
Scaling of Multi-CoreQuantum Architectures: A
Communications-Aware Structured Gap Analysis

Santiago Rodrigo
srodrigo@ac.upc.edu

NaNoNetworking Center in Catalonia
(Universitat Politècnica de Catalunya)

Barcelona, Spain

Medina Bandic
M.Bandic@tudelft.nl

QuTech (Delft University of
Technology)

Delft, Netherlands

Sergi Abadal
abadal@ac.upc.edu

NaNoNetworking Center in Catalonia
(Universitat Politècnica de Catalunya)

Barcelona, Spain

Hans van Someren
J.vanSomeren-1@tudelft.nl
QuTech (Delft University of

Technology)
Delft, Netherlands

Eduard Alarcón
eduard.alarcon@upc.edu

NaNoNetworking Center in Catalonia
(Universitat Politècnica de Catalunya)

Barcelona, Spain

Carmen G. Almudéver
cargara2@disca.upv.es

Universitat Politècnica de Valencia
Valencia, Spain

QuTech (Delft University of
Technology)

Delft, Netherlands

ABSTRACT
In the quest of large-scale quantum computers, multi-core dis-
tributed architectures are considered a compelling alternative to
be explored. A crucial aspect in such approach is the stringent de-
mand on communication among cores when qubits need to interact,
which conditions the scalability potential of these architectures.
In this work, we address the question of how the cost of the com-
munication among cores impacts on the viability of the quantum
multi-core approach. Methodologically, we consider a design space
in which architectural variables (number of cores, number of qubits
per core), application variables for several quantum benchmarks
(number of qubits, number of gates, percentage of two-qubit gates)
and inter-core communication latency are swept along with the def-
inition of a figure of merit. This approach yields both a qualitative
understanding of trends in the design space and companion dimen-
sioning guidelines for the architecture, including optimal points, as
well as quantitative answers to the question of beyond which com-
munication performance levels the multi-core architecture pays
off. Our results allow to determine the thresholds for inter-core
communication latency in order for multi-core architectures to
outperform single-core quantum processors.

CCS CONCEPTS
• Computer systems organization → Quantum computing;
Distributed architectures; •General and reference→Design;
• Networks → Network on chip.

KEYWORDS
Quantum Computing, Many-core Quantum Computers, Quantum
Communications, Design Space Exploration, Quantum Computers
Scalability

1 INTRODUCTION
Quantum computing is expected to open the door to a revolution in
the broad fields of computing and communications. This is possible
by virtue of unconventional properties of quantum mechanics such
as superposition or entanglement, which could potentially allow
solving certain algorithms exponentially faster than on classical
computers and provide unconditional security in communications
[1, 2, 3, 4, 5].

The key challenges preventing the scaling and wide adoption of
quantum computers are manifold. They could be summarized in
that qubits, i.e. the alter ego of classical bits in the quantum world,
are very sensitive to noise and any operations applied to them.
That makes it very difficult to preserve their coherence and not
introduce errors in the computation. To minimize this, quantum
processors are nowadays kept isolated at cryogenic temperatures
and controlled externally. For all this, the addressing and control of
large qubit arrays becomes extremely challenging.

Despite impressive recent advances, existing realizations of quan-
tum computers are still too small and noisy to allow for the experi-
mental demonstration of their full potential. They are referred to as
Noisy Intermediate-Scale Quantum (NISQ) computers. For instance,
the largest functional NISQ computers presented thus far have less
than a hundred qubits[6, 7], which is far from the number of qubits
needed for showing the true advantage of these computers and
their applicability to solve real problems [8, 5].

The final publication is available at ACM via http://dx.doi.org/10.1145/3457388.3458674

CF ’21, May 11–13, 2021, Virtual Conference, Italy S. Rodrigo, M. Bandic, S. Abadal, H. van Someren, E. Alarcón, and C. G. Almudéver

Inter-core comms

Control
and

classical
comms

QCore

Control
cryogenic
electronics

Comms controller

Intra-core comms

Optimal
Design

Figure 1: Design Space Exploration for multi-core quantum computing architectures

To increase these numbers, tremendous efforts are being put into
allowing a dense integration of many qubits within one chip [9,
10]. However, this approach is conjectured to have its limit in a
few thousand qubits, due to the impracticality of integrating the
required control circuits and per-qubit wiring and still maintaining
a low quantum error rate [11].

An alternative or complementary approach to scale existing
quantum computers consists in the creation of quantum multi-core
architectures with dozens of NISQ cores (see Fig. 1). Each of these
cores would contain a relatively low number of qubits, from tens to
hundreds, and be connected through a quantum interconnect for
core-to-core coherent qubit transport (via, for instance, quantum
teleportation or photonic shuttling [12, 13]) and a control classi-
cal network for core coordination, job distribution or quantum
teleportation assistance. This disintegration approach alleviates
the requirements for control circuits and improves qubit isolation,
while still maintaining all the advantages of quantum parallelism as
long as cores are kept coherent through the quantum interconnect.

Various proposals [14, 15, 16, 17, 18, 19, 20] in the literature
agree on using this approach at multiple scales and studied the
use of multiple qubit technologies (e.g. ion trap, quantum dots or
impurities in solids) and quantum interconnect alternatives (e.g. ion
shuttling, quantum teleportation) to realize the vision. However,
to the best of our knowledge, a thorough architectural top-down
analysis of the scaling potential, resource overheads and computa-
tional costs of multi-core architectures is missing. A more detailed
study was conducted in [21], where technology-agnostic multi-core
quantum computer performance is explored for a wide range of
configurations in terms of number of qubits, number of cores and
some technological parameters. However, as the authors already
mention, the analysis is only a preliminary approach, as it is limited
to an analytical Figure of Merit (FoM), not related to any previously
existing well-known quantum metric or simulations based upon
experiment-supported models. Although the conclusions on the
effectiveness of the multi-core approach are promising, stronger
foundations need to be laid in order to give more concrete direc-
tions for quantum computer designers and quantum technology
developers.

Specifically, the trade-off between communications overhead
present in multi-core architectures and the gain in size of the algo-
rithms that can be executed on them, needs to be profiled. This will
help not only to determine the viability of multi-core computing
but also to characterize the decision threshold where the communi-
cations cost of distributing quantum computation among several
cores pays off.

Studies on this trade-off are available [22, 23, 24, 25, 26], al-
though none of them allows us to answer any of these key questions,
namely: how fast should inter-core communications be in order to
allow multi-core architectures to supersede traditional single-core
quantum processors? For a given interconnect technology, which
is the optimal architectural configuration that the communication
costs pay off?

This is the aim of the present work. We attempt to do so by per-
forming a Design Space Exploration (DSE) of the architectural and
technological variables that configure multi-core quantum comput-
ers. We have used the OpenQL [27] compiler and QMap mapper
[28] with several random and real application benchmarks to com-
pute the actual performance for different multi-core configurations,
comparing it with the traditional single-core results.

2 EXECUTING QUANTUM ALGORITHMS ON
MULTI-CORE QUANTUM
ARCHITECTURES

Quantum algorithms are usually expressed as quantum circuits
that are agnostic of quantum hardware, i.e. it is assumed that all
qubits can interact with each other or that quantum gates can be
performed in parallel as long as their dependencies are respected.
However, quantum processors suffer from several constraints that
must be satisfied when executing a quantum algorithm on them
[28]. Qubits are arranged on a specific topology, and although all-to-
all qubit connectivity is possible for trapped-ion processors [29], in
most of the quantum devices one of the most stringent constraints
is the reduced connectivity between qubits, limiting their possible
interactions to, for instance, only nearest-neighbour.

Accordingly, different mapping approaches have been proposed
for realising quantum algorithms in connectivity-constrained, and

Scaling of Multi-CoreQuantum Architectures: A Communications-Aware Structured Gap Analysis CF ’21, May 11–13, 2021, Virtual Conference, Italy

Comms
overhead

Application
profile

Input Parameters
Multi-core

architecture

System
description

Target architecture
definition for Qmap

Qubit technology, gate
operation, control

constraints…

Generate
synthetic

benchmark

Design Space Exploration

Modify topology
and communication

latencies

O
pt

im
al

co
n

fi
gu

ra
ti

on

Q
m

ap
m

ap
pe

r

Г
co

m
pu

ta
ti

on

O
p
e
n
Q
L

P
y
t
h
o
n

J
S
O
N

Benchmark template
implementation

QFT, Grover’s,
random

Compiler output
Executable code and

reports

O
pe

n
Q

L
co

m
pi

le
r

Figure 2: Flow diagram of the evaluation framework used for the Design Space Exploration

in more general resource-constrained, single-core quantum archi-
tectures [30]. The main steps in this process, which are also relevant
for the multi-core case, are: 1) initial placement of qubits in which
the virtual qubits (qubits in the circuit) are assigned to the physi-
cal ones (qubits in the quantum chip); 2) routing of the qubits to
adjacent positions whenever they need to interact (using specific
quantum operations such as SWAP gates); and 3) scheduling of
quantum operations to leverage their parallelism and reduce the
overall circuit latency (i.e. the time it takes to complete the execu-
tion). This process results in an increase in the number of gates and
circuit depth (number of steps in the circuit) that in turn decreases
the success rate of the algorithm [31].

These mapping techniques can be applied and extended when
scaling the architecture to multiple cores as the connectivity among
cores is also limited. In this case, virtual qubits can be mapped to
a physical qubit in any core. Ideally, qubits with a high-degree of
interactions should be placed in the same core. When two qubits
that are in different cores need to interact, they will have to be
moved to the same core. Therefore, multi-core architectures (see
Fig. 1) require not only intra-core qubit movement operations (e.g.
SWAP gates), but also inter-core communication operations such
as quantum teleportation or qubit shuttling [22].

Depending on the interconnect topology of the multi-core ar-
chitecture, the restrictions on inter-core communications will vary.
As in the single-core case, this limitation will result in an increase
of quantum operations. In addition, inter-core communication is
slower and more error-prone than intra-core communication oper-
ations: latencies are from 5× to 100× longer, and the error rates are
on average 10× to 100× worse for quantum teleportation than for
two-qubit gates [25, 14, 32]. All of these overhead sources need to
be analysed as they will substantially affect the algorithm execution
and reliability of the final results.

3 EXPLORING THE MULTI-CORE
ARCHITECTURES PERFORMANCE

In this section, we present the framework for the analysis: architec-
tural assumptions and performance metrics, chosen benchmarks,
compilation framework and problem formulation. See in Fig. 2 a
flow diagram of the design exploration process.

3.1 Modeling Assumptions
Multi-core quantum topology: We assume the quantum com-
puter to be composed of one or several interconnected cores, which
could be compared to any current NISQ quantum computer; that
is, a computing core consisting of some tens or hundreds of qubits.
In order to keep the focus on the effect of inter-core communica-
tion, we have assumed all-to-all intra-core connectivity, i.e. every
physical qubit can interact with any other as long as they placed in
the same core. As in [14] and [16], full connectivity is also assumed
among the cores, meaning that qubits placed in different cores are
at ‘one hop’ distance, as there is an entangled pairs generator which
is shared among all cores.

Inter-core communication:We have chosen quantum telepor-
tation as the inter-core communication operation, as it is a firm
candidate for this role, and has been already demonstrated with sev-
eral technologies [33, 34, 35, 36]. Quantum teleportation is based on
the properties of entangled pairs of qubits, that are shared among
two entities and enable them to communicate a quantum state,
through a few simple operations and some classical communica-
tion, without the need of sending the physical qubit, and hence
increasing the success rate.

Decoherence and other quantum noise sources are not directly
considered in the analysis. Though these error sources considerably
affect the accuracy of the computation results, as mentioned before,
when studying the effect of communications it is of interest to focus

CF ’21, May 11–13, 2021, Virtual Conference, Italy S. Rodrigo, M. Bandic, S. Abadal, H. van Someren, E. Alarcón, and C. G. Almudéver

103

105

107

Al
g.

 si
ze

NC = 1 NC = 2 NC = 4 NC = 8 NC = 16 NC
Q = 16 NC

Q = 64 NC
Q = 256 NC

Q = 1024

101

103

Co
m

m
s o

ve
rh

ea
d Linter

Lintra
= 10

Linter
Lintra

= 100
Linter
Lintra

= 1000

101 102 103

NQUBITS

102

104

106

2 4 6 8 10 12 14 16

NCORES

Figure 3: Full-blown variable exploration of multi-core quantum architectures for the random benchmark (80% of gates are
two-qubit operations). From top to bottom, size of the algorithm (qubits × gates), communications overhead and Figure of
Merit Γ are plotted against the number of qubits of the algorithm and the number of cores of the architecture, varying the
number of qubits per core (and the total number of physical qubits accordingly). In this benchmark, the number of gates has
been fixed, while the number of qubits of the algorithm increases along the size of the architecture.

on the latency overhead. It is the main hurdle of inter-core commu-
nications when compared to intra-core operations and deserves an
isolated study. Certainly, considering the effects on the overall error
rates is an important part of our future work, requiring accurate
error models and specific tools.

In any case, it is key to note that in quantum communications
latency and error rate are tightly related: the more time is consumed
in the data transfer, the higher will be the decoherence effect on
the result error (assuming no error correction or entanglement
distillation techniques). Also, correcting errors and dealing with
them incurs in higher execution latency. Accordingly, the present
study, although focused on latency overhead, gives guidelines that
are applicable as well for real-world error-prone systems.

3.2 Selected Benchmarks
With the aim of evaluating the communication overhead in multi-
core quantum architectures and its potential for solving the scalabil-
ity issue, we have used the Quantum Fourier Transform (QFT) and
Grover’s search algorithm as benchmarks [37, 25]. These bench-
marks, however, have a specific structure and scale in a predefined
steady manner, which limits our control over their parameters. For
instance, the number of gates for Grover’s algorithm scales in a
linear manner with number of qubits, whereas its percentage of
two-qubit gates (after decomposition) is around 30%.

In order to overcome this limitation, additionally we decided
to use synthetically generated benchmarks in the form of random
circuits. These can provide the necessary freedom to explore algo-
rithm parameters like number of qubits, gates and the percentage of
two-qubit gates mentioned previously. The importance of using the
family of random circuit benchmarks was pointed out by some pre-
vious works as well [38, 39, 40, 25, 41, 42, 43], which also introduced

various ways of generating them. They differ in type of randomness,
shape (width vs. depth), gate density per layer, etc. In our case, we
opted for random circuits that are generated by uniformly selecting
gates from a predefined set and uniformly selecting qubits (one
or two qubits for single- or two-qubit gates, respectively) to apply
those gates on. Beforehand, we had to decide on the percentage
of two-qubit gates, as this parameter is the one that defines the
amount of qubit interactions. We chose the two extreme values of
20% and 80% to showcase the impact of communication.

3.3 Extending the Qmap mapper
In order to evaluate the communication costs, we have mapped the
previously presented benchmarks into different multi-core quan-
tum architectures. To this purpose, we used the OpenQL quantum
programming framework [27] and the Qmap mapper [28] embed-
ded in it. In this work, we have modified the Qmap mapper, which
is meant for single-core resource-constrained quantum processors,
and extended it to the multi-core case.

The main modifications are the following: 1) together with the
definition of each core’s description (gate latencies, qubit connec-
tivity constraints, supported operations, etc.), the configuration
file includes the topology specification of the multi-core archi-
tecture (how many cores, inter-core connectivity, and number of
qubits/core) as well as the inter-core communication latency; 2) in
the initial placement, a single core can be assigned multiple qubits;
3) an inter-core qubit transfer operation has been defined and is
inserted during the routing process when necessary.

Note that as all-to-all intra-core connectivity is assumed, the
OpenQL compiler, apart from satisfying the dependencies among
different instructions, has only to take into account inter-core move-
ment; if any pair of qubits placed in different cores need to interact,

Scaling of Multi-CoreQuantum Architectures: A Communications-Aware Structured Gap Analysis CF ’21, May 11–13, 2021, Virtual Conference, Italy

101 102 103

NQUBITS

103

106

109

NC = 1
NC = 2
NC = 4

NC = 8
NC = 16

5 10 15

NCORES

random 20%
random 80%
QFT
Grover's

NC
Q = 16

NC
Q = 64

NC
Q = 256

NC
Q = 1024

random 20%
random 80%
QFT
Grover's

Figure 4: Several benchmarks’ scalability on different multi-cores architectures: two different random benchmarks (varying
the fraction of two qubit-gates (20%–80%), QFT and Grover’s search

the compiler has to insert the teleportation operation and mod-
ify the execution schedule to wait for the movement to complete,
after which the qubits interact inside one core. Observe however
that, having any-to-any communication in both inside the core
and among the cores, the routing phase of Qmap has no way to
differentiate the ‘one hop’ distance between qubits in the same core
and that of two qubits placed in different cores. In order to solve
this, the compiler adds an extra hop in the latter case and avoids
paths with more than one inter-core communication. Note also
that the Qmap mapper tries to reduce the resulting circuit latency
overhead (overall circuit execution time).

3.4 Problem Formulation
We are considering multi-core architectures as an approach that
may help to unleash the quantum computing potential, which is
right now limited by the number of qubits of current processors.
Therefore, being focused in determining the decision threshold be-
tweenmonolithic single-core andmulti-core quantum architectures,
the communication cost and available computing capacity for the
algorithm being executed must be the key point of the exploration.

Hence, the proposed performance metric may be defined as

Γ =
Algorithm size

Comms overhead
=

gates × # qubits required(
Latency (multi-core)
Latency (single-core)

) (1)

In Eq. (1), the algorithm size refers to the product of its number
of qubits and its number of gates. The execution latency (different
from the communication latencies 𝐿𝑖𝑛𝑡𝑒𝑟 and 𝐿𝑖𝑛𝑡𝑟𝑎) accounts for
the total number of processor cycles the code takes, after perform-
ing a platform-specific compilation (i.e., mapping and instructions
scheduling).

The performance metric Γ depends on three different aspects of
the problem: the architecture configuration, the application-specific
parameters, and the technology specifications. According to our
modeling assumptions, we can narrow down these dependencies
to five variables: number of qubits per core and number of cores
(architecture); total number of qubits and gates required by the

algorithm and 2-qubit gates fraction (application), and the ratio
between the inter-core communication latency and the cost of an
intra-chip communication operation (communications).

Therefore, we are looking in the design space for the points
where multi-core architectures perform better than single-core
processors. That is to say, to find the maximum performance Γ for
any given architecture configuration (number of qubits per core 𝑁𝐶

𝑄

and number of cores 𝑁𝐶), for every application (i.e. number of gates
𝑁𝐺 , 2-qubit gates fraction 𝑁

(2)
𝐺

/𝑁𝐺 and number of qubits required
𝑁𝐴𝐿𝐺
𝑄

) and for a fixed communications overhead (𝐿𝑖𝑛𝑡𝑒𝑟 /𝐿𝑖𝑛𝑡𝑟𝑎).
This can be summarized in the formulation below:

min
𝐿𝑖𝑛𝑡𝑒𝑟

𝐿𝑖𝑛𝑡𝑟𝑎
(2)

s.t. Γ′
(
𝑁𝐶
𝑄 , 𝑁𝐶

)
≥ Γ′

(
𝑁𝐶
𝑄 , 1

)
𝑁𝐴𝐿𝐺
𝑄 , 𝑁𝐺 = const

Intra- and inter-core topology, qubit implementation and inter-
connect technology are assumed to be fixed, while the application-
specific parameters vary on every benchmark.

4 RESULTS
We have performed an in-depth exploration of the design space,
sweeping all the input variables in wide ranges. Standard bench-
marks (QFT, Grover’s) have their own profile in terms of number
of gates (𝑁𝐺) and 2-qubit gates fraction (𝑁 (2)

𝐺
/𝑁𝐺), both of which

depend on the size of the input (number of qubits required, 𝑁𝐴𝐿𝐺
𝑄

),
which we have varied from 10 to 3000. In the random case, we have
fixed the number of gates, while sweeping the number of qubits
in the same range, as a way to keep constant the number of inde-
pendent variables modifying the output performance. Aiming at
the future high-scaling multi-core computers, we have explored
ranging from modest sizes (2 cores and 10 qubits per core) to 16
cores and 1024 qubits per core. Finally, we have characterised costly
inter-core communications with latencies ratio (𝐿𝑖𝑛𝑡𝑒𝑟 /𝐿𝑖𝑛𝑡𝑟𝑎) that

CF ’21, May 11–13, 2021, Virtual Conference, Italy S. Rodrigo, M. Bandic, S. Abadal, H. van Someren, E. Alarcón, and C. G. Almudéver

100 101 102 103

Linter/Lintra

104

106

NC
Q = 256

NC = 1
NC = 2
NC = 4

NC = 8
NC = 16

0 250 500 750 1000

NC
Q

2.0

3.0

4.0

5.0

Linter
Lintra

NC = 2
NC = 4

NC = 8
NC = 16

NC = 2
NC = 4

NC = 8
NC = 16

Figure 5: Design Space Exploration ultimate goal: optimal inter-core latency for every architecture (here the case for random
(80%) is shown). The evaluation points lacking in the plot correspond to compilations that took an excessive amount of time
to complete

Table 1: Design Space Exploration

QFT Grover’s Random 0.2 Random 0.8

𝑁𝐺 O(𝑁𝐴𝐿𝐺
𝑄

)2 O(𝑁𝐴𝐿𝐺
𝑄

) 3000 3000

𝑁
(2)
𝐺

/𝑁𝐺 ∼ 50% ∼ 30% 20% 80%

𝑁𝐴𝐿𝐺
𝑄

[10, 3000]

𝑁𝐶 [1, 16]

𝑁𝐶
𝑄

{16, 64, 256, 1024}
𝐿𝑖𝑛𝑡𝑒𝑟

𝐿𝑖𝑛𝑡𝑟𝑎
{10, 100, 1000}

starts from 10 and goes up to 1000, in order to stress the analysis in
the most crucial point. A summary of these input parameters can
be found in Table 1.

In Fig. 3, the full-blown variable space exploration for a single
benchmark (the random benchmark with 80% of 2-qubit gates) is
shown. The design space is projected onto the two architecture-
related dimensions, i.e. total number of qubits and number of cores
available in the computer. From top to bottom, the FoM Γ com-
ponents are shown (the algorithm size is plotted in the first row,
right below the communications overhead can be found, and the
aggregated final metric is on the last row). In this way, we can see
the effects of both parameters in the performance.

In the left side, we can see the different clusters of lines in the
communications overhead plot (in the middle), for the three differ-
ent ratios of 𝐿𝑖𝑛𝑡𝑒𝑟 /𝐿𝑖𝑛𝑡𝑟𝑎 : the performance scales linearly with the
inter-core latency. This does not benefit the multi-core approach,
as the single-core processor performs always better. Very impor-
tantly, observe that the single-core curve is discontinued at 103
qubits, as that is the forecasted approximate upper limit (number

of qubits in a single core) for current qubit integration technolo-
gies[11]. This allows multi-core architectures performance grow
past that limit, achieving single-core levels of performance by in-
creasing the number of qubits and number of cores, for the same
qubit technology. For a fixed number of cores, the communications
overhead decreases slowly (as more qubits are fitted inside the same
core, hence less inter-core movements are needed), and thus the
performance increases. Note also that the communications over-
head is higher than the 𝐿𝑖𝑛𝑡𝑒𝑟 /𝐿𝑖𝑛𝑡𝑟𝑎 , as the overhead accounts as
well for delays in instructions scheduling that are a byproduct of
longer qubit transportation waiting times.

The bottom-right plot contains the most valuable information
in this first wide exploration: we can see from left to right the cost
of going from single-core to multi-core (see the steep descent of
the performance in the interval [1, 2], and most importantly, how
the multi-core architecture, as the number of cores are increased
(i.e. parallelism), recovers performance until almost reaching single-
core performance values with 16 cores working together. That is,
adding cores allows increasing the number of available physical
qubits for computation, breaking the single-core qubit integration
limit, and overcoming the latency overhead from inter-core com-
munications. This sheds a light on the potential of multi-core ar-
chitectures.

The same full-blown exploration for QFT, Grover’s and the low-
communication random benchmark are also shown in Fig. 4, and
compared to the already seen high-communication random bench-
mark. The lowest performance is that of the random algorithms, as
the two-qubit gates are distributed uniformly, without any struc-
ture, among all the qubits: even the best efforts coming from the
mapper in the low-communication benchmark can decrease inter-
core qubit interaction. QFT shows a steeper increase in performance
as the architecture grows: even having a moderate amount of qubit
communication (see Table 1), its structure allows the mapper to dis-
tribute it properly. Note that its minimum performance is the worst,

Scaling of Multi-CoreQuantum Architectures: A Communications-Aware Structured Gap Analysis CF ’21, May 11–13, 2021, Virtual Conference, Italy

but it also shows the higher maximum, surpassing the single-core
performance with as few as 4 cores. In a nutshell, multi-core ar-
chitectures benefit from highly-structured pieces of quantum code,
which are frequently used in many well-known algorithms.

Having explored the design space in this way, we have been
able to see, for different architectures, applications and inter-core
communication performance, the balance point where multi-core
architectures supersede single-core performance. Therefore, let
us now explore this the other way around, looking for the deci-
sion threshold where the inter-core communication adoption in
multi-core architectures starts to pay off and exceed single-core
performance. This decision threshold will depend on the application
and the architecture. See in Fig. 5, left plot, the graphical represen-
tation of the decision threshold finding for a specific application
and several architectures, as the crossing point of the performance
single-core line (which is flat, as it does not depend on the inter-core
communication latency) with the performance curves of different
architectures. In Fig. 5, right plot, the decision thresholds curves for
a wide range of architectures are shown. Observe that, for instance,
a quantum computer with 4 cores and 256 qubits will outperform
the corresponding single-core’s performance if 𝐿𝑖𝑛𝑡𝑒𝑟 < 2.1×𝐿𝑖𝑛𝑡𝑟𝑎
(take into account that the benchmark shown is communication
intensive). Note also that, even though the use of more cores im-
plies higher inter-core qubit communication, the more cores we
use, the lower the communication performance (i.e. the higher the
maximum 𝐿𝑖𝑛𝑡𝑒𝑟 /𝐿𝑖𝑛𝑡𝑟𝑎 ratio) is required.

5 CONCLUSIONS AND FUTUREWORK
In this article, we have explored the multi-core quantum architec-
tures space in order to find the threshold where these distributed
architectures outperform single-core traditional quantum proces-
sors, focusing on the inter-core communication latency. Together
with these results, that indicate upper bounds for inter-core commu-
nication technology performance, we have shown that multi-core
architectures, in addition to break the qubit integration limits of
single-core quantum computers, exploit parallelism for widely used
well-known structured quantum algorithms.

Future work will include some other important constraints, such
as qubit control and operation, connectivity-constrained intra-core
topology and, very importantly, intra- and inter-core operation
error rates. In this way, we will be able to complement this execu-
tion latency analysis with a computation accuracy analysis. The
obtained results are very promising, as they pave the way to expos-
ing some design guidelines on these architectures using standard
quantum applications.

REFERENCES
[1] Salonik Resch and Ulya R Karpuzcu. 2019. Quantum com-

puting: an overview across the system stack. arXiv preprint
arXiv: 1905.07240.

[2] MargaretMartonosi andMartin Roetteler. 2019. Next steps in
quantum computing: computer science’s role. arXiv preprint
arXiv: 1903.10541.

[3] Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018.
Quantum internet: a vision for the road ahead. Science, 362,
6412, eaam9288.

[4] Thaddeus D Ladd, Fedor Jelezko, Raymond Laflamme, Ya-
sunobu Nakamura, Christopher Monroe, and Jeremy Lloyd
O’Brien. 2010. Quantum computers. Nature, 464, 7285, 45–53.

[5] Rodney Van Meter and Clare Horsman. 2013. A blueprint for
building a quantum computer. Communications of the ACM,
56, 10, 84–93.

[6] Doug McClure and Jay Gambetta. [n. d.] Quantum computa-
tion center opens (IBM Research Blog). IBM Research Blog,
editor. (). Retrieved 01/28/2020 from https://www.ibm.com/
blogs/research/2019/09/quantum-computation-center/.

[7] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph
C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fer-
nando GSL Brandao, David A Buell, et al. 2019. Quantum
supremacy using a programmable superconducting proces-
sor. Nature, 574, 7779, 505–510.

[8] John Preskill. 2012. Quantum computing and the entangle-
ment frontier. arXiv preprint arXiv: 1203.5813.

[9] JM Hornibrook, JI Colless, ID Conway Lamb, SJ Pauka, H Lu,
AC Gossard, JD Watson, GC Gardner, S Fallahi, MJ Manfra,
et al. 2015. Cryogenic control architecture for large-scale
quantum computing. Physical Review Applied, 3, 2, 024010.

[10] Harald Homulle, Stefan Visser, Bishnu Patra, Giorgio Ferrari,
Enrico Prati, Fabio Sebastiano, and Edoardo Charbon. 2017.
A reconfigurable cryogenic platform for the classical control
of quantum processors. Review of Scientific Instruments, 88,
4, 045103.

[11] National Academies of Sciences. 2019. Quantum computing:
progress and prospects. National Academies Press.

[12] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl,
Harald Weinfurter, and Anton Zeilinger. 1997. Experimental
quantum teleportation. Nature, 390, 6660, 575–579.

[13] WK Hensinger, S Olmschenk, D Stick, D Hucul, M Yeo, M
Acton, L Deslauriers, C Monroe, and J Rabchuk. 2006. T-
junction ion trap array for two-dimensional ion shuttling,
storage, and manipulation. Applied Physics Letters, 88, 3,
034101.

[14] C Monroe, R Raussendorf, A Ruthven, KR Brown, P Maunz,
L-M Duan, and J Kim. 2014. Large-scale modular quantum-
computer architecture with atomic memory and photonic
interconnects. Physical Review A, 89, 2, 022317.

[15] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gher-
ardini, and G. Bianchi. 2019. Quantum internet: networking
challenges in distributed quantum computing. IEEE Network,
34, 1, 137–143.

[16] Kenneth R Brown, Jungsang Kim, and Christopher Mon-
roe. 2016. Co-designing a scalable quantum computer with
trapped atomic ions. npj Quantum Information, 2, 1, 1–10.

[17] LMK Vandersypen, H Bluhm, JS Clarke, AS Dzurak, R Ishi-
hara, A Morello, DJ Reilly, LR Schreiber, and M Veldhorst.
2017. Interfacing spin qubits in quantum dots and donors
— hot, dense, and coherent. npj Quantum Information, 3, 1,
1–10.

[18] Liang Jiang, Jacob M Taylor, Anders S Sørensen, and Mikhail
D Lukin. 2007. Distributed quantum computation based on
small quantum registers. Physical Review A, 76, 6, 062323.

[19] Sahar Sargaran and Naser Mohammadzadeh. 2019. Saqip: a
scalable architecture for quantum information processors.

https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/

CF ’21, May 11–13, 2021, Virtual Conference, Italy S. Rodrigo, M. Bandic, S. Abadal, H. van Someren, E. Alarcón, and C. G. Almudéver

ACM Transactions on Architecture and Code Optimization
(TACO), 16, 2, 1–21.

[20] Nemanja Isailovic, Yatish Patel, Mark Whitney, and John
Kubiatowicz. 2006. Interconnection networks for scalable
quantum computers. In 33rd International Symposium on
Computer Architecture (ISCA’06). IEEE, 366–377.

[21] Santiago Rodrigo, Sergi Abadal, Eduard Alarcón, and Car-
men G Almudever. 2020. Exploring a double full-stack com-
munications - enabled architecture for multi-core quantum
computers. arXiv preprint arXiv: 2009.08186.

[22] Mark Oskin, Frederic T Chong, Isaac L Chuang, and John
Kubiatowicz. 2003. Building quantum wires: the long and
the short of it. In 30th Annual International Symposium on
Computer Architecture, 2003. Proceedings. IEEE, 374–385.

[23] Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes,
Daniel Kudrow, Kenneth R Brown, Diana Franklin, Frederic
T Chong, and Margaret Martonosi. 2015. Compiler man-
agement of communication and parallelism for quantum
computation. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 445–456.

[24] Robert Risque and Adwait Jog. 2016. Characterization of
quantum workloads on SIMD architectures. In 2016 IEEE In-
ternational Symposium onWorkload Characterization (IISWC).
IEEE, 1–9.

[25] Jonathan M Baker, Casey Duckering, Alexander Hoover,
and Frederic T Chong. 2020. Time-sliced quantum circuit
partitioning for modular architectures. In Proceedings of the
17th ACM International Conference on Computing Frontiers,
98–107.

[26] Darshan D Thaker, Tzvetan S Metodi, and Frederic T Chong.
2006. A realizable distributed ion-trap quantum computer.
In International Conference on High-Performance Computing.
Springer, 111–122.

[27] Nader Khammassi, Imran Ashraf, J van Someren, Razvan
Nane, AM Krol, M Adriaan Rol, L Lao, Koen Bertels, and
Carmen G Almudever. 2020. OpenQL: a portable quantum
programming framework for quantum accelerators. arXiv
preprint arXiv: 2005.13283.

[28] Lingling Lao, Hans van Someren, Imran Ashraf, and Carmen
G. Almudever. 2019. Timing and resource-aware mapping
of quantum circuits to superconducting processors. arXiv
preprint arXiv: 1908.04226. arXiv: 1908.04226 [quant-ph].

[29] Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shan-
tanu Debnath, Caroline Figgatt, Kevin A Landsman, Ken-
neth Wright, and Christopher Monroe. 2017. Experimental
comparison of two quantum computing architectures. Pro-
ceedings of the National Academy of Sciences, 114, 13, 3305–
3310.

[30] Carmen G. Almudever, Lingling Lao, Robert Wille, and Gian
G. Guerreschi. 2020. Realizing quantum algorithms on real
quantum computing devices. In Proceedings of the 23rd Con-
ference on Design, Automation and Test in Europe (DATE ’20).
EDA Consortium, Grenoble, France, 864–872.

[31] Prakash Murali, Norbert M Linke, Margaret Martonosi, Ali
Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta

Alderete. 2020. Architecting noisy intermediate-scale quan-
tum computers: a real-system study. IEEE Micro, 40, 3, 73–
80.

[32] Bharath Kannan, Daniel Campbell, Francisca Vasconcelos,
Roni Winik, David Kim, Morten Kjaergaard, Philip Krantz,
Alexander Melville, Bethany M Niedzielski, Jonilyn Yoder,
et al. 2020. Generating spatially entangled itinerant photons
with waveguide quantum electrodynamics. arXiv preprint
arXiv: 2003.07300.

[33] StephanWelte, Bastian Hacker, Severin Daiss, Stephan Ritter,
and Gerhard Rempe. 2018. Photon-mediated quantum gate
between two neutral atoms in an optical cavity. Physical
Review X, 8, 1, 011018.

[34] Juan Ignacio Cirac, Peter Zoller, H Jeff Kimble, and Hideo
Mabuchi. 1997. Quantum state transfer and entanglement
distribution among distant nodes in a quantum network.
Physical Review Letters, 78, 16, 3221.

[35] Hannes Bernien, Bas Hensen, Wolfgang Pfaff, Gerwin Kool-
stra, Machiel S Blok, Lucio Robledo, TH Taminiau, Matthew
Markham, Daniel J Twitchen, Lilian Childress, et al. 2013.
Heralded entanglement between solid-state qubits separated
by three metres. Nature, 497, 7447, 86–90.

[36] Philipp Kurpiers, Paul Magnard, TheoWalter, Baptiste Royer,
Marek Pechal, Johannes Heinsoo, Yves Salathé, Abdulka-
dir Akin, Simon Storz, J-C Besse, et al. 2018. Deterministic
quantum state transfer and remote entanglement using mi-
crowave photons. Nature, 558, 7709, 264–267.

[37] Michael A Nielsen and Isaac Chuang. 2002. Quantum com-
putation and quantum information. (2002).

[38] Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Na-
tion, and Jay M Gambetta. 2019. Validating quantum com-
puters using randomized model circuits. Physical Review A,
100, 3, 032328.

[39] Robin Blume-Kohout and Kevin C Young. 2019. A volumet-
ric framework for quantum computer benchmarks. arXiv
preprint arXiv: 1904.05546.

[40] Daniel Mills, Seyon Sivarajah, Travis L Scholten, and Ross
Duncan. 2020. Application-motivated, holistic benchmarking
of a full quantum computing stack. arXiv preprint arXiv:
2006.01273.

[41] Steven Herbert and Akash Sengupta. 2018. Using reinforce-
ment learning to find efficient qubit routing policies for de-
ployment in near-term quantum computers. arXiv preprint
arXiv: 1812.11619.

[42] Matteo G Pozzi, Steven J Herbert, Akash Sengupta, and
Robert D Mullins. 2020. Using reinforcement learning to
perform qubit routing in quantum compilers. arXiv preprint
arXiv: 2007.15957.

[43] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Sim-
mons, Alec Edgington, and Ross Duncan. 2020. T|ket>: a
retargetable compiler for nisq devices. Quantum Science and
Technology.

https://arxiv.org/abs/1908.04226

	Abstract
	1 Introduction
	2 Executing quantum algorithms on multi-core quantum architectures
	3 Exploring the Multi-Core Architectures Performance
	3.1 Modeling Assumptions
	3.2 Selected Benchmarks
	3.3 Extending the Qmap mapper
	3.4 Problem Formulation

	4 Results
	5 Conclusions and Future Work

