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ABSTRACT. All stochastic classifiers attempt to improve their classification 

performance by constructing an optimized classifier. Typically, all of 

stochastic classification algorithms employ accuracy metric to discriminate 

an optimal solution. However, the use of accuracy metric could lead the 

solution towards the sub-optimal solution due less discriminating power. 

Moreover, the accuracy metric also unable to perform optimally when dealing 

with imbalanced class distribution. In this study, we propose a new evaluation 

metric that combines accuracy metric with the extended precision and recall 

metrics to negate these detrimental effects. We refer the new evaluation 

metric as optimized accuracy with recall-precision (OARP). This paper 

demonstrates that the OARP metric is more discriminating than the accuracy 

metric and able to perform optimally when dealing with imbalanced class 

distribution using one simple counter-example. We also demonstrate 

empirically that a naïve stochastic classification algorithm, which is Monte 

Carlo Sampling (MCS) algorithm trained with the OARP metric, is able to 

obtain better predictive results than the one trained with the accuracy and F-

Measure metrics. Additionally, the t-test analysis also shows a clear 

advantage of the MCS model trained with the OARP metric over the two 

selected metrics for almost five medical data sets. 

Keywords: optimized classifier, optimal performance, stochastic 

classification algorithm 

INTRODUCTION 

Instance selection (IS) is one of the classification methods which aim to reduce the 

instances as much as possible and simultaneously attempt to achieve the highest possible 

classification accuracy. From the previous studies, some of the IS methods are developed using 

stochastic methods such as Monte Carlo (Skalak, 1994), genetic algorithm (Garcia-Pedrajas et 

al., 2010) and tabu search (Ceveron & Ferri, 2001). In general, these algorithms use the 

training stage learns from the data and at the same time attempt to optimize the solution by 

discriminating the optimal solution from the large space of solutions. In order to find the 

optimal solution, the selection of suitable evaluation metric is essential. According to 

Ranawana and Palade (2006), to select the suitable evaluation metric for discriminating an 

optimal solution, the selected evaluation metric must be able to maximize the total number of 

correct predicted instances in every class. In certain situation, it is hard to build an optimized 

classifier that can obtain the maximal value for every class. This is because, traditionally, most 

of the stochastic classification algorithms employ the accuracy rate or the error rate (1-

accuracy) to discriminate and to select the optimal solution. In (Huang & Ling, 2005; 

Ranawana & Palade, 2006; Wilson, 1996), they have demonstrated that the simplicity of this 

accuracy metric could lead to the sub-optimal solutions. For instance, when dealing with 
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imbalanced class instances, it is often happen that the classification model is able to perform 

extremely well on a large class instances but unfortunately perform poorly on the small class 

instances. Furthermore, the accuracy metric also exhibits poor discriminating power to 

discriminate better solution in order to build an optimized classifier (Huang & Ling, 2005, 

Ling et al., 2003, Rakotomamonyj, 2004). 

Based on the drawbacks of the accuracy metric, clearly, this indicates that the main 

objective of any development of evaluation metric should be able to maximize all class 

instances in order to build an optimized classifier. Thus, in this study, we are going to propose 

a new evaluation metric that attempts to improve the accuracy metric. In this study, we are 

proposing to combine the accuracy metric with the precision and recall metrics. The new 

evaluation metric is known as an optimized accuracy with recall-precision (OARP) metric. 

Precision and recall are two evaluation metrics that are commonly used as the alternative 

metrics to measure the performance of binary classifiers for two different aspects (Buckland & 

Gey, 1994). Basically, precision is used to determine the fraction of positive instances that are 

correctly predicted in a positive class, while recall measures the fraction of positive instances 

being correctly classified over the total of positive instances. However, it is not easy to apply 

both precision and recall metrics separately because it will turn the selection and 

discrimination processes more difficult due to multiple comparisons. In fact, this strategy can 

lead to the sub-optimal solution especially when the classifier attempts to maximize both 

metrics simultaneously. Moreover, the conventional precision and recall metrics are not 

suitable to be employed for the combination process with the accuracy metric. This is because 

both metrics only measure one class of instances (positive class). This is somewhat against the 

ideal idea of formulating the best evaluation metric as aforesaid, which is must be able to 

maximal the correct predicted instances for every class. To resolve this limitation, the extended 

precision and recall metrics proposed by (Lingras & Butz, 2007) were suggested for the 

combination. The main justification is that every class instance should be able to be measured 

individually using both metrics.  

In this paper, we will show that our newly constructed evaluation metric will improve the 

conventional accuracy metric using one counter-example in terms of discriminatory and 

perform optimally when dealing with imbalanced class distribution. To prove this theoretical 

evidence, we demonstrate empirically that the OARP metric is better than conventional 

accuracy metric using a naïve stochastic classification in classifying five medical data sets that 

obtained from UCI Machine Learning Repository (Frank & Asuncion, 2009). From this 

experiment, the expectation is to see that the naïve stochastic algorithm trained by the OARP 

metric will produce better predictive result than the one trained by the accuracy metric. 

OPTIMIZED ACCURACY WITH PRECISION AND RECALL (OARP) 

As aforesaid, the purpose of this study is to improve the accuracy metric by combining the 

accuracy metric with the extended precision and recall metrics. In order to combine these 

metrics into a singular form of metric, we have adopted two important formulas from 

(Ranawana & Palade, 2006), which are the Relationship Index (RI) and OP. Due to limited 

pages, the details of these reference metrics can be found in (Lingras & Butz, 2007; Ranawana 

& Palade, 2006). The combination process involves two-step efforts, whereby first we have to 

find a suitable way to employ the RI formula and next is to identify the best approach to adopt 

the OP formula in order to improve the accuracy metric. 

As proved by (Lingras & Butz, 2007), for two-class problem, the extended precision value 

in a particular class is proportional to the extended recall values of the other class and vice 

versa. From this correlation, the RI formula can be implemented. To employ the RI formula, 

the precision and recall from different classes were paired together (p1, r2), (p2, r1) based on the 

correlation given in (Lingras & Butz, 2007). At this point, the aim is to minimize the value of 
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|p1-r2| and |p2-r1|, and maximize the value of p1+r2 and p2+r1. Hence, we define the RI for both 

correlations as stated in Eq. (1) and (2). 
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However, these individual RI values are still pointless and could not be applied directly to 

calculate the value of new evaluation metric. Thus, to resolve this problem, we compute the 

average of total RI (AVRI) as shown in Eq. (3) to formulate the new evaluation metric. 
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 (3) 

As mentioned earlier, the use of accuracy value alone could lead the searching process to 

the sub-optimal solutions mainly due to its less discriminative power and inability to deal with 

imbalanced class distribution. Such drawbacks motivate us to combine the beneficial properties 

of AVRI with the accuracy metric. With this combination, we expect the new evaluation metric 

is able to produce better value (more discriminating) than the accuracy metric and at the same 

time remain relatively stable when dealing with imbalanced class distribution. The new 

evaluation metric is called the optimized accuracy with recall-precision (OARP) metric. The 

computation of this OARP metric is defined in Eq. (14). 
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However, during the computation of this new evaluation metric, we noticed that the value 

of OARP may deviate too far from the accuracy value especially when the value of AVRI is 

larger than accuracy value. Therefore, we proposed to resize the AVRI value into a small value 

before computing the OARP metric. To resize the AVRI value, we employed the decimal 

scaling method to normalize the AVRI value as shown in Eq. (5). 
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where x is the smallest integer such that max (|AVRInew_val|) < 1. In this study, we set the x=1 

for the entire experiments. By resizing the AVRI value, we found that the OARP value is 

comparatively close to the accuracy value as shown in the next sub-section. At the end, the 

objective of OARP metric is to optimize the classifier performance. A high OARP value 

entails a low value of AVRI which indicates a better generated solution has been produced. We 

also noticed that via this new evaluation metric, the OARP value is always less than the 

accuracy value (OARP < Acc). The OARP value will only equal to the accuracy value 

(OARP=Acc) when the AVRI value is equivalent to 0 (AVRI=0), which indicates a perfect 

training classification result (100%). 

EMPIRICAL VERIFICATION 

In this particular section, two types of empirical verification have been conducted in order 

to verify the advantage of OARP metric. Firstly, we compare the OARP metric with the 

conventional accuracy metric using one simple counter-example. Secondly, we empirically 

compare the OARP metric with the accuracy and F-Measure metrics for selecting and 

discriminating five medical data sets using a naïve stochastic classification algorithm.  

OARP vs. Accuracy using Counter-examples 

In this particular sub-section, we attempt to demonstrate that the OARP metric is better than 
the accuracy metric using the following counter-example. Let us consider counter-example as 
shown in Table 1 that focused on imbalanced class distribution. In this counter-example, the 
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accuracy metric could not distinguished whether a or b is better, while the OARP metric 
otherwise. Intuitively, we can conclude that b is better than a. This is because, b is able to 
predict correctly all the minority class instances if compared to a.  Clearly, a is poor since no 
single instance from minority class instances is correctly predicted by a (non-informative 
output for the minority class). Hence, we can conclude that the result obtained by the OARP 
metric is similar to intuitive decision and clearly better than the accuracy metric in 
discriminating the optimal solution. On top of that, the counter-example in Table 1 also shows 
that the accuracy metric could not work optimally when dealing with imbalanced class 
distribution. 

Table 1. Accuracy vs. OARP for imbalanced data set (95:5) 

s tp fp tn fn TC Accuracy OARP 

a 95 5 0 0 95 0.950000 0.850000 

b 90 0 5 5 95 0.950000 0.934545 

Note: tp-true positive, fp-false positive, tn-true negative, fn-false negative, TCC-

total correct classified 

Real Data Sets 

As we established in the previous section, it is not enough to claim that the OARP metric is 

better than accuracy metric using one simple counter-example. Through the counter-example, 

we only can demonstrate a very little evidence in order to prove that the OARP metric is really 

better than the accuracy metric. Thus, in this particular section, we are going to demonstrate 

the generalization capability of the OARP metric using real world application data sets. Instead 

of accuracy metric, we add another existing metric that is F-measure (van Rijsbergen, 1979) to 

compare with the OARP metric.  F-measure is chosen to represents the conventional precision 

and recall metrics.  As aforesaid, it is hard to apply the precision and recall metrics separately, 

thus, F-measure is the best way to represents these two metrics.  In fact, F-measure is proven to 

be the more favorable evaluation metric for evaluating the imbalanced class distribution (Joshi, 

2002).  

Experimental Setup. For the purpose of comparison and evaluation on the capability of OARP 

metric against the accuracy and F-measure metrics, five medical data sets from UCI Machine 

Learning Repository (Frank & Asuncion, 2010) were selected. The brief descriptions about 

these selected data sets are summarized in Table 2.   

Table 2: Brief description of each medical data set. 

Dataset No. of Instances No. of Attributes Missing Value Class Distribution  

Breast-cancer 699 9 Yes IM 

Heart270 270 13 No IM 

Hepatitis 155 19 Yes IM 

Liver 345 6 No IM 

Pima-diabetes 768 8 No IM 

 

All data sets have been normalized within the range of [0, 1] using min-max normalization. 

Normalized data is essential to speed up the matching process for each attribute and prevent 

any attribute variables from dominating the analysis (Al-Shalabi et al., 2006). All missing 

attribute values in several data sets were simply replaced with median value for numeric value 

and mode value for symbolic value of that particular attribute across all instances.  In this 

study, all data sets were divided into ten approximately equal subsets using 10-fold cross 

validation method similar to (Garcia-Pedrajas et al., 2010). Each data set was run for 10 times.       

In this experiment, all of selected data sets were trained using a naïve stochastic 

classification algorithm which is Monte Carlo Sampling algorithm (Skalak, 1994). This 

algorithm combines simple stochastic method (random search) and instance selection strategy. 

There are two main reasons this algorithm is selected. Firstly, this algorithm simply applies 

accuracy metric to discriminate the optimal solution during the training phase. Secondly, this 
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algorithm is aligned with the purpose of this study which is to optimize the stochastic 

classification algorithm. To compute the similarity distance between each training instance and 

prototype solution (each class has one representative instance), the Euclidean distance 

measurement is employed. The MCS algorithm was re-implemented using MATLAB Script 

version 2009b. To ensure fair experiment, the MCS algorithm was trained simultaneously 

using the accuracy, F-Measure and OARP metrics for selecting and discriminating the optimal 

solution. For simplicity, we refer these four MCS models as MCSAcc, MCSFM and MCSOARP 

respectively. All parameters used for this experiment are similar to (Skalak, 1994) except in the 

number of generated solution, n. In this experiment, we employed n=500 similar to (Bezdek & 

Kuncheva, 2002). From this experiment, the expectation is to see that the MCSOARP is able to 

predict better than the model optimized by the MCSAcc and MCSFM. For evaluation purposes, 

the average of testing accuracy (TestAcc) will be used for further analysis and comparison. 

Experimental Results. Table 3 shows the average testing accuracy for each data set based on 

each MCS model. From Table 3, we can see that the average testing accuracy obtained by 

MCSOARP is better than the MCSAcc and MCSFM models. The average testing accuracy obtained 

by MCSOARP model is 0.8542 while the MCSAcc and MCSFM models obtained 0.8186 and 

0.7806 respectively for all five medical data sets. On top of that, the MCSOARP model has 

improved the classification performance in all data sets if compared to MCSAcc and MCSFM 

models.  

To verify this outstanding performance, we perform a paired t-test with 95% confidence 

level on each medical data set by using the ten trial records from each data set. The summary 

result of this comparison is listed in Table 4. As indicated in Table 4, the MCSOARP model 

obtained four statistically significant wins against both MCSAcc and MCSFM models. 

Meanwhile only one data set (Heart270) shows no significant differences from both 

comparisons.  

Table 3: Average testing accuracy for both MCS models. 

Data set 
Use MCSAcc Use MCSFM Use MCSOARP 

TestAcc TestAcc TestAcc 

Breast-Cancer  0.9700 0.9685 0.9814 

Heart270 0.8704 0.8556 0.8778 

Hepatitis 0.8454 0.8183 0.8900 

Liver 0.6468 0.5302 0.7160 

Pima-diabetes 0.7513 0.7305 0.8060 

Average 0.8168 0.7806 0.8542 

 

Table 4. Comparison summary of the t-test analysis based on ten 

trial records for each medical data set. 

Data set MCSOARP vs. MCSAcc MCSOARP vs. MCSFM 

Breast-Cancer  Ssw ssw 

Heart270 Sns sns 

Hepatitis Ssw ssw 

Liver ssw ssw 

Pima-diabetes ssw ssw 

Note: ssw-statistically significant win, ssl-statistically significant loss, 

sns-statistically not significant 

CONCLUSION AND FUTURE WORKS 

In this paper, we have proposed a new evaluation metric called the Optimized Accuracy 

with Recall-Precision (OARP) based on combination of three existing metrics, which are the 

accuracy, and the extended recall and precision metrics. Theoretically, we have proved that our 

newly constructed evaluation metric is better than conventional accuracy metric using a simple 

counter-example. From this counter-example, we have showed that the OARP metric is more 
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discriminating than accuracy metric. More importantly, the OARP also shows that it can work 

optimally when dealing with the imbalanced class distribution. To support our theoretical 

evidence, we have compared experimentally the OARP metric against the accuracy metric 

using five medical data sets. In this experiment, we have added the F-Measure metric for 

representing the conventional precision and recall metrics. Interestingly, the naïve stochastic 

classification algorithm, which is Monte Carlo Sampling (MCS) algorithm optimized by the 

OARP metric has outperformed and statistically significant than the MCS algorithm optimized 

by the accuracy and F-Measure metrics. This indicates that the OARP metric is more likely to 

choose an optimal solution in order to build an optimized stochastic classifier. For the future 

work, we are planning to extend this new evaluation metric, OARP for solving multi-class 

problems. Moreover, we are also interested to verify the advantage of the OARP metric using a 

statistical consistency and discriminatory analysis proposed by Huang and Ling (2005). 
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