space of functions, then, one can conclude the ex-
istence of an analytic extension of the solution of the Hamilton-Jacobi equation to the
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desired region of the complex plane. Instead of writing the complete procedure, we
will just trace the necessary changes to be made to the method of [33] which would al-
low the proof of exponentially small splitting of separatrices to be generalized to prove
the exponential closeness of the Melnikov function 5.3.2 and the generating functions
of the circles (5.30).

The Equations of the Homoclinic Orbit

We recall the constructions of [33] in order to guess the necessary changes for the sub-
harmonic Melnikov case. In [33] the following operator was defined:

L(h) = ∂vh−G3∂ξh (5.140)

together with the two inverse operators

Gu(h)(v, ξ) =
∫ 0

−∞
h
(
v + s, ξ −G3s

)
ds (5.141)

Gs(h)(v, ξ) =
∫ 0

+∞
h
(
v + s, ξ −G3s

)
ds (5.142)

The potential function Û was split as Û = Û0 + Û1 where

Û0(v, φ) = −µ(1− µ)
2

(
1− 3 cos2 φ

) 1
G4

0r̃h(v)3

the potential Û0 along the separatrix inverted is then inverted

Q∗0 = G∗
(
Û0 (v, ξ + αh(v))

)
, ∗ = u, s

and finally the following operator is defined:

F∗h(h) = −1
2 ỹ

2
h

(
∂vQ

∗
0 + ∂vh−

1
r̃2

h
(∂ξQ∗0 + ∂ξh)

)2

− 1
2r̃2

h
(∂ξQ∗0 + ∂ξh)2 + Û1 (v, ξ + α̃h(v)) (5.143)

Solutions of the Hamilton-Jacobi equation (5.21) are then solutions of the equation

L(h) = Fh(h) (5.144)
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A solution of the above equation, then, corresponds to a fixed point of the equation

h = F̃(h) (5.145)

where
F̃h = Gu ◦ F .

In order to prove the existence of solutions to equation (5.144) on complex domains
extending to infinity, that is, on domains

Du
∞,ρ = {v ∈ C; Re v < −ρ}

Ds
∞,ρ = {v ∈ C; Re v > ρ}

then one examines the operator F̃ and notes that it is contraction in some ball Br of
radius r in a suitable Banach space. One can conclude existence of a solution to the
equation (5.145) in the ball Br. Finally, the “solution” of the Hamilton Jacobi equation
corresponding to the unstable manifold is extended to a “boomerang domain” as a
formal Fourier series and the exponential bounds are achieved.

Comparisons to Orbits of High Eccentricity

We posit that that theorem 5.3 follows, mutatis mutandis from the proof of [33].
In order to set up an argument similar to that of [33], one defines two inverses of L

by

Gu(h)(v, ξ) =
∫ 0

−T/2
h
(
v + s, ξ −G3s

)
ds

Gs(h)(v, ξ) =
∫ 0

+T/2
h
(
v + s, ξ −G3s

)
ds

(5.146)

The Hamilton-Jacobi equation (5.21) then becomes

L (T1) = − 1
2y2

e

(
∂vT1 −

1
r2
e

∂ξT1

)2

− 1
2r2

e

(∂ξT1)2 + Û (v, ξ + αe(v)) (5.147)

Define the operator

F(h) = − 1
2ỹ2

e

(
∂vh−

1
r̃2
e

(∂ξh)
)2

− 1
2r̃2

e

(∂ξh)2 + Û1 (v, ξ + α̃e(v)) (5.148)
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Solutions of the Hamilton-Jacobi equation, then, are solutions of the equation

L (h) = F (h) (5.149)

In order to prove the existence of solutions to the Hamilton-Jacobi equation, one can
define the domains

DuT/2,ρ = {v ∈ C; Re−(T/2 + ε) < v < −ρ}

DsT/2,ρ = {v ∈ C; ReT/2 + ε > v > ρ}

and where consider functions h : D∗T/2,ρ × Tσ → C where h satisfies conditions (5.40).
Defining analogous norms and function spaces to those found in [33], one proves that
the operator G has similar properties of Gu,sh .

Finally, using Lemmas (5.91), (5.92) and noting

yeτ̃ = yh(τ̃) +O(
√

1− e2) (5.150)

we can write the operator F in (5.148) as F = Fh + Fe where Fh corresponds to the
operator of [33] and Fe = (1 − e2)F ′ and F ′ can shown to be contractive for G0 large
enough.

Inverting the operator L, then, solutions of (5.149) with appropriate initial condi-
tions correspond to a fixed point of the operator

F̃ = G ◦ (F + Fe) (5.151)

Using similar bounds to those of [33], then, taking G0 large enough and orbits of ec-
centricity close to one, one can conclude that the operator 5.151 is contractive. As the
solution will be close to that of the parabolic case everywhere in the complex plane, we
should be able to achieve exponentially small bounds in the reals.
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Chapter 6

Parabolic Separatrix Maps

Ok, one last time. These are small, but the ones out there are far away.

– Father Ted

Estimating the width of the stochastic layer surrounding stable and unstable mani-
folds with transversal intersections is achieved by studying the separatrix map, which
approximates the dynamics close to separatrix by assuming that motions are domi-
nated by those of the stable and unstable manifolds. Usually, the separatrix map is
assumed to be associated to a hyperbolic fixed point. In the following, we examine
parabolic models which are suitable for the examination of dynamics close more de-
generate fixed points. A rescaling of such a map is approximated as a “generalised
separatrix map ” which gives asymptotic estimates for the width of the stochastic
layer. Finally, we apply general K.A.M. theorem which leaves the estimates in the
non-asymptotic case open to optimisation.

6.1 Introduction

The separatrix map was introduced by Zaslavsky and Filonenko [44] for near-integrable
Hamiltonian systems and Shilnikov [45] for more general systems. Since then, the sep-
aratrix map has been studied in a wide variety of contexts with numerous applications,
see, for instance, [46, 47]. In particular, the question of estimating the stochastic layer
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for the case of exponentially small splitting has first been explored by Latzukin and
collaborators for the important case of the standard map. A survey can be found in
[41].

One embodiment of the separatrix map is as follows:

SepM :
 t

h

→
 t̄ = t− T (h̄, ε) + Et(h, ε) (mod2π)

h̄ = h+ a(ε)φ(t) + Eh(h, ε)


where Et(h, ε) is a general expression for the error incurred in the return time (which is
generally approximated by the return time of the unperturbed system, possibly with
extra terms to reflect errors in the varying energy). Similarly Eh(h, ε) is a general error
in h, reflecting, for instance, the fact that the difference in energies is not given exactly
by the splitting of separatrices. Using the variational equations these errors can be
shown to be O(h, ε) (see [48] for a general discussion or [49] for a discussion from the
point of view of the gluing map formalism). Though these errors are usually small, for
our purposes, a detailed estimate of their effects is necessary and so we will have to
adjust the separatrix map somewhat.

6.1.1 Estimates for the Hyperbolic Case

Most of the literature concerning the separatrix map is concerned with the splitting of
stable and unstable manifolds of hyperbolic points of one and a half degree of freedom
systems or two degrees of freedom systems. Some general estimates for the width w

of the stochastic layer of a two degree of freedom system satisfying certain symmetry
conditions have been given in the case that the fixed point is hyperbolic and the split-
ting of the separatrices is O(ε). In particular, for many systems the following relation
is satisfied (see, for instance, [50] for the case of 2 d.o.f. symplectic mappings)

w/d ∼ 1/λ

where d is the width of the lobe domain and λ is the logarithm of the larger multiplier
of the hyperbolic fixed point.

However, in the case of exponentially small splitting of separatrices, the width of
the stochastic layer is usually greater than the width of the lobe domain. It has been
calculated in several cases and it is conjectured ([49]) that the following estimate holds

lim
ε→0

w(ε)λ(ε)
d(ε) = 4π

K
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where K is the largest value such that the standard map

FK :
 u

v

→
 ū = u+ v − K

2π sin(2πu)
v̄ = v − K

2π sin(2πu)

 (6.1)

has an invariant curve.

6.1.2 Generalizations to the Parabolic Case

When applying this theory to the current problem we encounter two main issues:
firstly the splitting is exponentially small, which means care has to be taken to en-
sure the splitting is well approximated by the Melnikov integral. Secondly, proofs for
the above estimates often rely on the hyperbolic nature of the fixed point. The case of
defining separatrix mappings associated to more degenerate saddles has been treated
in [48]. Here, an estimate of the width of the stochastic layer in the case that the sta-
ble and unstable manifolds are those of a parabolic point is given by considering the
separatrix map as a return map

SepM :
 t

h

→
 t̄ = t− T (h̄, ε)(mod2π)

h̄ = h+ a(ε)φ(t)

 (6.2)

where T (h̄, ε) is the return time to some domain, a(ε) is a measure of the amplitude of
the splitting of separatrices and φ(t) is a function giving the shape (which is often inde-
pendent of ε). In the case of a parabolic point satisfying some natural conditions (see
the above-mentioned [48] for details), the separatrix map is well modelled by mapping
(6.2) with return time T (h) given by

T (h) = cl,k,rh
−m/(2lk)(1 +O(h)) (6.3)

where cl,k,r is a constant depending only on l, k, r Moreover, in many cases, for example
when the first term of Fourier series describing the splitting of the stable and unstable
manifolds dominates, we can assume

a(ε)φ(t) = ε sin(φ) (6.4)

Errors in the separatrix mapping occur proportional to the size of the perturbation
ε. To get a general estimate for the width of the stochastic layer in the case of parabolic
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points, the above mapping is compared to a “standard-like map” by taking a Taylor
series approximation about given level energy set h0.

This method has already been applied in the case of the R3BP in [34] however the
results there differ from the current aims in two fundamental ways. Firstly, the esti-
mates given depended on taking µ to be a small parameter. In our case, we wish to
find the location of the last invariant torus as a function of G0 only, i.e. the results ap-
ply for µ arbitrary. Secondly, [34] focused on giving estimates, not necessarily rigorous,
to compare to numerical estimates. To make the estimates rigorous, careful analysis of
the errors incurred by the above method is called for. Nevertheless, to demonstrate the
method, we derive the estimate in the case of the PCR3BP :

The chosen Poincaré section (see Section 5.1.1) is a cylinder with coordinates φ =
α − t. Here, φ will play the role of ”time” and angular momentum G the role of ”en-
ergy”. Suppose that in some level set of the Jacobi constant J −1 (J0) and for some
fixed value of the mass ratio of the massive bodies we have a good approximation
of the splitting of the stable and unstable manifolds associated to the parabolic fixed
point at infinity, f(J0, µ) sin(φ). Then, following the method of [34] we approximate
the Poincaré map of the cylinder as follows:

φ̄ = φ+ 2π(−2(J0 +G))−3/2

Ḡ = G+ f(J0, µ) sin(φ̄)

where to facilitate the comparison to the standard map we then map backwards in
time, relabelling φ as φ̄ and δ as δ̄.

φ̄ = φ− 2π(−2(J0 + Ḡ))−3/2

Ḡ = G− f(J0, µ) sin(φ)

Note that this mapping is not canonically symplectic. We now localize around a level
set of angular momentumG0 (equivalently around a energy level set h = h0) by declar-
ing δ = h− h0 and then Taylor expanding with respect to δ. Using h = J0 +G0 we find
that the mapping is given

φ̄ = φ− π√
2
h
−3/2
0 + 3π

2
√

2
δ̄

h
−5/2
0

+O(δ2) (6.5)

δ̄ = δ − f(J0, µ) sin(φ) (6.6)
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Discarding terms of order 2 and higher and performing the change of variables

(u(φ, δ), v(φ, δ)) =
(
φ,

π√
2
h
−3/2
0 + 3π

2
√

2
δ̄

h
−5/2
0

)

we then get the standard map

ū = u+ v̄ (6.7)

v̄ = v − 3π
2
√

2
δ
−5/2
0 f(G0, µ) sin(u) (6.8)

One can then conclude the existence of invariant circles for the above mapping at a
distance h0 satisfying

3π
2
√

2
δ
−5/2
0 f (G0, µ) < κG

where κG is the Greene’s constant given by

κG ≈ 0.971635406. (6.9)

In [34] this was shown to give good agreement with numerical estimates for µ small.
To achieve rigorous results, however, it is necessary to bound the errors in the separa-
trix map, including the error incurred by dropping terms of O(δ2). In the next section,
we prove the existence of an invariant curve via a more general invariant curve the-
orem, rather than using the standard map, which eliminates minor problems encoun-
tered when trying to prove that more general parabolic maps are close to the standard
map. We study the Poincaré section of the PCR3BP via following general parabolic
model.

Definition 6.1.1. Let Fε,q, q ∈ Q be an exact symplectic map of the cylinder C = T× (0,∞)
such that there exist coordinates (φ, δ) in which the mapping Fε,q(φ, δ) = (φ̄, δ̄) is given by the
expression

φ̄ = φ− δ̄−q + g(φ, δ̄, ε)

δ̄ = δ − ε sin(φ) + h(φ, δ̄, ε)
(6.10)

where h(φ, δ̄) is assumed small compared to ε. Then we call Fε,q a parabolic separatrix map.

Similar to the analysis carried out in [34] and [48] an integral part of the study
of these parabolic models is a rescaling, which allows the effects of the higher-order
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singularity seen in the return time to be appreciated. However, the linearized parabolic
model will be of slightly more general nature that that proposed in [48], which helps
when trying to discard errors in the expansion about a level energy set. We then study
these linearized parabolic models via two methods: the first, given in Section 6.2 is
by applying an invariant curve theorem, which gives asymptotic results. The second
method, given in the Section, is by applying a K.A.M. theorem, which will give results
for invariant curves of the above model maps for general J0, provided J0 is large
enough so that Theorem 5.3.2 and 6.17 are valid.

6.2 Invariant Curves of Linearised Parabolic Models

To conclude rigorous results for parabolic-type motions we will Taylor expand the
model in Definition 6.1.1 around an invariant curve of the Kepler problem. We then
rescale the mapping according to a rescaling factor η which depends on the distance
from the separatrix. Rather than employing estimates for the standard map, we use
rather the following invariant curve theorem formulated for analytic maps by Kol-
mogorov. Then, examining a cure in parameter space γ(t) : (t0,∞) → R3 = (J , δ, η)
one can show that the associated family of rescaled parabolic separatrix maps validate
the hypotheses of the invariant curve theorem, with a small parameter ε, where ε → 0
as t → ∞. This shows rigorously the asymptotic width of the stochastic layer for the
PCR3BP estimated in [34].

6.2.1 The Invariant Curve theorem

The statement below was taken from [35] and more details on the history are given
there. The proof is somewhat technical, see [51] and [52] for details.

Theorem 6.2.1. Consider a mapping F : (I, φ)→ (I ′, φ′) which has the following form:

I ′ = I + εs+rc(I, φ, ε) (6.11)

φ′ = φ+ ω + εsh(I) + εs+rd(I, φ, ε) (6.12)

where

• c and d are smooth for 0 ≤ a ≤ I < b <∞, 0 ≤ ε ≤ ε0, and all φ
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• c and d are 2π-periodic in φ

• r and s are integers with s ≥ 0, r ≥ 1

• h is smooth for 0 ≤ a ≤ I < b <∞

• dh(I)/dI 6= 0 for 0 ≤ a ≤ I < b <∞

• if Γ is any continuous closed curve of the form Ξ = {(I, φ) : I = Θ(φ),Θ : R →
[a, b] continuous and 2π -periodic }, then Ξ ∩ F (Ξ) 6= ∅.

Then for sufficiently small ε, there is a continuous F -invariant curve Γ of the form Γ =
{(I, φ) : I = Φ(φ),Φ : R→ [a, b] continuous and 2π − periodic}.

6.2.2 Linearized Parabolic Models

Following the method of [48], to study the parabolic models 6.1.1 choose some level
set δ = δ0 to linearize the map in a neighbourhood of δ = δ0. Write δ = δ0 + ην

q
with

η = δq+1
0 and rescale the mapping (6.1.1) as

φ̄ = φ− 1
δq0

+ ην̄

δq+1
0

+ δq+1
0 (l(φ, ν, δ0, ε)) + g(φ, ν, δ0, ε)

ν̄ = ν − qε

η
sin(φ) + 1

δq+1
0

h(φ, ν, δ0, ε)
(6.13)

We can easily then conclude:

Lemma 6.2.2. Let Fε,q be as defined by (6.1.1). Let a = 1 − ε, for some ε ∈ (0, 1). Let
η = δq+1

0 = εa. Let the functions g̃(ν, φ, ε) and h̃(ν, φ, ε) defined by

g̃(ν, φ, ε) = ε−1/2g (φ, ν, η(ε), δ0(ε), ε)

h̃(ν, φ, ε) = ε−1h (φ, ν, η(ε), δ0(ε), ε)

be smooth for all 0 ≤ ε ≤ ε0. Let δ0 = εa. Then Fε,q has an invariant curve for sufficiently
small ε > 0.

Proof. The mapping (6.2.4) takes the form

φ̄ = φ− 1
δq0

+ ν − ε

δq+1
0

sin(φ) + g (η, ν, δ0, φ, ε) + η2

δq+2
0

(l (η, ν, δ0, φ, ε))

ν̄ = ν − ε

δq+1
0

sin(φ) + 1
η
h (η, ν, δ0, φ, ε)

(6.14)
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Upon setting δq+1
0 = ε1−ε we see that mapping 6.2.2 satisfies the conditions of theorem

(6.2.1) with ε̃ = εε and therefore the mapping 6.2.2 has an invariant curve for suffi-
ciently small ε̃.

Remark 6.2.3. The choice g̃ (η, ν, δ0, φ, ε) = ε−1/2g (η, ν, δ0, φ, ε) is clearly not the only one.
Here it was chosen to deal with the case where g (η, ν, δ0, φ, ε) is slightly larger than the split-
ting, as is the case for the PCR3BP, see Lemma 6.3.2. Due to the rescaling, these errors in the
return time will not be significant.

Definition 6.2.4. We call the following map defined by F (φ, ν) = (φ̄, ν̄)

φ̄ = φ− 1
δq0

+ ην̄

δq+1
0

ν̄ = ν − qε

η
sin(φ)

(6.15)

a linearized parabolic separatrix map.

Note that here η plays the role of a parameter controlling both the size of the per-
turbation of the integrable map and the size of the errors. By choosing η = δq+1

0 the
map (6.2.4) is equivalent to a perturbed standard map with a “kick” of size δ−q0 .

6.3 The Linearized Parabolic Separatrix Map of the PCR3BP

We now estimate the difference between the linearized parabolic model 6.2.4 and the
true Poincaré map of the PCR3BP. In doing so we show that the hypotheses of Lemma
6.2.2 are true for PCR3BP and so we can conclude Theorem 5.1.1.

6.3.1 Generating Functions for Parabolic Models

Consider the parabolic model given in Definition 6.1.1, where it is assumed that we
know the difference in momenta accurately, i.e., we assume v(φ, δ̄) is small in compar-
ison to ε. As the mapping is an exact symplectic mapping of the cylinder, it is given by
a generating function W (φ, δ̄) satisfying

F (φ, δ) = (φ̄, δ̄) ⇐⇒ ∂W

∂φ
= δ,

∂W

∂δ̄
= φ̄
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In the case of the parabolic model 6.1.1 this reads:

δ = ∂W

∂φ
= δ̄ − ε sin(φ)

And so
W (φ, δ̄) = δ̄φ− ε cos(φ) + ψ(δ̄)

Observing that

φ̄ = ∂W

∂δ̄
= φ− δ̄−1 + g(φ, δ̄)

we can conclude

g(φ, δ̄) =
∫ ∂h

(
φ, δ̄

)
∂δ

dφ+ dϕ(δ̄)
dδ̄

where
ψ(δ̄) = − δ1−q

1− q + ϕ(δ̄)

We now wish to estimate the norms for the particular case of the parabolic model
given by the PCR3BP.

Remark 6.3.1. For technical reasons, in what follows we assume that µ is not very close to
1
2 . This ensures that the dominant term of the splitting is given by the first harmonic of the
Melnikov function. A more detailed analysis could extend the results to the case µ = 1

2 .

We wish to expand around a fixed energy level and show that the difference be-
tween the return map of the PCR3BP and the linearized parabolic models in Defini-
tion 6.2.4 is small. First, denote δ = − (2π2)1/3

h where h is the Keplerian energy of
the orbit as h = J + G, the difference in h upon the return to the section is simply
(2π2)1/3 (Ḡ−G). We show the dependence of the splitting on the Jacobi constant J we
express the splitting in terms of J plus an error term which depends on the distance
from the separatrix and the eccentricity of the orbit and the parameter η in the rescaled
mapping 6.14. This shows that even though we are relatively far away from the split
separatrices the splitting of the circles 5.30 which corresponds to the quantity ε in the
parabolic models of Definition 6.1.1, is still well approximated by the splitting of the
separatrices.

Lemma 6.3.2. Let δ0 be close to 0. Consider the Melnikov potential as given in 5.3.2. Then

L[1] (G, µ) = −µ(1− µ)
√
π

1− 2µ
4
√

2
J −3/2

0 e−
J 3

0
3
(
1 +O(J −2

0 , δ0,
√

1− e2)
)

(6.16)
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And similar for L[n], n > 1. Let T u1 , T s1 be the generating functions of the circles Su,Ss1 as
defined by 5.30. Then

∣∣∣∂ξT u1 (v, ξ)− ∂ξT s1 (v, ξ)− ∂nξ L(v, ξ)
∣∣∣

≤ Kµ2(1− 2µ)J −2
0 e−

J−3
0
3
(
1 +O(J −2

0 , δ0,
√

1− e2)
)
. (6.17)

Proof. The Lemma follows immediately from Theorem 5.3.2, Theorem 5.4.1 and the
definition of the Jacobi constant J = h−G.

We can now describe Poincaré map of the PCR3BP as a linearized parabolic model
and bound the error terms:

Lemma 6.3.3. Consider the rescaled Poincaré map F (φ, δ) of the PCR3BP as given in Defi-
nition 6.25. Let J0 be a value of the Jacobi constant large enough to guarantee the validity of
Theorem 1.1.2 and Theorem 6.17. Then around a level energy set δ = δ0 satisfying δ0 � J −1

0

the Poincaré map is given by a linearized parabolic model in the sense of definition 6.1.1 with
the splitting given by

ε(J0) = −µ(1− µ)
√
π

1− 2µ
4
√

2
J 3/2

0 e−
J 3

0
3 (6.18)

where g′(δ, φ) = g(δ, φ)− ϕ(δ0,J0) for some function ϕ independent of φ and g′(δ, φ), h(δ, φ)
satisfy the following inequalities:

1. ‖g′(δ, φ)‖ < 2Kµ2(1− 2µ)J0e
−
J−3

0
3

2. ‖h(δ, φ)‖ < 2Kµ2(1− 2µ)J −2
0 e−

J−3
0
3

where K is the constant given in Theorem 6.17.

Proof. Denoting δ = − (2π2)1/3 (J0 + G) and using Theorem 5.3.2 we can express the
Poincaré map for the PCR3BP (5.46) as F (φ, ν,J0) = (φ̄(φ, ν,J0), ν̄(φ, ν,J0)):

φ̄ = φ− (δ − ε(J0) sin(φ) + h(δ, φ))−3/2 + g(δ, φ,J0)

δ̄ = δ − ε(J0) sin(φ) + h(δ, φ,J0)
(6.19)

where h(δ, φ,J0) contains the error incurred from discarding the higher order Fourier
coefficients of the Melnikov function and the difference between the Melnikov function

108



and the true difference of the circles Su, Ss as defined in 5.30 and g(δ, φ,J0) is a correc-
tion to the return time which will be shown to small. To form the linearized parabolic
model 6.2.4 around δ = δ0, write δ = δ0 + 2ην

3 use the change of coordinates

Φ : (φ, δ) 7→ (φ, ν = (δ − δ0)/η) (6.20)

h(δ, φ,J0) is then given by

h(δ, φ,J0) = h(δ0, φ,J0) +O(η) (6.21)

where using Theorem 5.64, Theorem 5.4.1 and the expression for the eccentricity e

given in A similar to the method of Lemma 6.3.2 we have

h(δ0, φ,J0) = µ2(1− 2µ)J −2
0 e−

J 3
0

3 (1 +O(J −1
0 , δ0,

√
1− e2)) (6.22)

Using the existence of generating functions we have

g(δ0, φ,J0) =
∫ ∂h(φ, δ,J0)

∂δ

∣∣∣∣
δ=δ0

dφ+ ϕ(δ0,J0) +O(η) (6.23)

and so

g(δ0, φ) = µ2(1− 2µ)J0e
−

2J 3
0

3 (1 +O(J −1
0 , δ0,

√
1− e2)) + ϕ(δ0,J0) +O(η) (6.24)

We now restrict to the case where δ0 is close to the separatrix, δq+1
0 � J −1

0 . For large
J0, then, δ0,

√
1− e2 � J −1

0 and we can conclude the Lemma.

Definition 6.3.4. We call the map F̃ (φ, ν) = (φ̄, ν̄) given by the Taylor expanded, rescaled
mapping

φ̄ = φ− 1
δ

3/2
0

+ ν − ε

δ
5/2
0

sin(φ)) + ϕ(δ0) + g (η, ν, δ0, φ, ε) + δ
3/2
0 (l (η, ν, δ0, φ, ε))

ν̄ = ν − ε

δ
5/2
0

sin(φ) + 1
δ

5/2
0
h (η, ν, δ0, φ, ε)

(6.25)

the rescaled Poincaré map of the PCR3BP.

Remark 6.3.5. The choice δ0 < J −3/2
0 e−

J 3
0

3 is somewhat arbitrary, it is necessary simply to
ensure that we are close enough to the separatrix to ensure that the errors are not too big.

To prove Theorem 5.1.1, then, it suffices to note:
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Lemma 6.3.6. Let F (φ, δ) be the expression of the Poincaré map of the PCR3BP in the (φ, δ)
variables as given by 6.19. Consider the path in parameter space beginning at (J0, δ =
ε(J0), η = ε(J0)a(q+1)) where ε(J0) is given by is given in (6.18). Then

γ : (t0,∞)→ R2 3 (J , δ, η) (6.26)

t 7→ (J0 + t, ε(J0 + t)a, ε(J0 + t)a(q+1)) (6.27)

is the expression given in 6.3.3 and a = 1− ε for ε ∈ (0, 1). Then the family of parabolic models
given by Fκ(J0), 3

2
satisfy the hypotheses of 6.2.2.

6.4 A Quantitative K.A.M. theorem and Results for G0

Large

We now study the parabolic map associated to the PCR3BP by applying a quantitative
K.A.M. theorem, based on the seminal theorem of Kolmogorov, Moser and Arnold.
A wordy statement of one version of the celebrated K.A.M. theorem can be found in
Arnold’s [53].

Theorem 6.4.1 (Kolmogorov’s theorem). If the unperturbed system is nondegenerate or
isoenergetically nondegenerate, then for a sufficiently small Hamiltonian perturbation most
nonresonant invariant tori do not vanish but are only slightly deformed, so that in the phase
of the perturbed system there are invariant tori densely filled with conditionally-periodic phase
curves winding around them, with a number of independent frequencies equal to the number
of degrees of freedom. These invariant tori form a majority in the sense that the measure of the
complement of their union is small when the perturbation is small. In the case of isoenergetic
nondegeneracy, the invariant tori form a majority on each level manifold of the energy.

The crux of K.A.M. theory is the continuation of K.A.M. tori under small perturba-
tions of the system. The persistence of these K.A.M. tori is intimately linked to their
frequency vector. More specifically, one expects tori with fundamental frequencies that
are ”far” from commensurable to survive. The original proof of the K.A.M. theorem
hinges on action-angle variables. One writes the perturbed Hamiltonian in action-
angle variables as

H(I, θ) = H0(I) + εH1(I, θ)

110



and then searches for a generating function S(θ, J) which would transform the system
into new action-angle variables (φ, J) with Hamiltonian K(J), resulting in a Fourier
series function for S(θ, J) which converges when the frequencies are ”sufficiently irra-
tional”.

6.4.1 Summary of the Parameterization Method

The above method of searching for K.A.M. tori is not suitable in our case, not least
because the perturbation of the Kepler problem giving the R3BP is not amenable to
expansion in action-angle variables. For this reason, we use rather the parameteri-
zation method, which searches for invariant objects. This leads to K.A.M. without
action-angle variables [54]. The method has developed quickly and has been applied
to look for different types of invariant objects in numerous different contexts (see for
instance [55, 56] for two examples among many) and is particularly successful as it
is well suited for finding numerical estimates and also can be adapted for computer-
assisted proofs. Even though numerical calculations are not a concern, we take advan-
tage of the easily checkable conditions for the existence of an invariant torus here. A
good introduction to the parameterization method for K.A.M. tori unifying the many
different approaches can be found in [57] and we will take the statement of the quanti-
tative K.A.M. theorem verbatim from the same. Here, the quantitative K.A.M. theorem
is applied to the standard map to prove the persistence of the invariant curve of the in-
tegrable limit of frequency the golden mean. The application can be mildly adjusted to
prove the persistence of this torus in the parabolic models given in 6.1.1. We will follow
the derivation giving remarks on the various required adjustments and thus conclude
Theorem 5.1.2. The rest of this section is devoted to defining the objects needed to state
the K.A.M. theorem in 6.4.13 following the derivation for the standard map given in
[57].

The Parameterization of the Torus

The parameterization method for K.A.M. tori considers a model invariant torus

Tn = Rn/Zn
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homotopic to the zero section of the torus in an ambient annulus

A ⊂ Tn × R2n

with coordinates {(x, y)|x ∈ Tn, y ∈ Rn} and the image of such a torus under an exact
symplectic mapping homotopic to the identity

F :A → A (6.28)

(x, y) 7→ (F x(x, y), F y(x, y)) (6.29)

The parameterization of the torus is the embedding K : Td → A satisfying the invari-
ance equation

F ◦K = K ◦Rω

where Rω is a rigid rotation of the torus. To search for such an invariant parameteriza-
tion, one first uses an ansatz parameterization and computes the error function

E = F ◦K −K ◦Rω (6.30)

Then, if the system satisfies a certain non-degeneracy condition and the error is small
in a certain norm, one can conclude the existence of a true invariant torus close by, by
virtue of an algorithm iteratively adding a correction to the ansatz torus. More specifi-
cally, the parametrization method defines a constant C which depends in a polynomial
fashion on system-specific constants and the initial ansatz torus and for which, if the
condition

C‖E‖ < 1 (6.31)

is satisfied, then there exists an actual invariant torus close to the ansatz torus. To
get rigorous results, one only needs to check an inequality involving (many) constants
depending on the particulars of the system, which then guarantees the convergence of
the K.A.M. process. Analogous to traditional K.A.M algorithm, the correction to the
approximately invariant torus is found by solving a “cohomological equation” and the
convergence of this process hinges on the error of the corrected torus being quadratic
in the error of the original torus, which allows the scheme to overcome the problem of
small divisors occurring in the construction of the solution.

The following sections follow [57] to detail the construction of the error term to
explain the origin of the constant C in (6.31) and to be able to state the K.A.M. theorem,
Theorem 6.4.13.
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Construction of the Correction Term

The K.A.M. theorem studies a linearization of the invariance equation via the construc-
tion of an approximately symplectic frame for the approximately Lagrangian ansatz
torus K = K(θ).

Definition 6.4.2. Let F fulfill the conditions of (6.28). Let K be an approximately invariant
torus of F ,K an embedding of K with error equation (6.30). Then the linearized error equation
is given by

DF (K(θ))∆K(θ)−∆K(f(θ))−DK(f(θ))∆f(θ) = −E(θ) (6.32)

and the quantity E(θ) is referred to as the error of the torus.

Geometric Objects

To solve the above equation (6.32) the following linear operators are introduced

Definition 6.4.3. Let K be a Lagrangian torus homotopic to the zero section of the torus in
an ambient annulus A with an embedding

K : Tn → A (6.33)

then the linearized embedding of K is an operator L defined by

L : T→ R2n×n (6.34)

L(θ) = DK(θ) (6.35)

The equations in the normal direction are linearized using a type of ”adapted frame”
which is specialized to the symplectic nature of the system

Definition 6.4.4. An adapted frame for the torus K is a mapping P (θ) = L(θ)N(θ) for some

N : T→ R2n×n (6.36)

with the property that

P : T→ R2n×2n (6.37)

is invertible for all θ ∈ T. N(θ) is then called a complementary frame for L(θ).

113



An adapted symplectic frame for a Lagrangian torus is an adapted frame satisfying

P (θ)>Ω(K(θ))P (θ) = Ω0

where Ω(K(θ)) is the symplectic matrix of the symplectic form ω at K(θ) and Ω0 the standard
symplectic matrix.

Ω0 =
 0 In

−In 0


This symplectic frame is constructed via a linear map parameterizing the normal

directions. The error in a symplectic frame measures how far the transformed sym-
plectic form is from the canonical one.

Definition 6.4.5. The error in a symplectic frame is given by

Esym(θ) = P (θ)>Ω(K(θ))P (θ)− Ω0

Errors in the Linearized Dynamics

Suppose K was a true invariant Lagrangian torus. the linearized dynamics around an
invariant torus is upper-triangular and symplectic in some appropriate coordinates, a
feature called automatic reducibility. Specifically, one could choose a symplectic adapted
frame P (θ) satisfying

P (θ + ω)−1DF (K(θ))P (θ) = Λ(θ), Λ(θ) =
 In T (θ)
On In


where the submatrix T (θ) which gives the twisting around the invariant torus is known
as the torsion matrix, which has the following expression:

Definition 6.4.6. Let F be an exact symplectic mapping of the annulus, K(θ) be an invariant
torus as defined by (6.33) and N a complementary subspace as given by Definition 6.4.4. Then
the torsion matrix T (θ) is defined

T (θ) = N(θ + ω)>Ω(K(θ + ω)) DF(K(θ))N(θ)

Likewise, an approximately invariant torus exhibits linear dynamics approximately
reducible to a linear skew-product. The error in reducibilty measures how far the dy-
namics around the approximate torus are from those of a true invariant torus.

Definition 6.4.7. The error in reducibility is the difference

Ered(θ) = P (f(θ))−1DF (K(θ))P (θ)− Λ(θ) (6.38)
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Construction of the Symplectic Frame

In the case that there is a plane field transversal to the chosen embedded torus the
construction of an adapted symplectic frame as given by Definition 6.4.4 proceeds as
follows: By assumption, there is a map

N0 : Tn → R2n×n

such that (L(θ)N0(θ)) has non vanishing determinant. To find a complementary sub-
space one writes

N(θ) = L(θ)A(θ) +N0(θ)B(θ) (6.39)

where N(θ) should satisfy the conditions

L(θ)>Ω(K(θ))N(θ) = −In, N(θ)>Ω(K(θ))N(θ) = On

leading to
B(θ) = −

(
L(θ)>Ω(K(θ))N0(θ)

)−1
(6.40)

and
A(θ) = −1

2
(
B(θ)>N0(θ)>Ω(K(θ))N0(θ)B(θ)

)
(6.41)

A symplectic frame is obtained by juxtaposing the mapL(θ) with a mapN(θ) giving
the complementary directions so that

P (θ) = (L(θ)N(θ))

Extensions to a Complex Strip

The parameterized K.A.M. Theorem, as the original, takes advantage of the fact that
by extending a mapping analytically to the complex strip, one can control errors in the
reals.

Definition 6.4.8. A complex strip of a torus Tn of width ρ is the following subset of Cn/Zn

Tnρ = {θ ∈ Cn/Zn : |Im θi| < ρ, i = 1, . . . , n}

Definition 6.4.9. A complex strip B of an annulus A is a connected open neighbourhood of
A in (Cn/Zn)× Cn

A ⊂ B ⊂ (Cn/Zn)× Cn
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We define the following norms

Definition 6.4.10. Let u : Tnρ → C be an analytic function, continuous on the boundary of Tnρ
and real for real values of z. Then the ρ-norm of u is defined

‖u‖ρ = sup
θ∈Tnρ
|u(θ)|

Definition 6.4.11. For functions u : B → C analytic on B, continuous on the boundary and
real on A define the A -norm of u

‖u‖B = sup
z∈B
|u(z)|

Definition 6.4.12. For matrices of such functions we define the following norm

‖A‖ρ = max
{1,...,n1}

m2∑
j=1
‖Ai,j‖ρ

and similar for ‖A‖B

6.4.2 Statement of the K.A.M. Theorem

We are now in a position to state the quantitative K.A.M. theorem.

Theorem 6.4.13. Consider an exact symplectic mapping F : A → A on an annulus A

equipped with an exact symplectic structure ω = dα such that the following conditions are
satisfied

1. The map F the 1-form α and the 2-form ω are real-analytic and can be analytically ex-
tended to some complex strip B and continuously up to the boundary. Moreover, there
are constants cF,1, cF,2, cΩ,0, cΩ,1, ca,1, and ca,2 such that

‖DF‖B ≤ cF,1,
∥∥∥D2F

∥∥∥
B
≤ cF,2, ‖Ω‖B ≤ cΩ,0, ‖DΩ‖B ≤ cΩ,1, ‖Da‖B ≤ ca,1

and ∥∥∥D2a
∥∥∥

C
≤ ca,2
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2. There exists K : Tn → A , homotopic to the section, that can be analytically extended to
Tnρ with ρ > 0, and continuously up to the boundary. Moreover, there exist constants σL
and σ∗L such that

‖DK‖ρ < σL,
∥∥∥DK>∥∥∥

ρ
< σ∗L, dist

(
K
(
Tnρ
)
, ∂B

)
> 0

3. There exists a map N0 : Tn → R2n×n that is real-analytic and can be analytically ex-
tended to Tnρ , and continuously up to the boundary. Moreover, there exist constants
cN0 , c∗N0 , σB, and σ∗B such that∥∥∥N0

∥∥∥
ρ
≤ cN0 ,

∥∥∥∥(N0
)>∥∥∥∥

ρ
≤ c∗N0 , ‖B‖ρ < σB,

∥∥∥B>∥∥∥
ρ
< σ∗B

where B(θ) = −
(
DK(θ)>Ω(K(θ))N0(θ)

)−1

4. There exists a constant σT such that the torsion of F restricted to K satisfies the non-
degeneracy condition |〈T 〉−1| < σT .

5. The frequency vector ω satisfies Diophantine conditions of type (γ, τ)

Then, for every 0 < ρ∞ < ρ there exists a constant Ĉ∗ such that if

Ĉ∗‖E‖ρ
γ4ρ4τ < 1

then there exists a F -invariant torus K∞ = K∞ (Tn) , with the same frequency ω, analytic in
Tnρ∞ , that satisfies

‖DK∞‖ρ∞ < σL,
∥∥∥DK>∞∥∥∥ρ∞ < σ∗L, dist

(
K∞

(
Tnρ∞

)
, ∂B

)
> 0

and K∞ is close to the ansatz torus in a sense to be made precise later.

6.5 Application of the K.A.M. Theorem to Rescaled Parabolic

Models

We will apply the parameterized K.A.M. theorem, Theorem 6.4.13 to the models 6.1.1.
This section is devoted to defining the constructions of the previous case for the case of
the parabolic models. In particular, our aim is to give quantitative estimates for when
the following proposition is true:
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Proposition 6.5.1. Let F : Ca → Ca be the rescaled Poincaré map of the PCR3BP as given by
(5.46). Let Kω0 be a parameterization of the planar torus

K(θ) =
 θ

ω0

 , DK(θ) =
 1

0

 (6.42)

with rotation number ω0 = (
√

5 − 1)/2 the golden mean. Then for J0 and δ0(J0) sufficiently
large, Kω0 continues to an invariant curve of the PCR3BP.

First we define some auxiliary constants used to calculate the constant C∗ in the
K.A.M. theorem 6.4.13.

Definition 6.5.2. Let g(φ, δ) = g(φ, δ̄(φ, δ)), h(φ, δ) = h(φ, δ̄(φ, δ)) be as in Definition 6.1.1
and assume they have an analytic extension to some complex strip B. Denote by cg and ch
constants satisfying

‖g‖B ≤ cg and ‖h‖B ≤ ch

Denote by cg,φ and ch,φ constants satisfying

‖∂φg‖B ≤ cg,φ and ‖∂φh‖B ≤ ch,φ

respectively. Denote by cg,δ and ch,ν constants satisfying

‖∂νg‖B ≤ cg,ν and ‖∂δh‖B ≤ ch,ν .

For the particular case of the linearized parabolic model describing the PCR3BP
then, we use the estimates from Lemma 6.3.2 and we have the following:

Lemma 6.5.3. Let F (φ, v) be the linearized parabolic model in a level set of the Jacobi con-
stant J −1(J0) associated to the PCR3BP where we choose η = δ

5/2
0 . Then we can choose the

constants in definition 6.5.2 as the following:

- cg = 2Kµ2(1− 2µ)J 2
0 e
−J 3

0
3 cosh(2πρ̃)

- ch = J −3
0 cg

- cg,ν = J 3
0 cg

- ch,ν = cg

118



- cg,φ = cg

- ch,φ = J −3
0 cg

We can now use the estimates of Lemma 6.5.3 to give constants which will be
needed to show the validity of Theorem 6.4.13.

Lemma 6.5.4. Consider the Poincaré map of the PCR3BP. Consider the associated rescaled
parabolic model F (φ, ν,J0) as defined in (6.14). Denote ε/δq+1

0 by κ. Let K(θ) be the planar
torus at δ = δ0 as given by 6.42 where δ0. Then we have

‖DF‖B ≤ cF,1 = 2 + κ cosh(2πρ̃) + cg,φ + cg,ν (6.43)∥∥∥D2F
∥∥∥

B
≤ cF,2 = 2πε cosh(2πρ̄) + c̃F,2 (6.44)

where c̃F,2 = 2J 6
0 cg. Let the rescaling factor η be given by η = δq+1

0 . Then the error for the
torus K(θ) is given

‖E‖ρ ≤
(
κ+O(J −2

0 )
)

cosh(2πρ). (6.45)

Now in order to show the existence of a K.A.M. torus it is sufficient to show that the
parabolic return map together with the flat torus satisfies the hypotheses of Theorem
6.4.13.

Theorem 6.5.5. Let the map F (φ, ν,J0) = (φ̄(φ, ν,J0), ν̄(φ, ν,J0)) be the Poincaré return
map of the PCR3BP as defined by (6.14) and denote κ(J0, δ

−3/2) = ε
(
J0/δ

−3/2
)
. Let J0 be

large enough to guarantee the validity of Theorem 5.3.2 and Theorem 5.4.1. Let δ0 be such that

δ
−3/2
0 + ϕ(δ0) mod 2π = ω0 (6.46)

where ϕ(δ0) is the φ independent difference in the return time between the Kepler problem and
the PCR3BP as defined in the statement of Lemma 6.3.2 and ω0 is the golden mean

ω0 = 1 +
√

5
2 .

Let κ0 = ε(J0)/δ3/2
0 satisfy

κ0 < C̃ (6.47)

where C̃ is a constant defined up to O(J −2
0 ) and given explicitly by C̃ = 10−7 + O

(
J −2

0

)
.

Then the invariant curve (φ, δ = δ0) persists1 in the PCR3BP.
1Here, “persists” means that there is an invariant curve close to the stated one, see Remark 6.5.6
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Proof. We choose as the complex strip B of the annulus A the following:

B = B = Tρ̃ ×D

where D is a domain in the complex plane given by

D = {z ∈ C |R(z) < 1, I(z) < ρ̃}.

where ρ̃ will be given later. Then, referring to the hypotheses of Theorem 6.4.13 we
have

1. H1 is clearly satisfied for map 6.1.1 where ω = dα = d(φdν). For the constants
listed in H1 associated to the forms ω and α we have cΩ,0 = 1, cΩ,1 = 0, ca,1 = 1,
and ca,2 = 0. The values of the constants cF,1 and cF,2 are given by Lemma 6.5.4.

2. For H2 we note that choosing the planar torus (6.42) which has a complex exten-
sion

K (Tρ) = Tρ × {ω0}.

where ρ < ρ̃. We can then choose ‖DK‖ρ = 1 and
∥∥∥DK>∥∥∥

ρ
= 1 for any for any

ρ > 0 and so we choose σL = ‖DK‖ρσ = σ and σ∗L =
∥∥∥DK>∥∥∥

ρ
σ = σ where σ is

chosen to optimize the constant C∗ and given in (6.48).

3. For hypothesis H3 a symplectic frame is given by

N0(θ) = N0 =
 0

1


and so we can take ‖N0‖ρ = cN0 = 1 and

∥∥∥(N0)>
∥∥∥
ρ

= c∗N0 = 1. Looking at the
definition of B given in 6.40 have B(θ) = 1 and so we can take

σB = ‖B‖ρσ = σ, σ∗B =
∥∥∥B>∥∥∥

ρ
σ = σ.

4. For hypothesis H4 we note that the torsion of F restricted to K is given by 6.4.6
and so we choose |〈T 〉−1| < σ. See Appendix C for a discussion of the torsion.

5. Hypothesis H5 is satisfied for the golden mean with the constants

γ = 3−
√

5
2 and τ = 1

(see Appendix B in [58]).

120



The constant C∗ is computed explicitly C up to O(J −2
0 ) and the condition

Ĉ∗(δ0,J0)‖E‖ρ
γ4ρ4τ < 1

is validated.

In order to give explicitly the constant C∗ of the K.A.M. theorem 6.4.13 and show
the continuation of the invariant curve in the case of the Poincaré map of the PCR3BP
for the associated value of κ(J0, δ0), the method of [57] for the proof of the invariant
curve of the standard map 6.1 with frequency the golden mean is followed with the
relevant adjustments. Some constants require some extra discussion due to the dif-
ference in torsion and the constants cF,1 and cF,2. However the dominant errors come
from the error function E(θ) which is greater in the case of the linearized parabolic
models due to the fact that we do not know the splitting exactly. In the specific case
of the Planar Restricted three-body Problem, this error can be given as approximately
J −2

0 κ where κ is a measure of the size of the splitting of separatrices as approximated
by the first harmonic of the Melnikov integral. A detailed summary of the application
of the K.A.M. theorem to the stardard map taken from [57] detailing the difference be-
tween the standard map and the linearized parabolic model of the PCR3BP is given in
Appendix C.

In this case, the K.A.M. theorem 6.4.13 was shown to be satisfied for a values of

ρ = 0.42264, δ = 0.087909, σ = 1.0706, ρ̃ = 0.42284 (6.48)

To prove that the K.A.M. Theorem converges, it is necessary that the following inequal-
ity is satisfied:

Ĉ∗(κ+ ch
δ

5/2
0

) cosh(2πρ)

2πγ4ρ4τ < 1

So it is necessary to find a constant
C̃∗

satisfying
C̃∗κ(J0, δ0) cosh(2πρ)

2πγ4ρ4τ < 1 +O(J −1
0 )
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In [57] it was shown that for the standard map, the planar torus 6.33, the bounds on
the geometric quantities given in Appendix C and the values given in (6.48) that

C̃∗ cosh(2πρ)
2πγ4ρ4τ ≈ 2× 105. (6.49)

Therefore we may assume that given a value of κ which satisfies

κ(J0, δ0) < 10−7 +O(J −2
0 )

there is continuation of the invariant curve for J0 large enough. Now, as for the lin-
earized parabolic model the constant κ(δ0,J0) is given by

κ(J0, δ0) = ε(J0)
δ

5/2
0

to ensure the continuation of the invariant curve one only needs to guarantee δ0 > J0.

Remark 6.5.6. The meaning of the word ”persists” in the statement of the previous theorem is
as follows: Let K(Tρ) be the complex extension of the planar torus specified in Theorem 6.4.13,
where ρ is chosen in (6.48). Then there exists an invariant curve K∞ which is analytic in a
complex strip of width ρ∞2 such that there exists an invariant curve which satisfies

‖K∞ −K‖ρ∞ <
Ĉ∗∗
γ2ρ2τ ‖E‖ρ

where the constant Ĉ∗∗ is a computable constant which depends polynomially on the quantities
given in appendix C. We do not calculate the constant Ĉ∗∗.

Remark 6.5.7. In [57] the value of κ0 can be greatly improved in the case of the standard
map by taking an ansatz torus defined via a Lindstedt series. By a similar method, one can
dramatically increase the value of κ0 given in 6.5.5. Via computer-assisted proofs, the value
of κ in the standard map 6.1 for which the map has an invariant curve has been shown in
to be approximately the value given in (6.9). The discussion of this chapter both opens the
quantities J0 and δ0(J0) to optimization by computer-assisted proof and motivates the study
of soft invariant curves of the “linearized parabolic maps” of the form given in 6.2.4.

2In [57] this ρ∞ was given as ρ∞ = 0.00042264
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Chapter 7

Singular Symplectic Structures in
Celestial Mechanics

An astronomer must be the wisest of men; his mind must be duly disciplined in
youth; especially if mathematical study is necessary; both an acquaintance with
the doctrine of number, and also with that other branch of mathematics, which,
closely connected as it is with the science of the heavens, we very absurdly call

geometry, the measurement of the earth.
Plato, The Laws

The phase space of many systems is symplectic, the non-degeneracy of the symplec-
tic structure ensuring that there is an isomorphism between the tangent and cotangent
spaces which can be used to associate vector fields to Hamiltonians uniquely1. How-
ever, there are important natural examples of dynamical systems occurring on more
general Poisson manifolds: systems defined on a “reduced” phase space (see Chapter
3) are one important source of examples. This chapter will focus on another interesting
source of examples: degenerate symplectic forms in celestial mechanics.

It was noted in [59] that structures which are symplectic almost everywhere can
arise as the result of non-canonical and singular changes of coordinates. The resulting
”singular symplectic forms” can be b-symplectic, bm-symplectic or m-folded symplec-

1up to an additive constant

123



tic. Analogous to the symplectic case, level energy sets of singular symplectic mani-
folds satisfying certain conditions have b-contact structures associated with them.

[60] gave an introduction to these singular symplectic geometries, reviewed previ-
ous examples and gave several new ones. Applications to the dynamics of some of the
examples given here are given in [61].

7.1 Preliminaries

In Chapter 3, b-symplectic (Definition 2.3.5), or equivalently b-Poisson (Definition 2.2.3)
structures were considered. These are examples of Poisson structures almost every-
where symplectic whose degeneration is the “mildest possible”. A generalization of
these structures, “bk-symplectic structures”, includes the case of higher order den-
generations of the Poisson structure. “bk-symplectic structures” were introduced in
[16].

7.1.1 bk-symplectic structures

Analogous to the definition of b-tangent bundles and b-forms, it is possible consider
bundles with higher order tangency to some critical manifold and correspondingly
dual forms of higher order singularities. In this case, in order to make the notion well
defined, one needs to consider the k-jets, JkZ , of the critical hypersuface Z.

Definition 7.1.1. For k ≥ 1, a bk -manifold is a triple (M,Z, jZ) where M is an oriented
manifold. Z ⊆M is an oriented hypersurface and jz an element of Jk−1

Z that can be represented
by a positively oriented local defining function y for Z.

Around each point p ∈ Z we can find coordinates in which the space of bk vector
fields is generated {

∂

∂x1
, · · · , ∂

∂xn−1
, xkn

∂

∂xn

}
similar to the case of b-geometry we can conclude that such fields are the sections

of a vector bundle, called the bk-manifold. A nondegerate closed two-form on the dual
bundle, then, is a bk-symplectic form.
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Example 7.1.2. Consider R2n with coordinates (x1, y1, · · · , xn, yn). A prototypical bk-symplectic
manifold is the bk-manifold (R2n, x1 = 0, 0) with bk-Darboux form(

xk1
∂
∂x1
, ∂
∂x2
, . . . , ∂

∂xn

)

7.1.2 Folded Symplectic Forms

Analogous to the definition of b-Poisson structures folded symplectic forms can be de-
fined as symplectic forms which degenerate along a codimension-one hypersurface in
a mild manner.

Definition 7.1.3. Let (M2n, ω) be a manifold with ω a closed 2-form such that the map

p ∈M 7→ (ω(p))n ∈ Λ2n(T ∗M)

is transverse to the zero section , then Z = {p ∈ M |(ω(p))n = 0} is a hypersurface and we
say that ω defines a folded symplectic structure on (M,Z) if additionally its restriction to Z
has maximal rank. We call the hypersurface Z folding hypersurface and the pair (M,Z) is a
folded symplectic manifold.

There is a folded Darboux theorem [62] given by

Theorem 7.1.4. Let ω be a folded symplectic form on (M2n, Z) and p ∈ Z. Then we can find
a local coordinate chart (x1, y1, . . . , xn, yn) centered at p such that the hypersurface Z is locally
defined by y1 = 0 and

ω = y1dx1 ∧ dy1 +
n∑
i=2

dxi ∧ dyi.

In [59] examples of dynamical systems with naturally occurring singular symplectic
structures were given, with examples coming from celestial mechanics and projective
dynamics. In [60] the set of examples were extended.

7.2 Point Transformations and Singular Symplectic Forms

Given configuration space R2 and phase space T ∗R2 as is seen, for example, in the
Kepler problem, the traditional (canonical) Levi-Civita transformation is the following:
identify R2 ∼= C so that T ∗R2 ∼= T ∗C ∼= C2 and treat (q, p) as complex variables (u :=
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q1 + iq2, v := p1 + ip2) . Take the following change of coordinates (q, p) = (u2/2, v/ū),
where ū denotes the complex conjugation of u. The resulting coordinate change can
easily be seen to be canonical. However this canonical change of coordinates can result
in more difficult equations of motion, or a more difficult Hamiltonian, which can both
obscure certain aspects of the dynamics of the system.

7.2.1 The Kepler Problem

In suitable coordinates in T ∗ (R2 \ {0}), the Kepler problem has Hamiltonian

H(q, p) = ‖p‖
2

2 − 1
‖q‖

. (7.1)

With the canonical Levi-Civita transformation (q, p) = (u2/2, v/ū), this becomes

H(u, v) = ‖v‖2

2‖ū‖2 −
1
‖u‖2 . (7.2)

Sometimes, as in this case, canonical changes lead to a more difficult system, so it
may be desirable to leave the momentum unchanged and examine instead the trans-
formation (q, p) = (u2/2, p) which can result in a simpler Hamiltonian. Now the trans-
formation is not a symplectomorphism and the symplectic form on T ∗R2 pulls back
under the transformation to a two-form symplectic almost everywhere, but degener-
ate on a hypersurface of T ∗R2.
Explicitly, the Liouville one-form p1dq1 + p2dq2 = Re(pdq̄) pulls back to

θ = Re
(
pd

(
ū2

2

))
= Re (pūdū)

= p1(u1du1 − u2du2) + p2(u2du1 + u1du2)

and computing −dθ we get the almost everywhere symplectic form

ω = u1du1 ∧ dp1 − u2du1 ∧ dp2 + u2du2 ∧ dp1 + u1du2 ∧ dp2.

Wedging this form with itself we find

ω ∧ ω = (u2
1 − u2

2)du1 ∧ dp1 ∧ du2 ∧ dp2

which is degenerate along the hypersurface given by u1 = ±u2.
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7.2.2 The Problem of Two Fixed Centers

Related to the folded symplectic form found in the Levi-Civita transformation is the
folded form associated with elliptic coordinates, employed while regularizing the prob-
lem of two fixed centers. This describes the motion of a satellite moving in a gravita-
tional potential generated by two fixed massive bodies. We assume also that the mo-
tion of the satellite is restricted to the plane in R3 containing the two massive bodies.
The Hamiltonian in suitable coordinates is given by

H = p2

2m −
µ

r1
− 1− µ

r2
(7.3)

where µ is the mass ratio of the two bodies (i.e. µ = m1
m1+m2

).
Euler first showed the integrability of this problem using elliptic coordinates, where

the coordinate lines are confocal ellipses and hyperbola. Explicitly, consider a coor-
dinate system in which the two centers are placed at (±1, 0), in which the (Cartesian)
coordinates are given by (q1, q2). Then the elliptic coordinates of the system are given
by

q1 = sinhλ cos ν (7.4)

q2 = coshλ sin ν (7.5)

for (λ, ν) ∈ R× S1. Thus lines of λ = c and ν = c are given by confocal hyperbola and
ellipses in the plane, respectively. Similar to the Levi-Civita transformation this results
in a double branched covering with branch points at the centers of attraction.

Pulling back the canonical symplectic structure ω = dq ∧ dp we find

ω = coshλ cos ν(dλ ∧ dp1 + dν ∧ dp2)− sinh λ sin ν(dν ∧ dp1 + dλ ∧ dp2) (7.6)

which is degenerate along the hypersurface (λ, ν) satisfying cosh λ cos ν = sinhλ sin λ.

7.3 Escape Singularities and b-Symplectic forms

The restricted elliptic 3-body problem describes the behaviour of a massless object in
the gravitational field of two massive bodies, orbiting in elliptic Keplerian motion. The
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planar version assumes that all motion occurs in a plane. The associated Hamiltonian
of the particle is given by

H(q, p) = ‖p‖
2

2 + 1− µ
‖q − q1‖

+ µ

‖q − q2‖
= T + U (7.7)

where µ is the reduced mass of the system.
After making a change to polar coordinates (q1, q2) = (r cosα, r sinα) and the corre-

sponding canonical change of momenta we find the Hamiltonian

H(r, α, Pr, Pα) = P 2
r

2 + P 2
α

2r2 + U(r cosα, r sinα) (7.8)

where Pr, Pα are the associated canonical momenta and U(r cosα, r sinα) is the poten-
tial energy of the system in the new coordinates.

The McGehee change of coordinates is traditionally employed to study the be-
haviour of orbits near infinity, see also [43]. This non-canonical change of coordinates
is given by

r = 2
x2 . (7.9)

The corresponding change for the canonical momenta is easily seen to be

Pr = −x
3

4 Px. (7.10)

The Hamiltonian is then transformed to

H(r, α, Pr, Pα) = x6P 2
x

32 + x4P 2
α

8 + U(x, α). (7.11)

By dropping the condition that the change is canonical and simply transforming the
position coordinate (7.9), we are left with a simpler Hamiltonian, however the pull-
back of the symplectic form under the non-canonical transformation is no longer sym-
plectic, but rather b3-symplectic:

ω = 4
x3dx ∧ dPr + dα ∧ dPα. (7.12)
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Appendix A

Solutions to the Kepler Problem

A.1 The Orbital Equations

As finding a solution of the equations of motion of the Keplerian equations of motion
parameterised by time is difficult, one often expresses a solution for the equations of
motion as a function of the polar angle α. From the Hamiltonian equations of motion
for the Kepler problem (5.2) we have

dr

dα
= yx2

G
and

dy

dα
= G

r
− 1
G
.

Using the substitution u = 1/r then, we find

du

dα
= − y

G
and

dy

dα
= Gα− 1

G
.

Whence
d2u

dα2 + u = 1
G
,

which can be solved to give the general solution

u(α) = c2 sin(α) + c1 cos(α) + 1
G2 .

Without loss of generality, we can choose initial conditions

u0 = u(0) = c1 + 1
G2 ,

du

dα

∣∣∣∣∣
α=0

= 0.
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The full solution then being

u = 1
r

= 1
G2 (1 + e cos (α))),

where e is related to a constant of integration and gives the eccentricity of the so-
defined conic section. To find e(h,G), one evaluates the Hamiltonian (5.1) at y = 0, r =
rp = G2

1+e (note that this is clearly a turning point for r) to find

e =
√

1− 2h2G.

Likewise, the relation
h = − 1

2a
for a the semi-major axis of the orbit can be derived from substituting the equations
for ra, rp into the Hamiltonian and evaluating them.

The relation between the period of an orbit and its energy is then a consequence of
Kepler’s third law. This can be derived in a number of different ways, here we will use
the solutions of the Keplerian equation in the reparameterized variable τ .

A.2 Reparameterized Solutions

Looking at the Keplerian equations in the reparameterized variable τ we find that

dα

dτ
= 2G2

r
. (A.1)

Substituting
1
r

= 1
G2 (1 + e cos(α)), (A.2)

we find
τ =

∫ dα

(1 + e cos(α)) . (A.3)

Whence
τ

2 =
tan−1

(√
1−e
1+e tan

(
α
2

))
√

1− e2
, (A.4)

which can be inverted to give

α = 2 arctan
√1 + e

1− e tan
(√

1− e2 τ

2

) . (A.5)
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Comparing with the equation for the eccentric anomaly

tan α2 =
√

1 + e

1− e tan E2 , (A.6)

we find √
1− e2τ = E. (A.7)

Substituting the equation for α(E), one can derive the classic expression for r(E) as
given by

r = a(1− e cosE). (A.8)
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Appendix B

Expansion of the Singularity of the
Parameterized Elliptic Orbits

Lemma B.0.1. Let e < 1. Then

arccosh
(

1
e

)
1− e2 = 1 + 1− e2

3 +O((1− e2)2).

Proof. As

tanh (arcosh(x)) =
√
x2 − 1
x

for |x| > 1 for x = 1
e
, e < 1 we have

arcosh
(1
e

)
= arctanh

(√
1− e2

)
.

Using the series expansion for arctanh at
√

1− e2 ≈ 0 we have

arctanh(
√

1− e2) =
√

1− e2 + (1− e2) 3
2

3 +O((1− e2) 5
2 ),

which gives the result.
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Appendix C

The Constants of the Quantitative
K.A.M. theorem

The constant C∗ of the K.A.M. theorem (6.4.13) depends on intermediate constants de-
pending polynomially on the following constants intrinsic to the system: cF,1, cF,2, cΩ,0,
cΩ,1, ca,1 and ca,2. It depends also on the following quantities, which are affected, for
example, by the choice of the geometric objects given in section 6.4.1: (σL − ‖DK‖ρ)−1,(
σ∗L − ‖DK>‖ρ

)−1
, (σB − ‖B‖ρ)−1, (σ∗B − ‖B‖ρ)

−1, (σT − |〈T 〉−1|)−1 and the distance from

the ansatz invariant torus to the boundary of the complex strip dist
(
K
(
Tnρ
)
, ∂B

)−1
.

It further depends on the bounds σL, σ∗L, σB, σ∗B, and σT given in the statement of
the K.A.M. theorem 6.4.13 which can be chosen to optimise the value of C∗ after the
ansatz torus has been chosen. Following the proof of the persistence of torus of the
frequency the golden ration in [57], we note that all estimates given there are satisfied
also for the case of the linearized parabolic map with the exception of the constants
C9, C14, Ĉ

4, Ĉ5, Ĉ6 and constants which depend polynomially the previous terms. We
will trace the calculation of C∗ given in [57] (Section 4.4.1) and we will discuss the
terms C9, C14, Ĉ

4, Ĉ5, Ĉ6 as they arise. It turns out the necessary adjustments to the
aforementioned constants are negligible in comparison to the error incurred by the dif-
ference between the error function associated to the planar torus of the standard map
and the error function of the planar torus of the rescaled Poincaré map of the PCR3BP.
First we discuss the differences in the choice of complex strip:

In the application of the K.A.M. theorem 6.4.13 to the standard map in [57], the
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complex strip of the annulus B was taken to be

B = B = Tρ̃ × C

with ρ̃ > ρ. This was possible as for the standard map the constants cF,1 and cF,2

did not depend on the momentum and so one could pick and unbounded domain in
momentum. Note that for the parabolic separatrix maps 6.1.1 we are studying, this
is not technically possible as we need the Taylor series of δ−q about δ0 to converge in
order for the linearized approximation given in 6.15 to be valid. Technically, this affects
the constants involved in calculating C∗, as some constants depend on the quantity
dist

(
K
(
Tnρ
)
, ∂B

)−1
. However, due to the rescaling we can take the variable ν to be in

a complex strip
B = B = Tρ̃ ×D

where D is a domain in the complex plane given by, for example

D = {z ∈ C | R(z) < 1, I(z) < ρ̃}

and so in practise, considering the constants chosen in (6.48) this does not affect the
value of the constant Ĉ∗.

As the bounds for the quantities given in the hypothese of the K.A.M. theorem
6.4.13 we choose, exactly as in the exposition of [57].

cN = cN0σB = σ, (C.1)

c∗N = σ∗Bc
∗
N0 = σ, (C.2)

cP = σL + cN = 2σ, (C.3)

σT = σ, (C.4)

cR =| 1
4π

√
π2

3 − 2, (C.5)

where cR is a constant depending only on the constant τ associated frequency of the
planar torus K(θ) (see Lemma 4.50 in [57]) and cP controls the size of the matrix P (θ)
given in 6.4.4.

Remark C.0.1. In fact, in the case of the linearized parabolic separatrix map for the planar
torus the torsion is given by:
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T (θ) = 1− ch,ν +O(η) (C.6)

Therefore, for values of J0 not large enough, it is possible that the quantity σ does not bound the
torsion in the problem and it is necessary to deal with σT separately. However, for the eventual
value of the constants given in 6.48, for large J0 this does not present a problem. Likewise for
the constant cT controlling the norm of the torsion matrix (Definition C.6) can be chosen as
similar to the bound given in [57] for the standard map

cT ≤ σ2,

as long as J0 is large enough.

Errors in the Lagrangian Nature of the Frame

Constants C1 and C2 control the error in the Lagrangian nature of the torus. As for the
parabolic separatrix map the torus is a one-dimensional submanifold of a two dimen-
sional annulus, in this case we have cA = 0 and

C1 = C2 = 0 (C.7)

Errors in the Symplectic Nature of Frame

As the ansatz torus is automatically Lagrangian, the constant C3 can controlling the
error in the symplectic nature of the frame can be set to zero

C3 = 0 (C.8)

The error in reducibility (see Definition 6.4.7) is controlled via the constants C4, C5, C6

and C7 = max {C4, C5 + C6}which can be taken as:

C4 ≤ nc∗NcΩ,0γδ
τ + cAC2 ≤ γδτσ (C.9)

C5 ≤ C2 + nσ∗LcΩ,0γδ
τ ≤ γδτσ (C.10)

C6 ≤ 2γδτσ (C.11)

C7 ≤ 3γδτσ. (C.12)
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Russman Estimates

The constants associated with the cohomological equations are given by:

C8 ≤ cRσ (C.13)

C9 ≤ cRσ + σ2
(
γδτ + cRσ

2
)

(C.14)

C10 ≤ cRσ
(
1 + σ3

) (
γδτ + cRσ

2
)

(C.15)

Controlling the Size of the Correction

The constant controlling the correction of the parameterization can then be calculated:

Ĉ2 ≤
(
cRσ

2
(
1 + σ3

)
+ γδτσ3

) (
γδτ + cRσ

2
)

+ cRγδ
τσ2 (C.16)

We can then control the correction to the object B(θ) as defined in 2.3 via

C11 ≤ 2Ĉ2, C∗11 ≤ Ĉ2, Ĉ3 ≤ 4σ2Ĉ2, Ĉ∗3 ≤ 2σ2Ĉ2

In the proof of the persistance of the planar torus for the standard map the constants
C14 and Ĉ4 which control the error in the difference of the torsion between the ansatz
torus and the new torus which were taken to be the quatities

C14 ≤ 2σBĈ3 and Ĉ4 ≤ 2σ2
TC14

These are different in the case of the parabolic separatrix map as they involve the
quatity cF,2 given in our case by Lemma 6.5.4. However, these errors are again propor-
tional to O(J −2

0 ) and can safely be ignored, as the constant Ĉ∗ will be defined only up
to orders of J −2

0 .
As A(θ) = 0 we have C12 = 0. Similarly C13 and C∗13 are not used. Finally the

constant Ĉ∗ is given by

Ĉ∗ = max

(a1a3)4τ Ĉ5,
16σ5 (a3)2τ+1 γ2ρ2τ−1Ĉ2

(σ − 1)
(
1− a1−2τ

1

) ,
(a3)2τ γ2ρ2τ Ĉ2

(ρ̃− ρ)
(
1− a−2τ

1

)


Where the constants a1 and a2 control the reduction in the domain of analyticity of the
of the iterated torus and are defined by:

ρ0 = ρ, δ0 = ρ0

a3
, ρs = ρs−1 − 3δs−1, δs = δ0

as1
, ρ∞ = lim

s→∞
ρs = ρ0

a2
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where
a3 = 3 a1

a1 − 1
a2

a2 − 1 (C.17)

Here, as in [57], we take a2 = 1000. a3 is then set to a3 = ρ/δ and the constant a1 is
then calculated using the relation (C.17). Evaluating the quantity Ĉ∗ at these values
and using the constants given in (6.48) gives the estimate in Theorem 6.5.5.
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