
Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

096

 244

A DYNAMIC REPLICA CREATION: WHICH FILE TO

REPLICATE?

Mohammed Madi
1
, Yuhanis Yusof

 2
,

Suhaidi Hassan

3

1 Universiti Utara Malaysia, Malaysia , s91499@studmail.uum.edu.my
2, 3 Universiti Utara Malaysia, Malaysia,{yuhanis,suhaidi}@uum.edu.my

ABSTRACT. Data Grid is an infrastructure that manages huge amount of

data files and provides intensive computational resources across

geographically distributed collaboration. To increase resource availability

and to ease resource sharing in such environment, there is a need for

replication services. Data replication is one of the methods used to improve

the performance of data access in distributed systems. In this paper, we

propose a dynamic replication strategy that is based on exponential

growth or decay rate and dependency level of data files (EXPM).

Simulation results (via Optorsim) show that EXPM outperformed LALW in

the measured metrics – mean job execution time, effective network usage

and average storage usage.

Keywords: Data Grid, resource sharing, data replication, EXPM

INTRODUCTION

A Data Grid (Venugopal, 2006) is a geographically-distributed collaboration in which all

members require access to the datasets produced within the collaboration. In Data Grids

(Foster, 2001)(Foster, 2002), distributed scientific and engineering applications often

require access to a large amount of data or they continuously generate several terabytes, even

petabytes, of raw data in data grid. Therefore one of the tasks in Data Grid is to manage the

huge amount of data and facilitate data and resource sharing. In order to achieve this task,

data must be copied and stored in several physical locations to vouch the efficient access,

without a large consumption of the bandwidth and access latency. In other words, such a

system requires replica management services that create and manage multiple copies of files.

Creating replicas can reroute the client requests to certain replica sites and offer a higher

access speed than a single server (Tang, 2005)

In a Data Grid, when a file is required by a job and is not available on local storage, it may

either be replicated or read remotely. If a file is replicated, the next time it is requested, the

job can read it quickly and the time to complete the job will be reduced. But, if replicating a

file requires deletion of other files, execution of certain jobs (in the future) may take longer.

Therefore, an important decision of determining files to be replicated must be made. Replica

value is defined as the number of times a replica will be requested in a future time window.

There are two types of replica request; a direct request from user, i.e. a user directly access a

file, and an indirect request from a file, i.e. a file accesses other files by calling one or more of

its methods. Most of the existing works (Chang, 2006) (Tang, 2006) (Tang, 2005) focus on

the first type of request and ignore the one made by files. Such approaches determine the

importance of a file by only tracking users’ request. This may be applicable if files in Data

Grid system are running independently, i.e. files can be executed without invoking other files.

But, if files are running dependently, there is a need to assume both direct and indirect

requests. In this paper, a dynamic replication strategy, known as Exponential

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42980842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

096

 245

Mechanism (EXPM), is designed by tracking both the users and file behavior. Outcome of

this strategy is the identification of files to be replicated.

The rest of this paper is structured as follows. Section 2 provides a brief description on

existing work in dynamic replication strategies, focusing on how to identify files that need to

be replicated. We include details of our proposed replication strategy in Section 3 and the

performance evaluation is presented in Section 4. Finally, we conclude the paper in Section 5.

RELATED WORKS

In this section, we introduce some of the studies undertaken involving dynamic replication

strategies. Two dynamic replication mechanisms (Tang, 2005) are proposed in the multi-tier

architecture for Data Grids, including Simple Bottom-Up (SBU) and Aggregate Bottom-Up

(ABU). The SBU algorithm replicates any data file that exceeds a pre-defined threshold. The

main shortcoming of SBU is the lack of consideration to the relationship with historical

access records. For the sake of addressing the problem, ABU is designed to aggregate the

historical records to the upper tier until it reaches the root. Let us consider the data shown in

Figure 1. It is an example of access history for two files, X and Y. In addition, the predefined

threshold is 10. According to SBU algorithm, if the parent P1 has enough space, file X will be

replicated, since the value of its numOfAccess is greater than threshold. On the other hand,

file Y will be overlooked, although from the viewpoint of the overall system (looking the

system as a whole) it was accessed for 16 times (6 + 10). This means that file Y is more

popular compared to file X and therefore should be replicated instead of file X. But SBU

algorithm processes the access history individually, and does not consider the relation among

the accessed files. In the contrary, Aggregate Bottom Up (ABU) takes into consideration the

relation among the files, since it aggregates the files included under the same node, and the

file with the highest rate will be replicated. Revert to the same example and apply ABU, the

records after aggregation are < P1 , X , 12> and < P1 , Y , 16 >.

The dynamic replication algorithm proposed in (Tang, 2006) determines popularity of a

file by analyzing data access history. The researcher believes that the popular data in the past

will remain popular in the near future. The history table is in the format of < FID , NOA >,

which indicates that the file FID (file ID) has been accessed NOA (number of access) times.

Having analyzed data access history, the average number of access, NOA, is computed. Files

with NOA’s value that is greater than the computer average NOA will be replicated. Hence,

the order of which files to be replicated depends on the NOA. The larger the NOA, the more

popular the file is and will be given a higher priority during the replication process.

Nevertheless, these replication strategies did not consider time period of when the

files were accessed. If a file was accessed for a number of times in the past, while none was

made recently, the file would still be considered popular and hence will be replicated.

The algorithm proposed in (Chang, 2006) called Last Access Largest Weight (LALW) tries to

solve this problem. The key point of LALW is to give different weights to files having

different age. The LALW algorithm is similar to other algorithms (Tang, 2006) by means of

using information on access history to determine popularity of a file. But, the innovation is

included by adding a tag to each access history record of a file. The weight of the record

decays to half of its previous weight after a constant time interval. Older access history

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

096

 246

records have smaller weights; it means that a more recent historical record is more important.

An Access Frequency is calculated to represent the importance of access histories in different

time intervals and this is achieved using the formula stated as below.

����� = �� + 	
��� × 2��������
��

���
, ∀� ∈ �

Where: �� is the number of time intervals, � is the set of files that have been requested,

and ��� indicates the number of accesses for file � at time interval � .

However, this approach (i.e. LALW system) assumes that the decay rate is constant and

equals ½ that means all of files decay in the same rate regardless the access rate of each one.

As a result, the declension rate of weight will be slower. Subsequently the storage element

will take time to delete the unwanted files (i.e. the less important files). To address this

problem we propose that the value of file growth/decay varies based on the access rate of the

file. That means the growth/decay rate of each file is not the same.

THE PROPOSED MODEL

Our replication system is designed by integrating information on file popularity from two

perspectives; users and the file system. The first viewpoint is based on users behavior of

requesting a file while the latter utilize information on dependencies of files in the grid

system.

Users’ Behavior of Requesting a File (File Lifetime)

Many real world phenomena can be modeled by functions that describe how things grow

or decay as time passes (Kapitza, 2003, Kremer, 1993). Exponential growth/decay is a

positive or negative growth in which the rate of growth is proportional to the current

size (Richards, 1959, Bartlett, 1996). This work proposes to apply the exponential

growth/decay rate in determining importance of a file (Madi, 2009). We describe an

exponential growth/decay model for file’s number of access in access history. The process of

accessing files in data grid environment follows an exponential model. If we use N�� to

represent the number of access for file f at time t, and N��!� to represent the number of access

at time t + 1, our exponential growth/decay model would be given by:

N��!� =	N�� × �1 + r� (1.1)

Where: r is the growth or decay rate in number of access of a file in one time interval.

Therefore, we can calculate the value of r using the following formula:

 r =
N��!� N��% � − 1 (1.1.1)

Assume t is the number of intervals passed, and N�� indicates the number of access for the

file f at time interval t, then we get the sequence of access numbers:

N��	N��	N�'	N�(. …	N����	N��	
Therefore, there are t − 1 time intervals, and each time interval has a growth or decay rate

in number of access of a file. So, according to the exponential growth/decay model we can

write:

r� =
N�� N��⁄ � − 1,			r� =
N�' N��⁄ � − 1,			r' =
N�(N�'% � − 1,

 r��� =
N�� N����⁄ � − 1 (1.1.2)

Therefore the average rate for all intervals is r = ∑ r-���� t − 1⁄ (1.1.3)

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

096

 247

File 1

(20)

File 4

(30)

File 3

(15)

File 2

(10)0.45

0.15

0.20

0.39

Having known the average accessed rate (growth or decay) for a file during the past

intervals, we can estimate the number of access for upcoming time interval:

File	Lifetime = 	N�� × �1 + r�

In order to avoid extreme cases where the growth or decay rate is equal to infinity, we are

assuming that all files have been accessed for at least once.

Files Behavior of Requesting a File (File Weight)

In a distributed system, there are files that require other files in order to be executed - de-

pendency level of a file. A file depends on other file if it needs the later during compilation

and/ or execution. The dependency level differs from one file to another, in other words, the

importance of a file to the environment is not the same. Our concern is to find the importance

of a file to all files in the system. This is termed as File Weight (FW). The File Weight is

computed by the following equation:

File	Weight = ∑ NOA- × DL-:-��

 (1.2)

Where, ;: Total number of the files in the grid system, �<�: Number of access of the file that needs

the underlying file, =>: The dependency level of the file, if there is no dependency then the DL is zero.

In order to understand how to calculate File Weight, consider the following example:

Suppose that we have four files in a grid system: File1, File2, File3 and File4. The DL and

NOA for the files are shown in Figure 2.

�?@A	BA?Cℎ���?@A�� 	= 0

�?@A	BA?Cℎ���?@A'� = �20 ∗ 0.45� + �15 ∗ 0.39�
= 14.85

�?@A	BA?Cℎ���?@A(� = �20 ∗ 0.15� + �30 ∗ 0.20� = 9

�?@A	BA?Cℎ���?@AL� = 0

Based on Figure 2, File 2 has the highest

weight among the files, which means File 2 is

the most important file for the current grid system. �B And �> are used to compute the

�?@A	M�@NA, that indicates the volume of demand on a file in the grid system. The larger

�?@A	M�@NA,is for a file, the more popular is the file. Hence, it needs to be replicated.

�?@A	M�@NA is computed by the following equation:

�?@A	M�@NA = �> + �B (1.2.1)

EXPERIMENTAL ENVIRONMENT

Dynamic replication algorithms must be tested before deploying them in real Data

Grid environments. A Grid simulator that is called OptorSim (Bell, 2003) which was

developed by the European Data Grid project is used in order to implement and evaluate the

proposed algorithm. The topology of our simulated platform adapts the topology and

configuration used in (Chang, 2006) as it is the most similar work to ours. This configuration

has four clusters and each one has three sites. One site has the most capacity in order to hold

all the master files at the beginning of the simulation. The others have a uniform size, 50GB.

All the network bandwidth is set as 100 Mbits/sec. The connection bandwidth is 100 Mbps.

There are 500 jobs need to be submitted. We ran the simulation with 500 jobs. A job is

submitted to Resource Broker every 25 second. Resource Broker then submits to

Computing Element according to an appropriate scheduling algorithm. There are 6 job

Figure 2: An example files dependency

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

096

 248

types, and each job type requires specific files for execution. The order of files accessed in a

job is sequential and is set in the job configuration file as an input to the simulation. The

number of files in our simulation is 150, and a file size is 1GB.

Simulation Results

The performance metrics we chose to evaluate the proposed system are: Mean Job

Execution Time (MJET), Efficient Network Usage (ENU), and Average Storage Usage

(ASU). MJET is the average time a job takes to execute, from the moment it is scheduled to

Computing Element to the moment when it has finished processing all the required files. ENU

(Cameron, 2004, Bell,2003) is used to estimate the efficiency of network resource usage. A

lower value indicates that the utilization of network bandwidth is more efficient. ASU is a

percentage of capacity consumed by files over the total capacity for the underlying storage.

The proposed model (EXPM) is compared against the Simple Optimizer and LALW

(Last Access Largest Weight). The Simple Optimizer is a base case which does not

involve any replication and files are accessed remotely. The LALW algorithm is as presented

in (Chang, 2006).

A summary of the results is shown in Table 1. As shown in Figure 3, the mean job

execution time using EXPM is about 22% faster than Simple optimizer, and 5% than LALW.

Figure 4 illustrates the ENU metric of the three strategies. The Simple Optimizer consumes

the most network bandwidth as CEs need to read all files remotely. However, LALW and

EXPM reduce the bandwidth consumption by half. Moreover, EXPM outperforms LALW by

9% in improving ENU. This is because number of replications required by EXPM is less

LALW - EXPM depends on two criteria to determine files that require replication as

compared to only one by LALW. Figure 5 illustrates the storage value of the strategies -

Simple Optimizer uses the least amount of storage while the EXPM outperforms LALW by

7%. This is because in EXPM, the base of exponential decay varies based on the access rate

of the file. Contrary to LALW approach which assumes that the base of exponential decay is

constant and equals ½ - all files decay in the same rate regardless of its access rate. As a

result, the declension rate of weight will be slower.

Figure 4: Effective Network Usage Figure 3: Mean job execution time

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

096

 249

Table 1: Simulation results of LALW and

EXPM

CONCLUSION

Exponential growth and decay are mathematical changes. The rate of the change continues

to either increase or decrease as time passes. In this paper we adopted the exponential growth

and decay, and file dependency in determining files that need to be replicated. Such

an approach considers both the user and file behaviors. Simulation results (via Optorsim)

show that the proposed strategy, EXPM, outperformed LALW in the measured metrics –

mean job execution time, effective network usage and average storage usage. For future work,

we plan to extend our model to include decision on replica deletion by investigating

approaches to determine the minimum and maximum threshold to categorize popularity of

files.

REFERENCES

Bartlett, A. A. (1996). The Exponential Function. XI: The New Flat Earth Society The Physics

Teacher, 34, 342-343.

Bell, W. H., Cameron, D. G., Capozza, L., Millar, A. P., Stockinger, K., & Zini, F. (2002). Simulation

of Dynamic Grid Replication Strategies in OptorSim. Lecture notes in computer science, 46-57.

Bell, W. H., Cameron, D. G., Carvajal-Schiaffino, R., Millar, A. P., Stockinger, K., & Zini, F. (2003).

Evaluation of an economy-based file replication strategy for a data grid.

Bonhoeffer, S., May, R. M., Shaw, G. M., & Nowak, M. A. (1997). Virus dynamics and drug therapy

(Vol. 94, pp. 6971-6976): National Acad Sciences.

Cameron, D. G., Millar, A. P., Nicholson, C., Carvajal-Schiaffino, R., Stockinger, K., & Zini, F.

(2004). Analysis of scheduling and replica optimisation strategies for data grids using OptorSim.

Journal of Grid Computing, 2(1), 57-69.

Chang, H. P. (2006). A Dynamic Data Replication Strategy Using Access-Weights in Data Grids.

Chang, R. S., & Chen, P. H. (2007). Complete and fragmented replica selection and retrieval in Data

Grids. Future Generation Computer Systems, 23(4), 536-546.

Foster, A. C. I., Salisbury, C. K. C., & Tuecke, S. (2001). The Data Grid: Towards an Architecture for

the Distributed Management and Analysis of Large Scientific Datasets. Journal of Network and

Computer Applications, 23.

Foster, I. (2002). The Grid: A New Infrastructure for 21st Century Science. Physics today, 55(2), 42,

47.

Foster, I., & Kesselman, C. The Grid: Blueprint for a New Computing Infrastructure. 1999. San

Francisco: Morgan Kaufmann Publishers, 24(677), 8.

Goel, S., & Buyya, R. (2007). Data replication strategies in wide area distributed systems. Enterprise

Service Computing: From Concept to Deployment.

Hunt, R., & Institute of Terrestrial, E. (1978). Plant Growth Analysis.

 Simple_algo LALW EXPM

ASU 10.42 23.32 21.69

ENU 100.00 36.87 33.43

Mean Job

Time
34573.52 28626.88 27195.53

Figure 5: Storage Resources Usage

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

096

 250

Kapitza, S. P. (2003). The statistical theory of global population growth. Formal Descriptions of

Developing Systems.

Kreft, J. U., Booth, G., & Wimpenny, J. W. (1998). BacSim, a simulator for individual-based

modelling of bacterial colony growth. Microbiology, 144(12), 3275-3287.

Kremer, M. (1993). Population Growth and Technological Change: One Million BC to 1990. Quarterly

journal of economics-cambridge massachusetts-, 108, 681-681.

Lamehamedi, H., Szymanski, B., Shentu, Z., & Deelman, E. (2002). Data Replication Strategies in

Grid Environments.

Madi. M., Yusof Y. Hassan S. (2009). A Dynamic Replication Strategy based on Exponential

Growth/Decay Rate. Proceedings of the 2
nd

 International Conference on Computing and

Informatics, 48-53.

Newling, B. E. (1974). Urban Growth and Spatial Structure: Mathematical Models and Empirical

Evidence. Comparative Urban Structure.

Ranganathan, K., & Foster, I. (2001). Design and Evaluation of Dynamic Replication Strategies for a

High Performance Data Grid.

Ranganathan, K., & Foster, I. (2001). Identifying Dynamic Replication Strategies for a High-

Performance Data Grid. Lecture notes in computer science, 75-86.

Richards, F. J. (1959). A Flexible Growth Function for Empirical Use. Journal of Experimental Botany,

10(2), 290-301.

Stockinger, H., Samar, A., Holtman, K., Allcock, B., Foster, I., & Tierney, B. (2002). File and Object

Replication in Data Grids. Cluster Computing, 5(3), 305-314.

Tang, M., Lee, B. S., Tang, X., & Yeo, C. K. (2006). The impact of data replication on job scheduling

performance in the Data Grid. Future Generation Computer Systems, 22(3), 254-268.

Tang, M., Lee, B. S., Yeo, C. K., & Tang, X. (2005). Dynamic replication algorithms for the multi-tier

Data Grid. Future Generation Computer Systems, 21(5), 775-790.

Venugopal, S. (2006). Scheduling Distributed Data-intensive Applications on Global Grids: University

of Melbourne, Dept. of Computer Science and Software Engineering.

Venugopal, S., Buyya, R., & Ramamohanarao, K. (2006). A taxonomy of Data Grids for distributed

data sharing, management, and processing. ACM Computing Surveys (CSUR), 38(1).

