
Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

021

 226

AN IMPROVED ALGORITHM IN TEST CASE GENERATION

FROM UML ACTIVITY DIAGRAM USING ACTIVITY PATH

Nor Laily Hashim1, Yasir D. Salman2
1Universiti Utara Malaysia, Malaysia, laily@uum.edu.my

2Universiti Utara Malaysia, Malaysia, s820400@uum.edu.my

ABSTRACT. This paper proposed an improved algorithm to automatically

generate test cases directly from UML activity diagram using an activity

graph. This algorithm has been implemented as a prototype using UML

activity diagrams as inputs to generate test cases. These generated test cases

are generated automatically are compared to test cases that are generated

manually in order to evaluate the algorithm’s usability and reliability. The

result shows that the test cases generated by the developed test case

generator program are the same as the one manually derived.

Keywords: test case generation, automated generation, test case

INTRODUCTION

Test case generation is one of the most important elements for the testing efforts for

programs and applications (Linzhang et al., 2004). It is especially complicated when a system

contains simultaneously executing participants, since a system like that can show different

responses depending on the simultaneous occurrence conditions. A Unified Modelling

Language (UML) activity diagram is a suitable modelling language for describing interactions

between system objects given that an activity diagram can be conveniently used to capture

business processes, workflows and interaction scenarios (Kim et al., 2007).

Many have generated test cases from UML activity diagrams by generating them manually

to test the system (Linzhang et al., 2004; Kundu & Samanta, 2009; Kim et al., 2007). Many

generate test cases automatically using different methods (Chen et al., 2009; Javed, Strooper

& Watson, 2009), however none of these studies has revealed the algorithm that they have

used.

Kundu & Samanth (2009) have developed an algorithm to generate test cases using

activity paths. Their algorithm has never been implemented and this algorithm needs an

activity graph that has been generated manually from the activity diagram. Their algorithm

also needs to enter the type of each node manually and apply some rules to get the result

paths.

This paper focuses on extending Kundu & Samanth (2009)’s algorithm used in generating

test cases using UML activity diagram by applying activity path approach, in which the test

cases are generated automatically generated. The activity path is a method to calculate all

possible paths from the activity diagrams, converted each number in the path to its original

data, and from there will generate the test cases.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UUM Repository

https://core.ac.uk/display/42980838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

021

 227

BACKGROUND

The following are the main concepts applied in this study.

UML Activity Diagram

UML is a standard that contains a large set of modelling concepts that are related in

complex ways. Since UML became a standard of OMG in 1997, UML models have become

main class of artefacts in software development processes. UML provides a number of

diagrams to describe different aspects of software artefacts. UML activity diagrams illustrate

the sequential control flows of activities. They can be used to represent control flow of an

operation or model the dynamic aspects of a group of objects, which form a kind of design

specifications for programs (Chen at al., 2009).

In order to directly reuse the activity diagrams modeling of an operation as a test model to

generate test cases, it is necessary to follow the testability requirement. An activity diagram

should only have one initial activity state, pair of branches and merges, pair of forks and

joins. The owner object of each activity state should be labeled by swim lanes, or be labeled

in the name of activity state. Every node other than the initial node and final node has at least

one outgoing edge and one incoming edge, which means all nodes are reachable. Any fork

node only has two exit edges. Concurrent activity states will not access the same object and

only execute asynchronously (Linzhang et al., 2004).

Activity graph

An activity graph is a directed graph while its construct is represented by each node in the

activity graph (initial node, decision node, flow final node, guard condition, join node, fork

node, etc.), and from that each border of the activity graph symbolizes the stream in the

activity diagram. Furthermore, the activity graph as shown in Figure 1 summarizes assemble

of an activity diagram in an organized way which can be used for further automation (Kundu

& Samanta, 2009). These nodes are used for test case generation due to their capability for

detecting more faults in the synchronization and loop faults than the other approaches. In

addition the ability to identify location of the faults will help to reduce testing afford and

having model-based test case generation to improve and develop design quality. Furthermore,

it has a possibility to built automatically prototype for the activity graph. The algorithm by

Kundu & Samanta (2009) has taken the activity graph as an input and the output from it will

be the activity path. Furthermore, the generated paths will need some of rules to apply on the

result paths to get all the possible paths that will be needed to generate the test cases.

Figure 1. Activity Graph for login screen

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

021

 228

Test Case Generation

Test case generation has attracted more and more research attention (Cartaxo, Neto &

Machado, 2007; Chen at al., 2009; Heumann, 2001; Javed, Strooper, & Watson, 2007; Kim

etal., 2007; Kundu & Samanta, 2009; Linzhang at al., 2004; Mingsong, Xiaokang, &

Xuandong, 2006). Large number of them focused on UML activity diagram as a based to

generate the test case (Chen, at al, 2009; Kundu & Samanta, 2009; Kim, Kang, Baik, & Ko,

2007; Linzhang at al., 2004; Mingsong, Xiaokang, & Xuandong, 2006), and none of them

reveal their proposed approaches or algorithms, or share their testing implementation

conducted during the testing.

A test case specifies a set of test inputs, expected results, and execution conditions

developed to verify observance with a specific requirement or implement a particular program

path (Lilly & G, 2010).

PROPOSED ALGORITHM FOR GENERATING TEST CASES

The following algorithm will generate all the possible paths from the activity diagram, and

from the result paths, test cases will be generated. This algorithm is evaluated in terms of its

usability and reliability by comparing manual test cases with test cases automatically

generated from the prototype of this algorithm. The manual test cases are obtained from

Alshammari (2010), where four test cases for student functionalities from Universiti Utara

Malaysia learning management system called, LearningZone are used. The functions are

login, download assignment, change password, and forum search. Due to space limitation,

only one Login function is used and presented in this paper.

Algorithm 1: Generate Test Case

Part A: variables used in the Algorithm

Input: an activity diagram

Output: test case

 To find the number of paths, the following are the variables used:

TDN-the number of node which has two directions.

RNN- the number of return node.

TDNI - the number of two directions inside each return node.

RNNI- the number of return node inside each return node.

Basic paths with the return paths number (BPR) = TDN +1

Basic paths number (BP) = BPR - RNN

Number of paths after return (PAR) = TDNI- RNNI

The number of all paths (AP) = BP + PAR(s)

Part B : Pseudo code of methods supported in the algorithm

1. To find the basic paths with the return paths, the following are the variables used:

a. Node - to put the nodes

b. LoopFlag - to keep track of the loop

c. N1 - for the first next of the nodes

d. N2 - for the second next of the nodes

e. Nodeflag – for keeping track of the visited nodes

f. End – for know the end of the path

Begin

LoopFlag = TDN, Node = first node, Nodeflag=0, End= true

While LoopFlag is not empty do

 While End is true do

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

021

 229

 If (it’s the first node) then put the first node in the path;

 Put the node first next in N1 and its second next in N2;

 If (N1 = 0) then put end to true;

If (NodeFlag = 0 and N2 = 0) then put N1 for the next node in the path;

Else if (NodeFlag = 0 and N2! = 0) then put N1 for the next node

in the path and put NodeFlag = 1, put NodeFlag = NodeFlag – the

number of two direction node before it;

Else if (NodeFlag = 1 and N2! = 0) then put N2 for the

next node in the path and put NodeFlag = 2;

 Put the next node of the path as the current node;

 End

 Put the path in array;

End

2. To found all the paths (AP)

Duplicate the paths that have without End to the (TDNI+ RNNI) number;

Put the return paths inside it to continue it to the number of paths inside the return

path;

Finish each one from the size basic paths;

That will generate the possible paths.

3. From the save information of each node, print out the details of each path to the last

one, what will give us the test case.

Automatic generate for the test case from the login activity diagram

First: Use the activity diagram, as shown in Figure 2 to generate the test case from it.

Figure 2. Activity Diagram for “Login”

Using the algorithm explained earlier, the prototype will generate the following result as

shown in Figure 3

No. of

Times<=10

Display "Login here using your

username and password"

Display "Invalid login,

please try again"

Display "Sorry, you have exceeded the allowed

number of login attempts. Restart your browser."

Launch student

main view page

<<RegID=Valid>>

N

<<Try Again=No>>

Y

<<Try Again=Yes>>

<<RegID=Invalid>>

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

021

 230

Figure 3. The program result for the “login” activity diagram

This result contains all possible paths that are generated from the algorithm based on given

activity diagram as shown in Figure 3. The detail for each path together with saved nodes is

used to generate the test cases. The test cases generated for Login activity diagram can be

seen in Table 1 in the last column. Column two shows the branch conditions that each path

follows.

Table 1. The generated test cases for “Login”

Test

case

Sequence of

Branch

Conditions

Activity Sequence

1
RegID=Invalid

Try again=No

Display: Login here using your user name and password ,

Display: Sorry, you have exceeded the allowed number of login

attempts. Restart your browser.

2 RegID=Valid
Display: Login here using your user name and password ,

Launch student main view page.

3

RegID=Invalid

Try again=Yes

RegID=Invalid

Try again=No

Display: Login here using your user name and password,

Display: Invalid login, please try again.

Display: Login here using your user name and password,

Display: Sorry, you have exceeded the allowed number of login

attempts. Restart your browser.

4

RegID=Invalid

Try again=Yes

RegID=Valid

Display: Login here using your user name and password,

Display: Invalid login, please try again,

Display: Login here using your user name and password,

Launch student main view page.

Test Result

Four student functionalities have been automatically generated using the proposed test

case generator prototype. The generated test cases are compared with the test cases manually

generated by Alshammari (2010). From this comparison, it shows that the test cases generated

Test cases

for each

path

All possible

paths: 4 paths

are created

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

021

 231

by the developed test case generator program are the same as the one manually derived.

Therefore, it can be concluded that the proposed algorithm is usable and reliable.

FUTURE WORK

In the future, this algorithm can be generalized so that it can accommodate various test

coverage criteria within the same test derivation framework. This prototype can be improved

by developing the ability to build directed graph and parse test cases from it. The UML

activity diagrams that have been used in this research were using UML 1.0 version. For the

future work, the use of UML 2.0 notation is recommended. Additionally, the UML activity

diagrams were generated manually in the work; therefore, the use of a tool that is able to

automatically generate these diagrams is suggested.

CONCLUSION

The use of active graph is a good method to ensure that the generation of the test cases

automatically using the proposed algorithm and its implementation, and using the UML

activity diagram as a base to guarantee the ability of automatic implementation. The

reusability of this research work can be applied to complete full automatic analysis. This test

will open new opportunity to discover new techniques or methods for the testing using UML

diagrams and automatic test cases generation.

REFERENCES

Alshammari, S. A. (2010). Generating Test Cases for LearningZone. Thesis, UUM .

Cartaxo, E., Neto, F., & Machado, P. (2007). Test Case Generation by means of UML Sequence

Diagrams and Labeled Transition Systems. IEEE, 1292-1297.

Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., & Li, X. (2009). UML Activity Diagram-Based

Automatic Test Case Generation For Java Programs. The Computer Journal, 52 (5), 545-556 .

Heumann, J. (2001). Generating Test Cases From Use Cases. Retrieved 5 July, 2010, from:

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTe

stCasesFromUseCasesJune01.pdf

Javed, A., Strooper, P., & Watson, G. (2007). Automated Generation of Test Cases Using Model-

Driven Architecture. IEEE, 3-9.

Kim, H., Kang, S., Baik, J., & Ko, I. (2007). Test Cases Generation from UML Activity Diagrams.

IEEE, 556-561.

Kundu, D., & Samanta, D. (2009). A Novel Approach to Generate Test Cases from UML Activity

Diagrams. Journal of Object Technology, 8 (3), 65-83.

Lilly, R., & G, U. (2010). Reliable Mining of Automatically Generated Test Cases from Software

Requirements Specification. International Journal of Computer Science Issues, 87-91.

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., & Guoliang, Z. (2004). Generating

Test Cases from UML Activity Diagram based on Gray-Box Method. IEEE, 284-291.

Mingsong, C., Xiaokang, Q., & Xuandong, L. (2006). Automatic Test Case Generation for UML

Activity Diagrams. ACM, 2 - 8 .

