Triangulations and a discrete Brunn-Minkowski inequality in the plane

Károly J. Böröczky* ${ }^{*}$ Máté Matolcsi ${ }^{\dagger}$ Imre Z. Ruzsa ${ }^{\ddagger}$ Francisco Santos ${ }^{\S} \quad$ Oriol Serra ${ }^{\circledR}$

Abstract

For a set A of points in the plane, not all collinear, we denote by $\operatorname{tr}(A)$ the number of triangles in a triangulation of A, that is, $\operatorname{tr}(A)=2 i+b-2$, where b and i are the numbers of boundary and interior points of the convex hull $[A]$ of A respectively. We conjecture the following discrete analog of the Brunn-Minkowski inequality: for any two finite point sets $A, B \subset \mathbb{R}^{2}$ one has $$
\operatorname{tr}(A+B) \geq \operatorname{tr}(A)^{1 / 2}+\operatorname{tr}(B)^{1 / 2}
$$

We prove this conjecture in the cases where $[A]=[B], B=A \cup\{b\}$, $|B|=3$ and if A and B have no interior points. A generalization to larger dimensions is also discussed.

[^0]
1 Introduction

In this paper we write A, B to denote finite subsets of \mathbb{R}^{d}, and $|\cdot|$ stands for their cardinality. We say that $A \subset \mathbb{R}^{d}$ is d-dimensional if it is not contained in any affine hyperplane of \mathbb{R}^{d}. Equivalently, the real affine span of A is \mathbb{R}^{d}. For subsets X_{1}, \ldots, X_{k} of $\mathbb{R}^{d},\left[X_{1}, \ldots, X_{k}\right]$ denotes their convex hull. Here and in what follows we denote $A+B:=\{a+b: a \in A, b \in B\}$ and $A-B:=A+(-B)$. The lattice generated by A is the additive subgroup $\Lambda=\Lambda(A) \subset \mathbb{R}^{d}$ generated by $A-A=\{x-y: x, y \in A\}$, and A is called saturated if it satisfies $A=[A] \cap \Lambda(A)$.

Our starting point are two classical results. The first one is from the 1950's, due to Kemperman [10], and popularized by Freiman [4]: if A and B are finite nonempty subsets of \mathbb{R}, then

$$
\begin{equation*}
|A+B| \geq|A|+|B|-1 \tag{1}
\end{equation*}
$$

with equality if and only if A and B are arithmetic progressions of the same difference. The other result, the Brunn-Minkowski inequality, dates back to the 19th century. It says that if $X, Y \subset \mathbb{R}^{d}$ are compact nonempty sets then

$$
\lambda(X+Y)^{\frac{1}{d}} \geq \lambda(X)^{\frac{1}{d}}+\lambda(Y)^{\frac{1}{d}}
$$

where λ stands for the Lebesgue measure. Moreover, provided that $\lambda(X) \lambda(Y)>$ 0 , equality holds if and only if X and Y are convex homothetic sets.

Various discrete analogues of the Brunn-Minkowski inequality have been established in Bollobás, Leader [1], Gardner, Gronchi [5], Green, Tao [6], González-Merino, Henze [11], Hernández, Iglesias and Yepes [8], Huicochea [9] in any dimension, and Grynkiewicz, Serra [7] in the planar case. Most of these papers use the method of compression, which changes a finite set into a set better suited for sumset estimates, but does not control the convex hull.

Unfortunately the known analogues are not as simple in their form as the original Brunn-Minkowski inequality. For instance, a formula due to Gardner and Gronchi [5] says that, if A is d-dimensional, then

$$
\begin{equation*}
|A+B| \geq(d!)^{-\frac{1}{d}}(|A|-d)^{\frac{1}{d}}+|B|^{\frac{1}{d}} \tag{2}
\end{equation*}
$$

Concerning the case $A=B$, Freiman [4] proved that, if the dimension of A is d, then

$$
\begin{equation*}
|A+A| \geq(d+1)|A|-\binom{d+1}{2} \tag{3}
\end{equation*}
$$

Both estimates are optimal. In particular, we can not expect a true discrete analogue of the Brunn-Minkowski inequality if the notion of volume is replaced by cardinality.

We here conjecture and discuss a more direct version of the BrunnMinkowski inequality where the notion of volume is replaced by the number of full dimensional simplices in a triangulation of the convex hull of the finite set.

For any finite d-dimensional set $A \subset \mathbb{R}^{d}$ we write T_{A} to denote some triangulation of A, by which we mean a triangulation of $[A]$ with set of vertices equal to A. We denote $\left|T_{A}\right|$ the number of d-dimensional simplices in T_{A}.

In dimension two the number $\left|T_{A}\right|$ is the same for all triangulations of A, so we denote it $\operatorname{tr}(A)$. More precisely, if Δ_{A} and Ω_{A} denote the number of points of A in the boundary $\partial[A]$ and in the interior $\operatorname{int}[A]$, respectively, then it is easy (see, e.g., [3, Lemma 3.1.3]) to show that

$$
\begin{equation*}
\operatorname{tr}(A)=\Delta_{A}+2 \Omega_{A}-2=2|A|-\Delta_{A}-2 . \tag{4}
\end{equation*}
$$

Therefore around 2005, Matolcsi and Ruzsa conjectured in dimension two the following discrete analogue of the Brunn-Minkowski inequality (see Böröczky, Hoffman [2]).

Conjecture 1 If finite $A, B \subset \mathbb{R}^{2}$ in the plane are not collinear, then

$$
\operatorname{tr}(A+B)^{\frac{1}{2}} \geq \operatorname{tr}(A)^{\frac{1}{2}}+\operatorname{tr}(B)^{\frac{1}{2}}
$$

One case where Conjecture 1 holds with equality is when A and B are homothetic saturated sets with respect to the same lattice; that is, $A=\Lambda \cap$ $k \cdot P$ and $B=\Lambda \cap m \cdot P$ for a lattice Λ, polygon P and integers $k, m \geq 1$. This follows from the original Brunn-Minkowski equality as follows: for saturated sets $\operatorname{tr}(A)=2$ area $([A]) / \operatorname{det} \Lambda$, because every triangle in a triangulation is a fundamental lattice triangle, of area $\frac{1}{2} \operatorname{det} \Lambda$. On the other hand, $A+B=$ $\Lambda \cap(k+m) \cdot P$ and $\operatorname{tr}(S) \leq 2$ area $([S]) / \operatorname{det} \Lambda$ for every subset $S \subset \Lambda$, such as $S=A+B$.

Concerning Δ_{A} and Δ_{B} in (4), we observe that any side of $[A+B]$ is of the form $e+f$ where e and f is a side or a vertex of $[A]$ and $[B]$, respectively, with the same exterior unit normal, and $|(e+f) \cap(A+B)| \geq|e \cap A|+|f \cap B|-1$ by (1). This implies that

$$
\begin{equation*}
\Delta_{A+B} \geq \Delta_{A}+\Delta_{B} \tag{5}
\end{equation*}
$$

We also note that Conjecture 1, together with the equality (4) and (5), would imply the following inequality of Gardner and Gronchi [5, Theorem 7.2] for sets A and B saturated with respect to the same lattice:

$$
|A+B| \geq|A|+|B|+\left(2|A|-\Delta_{A}-2\right)^{1 / 2}\left(2|B|-\Delta_{B}-2\right)^{1 / 2}-1 .
$$

Figure 1: An illustration of case (b) in Theorem 2.

Unfortunately we have not been able to prove Conjecture 1 in full generality. Our main results are the following four cases of it: if $[A]=[B]$ (Theorem 2), in which case we also determine the conditions for equality in Conjecture 1; if A and B differ by one element (Theorem 4); if either $|A|=3$ or $|B|=3$ (Theorem 7); and if none of A and B have interior points (Theorem 8). Actually, the last two theorems satisfy a stronger conjecture (Conjecture 5) discussed below.

We start with the case $[A]=[B]$, which naturally include the case $A=B$.
Theorem 2 Let $A, B \subset \mathbb{R}^{2}$ be finite two dimensional sets. If $[A]=[B]$ then Conjecture 1 holds. Moreover equality holds if and only if $A=B$, and
(a) either A is a saturated set, or
(b) $A=\left\{z_{1}, \ldots, z_{k}\right\}$ for $k \geq 4$, where $z_{1}, \ldots, z_{k-3} \in \operatorname{int}\left[z_{k-2}, z_{k-1}, z_{k}\right]$, and z_{1}, \ldots, z_{k-2} are collinear and equally spaced in this order (see Figure 1).

Let us mention that Theorem 2 (in fact, its particular case $A=B$) gives a simple proof of the following structure theorem of Freiman [4] for a planar set with small doubling. We recall that according to (3), if finite $A \subset \mathbb{R}^{d}$ is two dimensional, then $|A+A| \geq 3|A|-3$ and, if the dimension of A is at least 3, then $|A+A| \geq 4|A|-6$.

Corollary 3 (Freiman) Let $A \subset \mathbb{R}^{2}$ be a finite two dimensional set and $\varepsilon \in(0,1)$. If $|A| \geq 48 / \varepsilon^{2}$ and

$$
|A+A| \leq(4-\varepsilon)|A|
$$

then there exists a line l such that A is covered by at most

$$
\frac{2}{\varepsilon} \cdot\left(1+\frac{32}{|A| \varepsilon^{2}}\right)
$$

lines parallel to l.
We note that, for A the grid $\{1, \ldots, k\} \times\left\{1, \ldots, k^{2}\right\}$ and large k,

$$
\begin{equation*}
|A+A| \leq(4-\varepsilon)|A| \tag{6}
\end{equation*}
$$

with $\varepsilon=\varepsilon_{k}=\frac{2}{k}$ and A can not be covered by less than k parallel lines. Therefore the constant 2 in the numerator of $\frac{2}{\varepsilon}$ is asymptotically optimal in Corollary 3.

The next case we address is when A and B differ by one element.
Theorem 4 Let $A \subset \mathbb{R}^{2}$ be a finite two dimensional set. If $B=A \cup\{b\}$ for some $b \notin A$ then Conjecture 1 holds.

For our next results we need the notion of mixed subdivision (see De Loera, Rambau, Santos [3] for details). For finite d-dimensional sets $A, B \subset \mathbb{R}^{d}$ and triangulations T_{A} and T_{B} corresponding to A and B, we call a polytopal subdivision M of $[A+B]$ a mixed subdivision corresponding to T_{A} and T_{B} if
(i) every k-cell of M is of the form $F+G$ where F is an i-simplex of T_{A} and G is a j-simplex of T_{B} with $i+j=k$; in particular, all vertices of M are in $A+B$;
(ii) for any d-simplices F of T_{A} and G of T_{B}, there is a unique $b \in B$ and a unique $a \in A$ such that $F+b \in M$ and $a+G \in M$.

In dimension two, every mixed subdivision consists of $\left|T_{A}\right|+\left|T_{B}\right|$ triangles, translated from those of T_{A} and T_{B}, together with a certain number of parallelograms that we denote M_{11}. Since we can triangulate each parallelogram into two triangles, the following is stronger than Conjecture 1, and offers a geometric and algorithmic approach to prove Conjecture 1.

Conjecture 5 For every finite two dimensional sets $A, B \subset \mathbb{R}^{2}$ there exist triangulations T_{A} and T_{B} of $[A]$ and $[B]$ using A and B, respectively, as the set of vertices, and a corresponding mixed subdivision M of $[A+B]$ such that

$$
\begin{equation*}
\left|M_{11}\right| \geq \sqrt{\left|T_{A}\right| \cdot\left|T_{B}\right|} . \tag{7}
\end{equation*}
$$

The following example shows that one cannot a priori fix any of the triangulations T_{A} and T_{B} in Conjecture 5:

Figure 2: An illustration of the example described in Proposition 6.

Proposition 6 Let

$$
A=\{(0,0),(-1,-2),(2,1)\}
$$

For $k \geq 145$, let

$$
B=\left\{p, q, l_{0}, \ldots, l_{k}, r_{0}, \ldots, r_{k-1}\right\}
$$

where $p=(-1, k+1), q=(k+1,-1), l_{i}=(i, i)$ for $i=0, \ldots, k$ and $r_{i}=(i, i+1)$ for $i=0, \ldots, k-1$.

Let T_{B} be the triangulation of B consisting of the triangles

$$
\left[p, l_{i}, r_{i}\right],\left[q, l_{i}, r_{i}\right], i=0, \ldots, k-1 \text { and }\left[p, l_{i}, r_{i-1}\right],\left[q, l_{i}, r_{i-1}\right], i=1, \ldots, k .
$$

Then, no mixed subdivision of $A+B$ corresponding to T_{B} and any triangulation T_{A} of A satisfies (7) for $d=2$.

Now Conjecture 5 is verified if either A or B has only three elements.
Theorem 7 If $|B|=3$, then Conjecture 5 holds for any finite two dimensional set $A \subset \mathbb{R}^{2}$.

Remark It follows that if B is the sum of sets of cardinality three, then Conjecture 1 holds for any finite two dimensional set $A \subset \mathbb{R}^{2}$. For example, if $m \geq 1$ is an integer, and $B=\left\{(t, s) \in \mathbb{Z}^{2}: t, s \geq 0\right.$ and $\left.t+s \leq m\right\}$, or $B=\left\{(t, s) \in \mathbb{Z}^{2}:|t|,|s| \leq m\right.$ and $\left.|t+s| \leq m\right\}$.

Conjecture 1 was verified by Böröczky, Hoffman [2] if A and B are in convex position; that is, if $A \subset \partial[A]$ and $B \subset \partial[B]$. Here we even verify Conjecture 5 under these conditions.

Theorem 8 Let $A, B \subset \mathbb{R}^{2}$ be finite two dimensional sets. If $A \subset \partial[A]$ and $B \subset \partial[B]$ then Conjecture 5 holds.

Part of the reason why we could not verify Conjecture 1 in general is that, except for Theorem 7 , our arguments actually prove the inequality $\operatorname{tr}(A+B) \geq 2(\operatorname{tr}(A)+\operatorname{tr}(B))$, which is stronger than Conjecture 1, but which does not hold for all pairs with $A \subset B$. For example, if A are the lattice points with nonnegative coordinates and with the sum of coordinates at most k, and B is the same with sum of coordinates at most l, we have $\operatorname{tr}(A+B)=(k+l)^{2}$, $\operatorname{tr}(A)=k^{2}$ and $\operatorname{tr}(B)=l^{2}$. So we have $\operatorname{tr}(A+B)<2(\operatorname{tr}(A)+\operatorname{tr}(B))$ if $k \neq l$.

We now turn to higher dimensions. The first difference is that we can no longer define $\operatorname{tr}(A)$ for a point configuration, since different triangulations of A have different numbers of d-simplices (see Example 11 below). Still, there is the following analogue of Conjecture 5 . For a mixed subdivision M corresponding to triangulations T_{A} and T_{B} of A and B, let us denote by $\|M\|$ the weighted number of d-polytopes in M, where $F+G$ has weight $\binom{i+j}{i}$ if F is an i-simplex of T_{A}, and G is a j-simplex of T_{B} with $i+j=d$. The reason for these weights is that every triangulation (without additional vertices) of such an $F+G$ has exactly $\binom{i+j}{i} d$-simplices (see e.g. [3, Proposition 6.2.11]). Thus, $\|M\|$ is the number of d-simplices of any triangulation of $A+B$ that refines M without additional vertices.

Hence, we may ask for which triangulations T_{A} and T_{B} there exists a corresponding mixed subdivision M for $[A+B]$ such that

$$
\begin{equation*}
\|M\|^{\frac{1}{d}} \geq\left|T_{A}\right|^{\frac{1}{d}}+\left|T_{B}\right|^{\frac{1}{d}} \tag{8}
\end{equation*}
$$

Question 9 Is it true that for every finite sets $A, B \subset \mathbb{R}^{d}$ there are triangulations T_{A} and T_{B} and a corresponding mixed subdivision M of $[A+B]$ satisfying (8)?

It is easy to show that the answer is positive if $A=B$:
Theorem 10 For a finite d-dimensional set $A \subset \mathbb{R}^{d}$ and for any triangulation T_{A} of $[A]$ using A as the set of vertices there exists a corresponding mixed subdivision M of $[A+A]$ such that

$$
\|M\|=2^{d}\left|T_{A}\right|
$$

Therefore in certain cases, mixed subdivisions point to a higher dimensional generalization of Conjecture 1 . This is specially welcome knowing that, if $d \geq 3$, then the order of the number of d-simplices in a triangulation of the convex hull of a finite $A \subset \mathbb{R}^{d}$ spanning \mathbb{R}^{d} might be as low as $|A| d$ and
as high as $\Theta\left(|A|^{[d / 2\rceil}\right)$ for the same A, as the following example shows. In particular, one can not assign the number of d-simplices as a natural notion of discrete volume if $d \geq 3$.

Example 11 Let A be any set of n points in general position in \mathbb{R}^{d} (that is, no $d+1$ in any affine hyperplane) and such that $[A]$ is a simplex. Any such A has triangulations of size $1+d(n-d-1)$ via the following construction: in a first step, consider $[A]$ as the single d-simplex in your triangulation. Then, one by one add the $n-d-1$ interior points to the triangulation as follows: at each step you stellarly subdivide the simplex containing the new point into $d+1$ simplices, all having the new point as a common vertex. At the end, as claimed, we have a triangulation of A of size $1+d(n-d-1)$.

If, moreover, the $n-d-1$ interior points of A are the vertices of a cyclic polytope, then you can also triangulate A with size $\Theta\left(n^{\lceil d / 2\rceil}\right)$ (and this is optimal by [3, Corollary 6.1.20]): triangulate first the cyclic polytope with size $\Theta\left(n^{\lceil d / 2\rceil}\right)$ and then add one by one the $d+1$ outer points, at each step conning the new point to the part of the boundary of the previous triangulation that is visible from that point.

2 Proof of Theorem 2

We will actually prove that

$$
\begin{equation*}
\operatorname{tr}(A+B) \geq 2 \operatorname{tr}(A)+2 \operatorname{tr}(B) \tag{9}
\end{equation*}
$$

a stronger inequality than Conjecture 1.
For a finite two dimensional set $X \subset \mathbb{R}^{2}$, we define

$$
f_{X}(z)= \begin{cases}1 & \text { if } z \in \partial[X] \\ 2 & \text { if } z \in \operatorname{int}[X]\end{cases}
$$

thus (4) yields that

$$
\begin{equation*}
\operatorname{tr}(X)=\left(\sum_{z \in X} f_{X}(z)\right)-2 \tag{10}
\end{equation*}
$$

Lemma 12 Let $A, B \subset \mathbb{R}^{2}$ satisfy $[A]=[B]$. Then inequality (9) holds. Moreover, equality in (9) yields $A=B$.

Proof: Let T be a triangulation of $[A]=[B]$ such that the set of vertices is $A \cap B$. One nice thing about inequality (9) is that, since it is linear, it is
additive over the triangles of T. Therefore, it suffices to show that, for each triangle t of T, if $A_{t}=A \cap t$ and $B_{t}=B \cap t$, then

$$
\begin{equation*}
\operatorname{tr}\left(A_{t}+B_{t}\right) \geq 2 \operatorname{tr}\left(A_{t}\right)+2 \operatorname{tr}\left(B_{t}\right) \tag{11}
\end{equation*}
$$

and that equality in (11) implies that $A_{t}=B_{t}$ consists of the three vertices of t alone. According to (10), inequality (11) is equivalent to

$$
\begin{equation*}
\sum_{p \in A_{t}+B_{t}} f_{A_{t}+B_{t}}(p) \geq 2\left(\sum_{p \in A_{t}} f_{A_{t}}(p)\right)+2\left(\sum_{p \in B_{t}} f_{B_{t}}(p)\right)-6 . \tag{12}
\end{equation*}
$$

Let $A_{t} \cap B_{t}=\left\{v_{1}, v_{2}, v_{3}\right\}$ be the three vertices of the triangle $t=\left[A_{t}\right]=$ $\left[B_{t}\right]$. We claim that if $i, j \in\{1,2,3\}, p \in\left(A_{t} \cup B_{t}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ and $q \in A_{t} \cup B_{t}$, then

$$
\begin{equation*}
v_{i}+p=v_{j}+q \text { yields } v_{i}=v_{j} \text { and } p=q . \tag{13}
\end{equation*}
$$

We may assume that v_{i} is the origin and, to get a contradiction, $v_{i} \neq v_{j}$. Then the line l passing through v_{j} and parallel to the side of t opposite to v_{j} separates t and $v_{j}+t$, and intersects t only in $v_{j} \neq p$. Since $v_{j}+q \in v_{j}+t$, we get the desired contradiction.

It follows from (13) that the six points $v_{i}+v_{j}, 1 \leq i \leq j \leq 3$, and the points of the form $v_{i}+p, i=1,2,3$ and $p \in\left(A_{t} \cup B_{t}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ are all different. Since the six points $v_{i}+v_{j}, 1 \leq i \leq j \leq 3$, belong to $\partial\left(A_{t}+B_{t}\right)$, we have

$$
\begin{equation*}
\sum_{i, j=1,2,3} f_{A_{t}+B_{t}}\left(v_{i}+v_{j}\right)=\left(\sum_{i=1}^{3} f_{A_{t}}\left(v_{i}\right)\right)+\left(\sum_{j=1}^{3} f_{B_{t}}\left(v_{j}\right)\right)=6 . \tag{14}
\end{equation*}
$$

On the other hand, we claim that, if $p \in A_{t} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ and $q \in B_{t} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$, then

$$
\begin{align*}
\sum_{j=1}^{3} f_{A_{t}+B_{t}}\left(p+v_{j}\right) & >2 f_{A_{t}}(p) \tag{15}\\
\sum_{i=1}^{3} f_{A_{t}+B_{t}}\left(v_{i}+q\right) & >2 f_{B_{t}}(q) .
\end{align*}
$$

Indeed, if $p \in \partial\left[A_{t}\right]$, then the inequality readily holds, and if $p \in \operatorname{int}\left[A_{t}\right]$, then $p+v_{j} \in \operatorname{int}\left[A_{t}+B_{t}\right]$ for $j=1,2,3$, as well, yielding (15).

By combining (14) and (15) we get (12) and in turn (9). Moreover, (15) shows that if equality holds in (11) for a triangle t of T, then $A_{t}=B_{t}$, and, therefore, if equality holds in (9), then $A=B$.

For a finite two dimensional set $A \subset \mathbb{R}^{2}$ and a triangulation T of A we denote by A_{T} the union of A and the set of midpoints of the edges of T (see Figure 3).

Figure 3: A triangulation and its midpoints.

Lemma 13 Let $A \subset \mathbb{R}^{2}$ be a finite two-dimensional set. Then the equality

$$
\operatorname{tr}(A+A)=4 \cdot \operatorname{tr}(A)
$$

holds if, and only if, for every triangulation T of $[A]$, we have $A_{T}=\frac{1}{2}(A+A)$.
Proof: Divide each triangle t of T into four triangles using the vertices of t and the midpoints of the sides of t. This way we have obtained a triangulation of $[A]=\left[A_{T}\right]$ using A_{T} as the vertex set. Therefore

$$
\operatorname{tr}(A+A)=\operatorname{tr}\left(\frac{1}{2}(A+A)\right) \geq \operatorname{tr}\left(A_{T}\right)=4 \cdot \operatorname{tr}(A) .
$$

Moreover, there is equality if and only if $A_{T}=\frac{1}{2}(A+A)$.
We observe that the equation in Lemma 13 is equivalent to Conjecture 1 for the case $A=B$. Therefore all we have left to prove is that $\operatorname{tr}(A+A)=$ $4 \cdot \operatorname{tr}(A)$ if and only if A is of the form either (a) or (b) in Theorem 2. The if part is simple.

Lemma 14 Suppose that either (a) or (b) in Theorem 2 hold for the finite set A. Then

$$
A_{T}=\frac{1}{2}(A+A) .
$$

Proof: Suppose first that we have property (b). Then there is a unique triangulation T of $[A]$ using A as vertex set. For $1 \leq i<j \leq k,\left[z_{i}, z_{j}\right]$ is an edge of T, unless $j \leq k-2$, an hence we have $A_{T}=\frac{1}{2}(A+A)$.

So, for the rest of the proof we assume (a): $A=[A] \cap \Lambda$ for a lattice Λ. For a triangulation T corresponding to A, readily the midpoints of sides of triangles of T are in $\frac{1}{2}(A+A)$. On the other hand, let $m \in \frac{1}{2}(A+A)$, and let t be a triangle of T containing m. We may assume that the origin o is a vertex of t, and hence the other two vertices p and q form a basis of Λ. Since $m \in \frac{1}{2}(\Lambda+\Lambda)$, both of its coordinates in the basis p and q are integers or half of integers, thus m is either a vertex of t, or the midpoint of a side of t. Therefore $m \in A_{T}$.

The next Lemma shows the reverse direction and concludes the proof of Theorem 2.

Lemma 15 Let $A \subset \mathbb{R}^{2}$ be a finite two dimensional set. If every triangulation T of A satisfies

$$
A_{T}=\frac{1}{2}(A+A),
$$

then either (a) or (b) from Theorem 2 hold.
Proof: We prove the Lemma by induction on $|A| \geq 3$. If $|A|=3$, then A is readily a saturated set.

If $|A| \geq 4$, then we claim that
there exists a vertex v of $[A]$ such that $A \backslash\{v\}$ is two dimensonal and does not satify (b).

Let v^{\prime} be any vertex of $[A]$. If $A \backslash\left\{v^{\prime}\right\}$ is collinear, then we can choose v to be any other vertex of the triangle $[A]$. If $\widetilde{A}=A \backslash\left\{v^{\prime}\right\}$ is two-dimensional and satifies (b), then there exists a line ℓ such that $\widetilde{A}=\left\{v_{1}, v_{2}\right\} \cup(\ell \cap \widetilde{A})$ where v_{1} and v_{2} are strictly separated by ℓ. We may assume that the closed half plane bounded by ℓ and containing v_{1} also contains v^{\prime}. Then we may choose $v=v_{2}$, as $A^{\prime}=A \backslash\left\{v_{2}\right\}$ satisfies that ℓ is a supporting line of $\left[A^{\prime}\right]$ and $\left|\ell \cap A^{\prime}\right| \geq 3$, proving (16). This finishes the proof of claim (16).

Now, let $v \in A$ be as in (16), and let $A^{\prime}=A \backslash\{v\}$. We fix a triangulation T^{\prime} of A^{\prime}, and extend it to a triangulation T of A. We observe that the triangles in $T \backslash T^{\prime}$ are of the form $[v, u, w]$ where there exists side e of $\left[A^{\prime}\right]$ whose line strictly separates v and $\operatorname{int}\left[A^{\prime}\right]$ and $u, v \in e \cap A^{\prime}$ are consecutive points. Applying the induction hypothesis to $A_{T^{\prime}}^{\prime}$, we deduce from (16) that A^{\prime} satisfies (a); it is a saturated set with respect to some lattice Λ.

For any side e of $\left[A^{\prime}\right]$, let ℓ_{e} be the line parallel to e and intersecting $\left[A^{\prime}\right] \cap \Lambda$, which is closest to e among the lines with these properties and not containing e. We claim that

$$
\begin{equation*}
\ell_{e} \cap A^{\prime} \neq \emptyset . \tag{17}
\end{equation*}
$$

To prove (17), we may assume that $\Lambda=\mathbb{Z}^{2},(0,0),(1,0) \in e$ and $(x, y) \in A^{\prime}$ for $y \geq 1$. It follows from the convexity of $\left[A^{\prime}\right]$ that $\left(\frac{x}{y}, 1\right),\left(\frac{x+y-1}{y}, 1\right) \in$ $\left[A^{\prime}\right] \cap \ell_{e}$. Since there exists a multiple $z \cdot y, z \in \mathbb{Z}$, of y among $x, \ldots, x+y-1$, we have $(z, 1) \in \ell_{e} \cap A^{\prime}$ by the saturatedness of A^{\prime}.

We distiguish two cases depending on whether A would eventually satify (a) or (b).

Case 1. For any side e of $\left[A^{\prime}\right]$ whose line strictly separates v and int $\left[A^{\prime}\right]$, there exists a $p \in \ell_{e} \cap A^{\prime}$ such that $[p, v] \cap\left[A^{\prime}\right] \neq\{p\}$.

In this case, we prove that A is also saturated with respect to Λ; namely,
if e is a side of $\left[A^{\prime}\right]$ whose line strictly separates v and int $\left[A^{\prime}\right]$, then $[e, v] \cap \Lambda=\{v\} \cup(e \cap \Lambda)$.

To prove (18) for e, let $p \in \ell_{e} \cap A^{\prime}$ such that $[p, v] \cap\left[A^{\prime}\right] \neq\{p\}$. It follows from $[p, v] \cap\left[A^{\prime}\right] \neq\{p\}$ that $\frac{1}{2}(p+v)$ can't lie in $A_{T} \backslash A_{T^{\prime}}^{\prime}$, therefore it lies in $A_{T^{\prime}}^{\prime}$ by $A_{T}=\frac{1}{2}(A+A)$. Since $p \in \ell_{e}$, we have $\frac{1}{2}(p+v) \in e$, and actually $\frac{1}{2}(p+v)=\frac{1}{2}(u+w)$ for $u, w \in e \cap \Lambda$. In turn, we conclude (18), and hence A is a saturated set.

Case 2. There exists a side e of $\left[A^{\prime}\right]$ whose line strictly separates v and $\operatorname{int}\left[A^{\prime}\right]$, and $[p, v] \cap\left[A^{\prime}\right]=\{p\}$ for any $p \in \ell_{e} \cap A^{\prime}$.

In this case, we prove that A satifies (b). Let $p \in \ell_{e} \cap A^{\prime}$. Since $p \in \ell_{e}$ and $[p, v] \cap\left[A^{\prime}\right]=\{p\}$, there exists a side f of $\left[A^{\prime}\right]$ such that f meets e in a vertex of $\left[A^{\prime}\right]$ and $p \in f$. Since $[p, v] \cap\left[A^{\prime}\right]=\{p\}$ and the line of e strictly separates v and int $\left[A^{\prime}\right]$, we may also assume that the line of f strictly separates v and int $\left[A^{\prime}\right]$. In particular, we may asssume that $\Lambda=\mathbb{Z}^{2}, e \cap f=(0,0)$, $w=(1,0) \in e$ and $p=(0,1)$, and then $v=(s, t)$ where $s, t<0$. For $q=(1,1)$, we have $[q, v] \cap \operatorname{int}\left[A^{\prime}\right] \neq \emptyset$, and hence $q \notin A^{\prime}$ in Case 2. Therefore either $A^{\prime}=\{p\} \cup\left(e \cap \mathbb{Z}^{2}\right)$ or $A^{\prime}=\{w\} \cup\left(f \cap \mathbb{Z}^{2}\right)$, thus A satisfies (b) in Case 2, verifying Lemma 15.

3 Proof of Theorem 4

The inequality between the quadratic and arithmetic means gives that, if $a, k>0$, then

$$
(4 a+2 k)^{\frac{1}{2}}>a^{\frac{1}{2}}+(a+k)^{\frac{1}{2}} .
$$

Therefore to prove Theorem 4, it is sufficient to verify the following: Let $B=A \cup\{b\}$ for $b \notin A$.

Figure 4: An illustration of Case 1.
(*) If $\operatorname{tr}(A)=a$ and $\operatorname{tr}(B)=a+k$, then $\operatorname{tr}(A+B) \geq 4 a+2 k$.
We fix a triangulation T of A, and let A_{T} be the union of A and the set of midpoints of the edges of T. It follows by (4) that

$$
\Delta_{A_{T}}+2 \Omega_{A_{T}}-2=\operatorname{tr}\left(A_{T}\right)=4 a
$$

To estimate $\operatorname{tr}(A+B)=\operatorname{tr}\left(\frac{1}{2}(A+B)\right)$, we isolate certain subset V of A in a way such that

$$
\begin{equation*}
A_{T} \cap\left(\frac{1}{2}(V+\{b\})\right)=\emptyset . \tag{19}
\end{equation*}
$$

Therefore, equation (4) and (19) give,

$$
\begin{align*}
\operatorname{tr}(A+B) \geq & 4 a+2\left|\frac{1}{2}(V+\{b\}) \cap \operatorname{int}[B]\right|+ \\
& \left|\frac{1}{2}(V+\{b\}) \cap \partial[B]\right|+\left|A_{T} \cap \partial[A] \cap \operatorname{int}[B]\right| . \tag{20}
\end{align*}
$$

We distinguish two cases depending on how to define V.
Case $1 b \notin[A]$
We say that $x \in[A]$ is visible if $[b, x] \cap[A]=\{x\}$. In this case $x \in \partial[A]$. We note that there are exactly two visible points on $\partial[B]$, which are on the two supporting lines to $[A]$ passing through b (see Figure 4). Let $k+1$ be the number of visible points of A, and hence $k \geq 1$. Now $k-1$ visible points of A lie in int $[B]$, thus (4) yields that $\operatorname{tr}(B)=a+k$. Let V be the set of visible points of A. The condition (19) is satisfied because $[A] \cap\left(\frac{1}{2}(V+\{b\})\right)=\emptyset$.

Figure 5: An illustration of Case 2.

We have $\left|\frac{1}{2}(V+\{b\})\right|=k+1$, and $2 k-1$ visible points of A_{T} lie in int[$\left.B\right]$. In particular, (*) follows as (20) yields

$$
\operatorname{tr}(A+B) \geq 4 a+2 k-1+k+1=4 a+3 k>4 a+2 k .
$$

Case $2 b \in[A]$
In this case $\operatorname{tr}(B)=a+k$ for $k \leq 2$ by (4), and b is contained in a triangle $T=[p, q, r]$ of T (see Figure 5). We may assume that b is not contained in the sides $[r, p]$ and $[r, q]$ of T. We take $V=\{p, q, r\}$, which satisfies (19). Since $\frac{1}{2}(b+q) \in \operatorname{int} T \subset \operatorname{int}[A],(20)$ yields $\operatorname{tr}(A+B) \geq 4 a+4$. In turn, we conclude Theorem 4.

Remark: The argument does not work if we only assume that $A \subset B$, because we may have equality in Conjecture 1 in this case.

4 Proof of Theorem 7

Let $A \subset \mathbb{R}^{2}$ be finite and not contained in any line. By a path σ on A we mean a concatenation of segments $\left[a_{0}, a_{1}\right], \ldots,\left[a_{\ell-1}, a_{\ell}\right]$ where $a_{0}, \ldots, a_{\ell} \in A$ are distinct points and the segments do not intersect A or one another except at their endpoints. We call the number ℓ of segments the length of σ, and denote it $|\sigma|$. We allow the case that σ is a point, and in this case we set $|\sigma|=0$. We say that σ is transversal to a non-zero vector u if every line
parallel to u intersects σ in at most one point; equivalently, if $u \cdot\left(a_{i+1}-a_{i}\right)$ is non-zero and of the same sign for all i. In this case, the segments in σ induce a subdivision of $\sigma+[o, u]$ into $|\sigma|$ parallelograms if $|\sigma| \geq 1$. For the proof of Theorem 7 the idea is to find an appropriate set of paths on A with total length at least $\sqrt{\operatorname{tr}(A)}$.

First, we explore the possibilities using only one or two paths. We will see in Remark 16 that one path is not enough, but Proposition 17 shows that using two paths σ_{1}, σ_{2} almost does the job.

Observe that for any given non-zero vector w, the length of the longest path on A transversal to w equals the number of lines parallel to w intersecting A, minus one. The next remark indicates that we may need a least two paths to get the total length close to $\sqrt{T_{A}}$.

Remark 16 Given pairwise independent vectors w_{1}, \ldots, w_{n} let $f\left(w_{1}, \ldots, w_{n}, s\right)$ be the minimal number such that, for every finite set $A \subset \mathbb{R}^{2}$ with $\operatorname{tr}(A)=s$, there is a w_{i} and a path on A transversal to w_{i} of length $f\left(w_{1}, \ldots, w_{n}, s\right)$.

For $n=2, f\left(w_{1}, w_{2}, s\right) \geq \sqrt{s / 2}$, with equality provided that $k:=\sqrt{s / 2}$ is an integer. An extremal configuration consists of the points $\left\{i w_{1}+j w_{2}\right.$: $i, j \in\{0, \ldots, k\}\}$.

For $n=3, f\left(w_{1}, w_{2}, w_{3}, s\right) \geq \sqrt{2 s / 3}$ and equality holds provided that $s=6 k^{2}$. Assuming without loss of generality that $w_{1}+w_{2}+w_{3}=0$, an extremal configuration is given by the points of the lattice generated by w_{1}, w_{2} in the affine regular hexagon $\left[\pm k w_{1}, \pm k w_{2}, \pm k w_{3}\right]$.

Let $e_{1}=(1,0)$ and $e_{2}=(0,1)$, and let σ_{1}, σ_{2} be paths on A. We say that the ordered pair (σ_{1}, σ_{2}) is a horizontal-vertical path if
(i') σ_{i} is transversal with respect e_{3-i} (possibly a point), $i=1,2$;
(ii') the right endpoint a of σ_{1} equals the upper endpoint of σ_{2}
(iii') writing $\mathbb{R}_{+}=\{t \in \mathbb{R}: t>0\}$, if $\left|\sigma_{1}\right|,\left|\sigma_{2}\right|>0$, then

$$
\left(\left(\sigma_{1} \backslash\{a\}\right)+\mathbb{R}_{+} e_{2}\right) \cap\left(\left(\sigma_{2} \backslash\{a\}\right)+\mathbb{R}_{+} e_{1}\right)=\emptyset
$$

We call σ_{1} the horizontal branch, and σ_{2} the vertical branch, and a the center.
We observe that if σ_{i}^{\prime} is the image of σ_{i} by reflection through the line $\mathbb{R}\left(e_{1}+e_{2}\right)$, then the ordered pair $\left(\sigma_{2}^{\prime}, \sigma_{1}^{\prime}\right)$ is also a horizontal-vertical path.

For any polygon P and non-zero vector u, we write $F(P, u)$ to denote the face of P with exterior normal u. In particular, $F(P, u)$ is either an edge or a vertex.

Proposition 17 For every finite $A \subset \mathbb{R}^{2}$ not contained in a line, and for every triangulation T of $[A]$ having A as the set of vertices, there exists a horizontal-vertical path (σ_{1}, σ_{2}) whose vertices belong to A, and satisfies

$$
\left|\sigma_{1}\right|+\left|\sigma_{2}\right| \geq \sqrt{|T|+1}-\frac{1}{2}
$$

Proof: Let us write

$$
\begin{aligned}
\xi & =\left|F\left([A],-e_{1}\right) \cap F\left([A],-e_{2}\right)\right| \leq 1 \\
\Delta_{A}^{\prime} & =\left|(A \cap \partial[A]) \backslash\left(F\left([A],-e_{1}\right) \cup F\left([A],-e_{2}\right)\right)\right|
\end{aligned}
$$

By the invariance with respect to reflection through the line $\mathbb{R}\left(e_{1}+e_{2}\right)$, we may assume that

$$
\begin{equation*}
\left|F\left([A],-e_{2}\right) \cap A\right| \geq\left|F\left([A],-e_{1}\right) \cap A\right| . \tag{21}
\end{equation*}
$$

We set $\left\{\left\langle e_{1}, p\right\rangle: p \in A\right\}=\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ with $\alpha_{0}<\ldots<\alpha_{k}, k \geq 1$. For $i=0, \ldots, k$, let $A_{i}=\left\{p \in A:\left\langle e_{1}, p\right\rangle=\alpha_{i}\right\}$, let $x_{i}=\left|A_{i}\right|$, and let a_{i} be the top-most point of A_{i}; that is, $\left\langle e_{2}, a_{i}\right\rangle$ is maximal. In particular, $x_{0}=\left|F\left([A],-e_{1}\right) \cap A\right|$. For each $i=1, \ldots, k$, we consider the horizontalvertical path $\left(\sigma_{1 i}, \sigma_{2 i}\right)$ where

$$
\sigma_{1 i}=\left\{\left[a_{0}, a_{1}\right], \ldots,\left[a_{i-1}, a_{i}\right]\right\}
$$

and the vertex set of $\sigma_{2 i}$ is A_{i}. In particular, the total length of the horizontalvertical path is $\left(\sigma_{1 i}, \sigma_{2 i}\right)$ is

$$
\left|\sigma_{1 i}\right|+\left|\sigma_{2 i}\right|=i+x_{i}-1 .
$$

The average length of these paths for $i=1, \ldots, k$ is

$$
\frac{\sum_{i=1}^{k}\left(\left|\sigma_{1 i}\right|+\left|\sigma_{2 i}\right|\right)}{k}=\frac{\sum_{i=1}^{k}\left(i+x_{i}-1\right)}{k}=\frac{|A|-x_{0}}{k}+\frac{k}{2}-\frac{1}{2} .
$$

We observe that $2|A|=|T|+\Delta_{A}+2$, according to (4), and (21) yields

$$
2+\Delta_{A}-2 x_{0}=2+\Delta_{A}^{\prime}+\left|F\left([A],-e_{2}\right) \cap A\right|-\xi-x_{0} \geq \Delta_{A}^{\prime}+1 .
$$

Therefore we deduce from the inequality between the arithmetic and geometric mean that

$$
\begin{align*}
\frac{\sum_{i=1}^{k}\left(\left|\sigma_{1 i}\right|+\left|\sigma_{2 i}\right|\right)}{k} & =\frac{2|A|-2 x_{0}}{2 k}+\frac{k}{2}-\frac{1}{2} \\
& \geq \frac{1}{2}\left(\frac{|T|+\Delta_{A}^{\prime}+1}{k}+k\right)-\frac{1}{2} \tag{22}\\
& \geq \sqrt{|T|+\Delta_{A}^{\prime}+1}-\frac{1}{2} \tag{23}
\end{align*}
$$

Therefore there exists some horizontal-vertical path ($\sigma_{1 i}, \sigma_{2 i}$) satisfying (23).

The estimate of Proposition 17 is close to be optimal according to the following example.

Example 18 Let $k \geq 2$ and $t>0$. Let A^{\prime} be the saturated set with $\left[A^{\prime}\right]$ having vertices $(0,0),(0, k),(k-1,0)$ and $(k-1,1)$, and let $A=A^{\prime} \cup\{(k+$ $t, 0)\}$. A triangulation T of A has $k^{2}+k-1$ triangles and every horizontalvertical path $\left(\sigma_{1}, \sigma_{2}\right)$ on A has total length

$$
\left|\sigma_{1}\right|+\left|\sigma_{2}\right| \leq k<\sqrt{|T|+2}-\frac{1}{2}
$$

We next proceed to the proof of Theorem 7 by a similar strategy using three paths. Let $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ and, for $\{i, j, k\}=\{1,2,3\}$ denote by u_{i} the exterior unit normal to the side $\left[v_{j}, v_{k}\right]$ of B. A set of three paths $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ on A with a common endpoint a is called a proper star (with respect to $B=\left\{v_{1}, v_{2}, v_{3}\right\}$) if the following conditions hold:
(i) σ_{i} is transversal with respect $v_{j}-v_{k}$ (possibly $\sigma_{i}=\{a\}$);
(ii) writing $\mathbb{R}_{+}=\{t \in \mathbb{R}: t>0\}$, if $\left|\sigma_{j}\right|,\left|\sigma_{k}\right|>0$, then

$$
\left(\left(\sigma_{j} \backslash\{a\}\right)+\mathbb{R}_{+}\left(v_{k}-v_{i}\right)\right) \cap\left(\left(\sigma_{k} \backslash\{a\}\right)+\mathbb{R}_{+}\left(v_{j}-v_{i}\right)\right)=\emptyset ;
$$

(iii) the other endpoint b_{i} of σ_{i} lies in $\partial[A]$ and u_{i} is an exterior unit normal to $[A]$ at b_{i}; in particular,

$$
\left\langle b_{i}, u_{i}\right\rangle=\max \left\{\left\langle x, u_{i}\right\rangle: x \in A\right\}
$$

We note that the three paths are allowed to have common vertices and edges, but they do not cross one another by (ii).

If the paths $\sigma_{i} \backslash\{a\}, i=1,2,3$, are all non-empty and pairwise disjoint (except for their common end-point a), then (ii) means that they come around a in the same order as the orientation of the triangle $\left[v_{1}, v_{2}, v_{3}\right]$ (see Figure 6 for an illustration).

The next Lemma shows how to construct an appropriate mixed subdivision of $A+B$ using a proper star.

Figure 6: A proper star with respect to v_{1}, v_{2}, v_{3} centered at a. On the right, paralellograms based on the proper star

Lemma 19 Let A and B be finite non-collinear sets in \mathbb{R}^{2} with $B=\left\{v_{1}, v_{2}, v_{3}\right\}$, and let us a consider a proper star on A with respect to B with rays $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and center a such that $\left|\sigma_{1}\right|+\left|\sigma_{2}\right|+\left|\sigma_{3}\right|>0$. Then there exists a triangulation T_{A} for A extending the paths $\sigma_{1}, \sigma_{2}, \sigma_{3}$, and a mixed subdivision M for $A+B$ satisfying

$$
\left|M_{11}\right|=\left|\sigma_{1}\right|+\left|\sigma_{2}\right|+\left|\sigma_{3}\right| .
$$

Proof: We may assume that $\left|\sigma_{1}\right|>0$ and $v_{3}=o$. Let T_{A} be a triangulation using all the edges in the given proper star, and partition the triangles of T_{A} into three subsets $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ (some of the Σ_{i} might be empty). The idea is that if the semi-open paths $\sigma_{i} \backslash\{a\}, i=1,2,3$, are all non-empty and pairwise disjoint and $\{i, j, k\}=\{1,2,3\}$, then Σ_{i} consists of the triangles of T_{A} cut off by $\sigma_{j} \cup \sigma_{k}$. We also use Jordan's theorem for a simple closed polygonal path σ; namely, it encloses an open bounded set D such that $x \in D$ if and if whenever a ray ℓ emanating from x does not contain any edge of σ, then $|\ell \cap \sigma|$ is finite and odd.

A triangle τ of T_{A} is in Σ_{1} if and only if for any $p \in(\operatorname{int} \tau) \backslash\left(a+\mathbb{R} v_{1}\right)$ such that $p-\mathbb{R}_{+} v_{1}$ does not contain any edge of σ_{2} or σ_{3}, we have

$$
\left|\left(p-\mathbb{R}_{+} v_{1}\right) \cap \sigma_{2}\right|+\left|\left(p-\mathbb{R}_{+} v_{1}\right) \cap \sigma_{3}\right|
$$

is finite and odd. Similarly, $\tau \in T_{A}$ is in Σ_{2} if and only if for any $p \in$ (int $\tau) \backslash\left(a+\mathbb{R} v_{2}\right)$ such that $p-\mathbb{R}_{+} v_{2}$ does not contain any edge of σ_{1} or σ_{3}, we have

$$
\left|\left(p-\mathbb{R}_{+} v_{2}\right) \cap \sigma_{1}\right|+\left|\left(p-\mathbb{R}_{+} v_{2}\right) \cap \sigma_{3}\right|
$$

is finite and odd. The rest of the triangles of T_{A} form Σ_{3}.

The mixed subdivision M is constructed as follows. Concerning triangles, $[B]+a$ is in M, and if $\tau \in \Sigma_{i}$, then the corresponding triangle in M is $\tau+v_{i}$. For the parallelograms, if $\{i, j, k\}=\{1,2,3\}$ and e is an edge of σ_{i}, then $e+\left[v_{j}, v_{k}\right]$ is in M. It follows from properties (i) and (ii) of the proper star that these parallelograms do not overlap, and taking also (iii) into account, we obtain a mixed triangulation of $A+B$.

For the rest of the section, we fix finite $A \subset \mathbb{R}^{2}$ and $B=\left\{v_{1}, v_{2}, v_{3}\right\} \subset \mathbb{R}^{2}$ such that both of them span \mathbb{R}^{2} affinely, and confirm Conjecture 5 in this case.

The following statement is a simple consequence of the definition of a proper star.

Lemma 20 Assuming $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ with $v_{1}=(1,0)=-u_{1}, v_{2}=(0,1)=$ $-u_{2}$ and $v_{3}=(0,0)$, and hence $u_{3}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, if $\left(\sigma_{1}, \sigma_{2}\right)$ is a horizontalvertical path for A centered at $a \in A$, then
(a) there exists a proper star $\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}\right)$ centered at a such that $\sigma_{1} \subset \sigma_{1}^{\prime}$, $\sigma_{2} \subset \sigma_{2}^{\prime}$,
(b) if in addition $a \notin F\left([A], u_{3}\right)$, then $\left|\sigma_{3}^{\prime}\right| \geq 1$.

Proof: A triple of paths ($\tilde{\sigma}_{1}, \tilde{\sigma}_{2}, \tilde{\sigma}_{3}$) meeting at a will be called a semi-proper star extending $\left(\sigma_{1}, \sigma_{2}\right)$ if it satisfies properties (i) and (ii) above and $\sigma_{i} \subset$ $\tilde{\sigma}_{i}$ for $i=1,2$. In particular, $\left(\sigma_{1}, \sigma_{2},\{a\}\right)$ is a semi-proper star extending $\left(\sigma_{1}, \sigma_{2}\right)$. We show that if ($\left.\tilde{\sigma}_{1}, \tilde{\sigma}_{2}, \tilde{\sigma}_{3}\right)$ is a semi-proper star extending $\left(\sigma_{1}, \sigma_{2}\right)$ and

$$
\max \left\{\left\langle x, u_{i}\right\rangle: x \in \tilde{\sigma}_{i}\right\}<\max \left\{\left\langle x, u_{i}\right\rangle: x \in A\right\} \text { for an } i \in\{1,2,3\},
$$

then there exists a semi-proper star $\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}\right)$ extending $\left(\sigma_{1}, \sigma_{2}\right)$ such that

$$
\begin{equation*}
\sigma_{j}^{\prime}=\tilde{\sigma}_{j} \text { for } j \neq i, \tilde{\sigma}_{i} \subset \sigma_{i}^{\prime} \text { and } \tilde{\sigma}_{i} \neq \sigma_{i}^{\prime} . \tag{24}
\end{equation*}
$$

Let $b_{i} \in \sigma_{i}$ be the other endpoint of $\tilde{\sigma}_{i}$; namely,

$$
\left\langle b_{i}, u_{i}\right\rangle=\max \left\{\left\langle x, u_{i}\right\rangle: x \in \tilde{\sigma}_{i}\right\} .
$$

To prove (24), we consider the open half plane $H_{i}^{+}=\left\{x \in \mathbb{R}^{2}:\left\langle x, u_{i}\right\rangle\right\rangle$ $\left.\left\langle b_{i}, u_{i}\right\rangle\right\}$, and distinguish two cases. First, if $H_{i}^{+} \cap \tilde{\sigma}_{j}=\emptyset$ for $j \neq i$, then we choose any $z \in A \cap H_{i}^{+}$. The points of $A \cap\left[b_{i}, z\right]$ divide $\left[b_{i}, z\right]$ into a path, and adding this path to $\tilde{\sigma}_{i}$ we obtain the required σ_{i}^{\prime} in (24).

The second case in proving (24) is that if there exists $j \neq i$ such that $H_{i}^{+} \cap \tilde{\sigma}_{j} \neq \emptyset$. We consider the $z \in A \cap \tilde{\sigma}_{j} \cap H_{i}^{+}$such that

$$
\left\langle u_{j}, x\right\rangle \geq\left\langle u_{j}, z\right\rangle \text { for } x \in A \cap \tilde{\sigma}_{j} \cap H_{i}^{+} .
$$

Let $\{1,2,3\}=\{i, j, k\}$. Since

$$
\tilde{\sigma}_{j}+\mathbb{R}_{+}\left(v_{i}-v_{k}\right) \subset b_{i}+\mathbb{R}_{+}\left(v_{i}-v_{k}\right)+\mathbb{R}_{+}\left(z-b_{i}\right)
$$

by the choice of z and as $\tilde{\sigma}_{j}$ is transversal with respect to $v_{i}-v_{k}$, and in addition, $v_{k}-v_{j} \in \mathbb{R}_{+}\left(v_{i}-v_{k}\right)+\mathbb{R}_{+}\left(z-b_{i}\right)$, we deduce that

$$
\begin{equation*}
\left(\left[z, b_{i}\right]+\mathbb{R}_{+}\left(v_{j}-v_{k}\right)\right) \cap\left(\tilde{\sigma}_{j}+\mathbb{R}_{+}\left(v_{i}-v_{k}\right)\right)=\emptyset . \tag{25}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
& \left\langle x, u_{k}\right\rangle<\left\langle b_{i}, u_{k}\right\rangle \text { for } x \in\left[z, b_{i}\right]+\mathbb{R}_{+}\left(v_{k}-v_{j}\right) \\
& \left\langle x, u_{k}\right\rangle>\left\langle b_{i}, u_{k}\right\rangle \text { for } x \in \tilde{\sigma}_{k}+\mathbb{R}_{+}\left(v_{i}-v_{j}\right)
\end{aligned}
$$

imply that

$$
\begin{equation*}
\left(\left[z, b_{i}\right]+\mathbb{R}_{+}\left(v_{k}-v_{j}\right)\right) \cap\left(\tilde{\sigma}_{k}+\mathbb{R}_{+}\left(v_{i}-v_{j}\right)\right)=\emptyset . \tag{26}
\end{equation*}
$$

Again, the points of $A \cap\left[b_{i}, z\right]$ divide $\left[b_{i}, z\right]$ into a path, and adding this path to $\tilde{\sigma}_{i}$ we obtain the σ_{i}^{\prime}, which, together with $\sigma_{j}^{\prime}=\tilde{\sigma}_{j}$ and $\sigma_{k}^{\prime}=\tilde{\sigma}_{k}$, satifies (ii) by (25) and (26). In turn, we conclude (24).

Since A is finite, repeated application of (24) leads to the required proper star satifying (iii), as well.

Proof of Theorem 7 We apply the same idea as in the proof of Proposition 17, only applying Lemma 20 at a certain point to improve the bound.

We may assume that $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ with $v_{1}=(1,0)=-u_{1}, v_{2}=$ $(0,1)=-u_{2}$ and $v_{3}=(0,0)$, and hence $u_{3}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. In addition, we may assume that

$$
\left|F\left([A], u_{2}\right) \cap A\right| \geq\left|F\left([A], u_{1}\right) \cap A\right| .
$$

Using the notation of the proof of (22), we set $\left\{\left\langle-u_{1}, p\right\rangle: p \in A\right\}=$ $\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ with $\alpha_{0}<\ldots<\alpha_{k}$, and $\Delta_{A}^{\prime}=\mid(A \cap \partial[A]) \backslash\left(F\left([A], u_{1}\right) \cup\right.$ $\left.F\left([A], u_{2}\right)\right) \mid$. For $i=0, \ldots, k$, let $A_{i}=\left\{p \in A:\left\langle u_{1}, p\right\rangle=\alpha_{i}\right\}$, let $x_{i}=\left|A_{i}\right|$ and let a_{i} be the top-most point of A_{i}; namely, $\left\langle-u_{2}, a_{i}\right\rangle$ is maximal. According to (22) and (23), we have

$$
\begin{equation*}
\frac{\sum_{i=1}^{k}\left(i+x_{i}-1\right)}{k} \geq \frac{\left|T_{A}\right|+\Delta_{A}^{\prime}+1}{2 k}+\frac{k}{2}-\frac{1}{2} \geq \sqrt{\left|T_{A}\right|+1}-\frac{1}{2} . \tag{27}
\end{equation*}
$$

Let I be the set of all $i \in\{1, \ldots, k\}$ such that

$$
\begin{equation*}
i+x_{i}-1 \geq\left\lceil\frac{\left|T_{A}\right|+\Delta_{A}^{\prime}+1}{2 k}+\frac{k}{2}-\frac{1}{2}\right\rceil=\xi . \tag{28}
\end{equation*}
$$

Since $\xi \geq \sqrt{\left|T_{A}\right|+1}-\frac{1}{2}$, if strict inequality holds for some i in (28), then using Lemma 19 for the proper star constructed in Lemma 20 (a) concludes the proof of Theorem 7. Thus we assume that

$$
i+x_{i}-1=\xi \text { for } i \in I
$$

If $i \in I$ and $a_{i} \notin F\left([A], u_{3}\right)$, then $\xi \geq \sqrt{\left|T_{A}\right|+1}-\frac{1}{2}$ and using Lemma 19 for the proper star constructed in Lemma 20 (b) concludes the proof of Theorem 7.

Therefore we may assume that

$$
\begin{equation*}
a_{i} \in F\left([A], u_{3}\right) \text { for } i \in I . \tag{29}
\end{equation*}
$$

Let $\theta=|I|$. Since $i \geq 1$ for $i \in I$ and $\left.\mid F\left([A], u_{3}\right) \cap F\left([A], u_{2}\right)\right) \mid \leq 1$, we deduce that

$$
\begin{equation*}
\theta \leq\left|F\left([A], u_{3}\right) \backslash F\left([A], u_{1}\right)\right| \leq \min \left\{\Delta_{A}^{\prime}+1, k\right\} . \tag{30}
\end{equation*}
$$

Since $i+x_{i}-1 \leq \xi-1$, if $i \notin I$, we have

$$
\xi-\frac{\sum_{i=1}^{k}\left(i+x_{i}-1\right)}{k} \geq \xi-\frac{\theta \cdot \xi+(k-\theta) \cdot(\xi-1)}{k}=\frac{k-\theta}{k} .
$$

We deduce from (27) that if $i \in I$, then

$$
\begin{aligned}
i+x_{i}-1 & =\xi \geq \frac{\sum_{i=1}^{k}\left(i+x_{i}-1\right)}{k}+\frac{k-\theta}{k} \\
& \geq \frac{\left|T_{A}\right|+\Delta_{A}^{\prime}+1}{2 k}+\frac{k}{2}-\frac{1}{2}+\frac{k-\theta}{k} \\
& =\frac{\left|T_{A}\right|+\Delta_{A}^{\prime}+1}{2 k}+\frac{k}{2}+\frac{1}{2}-\frac{\theta}{k} .
\end{aligned}
$$

Finally, if (29) holds and $i \in I$, then we apply both inequalities in (30) and later the inequality between the arithmetic and the geometric mean to obtain

$$
\begin{aligned}
i+x_{i}-1 & \geq \frac{\left|T_{A}\right|+\theta}{2 k}+\frac{k}{2}+\frac{1}{2}-\frac{\theta}{k}=\frac{\left|T_{A}\right|}{2 k}+\frac{k}{2}+\frac{1}{2}-\frac{\theta}{2 k} \\
& \geq \frac{\left|T_{A}\right|}{2 k}+\frac{k}{2} \geq \sqrt{\left|T_{A}\right| .}
\end{aligned}
$$

Therefore, we conlude Theorem 7 by Lemma 19 and Lemma 20 (a).

5 Proof of Theorem 8

We assume in this section that there are no points of A (resp. B) in the interior of $[A]$, (resp. $[B]$).

Recall that Δ_{X} denotes the number of points of X in the boundary of $[X]$. It is easy to check that Δ_{A+B} has at least as many points as Δ_{A} and Δ_{B} together, that is:

$$
\Delta_{A+B} \geq \Delta_{A}+\Delta_{B}=\operatorname{tr}(A)+\operatorname{tr}(B)+4
$$

As a motivation for the proof, we note that Conjecture 1 follows if the number Ω_{A+B} of points of $A+B$ in $\operatorname{int}([A+B])$ is at least

$$
\frac{\operatorname{tr}(A)+\operatorname{tr}(B)-2}{2}=\frac{\Delta_{A}+\Delta_{B}}{2}-3 .
$$

Naturally we aim at the stronger Conjecture 5. Given Theorem 7, Theorem 8 follows if A and B being in convex position and $|A|,|B| \geq 4$ yield that there exists a mixed subdivision of $A+B$ satisfying

$$
\begin{equation*}
\left|M_{11}\right| \geq \frac{\operatorname{tr}(A)+\operatorname{tr}(B)}{2} \tag{31}
\end{equation*}
$$

Throughout the proof we assume that $[B]$ has at most as many vertices as $[A]$ and v denotes a unit vector (which we assume pointing upwards) not parallel to any side of $[A+B]$. We denote by a_{0} and a_{1} the leftmost and rightmost vertex of $[A]$ and by b_{0} and b_{1} the leftmost and rightmost vertex of $[B]$.

To prove (31), we say that A and B form a strange pair if $[B]$ is a triangle and the three exterior normals to $[B]$ are also exterior normals of edges of [A].

We will use that, for $t, s \geq 1$,

$$
\begin{equation*}
t s \geq t+s-1 \tag{32}
\end{equation*}
$$

Case $1 \quad A$ and B are not strange pairs.
We choose a unit vector v as above in the following way: if B is a triangle, then the upper arc of $\partial[B]$ is an side such that $[A]$ has no side with same exterior unit normal; if $[B]$ has at least four edges, then the two supporting lines of $[B]$ parallel to v touch at non-consecutive vertices of $[B]$. For the existence of the latter pair of supporting lines, we note that while continuously rotating $[B]$, the number of upper minus lower vertices changes by either zero or two units at a time when an edge of $[B]$ is parallel to v, and

Figure 7: An illustration of the proof of Claim 21.
after rotation by π it changes to its opposite. Hence, at some position that difference is zero or one which implies, since $[B]$ has at least four vertices, that at that position there is at least one upper and one lower vertex, as required.

Claim 21 One of the two following statements hold:

$$
\begin{align*}
& \left|\left(\left(A+b_{0}\right) \cup\left(a_{1}+B\right)\right) \cap \operatorname{int}[A+B]\right| \geq \frac{\Delta_{A}+\Delta_{B}}{2}-3, \text { or } \tag{33}\\
& \left|\left(\left(a_{0}+B\right) \cup\left(A+b_{1}\right)\right) \cap \operatorname{int}[A+B]\right| \geq \frac{\Delta_{A}+\Delta_{B}}{2}-3 .
\end{align*}
$$

Proof: We may assume that $b_{1}=a_{0}=o$ (see Fig. 7). Observe first that the only repetitions $x+b_{0}=a_{1}+y$ or $x+b_{1}=a_{0}+y$ in these configurations are the points $a_{1}+b_{0}$ and $a_{0}+b_{1}$ (which are interior to $[A+B]$ by our hypothesis). To prove (33), we verify first that
(i) for every $x \in A \backslash\left\{a_{0}, a_{1}\right\}$ except perhaps two of them, at least one of $x+b_{0}$ or $x+b_{1}$ is interior in $A+B$,
(ii) for every $y \in B \backslash\left\{b_{0}, b_{1}\right\}$ except perhaps two of them, at least one of $a_{0}+y$ or $a_{1}+y$ is interior in $A+B$.

For (i), we note that if both $x+b_{0}$ or $x+b_{1}$ are in $\partial[A+B]$, then they are the endpoints of a segment translated from $\left[b_{0}, b_{1}\right]$ and only two such translations have their endpoints in $\partial[A+B]$ because A and B are not a strange pair. The argument for (ii) is similar.

Now (i) and (ii) say that counting the interior points of $\left(A+b_{0}\right) \cup\left(a_{1}+B\right)$ and $\left(a_{0}+B\right) \cup\left(A+b_{1}\right)$ except $a_{0}+b_{1}$ and $a_{1}+b_{0}$ we have altogether at least $\left|\Delta_{A}\right|+\left|\Delta_{B}\right|-8$ of them. Including the latter we have at least $\left|\Delta_{A}\right|+\left|\Delta_{B}\right|-6$ of them and at least half of these in either $\left(A+b_{0}\right) \cup\left(a_{1}+B\right)$ or $\left(a_{0}+B\right) \cup\left(A+b_{1}\right)$, which yields (33).

Let us construct the suitable mixed triangulation of $[A+B]$. For every path σ on A, we assume that every point of A in σ is a vertex of σ. According to (33), we may assume that

$$
\begin{equation*}
|(A \cup B) \cap \operatorname{int}[A+B]| \geq \frac{\Delta_{A}+\Delta_{B}}{2}-3 \tag{34}
\end{equation*}
$$

Let $a_{\text {upp }}\left(a_{\text {low }}\right)$ be the neighboring vertex of $[A]$ to o on the upper (lower) arc of $\partial[A]$, and let $b_{\text {upp }}\left(b_{\text {low }}\right)$ be the neighboring vertex of $[B]$ to o on the upper (lower) arc of $\partial[B]$. We write $\omega_{\text {upp }}^{A}$ and $\omega_{\text {low }}^{A}$ to denote the paths determined by $\left[~ O, a_{\text {upp }}\right]$ and $\left[~, a_{\text {low }}\right]$ and $\omega_{\text {upp }}^{B}$ and $\omega_{\text {low }}^{B}$ to denote the paths determined by $\left[~\left[, b_{\text {upp }}\right]\right.$ and $\left[~ o, b_{\text {low }}\right]$, and hence the two dimensionality of $[A]$ and $[B]$ implies

$$
\left|\omega_{\text {upp }}^{A}\right|,\left|\omega_{\text {low }}^{A}\right|,\left|\omega_{\text {upp }}^{B}\right|,\left|\omega_{\text {low }}^{B}\right| \geq 1 .
$$

Next let $\sigma_{\text {upp }}^{A}\left(\sigma_{\text {low }}^{A}\right)$ be the longest path on the upper (lower) arc of $\partial[A]$ starting from o such that every segment s of $\sigma_{\text {upp }}^{A}\left(\sigma_{\text {low }}^{A}\right)$ satisfies that $s+\left[o, b_{\text {upp }}\right]$ $\left(s+\left[o, b_{\text {low }}\right]\right)$ is a parallelogram that does not intersect int $[A]$. Similarly, let $\sigma_{\text {upp }}^{B}\left(\sigma_{\text {low }}^{B}\right)$ be the longest path on the upper (lower) arc of $\partial[B]$ starting from o such that every segment s of $\sigma_{\text {upp }}^{B}\left(\sigma_{\text {low }}^{B}\right)$ satisfies that $s+\left[o, a_{\text {upp }}\right]\left(s+\left[o, a_{\text {low }}\right]\right)$ is a parallelogram that does not intersect int $[B]$. Since $a_{1}=b_{0}=o$ is a common point of $\sigma_{\text {upp }}^{A}, \sigma_{\text {low }}^{A}, \sigma_{\text {upp }}^{B}, \sigma_{\text {low }}^{B}$, we deduce from (34) that

$$
1+\left(\left|\sigma_{\text {upp }}^{A}\right|-1\right)+\left(\left|\sigma_{\text {low }}^{A}\right|-1\right)+\left(\left|\sigma_{\text {upp }}^{B}\right|-1\right)+\left(\left|\sigma_{\text {low }}^{B}\right|-1\right) \geq \frac{\Delta_{A}+\Delta_{B}}{2}-3,
$$

equivalently,

$$
\begin{equation*}
\left|\sigma_{\text {upp }}^{A}\right|+\left|\sigma_{\text {low }}^{A}\right|+\left|\sigma_{\text {upp }}^{B}\right|+\left|\sigma_{\text {low }}^{B}\right| \geq \frac{\Delta_{A}+\Delta_{B}}{2} . \tag{35}
\end{equation*}
$$

We construct the mixed subdivision by considering the subdivisions into suitable paralleograms of $\sigma_{\text {upp }}^{A}+\omega_{\text {upp }}^{B}$ and $\sigma_{\text {upp }}^{B}+\omega_{\text {upp }}^{A}$ that have $\omega_{\text {upp }}^{A}+\omega_{\text {upp }}^{B}$ in common, and the subdivisions into suitable parallelograms of $\sigma_{\text {low }}^{A}+\omega_{\text {low }}^{B}$ and $\sigma_{\text {low }}^{B}+\omega_{\text {low }}^{A}$ that have $\omega_{\text {low }}^{A}+\omega_{\text {low }}^{B}$ in common (see Figure 8).

Figure 8: An illustration of the parallelograms of the mixed subdivision in Case 1.

In particular, $\left|\omega_{\text {upp }}^{A}\right|,\left|\omega_{\text {upp }}^{B}\right| \geq 1$, (32) and (35) yield that

$$
\begin{aligned}
\left|M_{11}\right| \geq & \left(\left|\sigma_{\text {upp }}^{A}\right|-\left|\omega_{\text {upp }}^{A}\right|\right)\left|\omega_{\text {upp }}^{B}\right|+\left(\left|\sigma_{\text {upp }}^{B}\right|-\left|\omega_{\text {upp }}^{B}\right|\right)\left|\omega_{\text {upp }}^{A}\right|+\left|\omega_{\text {upp }}^{A}\right| \cdot\left|\omega_{\text {upp }}^{B}\right|+ \\
& +\left(\left|\sigma_{\text {low }}^{A}\right|-\left|\omega_{\text {low }}^{A}\right|\right)\left|\omega_{\text {low }}^{B}\right|+\left(\left|\sigma_{\text {low }}^{B}\right|-\left|\omega_{\text {low }}^{B}\right|\right)\left|\omega_{\text {low }}^{A}\right|+\left|\omega_{\text {low }}^{A}\right| \cdot\left|\omega_{\text {low }}^{B}\right| \\
\geq & \left(\left|\sigma_{\text {upp }}^{A}\right|-\left|\omega_{\text {upp }}^{A}\right|\right)+\left(\left|\sigma_{\text {upp }}^{B}\right|-\left|\omega_{\text {upp }}^{B}\right|\right)+\left|\omega_{\text {upp }}^{A}\right|+\left|\omega_{\text {upp }}^{B}\right|-1+ \\
& +\left(\left|\sigma_{\text {low }}^{A}\right|-\left|\omega_{\text {low }}^{A}\right|\right)+\left(\left|\sigma_{\text {low }}^{B}\right|-\left|\omega_{\text {low }}^{B}\right|\right)+\left|\omega_{\text {low }}^{A}\right|+\left|\omega_{\text {low }}^{B}\right|-1 \\
\geq & \frac{\Delta_{A}+\Delta_{B}}{2}-2=\frac{\operatorname{tr}(A)+\operatorname{tr}(B)}{2},
\end{aligned}
$$

proving (31) in Case 1.
Case $2 A$ and B form a strange pair with $|A|,|B| \geq 4$, and $[A]$ and $[B]$ are not similar triangles

We write $\alpha_{\text {upp }}\left(\alpha_{\text {low }}\right)$ to denote the number of segments that the points of A divide the upper (lower) arc of $\partial[A]$. We denote by b_{2} the third vertex of $[B]$ and by $\left[x_{0}, x_{1}\right]$ the side of A with $x_{1}-x_{0}=t\left(b_{1}-b_{0}\right)$ for $t>0$. For $i=0,1,2$, let s_{i} be the number of segments that the points of B divide the side of $[B]$ opposite to b_{i}.

Claim 22 There exists a v such that one of the following holds:

$$
\begin{align*}
& \alpha_{\text {upp }} \geq 2 \text { and } \alpha_{\text {upp }}+s_{0}+s_{1} \geq \frac{1}{2}\left(\Delta_{A}+\Delta_{B}\right), \text { or } \tag{36}\\
& \alpha_{\text {low }}, s_{2} \geq 2 \text { and } \alpha_{\text {low }}+s_{2} \geq \frac{1}{2}\left(\Delta_{A}+\Delta_{B}\right) . \tag{37}
\end{align*}
$$

Proof: Since $\alpha_{\text {upp }}+\alpha_{\text {low }}=\Delta_{A}$ and $s_{0}+s_{1}+s_{2}=\Delta_{B}$, the claim easily follows if there is a v such that, for each the sets A and B, both the upper arc and the lower arc contain a point of the set strictly between the two supporting lines parallel to v.

Otherwise, choose a v such that the side $\left[b_{0}, b_{1}\right]$ of $[B]$ contains at least 3 points of B (this is possible since $|B| \geq 4$). Then $\left[x_{0}, x_{1}\right]$ has no other point of A than x_{0}, x_{1} and the other side of $[A]$ at $x_{i}, i=0,1$ is parallel to $\left[b_{i}, b_{2}\right]$. As $[A]$ and $[B]$ are not similar triangles, $[A]$ has some more edges, which in turn yields that $\left[b_{i}, b_{2}\right] \cap B=\left\{b_{i}, b_{2}\right\}$ for $i=0,1$. In summary, we have $\alpha_{\text {upp }}=s_{0}=s_{1}=1$ and $\alpha_{\text {low }}, s_{2} \geq 2$. Since $\alpha_{\text {low }}+s_{2}>\alpha_{\text {upp }}+s_{0}+s_{1}$, we conclude (37).

To prove (31) based on (36) and (37), we introduce some further notation. After a linear transformation, we may assume that v is an exterior normal to the edge $\left[b_{0}, b_{1}\right]$ of $[B]$. We say that $p, q \in \partial[A]$ are opposite if there exists a unit vector w such that w is an exterior normal at p and $-w$ is an exterior normal at q. If $p, q \in \partial[A]$ are not opposite, then we write $\overline{p q}$ the arc of $\partial[A]$ connecting p and q and not containing opposite pair of points.

First we assume that (36) holds and $b_{2}=o$. Since $\left[x_{0}, x_{1}\right]$ has exterior normal v and $\alpha_{\text {upp }} \geq 2$, there exists $a \in A \backslash\left\{x_{0}, x_{1}\right\}$ such that v is an exterior normal to $\partial[A]$ at a. We write $l_{\text {upp }}$ and $r_{\text {upp }}$ to denote the number of segments the points of A divide the arcs $\overline{a x_{0}}$ and $\overline{a x_{1}}$, respectively. To construct a mixed subdivision, we observe that every exterior normal u to a side of $[A]$ in $\overline{a x_{0}}$ satisfies $\left\langle u, b_{0}\right\rangle>0$, and every exterior normal w to a side of $[A]$ in $\overline{a x_{1}}$ satisfies $\left\langle w, b_{1}\right\rangle>0$. We divide $\overline{a x_{0}}+\left[o, b_{0}\right]$ into suitable $s_{1} l_{\text {upp }}$ parallelograms, and $\overline{a x_{1}}+\left[o, b_{1}\right]$ into suitable $s_{0} r_{\text {upp }}$ parallelograms. It follows from (32) that

$$
\begin{aligned}
\left|M_{11}\right| & =s_{1} l_{\text {upp }}+s_{0} r_{\text {upp }} \geq l_{\text {upp }}+r_{\text {upp }}+s_{0}+s_{1}-2=\alpha_{\text {upp }}+s_{0}+s_{1}-2 \\
& \geq \frac{1}{2}\left(\Delta_{A}+\Delta_{B}\right)-2=\frac{1}{2}(\operatorname{tr}(A)+\operatorname{tr}(B)) .
\end{aligned}
$$

Secondly we assume that (37) holds. Since $s_{2} \geq 2$, we may assume that $o \in\left(\left[b_{0}, b_{1}\right] \backslash\left\{b_{0}, b_{1}\right\}\right) \cap B$. For $i=0,1$, we write $s_{2 i}$ to denote the number of segments the points of B divide $\left[o, b_{i}\right]$. Let \tilde{x}_{0} and \tilde{x}_{1} be the leftmost and rightmost points of A such that $-v$ is an exterior normal to $\partial[A]$, where possibly $\tilde{x}_{0}=\tilde{x}_{1}$. Since $[A]$ has sides parallel to the sides $\left[b_{2}, b_{0}\right]$ and $\left[b_{2}, b_{1}\right]$ of $[B]$, we deduce that $\tilde{x}_{0} \neq x_{0}$ and $\tilde{x}_{1} \neq x_{1}$. To construct a mixed subdivision, we set $m_{\text {low }}=0$ if $\tilde{x}_{0}=\tilde{x}_{1}$, and $m_{\text {low }}$ to be the number of segments the points of A divide $\overline{\tilde{x}_{0}, \tilde{x}_{1}}$ if $\tilde{x}_{0} \neq \tilde{x}_{1}$. In addition, we write $l_{\text {low }} \geq 1$ and $r_{\text {low }} \geq 1$ to denote the number of segments the points of A divide the $\operatorname{arcs} \overline{\tilde{x}}_{0} x_{0}$ and $\tilde{\tilde{x}}_{1} x_{1}$, respectively. We divide $\widetilde{x}_{0} x_{0}+\left[o, b_{0}\right]$ into suitable $l_{\text {low }} s_{20}$ parallelograms, and $\widetilde{\tilde{x}_{1} x_{1}}+\left[o, b_{1}\right]$ into suitable $r_{\text {upp }} s_{21}$ parallelograms. In addition, if $\tilde{x}_{0} \neq \tilde{x}_{1}$,
then we divide $\left[\tilde{x}_{0} \tilde{x}_{1}\right]+\left[o, b_{2}\right]$ into suitable $m_{\text {low }}$ parallelograms. It follows from (32) that

$$
\begin{aligned}
\left|M_{11}\right| & =l_{\text {low }} s_{20}+r_{\text {low }} s_{21}+m_{\text {low }} \geq l_{\text {low }}+r_{\text {low }}+m_{\text {low }}+s_{20}+s_{21}-2 \\
& =\alpha_{\text {low }}+s_{2}-2 \geq \frac{1}{2}\left(\Delta_{A}+\Delta_{B}\right)-2=\frac{1}{2}(\operatorname{tr}(A)+\operatorname{tr}(B)),
\end{aligned}
$$

finishing the proof of (31) in Case 2.
Case $3[A]$ and $[B]$ are similar triangles and $|A|,|B| \geq 4$
We recall that s_{1}, s_{2} and s_{3} denote the number of segments the points of B divide the sides of $[B]$ and let $s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}$ be the number of segments the points of A divide the corresponding sides of $[A]$. We have $\operatorname{tr}(A)=s_{1}^{\prime}+s_{2}^{\prime}+s_{3}^{\prime}-2$ and $\operatorname{tr}(B)=s_{1}+s_{2}+s_{3}-2$. We may assume that s_{1} is the largest among the six numbers and that $s_{2}^{\prime} \geq s_{3}^{\prime}$. Readily

$$
\begin{equation*}
\left|M_{11}\right| \geq \max \left\{s_{1} s_{2}^{\prime}, s_{1}^{\prime} s_{2}, s_{1}^{\prime} s_{3}\right\} \tag{38}
\end{equation*}
$$

If $s_{2}^{\prime} \geq 3$, then

$$
\left|M_{11}\right| \geq 3 s_{1} \geq \frac{1}{2}\left(s_{1}+s_{2}+s_{3}+s_{1}^{\prime}+s_{2}^{\prime}+s_{3}^{\prime}\right)>\frac{1}{2}(\operatorname{tr}(A)+\operatorname{tr}(B))
$$

If $s_{2}^{\prime}=2$, then $s_{3}^{\prime} \leq 2$ and

$$
\left|M_{11}\right| \geq 2 s_{1} \geq \frac{1}{2}\left(s_{1}+s_{2}+s_{3}+s_{1}^{\prime}+s_{2}^{\prime}+s_{3}^{\prime}-4\right)=\frac{1}{2}(\operatorname{tr}(A)+\operatorname{tr}(B)) .
$$

Therefore we assume that $s_{2}^{\prime}=s_{3}^{\prime}=1$. In particular, we may also assume that $s_{2} \geq s_{3}$. Since $s_{1}^{\prime} \geq 2$ and $s_{2} \geq 1$ we have $s_{1}^{\prime} s_{2} \geq s_{1}^{\prime}+2 s_{2}-2$. Therefore,

$$
\begin{aligned}
\left|M_{11}\right| & \geq \max \left\{s_{1}, s_{1}^{\prime} s_{2}\right\} \\
& \geq \frac{1}{2}\left(s_{1}+s_{2}+s_{3}+s_{1}^{\prime}-2\right) \\
& =\frac{1}{2}(\operatorname{tr}(A)+\operatorname{tr}(B)),
\end{aligned}
$$

and we conclude (31) in Case 3, as well.

6 Proof of Theorem 10

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$. Naturally, $[A+A]$ has a triangulation $\{F+F: F \in$ $\left.T_{A}\right\}$, which we subdivide in order to obtain M. We define M to be the collection of the sums of the form

$$
\left[a_{i_{0}}, \ldots, a_{i_{m}}\right]+\left[a_{i_{m}}, \ldots, a_{i_{k}}\right]
$$

where $k \geq 0,0 \leq m \leq k, i_{j}<i_{l}$ for $j<l$, and $\left[a_{i_{0}}, \ldots, a_{i_{k}}\right] \in T_{A}$.
To show that we obtain a cell decomposition, let

$$
F=\left[a_{i_{0}}, \ldots, a_{i_{k}}\right] \in T_{A}
$$

be a k-simplex with $k>0$ where $i_{j}<i_{l}$ for $j<l$, and hence

$$
F+F=\left\{\sum_{i=0}^{k} \alpha_{j} a_{i_{j}}: \sum_{i=0}^{k} \alpha_{j}=2 \& \forall \alpha_{j} \geq 0\right\}
$$

We write relint C to denote the relative interior of a compact convex set C. For some $0 \leq m \leq k, \alpha_{0}, \ldots, \alpha_{k} \geq 0$ with $\sum_{i=0}^{k} \alpha_{j}=2$, we have

$$
\sum_{i=0}^{k} \alpha_{j} a_{i_{j}} \in \operatorname{relint}\left(\left[a_{i_{0}}, \ldots, a_{i_{m}}\right]+\left[a_{i_{m}}, \ldots, a_{i_{k}}\right]\right) \subset F+F
$$

if and only if $\sum_{j<m} \alpha_{j}<1$ and $\sum_{i=0}^{m} \alpha_{j}>1$ where we set $\sum_{j<0} \alpha_{j}=0$. We conclude that M forms a cell decomposition of $[A+A]$.

For any d-simplex $F \in T_{A}$, and for any $m=0, \ldots, d$, we have constructed one d-cell of M that is the sum of an m-simplex and a $(d-m)$-simplex. Therefore

$$
\|M\|=\left|T_{A}\right| \sum_{m=0}^{d}\binom{d}{m}=2^{d}\left|T_{A}\right| .
$$

7 Proof of Corollary 3

In this section, let $A \subset \mathbb{R}^{2}$ be finite and not contained in a line. We prove four auxiliary statements about A. The first is an application of the case $A=B$ of Conjecture 1 (see Theorem 2).

Lemma 23

$$
|A+A| \geq 4|A|-\Delta_{A}-3 .
$$

Proof: We have readily $\Delta_{A+A} \geq 2 \Delta_{A}$. Thus (4) and Theorem 2 yield

$$
|A+A|=\frac{1}{2}\left(\operatorname{tr}(A+A)+\Delta_{A+A}+2\right) \geq 2 \operatorname{tr}(A)+\Delta_{A}+1=4|A|-\Delta_{A}-3 .
$$

We note that the estimate of Lemma 23 is optimal, the configuration of Theorem 2 (b) being an extremal set.

Next we provide the well-known elementary estimate for $|A+A|$ only in terms of boundary points.

Lemma 24 Let m_{A} denote the maximal number of points of A contained in a side of $[A]$. We have,

$$
|A+A| \geq \frac{\Delta_{A}^{2}}{4}-\frac{\Delta_{A}\left(m_{A}-1\right)}{2}
$$

Proof: We choose a line l not parallel to any side of $[A]$, that we may assume to be a vertical line, and denote by s_{1}, \ldots, s_{k} the sides of $[A]$ on the upper chain of $[A]$ in left to right order. Let A_{i} be the set obtained from $A \cap s_{i}$ by removing its rightmost point. We may assume that

$$
\left|A_{1}\right|+\cdots+\left|A_{k}\right| \geq \frac{\Delta_{A}}{2}
$$

We observe that, for $1 \leq i<j \leq k$, we have

$$
\left|A_{i}+A_{j}\right|=\left|A_{i}\right| \cdot\left|A_{j}\right| \text { and }\left(A_{i}+A_{j}\right) \cap\left(A_{i^{\prime}}+A_{j^{\prime}}\right)=\emptyset \text { if }\{i, j\} \neq\left\{i^{\prime}, j^{\prime}\right\} .
$$

It follows that

$$
\begin{aligned}
|A+A| & \geq \sum_{1 \leq i<j \leq k}\left|A_{i}+A_{j}\right|=\sum_{1 \leq i<j \leq k}\left|A_{i}\right| \cdot\left|A_{j}\right|=\left(\sum_{i=1}^{k}\left|A_{i}\right|\right)^{2}-\sum_{i=1}^{k}\left|A_{i}\right|^{2} \\
& \geq\left(\frac{\Delta_{A}}{2}\right)^{2}-\left(m_{A}-1\right) \frac{\Delta_{A}}{2} .
\end{aligned}
$$

The following Lemma can be found in Freiman [4].
Lemma 25 Let ℓ be a line intersecting $[A]$ in m points of A. If A is covered by exactly s lines parallel to ℓ, then

$$
\begin{equation*}
|A+A| \geq 2|A|+(s-1) m-s \tag{39}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
|A+A| \geq\left(4-\frac{2}{s}\right)|A|-(2 s-1) \tag{40}
\end{equation*}
$$

Proof: We may assume that ℓ is the vertical line through the origin, that a_{1}, \ldots, a_{s} are s points of A ordered left to right such that $A=\cup_{i=1}^{s}\left(A \cap\left(\ell+a_{i}\right)\right)$ and that $\left|A \cap\left(\ell+a_{1}\right)\right|=m$. Let $A_{i}=A \cap\left(a_{i}+\ell\right)$. Then,

$$
\begin{aligned}
|A+A| & =\left|A_{1}+A\right|+\left|\left(A \backslash A_{1}\right)+A_{s}\right| \\
& \geq \sum_{i=1}^{s}\left(\left|A_{1}\right|+\left|A_{i}\right|-1\right)+\sum_{i=2}^{s}\left(\left|A_{i}\right|+\left|A_{s}\right|-1\right) \\
& =2|A|+(s-1)\left(\left|A_{1}\right|+\left|A_{s}\right|\right)-(2 s-1),
\end{aligned}
$$

from which (39) follows. On the other hand,

$$
\begin{aligned}
|A+A| & =\sum_{i=1}^{s}\left|2 A_{i}\right|+\sum_{i=1}^{s-1}\left|A_{i}+A_{i+1}\right| \\
& \geq \sum_{i=1}^{s}\left(2\left|A_{i}\right|-1\right)+\sum_{=1}^{s-1}\left(\left|A_{i}\right|+\left|A_{i+1}\right|-1\right) \\
& =4|A|-\left(\left|A_{1}\right|+\left|A_{s}\right|\right)-(2 s-1) .
\end{aligned}
$$

If the latter estimate is larger than the former one we obtain (40), otherwise we get the stronger inequality $|A+A| \geq\left(4-2 / s^{2}\right)|A|-(2 s-1)$.

Proof of Corollary 3 Let $|A+A| \leq(4-\varepsilon)|A|$ where $\varepsilon \in(0,1)$ and $\varepsilon^{2}|A| \geq 48$. To simply formulae, we set $\Delta=\Delta_{A}$ and $m=m_{A}$.

We deduce from Lemma 23 that $\Delta \geq \varepsilon|A|-3$. Substituting this into Lemma 24 yields

$$
\begin{aligned}
(4-\varepsilon)|A| & \geq \frac{\Delta^{2}}{4}-\frac{\Delta(m-1)}{2} \geq \frac{\Delta(\varepsilon|A|-3)}{4}-\frac{\Delta(m-1)}{2} \\
& =\frac{\Delta}{2} \cdot\left(\frac{1}{2} \varepsilon|A|-m-\frac{1}{2}\right) \geq \frac{\varepsilon|A|-3}{2} \cdot\left(\frac{1}{2} \varepsilon|A|-m-\frac{1}{2}\right) .
\end{aligned}
$$

Therefore

$$
\frac{1}{2} \varepsilon|A|-(m-1) \leq \frac{8}{\varepsilon}\left(1-\frac{\varepsilon}{4}\right)\left(1+\frac{3}{\varepsilon|A|-3}\right)+\frac{3}{2}<\frac{12}{\varepsilon},
$$

as $\varepsilon|A|-3 \geq \frac{48}{\varepsilon}-3>\frac{12}{\varepsilon}$. In particular, $m-1>\frac{1}{2} \varepsilon|A|-\frac{12}{\varepsilon}$.
Next let l be the line determined by a side of $[A]$ containing $m=m_{A}$ points of A, and let s be the number of lines parallel to l intersecting A. According to (39),

$$
(4-\varepsilon)|A| \geq 2|A|+(s-1)(m-1)-1>2|A|+(s-1)\left(\frac{1}{2} \varepsilon|A|-\frac{12}{\varepsilon}\right)-1,
$$

thus first rearranging, and then applying $\varepsilon^{2}|A| \geq 48$ yield

$$
2|A|>s \cdot\left(\frac{1}{2} \varepsilon|A|-\frac{12}{\varepsilon}\right) \geq s \cdot \frac{1}{4} \varepsilon|A| .
$$

Therefore $s<\frac{8}{\varepsilon}$.
We deduce from (40) and $s<\frac{8}{\varepsilon}$ that

$$
(4-\varepsilon)|A|>\left(4-\frac{2}{s}\right)|A|-2 s>\left(4-\frac{2}{s}\right)|A|-\frac{16}{\varepsilon} .
$$

Rearranging, and then applying $\varepsilon^{2}|A| \geq 48$ imply

$$
s<\frac{2}{\varepsilon}\left(1-\frac{16}{\varepsilon^{2}|A|}\right)^{-1}<\frac{2}{\varepsilon}\left(1+\frac{32}{\varepsilon^{2}|A|}\right) .
$$

8 Proof of Proposition 6

We call the points of A,

$$
a_{0}=(0,0), \quad a_{1}=(-1,-2), \quad a_{2}=(2,1) .
$$

If $k \geq 2$, then we show that every mixed subdivision M corresponding to T_{A} and T_{B} satisfies

$$
\begin{equation*}
\left|M_{11}\right| \leq 24 \tag{41}
\end{equation*}
$$

We prove (41) in several steps. First we verify

$$
\begin{array}{lll}
{\left[a_{1}, a_{2}\right]+l_{i}} & \text { is not an edge of } M & \text { for } i=0, \ldots, k \\
{\left[a_{1}, a_{2}\right]+r_{i}} & \text { is not an edge of } M & \text { for } i=0, \ldots, k-1 \tag{43}
\end{array}
$$

For (42), we observe that $a_{1}+l_{i+1}$ if $i \leq k-1$ or $a_{1}+l_{i-1}$ if $i \geq 1$ is a point of $A+B$ in $\left[a_{1}, a_{2}\right]+l_{i}$ different from the endpoints. Similarly, for (43), we observe that $a_{1}+r_{i+1}$ if $i \leq k-2$ or $a_{1}+r_{i-1}$ if $i \geq 1$ is a point of $A+B$ in $\left[a_{1}, a_{2}\right]+r_{i}$ different from the endpoints.

Next, we have

$$
\begin{array}{rll}
{\left[a_{0}, a_{2}\right]+\left[l_{i}, r_{i}\right]} & \text { is not a parallelogram of } M & \text { for } i=0, \ldots, k-1,(44) \tag{44}\\
{\left[a_{0}, a_{1}\right]+\left[r_{i}, l_{i+1}\right]} & \text { is not a parallelogram of } M & \text { for } i=0, \ldots, k-1,(45)
\end{array}
$$

as $l_{i+1} \in \operatorname{int}\left[a_{0}, a_{2}\right]+\left[l_{i}, r_{i}\right]$ and $l_{i} \in \operatorname{int}\left[a_{0}, a_{1}\right]+\left[r_{i}, l_{i+1}\right]$.
Let us call the edges of T_{B} of the form either $\left[l_{i}, r_{i}\right]$ or $\left[r_{i}, l_{i+1}\right]$ for $i=$ $0, \ldots, k-1$ small edges, and the edges of T_{B} of the form either $\left[p, l_{i}\right],\left[q, l_{i}\right]$ for $i=0, \ldots, k$, or $\left[p, r_{i}\right],\left[q, r_{i}\right]$ for $i=0, \ldots, k-1$ long edges. In other words, long edges of T_{B} contain either p or q, while small edges of T_{B} contain neither.

Concerning long edges, we prove that that the number of parallelograms of M of the form

$$
\begin{equation*}
e_{A}+e_{B} \text { for an edge } e_{A} \text { of } T_{A} \text { and a long edge } e_{B} \text { of } T_{B} \text { is at most } 12 . \tag{46}
\end{equation*}
$$

If e_{A} is an edge of T_{A}, then there exist at most two cells of M whose sides are $p+e_{A}$. Since T_{A} has three edges, there are at most six of parallelograms of M of the form $e_{A}+e_{B}$ where e_{A} is an edge of T_{A} and e_{B} is an edge of T_{B} with $p \in e_{B}$. Since the same estimate holds if $q \in e_{B}$, we conclude (46).

Finally, we prove that that the number of parallelograms of M of the form

$$
\begin{equation*}
e_{A}+e_{B} \text { for an edge } e_{A} \text { of } T_{A} \text { and a small edge } e_{B} \text { of } T_{B} \text { is at most } 12 . \tag{47}
\end{equation*}
$$

The argument for (47) is based on the claim that if $e_{A}+e_{B}$ is a parallelogram of M for an edge e_{A} of T_{A} and a small edge e_{B} of T_{B}, then there is a long edge e_{B}^{\prime} of T_{B} such that

$$
\begin{equation*}
e_{A}+e_{B}^{\prime} \text { is a neighboring parallelogram of } M . \tag{48}
\end{equation*}
$$

We have $e_{A} \neq\left[a_{1}, a_{2}\right]$ according to (42) and (43). If $e_{A}=\left[a_{0}, a_{1}\right]$, then $e_{B}=\left[l_{i}, r_{i}\right]$ for some $i \in\{1, \ldots, k-1\}$ according to (45). Now $r_{i}+e_{A}$ intersects the interior of $[A+B]$ as $r_{i} \in \operatorname{int}[A]$, thus it is the edge of another cell of M, as well. This other cell is either a translate of $[A]$, which is impossible by (42), (43), and as $r_{i} \notin p+[A], q+[A]$, or of the form $e_{A}+e_{B}^{\prime}$ for an edge $e_{B}^{\prime} \neq e_{B}$ of T_{B} containing r_{i}. However, $e_{B}^{\prime} \neq\left[r_{i}, l_{i+1}\right]$ by (45), therefore e_{B}^{\prime} is a long edge.

On the other hand, if $e_{A}=\left[a_{0}, a_{2}\right]$, then $e_{B}=\left[r_{i}, l_{i+1}\right]$ for some $i \in$ $\{1, \ldots, k-1\}$ according to (44), and (48) follows as above.

Now if $e_{A}+e_{B}^{\prime}$ is a parallelogram of M for an edge e_{A} of T_{A} and a long edge e_{B}^{\prime} of T_{B}, then there is at most one neighboring paralellogram of the form $e_{A}+e_{B}$ for a small edge e_{B} of T_{B} because $e_{A}+e_{B}$ does not intersect $e_{A}+p$ and $e_{A}+q$. In turn, (47) follows from (46) and (48). Moreover, we conclude (41) from (46) and (47).

Finally, it follows from (41) that if $k \geq 145$, then

$$
\left|M_{11}\right| \leq 24<\sqrt{4 k}=\sqrt{\left|T_{A}\right| \cdot\left|T_{B}\right|}
$$

References

[1] B. Bollobás, I. Leader. Compressions and isoperimetric inequalities. J. Comb. Theory A, 56 (1991), 47-62.
[2] K.J. Böröczky, B. Hoffman. A note on triangulations of sum sets. Involve, a Journal of Mathematics, 8 (2015), 75-85.
[3] J.A. De Loera, J. Rambau, F. Santos. Triangulations. Structures for Algorithms and Applications. Springer, 2010.
[4] G.A. Freiman. Foundations of a structural theory of set addition. Translations of Mathematical Monographs, Vol 37. American Mathematical Society, Providence, R. I., 1973.
[5] R. J. Gardner, P. Gronchi. A Brunn-Minkowski inequality for the integer lattice. Trans. Amer. Math. Soc., 353 (2001), 3995-4024.
[6] B. Green, T. Tao. Compressions, convex geometry and the Freiman-Bilu theorem. Q. J. Math. 57 (2006), 495-504.
[7] D. Grynkiewicz, O. Serra. Properties of two-dimensional sets with small sumset. J. Combin. Theory Ser. A, 117 (2010), 164-188.
[8] M.A. Hernández Cifre, D. Iglesias and J. Yepes Nicolás. On a discrete Brunn-Minkowski type inequality. SIAM J. of Discrete Mathematics, 32 (2018), 1840-1856.
[9] M. Huicochea. Sums of finite subsets in \mathbb{R}^{d}. Electronic Notes in Discrete Mathematics, 68 (2018), 65-69.
[10] J.H.B. Kemperman. On complexes in a semigroup. Nederl. Akad. Wetensch. Proc. Ser. A. 59, Indag. Math., 18 (1956), 247-254.
[11] B. González Merino, M. Henze. A generalization of the discrete version of Minkowski's fundamental theorem, Mathematika, 62 (2016), 637-652.
[12] T. Tao, V. Vu. Additive combinatorics, Cambridge University Press, 2006.
[13] G.M. Ziegler. Lectures on Polytopes. Springer. 1995.

[^0]: *Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reltanoda u. 13-15, H-1053 Budapest, Hungary, and Department of Mathematics, Central European University, Nador u 9, H-1051, Budapest, Hungary, E-mail: boroczky.karoly.j@renyi.mta.hu, supported by NKFIH grants 116451, 121649 and 129630
 ${ }^{\dagger}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reltanoda u. 13-15, H-1053 Budapest, Hungary, E-mail: matolcsi.mate@renyi.mta.hu, and Technical University of Budapest, Egry J. u. 1., H-1111 Budapest, supported by NKFIH grant 109789
 ${ }^{\ddagger}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reltanoda u. 13-15, H-1053 Budapest, Hungary, E-mail: ruzsa@renyi .hu, supported by NKFIH grant 109789
 ${ }^{\S}$ Depto. de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39012 Santander, SPAIN. E-mail: francisco.santos@unican.es. Supported by grant MTM2017-83750-P of the Spanish Ministry of Science and grant EVF-2015-230 of the Einstein Foundation Berlin
 ${ }^{\top}$ Department of Mathematics, Universitat Politècnica de Catalunya, and Barcelona Graduate School of Mathematics, Barcelona, Spain. E-mail: oriol.serra@upc.edu. supported by grants MTM2017-82166-P and MDM-2014-0445 of the Spanish Ministry of Science

