
Pushing the Envelope on Free TLB Prefetching

Georgios Vavouliotis∗†, Lluc Alvarez∗†, Marc Casas∗
∗Barcelona Supercomputing Center, Barcelona, Spain †Universitat Politècnica de Catalunya, Barcelona, Spain

E-mail: {georgios.vavouliotis, lluc.alvarez, marc.casas}@bsc.es

Keywords—TLB, prefetching, microarchitecture, caches.

I. EXTENDED ABSTRACT

Frequent Translation Lookaside Buffer (TLB) misses pose
significant performance and energy overheads due to page
walks required for fetching the translations. The address trans-
lation performance bottleneck is further exacerbated by the
advent of big data and graph processing workloads due to their
massive data footprints. Prefetching page table entries (PTEs)
ahead of demand TLB accesses is an intuitively effective
approach for alleviating the TLB performance bottleneck.
However, each TLB prefetch request implies traversing the
page table to fetch the corresponding PTE, triggering ad-
ditional accesses to the memory hierarchy. Therefore, TLB
prefetching is a promising, although costly, technique that may
undermine performance when the prefetches are not accurate.

This work exploits the locality in the last level of the page
table to reduce the cost and enhance the performance benefits
of TLB prefetching by prefetching adjacent PTEs “for free”.
We design Dynamic Free TLB Prefetching (DFTP), a scheme
that predicts via sampling the usefulness of these “free” PTEs
and prefetches only the ones most likely to save TLB misses.
DFTP can be combined with any TLB prefetcher to provide
further performance enhancements by exploiting page table
locality for both demand and prefetch page walks.

A. Dynamic Free TLB Prefetching (DFTP)

1) Motivation: Figure 1 depicts the operation of a x86-
64 page walk and illustrates the locality of the PTEs in the
last level of the page table. PTEs are stored contiguously in
memory, and each PTE is 8B, so a single cache line can store
8 PTEs. When the requested PTE is read from memory at the
end of a page walk, it is grouped with 7 neighboring PTEs and
they are stored into a single 64B cache line. Hence, a cache
line holds the requested PTE plus 7 more PTEs that do not
require additional memory operations to be prefetched.

The naive approach is to prefetch all available free PTEs
into a TLB Prefetch Buffer (PB)1. However, TLB prefetching
is limited by the PB size, the PB area overhead, and the cost
of PB lookups. Thus, naively storing all free prefetches per
page walk into the PB may limit the performance benefits by
evicting useful prefetches and polluting the PB with inaccurate
prefetches. Hence, to exploit page table locality with a realistic
PB size, a scheme that dynamically identifies and prefetches
only the useful free prefetches per page walk is required.

2) Design and Operation: To address the findings of Sec-
tion I-A1, we design Dynamic Free TLB Prefetching (DFTP),
a scheme that predicts via sampling the usefulness of the
different free PTEs per page walk, and fetches in the PB only
the most useful ones. We define free distance as the distance,

1TLB prefetchers typically use a prefetch buffer to store the prefetches since
prefetching directly into the TLB can negatively affect performance [1], [2].

0xA0
0xA0

PML4 offset PDP offset PD offset PT offset Page offsetSE

0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7

PDPE

64
 b

yt
es

PML4E PDE

PTE of 0XA0
PTE of 0XA1
PTE of 0XA2
PTE of 0XA3
PTE of 0XA4
PTE of 0XA5
PTE of 0XA6
PTE of 0XA7

PTE of
0xA0

PTE of
0xA1

PTE of
0xA2

PTE of
0xA3

PTE of
0xA4

PTE of
0xA5

PTE of
0xA6

PTE of
0xA7

CR3

LLC L2 L1

Fig. 1. Page table locality on x86-64 page table walks.

within the cache line, between the PTE that holds the demand
translation and another free PTE. Depending on the cache
line position of the requested PTE, there are 14 possible free
distances: from -7 to +7, excluding 0.

The DFTP scheme associates each free PTE with a free
distance and exploits this information to predict the usefulness
of the corresponding PTEs. Figure 2 presents the components
and the functionality of DFTP: the Sampling Queue (SQ), the
Free Distance Table (FDT) and the Prefetch Buffer (PB). The
SQ is a small buffer that detects phases when free distances,
which were previously useless, can provide useful prefetches.
Each SQ entry stores the virtual page and its corresponding
free distance for every free PTE that is decided not to be placed
in the PB. The decision whether to place a free prefetch into
the PB or the SQ is made by the FDT, a table with 14 counters;
each counter monitors the hit ratio of one free distance. The
PB is a buffer that stores the virtual page, the physical page
and the corresponding free distance of the prefetches.

To explain the operation of DFTP, we consider the example
presented in Figure 2 that assumes a page walk triggered
by virtual page 0xF3. First, we identify the position of the
requested PTE inside the cache line by extracting the 3
least significant bits of the page. Then we calculate the free
distances of all PTEs residing in the same cache line and we
associate each PTE with a free distance.

To determine whether a free prefetch has to be placed in
the PB or the SQ, we compare the FDT saturating counter
corresponding to its free distance with a threshold. If the
counter exceeds the threshold, the free prefetch is fetched in
the PB; otherwise, is placed in the SQ. The same procedure
is followed for each free PTE in the cache line.

On PB or SQ hits, the FDT counter that corresponds to the
free distance of the hit entry is increased. To prevent permanent
saturation, we shift right one bit all the FDT counters when
one of the counters saturates.

To summarize, DFTP adjusts the values of FDT counters
depending on which free distances are frequently producing
PB or SQ hits, thus DFTP is able to adapt to phase-behavior
and predict the most useful free PTEs per page walk.

3) Combining DFTP with TLB prefetching schemes: Apart
from fetching the most useful free prefetches per demand page
walk, i.e., a page walk due to a demand TLB miss, DFTP is
also able to operate on prefetch page walks, i.e., page walks
triggered by TLB prefetch requests. Specifically, at the end
of a prefetch page walk the prefetched PTE is grouped with 7
PTEs that can be prefetched for free due to page table locality.

8th BSC Doctoral Symposium

70

pte of
0xF0

C1 C3 C4 C5 C7 C9 C12C0 C2 C6 C8 C10 C11 C13

0

virtual physical
page page

free
distance

0xF6 +3

0xF1
0xF2 -1

-2 +1
+2
-3

virtual
page

free
distance

+4

>T >T >T >T >T >T >T

FDT

0 0 0 0 0 0

1111111

0xF4

0xF0
0xF7

0xF5
0xE1
0xE2

0xE6 In
se

rt
 to

 P
B SQ

In
se

rt
 to

 S
QPB

pte of
0xF1

pte of
0xF2

pte of
0xF4

pte of
0xF5

pte of
0xF6

pte of
0xF7

pte of
0xF3

Fig. 2. Dynamic Free TLB Prefetching (DFTP) module.

At this point, DFTP is activated to decide which of the free
prefetches should be placed in the PB or the SQ, essentially
applying lookahead prefetching with depth 2.

4) Methodology: We consider a big set of industrial work-
loads provided by Qualcomm (QMM) for CVP1 [3], the
SPEC CPU 2006 [4] and SPEC CPU 2017 [5] suites, and
big data workloads included in the GAP [6] suite and the
XSBench [7]. We refer to GAP and XSBench workloads as
Big Data (BD) workloads. Our evaluation takes into account
the workloads with a TLB MPKI of at least 1. All traces
have been obtained using the SimPoint [8] methodology. For
the QMM workloads we use 50M warmup instructions and
100M instructions for measuring the results. The rest of the
workloads run 250M warmup instructions and 1B instructions
are executed to measure the experimental results.

For evaluation we use ChampSim [9], a detailed simula-
tor that models a 4-wide out-of-order processor. We extend
ChampSim with a realistic x86 page table walker, modeling
(i) the variant latency cost of page walks, (ii) the page walk
references to memory hierarchy, and (iii) the cache locality in
page walks.The page table walker supports up to 4 concurrent
TLB misses [10], while one page walk can be initiated per
cycle. Table I summarizes our experimental setup.

TLB Prefetchers. We consider the state-of-the-art TLB
prefetchers: (i) Sequential Prefetcher (SP); SP [2] prefetches
the PTE located next to the one that triggered the TLB miss,
(ii) Arbitrary Stride Prefetcher (ASP); ASP [2] is a table-based
prefetcher that captures miss streams with varying strides,
and (iii) Distance Prefetcher (DP); DP [2] is a table-based
prefetcher that correlates miss patterns with distances between
pages that produce consecutive TLB misses. Our evaluation
considers the most common scenario where a Prefetch Buffer
(PB) is used to store the prefetched PTEs (Section I-A1).

5) Evaluation: To highlight the benefits of DFTP we
compare it against the following scenarios: (i) free prefetches
are not exploited (NoFP), i.e., they are not stored in the PB;
(ii) all free prefetches are naively placed in the PB (NaiveFP).

The performance impact of the above explained scenarios
for the state-of-the-art TLB prefetchers is presented in Fig-
ure 3. We observe that all prefetchers achieve high performance
gains for all scenarios considering free prefetching (NaiveFP,
DFTP) than when free prefetching is not exploited (NoFP).
We observe this behavior because (i) the free prefetches
provide PB hits that reduce demand page walks, and (ii)
most of the prefetch requests have already been prefetched for
free, avoiding prefetch page walks. For instance, SP+DFTP
outperforms SP+NoFP by 5.6% for the SPEC workloads.

Furthermore, we observe that DFTP significantly improves
performance over NaiveFP for the QMM and SPEC workloads,
across all prefetchers. For the BD workloads we observe
that DFTP and NaiveFP provide similar performance benefits
because these workloads exhibit highly irregular patterns, thus

Component Description
L1 DTLB 64-entry, 4-way, 1-cycle, 4-entry MSHR
L2 TLB 1536-entry, 12-way, 8-cycle, 4-entry MSHR, 1 page walk / cycle
Prefetch Buffer (PB) 64-entry, fully assoc, 2-cycle
Sampling Queue (SQ) 64-entry, fully assoc, 2-cycle
L1 DCache 32KB, 8-way, 4-cycle, 8-entry MSHR, next line prefetcher
L2 Cache 256KB, 8-way, 8-cycle, 16-entry MSHR, ip stride prefetcher
LLC 2MB, 16-way, 20-cycle, 32-entry MSHR
DRAM 4GB, DDR4, 4GHz, 1600 MT/s

TABLE I. SYSTEM SIMULATION PARAMETERS.

QMM SPEC BD QMM SPEC BD QMM SPEC BD
0
2
4
6
8

10
12
14

%

sp
e
e
d
u
p

NoFP NaiveFP DFTP

SP DP ASP

Fig. 3. Performance impact of free TLB prefetching scenarios.

it is difficult to detect the most useful free PTEs per page walk.
Finally, we expect that designing a smarter TLB prefetcher
would highlight more the benefits of DFTP over NaiveFP; we
leave this exploration as future work.

B. Conclusions

This work reveals the importance of exploiting page table
locality for TLB prefetching purposes. We propose DFTP, a
dynamic scheme that identifies the most useful free PTEs per
page walk, and we show that DFTP can be combined with any
TLB prefetcher to provide great performance enhancements.

REFERENCES

[1] A. Bhattacharjee and M. Martonosi, “Inter-core Cooperative TLB for
Chip Multiprocessors,” in Proceedings of the 15th Edition of ASPLOS
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XV. NY, USA: ACM, 2010, pp. 359–370.

[2] G. B. Kandiraju and A. Sivasubramaniam, “Going the Distance for
TLB Prefetching: An Application-driven Study,” in 29th Annual Inter-
national Symposium on Computer Architecture, ser. ISCA ’02. Wash-
ington, DC, USA: IEEE Computer Society, 2002, pp. 195–206.

[3] “CVP-1,” https://www.microarch.org/cvp1/.
[4] “SPEC CPU 2006,” https://www.spec.org/cpu2006/, [Online].
[5] “SPEC CPU 2017,” https://www.spec.org/cpu2017/, [Online].
[6] S. Beamer et al., “The GAP benchmark suite,” CoRR, vol.

abs/1508.03619, 2015.
[7] “XSBench,” https://github.com/ANL-CESAR/XSBench.
[8] E. Perelman et al., “Using simpoint for accurate and efficient simula-

tion,” SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp. 318–319,
Jun. 2003.

[9] “ChampSim,” https://crc2.ece.tamu.edu/, [Online].
[10] Abishek Bhattacharjee, “Advanced concepts on address translation,”

http://www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf.

Georgios Vavouliotis received his Diploma on
Electrical and Computer Engineering from National
Technical University of Athens (NTUA), Athens in
2018. Since fall 2018, he has been a Ph.D. candidate
at the Computer Architecture department of Univer-
sitat Politècnica de Catalunya (UPC), Spain, and he
has been working on the Runtime Aware Architec-
ture research group of Barcelona Supercomputing
Center (BSC).

8th BSC Doctoral Symposium

71

