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SUMMARY
Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of
experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and
CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infec-
tion in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that
immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conven-
tional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By
quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune
cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV down-
regulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1
and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on
EBOV tropism, replication dynamics, and elicited immune response and provides a framework for character-
izing host-virus interactions under maximum containment.
INTRODUCTION

Ebola virus (EBOV) is among the world’s most lethal patho-

gens, with estimated case fatality rates of 40%–66% in recent

epidemics (Lo et al., 2017; Ilunga Kalenga et al., 2019).

EBOV infection in humans causes Ebola virus disease
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(EVD), characterized by fever, malaise, muscle aches, and

gastrointestinal distress, rapidly progressing to coagulopathy,

shock, and multi-organ failure (Malvy et al., 2019). While

recently developed vaccines (Kennedy et al., 2017) and mono-

clonal antibody therapeutics (Mulangu et al., 2019) have

shown great promise, case fatality rates in treated patients
er 25, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1383
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still exceed 30%, highlighting the need for further research

into EVD.

Studies of EVD pathogenesis face numerous logistical

challenges that have limited their scope. Experiments with live

EBOV require maximum containment (biosafety level 4 [BSL-

4]), restricting them to a few specialized research facilities. In vivo

studies are especially challenging: human EVD is difficult to

study during deadly outbreaks in resource-limited settings,

necessitating animal models. Commonly used laboratory mice

do not display key features of human EVD when exposed to

naturally occurring EBOV (Bray, 2001; Geisbert et al., 2002).

While other small animal models such as ferrets mostly recapit-

ulate human EVD (Cross et al., 2016, 2018; Kozak et al., 2016),

they are genetically distant from primates and lack the pri-

mate-specific genotype forNPC1 (Diehl et al., 2016; Urbanowicz

et al., 2016), the key cellular receptor for EBOV entry (Carette

et al., 2011; Côté et al., 2011). EVD in nonhuman primates

(NHPs) most closely resembles human EVD (Bennett et al.,

2017; Geisbert et al., 2015; St Claire et al., 2017), but NHP

studies are often limited to small sample sizes.

The two main approaches to studying EVD—analyzing in-

fected cells in culture and infected animals in vivo—have re-

vealed important, if somewhat contradictory, aspects of EBOV’s

impact on the immune system. In culture, EBOV infects myeloid

cells, potently inhibiting both production of type 1 interferon

(Basler et al., 2003; Gupta et al., 2001) and signal transduction

downstream of interferon receptors (Harcourt et al., 1999;

Kash et al., 2006). Under-activation of this key innate antiviral

response hinders the activation of the adaptive immune system

by antigen-presenting cells (Bosio et al., 2003; Lubaki et al.,

2013), a key determinant of fatal outcomes (Baize et al., 1999).

EVD in vivo, by contrast, is characterized by high fever and dra-

matic upregulation of hundreds of interferon-stimulated genes

(ISGs) (Caballero et al., 2016; Liu et al., 2017), in response to

dozens of inflammatory cytokines (Reynard et al., 2019; Wauqu-

ier et al., 2010), suggesting that an aberrant over-activation of

innate and adaptive immunity underlies much of EVD pathology

(Geisbert et al., 2003a, 2003b).

High-throughput single-cell technologies, such as single-

cell RNA-sequencing (scRNA-seq) and protein quantification

by CyTOF (Bendall et al., 2011), have enabled the analysis

of viral infection at unprecedented resolution (Hamlin et al.,

2017; Hein and Weissman, 2019; Newell et al., 2012; O’Neal

et al., 2019; Russell et al., 2018, 2019; Steuerman et al.,

2018; Zanini et al., 2018a, 2018b; Zhao et al., 2020). These

methods quantify the cell-type composition and expression

programs of individual cells—signals that are obscured in

bulk measurements. By quantifying viral RNA within cells,

scRNA-seq allows comparison of gene expression between

infected and uninfected (bystander) cells in a diseased host,

giving a far more nuanced view of host and viral gene expres-

sion within infected cells. This approach can also disentangle

direct effects of infection within a cell from the effects of the

inflammatory cytokine milieu, which bulk approaches cannot

easily do. However, to date, technical constraints have pre-

vented use of these approaches in a BSL-4 setting: many

scRNA-seq technologies require droplet generators and inac-

tivation protocols not well suited to that environment, while
1384 Cell 183, 1383–1401, November 25, 2020
CyTOF instruments involve high-volume exhaust and super-

heated components incompatible with BSL-4 installation (Lo-

gue et al., 2019). Thus, new protocols compatible with sample

inactivation are needed.

Here, we describe the first BSL-4 investigation of a pathogen

with high-dimensional single-cell technologies. We applied Cy-

TOF and Seq-Well—a portable single-cell RNA-seq platform

(Gierahn et al., 2017)—to a total of 90 peripheral blood mononu-

clear cell (PBMC) samples from 21 rhesus monkeys prior to, or

during, lethal EBOV challenge in vivo. We further inoculated

PBMCs with EBOV ex vivo and profiled their gene expression

with Seq-Well. These data allow us to dissect host-virus interac-

tions and comprehensively catalog changes in cell-type abun-

dance and cell state over the course of EVD. Moreover, as

EBOV has an RNA genome and transcribes polyadenylated

mRNAs, we detected viral RNA within individual cells, allowing

us to define EBOV tropism with high resolution and identify

EBOV-associated transcriptional changes in putative pro- and

antiviral genes.
RESULTS

Single-Cell Atlas of RNA and Protein Expression in
Circulating Immune Cells from EBOV-Infected Rhesus
Monkeys
To comprehensively profile EBOV-induced immune dysfunction

in vivo, we collected peripheral immune cells prior to, and at mul-

tiple days post-infection (DPI), corresponding to different stages

of acute EVD (Figure 1). Cohorts ofR3 NHPs were sacrificed as

baseline uninfected controls, at pre-defined DPI, or upon reach-

ing humane euthanasia criteria. These cohorts were recently

characterized for viral load, clinical score, blood chemistry (Ben-

nett et al., 2020), and liver pathology (Greenberg et al., 2020).

Viral load first became detectable in all NHPs on DPI 3, preced-

ing detectable clinical signs (e.g., fever) by 1–2 days (Figure 2A).

Clinical signs of EVD progressed until euthanasia criteria were

reached at DPI 6–8. Cells collected at all time points were

used for CyTOF, while cells collected at baseline and at sacrifice

were also used for Seq-Well (Figure S1A).

After standard quality control filters (STAR Methods), we ob-

tained single-cell transcriptomes from �58,000 PBMCs and

42-protein CyTOF profiles from �15 million (M) PBMCs. We

visualized these data with uniform manifold approximation

and projection (UMAP) non-linear dimensionality reduction

(Becht et al., 2018) (Figures 2B–2H). Unsupervised clustering

of either the transcriptomes or a down-sampled set of 1.1 M

protein profiles (STAR Methods) yielded clusters that could

be readily identified from well-known RNA and protein markers

as the major circulating immune cell types (Figures 2B, 2C,

S1B, and S1C) and agreed well with manual gating (Data S1).

After batch correction of the CyTOF data and integration of

the transcriptomes (STAR Methods), samples were well distrib-

uted across cell-type clusters (Figures S1D–S1G) but separated

by DPI (Figures 2E and 2F), indicating dynamic cell states over

the disease course. By sub-clustering within cell types, we

identified subtypes based on identifying marker genes

(Figure S2).
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Figure 1. Study Design

Under BSL-4 containment, we collected blood samples from a total of 21 rhesus monkeys at multiple days post-EBOV inoculation, extracted peripheral

blood mononuclear cells (PBMCs), and profiled single-cell transcriptomes and 42 protein markers using Seq-Well and CyTOF. Seq-Well quantifies both

host (black) and viral (red) RNA expression, allowing comparisons between infected and bystander cells. Daily clinical parameters (body temperature,

clinical signs, and body weight) were also collected for each animal, and complete blood counts were obtained for each blood draw. See also Figure S1A

and Table S1.
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Cell-Type Abundance, Proliferation, and EBOV Infection
Rates Vary throughout EVD
In addition to the major PBMC cell types, a cluster of immature

neutrophils emerged during EVD, marked by high gene expres-

sion of CD177 and SOD2, and protein expression of CD66 and

CD11b. Based on scRNA-seq, neutrophils increased from

0.2% of cells at baseline to 65.1% in late EVD (by CyTOF, from

9.3% to 49.8%; Figures S3A and S3B). Though neutrophils are

typically removed during density-based PBMC isolations, imma-

ture neutrophils (band cells) are less dense than mature neutro-

phils and can be released from the bone marrow and co-isolate

with PBMCs in infections, including during EVD (Eisfeld

et al., 2017).

We quantified absolute abundance of each cell type during

EVD by combining CyTOF or scRNA-seq data with complete

blood counts (STAR Methods) (Bennett et al., 2020); both esti-

mates were in general agreement (Figure S3A).

Neutrophil abundance increased from baseline by 5-fold by

DPI 4, before returning to baseline levels in late EVD (p < 0.05

for DPI 3–4, p = 0.059 for DPI 5, Wilcoxon signed-rank test, Fig-

ures 2D and S3B). Lymphocyte abundance decreased, with nat-

ural killer (NK) cells declining 1 day before the other cell types (p <

0.05 on DPI 3–6 for B, NK, CD8+ T, and CD4+ T; except for CD4+

T on DPI 5); both observations are in agreement with previous
NHP studies (Fisher-Hoch et al., 1985; Ebihara et al., 2011). All

lymphocyte populations slowly recovered after DPI 4 (Fig-

ure S3B). Monocyte abundance initially increased >2-fold before

declining precipitously between DPI 4 and 5.

Changes in circulating cell-type abundance could reflect

cell proliferation, death, and movement into and out of

bone marrow, lymph, and tissues. While we could not directly

quantify death or movement between compartments, we esti-

mated the fraction of dividing cells using the proliferation

marker Ki67 in both the CyTOF and scRNA-seq data (Fig-

ure S3C). The fraction of Ki67+ monocytes increased from

17% at baseline to 56% at DPI 5 and remained > 40% there-

after (p = 1.1 3 10–5, rank-sum test of DPI 5–8 versus base-

line), suggesting increased proliferation (Figures 2G and S3D).

The maximum on DPI 5 coincided with a decline in absolute

abundance (Figures 2D and S3B), suggesting that losses due

to extravasation or death dominate increases from prolifera-

tion in late EVD. By contrast, neutrophil proliferation remained

roughly constant despite the dramatic changes in abundance,

further evidence that immature neutrophils were released

from the bone marrow during disease. Intriguingly, the frac-

tion of dividing T and NK cells stayed relatively constant until

increasing dramatically on DPI 8 for both NHPs that survived

until then (RNA: Figure S3C; protein: Figure S3D, p = 0.022
Cell 183, 1383–1401, November 25, 2020 1385
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Figure 2. Changing Cell-Type Abundance, Proliferation Rate, and Infection Status during EVD

(A) Time course of viral load (red, left y axis, log10 scale) and clinical score (blue, right y axis). Markers: mean; error bars: minimum and maximum; LOD, limit of

detection by reverse transciption quantitative PCR.

(B and C) UniformManifold Approximation and Projection (UMAP) embedding of Seq-Well (B) and CyTOF (C) data, colored by annotated cluster assignment. See

also Figures S1 and S2, and Data S1.

(D) Fold change (log2 scale) in the absolute abundance (cells/mL of whole blood) of each cell type relative to baseline based on CyTOF clusters. Error bars: mean ±

1 SE. See also Figures S3A and S3B.

(E and F) UMAP embedding of Seq-Well (E) and CyTOF (F) data, colored by the day post-infection (DPI) on which each cell was sampled.

(G) Percentage of Ki67-positive cells (CyTOF intensity >1.8) of each cell type. Error bars: mean ± 1 SE. See also Figures S3C and S3D.

(H) UMAP embedding of Seq-Well data, colored by the percentage of cellular transcripts mapping to EBOV.

(I) Percentage of infected cells by cell type based on Seq-Well. Dashed line: 1% false positive rate threshold for calling infected cells. Error bars: 95% CI on the

mean based on 1,000 bootstraps. See also Figures S1H.
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rank-sum test of DPI 8 versus baseline for NK, CD8+ T, and

CD4+ T). Proliferation is a core component of T cell mediated

viral clearance but requires time for activated T cells to

accumulate; the observation that significant T cell proliferation

only occurred in the 2 NHPs at the latest DPI suggests that

they may have begun to mount a T cell response.
1386 Cell 183, 1383–1401, November 25, 2020
Not all cell types support EBOV entry and replication. We used

scRNA-seq to identify infected cells in vivo based on the pres-

ence of EBOV’s RNA genome and poly-adenylated mRNA (Fig-

ure 2H). We developed a statistical model to identify infected

cells containingmore EBOV reads than expected due to ambient

RNA contamination (STAR Methods) and estimated a mean



A B

D

C

Figure 3. Patterns of Differential Expression across EVD Stages and Cell Types
(A) Fold changes (loge scale) of 1,430 differentially expressed genes (rows) in each cell type at early (E), middle (M), and late (L) EVD (columns), relative to baseline,

with insignificant values (p > 0.2) set to 0. Genes were grouped into modules through unsupervised k-means clustering. See also Tables S2 and S3.

(B) Same as (A) but displaying the average loge fold change of each module.

(C) Distribution of interferon-stimulated gene (ISG) scores for each cell type. White markers: median; bars: interquartile range. See also Figures S4A and S4B.

(D) Differential expression of monocytes in late EVD compared to baseline.
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sensitivity of 51% when R0.1% of cellular transcripts derived

fromEBOV (false positive rate = 1%, Figure S1H).We also spiked

uninfected Madin-Darby canine kidney (MDCK) cells into a sub-

set of PBMC samples to serve as a negative control (Table S1).

Monocytes comprised the main infected cell population

in vivo, first detectable at DPI 4 and with an increasing fre-

quency thereafter (Figure 2I). Consistent with previous studies,

T cells, B cells, and neutrophils were not identified as infected

more often than expected by chance or than MDCK control

cells. We did not observe any infected plasmacytoid (pDCs)

or conventional dendritic cells (cDCs) in circulation, though in-

fected DCs have been observed in culture and in lymph nodes

(Geisbert et al., 2003c).

Monocytes are avid phagocytes and their intracellular viral

RNA could reflect internalization of infected cell debris

rather than infection. However, neutrophils also phagocytose

debris from infected cells (Hashimoto et al., 2007) but do

not support productive EBOV replication (Mohamadzadeh

et al., 2006). Indeed, we do not detect neutrophils to be in-

fected more often than expected by chance (Figure 2I),

consistent with rapid RNA degradation inside of phago-

somes (Huang et al., 2015). Moreover, infected monocyte

transcriptomes predominantly contained viral mRNA rather

than genomic RNA from extracellular virions (see later Re-

sults). These observations suggest that most cells with viral
RNA reflect viral transcription rather than uptake of infected

cell debris or viral particles, though we cannot exclude the

latter possibilities in every cell.

Interferon Response Drives Gene-Expression Programs
across Multiple Cell Types
Having examined the varying abundance of each immune cell

type, we next cataloged changes in their gene-expression pro-

files throughout EVD. We grouped cells into EVD stages: ‘‘incu-

bation,’’ preceding detectable viral load or clinical signs (DPI 1

and 2; CyTOF only); ‘‘early,’’ detectable viral load but no clinical

signs (DPI 3); ‘‘middle,’’ both viral load and clinical signs (DPI 4

and 5); and ‘‘late,’’ when NHPs reached euthanasia criteria

(DPI 6–8) (Figure 1).

We compared transcriptomes from each EVD stage to base-

line for each cell type (STARMethods) and identified 1,437 genes

that were differentially expressed in at least one cell type and

stage with a false discovery rate (FDR) corrected q value <0.05

and a fold change of >30% (Table S2). To identify patterns of

gene expression associated with cell type and time, we per-

formed unsupervised clustering of the differential expression

signatures and identified 11 gene modules (Figures 3A and 3B;

Table S3). We excluded neutrophils, pDCs, cDCs, and plasma-

blasts because of small sample sizes. Three modules that we

term ‘‘global’’ were broadly up or downregulated compared to
Cell 183, 1383–1401, November 25, 2020 1387
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baseline across cell types, and the remaining modules were cell-

type specific.

The ‘‘global up’’ module contained 136 genes, consisting

mostly of regulators and targets of the interferon (IFN) alpha (a)

and gamma (g) signal transduction cascade such as STAT1

and MX1. Gene sets labeled ‘‘response to IFN-a,’’ and

‘‘response to IFN-g’’ were significantly enriched in this module

(IFN-a: odds ratio [OR] = 69.5, q = 8 3 10�39; IFN-g: OR =

45.9, q = 1 3 10�39; Fisher’s exact test; Table S3). This IFN

response was consistent with a >10-fold increase of IFN-g

mRNA in CD8+ T cells from 0.4 transcripts per ten thousand

(TP10K) at baseline to 5.0 at mid EVD (Figure S4A). Type 1 IFN

(a/b) mRNAs also increased, but the change was not statistically

significant, as IFN-a/b mRNAs are expressed transiently (Lin

et al., 2011). To further characterize the IFN response, we scored

each cell by the expression of literature-annotated ISGs. The

median ISG score increased for all cell types and periods (p <

1 3 10�5, rank-sum test, Figure 3C).

To determine whether IFN-a, IFN-g, or both were driving this

response, we identified genes that were annotated as regulated

by only one of the two. Both uniquely IFN-a- and uniquely IFN-g-

regulated genes were significantly enriched in the ‘‘global up’’

module (q < 0.01, IFN-a: OR = 20.9; IFN-g: OR = 16.6), a pattern

that held true for each cell type and EVD stage (Figure S4B).

These results suggest that both IFN-a and IFN-g substantially

and independently influenced the gene-expression profiles of

circulating cells during EVD.

The ‘‘global late down’’ module contained 144 genes that were

predominantly downregulated during late EVD. It contained

numerous regulators of translation (REACTOME_TRANSLATION

gene set enrichment q = 5.2 3 10�7, Table S3), which is consis-

tent with a core antiviral function of IFN being to downregulate

translation (Li et al., 2015).

Cell Type and Temporally Specific Modules Underlie
Cell States
After elucidating the global effects of EBOV infection on immune

cells, we next investigated the transcriptional responses specific

to each cell type.

The 2 modules ‘‘B/T early up’’ and ‘‘lymph late up’’ reflect

changing gene expression of lymphocytes at different stages

of EVD. ‘‘B/T early up’’ is strongly associated with the gene set

HALLMARK_TNFA_SIGNALING_VIA_NFKB (q = 1.3 3 10�9),

including the canonical activation marker CD69 (Testi et al.,

1994), CD48 (McArdel et al., 2016), and the transcription factor

FOS (Foletta et al., 1998). This module is unlikely to represent an-

tigen-dependent activation as it occurs in most lymphocytes,

and several of the top upregulated genes (e.g., GADD45B,

ZFP36L2) are associated with growth arrest rather than prolifer-

ation. In addition, the 5th most enriched gene set in the ‘‘B down’’

module reflects BCR signaling (q = 0.00017), i.e., reduced BCR

activation during EVD. Thus, the ‘‘B/T early up’’ module likely

represents a cytokine-mediated, non-antigen-dependent acti-

vation of lymphocytes.

The ‘‘lymph late up’’ module is upregulated in late EVD across

all lymphocytes. The top associated gene sets implicate DNA

repair (q = 0.00031) and apoptosis via TRAIL (q = 0.00032).

This latter gene set is consistent with previous reports of T cell
1388 Cell 183, 1383–1401, November 25, 2020
apoptosis in EVD (Iampietro et al., 2017; Wauquier et al., 2010)

and with the decline in lymphocyte abundance in our dataset

(Figure 2D).

Monocytes Express Reduced MHC Class II mRNAs and
Proteins Independent of Infection Status
Monocytes were of particular interest as they are well known to

be central to EVD pathogenesis (Geisbert et al., 2003b; Lüdtke

et al., 2016). Consistent with previous observations (Menicucci

et al., 2017), we found that monocytes had far more significant

gene-expression changes than the other cell types: 1,020 genes

(11.6% of genes tested) in at least one EVD stage versus base-

line, compared to 505 genes (6.6%) for B cells, which ranked

second. We therefore focused our attention on characterizing

monocytes.

One prominent feature of the monocyte differential expression

profile was the downregulation of several major histocompatibil-

ity complex (MHC) class II genes bymid and late EVD (Figure 3D).

Monocytes and professional antigen-presenting cells display

viral antigens on MHC class II proteins at the cell surface to stim-

ulate the adaptive immune response. While IFN-g typically upre-

gulates MHC class II gene expression (Steimle et al., 1994), we

observed decreased MHC class II on monocytes despite

elevated IFN-g mRNA levels in T cells (Figure S4A) and wide-

spread IFN-g transcriptional response in monocytes (Fig-

ure S4B). Previous reports have described loss of HLA-DR,

one of the 4 MHC class II proteins, during EBOV infection of

monocytes ex vivo (Hensley et al., 2002), and NHPs and humans

in vivo (Menicucci et al., 2017; Lüdtke et al., 2016). However, the

specific MHC genes affected, cell-type specificity, temporal dy-

namics, and relationship with EBOV infection status, have not

been previously described.

We observed widespread changes in MHC expression

throughout EVD (Figure 4A). The most striking decreases

occurred in MHC class II genes of monocytes (>5-fold for DPA,

DPB, and DRA by late EVD, all q < 1 3 10�21), with smaller

changes in MHC class I genes (<1.7-fold increase for A, A3,

and B, q < 5 3 10�4). B cells displayed modest reductions in

MHC class II genes as well (>1.9-fold for DPA, DPB, DRA, and

DQA1, q < 1 3 10�22). pDCs and cDCs showed no statistically

significant reduction of any MHC class II gene (q > 0.05), but

our dataset contained few DCs (Table S1) so we had less power

to detect these effects. CyTOF revealed similar patterns in pro-

tein levels (p < 1 3 10�61 for monocytes at all stages, rank-

sum test; p = 0.0012 for B cells at late EVD, Figures 4B and

S4C). This phenomenon held true for each individual NHP:

even as monocytes became activated, demonstrated by upre-

gulation of the canonical activation marker CD38 (Amici et al.,

2018) (Figure 4C; Data S1), they showed dramatic downregula-

tion of HLA-DR protein expression at DPI 5–8 (p = 9.5 3 10–7,

Figure 4D).

Reduced MHC class II expression in monocytes was not a

direct consequence of EBOV infection of those cells. Only a

small (�5%) percentage of monocytes were infected at mid

EVD (Figure 2I), too small to explain the size of the reduction.

In fact, expression of MHC class II genes was comparable or

higher in infected cells than in uninfected (bystander) cells

(Figure 4E).
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Figure 4. Monocytes Dramatically Reduce Expression of MHC Class II Proteins Independent of Infection Status

(A) Expression of major histocompatibility (MHC) or MHC-associated genes (rows) in key cell types at baseline (B), early (E), middle (M), or late (L) EVD (columns).

Circle size: percentage of cells in that group in which the gene was detected; color: mean expression in Z score normalized, loge transcripts per 10,000 (TP10K).

The ‘‘MAMU-’’ prefix, which designates MHC genes in rhesus monkeys, was removed; the ‘‘HLA-’’ prefix is indicated by ‘‘(H).’’

(B) CyTOF intensity of HLA-DR protein in antigen-presenting cells. Boxes: median and interquartile range; whiskers: 2.5th and 97.5th percentiles. Colored stars

indicate significant decreases from baseline (rank-sum test p < 0.05) with color corresponding to stage.

(C and D) Fold change (log2 scale) in average CD38 (C) and HLA-DR (D) CyTOF intensity onmonocytes at each DPI relative to baseline, connected by colored lines

for each NHP. See also Figure S4C and Data S1.

(E) Average gene expression (loge TP10K) for four MHC class II genes in monocytes, stratified by cell-infection status. Error bars: 95% CI on the mean based on

200 bootstraps.
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We identified genes correlated with MHC class II in mono-

cytes (STAR Methods), as they may be part of a co-regulated

expression program. Many of the most correlated genes are

functionally involved in antigen presentation, including CD74,

LGMN, and B2M (Figure 4A; Spearman r = 0.42, 0.41, 0.33,

respectively, all p < 10�170). One of the most associated genes

was ZFP36 (Spearman r = 0.43, p < 10�296), which directly reg-

ulates turnover of MHC class II and other immune-related

mRNAs (Pisapia et al., 2019). Thus, MHC class II and other

genes involved in antigen presentation may be part of a

single transcriptional module, co-regulated by ZFP36 and/or

other genes.

Differentially Expressed Genes between Infected and
Bystander Monocytes
Next, we characterized genes that were differentially expressed

between infected and bystander monocytes, as these could

represent host entry factors, restriction factors, or genes that
are regulated by infection within a cell. For this and subsequent

analyses, EBOV transcripts were excluded from library size

normalization to avoid bias in estimating host gene expression

in infected cells (STAR Methods). 505 genes were differentially

expressed between infected and bystander monocytes (q <

0.05) of which 276 changed by >30% (Figure 5A; Table S4).

We observed 3 broad categories of differentially expressed

genes: those associated with monocyte subtypes, monocyte-

to-macrophage differentiation, and ISGs.

Emergence of CD14– CD16– Immature Monocyte
Precursors Suggests Emergency Myelopoiesis
CD14 and FCGR3 (which codes for CD16) were overexpressed

in infected monocytes relative to bystanders. These two genes

define classical (CD14+) and non-classical (CD16+) monocytes

(Kapellos et al., 2019), which are the dominant blood monocyte

subsets in healthy individuals. Classical monocytes are highly

phagocytic scavenger cells, while non-classical monocytes are
Cell 183, 1383–1401, November 25, 2020 1389
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involved in complement and antibody-mediated phagocytosis.

At baseline, these subsets were easily detectable as 2 distinct

clusters, marked by high expression of CD14 (Figure 5B, bottom

half of the blue lobe of DPI panel) or CD16 (top half of the

blue lobe).

However, monocyte subsets changed dramatically during

EVD. Both single-positive CD14+ and CD16+ monocytes

declined, while 2 unusual populations emerged: a large popula-

tion of CD14– CD16– cells (double negatives [DNs]) and a smaller

population of CD14+ CD16+ cells (double positives [DPs]) (Fig-

ure 5C). While 87.6% of cells fell into single CD14+ or CD16+

bins at baseline, this dropped to 33.8%, 35.6%, and 15.2% in

early, middle, and late EVD, respectively. We confirmed this

pattern at the protein level by CyTOF (Figure 5D).

At late EVD, the most frequent population was DN cells, which

rose to make up 70.4% (by scRNA-seq) or 56.7% (by CyTOF) of

monocytes. As they expressed neither CD14 nor CD16, we

confirmed that their gene-expression profiles were most corre-

lated with conventional monocytes and not other cell types (Fig-

ure S5A). DNs first emerged on DPI 3, coinciding with the 2-fold

increase inmonocytes (Figure 2D), andwith the increasedmono-

cyte proliferation observed in mid EVD (Figure 2G). The DN pop-

ulation is in fact highly proliferative: while 0% of monocytes at

baseline expressed elevated levels of Ki67 (smoothed log

TP10K >1), 37% of DN monocytes exceeded this threshold by

late EVD (Figures S5B and S5C). Therefore, DNs underlie the

increased monocyte proliferation in mid EVD.

To determine whether DNs arise in human EVD, we re-

analyzed published CyTOF data from 4 patients during the

2013–2015 epidemic (McElroy et al., 2020) (STAR Methods). All

of the human cases showed a loss of conventional CD14+ and

CD16+ single-positive monocytes and an emergence of prolifer-

ative DN monocytes during acute disease (Figures 5E and S5D).

Then, the DNs disappeared and were replaced by conventional

CD14+ and CD16+ monocytes as the patients recovered. Thus,

DNs are a feature of human sub-lethal cases and our lethal

NHP model.
Figure 5. ISG Suppression, Co-expression of CD14 and CD16, and

Infectivity
(A) Differential expression between infected and bystander monocytes from DPI 5

downregulated during in vitro differentiation of monocytes into macrophages). S

(B) UMAP embedding of monocyte gene expression data, colored by (left-to-ri

percentage of cellular transcripts mapping to EBOV.

(C) Smoothed expression (loge TP10K) ofCD14 andCD16 for monocytes during E

percentage of cells in each subset at that EVD stage. See also Figures S5A and

(D) CD14 and CD16 protein expression (CyTOF intensity) onmonocytes at each D

scatterplot. See also Figure S5C.

(E) CD14 and CD16 protein expression (CyTOF intensity) on monocytes in a ca

symptom onset. See also Figure S5D.

(F) Percentage of assignment of NHP CD14/CD16 subsets at each EVD stage

progenitors, PBMC-CD16+: circulating CD16+ monocytes, PBMC-CD14+: circula

(G) Percentage of infected monocytes in each CD14/CD16 subset in late EVD. E

(H) Association between macrophage score (x axis) and percentage of infected c

y axis, blue, loge TP10K). We ordered monocytes from late EVD by macrophage s

400-cell sliding windows. See also Figures S6A–S6C.

(I) MX1 expression (loge TP10K) in monocytes at baseline, and uninfected bystan

whiskers: 2.5th and 97.5th percentiles. Statistical significance was assessed by r

(J) Scatterplot of ISG score (y axis) versus percentage of cellular transcripts map

significance was assessed by Spearman r.
Mature monocytes in circulation are non-dividing (van Furth

et al., 1979), but infection and cancer can induce the release of

proliferating immature myeloid cells from the bone marrow, a

process known as emergency myelopoiesis (Chiba et al., 2018;

Cuenca et al., 2015; Al Sayed et al., 2019). We therefore hypoth-

esized that the DN population may derive from emergency

myelopoiesis.

If DNs result from emergencymyelopoiesis, their gene expres-

sion may be more similar to bone marrow monocyte precursors

(BM-MPs) than circulating monocytes. To test this, we analyzed

a reference scRNA-seq dataset of BM-MPs from healthy human

bone marrow (Hay et al., 2018) and mature monocytes from hu-

man PBMCs (Figures S5E–S5H; STAR Methods). Compared to

mature monocytes, BM-MPs showed lower expression of

CD14 and FCGR3A (the human CD16 gene) and higher expres-

sion ofMPO, AZU1, S100A8, and S100A9 (Figures S5I and S5J).

In our data, the expression of those genes in DNs at late EVD

relative to baseline monocytes mirrored BM-MPs, suggesting

their similarity (Figure S5K). Moreover, in a nearest-neighbor

test (STAR Methods), DNs were more likely, than conventional

subtypes, to be matched with BM-MPs (Figure 5F). Thus, DNs

may represent immature monocytes released from the bone

marrow in response to the EVD cytokine milieu.

Monocytes Expressing Markers of Macrophage
Differentiation Are Enriched for EBOV Infection
In addition to DNs, we also observed CD14+ CD16+ DP cells,

which rose tomake up 20.4%of themonocytes bymid EVD (Fig-

ure 5C). A similar increase in DP monocytes has been observed

in other viral infections (Michlmayr et al., 2018; Zanini et al.,

2018a). We found that the DP population harbored a dispropor-

tionately high percentage of EBOV-infected cells (Figure 5G),

consistent with the fact that CD14 and CD16 were each higher

in EBOV-infected monocytes than in bystanders (Figure 5A). At

late EVD, 22.1% of DPs were infected compared to only 1.7%

of DNs. Thus, the differential expression ofCD14 andCD16 in in-

fected cells results from increased infection of the DP cells,
Expression of Macrophage Genes Are Associated with Monocyte

–8. Genes are colored by membership in sets of genes (Mac. Up/Down = up- or

ee also Table S4.

ght) DPI, CD16 expression (loge TP10K), CD14 expression (loge TP10K), and

VD. Boxes: CD14+, CD16+, DN, and DP subsets described in the text; numbers:

S5B.

PI. Bivariate kernel density plot with 200 randomly sampled cells is overlaid as a

se of human EVD, colored by Ki67 protein expression for multiple days after

to human myeloid reference populations (BM-MP: bone marrow monocyte

ting CD14+ monocytes). See also Figures S5E–S5K.

rror bars: 95% CI on the mean based on 1,000 bootstraps.

ells (left y axis, red) and expression of the differentiation marker NR1H3 (right

core, and averaged percentage of infected cells and NR1H3 expression within

ders or infected cells in late infection. Boxes: median and interquartile range;

ank-sum test. See also Figure S6D.

ping to EBOV (x axis) for infected monocytes in late EVD (DPI 6–8). Statistical
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rather than increased expression ofCD14 on classical andCD16

on non-classical monocytes.

Differentially expressed genes between infected and

bystander monocytes (Figure 5A; Table S4) and between DP

and DN monocytes (Figure S6A; Table S5) were enriched for

monocyte-to-macrophage differentiation associated genes,

including known EBOV entry factors. Freshly isolatedmonocytes

are largely refractory to EBOV infection in cell culture, but EBOV

entry factors are upregulated during in vitro macrophage differ-

entiation, allowing increased infection (Martinez et al., 2013).

In vivo, we observed higher levels of macrophage differentiation

markers in infected cells than in bystanders, including the known

EBOV entry factors cathepsin L (CTSL) and B (CTSB), and

GNPTAB (Carette et al., 2011; Gnirss et al., 2012) (q = 6.7 3

10�9, 3.8 3 10�7, and 2.1 3 10�3, respectively). By contrast,

the cellular receptor NPC1 was not significantly differentially ex-

pressed, suggesting that natural variability in NPC1mRNA does

not influence EBOV infectivity within circulating monocytes

in vivo.

To determine whether upregulation of these factors was part

of a general macrophage differentiation program, we used

gene sets derived from published bulk RNA-seq data of primary

blood monocytes before and after differentiation into macro-

phages in vitro (Dong et al., 2013). Genes that are upregulated

during in vitro differentiation were significantly enriched in in-

fected cells (OR = 3.5, p = 3.13 10�11, Fisher’s exact test), while

downregulated genes were significantly enriched in bystanders

(OR = 3.7, p = 4.2 3 10�8, Fisher’s exact test; combined chi-

square goodness of fit test p = 2.2 3 10�30). Additional differen-

tiation studies yielded similar findings (chi-square goodness of fit

test p = 2.6 3 10�9 [Saeed et al., 2014], Fisher’s exact test p =

5.73 10�12 [Italiani et al., 2014]). Genes associated with differen-

tiation into M2-polarized macrophages were more enriched

among infected cells than those of M1-polarized macrophages

(OR = 7.8, p = 1.3 3 10�10 versus OR = 3.3, p = 1.6 3 10�3 (Ital-

iani et al., 2014), Table S4).

The proportion of infected cells increased along with a score

reflecting the expression of genes associated with macrophage

differentiation (STAR Methods). Over the range of scores, we

observed that the percentage of infected cells rose �5-fold

from 3% to 15% (Figure 5H).

Among the monocyte subsets, DPs generally had the highest

macrophage scores (Figures S6A and S6B). Thus, some of the

enrichment of infected cells among the DP subset could be

attributed to their more macrophage-like gene expression.

However, there was substantial heterogeneity in macrophage

scores within monocyte subsets, and macrophage score and

CD14/CD16 subset were independently predictive of infectivity.

Stratifying cells in each subset by macrophage score, less

macrophage-like DPs were still more likely to be infected than

more macrophage-like DNs (p = 1.9 3 10�25, Fisher’s exact

test, Figure S6C). Yet, within the DPs, more macrophage-like

cells were more likely to be infected than less macrophage-like

cells (p = 0.0003, Fisher’s exact test, Figure S6C). Similarly,

when we fit a logistic regression predicting the infection status

of each cell using macrophage score, smoothed CD14 and

CD16 expression values, and a CD14xCD16 interaction term

(STAR Methods), both the CD14xCD16 interaction term (which
1392 Cell 183, 1383–1401, November 25, 2020
is highest in DPs) and macrophage score were positively associ-

ated with infection, while the CD14 and CD16 terms were nega-

tively associated (p < 0.01 for all coefficients).

ISGs Are Downregulated in InfectedMonocytes Relative
to Bystanders
Finally, we noticed that several key ISGs such as MX1 were ex-

pressed at lower levels in infected cells than in bystanders

(MAST q = 7.7 3 10�14, rank-sum test p = 2.0 3 10�5, Figures

5A and 5I). To determine whether infection suppressed overall

ISG expression, we assessed themagnitude of the IFN response

between infected and bystander cells at late EVD. While both

bystander and infected monocytes at late EVD had higher ISG

scores than monocytes at baseline, ISG scores were lower in

infected cells than bystanders (not statistically significant by

rank-sum test, Figure S6D). More strikingly, there was a signifi-

cant negative correlation between ISG score and the percentage

of cellular transcripts derived from EBOV (i.e., the intracellular

viral load) (Spearman r = �0.62, p = 1.1 3 10�11, Figure 5J).

This suggests that ISGs are downregulated during viral replica-

tion within infected cells (see later Results).

Single-Cell Transcriptomics of Ex Vivo-Infected PBMCs
Reveals Temporal Dynamics in Viral Gene Expression
In order tomore thoroughly probe viral and host gene expression

during the viral life cycle, we isolated PBMCs from 2 healthy rhe-

susmonkeys (NHP1 and NHP2) and inoculated them ex vivowith

live EBOV, EBOV rendered replication-incompetent by gamma

irradiation (Feldmann et al., 2019), or only media as a control

(Figure 6A). We performed scRNA-seq using Seq-Well at 4 h or

24 h post-infection (HPI), corresponding to early (start of viral

transcription) and middle-to-late stages (viral genome replica-

tion, virion assembly) of the viral life cycle. Unlike alternative

systems such as virion-like particles, inoculation with gamma-

irradiated EBOV allowed us to profile cells containing viral RNA

and characterize the host response in the absence of effective

viral transcription and translation.

We obtained single-cell transcriptomes from 50,646 PBMCs

ex vivo and observed similar cell-type representation, clustering

by treatment condition, and distribution of EBOV-infected cells

as with the in vivo collections (Figures S7A–S7C). ISG scores

were higher in NHP1 than NHP2 (Figures S7D–S7G), so we

analyzed cells from each NHP separately and jointly to avoid po-

tential artifacts. While we did not observe infected DCs in vivo,

we found that 16% of DCs (16.0% in NHP1, 15.7% in NHP2)

inoculated with live virus ex vivo were infected by 24 HPI

(Figure S7H).

Ex vivo, monocytes were the predominant infected cell type,

with >65% infected by 24 HPI (Figures S7H and S7I). 11.8% of

the monocytes treated with irradiated virus also contained a sta-

tistically significant number of viral reads, even though gamma

irradiation damages the viral genome and eliminates productive

replication (Feldmann et al., 2019). As expected, these cells had

a significantly lower fraction of EBOV reads per cell than those

treated with live virus (Figure S8A). Moreover, viral RNAs from

the cells treated with irradiated virus were substantially less likely

to be coding-sense mRNA transcripts than those from cells with

live virus (44% versus 92%, Figure S8B). Thus, our method can
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Figure 6. Viral Transcriptional Dynamics of Infected Monocytes In Vivo and Ex Vivo

(A) Schematic of EBOV challenge of PBMCs ex vivo. See also Figure S7.

(B and C) Percentage of cellular transcripts derived from EBOV (intracellular viral load) in monocytes from PBMCs inoculated with live virus ex vivo (B) or from

PBMCs of NHPs infected in vivo (C). See also Figures S8A–S8D.

(D) Schematic of EBOV transcription. The viral RNA-directed RNA-polymerase transcribes each gene sequentially but occasionally releases the genomic RNA

template, ending transcription. As a result, transcription frequency decreases from NP to L.

(E and F) Proportion of each EBOV gene versus viral load (log10 scale), ex vivo (E) or in vivo (F). We ordered infected monocytes by viral load and averaged the

percentage of each viral gene over 50-cell sliding windows. Bands: mean ± 1 SD. See also Figures S8E and S8F.
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detect fragments of viral genomic RNA from irradiated virus in

cells, but these are not productive infections.

The intracellular viral load varies over several orders of magni-

tude (Figures 6B and 6C). While most cells harbored viral loads

<0.1%, a substantial minority had loads >10%, with a maximum

of 57.5% in vivo and 52.3% ex vivo. The observed heterogeneity

was not due to differential transcriptome coverage, because

cells with low and high viral load had a similar range of transcripts

detected (Figures S8C and S8D).

The ex vivo data gave us an opportunity to test predictions

based on established models of EBOV transcription. Transcrip-

tion of EBOV’s 7 genes by the viral RNA-directedRNApolymerase

L follows the canonical stop-start mechanism of filoviruses and

other non-segmented negative-strand (NNS) RNA viruses (Brau-

burger et al., 2014, 2015). L initiates transcription at the 30 end
of the genome, and processes from 50 to 30; at each gene’s tran-
scription termination signal, L either falls off the genomic RNA

template or reinitiates transcription of the subsequent gene (Fig-

ure 6D; Mühlberger, 2007).NP is transcribed first and at the high-

est level, proceeding down the genome to L last and at the

lowest level.

When we quantified the relative expression of EBOV genes as

a function of viral load, we observed an unexpected accumula-

tion of GP mRNA (Figures 6E and 6F) in both NHP1 and NHP2

(Figures S8E and S8F). At low viral loads, both in vivo and

ex vivo, the gene-expression distribution roughly matched the

expected pattern, with most transcripts derived from NP, and

the fewest from the 50 genes VP30, VP24, and L. In agreement

with this pattern, cells inoculatedwith irradiated virus were highly

enriched in NPmRNA (Figure S8B), suggestive of RNA fragment

transcription. However, as viral load increased in cells infected

with live EBOV, GP unexpectedly became the most abundant
Cell 183, 1383–1401, November 25, 2020 1393
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Figure 7. EBOV Infection Downregulates Host Antiviral Genes and Upregulates Putative Pro-viral Genes

(A andB) Association between host gene expression and viral loadwithin infectedmonocytes fromPBMCs 24HPI treatedwith live virus ex vivo (A) or fromPBMCs

of NHPs in vivo on DPI 5–8 (B). See also Table S6.

(C and D) Select negatively (C) and positively (D) associated genes inmonocytes from ex vivo infections.We ordered infected cells by viral load and averaged gene

expression (loge TP10K) over 100-cell sliding windows; Spearman correlation (r) is given in the legend. Boxplots show gene expression in uninfected cells (boxes:

median and interquartile range; whiskers: 2.5th and 97.5th percentiles). See also Figures S8G and S8H.
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viral transcript. While higher levels ofGP thanNPRNA have been

observed in previous bulk RNA-seq datasets (Menicucci et al.,

2017; Bosworth et al., 2017; Albariño et al., 2018), our data indi-

cate that this phenomenon occurs within individual cells, as a

life-cycle-dependent regulation of viral gene expression.

EBOV Infection Downregulates Host Antiviral Genes and
Upregulates Putative Pro-viral Genes
Next, we exploited natural variability in viral load to identify host

gene-expression changes correlated with viral replication, which

may represent pathways directly regulated by infection. Instead

of testing for differential expression between infected and

bystander cells as we did previously, we looked for continuous

association between viral abundance and host transcript levels

in infected monocytes (STAR Methods). This identified 264

genes that were negatively correlated and 211 genes that were

positively correlated with viral load ex vivo (q < 0.05), of which

34 changed by >30%per 10-fold increase in viral load (Figure 7A;

Table S6).
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Consistent with our previous observation that ISG score

decreased with intracellular viral load, individual ISGs decreased

dramatically with EBOV levels, both ex vivo and in vivo (e.g.,

MX1, q = 1.5 3 10�24, 7.4 3 10–9, respectively, Figures 7A and

7B). Ex vivo, the most negatively associated gene was STAT1,

the master transcriptional regulator of the IFN response (q =

4.9 3 10�41 ex vivo, p = 0.0072 in vivo but not significant by

FDR). Previous experiments have shown that the EBOV protein

VP24 inhibits STAT1 activity by blocking its translocation to the

nucleus (Reid et al., 2006). However, this is the first observation

that STAT1mRNA levels decrease with viral replication within in-

fected cells in vivo.

The expression of STAT1 and other negatively regulated ISGs

remained relatively constant as EBOV levels rose to 1% of

cellular transcripts but declined precipitously with higher EBOV

levels (Figure 7C). This suggests that there is a delay before

EBOV can downregulate host antiviral genes since it must tran-

scribe and translate VP24 and other immunomodulatory proteins

before they can act. The trajectories of these host antiviral genes
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were consistent between donor NHPs ex vivo (Figure S8G), even

though more cells from NHP1 mounted an IFN response

than NHP2.

Only a handful of host genes increased in expression along-

side viral load, but their trajectories were consistent between

the two NHPs (Figure S8H). The most dramatically upregulated

gene was DYNLL1 both ex vivo and in vivo (q = 2.5 3 10�27,

1.5 3 10–5, respectively, Figures 7A and 7B). DYNLL1 is a

multi-functional protein involved in intracellular transport (Bar-

bar, 2008). Intriguingly, DYNLL1 was previously shown to in-

crease EBOV replication in a minigenome reporter assay (Luthra

et al., 2015). Our data show that DYNLL1 mRNA is upregulated,

starting when EBOV RNA constitutes 0.1%–1% of transcripts,

before ISGs decrease (Figure 7D).

Several other genes that we identified as upregulated along-

side viral replication have known or speculated pro-viral func-

tions in protein folding and synthesis. For example, HSPA5

(q = 4.5 3 10�22 ex vivo, p = 0.04 in vivo but not significant by

FDR) encodes a chaperone protein that is an essential host fac-

tor for EBOV (Reid et al., 2014), but upregulation of its mRNA has

not been previously observed. Other hits such as DDIT3 and

NFE2L1 (q = 1.3 3 10–10, 1.8 310�8 ex vivo, respectively) are

sensors of ER and oxidative stress (Kim et al., 2016) and have

been implicated in cell lines infected with Marburg virus (Hölzer

et al., 2016) and in monocytes in EBOV-infected NHPs (Meni-

cucci et al., 2017). We observe a corresponding enrichment of

3 gene sets associated with ER stress response, most notably

BUYTAERT_PHOTODYNAMIC_THERAPY_STRESS_UP (q =

4.73 10�14, Fisher’s exact test, Table S6). Increased translation

due to viral replication can drive cell stress and also deplete

tRNAs and free amino acids (Albers and Czech, 2016). Upregu-

lation of IARS—isoleucine tRNA synthetase (q = 8.4 3 10�9

ex vivo)—may reflect this cellular burden. 3 gene sets associated

with depletion of amino acids were significantly upregulated,

most notably KRIGE_RESPONSE_TO_TOSEDOSTAT (amino-

peptidase inhibitor)_24HR_UP (q = 2.3 3 10�6, Fisher’s exact

test, Table S6), suggesting that viral replication exhausts cellular

amino acid stores. This hypothesis is consistent with prior obser-

vations of depleted amino acids in the plasma of fatal human

EVD cases (Eisfeld et al., 2017).

DISCUSSION

Despite recurrent outbreaks, the molecular basis of EVD patho-

genesis remains understudied due to the biosafety and logistical

challenges of such research. By adapting CyTOF and scRNA-

seq approaches for use in BSL-4 containment, we comprehen-

sively surveyed the molecular correlates of disease progression

and viral replication in circulating immune cells in a NHP model

of EVD. This study, which is the first high-parameter, single-

cell investigation under BSL-4 containment, shed new light

on changes in peripheral cell-type and -state abundance

throughout lethal EVD, characterized the EBOV-infected popula-

tions of circulating immune cells, and identified genes regulated

by the cytokine milieu or by direct EBOV infection.

We characterized transcriptional- and protein-level changes in

monocytes during EVD in NHPs, some of which reflect disruption

of their physiological antiviral function. In agreement with the
well-established importance of monocytes in EVD (Menicucci

et al., 2017), we observed that they had over twice as many

differentially expressed genes as other cell types, including

genes involved in IFN response, cytokine production, myeloid

differentiation, and antigen presentation. Monocytes became

activated by IFN during EVD, which normally upregulates MHC

class II genes (Steimle et al., 1994). Surprisingly, almost all

MHC class II and related antigen-presentation genes were strik-

ingly downregulated. Moreover, MHC class II expression

decreased in both infected and uninfected monocytes, suggest-

ing that the decrease was caused by the cytokine milieu.

Reduced monocytes antigen presentation might explain why a

failed or delayed adaptive immune response is a hallmark of fatal

EVD in humans (Baize et al., 1999; Lüdtke et al., 2016).

As EVD progressed, conventional CD14+ and CD16+monocyte

subsets largely disappeared and were replaced by two popula-

tions: CD14+ CD16+ (DP) monocytes, which increase in other in-

fections (Michlmayr et al., 2018; Zanini et al., 2018a), and an unex-

pectedCD14– CD16– (DN) population, that, to our knowledge, has

not been previously described in viral infection. The DN mono-

cytes were highly proliferative, with transcriptomes more similar

to bone marrow monocyte precursors than circulating mono-

cytes. This suggests that they are the product of emergencymye-

lopoiesis, inwhich cytokines stimulate the bonemarrow to release

immature myeloid-lineage cells (Chiba et al., 2018; Hérault et al.,

2017; Al Sayed et al., 2019). DNs had high expressionof neutrophil

granule genes such as MPO and AZU1, suggesting that they

represent myeloid progenitors prior to the branching of neutrophil

and monocyte lineages. We also identified the emergence of an

analogous DN population in human acute EVD cases. This finding

highlights the power of high-parameter methods such as scRNA-

seq and CyTOF: despite little-to-no detection of CD14 or CD16,

therewere enoughother RNA and proteinmarkers to reliably iden-

tify these DNs as monocyte precursors.

Our data refine the picture of EBOV’s tropism in NHPs,

demonstrating that the predominant infected population in circu-

lation are DPmonocytes expressingmarkers of macrophage dif-

ferentiation. Myeloid cells are known to bemajor targets of EBOV

(Geisbert et al., 2003b, 2003c), including DCs ex vivo and in

lymph nodes in vivo (Geisbert et al., 2003c). While we too

observe infected DCs ex vivo, in vivo we only detected infected

monocytes among circulating immune cells. This might reflect

biological phenomena required for DC infection, such as cell

density, cell-to-cell contact, or viral dose. Viral tropism heavily

depends on viral entry, during which the cellular receptor

NPC1 and other entry factors are required. While we did not

observe differences in NPC1 mRNA expression between in-

fected and uninfected monocytes, expression of known EBOV

entry factors like cathepsin B and L (Chandran et al., 2005; Mar-

tinez et al., 2013; Schornberg et al., 2006) were associated with

infection. Cultured monocytes are only susceptible to EBOV

infection upon differentiation (Martinez et al., 2013), and our

data further show that infectivity in vivo strongly correlates with

physiological variability of monocyte differentiation state.

Furthermore, our data show that the relative abundance of DP

monocytes, the preferred circulating cell targets of EBOV,

increases over the course of infection, perhaps driven by the

cytokine milieu of EVD.
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Among infectedmonocytes,weobservedsubstantial heteroge-

neity in intracellular viral load (up to57.5%of transcripts),whichwe

exploitedasaproxy for stagingEBOV’sprogression through its life

cycle. This enabled us to better understand the over-representa-

tion of GPmRNA that had been observed in bulk RNA-seq data-

sets (Menicucci et al., 2017). In our data, cells with low viral load

(reflecting early infection) had EBOV transcript abundances that

mirrored the genome organization as expected (Brauburger

et al., 2014, 2015)—i.e., expressionwas highest forNP and lowest

for L. But cells with high viral load had higher abundance of GP

than NP mRNA, suggesting that alternate transcription or post-

transcriptional regulation, such as increased mRNA stability,

may account for accumulation of GP late in the viral life cycle.

Translation ofGP, a structural protein, at the endof the viral life cy-

cle coincides with virion assembly and thus may benefit EBOV

fitness, as has been observed for other viruses (Honess and Roiz-

man, 1974; Irigoyenet al., 2016;Kinget al., 2018; Shin et al., 2015).

Many host ISGs negatively correlated with intracellular viral

load, and our data suggest that viral infection downregulates

ISG expression in vivo, rather than preferentially infecting cells

with low ISG levels. First, there are multiple established mecha-

nisms by which EBOV downregulates ISGs, such as by prevent-

ing STAT1 from translocating to the nucleus (Reid et al., 2006).

Second, monocytes mount a strong ISG response by DPI 3,

yet the percentage of infected cells rises gradually from DPI 4

onward, implying that EBOV is able to replicate despite the

inhibitory activities of ISGs. Third, we do not observe any cells

with low (0.01%–0.1%) viral load and low ISG levels. Since a

newly infected cell begins with low viral load, this observation im-

plies that EBOV is infecting monocytes that are mounting a full

IFN response. Because EBOV potently suppresses IFN produc-

tion in infected cells, it remains unclear how the IFN response is

triggered. Possibilities include incomplete IFN antagonism in in-

fected cells, defective particles, or genomes that fail to suppress

IFN (Calain et al., 1999, 2016; Russell et al., 2019), pathogen- and

danger-associated molecular patterns released from dying in-

fected cells (Cárdenas et al., 2006; Reynard et al., 2019), and

other classes of cytokines produced from cells that do not sup-

port EBOV replication (Harcourt et al., 1999; Rhein et al., 2015).

Better understanding this antiviral response could be the key to

novel therapeutics or vaccines (Woolsey et al., 2019).

Several putative pro-viral host genes were positively corre-

lated with intracellular viral load, suggesting that they are directly

responding to, or are regulated by, the presence of virus in in-

fected cells (Figures 7A, 7B, and 7D). DYNLL1 was the gene

most associatedwith viral load. Previouswork identified an inter-

action between DYNLL1 and EBOV VP35 (Kubota et al., 2009)

that increased EBOV RNA synthesis in a minigenome assay (Lu-

thra et al., 2015). DYNLL1 increases replication of rabies virus

(Tan et al., 2007) an NNS virus similar to EBOV. Here, we showed

that DYNLL1 expression is upregulated within infected cells

in vivo, suggesting that EBOV manipulates cellular pathways to

encourage a pro-viral cellular environment. Nuclear DYNLL1

typically represses its own transcription factor ATMIN (Jurado

et al., 2012); we hypothesize that EBOV VP35 sequesters

DYNLL1 protein in the cytoplasm, relieving repression of ATMIN,

thus upregulating DYNLL1 mRNA. Additional genes that were

upregulated with intracellular viral load were associated with
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translation and cell stress (e.g., HSPA5, IARS), reflecting the

strain placed on cells by viral replication. By computationally

staging cells within the viral life cycle, we nominated several pu-

tative pro-viral genes for further study, highlighting the utility of

single-cell profiling to study host-virus interactions.

Our data provide insights into circulating immune cells in a le-

thal model of EVD in rhesus monkeys; however, there are several

key aspects of pathogenesis that are not reflected in this study.

Much of the clinical syndrome of EVD is due to viral replication

and pathology in tissues, including the liver, vasculature, lung, kid-

ney, lymph nodes, and bone marrow (Martines et al., 2015).

Studies of these compartments would be complementary to

ours as immune cells pass through the circulation and extravasate

into tissues to fight infection. An additional limitation of our study is

that human EVD is not always lethal and has slower clinical

kinetics than the uniformly lethal model used here. Studying

EVD in survivors, either in human clinical cases or in non-uniformly

lethal animal models, could substantially broaden our under-

standing of pathogenesis and successful adaptive immunity.

The accumulation of additional host-pathogen single-cell data-

setspromises togreatly enhanceourunderstandingof infectionby

allowing us to determine which features of pathogenesis are

shared between, or specific to, individual pathogens. For

example, our scRNA-seq and CyTOF data identified several mo-

lecular commonalities between EVD and immunosuppressive

septic shock (Bray and Mahanty, 2003), which is also character-

ized by loss of MHC class II expression in monocytes (Monneret

and Venet, 2014; Reyes et al., 2020), increased DP monocytes

(Fingerle et al., 1993; Nockher and Scherberich, 1998), and emer-

gency myelopoiesis (Bomans et al., 2018; Cuenca et al., 2015;

Reyes et al., 2020). Soluble mediators, including cytokines and

glucocorticoids, couldbekeydriversofbothEVDandsepsispath-

ophysiology. Tumor necrosis factor (TNF)-a signaling has been

extensively implicated as a driver of systemic loss of vascular

resistance and shock during EVD. Glucocorticoids have been

less well studied in EVD but decrease MHC class II during sepsis

(Hawrylowicz et al., 1994; Le Tulzo et al., 2004) and reduce CD14

expression (Nockher and Scherberich, 1997) while increasing the

abundanceofDPmonocytes (Liuetal., 2015). Indeed, theconnec-

tion between EVD and sepsis may be direct: studies have found

bacterial invasion during EVD in NHPs (Reisler et al., 2018) and

in humans (Carroll et al., 2017), with immune signatures that

resemble sepsis (Eisfeld et al., 2017).

In summary, this work expands our understanding of EVD and

provides a general paradigm for exploring molecular features of

host-pathogen interactions, such as tropism and dysregulation

of cell circuitry in infected cells, which can be applied to other

emerging pathogens.
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H., and Pöhlmann, S. (2012). Cathepsins B and L activate Ebola but not Mar-

burg virus glycoproteins for efficient entry into cell lines and macrophages in-

dependent of TMPRSS2 expression. Virology 424, 3–10.

Greenberg, A., Huber, B.R., Liu, D.X., Logue, J.P., Hischak, A.M.W., Hart, R.J.,

Abbott, M., Isic, N., Hisada, Y.M., Mackman, N., et al. (2020). Quantification of

Viral and Host Biomarkers in the Liver of Rhesus Macaques: A Longitudinal

Study of Zaire Ebolavirus Strain Kikwit (EBOV/Kik). Am. J. Pathol. 190,

1449–1460.

Gu,W., Crawford, E.D., O’Donovan, B.D., Wilson, M.R., Chow, E.D., Retallack,

H., and DeRisi, J.L. (2016). Depletion of Abundant Sequences by Hybridization

(DASH): using Cas9 to remove unwanted high-abundance species in

sequencing libraries and molecular counting applications. Genome Biol.

17, 41.

Gupta, M., Mahanty, S., Ahmed, R., and Rollin, P.E. (2001). Monocyte-derived

human macrophages and peripheral blood mononuclear cells infected with

ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced

IFN-alpha in vitro. Virology 284, 20–25.
Hamlin, R.E., Rahman, A., Pak, T.R., Maringer, K., Mena, I., Bernal-Rubio, D.,

Potla, U., Maestre, A.M., Fredericks, A.C., Amir, E.D., et al. (2017). High-

dimensional CyTOF analysis of dengue virus-infected human DCs reveals

distinct viral signatures. JCI Insight 2, e92424.

Harcourt, B.H., Sanchez, A., and Offermann, M.K. (1999). Ebola virus selec-

tively inhibits responses to interferons, but not to interleukin-1beta, in endothe-

lial cells. J. Virol. 73, 3491–3496.

Hashimoto, Y., Moki, T., Takizawa, T., Shiratsuchi, A., and Nakanishi, Y.

(2007). Evidence for phagocytosis of influenza virus-infected, apoptotic cells

by neutrophils and macrophages in mice. J. Immunol. 178, 2448–2457.

Hawrylowicz, C.M., Guida, L., and Paleolog, E. (1994). Dexamethasone up-

regulates granulocyte-macrophage colony-stimulating factor receptor

expression on human monocytes. Immunology 83, 274–280.

Hay, S.B., Ferchen, K., Chetal, K., Grimes, H.L., and Salomonis, N. (2018). The

Human Cell Atlas bone marrow single-cell interactive web portal. Exp. Hema-

tol. 68, 51–61.

Hein, M.Y., and Weissman, J.S. (2019). Functional single-cell genomics of hu-

man cytomegalovirus infection. bioRxiv. https://doi.org/10.1101/775080.

Hensley, L.E., Young, H.A., Jahrling, P.B., and Geisbert, T.W. (2002). Proin-

flammatory response during Ebola virus infection of primate models: possible

involvement of the tumor necrosis factor receptor superfamily. Immunol. Lett.

80, 169–179.
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EBOV NHP infection CyTOF This paper FlowRepository: FR-FCM-Z2LX

Human cell atlas bone marrow scRNA-Seq (Hay et al., 2018) https://data.humancellatlas.org/

Human healthy PBMC scRNA-Seq 10X https://support.10xgenomics.com/single-cell-gene-

expression/datasets ‘‘Aggregate of 8 Chromium

Connect channels and 8 manual channels,’’ ‘‘5k

Peripheral blood mononuclear cells (PBMCs) from

a healthy donor (v3 chemistry),’’ ‘‘5k Peripheral blood

mononuclear cells (PBMCs) from a healthy donor

(Next GEM),’’ ‘‘5k Peripheral blood mononuclear

cells (PBMCs) from a healthy donor with cell surface

proteins (v3 chemistry),’’ ‘‘5k Peripheral blood

mononuclear cells (PBMCs) from a healthy donor

with cell surface proteins (Next GEM),’’ ‘‘10k PBMCs

from a Healthy Donor - Gene Expression and Cell

Surface Protein,’’ ‘‘10k PBMCs from a Healthy

Donor (v3 chemistry)’’

EBOV human infection CyTOF (McElroy et al., 2020) Author correspondence

Oligonucleotides

Primer: dN-SMRT: AAGCAGTGGTATCAACGCAG

AGTGANNNGGNNNB

(Hughes et al., 2020); IDT N/A

gRNA sequence: DASH_SeqB: GGGNNNNAAGC

AGUGGUAUCAACGGUUAUAGUACUCUGGAAA

CAGAAUCUACUAAAACAAGGCAAAAUGCCGUG

UUUAUCUCGUCAACUUGUUGGCGAGAU

This paper N/A

Software and Algorithms

DropSeqPipe (Macosko et al., 2015) https://github.com/Hoohm/dropSeqPipe

Scanpy (Wolf et al., 2018) https://github.com/theislab/scanpy

MAST (Finak et al., 2015) https://github.com/RGLab/MAST

HARMONY (Korsunsky et al., 2019) https://pypi.org/project/harmony-pytorch/,

https://github.com/immunogenomics/harmony

MAGIC (van Dijk et al., 2018) https://github.com/KrishnaswamyLab/MAGIC

cNMF (Kotliar et al., 2019) https://github.com/dylkot/cNMF

Scrublet (Wolock et al., 2019) https://github.com/AllonKleinLab/scrublet
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to Aaron Lin (alin@broadinstitute.org).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The analysis scripts used in this study are available at https://github.com/dylkot/SC-Ebola.

The accession number for single-cell RNA-Seq datasets reported in this paper is GEO: GSE158390, with raw sequence data avail-

able on SRA.

The accession number for CyTOF .fcs files reported in this paper is FlowRepository: FR-FCM-Z2LX.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study included a subset (21 of 27) outbred rhesusmonkeys (Macacamulatta) of Chinese origin described recently (Bennett et al.,

2020; Greenberg et al., 2020). These 27 nonhuman primates (NHPs) were randomized into cohorts (Figure S1A, (Bennett et al., 2020)),

balancing age, weight, and sex across 7 groups. All workwas approved and performed in accordancewith theGuide for the Care and

Use of Laboratory Animals of theNational Institute of Health, the Office of AnimalWelfare, and theUSDepartment of Agriculture (Ben-

nett et al., 2020).

METHOD DETAILS

Serial sampling study
This study utilized the Ebola virus/H. sapiens-tc/COD/1995/Kikwit-9510621 (EBOV/Kikwit; GenBank accession MG572235.1;

Filoviridae: Zaire ebolavirus) isolate for the in vivo and ex vivo challenges, obtained from the Biodefense and Emerging Infections

Research Resources Repository (BEI Resources, Manassas, VA, USA). It is the standard challenge stock defined by the filovirus an-

imal non-clinical group (FANG) for testing product efficacy for FDA approval and is well characterized.

For all 21 outbred rhesus monkeys, two baseline blood samples were collected between 0–14 and 14–30 days prior to infection

(Figure S1A). 18 NHPs were exposed to the EBOV/Kikwit isolate diluted to a target concentration of 1,000 plaque forming units

(PFU) in a volume of 1 mL/dose. All NHPs were inoculated within a 5 month period. This same cohort has already been described

recently (Bennett et al., 2020; Greenberg et al., 2020).

Clinical observations and scoring
Beginning on day post-infection (DPI) 0, NHPs were observed 1–3 times daily and given a clinical score based on five criteria: overall

clinical appearance and signs of hemorrhage; respiratory rate, mucous membrane color, and dyspnea; recumbency; non-respon-

siveness; and core temperature (Bennett et al., 2020). Each criterium was assigned a score between 1 and 10, and all scores

were added together. Once an NHP reached a combined score of > 10, the animal was humanely euthanized.

Whole blood collection
Blood was drawn from anesthetized animals into BD vacutainer plastic serum separator tubes (SST) for serum viral load quantifica-

tion, or in BD vacutainer plastic blood collection tubes with K3EDTA for hematology and peripheral blood mononuclear cell (PBMC)

purification (Becton Dickinson, Franklin Lakes, NJ, USA) (Bennett et al., 2020). SST tubes were centrifuged at room temperature for

10 minutes (min) at 1800 x g to isolate serum. K3EDTA tubes were mixed by gentle inversion prior to hematology and PBMC

purification.

Hematology and complete blood counts (CBC)
250 mL of eachwhole blood sample was analyzed on a Sysmex 2000i XT (SysmexCorporation, Kobe, Hyogo Prefecture, Japan) (Ben-

nett et al., 2020). Parameters analyzed by this instrument were: counts of basophils, eosinophils, lymphocytes, monocytes, neutro-

phils, white blood cell count; percentages of each cell type; and mean platelet volume.

To estimate the abundance of lymphocyte cell types, wemultiplied the CBC lymphocyte count by the proportion of lymphocytes of

each cell type (CD8 T cells, CD4 T cells, NK cells, and B cells) which was calculated from the unsupervised clustering of the CyTOF

data (see ‘CyTOF’ below).

EBOV serum viral load by reverse transcription quantitative PCR
70 mL of sample inactivated by TRIzol LS was added to 280 mL of Buffer AVL (QIAGEN, Hilden, Germany) with carrier RNA (Bennett

et al., 2020). Samples were then extracted using the QIAamp Viral RNA Mini Kit (QIAGEN) in accordance with the manufacturer’s
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instructions, eluted in 70 mL of Buffer AVE, aliquoted, and frozen. Viral load was determined using the BEI Resources Critical Re-

agents Program experimental EZ1 reverse transcription qPCR kit assay in accordance with the manufacturer’s instructions.

PBMC purification
We centrifuged whole blood in K3EDTA tubes at 1800 x g for 10 min at room temperature, removed EDTA plasma, and added phos-

phate buffered saline (PBS, Thermo Fisher Scientific, Waltham, MA, USA) to the pelleted cells to double the original whole blood vol-

ume.We gently poured the PBS-blood cell mixture into an Accuspin tube containing Histopaque (Sigma-Aldrich, St. Louis, MO, USA)

and centrifuged at 1000 x g for 10 min at room temperature with the brake set to 1. Following centrifugation, we removed the top,

clear supernatant layer to within 0.5 cm of the cloudy white layer containing PBMCs.

We transferred the cloudy PBMC layer to a clean 15 mL conical tube and increased the volume to 10mL using PBS supplemented

with 2% heat-inactivated fetal bovine serum (PBS/2%HI-FBS) and mixed by inversion. We then centrifuged at 300 x g for 10 min at

4�C with the brake set to 1. Following centrifugation, we removed the supernatant, resuspended the cell pellet with PBS/2%HI-FBS

to a final volume of 10 mL, and mixed using gentle raking to wash the cells. We repeated the wash step 2 more times with the centri-

fuge set to 200 x g for 10min at 4�Cwith the brake set to 1.We then resuspended the cell pellet in 9.5mLPBS/2%HI-FBS for counting

using the Countess Cell Counting system (Thermo Fisher Scientific). We aliquoted 0.5 mL for Seq-Well, and used the remaining 9 mL

volume for CyTOF.

Seq-Well
We performed Seq-Well as described previously (Gierahn et al., 2017), with the S3 protocol (Hughes et al., 2020) and some controls

and modifications to adhere to the BSL-4 environment.

As an experimental negative control to test our statistical model, we spiked Madin-Darby canine kidney (MDCK) cells, constituting

�5% of the total sample, into a subset of PBMC samples (Table S1) from EVD NHPs immediately before scRNA-Seq. As MDCKs

were not exposed to EBOV, viral reads in these transcriptomes should be due to ambient RNA contamination (Russell et al., 2019).

After loading and sealing beads and cells in Seq-Well arrays, we placed them in a�80�C freezer until further processing – this step

was required due to time constraints in the BSL-4. Later, we removed sealed Seq-Well arrays from the�80�C freezer, placed them in

4-well dishes, and allowed them to equilibrate to room temperature for at least 30min.We then covered arrays in 5mLSeq-Well Lysis

Buffer per protocol.

We performed RNA hybridization and RT as specified in the protocol (Hughes et al., 2020). After RT, we collected beads by centri-

fugation at 1000 x g for 1 min at room temperature. We resuspended beads with GeneXpert Lysis Buffer (Cepheid, Sunnyvale, CA,

USA) for inactivation, which was required prior to removal from the BSL-4 laboratory according to standard operating procedures.

After removal, we washed beads thrice with TE buffer containing 0.01% Tween 20 and shipped at 4�C for further library construction

and sequencing, which was performed with the S3 protocol (Hughes et al., 2020). We sequenced all libraries on either NextSeq 550

High Output or NovaSeq 6000 S2 flowcells (Illumina, San Diego, CA, USA), with 20 cycles for Read 1 (cell barcode and unique mo-

lecular index [UMI]) and 88 cycles for Read 2 (cDNA of interest). In some cases, we merged fastq files frommultiple sequencing runs

for increased coverage.

Depletion of abundant sequences by hybridization (DASH) of select Seq-Well libraries
We observed long concatemers of the common scRNA-Seq adaptor sequence (SeqB, 50-AAGCAGTGGTATCAACGCAGAGTAC-30)
at high frequency in some Seq-Well libraries, likely owing to low RNA input and the challenging environment of processing samples in

the BSL-4 suite. These concatemers disrupted Illumina sequencing runs because the Read 1 sequencing primer annealed tomultiple

SeqB sequences on a single template, allowing multiple sequencing-by-synthesis reactions simultaneously. We therefore devised a

strategy to remove SeqB concatemers using depletion of abundant sequences by hybridization (DASH) (Gu et al., 2016), a CRISPR-

basedmethod to degrade target DNA sequences prior to sequencing. SeqB lacked a ‘NGG’ protospacer adjacentmotif (PAM) for the

common S. pyogenesCas9 (SpyCas9) for which DASHwas originally described; therefore, wemodified DASH to use S. aureusCas9

(SauCas9) (Ran et al., 2015). Moreover, in contrast to SpyCas9, SauCas9 is a multi-turnover enzyme (Yourik et al., 2019), suggesting

that SauCas9 would have higher cleavage efficiency, which was important since SeqB was present in multiple copies within a

concatemer.

First, we designed a guide RNA (gRNA) to target SeqB. Based on the position of the SauCas9 PAM and the length of SeqB, only 17

nucleotides of the gRNA protospacer could anneal to SeqB. Because gRNA length is critical to SauCas9 cleavage efficiency (Fried-

land et al., 2015; Ran et al., 2015), we prepended 4 random bases as a 50 overhang (Key Resources Table). We in vitro transcribed this

gRNA using the MEGAshortscript T7 Transcription Kit (Thermo Fisher Scientific), purified it using the RNA Clean & Concentrate Kit

(Zymo Research, Irvine, CA, USA), and verified the correct RNA length on a 15% TBE-urea gel (Bio-Rad Laboratories, Hercules,

CA, USA).

We performed SauCas9 DASH according to reaction conditions laid out for in vitro SauCas9 cleavage assays (Yourik et al., 2019).

We incubated 10 pmol gRNA with 5 pmol SauCas9 (New England Biolabs [NEB], Ipswich, MA, USA) at 25�C for 10 min, and then

added up to 5 fmol DNA (2000:1000:1 RNA:protein:DNA ratio) and NEBuffer 3.1 (NEB) to 1X. We incubated this reaction at 37�C
for 2 hours (h), and quenched by adding EDTA to 50 mM, SDS to 1%, and 4 total U of Proteinase K (NEB) at room temp for

10 min. We removed degraded concatemers with two consecutive 0.8X SPRI purifications using Ampure XP beads (Beckman
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Coulter, Brea, CA, USA), eluted, and performed 6–9 cycles of PCR with the NEBNext Ultra II Q5 Master Mix (NEB) using Illumina P7

and the Seq-Well P5-TSO hybrid primer (Gierahn et al., 2017).

CyTOF
We added 1 mL of 16% paraformaldehyde (PFA, Electron Microscopy Sciences, Hatfield, PA, USA) to 9 mL PBMCs to fix the cells.

We incubated samples at room temperature for 10 min followed by a final centrifugation at 600 x g for 5 min at 4�Cwith the brake set

to 9. We removed the supernatant, added 1 mL of PBS/5%HI-FBS for every 33 106 cells (e.g., 2 mL for a sample containing 63 106

cells), aliquoted into 1 mL aliquots in cryovials, and stored in a �80�C freezer.

We equilibrated fixed PBMCs to come to room temperature before transferring approximately 23 106 cells per sample into 1.2 mL

cluster tubes in a 96-tube rack. We barcoded samples and multiplexed them into 6 batches of 16 samples using a

previously described 16-plex palladium-based mass-tag cell barcoding scheme (Zunder et al., 2015). We aspirated pelleted

barcoded cells to a volume of 50 mL and incubated them with 15 mL of Human TruStain FcX (Biolegend, San Diego, CA) for

10 minutes. We stained cells for 30 min with 175 mL of a reconstituted lyophilized cocktail of metal-tagged cell-surface antibodies

described previously (Bjornson-Hooper et al., 2019a, 2019b) supplemented with two additional antibody channels (Data S1). We

washed and permeabilized surface-stained cells with methanol before aspirating down to 50 mL and staining for 60 min with

190 mL of reconstituted lyophilized intracellular staining antibody cocktail (Data S1). We washed and resuspended fully-stained cells

in a volume of 750 mL.

Following staining, we inactivated samples by adding 250 mL of 16% PFA to 750 mL of each sample, for a final concentration of 4%

PFA, and incubated at 4�C overnight. The next day, we centrifuged samples 600 x g for 5 min at 4�C and aspirated down to 100 mL.

We resuspended samples in 1mL 4%PFA in PBS and transferred to a clean 2mL cryovial. We then removed samples from the BSL-4

using a dunk tank and froze at �80�C within 30 min of PFA addition.

Following inactivation, we thawed and processed inactivated samples within a BSL-2 lab for iridium intercalation, then mixed with

1xEQbeads (Fluidigm, South San Francisco, CA, USA) and run on aCyTOFHelios (Fluidigm) instrument using a Super-Sampler intro-

duction system (Victorian Airship & Scientific Apparatus LLC, Alamo, CA, USA).

FCS data files were normalized across all runs using the data normalization software (Finck et al., 2013) and debarcoded using the

single-cell debarcoder tool (Zunder et al., 2015) as previously described. Data were uploaded and analyzed using CellEngine soft-

ware (https://cellengine.com, Primity Bio, Fremont, CA, US), and a gating strategy was applied to identify cell populations using ca-

nonical markers. Frequencies for each population were determined as a function of total CD66-CD45+ cell events and reported

marker intensities are expressed asmedians. Also see ‘CyTOF data preprocessing, clustering, and dimensionality reduction’ section

below for details of unsupervised analysis of CyTOF data.

Ex vivo inoculation of PBMCs
PBMCs were isolated from healthy NHPs as previously described. We diluted cells to 3.3 3 106 cells/mL RPMI/10%HI-FBS and

transferred 900 mL each to 2 mL external thread cryogenic vials (Corning, Corning, NY) for each experimental condition. We inocu-

lated cells with 100 mL live virus (EBOV/Kikwit, the same stock used for in vivo NHP inoculation) for a final MOI of 0.1 PFU/cell, an

equivalent dose of irradiated virus (EBOV/Kikwit treated with 5 mRads gamma irradiation), or media only, and incubated for 4 or

24 hours with slow rocking prior to Seq-Well processing.

Single-cell RNA-Seq raw data processing
Raw sequencing files were demultiplexed and converted to fastq using bcl2fastq version 2.20. Readswere then trimmed, aligned to a

reference transcriptome, and parsed into a digital gene expressionmatrix using the previously published Dropseq-tools pipeline (Ma-

cosko et al., 2015) version 2.0. We used a Snakemake wrapper around Dropseq-tools that is available in the open source Github

repository https://github.com/Hoohm/dropSeqPipe. In brief, we trimmed adaptor sequences using Cutadapt (Martin, 2011) version

1.16, performed spliced alignment of trimmed reads using STAR aligner (Dobin et al., 2013) version 2.6.1b, identified core barcodes

using the whitelist function in umi_tools (Smith et al., 2017) version 0.5.5, and used Dropseq-tools to correct barcodes and extract

digital count matrices. A frozen version of the pipeline used to process the Seq-Well data is available at the Github repository https://

github.com/dylkot/dropSeqPipe-dak.

Sequencing reads were aligned to a hybrid genome/genebuild of Macaca mulatta (genome assembly Mmul_8.01, Ensembl gene

build 92) and EBOV/Kikwit (GenBank accession KU182905.1).

Single-cell RNA-Seq data preprocessing, clustering, dimensionality reduction, and smoothing
The scRNA-Seq data was preprocessed, clustered, and visualized using Scanpy (Wolf et al., 2018). We removed cells with <

300 genes detected, > 10% of their UMIs derived from mitochondrial genes, or > 95% of UMIs mapped to non-genic regions.

We excluded ribosomal genes, genes correlated with the percentage of UMIs assigned to mitochondrial genes (Pearson

R > 0.1), and HBB as these were largely driven by the technical covariate of whether cells had loaded into Seq-Well arrays

fresh or had undergone a freeze-thaw cycle with cryoprotectant. We also excluded EBOV genes and cell-cycle genes (defined
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by correlation with TOP2A, Pearson R > 0.1) prior to clustering so that these signals would not influence identification of

cell types.

We performed multiple iterations of clustering to detect and exclude doublets and to identify distinct cell populations at multiple

levels of granularity. In each iteration, we filtered genes detected in < 10 of the cells being clustered. We then transformed raw UMI

counts by normalizing the sum of counts of each cell to 10,000 (TP10K), adding 1 to each expression value, and taking the natural

logarithm. In each clustering iteration, we identified and subsetted the data to highly variable genes using the highly_variable_genes

function in Scanpy (Satija et al., 2015) with the default parameters. We Z-normalized each gene and set transformed values

exceeding 10 to 10. Z-normalized data was used as input to principal component analysis. We determined the number of principal

components to use for downstream analysis by identifying an elbow on the Skree plot of the eigenvalues associated with each prin-

cipal component. For the in vivo Seq-Well data, we used the Harmony algorithm (Korsunsky et al., 2019) to remove variation due to

whether a PBMC sample had been processed fresh, or following a freeze-thaw. No Harmony adjustment was used for the ex vivo

EBOV dataset. The Harmony-adjusted or raw principal components were then used to construct a nearest neighbor graph with

the number of neighbors set to the maximum of 30 or 0.001 x the number of cells. Lastly, we clustered cells using the Leiden com-

munity detection algorithm (Traag et al., 2019).

We annotated broad PBMC clusters in the in vivo and ex vivo EBOV datasets based on the following marker genes: CD8+ T cells

(CD3D, GZMB, GNLY), CD4+ T cells (CD3D, IL7R), B cells (MS4A1, IGHM), Monocytes (CFD, LYZ), cDCs (FLT3, IRF8), pDCs (IRF8,

GZMB), Neutrophils (CD177, LCN2), Platelets (PF4, CAVIN2), Plasmablasts (MZB1, IGHM, IGHA), and spike-in control MDCK cells

(COL5A2, SLC20A1).

For the in vivo EBOV dataset, the first clustering iteration was used to identify and filter a cluster of multiplets (expressing high levels

of B cell, T cell, Neutrophil, andMonocyte genes) andMDCK control cells. A second clustering iteration was run on the filtered data to

identify broad cell type clusters of T/NK-cells, B cells, and myeloid cells (Monocytes, cDCs, pDCs, and neutrophils). Sub-clustering

was performed on each broad cell type in two iterations, the first to identify remaining doublets to exclude, and the second to cluster

cells into final cell-types and sub-types based on annotation of marker genes (Figure S2).

An analogous sequence of clustering iterations was used for the ex vivo EBOV dataset. However, as there were no MDCK cells

spiked in, we proceeded straight to sub-clustering of the T/NK, B, Monocyte/DC, and multiplet populations from the initial clustering

iteration.

Doublets and multiplets identified during any clustering iteration were excluded. Then visualization in 2 dimensions was accom-

plished by computing the nearest neighbor graph with 0.001 x the number of cells as nearest neighbors, followed by Uniform Mani-

fold Approximation and Projection (Becht et al., 2018).

Gene expression values were smoothed to facilitate direct visualization of CD14, FCGR3 (which codes for CD16), and MKI67

(which codes for Ki67) by running MAGIC (van Dijk et al., 2018) on log TP10K expression values with the ‘cosine’ distance metric

and 3 diffusion steps.

Differential expression testing
We performed all differential expression tests using MAST (Finak et al., 2015) on log(TP10K + 1) normalized data. For all differential

expression tests, we included (1) the percentage of mitochondrial reads and (2) the number of genes detected in a cell as covariates.

For tests in the in vivo dataset, we additionally included a binary indicator covariate of whether the cell was derived from a sample that

had been processed fresh, or had undergone freeze-thaw. For tests in the ex vivo dataset, we additionally included a binary indicator

covariate of which NHP donor the sample was derived from.

For viral load comparisons, we used the log10 viral load as a continuous exogenous variable and only considered cells with R 1

viral read. For all other comparisons, we used a binary exogenous variable indicating the reference and the query group. ‘‘Viral load’’

and ‘‘bystander vs. EBOV infected cells’’ in the in vivo dataset were conducted only considering cells from DPI 5–8. ‘‘Viral load’’ com-

parisons in the ex vivo dataset only considered cells from the 24 HPI time point.

Differential expression p-values were corrected for multiple hypothesis testing using the method of Benjamini and Hochberg (Ben-

jamini and Hochberg, 1995).

Identifying differential gene expression modules
We clustered the log fold-change profiles of 1,437 differentially expressed genes (rows of Figure 3A) considering B, CD4+ T, CD8+ T,

NK, and monocyte populations at the three EVD stages. Prior to clustering, insignificant values (p > 0.2) were first set to 0 and genes

were normalized to unit L2 norm.We performed k-means clustering with K = 11 and the default parameters in Scikit-learn (Pedregosa

et al., 2011) version 0.22.2.post1. Varying K above and below 11 led to highly consistent results with splitting or merging individual

clusters at the margin, and we picked K = 11 as the lowest value that yielded the ‘‘B down’’ module.

Detection of EBOV infected cells
Our infection detection model assumes that EBOV reads assigned to a cell are either due to true viral RNAs inside that cell, or due to

‘ambient’ extracellular EBOVRNA (Fleming et al., 2019; Young andBehjati, 2018) in the sample that, by chance, are captured in awell
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of the Seq-Well array along with the cell. Our null model for how many EBOV reads would be expected in a cell by chance therefore

depends on two main parameters which we estimate from the data: (1) what proportion of ambient RNAs in a sample are due to

EBOV, and (2) what proportion of a cell’s expression profile is due to ambient RNA. Our method therefore precedes through the

following steps which we describe below:

1. Estimate an ambient RNA profile for each Seq-Well array

2. Estimate the proportion of each cell’s transcripts that are due to ambient RNA

3. Determine if there are more EBOV transcripts in each cell than would be expected based on the proportion of EBOV in the

ambient RNA and the cell’s estimated level of ambient RNA contamination.
1. Estimate an ambient RNA profile for each Seq-Well array
We assume that cell barcodes with few transcripts detected correspond to wells in the Seq-Well array that lack a cell, and therefore,

that any transcripts assigned to those cell barcodes derive from ambient RNA. We consider all cell barcodes with fewer than 50 tran-

scripts detected to be empty wells and compute an ambient RNA profile of the proportion of transcripts from these barcodes as-

signed to each gene. This is analogous to the approach used in several ambient RNA correction approaches such as (Fleming

et al., 2019).

We denote the number of genes in the dataset asG and define the ambient RNA profile for a given Seq-Well array, a, as aG-dimen-

sional vectorPðaÞ.PðaÞ
g denotes the estimated proportion of ambient RNAs that are assigned to gene g based on transcripts from all cell

barcodes with fewer than 50 UMIs. Since P
ðaÞ
g is a proportion, the following constraints hold:

0<PðaÞ
g < 1;

XG
g= 1

PðaÞ
g = 1

2. Estimate the proportion of each cell’s transcripts that are due to ambient RNA
We adapt the previously published Consensus Non-negative Matrix Factorization (cNMF) method (Kotliar et al., 2019) to estimate

the ambient RNA contamination level of each cell. In brief, cNMF learns a user-specified number of gene expression programs

(GEPs), each a non-negativeG-dimensional vector representing the average expression profile of an individual cell type or cellular

activity (e.g., cell-cycle or interferon response) that are present in the data. In addition, it learns a ‘‘Usage’’ matrix reflecting the %

contribution of each GEP in each cell (i.e., the % of each cell’s transcripts derived from each GEP). For the following notation,

matrices are indicated in bold. Denoting the number of cells in the dataset as C and the user-specified number of GEPs as K,

cNMF is given an input CxGmatrix of transcript counts Xcg and returns Gkg a non-negative KxGmatrix of GEPs reflecting the rela-

tive contribution of gene g in GEP k, as well as a non-negative CxKmatrix Uck reflecting the percentage of transcripts in cell c that

are due to GEP k.

We adapt this approach to return an updated, Cx(K+1) dimensional usage matrix that includes an additional column reflecting the

usage of the ambient RNA profile. We run cNMF as published to obtain theGkg GEPmatrix. We then append the ambient RNA profile

for a given array as an additional row to Gkg and normalize each row to sum to 1 like so:
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where k1 denotes the L1 norm, a tilde is used to denote an L1 norm
alized vector, andGi denotes the ith row ofGkg. We then run a final

iteration of NMF with the GEPmatrix fixed toG
�ðaÞ

. This jointly estimates a usage of the ambient RNA profile and the other GEPs using

non-negative least-squares. For a given cell c from an array a, this amounts to solving the following non-negative least-squares

optimization:
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We combine these coefficients for all cells and programs into a s
ingle matrix and L1 normalize the usages to sum to 1:
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where CðaÞ denotes the number of cells derived from array a.
 The ‘‘K+1’’th column of ~U
ðaÞ

reflects the estimated proportion of

transcripts due to ambient RNA in all of the cells from array a. We repeat this calculation for each array separately and denote the

estimated contribution of ambient RNA for a cell c as Ac.

3. Determine if there are more EBOV transcripts in each cell than would be expected by chance
For each cell, we determine a threshold, Tc, for the number of EBOV transcripts required to call that cell infected while keeping the

false positive rate below f, a user specified threshold (f = 0.01 in all of our analyses). We first calculate EðaÞ, the proportion of ambient

RNA transcripts in array a that are due to EBOV as follows:

EðaÞ =
X

g˛fEBOV genesg
PðaÞ
g

Then, for a cell withN transcripts total; a given proportion, A , of i
c c ts reads derived from ambient RNA; EðaÞ, the proportion of ambient

RNA contaminating reads expected to map to EBOV, we compute Tc using binomial statistics as follows:

Tc =F f
�� p=E að ÞAc; N=Nc

� �
Where F is the inverse survival function of the Binomial distributio
n with event probability p and N trials. We identify cells with > Tc

reads as infected.

Estimation of the infection receiver operator characteristic
We estimate sensitivity to call an infected cell with either 1% or 0.1% of its reads due to EBOV across a range of 60 false positive rate

thresholds (f). We first randomly sampled 2,000 cells from the live EBOV treatment samples in the ex vivo data, or the non-baseline

samples from the in vivo data, to serve as an empirical distribution for Ac and Nc. For each cell and specificity threshold f, we then

calculate the probability of correctly calling a true positive cell as positive.Wemodel the distribution of the number of EBOV reads in a

cell as the convolution of 2 binomial distributions: BNðpcell; NcellÞis the binomially distributed number of true cell-derived reads map-

ping to EBOV andBNðpambient; NambientÞis the analogous distribution for ambient RNA-derived readsmapping to EBOV. pcell is 0.01 or

0.001 by assumption, and pambient is estimated empirically for each cell as EðaÞAc. We calculate the expected values for Ncell and

Nambient and round Nambient up to the nearest integer, as follows:

Nambient; c =Ceiling NcAcð Þ
Ncell; c =Nc � Nambient; c
We then directly calculate the convolution of the two binomial dis
tributions for each cell:

Pconvolution Xc = xð Þ=
Xx�i

j = 0

Xx

i = 0

BN i
�� p=pcell; N=Ncell; cÞBN

�
j
�� p=pambient; c; N=Nambient; c

� �
We then calculate the sensitivity for each cell as the probabili
ty that the convolution distribution is greater than the empirical

threshold:

Sensitivityc = PconvolutionðXc > TcÞ
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We plot the average sensitivity across the 2000 randomly sample
d cells as a function of f for pcell equal to either 0.01 or 0.001.

Gene set enrichment testing
Wedownloaded gene sets from theMolecular Signatures Database (Liberzon et al., 2011) version 6.2 for gene set enrichment testing.

We considered all Hallmark or C2 gene sets containing greater than 10 genes that were present in our expression data. We tested

expression modules for enrichment using Fisher’s exact test and corrected for multiple hypothesis testing using the method of Ben-

jamini and Hochberg (Benjamini and Hochberg, 1995).

To test continuous expression profiles for gene set enrichment (Figure S4B), we used the rank-sum test comparing genes in the

gene set to all genes not in the set.

Scoring cells for interferon response and macrophage differentiation
We identified 58 genes in the ‘‘Global up’’ module that were also included in one ormore of the following gene sets from themolecular

signatures database: HECKER_IFNB1_TARGETS, BROWNE_INTERFERON_RESPONSIVE_GENES, MOSERLE_IFNA_RES-

PONSE, HALLMARK_INTERFERON_ALPHA_RESPONSE, HALLMARK_INTERFERON_GAMMA_RESPONSE (Table S3). We then

scored cells for the average expression of these genes using the score_genes function in Scanpy (Satija et al., 2015) with 58 control

genes, as this was the number of genes in the ISG set, and otherwise default parameters.

We computed a macrophage score based on the set of 618 genes annotated as significantly up or downregulated during

in vitro monocyte-to-macrophage differentiation (Dong et al., 2013) (Table S4). We computed each cell’s macrophage score as the

dot-product of its expression profile for the 618 genes (in log TP10K) with the log fold-change reported for each gene in (Dong et al.,

2013). This effectively weights genes by both the direction and magnitude of their change during in vitro macrophage differentiation.

Comparison of EVD monocyte subsets with human bone marrow and PBMC data
We obtained all of the human PBMC datasets produced using v3 or v3.1 chemistry from the 10X website (Key Resources Table),

aggregated them together, and processed the resulting dataset using the same pipeline as the NHP Seq-Well data. Briefly, we first

filtered out genes detected in fewer than 10 cells before converting to log TP10K and performed PCA as described above. Then, we

used Harmony (Korsunsky et al., 2019) to integrate out variation due to the different samples of origin and used 30 nearest neighbors

for Leiden community detection (Traag et al., 2019) and UMAP dimensionality reduction (Becht et al., 2018) (Figure S5E). We did not

perform any sub-clustering on this dataset.

We obtained Human Cell Atlas bone marrow data from the Human Cell Atlas data portal (Hay et al., 2018) and processed it

according to the same pipeline as the NHP data with a few modifications. We filtered doublets prior to clustering by running Scrublet

(Wolock et al., 2019) separately within each of 8 donor batches with an expected doublet rate parameter of 6%. We identified and

excluded cell-cycle associated genes, as those with a Pearson correlation > 0.3 with TOP2A. We integrated data from the different

donor batches using Harmony and used 30 nearest neighbors for Leiden community detection and UMAP dimensionality reduction.

We performed 3 rounds of sub-clustering: First we clustered all of the cells to identify monocyte and dendritic lineage cells (Fig-

ure S5F). Second, we clustered just hematopoietic stem cells (HSCs) and monocyte/dendritic progenitor cells to identify doublets

(as those falling into a cluster characterized by T cell marker genes such as CD3D and CD3E). Finally, we re-clustered this set

with the doublets excluded to identify monocyte lineage cells, plasmacytoid dendritic cells, and conventional dendritic cells

(Figure S5G).

We confirmed our marker gene-based annotations of the myeloid cell populations by comparing these cells to the circulating

human PBMC dataset. We identified the nearest neighbor of each bone marrow myeloid progenitor cell in the PBMC dataset based

on Euclidean distance of TP10K-normalized cells, considering overdispersed genes identified in the PBMC dataset based on the

V-score (baseline-corrected Fano factor) (Klein et al., 2015). We then visualized the nearest-PBMC assignment of the bone marrow

myeloid cells on a UMAP embedding (Figure S5H).

Finally, we combined themonocytes andmonocyte precursor cells from the human PBMC and bonemarrow datasets into a single

reference. We again normalized the data to log TP10K and computed UMAP embeddings following the same procedure as for the

individual datasets (Figure S5I), using Harmony to remove variation due to donor sample. We then down-sampled this data so that

there would be equivalent numbers of cells of each of the bone marrow and PBMC clusters (i.e., 982 cells per cluster as that was the

number of cells in the smallest cluster). We identified the nearest neighbor of each NHP monocyte in the down-sampled reference

dataset, as described above and computed the percentage of NHP monocytes assigned to CD14+ or CD16+ clusters from either

human bone marrow or PBMC (Figure 5F).

Logistic regression prediction of EBOV infection in vivo

We used Statsmodels (Seabold and Perktold, 2010) version 0.11.1 to fit a logistic regression predicting EBOV infection status among

all monocytes from late EVD, based on the following features: macrophage score, MAGIC smoothed values of CD14, and CD16

(FCGR3), and an interaction term for the product of the MAGIC smoothed values for CD14 and CD16.
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CyTOF data preprocessing, clustering, and dimensionality reduction
Our clustering and dimensionality analysis of the NHP CyTOF data was analogous to the Seq-Well pipeline with a few adaptations.

We down-sampled a total of 1.1 million cells, consisting of 300,000 baseline cells and 100,000 cells from each DPI, selecting a uni-

form number of cells from each sample at a given DPI. We used the Arcsinh transformation of CyTOF raw intensity values divided by

5, which is standard in the field. We set a ceiling of transformed intensity values for each gene at the 99.999th percentile to reduce the

effect of very rare outliers. Wemean-centered the data but did not variance normalize prior to PCA.We then performedmultiple clus-

tering iterations of the data using the Leiden algorithmwith the number of nearest neighbors set to themaximumof 30 or 0.01%of the

number of cells in the dataset.

We annotated broad PBMC clusters in the CyTOF datasets based on the following marker proteins: CD8+ T cells (CD3, CD8),

CD4+ T cells (CD3, CD4), NK cells (CD16, CD161), B cells (CD19, IgM), Monocytes (CD11b, BDCA3, CD14, CD16, HLA-DR),

cDCs (HLA-DR, CD11c, CD1c), pDCs (HLA-DR, CD4, CD123), Neutrophils (CD11b, CD66), Platelets (CD61, BDCA3), Plasmablasts

(IgM high, but little or no CD19), Basophils (CD11b, CD123, lowHLA-DR). There was also a cluster of cells characterized by high HLA-

DR, Ki67, and CD38 which we annotate as ‘‘Unassigned APC.’’

In the first clustering iteration, we identified and excluded clusters of doublets as those expressing markers of two or more broad

cell-types. We also excluded a cluster characterized by high expression of CD3 but low expression of both CD4 and CD8 that we

speculated was a technical artifact as it was nearly exclusive to a single CyTOF batch.

Next, to address batch effects between the different CyTOF runs, we grouped cells into the broad categories of Monocytes and

DCs, CD4+ T, CD8+ T, NK, Neutrophils, B, Plasmablasts, and Platelets, and used COMBAT (Johnson et al., 2007) to adjust for batch

effect separately within each broad category, using the default COMBAT parameters in the Scanpy implementation.

We then ran cNMF (Kotliar et al., 2019) to identify and regress out artifact signals in the data. We ran cNMF using all 42 markers as

inputs and adapted the method to not perform any variance scaling prior to NMF; this is because CyTOF intensities of different

markers are already expressed on a comparable scale, unlike genes in single-cell RNA-Seq data which can vary over different orders

ofmagnitude.We also set a floor on the input data to be non-negative (because after COMBAT, a small percentage of the valueswere

slightly below 0). We selected K = 7 as the cNMFdimensionality as the solution stability fell off dramatically at higher values. One gene

expression program (GEP) was characterized by high levels of the platelet markers CD61 and BDCA3. It was mostly enriched in the

platelet cluster but was also elevated in a subset of cells of all major cell types, which suggests that it reflects an artifact of platelets

sticking to cells. A second GEP was characterized by high levels of all of the intracellular markers and it was also distributed

throughout cells of multiple clusters. We interpreted this GEP as a cell permeabilization artifact reflecting the relative accessibility

of a cell’s intracellular proteins to CyTOF antibody staining. We regressed these 2 GEPs out of the data by subtracting the matrix

(outer) product of the Usage and GEP matrices. We denote the number of cells as C, the number of genes as G (42 in our data),

and the number of programs selected as K (7 in our data). The CxG input data matrix is denoted as X, the KxG GEP matrix returned

by cNMF as and the CxK usage matrix as . Then the correction is as follows:

Xcorrected = X � Uplateletx Gplatelet � Upermx Gperm
Where Uplatelet and Upermare the Cx1 dimensional matrices repre
senting the usage of the platelet and permeabilization GEPs and

Gplatelet and Gpermare the 1xG dimensional matrices representing the spectra of the platelet and permeabilization GEPs, and multi-

plication is the outer product. We also filtered cells assigned to the platelet cluster in the initial clustering, since their predominant

signal had been regressed out.

We then repeated clustering of the corrected data to identify broad cell types (Neutrophils, Monocytes, and DCs), followed by sub-

clustering within each broad cluster to generate the sub-clusterings in Figure S2. The data was visualized using the UMAP algorithm

as described for the scRNA-Seq data.

The human PBMC CyTOF data was processed with the same pipeline as the NHP data with a few modifications. The data were

down-sampled to 280,000 cells total (20,000 per sample), batch correction was performed using Harmony, and 0.001 x the number of

cells was used for K nearest neighbor graph construction. No cNMF or COMBAT adjustment steps were performed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of statistical testing, sample size, center, and dispersion can be found in the figure legends, themain text, and STARMethods.

Additional Resources
This study did not generate new additional resources (website, forum, clinical trial).
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Figure S1. Cell-Type Markers for Seq-Well and CyTOF Clusters, Related to Figure 2

(A) Overview of study cohorts and blood draw timelines. Animals were grouped into cohorts with pre-scheduled necropsy times (at baseline, or day post infection

[DPI] 3, 4, 5, 6 - n = 3 each), or allowed to progress until clinical score exceeded 10 (terminal), predetermined euthanasia criteria. Dots: scheduled blood draws for

each cohort; red: intermediate (non-necropsy) draw; gray: draw that coincidedwith euthanasia and necropsy. Necropsy and baseline normal drawswere used for

Seq-Well and CyTOF, while intermediate post-infection draws were available only for CyTOF.

(B) Expression profiles of cell-type marker genes (columns) for cell-type clusters (rows) based on the in vivo Seq-Well data. Circle area represents the percentage

of cells in each group in which the gene was detected, and color denotes the average expression level (loge TP10K).

(C) Average expression (Z-normalized CyTOF intensity) profiles of cell-type marker genes (columns), for cell-type clusters (rows), based on the CyTOF data.

(D) UniformManifold Approximation and Projection (UMAP) embedding of post-integration Seq-Well data, colored by the sample source (NHP, DPI, and whether

the sample was loaded for Seq-Well without any freezing [.fresh] or was frozen with cryoprotectant and thawed prior to Seq-Well [.FRZ]). A maximum of 500 cells

per sample is plotted to increase representation across samples.

(E) UMAP embedding of Seq-Well data, colored by whether cells were processed fresh (orange) or after freeze/thaw (blue) prior to Seq-Well.

(F) UMAP embedding of Seq-Well data, colored by depletion of abundant sequences by hybridization (DASH) treatment.We developed aDASH-basedmethod to

remove a PCR adaptor artifact from some Seq-Well sequencing libraries (STARMethods), and performed this 0 times (No DASH, blue), 1 time (DASH, orange), or

2 times sequentially (DASHx2, red). For a few samples, we sequenced ‘No DASH’ and ‘DASH’ libraries and merged the reads (mixed, green).

(G) UMAP embedding of batch-corrected CyTOF data, colored by the multiplex batch in which it was pooled and analyzed by CyTOF.

(H) Receiver operating characteristic curves for identifying EBOV-infected cells. Estimates of sensitivity to detect an infected cell at various false positive rate

thresholds in vivo (left) and ex vivo (right). Curves are estimated separately for a hypothetical viral load of 0.1% (blue line) and 1% (orange line).
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Figure S2. Identifying Cell Subtypes by Subclustering, Related to Figure 2

(A) UMAP embedding of broad cell-type clusters in the CyTOF data, colored by sub-cluster assignment (Neut: neutrophil, Mono: monocyte).

(B) Average expression (Z-normalized CyTOF intensity) profiles of sub-clusters for marker genes based on CyTOF data.

(C) UMAP embedding of broad cell-type clusters in the Seq-Well data, colored by sub-cluster assignment.

(D) Expression profiles of sub-clusters for marker genes based on Seq-Well data. Circle area: percentage of cells in which the gene was detected; color: average

expression level (Z-normalized loge TP10K).
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Figure S3. Estimates of Cell-Type Abundance and Proliferation over the Time Course, Related to Figure 2

(A) Scatterplot of the percentage of cells of each cell type in a sample, inferred from CyTOF (x axis) or Seq-Well (y axis), for several cell types (panels). Each dot

represents a sample colored by DPI. Pearson correlation coefficients (r) and p-value are provided.

(B) Estimates of the abundance of each cell type (rows) for each NHP (individual markers) in units of 1000 cells per mL of whole blood, based on integration of

CyTOF and complete blood count (CBC) information. Black line: mean value of each DPI; gray lines: serial samples from the same NHP.

(C) Scatterplots of the percentage of Ki67-positive cells in a sample inferred from CyTOF (x axis) or Seq-Well (y axis) for several cell types (panels). Each dot

represents a sample colored by DPI. Cells with smoothed expression of MKI67 (the gene coding for Ki67) > 0.1 are called Ki67-positive by Seq-Well. Cells with

CyTOF intensity > 1.8 are called Ki67-positive by CyTOF.

(D) Estimates of the percentage of Ki67-positive cells (CyTOF intensity > 1.8) of each cell type (rows) for each animal replicate (markers). Black line: mean value of

each DPI; gray lines: serial samples from the same NHP.
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Figure S4. Quantification of Cytokine Expression and Enrichment of Response Signatures, Related to Figures 3 and 4

(A) Average expression values (loge TP10K) of literature-annotated cytokines (columns) across cell types and stages of acute EVD (rows). Values are plotted as a

ratio relative to the maximum across cell types and stages. Values that are statistically different from baseline (p < 0.05) are indicated with a blue star.

(B) Heatmap of rank-sum test statistics for comparison of differential expression log fold-changes of genes in a gene set (rows) compared to genes not in the set.

The log fold-changes were defined from differential expression profiles of each cell type at each EVD stage (columns) relative to baseline. Five gene sets were

tested— three from theHallmark database (IFN ALPHA, IFNGAMMA, and TNFALPHA VIANFKB) (Liberzon et al., 2015) and 2 constructed from the hallmark sets,

as uniquely IFNa-regulated genes in ‘‘IFN ALPHA’’ but not ‘‘IFN GAMMA’’ (‘‘IFN ALPHA - GAMMA’’), and vice versa for uniquely IFNg-regulated (‘‘IFN GAMMA -

ALPHA’’). See also Table S3.

(C) Fold change (log2 scale) in average HLA-DR CyTOF intensity on B cells at each DPI relative to baseline for each PBMC sample. Colored lines connect serial

samples from the same NHP.
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Figure S5. Extended Characterization of Interferon and Double-Negative CD14– CD16– Monocytes, Related to Figure 5
(A) Clustermap of pairwise Pearson correlations between cell type clusters at baseline and late EVD. Correlations are computed on average loge TP10K

expression values of overdispersed genes. DN and DP monocytes at late EVD are more similar to monocytes (including baseline CD14+s) than other cell types.

(B) Scatterplot of MAGIC-smoothed expression values (loge TP10K) of CD14 and CD16 for monocytes in baseline, early, mid, and late disease stages. Cells are

colored by smoothed expression levels ofMKI67 (the gene coding for Ki67 protein). Boxes: CD14+, CD16+, DN, and DP subsets described in the text; numbers:

percentage of cells falling into each subset.

(C) Scatterplot of protein expression (CyTOF intensity) of CD14 and CD16 for 1,000 randomly sampled monocytes at each DPI. Cells are colored by Ki67

expression. Boxes: CD14+, CD16+, DN, and DP subsets described in the text; numbers: percentage of cells falling into each subset.

(legend continued on next page)
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(D) Scatterplot of protein expression (CyTOF intensity) of CD14 andCD16 for monocytes during human EVD. Left: monocytes from healthy human controls. Right:

monocytes from 3 EVD cases (S1, S2, and S3) at various days post symptom onset. Cells are colored by Ki67 marker intensity. Boxes: CD14+, CD16+, DN, and

DP subsets described in the text; numbers: percentage of cells falling into each subset.

(E) UMAP embedding of healthy human PBMCs dataset, colored by annotated cluster assignment, based on known marker genes. (Plasma.: Plasmablast).

(F) UMAP embedding of healthy bone marrow cells, colored by cluster assignment, based on marker genes. (HSC: hematopoietic stem cell, Plasma.: Plas-

mablast, Megakar.: Megakaryocyte, Mono/DC: monocyte and dendritic cell, BM-Macro: bone marrow macrophage).

(G) UMAP embedding of sub-clustered HSC and monocyte/dendritic lineage cells. (BM: bone marrow, MP: monocyte progenitor)

(H) Same UMAP embedding as Figure S5G, but colored by the cluster identity of their nearest neighbor in the human PBMC dataset (Figure S5E).

(I) UMAP embedding of the merged reference dataset of healthy bonemarrow HSCs andmonocyte lineage cells and PBMCs. Left sub-panel is colored by cluster

assignment. Right sub-panels are colored by marker gene expression (loge TP10K).

(J) Expression profiles of selected genes for human bone marrow monocyte progenitors (BM-MPs) and human circulating monocytes (PBMC-Monos). Circle

area: percentage of cells in which the gene was detected; color: average expression (Z-normalized loge TP10K).

(K) Expression profiles of selected genes for NHP monocyte subsets at baseline or late EVD for orthologs of the genes in (J). Circle area: percentage of cells in

which the gene was detected; color: average expression level (Z-normalized loge TP10K). CD34 is grayed out because it is detected in <10 cells.
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Figure S6. Extended Characterization of Gene-Expression Signals Associated with EBOV Infection Status in Monocytes, Related to Figure 5

(A) Volcano plot of differentially expressed genes between double positive and double negative monocyte subsets from DPI 5–8. Genes are colored by mem-

bership in cell cycle, macrophage upregulated (Mac. Up), macrophage downregulated (Mac. Down), or marker (CD14, CD16) gene sets. See also Table S5.

(B) Macrophage scores for monocytes in late EVD for each subset. Boxes: median and interquartile range; whiskers: 2.5th and 97.5th percentiles.

(C) Percentage of infectedmonocytes in each subset in late disease, stratified by low or highmacrophage score (below or above themedian ofmonocytes from all

subsets). Error bars: 95% bootstrap CI on the mean. Statistical significance was assessed by Fisher’s exact test. There are no infected monocytes in the CD14+

subset.

(D) ISG scores of monocytes at baseline, and uninfected bystanders or infected cells in late stage EVD (DPI 6–8). Boxes:median and interquartile range; whiskers:

2.5th and 97.5th percentiles. Statistical significance was assessed by rank-sum test.
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Figure S7. Overview of the Ex Vivo EBOV Infection Dataset, Related to Figure 6

(A–F) UMAP embedding of Seq-Well data colored by annotated cluster assignment (A), treatment condition (B), viral load (C), NHP donor (D), MX1 gene

expression (loge TP10K) (E), and interferon stimulated gene (ISG) score (F).

(G) Distributions of ISG scores across monocytes from each treatment condition, stratified by NHP donor. Central white marker: median; black bar: inter-

quartile range.

(H) Estimated percentage of infected cells of each cell type in the ex vivo dataset. The dashed line denotes the 1% false positive rate threshold used for calling

infected cells. Error bars: 95% bootstrap CI on the mean.

(I) Percentage of EBOV-positive monocytes from each ex vivo treatment condition, stratified by NHP donor. Error bars: 95% bootstrap CI on the mean.
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Figure S8. EBOV Infection Dynamics in the Ex Vivo Dataset, Related to Figures 6 and 7

(A) Distributions of viral loads across monocytes from different treatment conditions. Central white marker: median; black bar: interquartile range.

(B) Estimated percentage of EBOV transcripts derived from the EBOV genome or each EBOV gene, out of total viral RNA, stratified by treatment conditions. Prior

to averaging, the counts of EBOV genes for each cell was normalized to sum to one, so each cell contributes uniformly to the proportion, regardless of its total

number of EBOV transcripts. Error bars: 95% bootstrap CI on the mean.

(C and D) Scatterplot of total transcripts (unique molecular identifiers) detected in a cell (x axis, log10 scale) against viral load (y axis, log10 scale) for cells with one

or more viral reads ex vivo (C) or in vivo (D). Cells called as infected are colored in red and otherwise colored in blue.

(E and F) Relative proportion of each EBOV gene versus viral load (log10 scale) ex vivo for cells from donor NHP1 (E) or NHP2 (F). We ordered monocytes by viral

load and averaged the percentage of each viral gene over 50-cell sliding windows. Color bands: mean ± 1 SD.

(G and H) Association between gene expression and viral load for selected negatively (G) and positively (G) associated host genes in monocytes, 24 HPI after

inoculation with live virus ex vivo. In the left sub-plots, distributions of gene expression in uninfected bystander cells are shown as a boxplot, boxes: interquartile

range, whiskers: 2.5th and 97.5th percentiles. In the right sub-plots, we ordered infected cells by viral load (log10 scale) and averaged gene expression (loge
TP10K) over 100-cell sliding windows. Curves and box-plots are shown separately for the 2 donor NHPs. p-values for the Spearman correlation between viral load

and gene expression are listed for each NHP donor in the legend.
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