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ABSTRACT. Data Grid is an infrastructure that manages huge amount of 

data files and provides intensive computational resources across 

geographically distributed collaboration. To increase resource availability 

and to ease resource sharing in such environment, there is a need for 

replication services. Data replication is one of the methods used to improve 

the performance of data access in distributed systems. In this paper, we 

propose a dynamic replication  strategy  that  is  based  on  exponential  

growth  or  decay  rate  and dependency  level  of  data  files (EXPM).  

Simulation results (via Optorsim) show that EXPM outperformed LALW in 

the measured metrics – mean job execution time, effective network usage 

and average storage usage. 
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INTRODUCTION 

A Data Grid (Venugopal, 2006) is a geographically-distributed collaboration in which all 

members require access to the datasets produced within the collaboration. In Data Grids 

(Foster,  2001)(Foster,  2002),  distributed  scientific  and  engineering  applications  often  

require access to a large amount of data or they continuously generate several terabytes, even 

petabytes, of raw data in data grid. Therefore one of the tasks in Data Grid is to manage the 

huge amount of data and facilitate data and resource sharing.  In order to achieve this task, 

data must be copied and stored in several physical locations to vouch the efficient access, 

without a large consumption of the bandwidth and access latency. In other words, such a 

system requires replica management services that create and manage multiple copies of files. 

Creating replicas can reroute the client requests to certain replica sites and offer a higher 

access speed than a single server (Tang, 2005)  

In a Data Grid, when a file is required by a job and is not available on local storage, it may 

either be replicated or read remotely. If a file is replicated, the next time it is requested, the 

job can read it quickly and the time to complete the job will be reduced. But, if replicating a 

file requires deletion of other files, execution of certain jobs (in the future) may take longer. 

Therefore, an important decision of determining files to be replicated must be made. Replica 

value is defined as the number of times a replica will be requested in a future time window. 

There are two types of replica request; a direct request from user, i.e. a user directly access a 

file, and an indirect request from a file, i.e. a file accesses other files by calling one or more of 

its methods. Most of the existing works (Chang, 2006) (Tang, 2006) (Tang, 2005) focus on 

the first type of request and ignore the one made by files. Such approaches determine the 

importance of a file by only tracking users’ request. This may be applicable if files in Data 

Grid system are running independently, i.e. files can be executed without invoking other files. 

But, if files are running dependently, there is a need to assume both direct and indirect 

requests.  In  this  paper,  a  dynamic  replication  strategy,  known  as  Exponential  
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Mechanism (EXPM), is designed by tracking both the users and file behavior.  Outcome of 

this strategy is the identification of files to be replicated.  

The rest of this paper is structured as follows. Section 2 provides a brief description on 

existing work in dynamic replication strategies, focusing on how to identify files that need to 

be replicated. We include details of our proposed replication strategy in Section 3 and the 

performance evaluation is presented in Section 4. Finally, we conclude the paper in Section 5.  

 

RELATED WORKS 

In this section, we introduce some of the studies undertaken involving dynamic replication 

strategies. Two dynamic replication mechanisms (Tang, 2005) are proposed in the multi-tier 

architecture for Data Grids, including Simple Bottom-Up (SBU) and Aggregate Bottom-Up 

(ABU). The SBU algorithm replicates any data file that exceeds a pre-defined threshold. The 

main shortcoming of SBU is the lack of consideration to the relationship with historical 

access records. For the sake of addressing the problem, ABU is designed to aggregate the 

historical records to the upper tier until it reaches the root. Let us consider the data shown in 

Figure 1. It is an example of access history for two files, X and Y. In addition, the predefined 

threshold is 10. According to SBU algorithm, if the parent P1 has enough space, file X will be 

replicated, since the value of its numOfAccess is greater than threshold. On the other hand,  

file Y will be overlooked, although from the viewpoint of the overall system (looking the 

system as a whole) it was accessed for 16 times (6 + 10). This means that file Y is more 

popular compared to file X and therefore should be replicated instead of file X. But SBU 

algorithm processes the access history individually, and does not consider the relation among 

the accessed files. In the contrary, Aggregate Bottom Up (ABU) takes into consideration the 

relation among the files, since it aggregates the files included under the same node, and the 

file with the highest rate will be replicated. Revert to the same example and apply ABU, the 

records after aggregation are < P1 , X , 12> and < P1 , Y , 16 >. 

 

The dynamic replication algorithm proposed in (Tang, 2006) determines popularity of a 

file by analyzing data access history. The researcher believes that the popular data in the past 

will remain popular in the near future. The history table is in the format of < FID , NOA >, 

which indicates that the file FID (file ID) has been accessed NOA (number of access) times. 

Having analyzed data access history, the average number of access, NOA, is computed. Files 

with NOA’s value that is greater than the computer average NOA will be replicated. Hence, 

the order of which files to be replicated depends on the NOA. The larger the NOA, the more 

popular the file is and will be given a higher priority during the replication process. 

Nevertheless,  these  replication  strategies  did  not  consider  time  period  of  when  the  

files were accessed. If a file was accessed for a number of times in the past, while none was 

made recently,  the  file  would  still  be  considered  popular  and  hence  will  be  replicated.  

The algorithm proposed in (Chang, 2006) called Last Access Largest Weight (LALW) tries to 

solve this problem.  The  key  point  of  LALW is to  give  different  weights  to  files  having  

different age. The LALW algorithm is similar to other algorithms (Tang, 2006) by means of 

using information on access history to determine popularity of a file. But, the innovation is 

included by adding a tag to each access history record of a file. The weight of the record 

decays to half of its previous weight after a constant time interval. Older access history 
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records have smaller weights; it means that a more recent historical record is more important. 

An Access Frequency is calculated to represent the importance of access histories in different 

time intervals and this is achieved using the formula stated as below. 

����� = �� + 	
��� × 2��������
��

���
, ∀� ∈ � 

Where: �� is the number of time intervals, � is the set of files that have been requested, 

and ���  indicates the number of accesses for file � at time interval  � .  

However, this approach (i.e. LALW system) assumes that the decay rate is constant and 

equals ½ that means all of files decay in the same rate regardless the access rate of each one. 

As a result, the declension rate of weight will be slower. Subsequently the storage element 

will take time to delete the unwanted files (i.e. the less important files). To address this 

problem we propose that the value of file growth/decay varies based on the access rate of the 

file. That means the growth/decay rate of each file is not the same. 

THE PROPOSED MODEL 

Our replication system is designed by integrating information on file popularity from two 

perspectives; users and the file system. The first viewpoint is based on users behavior of 

requesting a file while the latter utilize information on dependencies of files in the grid 

system. 

Users’ Behavior of Requesting a File (File Lifetime) 

Many real world phenomena can be modeled by functions that describe how things grow 

or decay as time passes (Kapitza, 2003, Kremer, 1993). Exponential growth/decay is a 

positive  or  negative  growth  in  which  the  rate  of  growth is  proportional to  the  current  

size  (Richards, 1959, Bartlett, 1996). This work proposes to apply the exponential 

growth/decay rate in determining importance of a file (Madi, 2009). We describe an 

exponential growth/decay model for file’s number of access in access history. The process of 

accessing files in data grid environment follows an exponential model. If we use N�� to 

represent the number of access for file f at time t, and N��!� to represent the number of access 

at time t + 1, our exponential growth/decay model would be given by: 

N��!� =	N�� × �1 + r�                                                                                       (1.1) 

Where: r is the growth or decay rate in number of access of a file in one time interval. 

Therefore, we can calculate the value of r using the following formula: 

      r = 
N��!� N��% � − 1                                                    (1.1.1) 

Assume t is the number of intervals passed, and N�� indicates the number of access for the 

file f at time interval t, then we get the sequence of access numbers: 

N��	N��	N�'	N�(	. …	N����	N��	  
Therefore, there are t − 1 time intervals, and each time interval has a growth or decay rate 

in number of access of a file. So, according to the exponential growth/decay model we can 

write: 

r� = 
N�� N��⁄ � − 1,			r� = 
N�' N��⁄ � − 1,			r' = 
N�( N�'% � − 1,  

     r��� = 
N�� N����⁄ � − 1                                                                                      (1.1.2) 

Therefore the average rate for all intervals is  r = ∑ r-���� t − 1⁄             (1.1.3) 



Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI 

2011,8-9 June, 2011 Bandung, Indonesia  
Paper No.  

096 

 

 247

File 1

(20)

File 4

(30)

File 3
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Having known the average accessed rate (growth or decay) for a file during the past        

intervals, we can estimate the number of access for upcoming time interval:  

File	Lifetime = 	N�� × �1 + r� 

In order to avoid extreme cases where the growth or decay rate is equal to infinity, we are 

assuming that all files have been accessed for at least once. 

Files Behavior of Requesting a File (File Weight) 

In a distributed system, there are files that require other files in order to be executed - de-

pendency level of a file. A file depends on other file if it needs the later during compilation 

and/ or execution.  The dependency level differs from one file to another, in other words, the 

importance of a file to the environment is not the same. Our concern is to find the importance 

of a file to all files in the system. This is termed as File Weight (FW). The File Weight is 

computed by the following equation: 

File	Weight = ∑ NOA- × DL-:-��    

             (1.2) 

Where, ;: Total number of the files in the grid system, �<�: Number of access of the file that needs 

the underlying file, =>: The dependency level of the file, if there is no dependency then the DL is zero. 

In order to understand how to calculate File Weight, consider the following example: 

Suppose that we have four files in a grid system: File1, File2, File3 and File4. The DL and 

NOA for the files are shown in Figure 2. 

�?@A	BA?Cℎ���?@A�� 	= 0 

�?@A	BA?Cℎ���?@A'� = �20 ∗ 0.45� + �15 ∗ 0.39�
= 14.85 

�?@A	BA?Cℎ���?@A(� = �20 ∗ 0.15� + �30 ∗ 0.20� = 9 

�?@A	BA?Cℎ���?@AL� = 0 

  

Based on Figure 2, File 2 has the highest 

weight among the files, which means File 2 is 

the most important file for the current grid system. �B And �> are used to compute the 

�?@A	M�@NA, that indicates the volume of demand on a file in the grid system. The larger  

�?@A	M�@NA,is for a file, the more popular is the file. Hence, it needs to be replicated. 

�?@A	M�@NA is computed by the following equation: 

�?@A	M�@NA = �> + �B                                                                                   (1.2.1) 

EXPERIMENTAL ENVIRONMENT 

Dynamic  replication  algorithms  must  be  tested  before  deploying  them  in  real  Data  

Grid environments. A Grid simulator that is called OptorSim (Bell, 2003) which was 

developed by the European Data Grid project is used in order to implement and evaluate the 

proposed algorithm. The topology of our simulated platform adapts the topology and 

configuration used in (Chang, 2006) as it is the most similar work to ours. This configuration 

has four clusters and each one has three sites. One site has the most capacity in order to hold 

all the master files at the beginning of the simulation.  The others have a uniform size, 50GB. 

All the network bandwidth is set  as  100  Mbits/sec.  The connection bandwidth is 100 Mbps.  

There are 500 jobs need to be submitted.  We ran the simulation with 500 jobs.  A job is 

submitted to Resource Broker every 25 second.  Resource  Broker  then  submits  to  

Computing  Element  according  to  an  appropriate scheduling algorithm. There are 6 job 

Figure 2: An example files dependency 



Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI 

2011,8-9 June, 2011 Bandung, Indonesia  
Paper No.  

096 

 

 248

types, and each job type requires specific files for execution. The order of files accessed in a 

job is sequential and is set in the job configuration file as an input to the simulation. The 

number of files in our simulation is 150, and a file size is 1GB. 

Simulation Results 

The performance metrics we chose to evaluate the proposed system are: Mean Job 

Execution  Time  (MJET),  Efficient  Network  Usage  (ENU),  and  Average  Storage  Usage  

(ASU). MJET is the average time a job takes to execute, from the moment it is scheduled to 

Computing Element to the moment when it has finished processing all the required files. ENU 

(Cameron, 2004, Bell,2003) is used to estimate the efficiency of network resource usage. A 

lower value indicates that the utilization of network bandwidth is more efficient. ASU is a 

percentage of capacity consumed by files over the total capacity for the underlying storage. 

The  proposed  model  (EXPM)  is  compared  against  the  Simple  Optimizer  and  LALW  

(Last Access  Largest  Weight).  The  Simple  Optimizer  is  a  base  case  which  does  not  

involve  any replication and files are accessed remotely. The LALW algorithm is as presented 

in (Chang, 2006).  

A summary of the results is shown in Table 1. As shown in Figure 3, the mean job 

execution time using EXPM is about 22% faster than Simple optimizer, and 5% than LALW. 

Figure 4 illustrates the ENU metric of the three strategies. The Simple Optimizer consumes 

the most network bandwidth as CEs need to read all files remotely. However, LALW and 

EXPM reduce the bandwidth consumption by half. Moreover, EXPM outperforms LALW by 

9% in improving ENU. This is because number of replications required by EXPM is less 

LALW - EXPM depends on two criteria to determine files that require replication as 

compared to only one by LALW. Figure 5 illustrates the storage value of the strategies - 

Simple Optimizer uses the least amount of storage while the EXPM outperforms LALW by 

7%. This is because in EXPM, the base of exponential decay varies based on the access rate 

of the file. Contrary to LALW approach which assumes that the base of exponential decay is 

constant and equals ½ - all files decay in the same rate regardless of its access rate. As a 

result, the declension rate of weight will be slower. 

 

 

 

 

 

 

 

 

  

Figure 4: Effective Network Usage Figure 3: Mean job execution time 
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Table 1: Simulation results of LALW and  

EXPM 

 

 

 

CONCLUSION 

Exponential growth and decay are mathematical changes. The rate of the change continues 

to either increase or decrease as time passes. In this paper we adopted the exponential growth 

and  decay,  and  file  dependency    in  determining  files  that  need  to  be  replicated.  Such 

an approach considers both the user and file behaviors.  Simulation results (via Optorsim) 

show that the proposed strategy, EXPM, outperformed LALW in the measured metrics – 

mean job execution time, effective network usage and average storage usage. For future work, 

we plan to extend our model to include decision on replica deletion by investigating 

approaches to determine the minimum and maximum threshold to categorize popularity of 

files. 
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