
The Development of Hashing Indexing Technique in

Case Retrieval

Mohamad Farhan Mohamad Mohsin

UUM College of Arts & Sciences

Universiti Utara Malaysia
Kedah, Malaysia

farhan@uum.edu.my

Maznie Binti Manaf

Fakulti Sains Komputer dan Matematik

Universiti Teknologi Mara (Kelantan)

Machang, Kelantan

maznie@kelantan.uitm.edu.my

Abstract-ease-based reasoning (eBR) considers previous

experience in form of cases to overcome new problems. It

requires many solved cases in case base in order to produce a
quality decision. Since today, database technology has allowed

eBR to use a huge case storage therefore the case retrieval
process also reflects the final decision in eBR. Traditionally,

sequential indexing method has been applied to search for
possible cases in case base. This technique is worked fast when

the number of cases is small but it consumes more time to

retrieve when the number of data grows in case base. To

overcome the weakness, this study researches the non­
sequential indexing called hashing as an alternative to mine
large cases and faster the retrieval time in eBR. Hashing

indexing searches a record by determines the index using only

an entry's search key without traveling to all records. This

paper presents the review of a literature and early stages of the

integration hashing indexing method in eBR. The concept of
hashing indexing in case retrieving process, the model

development, and the preliminary algorithm testing result will
be discussed in this paper.

Keywords- hashing indexing, sequential indexing, case

retrieval, temporal data

I. INTRODUCTION

Case-based reasoning (CBR) is rapidly growth and
widespread across in many domain. It has been applied in
many fields such as medical for diagnostic and therapeutic
task, image retrieval, treatment, planning, and tutoring [1,2].
As a data mining technique, CBR considers previous
experience in form of cases to understand and overcome new
problems. To derive conclusion, it executes four steps that
are retrieve the most similar cases, reuse the retrieved cases
to solve the problem, revise the reused solution, and finally
retain the revised experience in case base for future decision
making. The concept of CBR is the similarity between old
and new case therefore it requires many previous cases in

978-1-4244-6716-7/101$26.00 © 2010 IEEE

Norita Md Norwawi

Faculty of Science & Technology

Universiti Sains Islam Malaysia

Bangi, Selanor
norita@usim.edu.my

Mohd Helmy Abd Wahab

Faculty of Electrical and Electronic Engineering

Universiti Tun Hussein Onn

Johor, Malaysia

helmy@uthm.edu.my

case base in order to provide a good decision [3]. To achieve
that, it relies heavily on the quality of old cases but to obtain
a quality case is difficult [4].

Nowadays, the capability of database technology to store
gigantic records has allowed CBR to have a huge number of
cases in case base. Because of the big cases, many
researchers have undertaken study on case retrieval mainly
on the case indexing technique for faster retrieval time.

The most common technique for similarity retrieval in
CBR is the k-nearest neighbor (k-NN) [6]. According to [5],
the k-NN is not an efficient method to minimize retrieval
time particularly at case similarity retrieval. They suggested
the indexing technique which is commonly used in database
application that can help speed up retrieval and optimize
accessibility of data. Indexing is a technique used to speed
up access of stored data. By storing the data in the right way,
it helps the system to find items or element without having to
scan the entire data set [7]. There are several techniques for
case retrieval which include indexing schemes such as kd­
trees, Fish-and-Sink approach, the CRASH memory model,
Case Retrieval Nets [8, 9] and Hashing [10].

Generally, there are two types of indexing structures
which are sequential and non-sequential indexing.
Traditionally, sequential indexing has been applied to search
for possible cases in case base. Through sequential
technique, cases are retrieved case by case following a
sequence until the most similar case is matched. It works fast
when the number of cases is small but it will consume more
time to retrieve when there are huge cases in case base.

Therefore, this study researches the non-sequential
indexing called hashing as an alternative to cater large cases
and faster the retrieval time in CBR. Hashing indexing
searches a record by determining the index using only an
entry's search key without traveling to all records [10]. It
utilizes small memory, faster retrieval time, and easier to

1045

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42981258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

code compared to other indexing technique like data
structure [11]. This paper presents the review of a literature
and early stages of the integration of hashing indexing
method in CBR in order to improve the performance of case
retrieval. Then, hashing indexing performance will be
compared with sequential method in term of retrieval time
and accuracy.

This paper is organized as follows. Section 2 outlines the
literature of hashing indexing technique. Then, the
integration of hashing indexing technique in CBR is
discussed in section 3. It will be followed by a discussion on
the model development of the study in Section 4. Section 5
reports the preliminary algorithm testing and final sections
conclude this work.

II. HASHING INDEXING

Hashing indexing is commonly used in database
application during data retrieval. The idea of hashing is to
map each records to a hash key (x) using hash function; H(x).
H(x) =i whereby i is an index to the hash table (HI) and
HT= [i . . . n]. HT represents an array of size n. The H(x) will
take a search key and produces an integer type index
representing each case in HT. After that, the case can be
directly retrieved at respective address from the HT. The
address or search key, x is generated from the function H(x)
= x mod n whereby x is the search key, n is the table size and
mod is the modulo operator.

In practice, H(x) can map two or more addresses into HT.
The H(x) is capable to store more than two items in the same
array location in HT or tends to open other address. This
occurrence is called collision and the item involved are often
called as synonyms [12]. An example of hashing indexing
technique which is adopted from [13] is shown in Fig 1.

Hash
Table: Items

Figure I. Hasing indexing technique

One of the HT limitations is when the records become
full. It will start working very badly unless separate chaining
which capable to handle collision is used. This is the reason
why [12] suggested that HT should never be allowed to get
full. To determine either HT is full, the ratio of the number
entry located in HT need to be calculated. The ratio is known
as load factor. Generally, HT size should be automatically
increased and the records in the table should be rehashed
when the ratio of table is reached 0.7 (70% full) or 0.8 (80%
full) for open addressing [10, 12].

Recently, many applications utilized hashing mechanism
to solve specific problem such as in programming that use

HT to keep track of declared variables in source code [10,
13, 12]. HT is an ideal application for this kind of problem
because only two operations are performed insert and find;
identifiers are typically short, so the H(x) can be computed
quickly. In this application, most searches are successful.

Another common use of HT is in game programs. As the
program search through different lines of play, it keeps track
of positions that it has encountered by computing H(x) based
on the position (and storing its move for the position). If the
same position recurs, usually by a simple transposition of
moves, the program can avoid expensive recalculation.

III. INTEGRATING HASHING INDEXING IN CASE RETRIEVAL

From literatures, hashing indexing can faster the retrieval
time and minimizes the usage of computer resources;
therefore it has high possibility to integrate hashing
technique with CBR since CBR also performs case retrieval
from case base. Fig. 2 depicts the concept of this technique
and Fig. 3 is a sequential indexing method. Sequential
indexing is a conventional technique practiced in CBR's case
retrieval.

Figure 2. Integration of hashing indexing teachine in CBR

Figure 3. Integration of seqeuntial indexing teachine in CBR

In the proposed hash model, the separate chaining or
close addressing is chosen to resolve collisions. Through this
method, specific location is allowed to store more than one
value called bucket, h. A good H(x) is should be fast to
compute, mImmIze collisions, and distribute entries
uniformly through the HT.

1046

In this study, three search keys, x are defined. The x are
mean of average rainfalls (m), change water level (iJ WL),
and combining mean average rainfall and change water level
(RII1 " iJ WL) as written in (1). Different x �re �sed

.
to

determine which x will produces better result mamly m hIgh
accuracy and low time retrieval.

{

R",modn

H(x) = L1W'L

](, " L1W'L '"

(1)

Where n is the table size, Rm refers Eq (2), t" WL refers Eq.
(3)

Eq. 2 shows the formula to calculate the combination of
mean average rainfall and change water level key, RII1 and Eq
3 is a formula to calculate change water level key (iJ WL).

Rm = RI_! + RI_2

2

(2)

where RI_l is the average rainfall at time t -1, RI_2 IS the
average rainfall at time t -2, t is the time index

iJ WL, = WLr-J + WL,_2

WL,_2

(3)

where WLI_lis the average rainfall at time t -1, WLt-2 is the
average rainfall at time t -2, t is the time index

Moreover, every types of x will have different size of
hash table or called bucket, b. The number of b is depends on
the type of its x. For example the change of water level
(iJ WL) has three types of water level, which are Alert,
Warning and Danger [15]. Therefore, iJ WL will have three
buckets. Table I shows the iJ WL key, the number of bucket,
and the range of case iJ WL. From table I, figure 4 represents
the bucket arrangement of iJ WL.

TABLE 1.

Bucket
(b)
0
I
2

TYPE OF CHANGE WATER LAVEL (Ll WL)AND THE NUMBER

OF BUCKETS

Type of water Range of AWL / m
level (Ll WL)

Alert x s: 0.0034
Warning 0.0034 < x < 0.0061
Danger x:O: 0.0061

BuekelO Case Base

• 29 265 12.17 5 0 .0001 I (l,
• om .. '" .���
2 2Iln51 5592 411 00011

�
Bucket I .� ;
" [N'" [00" [" [.�, '---;Z; •

2

4
Buckel 2
2 2Il.95 12025 21 0 0225

4 2Il995 21 6 397 00096Y'
• 299 51 6 I 67 1 1.0 OO�

'M. "R"" "R"" !J.WL
29_86 120.25 21 0.0225

29995 " 533 00001

28� 216 3$1 00096
29.925 50.25 6.5 0.01)02

29.265 12.17 5 00007

28125 5592 411 00017

299 61 .6 61.11 0.0015

Figure 4. The Bucket Arrangement Using t; WL key

For mean of average rainfall (m) key, it has four buckets
which represent type of rainfall; there are Light, Moderate,
Heavy and Very Heavy. Table II elaborates the type of
rainfall while Fig. 5 represents the bucket arrangement of m.

TABLE [I. TYPE OF RAINFALL AND THE NUMBER OF BUCKETS

Bucket (b) Type of Range of Rainfall /
Rainfall (m)

0 Light

1 Moderate

2 Heavy

3 Very Heavy

BucUlO

I: I ::1 '��115: 1::: I

Buckel 1

141 ", 0951
2
1 6139 7 I 000961 , 2882S S01S 615 00042

..

Buclcel2 / " ','.m'."'" , " ."'�
Buck ..)
4:1 28900 616 6711 0OO7�

I 2 I 2B... '20.252.l I...i!.l!:12:

mm
x< II

II<x<32

32<x<62

x:O: 62

C�Base

Ie;, "'- � li' 6WL 2 ",86 120'2:S 21 oom 4 28_ 14 5.33 00007
4 28= 21' 397 00090 2 28805 5025 6. 00042
4 2 • .265 12.17 • 00007
2 28725 ".2 471 00017
4 28. ... 6717 DOOle;

Figure 5. The Bucket Arrangement Using m's search key

Generally, the modified hashing indexing algorithm in
CBR involves two main tasks that are storing new cases and
retrieving a case. Process flow in Fig.6 represents the
process of storing a new case in case base. It starts wi�h
calculation of the H(x) and then store the current cases m
bucket.

start

Calc ulate the hash key of the search
key to find buc ket at hash table

Figure 6. Storing a new case

1047

The case retrieving process based on CBR's hashing
indexing is shown in Fig. 7. It starts with calculating the hash
key and map to the HT. The result will be retrieved b

.
y

finding the x after entering a new case. The H(x) formula IS
used to find the address in HT. Finally, the similarities of
cases in similar bucket will be calculated to get the predicted
result.

Figure 7. Retrieving Cases in Buckets at Hash Table

IV. MODEL DEVELOPMENT

This section will explain the model development of the
study. This study is an experimental approach which is
divided in two phases. First phase is algorithm development
and the second phase is mining phase. Fig. 8 illustrates the
experimental design in this study.

A. Algorithm Developemt

The algorithm development phase focuses on the
algorithm modification. This phase covers three steps which
are design development, implementation and testing. In the

design development, two approaches: sequential indexing
and hashing indexing technique are designed and integrated

into CBR using Microsoft Visual C++. After that, the model
will be tested. The aim of the testing is to check the
accurateness of the hash table and the similarity calculation

during mining. The result of the testing is reported in
section V (Preliminary algorithm testing)

Figure 8. Model Developemnl

B. Mining Phase

Mining refers to the process of extracting knowledge using
CBR algoithm. There are two main process in mining that

are preparing data for mining and knoweldge extraction.

1) Preparing data/or mining

In this part, it will cover three steps that are data selection,
data pre-processing, and data transformation. The aim of

this process is to clean and prepare the data before
presenting it into the CBR mining system.

The experiment dataset set used in this study is a 15
attributes' temporal dataset called Timah Tasoh Dam

dataset. It comprises the historical hydrological data of daily

Timah Tasoh dam operation in Perlis, Malaysia in the year

1997-2005. The preliminary observation on the raw dataset,
some attributes are not related to study and certain values

were missing. Therefore, the dataset are pre-processed using
temporal data series approach which was adopted from

[14,15].

During data preprocessing, only relevant attributes will be
selected. Out of 15 attributes, 4 attributes are chosen that are

current water level, average rainfall, current change water

level, and current gate. Those attributes represents reservoir

water level, rainfall measurement from 6 telemetry stations

(Padang Besar, Tasoh, Lubuk Sireh, Kaki Bukit, Wang

Kelian, and Guat Jentik) and the number of spillway gates.
Spillway gate refers to a structure that makes it possible for

1048

the excess water to be released from the dam. Timah Tasoh

has six gates and normally the water will be released using
Gate 2, Gate 4, and Gate 6 depends on the situation. The
selection is made using sliding window technique which is
adopted from [14, 15]. After that, the data are re-scaled into

a suitable representation to increase mining speed and

minimize memory allocation. Table III is a sample of clean
data which is ready for mining using CBR's hashing
indexing and CBR's sequential indexing model. Based on
the table, the current water level (WLt), average rainfall at t-

1 and t-2, current change water level (ll WLt) and current

gate (Gt) are the final input to be mined using CBR.

TABLE Ill. CASE BASE SAMPLE FOR MINING

Gate Water Average Average Change
Level Rainfall Rainfall Water

(t-1) (t-2) Level
2 29.275 7.33 5.375 0.0007

2 28.86 120.25 21 0.0225

2 29.145 28.125 9.5 0.0059

4 29.025 22.75 1\ 0.001

4 28.825 50.25 6.5 0.0042

6 28.46 3.5 10.1 0.0018

2) Knowledge Extraction

In this part, Timah Tasoh Dam dataset will be mined.
Both models-hashing and sequential indexing model will use
similar case base and their performance will compared. The
evaluation is based on two metrics that are accuracy and
retrieval time.

In order to measure the accuracy, the algorithm is tested
using various data partition by taking cases in case based as a
test set. The measurements are adopted from [15] as shown
in Table IV. This is due to the fact that the real datasets
consists of unbalanced data where the number of occurrences
of event is lower as compared to non-event occurrence.

TABLE IV. PERFORMACE MATRCIS ADOPTED FROM NORWAWI (2004)

Measurement Meaning

tp True positive. Number of event correctly
predicted

Ie False positive. Number of predicted event but
in actual non-even

to True negative. Number of non-event
correctly predicted

In False negative. Number of predicted non-
even but in actual even

Sensitivity The accuracy of correctly predicted event
(Sen) If' -- ---

Ip + j�

Specificity The accuracy of correctly predicted non-
(Spec) event

tn - ----
tn+ h

Total
Accuracy

(Acc)

The ratio of total correct prediction

11' +1"
= -------

Second measurement is retrieval time which refers to
time taken to search for the similarity case from case base.
The time is tested by selecting one case from case base and
the selected case will be measured for both hashing and
sequential technique. The retrieval time will be recorded five
times before calculate the average. A special loop is used to
perform the task as shown in coding in Fig 9.

Figure 9. Algorithm to calculate retrival time

V. PRELIMINARY ALGORITHM TESTING

This is an early stage of the project and this section
represents the testing of the hashing and sequential indexing
models. The aim of the testing is to check the capability both
models can generate an accurate hash table and similarity
calculation before starts mining the Timah Tasoh Dam
dataset.

To check the accuracy of the hash table, the buckets of
each case are listed and the test cases in case base will be
map to the listed bucket. If the value of actual bucket and
suggested bucket are equal, then the models can be
concluded have generated an accurate result. Table V
represents the sample of the test case and Table VI shows the
accuracy of hash table using average rainfall (m) search key.
From the table, the actual bucket and suggested bucket are
similar. This shows the model generates an accurate hash
table.

TABLE V. TEST CASE SAMPLES

Cases No Gate WL R t-1 R t-2
AWL

I 2 28.860 120.25 21.00 0.0225
2 4 28.995 14.00 5.33 0.0007
3 4 28.895 21.60 39.70 0.0096
4 2 28.825 50.25 6.50 0.0042

5 4 29.265 12.17 5.00 0.0007
6 2 28.725 55.92 47.10 0.0017
7 4 28.900 61.60 67.17 0.0075

1049

TABLE VI. THE TEST RESULT OF HASH TABLE ACCURACY USING
AVERAGE RAINF AKK (M) KEY

Cases Suggested Actual Accurate
No Bucket Bucket
I 3 3 Yes
2 0 0 Yes
3 I I Yes

4 I I Yes
5 0 0 Yes
6 2 2 Yes
7 3 3 Yes

** Yes means >95% accurate for cases m the nght bucket of

hash table

The second test is the accurateness of the case similarity
calculation. From the testing, the model has shown it can
generate an accurate result since the similarity of the test is
more than 95%. Table VII shows the test result in tenn of
case similarity.

TABLE VII. THE TEST RESULT OF MODEL ACCURACY IN TERM OF CASE
SIMILARYTY

Cases Suggested Actual Similarity
No Open Gate Open Gate %

I 2 2 95.7
2 4 4 98.0
3 4 4 95.2
4 2 2 97.4
5 4 4 98.9
6 2 2 97.3
7 4 4 99.1

Since both testing has shown a good result, it can be
concluded that the modified models-hashing indexing and

sequential indexing in CBR are ready for mining the

experiment data.

VI. CONCLUSION

This on-going research consists of two stages. The first
stage is designing the hash indexing algorithm in case
retrieval function. The second stage is to compare the
hashing indexing case retrieval with sequential case retrieval
in tenn of accuracy and retrieval time. To achieve that,
temporal dataset named Timah Tasoh Dam dataset will be
selected as a case study. This project is purposely conducted
to offers an alternative technique for case base representation
and case retrieval. The finding is aimed can assist future
miner to mine cases faster, obtain better accuracy and
minimize the computer resources usage.

REFERENCES

[I] Yang, Z., Matsumura, Y., Kuwata, S., Kusuoka, H., & Takeda, H.
(2003). Similar Cases Retrieval From the Database of Laboratory
Test Results. Journal of medical systems (J. med. syst.). Vol. 27, No.
3: pp. 271-282

[2] Schmidt, R., & Gleri, L. (2000). Case-based Reasoning for Medical
Knowledge-based Systems. International Journal of Medical
Informatics, Vol .64, pp 355.

[3] Armengol, E., Ontanon, S., Plaza, E. (2002). Explaining Similarity in
CBR. Artijicialintelligence Review. Vol. 24, No. 2.

[4] Rong, P., Qiang, Y., Sinno, J.P. (2007). Mining competent case bases
for case-based reasoning. Artificial Intelligence, Elsevier Science
Publishers Ltd. Vol. 171 .

[5] Kang, S. H. & Lau, S. K. (2002). Intelligent Knowledge Acquisition
with Case-Based Reasoning Techniques. Retrived December, 2009
from:http://www.dsl.uow.edu.au/pub lications/techreports/kang03 intel
ligent.pdt

[6] Mantaras, R. L. D., Mcsherry, D., Bridge, D., Leake, D., Smyth, B.,
Craw, S., Faltings, B., Maher, M. L., Cox, M. T., Forbus, K., Keane,
M., Aamodt, A., & Watson, 1. (2005). Retrieval, Reuse, Revision, and
Retention in Case-Based Reasoning. The Knowledge Engineering
Review. Vol. 20, No. 3: pp.215-240.

[7] Andre-Jonsson, H. (2002). indexing Strategies for Time Series Data.
Linkopings Universitet, Linkoping, Sweden.

[8] Lenz, M. (1996). Case Retrieval Nets Applied to Large Case Bases.
Proc. 4th German Workshop on CBR, Berlin.

[9] Lenz, M., Burkhard, H., & Burckner, S. (1996). Applying Case
Retrieval Nets to Diagnostic Tasks in Technical Domains.
Proceedings of the Third European Workshop on Advances in Case­
Based Reasoning , pp: 219 - 233.

[10] Carrano, F. M., & Savitch, W. (2003). Data Structures and
Abstractions with Java, Paerson Education, Inc:USA.

[II] Griebel, M., & Zumbusch, G. (1998). Hash-Storage Techniques for
Adaptive Multilevel Solvers and Their Domain Decomposition
Parallelization. Proceedings of Domain Decomposition Methods 10,
DDIO.

[12] Maurer, W. D., & Lewis, T. G. (1975). Hash Table Methods. ACM
Computing Surveys (CSUR), Vol. , No 1, pp:5-19.

[13] Darus, N. M., Yusof, Y., Mohd, H., & Baharom, F. (2003). Struktur
Data Dan Algoritma Menggunakan Java (First Edition ed.). Selangor,
Malaysia: Pearson Prentice Hall.

[14] Hassin, M. H. B. M., Norwawi, N. B. M., & Aziz, A. B. A. (2006).
Sliding Window as a Segmentation Technique for Temporal Data
Preprocessing. Proceeding of the Regional Computer Science
Postgraduate Conference (ReCSPC '06).

[15] Norwawi, N. B. M. (2004). Computational Recognition - Primed
Decision Model based on Temporal Data Mining Approach for
Reservoir Flood Control. PHD Thesis, Universiti Utara Malaysia,
Malaysia

1050

