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Abstract

For a set A of points in the plane, not all collinear, we denote
by tr(A) the number of triangles in a triangulation of A, that is,
tr(A) = 2i + b − 2, where b and i are the numbers of boundary and
interior points of the convex hull [A] of A respectively. We conjecture
the following discrete analog of the Brunn–Minkowski inequality: for
any two finite point sets A,B ⊂ R2 one has

tr(A+B) ≥ tr(A)1/2 + tr(B)1/2.

We prove this conjecture in the cases where [A] = [B], B = A ∪ {b},
|B| = 3 and if A and B have no interior points. A generalization to
larger dimensions is also discussed.
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1 Introduction

In this paper we write A,B to denote finite subsets of Rd, and | · | stands for
their cardinality. We say that A ⊂ Rd is d–dimensional if it is not contained
in any affine hyperplane of Rd. Equivalently, the real affine span of A is
Rd. For subsets X1, . . . , Xk of Rd, [X1, . . . , Xk] denotes their convex hull.
Here and in what follows we denote A + B := {a + b : a ∈ A, b ∈ B} and
A − B := A + (−B). The lattice generated by A is the additive subgroup
Λ = Λ(A) ⊂ Rd generated by A − A = {x − y : x, y ∈ A}, and A is called
saturated if it satisfies A = [A] ∩ Λ(A).

Our starting point are two classical results. The first one is from the
1950’s, due to Kemperman [10], and popularized by Freiman [4]: if A and B
are finite nonempty subsets of R, then

|A+B| ≥ |A|+ |B| − 1, (1)

with equality if and only if A and B are arithmetic progressions of the same
difference. The other result, the Brunn-Minkowski inequality, dates back to
the 19th century. It says that if X, Y ⊂ Rd are compact nonempty sets then

λ(X + Y )
1
d ≥ λ(X)

1
d + λ(Y )

1
d

where λ stands for the Lebesgue measure. Moreover, provided that λ(X)λ(Y ) >
0, equality holds if and only if X and Y are convex homothetic sets.

Various discrete analogues of the Brunn-Minkowski inequality have been
established in Bollobás, Leader [1], Gardner, Gronchi [5], Green, Tao [6],
González-Merino, Henze [11], Hernández, Iglesias and Yepes [8], Huicochea
[9] in any dimension, and Grynkiewicz, Serra [7] in the planar case. Most of
these papers use the method of compression, which changes a finite set into a
set better suited for sumset estimates, but does not control the convex hull.

Unfortunately the known analogues are not as simple in their form as
the original Brunn–Minkowski inequality. For instance, a formula due to
Gardner and Gronchi [5] says that, if A is d–dimensional, then

|A+B| ≥ (d!)−
1
d (|A| − d)

1
d + |B|

1
d . (2)

Concerning the case A = B, Freiman [4] proved that, if the dimension of
A is d, then

|A+ A| ≥ (d+ 1)|A| −
(
d+ 1

2

)
. (3)

Both estimates are optimal. In particular, we can not expect a true dis-
crete analogue of the Brunn–Minkowski inequality if the notion of volume is
replaced by cardinality.
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We here conjecture and discuss a more direct version of the Brunn–
Minkowski inequality where the notion of volume is replaced by the number
of full dimensional simplices in a triangulation of the convex hull of the finite
set.

For any finite d–dimensional set A ⊂ Rd we write TA to denote some
triangulation of A, by which we mean a triangulation of [A] with set of
vertices equal to A. We denote |TA| the number of d-dimensional simplices
in TA.

In dimension two the number |TA| is the same for all triangulations of A,
so we denote it tr(A). More precisely, if ∆A and ΩA denote the number of
points of A in the boundary ∂[A] and in the interior int[A], respectively, then
it is easy (see, e.g., [3, Lemma 3.1.3]) to show that

tr(A) = ∆A + 2ΩA − 2 = 2|A| −∆A − 2. (4)

Therefore around 2005, Matolcsi and Ruzsa conjectured in dimension two the
following discrete analogue of the Brunn–Minkowski inequality (see Böröczky,
Hoffman [2]).

Conjecture 1 If finite A,B ⊂ R2 in the plane are not collinear, then

tr(A+B)
1
2 ≥ tr(A)

1
2 + tr(B)

1
2 .

One case where Conjecture 1 holds with equality is when A and B are
homothetic saturated sets with respect to the same lattice; that is, A = Λ ∩
k ·P and B = Λ∩m ·P for a lattice Λ, polygon P and integers k,m ≥ 1. This
follows from the original Brunn-Minkowski equality as follows: for saturated
sets tr(A) = 2 area([A])/ det Λ, because every triangle in a triangulation is a
fundamental lattice triangle, of area 1

2
det Λ. On the other hand, A + B =

Λ ∩ (k + m) · P and tr(S) ≤ 2 area([S])/ det Λ for every subset S ⊂ Λ, such
as S = A+B.

Concerning ∆A and ∆B in (4), we observe that any side of [A+B] is of the
form e+f where e and f is a side or a vertex of [A] and [B], respectively, with
the same exterior unit normal, and |(e+ f)∩ (A+B)| ≥ |e∩A|+ |f ∩B|− 1
by (1). This implies that

∆A+B ≥ ∆A + ∆B. (5)

We also note that Conjecture 1, together with the equality (4) and (5), would
imply the following inequality of Gardner and Gronchi [5, Theorem 7.2] for
sets A and B saturated with respect to the same lattice:

|A+B| ≥ |A|+ |B|+ (2|A| −∆A − 2)1/2(2|B| −∆B − 2)1/2 − 1.
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Figure 1: An illustration of case (b) in Theorem 2.

Unfortunately we have not been able to prove Conjecture 1 in full gen-
erality. Our main results are the following four cases of it: if [A] = [B]
(Theorem 2), in which case we also determine the conditions for equality
in Conjecture 1; if A and B differ by one element (Theorem 4); if either
|A| = 3 or |B| = 3 (Theorem 7); and if none of A and B have interior points
(Theorem 8). Actually, the last two theorems satisfy a stronger conjecture
(Conjecture 5) discussed below.

We start with the case [A] = [B], which naturally include the case A = B.

Theorem 2 Let A,B ⊂ R2 be finite two dimensional sets. If [A] = [B] then
Conjecture 1 holds. Moreover equality holds if and only if A = B, and

(a) either A is a saturated set, or

(b) A = {z1, . . . , zk} for k ≥ 4, where z1, . . . , zk−3 ∈ int[zk−2, zk−1, zk], and
z1, . . . , zk−2 are collinear and equally spaced in this order (see Figure 1).

Let us mention that Theorem 2 (in fact, its particular case A = B) gives
a simple proof of the following structure theorem of Freiman [4] for a planar
set with small doubling. We recall that according to (3), if finite A ⊂ Rd is
two dimensional, then |A + A| ≥ 3|A| − 3 and, if the dimension of A is at
least 3, then |A+ A| ≥ 4|A| − 6.

Corollary 3 (Freiman) Let A ⊂ R2 be a finite two dimensional set and
ε ∈ (0, 1). If |A| ≥ 48/ε2 and

|A+ A| ≤ (4− ε)|A|,
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then there exists a line l such that A is covered by at most

2

ε
·
(

1 +
32

|A|ε2

)
lines parallel to l.

We note that, for A the grid {1, . . . , k} × {1, . . . , k2} and large k,

|A+ A| ≤ (4− ε) |A|, (6)

with ε = εk = 2
k

and A can not be covered by less than k parallel lines.
Therefore the constant 2 in the numerator of 2

ε
is asymptotically optimal in

Corollary 3.
The next case we address is when A and B differ by one element.

Theorem 4 Let A ⊂ R2 be a finite two dimensional set. If B = A∪ {b} for
some b 6∈ A then Conjecture 1 holds.

For our next results we need the notion of mixed subdivision (see De Loera,
Rambau, Santos [3] for details). For finite d–dimensional sets A,B ⊂ Rd and
triangulations TA and TB corresponding to A and B, we call a polytopal
subdivision M of [A+B] a mixed subdivision corresponding to TA and TB if

(i) every k-cell of M is of the form F +G where F is an i-simplex of TA and
G is a j-simplex of TB with i + j = k; in particular, all vertices of M
are in A+B;

(ii) for any d-simplices F of TA and G of TB, there is a unique b ∈ B and a
unique a ∈ A such that F + b ∈M and a+G ∈M .

In dimension two, every mixed subdivision consists of |TA| + |TB| trian-
gles, translated from those of TA and TB, together with a certain number of
parallelograms that we denote M11. Since we can triangulate each parallel-
ogram into two triangles, the following is stronger than Conjecture 1, and
offers a geometric and algorithmic approach to prove Conjecture 1.

Conjecture 5 For every finite two dimensional sets A,B ⊂ R2 there exist
triangulations TA and TB of [A] and [B] using A and B, respectively, as the
set of vertices, and a corresponding mixed subdivision M of [A+B] such that

|M11| ≥
√
|TA| · |TB|. (7)

The following example shows that one cannot a priori fix any of the
triangulations TA and TB in Conjecture 5:
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Figure 2: An illustration of the example described in Proposition 6.

Proposition 6 Let

A = {(0, 0), (−1,−2), (2, 1)}.

For k ≥ 145, let
B = {p, q, l0, . . . , lk, r0, . . . , rk−1},

where p = (−1, k + 1), q = (k + 1,−1), li = (i, i) for i = 0, . . . , k and
ri = (i, i+ 1) for i = 0, . . . , k − 1.

Let TB be the triangulation of B consisting of the triangles

[p, li, ri], [q, li, ri], i = 0, . . . , k − 1 and [p, li, ri−1], [q, li, ri−1], i = 1, . . . , k.

Then, no mixed subdivision of A + B corresponding to TB and any triangu-
lation TA of A satisfies (7) for d = 2.

Now Conjecture 5 is verified if either A or B has only three elements.

Theorem 7 If |B| = 3, then Conjecture 5 holds for any finite two dimen-
sional set A ⊂ R2.

Remark It follows that if B is the sum of sets of cardinality three, then
Conjecture 1 holds for any finite two dimensional set A ⊂ R2. For example,
if m ≥ 1 is an integer, and B = {(t, s) ∈ Z2 : t, s ≥ 0 and t + s ≤ m}, or
B = {(t, s) ∈ Z2 : |t|, |s| ≤ m and |t+ s| ≤ m}.

Conjecture 1 was verified by Böröczky, Hoffman [2] if A and B are in
convex position; that is, if A ⊂ ∂[A] and B ⊂ ∂[B]. Here we even verify
Conjecture 5 under these conditions.
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Theorem 8 Let A,B ⊂ R2 be finite two dimensional sets. If A ⊂ ∂[A] and
B ⊂ ∂[B] then Conjecture 5 holds.

Part of the reason why we could not verify Conjecture 1 in general is
that, except for Theorem 7, our arguments actually prove the inequality
tr(A+B) ≥ 2(tr(A)+tr(B)), which is stronger than Conjecture 1, but which
does not hold for all pairs with A ⊂ B. For example, if A are the lattice points
with nonnegative coordinates and with the sum of coordinates at most k, and
B is the same with sum of coordinates at most l, we have tr(A+B) = (k+l)2,
tr(A) = k2 and tr(B) = l2. So we have tr(A+B) < 2(tr(A) + tr(B)) if k 6= l.

We now turn to higher dimensions. The first difference is that we can
no longer define tr(A) for a point configuration, since different triangulations
of A have different numbers of d-simplices (see Example 11 below). Still,
there is the following analogue of Conjecture 5. For a mixed subdivision M
corresponding to triangulations TA and TB of A and B, let us denote by ‖M‖
the weighted number of d-polytopes in M , where F +G has weight

(
i+j
i

)
if F

is an i-simplex of TA, and G is a j-simplex of TB with i+ j = d. The reason
for these weights is that every triangulation (without additional vertices) of
such an F +G has exactly

(
i+j
i

)
d-simplices (see e.g. [3, Proposition 6.2.11]).

Thus, ||M || is the number of d-simplices of any triangulation of A + B that
refines M without additional vertices.

Hence, we may ask for which triangulations TA and TB there exists a
corresponding mixed subdivision M for [A+B] such that

‖M‖
1
d ≥ |TA|

1
d + |TB|

1
d . (8)

Question 9 Is it true that for every finite sets A,B ⊂ Rd there are trian-
gulations TA and TB and a corresponding mixed subdivision M of [A + B]
satisfying (8)?

It is easy to show that the answer is positive if A = B:

Theorem 10 For a finite d–dimensional set A ⊂ Rd and for any triangu-
lation TA of [A] using A as the set of vertices there exists a corresponding
mixed subdivision M of [A+ A] such that

‖M‖ = 2d|TA|.

Therefore in certain cases, mixed subdivisions point to a higher dimen-
sional generalization of Conjecture 1. This is specially welcome knowing that,
if d ≥ 3, then the order of the number of d-simplices in a triangulation of
the convex hull of a finite A ⊂ Rd spanning Rd might be as low as |A|d and
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as high as Θ(|A|dd/2e) for the same A, as the following example shows. In
particular, one can not assign the number of d-simplices as a natural notion
of discrete volume if d ≥ 3.

Example 11 Let A be any set of n points in general position in Rd (that is,
no d+ 1 in any affine hyperplane) and such that [A] is a simplex. Any such
A has triangulations of size 1+d(n−d−1) via the following construction: in
a first step, consider [A] as the single d-simplex in your triangulation. Then,
one by one add the n−d−1 interior points to the triangulation as follows: at
each step you stellarly subdivide the simplex containing the new point into
d + 1 simplices, all having the new point as a common vertex. At the end,
as claimed, we have a triangulation of A of size 1 + d(n− d− 1).

If, moreover, the n − d − 1 interior points of A are the vertices of a
cyclic polytope, then you can also triangulate A with size Θ(ndd/2e) (and
this is optimal by [3, Corollary 6.1.20]): triangulate first the cyclic polytope
with size Θ(ndd/2e) and then add one by one the d + 1 outer points, at each
step conning the new point to the part of the boundary of the previous
triangulation that is visible from that point.

2 Proof of Theorem 2

We will actually prove that

tr(A+B) ≥ 2tr(A) + 2tr(B), (9)

a stronger inequality than Conjecture 1.
For a finite two dimensional set X ⊂ R2, we define

fX(z) =

{
1 if z ∈ ∂[X]

2 if z ∈ int [X]
,

thus (4) yields that

tr(X) =

(∑
z∈X

fX(z)

)
− 2. (10)

Lemma 12 Let A,B ⊂ R2 satisfy [A] = [B]. Then inequality (9) holds.
Moreover, equality in (9) yields A = B.

Proof: Let T be a triangulation of [A] = [B] such that the set of vertices
is A ∩ B. One nice thing about inequality (9) is that, since it is linear, it is
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additive over the triangles of T . Therefore, it suffices to show that, for each
triangle t of T , if At = A ∩ t and Bt = B ∩ t, then

tr(At +Bt) ≥ 2tr(At) + 2tr(Bt), (11)

and that equality in (11) implies that At = Bt consists of the three vertices
of t alone. According to (10), inequality (11) is equivalent to

∑
p∈At+Bt

fAt+Bt(p) ≥ 2

(∑
p∈At

fAt(p)

)
+ 2

(∑
p∈Bt

fBt(p)

)
− 6. (12)

Let At ∩ Bt = {v1, v2, v3} be the three vertices of the triangle t = [At] =
[Bt]. We claim that if i, j ∈ {1, 2, 3}, p ∈ (At∪Bt)\{v1, v2, v3} and q ∈ At∪Bt,
then

vi + p = vj + q yields vi = vj and p = q. (13)

We may assume that vi is the origin and, to get a contradiction, vi 6= vj.
Then the line l passing through vj and parallel to the side of t opposite to vj
separates t and vj + t, and intersects t only in vj 6= p. Since vj + q ∈ vj + t,
we get the desired contradiction.

It follows from (13) that the six points vi + vj, 1 ≤ i ≤ j ≤ 3, and the
points of the form vi + p, i = 1, 2, 3 and p ∈ (At ∪ Bt)\{v1, v2, v3} are all
different. Since the six points vi + vj, 1 ≤ i ≤ j ≤ 3, belong to ∂(At + Bt),
we have

∑
i,j=1,2,3

fAt+Bt(vi + vj) =

(
3∑

i=1

fAt(vi)

)
+

(
3∑

j=1

fBt(vj)

)
= 6. (14)

On the other hand, we claim that, if p ∈ At\{v1, v2, v3} and q ∈ Bt\{v1, v2, v3},
then ∑3

j=1 fAt+Bt(p+ vj) > 2fAt(p)∑3
i=1 fAt+Bt(vi + q) > 2fBt(q).

(15)

Indeed, if p ∈ ∂[At], then the inequality readily holds, and if p ∈ int [At],
then p+ vj ∈ int [At +Bt] for j = 1, 2, 3, as well, yielding (15).

By combining (14) and (15) we get (12) and in turn (9). Moreover, (15)
shows that if equality holds in (11) for a triangle t of T , then At = Bt, and,
therefore, if equality holds in (9), then A = B. 2

For a finite two dimensional set A ⊂ R2 and a triangulation T of A we
denote by AT the union of A and the set of midpoints of the edges of T (see
Figure 3).
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Figure 3: A triangulation and its midpoints.

Lemma 13 Let A ⊂ R2 be a finite two-dimensional set. Then the equality

tr(A+ A) = 4 · tr(A)

holds if, and only if, for every triangulation T of [A], we have AT = 1
2
(A+A).

Proof: Divide each triangle t of T into four triangles using the vertices of t
and the midpoints of the sides of t. This way we have obtained a triangulation
of [A] = [AT ] using AT as the vertex set. Therefore

tr(A+ A) = tr(1
2
(A+ A)) ≥ tr(AT ) = 4 · tr(A).

Moreover, there is equality if and only if AT = 1
2
(A+ A). 2

We observe that the equation in Lemma 13 is equivalent to Conjecture 1
for the case A = B. Therefore all we have left to prove is that tr(A + A) =
4 · tr(A) if and only if A is of the form either (a) or (b) in Theorem 2. The
if part is simple.

Lemma 14 Suppose that either (a) or (b) in Theorem 2 hold for the finite
set A. Then

AT =
1

2
(A+ A).

Proof: Suppose first that we have property (b). Then there is a unique
triangulation T of [A] using A as vertex set. For 1 ≤ i < j ≤ k, [zi, zj] is an
edge of T , unless j ≤ k − 2, an hence we have AT = 1

2
(A+ A).
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So, for the rest of the proof we assume (a): A = [A] ∩ Λ for a lattice Λ.
For a triangulation T corresponding to A, readily the midpoints of sides of
triangles of T are in 1

2
(A + A). On the other hand, let m ∈ 1

2
(A + A), and

let t be a triangle of T containing m. We may assume that the origin o is a
vertex of t, and hence the other two vertices p and q form a basis of Λ. Since
m ∈ 1

2
(Λ + Λ), both of its coordinates in the basis p and q are integers or

half of integers, thus m is either a vertex of t, or the midpoint of a side of t.
Therefore m ∈ AT . 2

The next Lemma shows the reverse direction and concludes the proof of
Theorem 2.

Lemma 15 Let A ⊂ R2 be a finite two dimensional set. If every triangula-
tion T of A satisfies

AT =
1

2
(A+ A),

then either (a) or (b) from Theorem 2 hold.

Proof: We prove the Lemma by induction on |A| ≥ 3. If |A| = 3, then A is
readily a saturated set.

If |A| ≥ 4, then we claim that

there exists a vertex v of [A] such that A\{v}
is two dimensonal and does not satify (b).

(16)

Let v′ be any vertex of [A]. If A\{v′} is collinear, then we can choose v

to be any other vertex of the triangle [A]. If Ã = A\{v′} is two-dimensional

and satifies (b), then there exists a line ` such that Ã = {v1, v2} ∪ (` ∩ Ã)
where v1 and v2 are strictly separated by `. We may assume that the closed
half plane bounded by ` and containing v1 also contains v′. Then we may
choose v = v2, as A′ = A\{v2} satisfies that ` is a supporting line of [A′] and
|` ∩ A′| ≥ 3, proving (16). This finishes the proof of claim (16).

Now, let v ∈ A be as in (16), and let A′ = A\{v}. We fix a triangulation
T ′ of A′, and extend it to a triangulation T of A. We observe that the
triangles in T\T ′ are of the form [v, u, w] where there exists side e of [A′]
whose line strictly separates v and int [A′] and u, v ∈ e ∩ A′ are consecutive
points. Applying the induction hypothesis to A′T ′ , we deduce from (16) that
A′ satisfies (a); it is a saturated set with respect to some lattice Λ.

For any side e of [A′], let `e be the line parallel to e and intersecting
[A′] ∩ Λ, which is closest to e among the lines with these properties and not
containing e. We claim that

`e ∩ A′ 6= ∅. (17)
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To prove (17), we may assume that Λ = Z2, (0, 0), (1, 0) ∈ e and (x, y) ∈ A′
for y ≥ 1. It follows from the convexity of [A′] that (x

y
, 1), (x+y−1

y
, 1) ∈

[A′]∩`e. Since there exists a multiple z ·y, z ∈ Z, of y among x, . . . , x+y−1,
we have (z, 1) ∈ `e ∩ A′ by the saturatedness of A′.

We distiguish two cases depending on whether A would eventually satify
(a) or (b).

Case 1. For any side e of [A′] whose line strictly separates v and int [A′],
there exists a p ∈ `e ∩ A′ such that [p, v] ∩ [A′] 6= {p}.

In this case, we prove that A is also saturated with respect to Λ; namely,

if e is a side of [A′] whose line strictly separates v and int [A′], then

[e, v] ∩ Λ = {v} ∪ (e ∩ Λ).
(18)

To prove (18) for e, let p ∈ `e ∩ A′ such that [p, v] ∩ [A′] 6= {p}. It follows
from [p, v] ∩ [A′] 6= {p} that 1

2
(p+ v) can’t lie in AT\A′T ′ , therefore it lies in

A′T ′ by AT = 1
2
(A + A). Since p ∈ `e, we have 1

2
(p + v) ∈ e, and actually

1
2
(p + v) = 1

2
(u + w) for u,w ∈ e ∩ Λ. In turn, we conclude (18), and hence

A is a saturated set.

Case 2. There exists a side e of [A′] whose line strictly separates v and
int [A′], and [p, v] ∩ [A′] = {p} for any p ∈ `e ∩ A′.

In this case, we prove that A satifies (b). Let p ∈ `e ∩ A′. Since p ∈ `e
and [p, v] ∩ [A′] = {p}, there exists a side f of [A′] such that f meets e in a
vertex of [A′] and p ∈ f . Since [p, v]∩ [A′] = {p} and the line of e strictly sep-
arates v and int [A′], we may also assume that the line of f strictly separates
v and int [A′]. In particular, we may asssume that Λ = Z2, e ∩ f = (0, 0),
w = (1, 0) ∈ e and p = (0, 1), and then v = (s, t) where s, t < 0. For
q = (1, 1), we have [q, v]∩ int[A′] 6= ∅, and hence q 6∈ A′ in Case 2. Therefore
either A′ = {p} ∪ (e ∩ Z2) or A′ = {w} ∪ (f ∩ Z2), thus A satisfies (b) in
Case 2, verifying Lemma 15. 2

3 Proof of Theorem 4

The inequality between the quadratic and arithmetic means gives that, if
a, k > 0, then

(4a+ 2k)
1
2 > a

1
2 + (a+ k)

1
2 .

Therefore to prove Theorem 4, it is sufficient to verify the following: Let
B = A ∪ {b} for b 6∈ A.
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b

Figure 4: An illustration of Case 1.

(∗) If tr(A) = a and tr(B) = a+ k, then tr(A+B) ≥ 4a+ 2k.

We fix a triangulation T of A, and let AT be the union of A and the set
of midpoints of the edges of T . It follows by (4) that

∆AT
+ 2ΩAT

− 2 = tr(AT ) = 4a.

To estimate tr(A+B) = tr(1
2
(A+B)), we isolate certain subset V of A in a

way such that
AT ∩ (1

2
(V + {b})) = ∅. (19)

Therefore, equation (4) and (19) give,

tr(A+B) ≥ 4a+ 2|1
2
(V + {b}) ∩ int[B]|+

|1
2
(V + {b}) ∩ ∂[B]|+ |AT ∩ ∂[A] ∩ int[B]|. (20)

We distinguish two cases depending on how to define V .

Case 1 b 6∈ [A]
We say that x ∈ [A] is visible if [b, x] ∩ [A] = {x}. In this case x ∈ ∂[A].

We note that there are exactly two visible points on ∂[B], which are on the
two supporting lines to [A] passing through b (see Figure 4). Let k+1 be the
number of visible points of A, and hence k ≥ 1. Now k − 1 visible points of
A lie in int[B], thus (4) yields that tr(B) = a+ k. Let V be the set of visible
points of A. The condition (19) is satisfied because [A] ∩ (1

2
(V + {b})) = ∅.

13



b

Figure 5: An illustration of Case 2.

We have |1
2
(V + {b})| = k + 1, and 2k − 1 visible points of AT lie in int[B].

In particular, (∗) follows as (20) yields

tr(A+B) ≥ 4a+ 2k − 1 + k + 1 = 4a+ 3k > 4a+ 2k.

Case 2 b ∈ [A]
In this case tr(B) = a+k for k ≤ 2 by (4), and b is contained in a triangle

T = [p, q, r] of T (see Figure 5). We may assume that b is not contained in
the sides [r, p] and [r, q] of T . We take V = {p, q, r}, which satisfies (19).
Since 1

2
(b + q) ∈ intT ⊂ int[A], (20) yields tr(A + B) ≥ 4a + 4. In turn, we

conclude Theorem 4.

Remark: The argument does not work if we only assume that A ⊂ B,
because we may have equality in Conjecture 1 in this case.

4 Proof of Theorem 7

Let A ⊂ R2 be finite and not contained in any line. By a path σ on A we
mean a concatenation of segments [a0, a1],. . . , [a`−1, a`] where a0, . . . , a` ∈ A
are distinct points and the segments do not intersect A or one another except
at their endpoints. We call the number ` of segments the length of σ, and
denote it |σ|. We allow the case that σ is a point, and in this case we set
|σ| = 0. We say that σ is transversal to a non-zero vector u if every line

14



parallel to u intersects σ in at most one point; equivalently, if u · (ai+1 − ai)
is non-zero and of the same sign for all i. In this case, the segments in σ
induce a subdivision of σ + [o, u] into |σ| parallelograms if |σ| ≥ 1. For the
proof of Theorem 7 the idea is to find an appropriate set of paths on A with
total length at least

√
tr(A).

First, we explore the possibilities using only one or two paths. We will
see in Remark 16 that one path is not enough, but Proposition 17 shows that
using two paths σ1, σ2 almost does the job.

Observe that for any given non-zero vector w, the length of the longest
path on A transversal to w equals the number of lines parallel to w intersect-
ing A, minus one. The next remark indicates that we may need a least two
paths to get the total length close to

√
TA.

Remark 16 Given pairwise independent vectors w1, . . . , wn let f(w1, . . . , wn, s)
be the minimal number such that, for every finite set A ⊂ R2 with tr(A) = s,
there is a wi and a path on A transversal to wi of length f(w1, . . . , wn, s).

For n = 2, f(w1, w2, s) ≥
√
s/2, with equality provided that k :=

√
s/2

is an integer. An extremal configuration consists of the points {iw1 + jw2 :
i, j ∈ {0, . . . , k}}.

For n = 3, f(w1, w2, w3, s) ≥
√

2s/3 and equality holds provided that
s = 6k2. Assuming without loss of generality that w1 + w2 + w3 = 0, an
extremal configuration is given by the points of the lattice generated by w1, w2

in the affine regular hexagon [±kw1,±kw2,±kw3].

Let e1 = (1, 0) and e2 = (0, 1), and let σ1, σ2 be paths on A. We say that
the ordered pair (σ1, σ2) is a horizontal–vertical path if

(i’) σi is transversal with respect e3−i (possibly a point), i = 1, 2;

(ii’) the right endpoint a of σ1 equals the upper endpoint of σ2

(iii’) writing R+ = {t ∈ R : t > 0}, if |σ1|, |σ2| > 0, then

((σ1\{a}) + R+e2) ∩ ((σ2\{a}) + R+e1) = ∅.

We call σ1 the horizontal branch, and σ2 the vertical branch, and a the center.
We observe that if σ′i is the image of σi by reflection through the line

R(e1 + e2), then the ordered pair (σ′2, σ
′
1) is also a horizontal–vertical path.

For any polygon P and non-zero vector u, we write F (P, u) to denote the
face of P with exterior normal u. In particular, F (P, u) is either an edge or
a vertex.

15



Proposition 17 For every finite A ⊂ R2 not contained in a line, and for
every triangulation T of [A] having A as the set of vertices, there exists a
horizontal–vertical path (σ1, σ2) whose vertices belong to A, and satisfies

|σ1|+ |σ2| ≥
√
|T |+ 1− 1

2
.

Proof: Let us write

ξ = |F ([A],−e1) ∩ F ([A],−e2)| ≤ 1,

∆′A = |(A ∩ ∂[A])\(F ([A],−e1) ∪ F ([A],−e2))| .

By the invariance with respect to reflection through the line R(e1 + e2),
we may assume that

|F ([A],−e2) ∩ A| ≥ |F ([A],−e1) ∩ A|. (21)

We set {〈e1, p〉 : p ∈ A} = {α0, . . . , αk} with α0 < . . . < αk, k ≥ 1.
For i = 0, . . . , k, let Ai = {p ∈ A : 〈e1, p〉 = αi}, let xi = |Ai|, and let
ai be the top-most point of Ai; that is, 〈e2, ai〉 is maximal. In particular,
x0 = |F ([A],−e1) ∩ A|. For each i = 1, . . . , k, we consider the horizontal–
vertical path (σ1i, σ2i) where

σ1i = {[a0, a1], . . . , [ai−1, ai]},

and the vertex set of σ2i isAi. In particular, the total length of the horizontal–
vertical path is (σ1i, σ2i) is

|σ1i|+ |σ2i| = i+ xi − 1.

The average length of these paths for i = 1, . . . , k is∑k
i=1(|σ1i|+ |σ2i|)

k
=

∑k
i=1(i+ xi − 1)

k
=
|A| − x0

k
+
k

2
− 1

2
.

We observe that 2|A| = |T |+ ∆A + 2, according to (4), and (21) yields

2 + ∆A − 2x0 = 2 + ∆′A + |F ([A],−e2) ∩ A| − ξ − x0 ≥ ∆′A + 1.

Therefore we deduce from the inequality between the arithmetic and geo-
metric mean that∑k

i=1(|σ1i|+ |σ2i|)
k

=
2|A| − 2x0

2k
+
k

2
− 1

2

≥ 1

2

(
|T |+ ∆′A + 1

k
+ k

)
− 1

2
(22)

≥
√
|T |+ ∆′A + 1− 1

2
. (23)
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Therefore there exists some horizontal–vertical path (σ1i, σ2i) satisfying (23).
2

The estimate of Proposition 17 is close to be optimal according to the
following example.

Example 18 Let k ≥ 2 and t > 0. Let A′ be the saturated set with [A′]
having vertices (0, 0), (0, k), (k − 1, 0) and (k − 1, 1), and let A = A′ ∪ {(k +
t, 0)}. A triangulation T of A has k2 +k− 1 triangles and every horizontal–
vertical path (σ1, σ2) on A has total length

|σ1|+ |σ2| ≤ k <
√
|T |+ 2− 1

2
.

2

We next proceed to the proof of Theorem 7 by a similar strategy using
three paths. Let B = {v1, v2, v3} and, for {i, j, k} = {1, 2, 3} denote by ui the
exterior unit normal to the side [vj, vk] of B. A set of three paths (σ1, σ2, σ3)
on A with a common endpoint a is called a proper star (with respect to
B = {v1, v2, v3}) if the following conditions hold:

(i) σi is transversal with respect vj − vk (possibly σi = {a});

(ii) writing R+ = {t ∈ R : t > 0}, if |σj|, |σk| > 0, then

((σj\{a}) + R+(vk − vi)) ∩ ((σk\{a}) + R+(vj − vi)) = ∅;

(iii) the other endpoint bi of σi lies in ∂[A] and ui is an exterior unit normal
to [A] at bi; in particular,

〈bi, ui〉 = max{〈x, ui〉 : x ∈ A}.

We note that the three paths are allowed to have common vertices and edges,
but they do not cross one another by (ii).

If the paths σi\{a}, i = 1, 2, 3, are all non-empty and pairwise disjoint
(except for their common end-point a), then (ii) means that they come around
a in the same order as the orientation of the triangle [v1, v2, v3] (see Figure 6
for an illustration).

The next Lemma shows how to construct an appropriate mixed subdivi-
sion of A+B using a proper star.
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a

v3
v1

v2

σ1

σ2

σ3

a

v3
v1

v2

σ1

σ2

σ3

Figure 6: A proper star with respect to v1, v2, v3 centered at a. On the right,
paralellograms based on the proper star

Lemma 19 Let A and B be finite non-collinear sets in R2 with B = {v1, v2, v3},
and let us a consider a proper star on A with respect to B with rays σ1, σ2, σ3

and center a such that |σ1|+ |σ2|+ |σ3| > 0. Then there exists a triangulation
TA for A extending the paths σ1, σ2, σ3, and a mixed subdivision M for A+B
satisfying

|M11| = |σ1|+ |σ2|+ |σ3|.

Proof: We may assume that |σ1| > 0 and v3 = o. Let TA be a triangulation
using all the edges in the given proper star, and partition the triangles of TA
into three subsets Σ1,Σ2,Σ3 (some of the Σi might be empty). The idea is
that if the semi-open paths σi\{a}, i = 1, 2, 3, are all non-empty and pairwise
disjoint and {i, j, k} = {1, 2, 3}, then Σi consists of the triangles of TA cut
off by σj ∪ σk. We also use Jordan’s theorem for a simple closed polygonal
path σ; namely, it encloses an open bounded set D such that x ∈ D if and
if whenever a ray ` emanating from x does not contain any edge of σ, then
|` ∩ σ| is finite and odd.

A triangle τ of TA is in Σ1 if and only if for any p ∈ (int τ)\(a + Rv1)
such that p− R+v1 does not contain any edge of σ2 or σ3, we have

|(p− R+v1) ∩ σ2|+ |(p− R+v1) ∩ σ3|

is finite and odd. Similarly, τ ∈ TA is in Σ2 if and only if for any p ∈
(int τ)\(a + Rv2) such that p− R+v2 does not contain any edge of σ1 or σ3,
we have

|(p− R+v2) ∩ σ1|+ |(p− R+v2) ∩ σ3|,

is finite and odd. The rest of the triangles of TA form Σ3.

18



The mixed subdivision M is constructed as follows. Concerning triangles,
[B] +a is in M , and if τ ∈ Σi, then the corresponding triangle in M is τ +vi.
For the parallelograms, if {i, j, k} = {1, 2, 3} and e is an edge of σi, then
e + [vj, vk] is in M . It follows from properties (i) and (ii) of the proper star
that these parallelograms do not overlap, and taking also (iii) into account,
we obtain a mixed triangulation of A+B. 2

For the rest of the section, we fix finite A ⊂ R2 and B = {v1, v2, v3} ⊂ R2

such that both of them span R2 affinely, and confirm Conjecture 5 in this
case.

The following statement is a simple consequence of the definition of a
proper star.

Lemma 20 Assuming B = {v1, v2, v3} with v1 = (1, 0) = −u1, v2 = (0, 1) =
−u2 and v3 = (0, 0), and hence u3 = ( 1√

2
, 1√

2
), if (σ1, σ2) is a horizontal–

vertical path for A centered at a ∈ A, then

(a) there exists a proper star (σ′1, σ
′
2, σ

′
3) centered at a such that σ1 ⊂ σ′1,

σ2 ⊂ σ′2,

(b) if in addition a 6∈ F ([A], u3), then |σ′3| ≥ 1.

Proof: A triple of paths (σ̃1, σ̃2, σ̃3) meeting at a will be called a semi-proper
star extending (σ1, σ2) if it satisfies properties (i) and (ii) above and σi ⊂
σ̃i for i = 1, 2. In particular, (σ1, σ2, {a}) is a semi-proper star extending
(σ1, σ2). We show that if (σ̃1, σ̃2, σ̃3) is a semi-proper star extending (σ1, σ2)
and

max{〈x, ui〉 : x ∈ σ̃i} < max{〈x, ui〉 : x ∈ A} for an i ∈ {1, 2, 3},

then there exists a semi-proper star (σ′1, σ
′
2, σ

′
3) extending (σ1, σ2) such that

σ′j = σ̃j for j 6= i, σ̃i ⊂ σ′i and σ̃i 6= σ′i. (24)

Let bi ∈ σi be the other endpoint of σ̃i; namely,

〈bi, ui〉 = max{〈x, ui〉 : x ∈ σ̃i}.

To prove (24), we consider the open half plane H+
i = {x ∈ R2 : 〈x, ui〉 >

〈bi, ui〉}, and distinguish two cases. First, if H+
i ∩ σ̃j = ∅ for j 6= i, then we

choose any z ∈ A ∩ H+
i . The points of A ∩ [bi, z] divide [bi, z] into a path,

and adding this path to σ̃i we obtain the required σ′i in (24).
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The second case in proving (24) is that if there exists j 6= i such that
H+

i ∩ σ̃j 6= ∅. We consider the z ∈ A ∩ σ̃j ∩H+
i such that

〈uj, x〉 ≥ 〈uj, z〉 for x ∈ A ∩ σ̃j ∩H+
i .

Let {1, 2, 3} = {i, j, k}. Since

σ̃j + R+(vi − vk) ⊂ bi + R+(vi − vk) + R+(z − bi)

by the choice of z and as σ̃j is transversal with respect to vi − vk, and in
addition, vk − vj ∈ R+(vi − vk) + R+(z − bi), we deduce that

([z, bi] + R+(vj − vk)) ∩ (σ̃j + R+(vi − vk)) = ∅. (25)

Similarly,

〈x, uk〉 < 〈bi, uk〉 for x ∈ [z, bi] + R+(vk − vj)
〈x, uk〉 > 〈bi, uk〉 for x ∈ σ̃k + R+(vi − vj)

imply that

([z, bi] + R+(vk − vj)) ∩ (σ̃k + R+(vi − vj)) = ∅. (26)

Again, the points of A∩ [bi, z] divide [bi, z] into a path, and adding this path
to σ̃i we obtain the σ′i, which, together with σ′j = σ̃j and σ′k = σ̃k, satifies (ii)
by (25) and (26). In turn, we conclude (24).

Since A is finite, repeated application of (24) leads to the required proper
star satifying (iii), as well. 2

Proof of Theorem 7 We apply the same idea as in the proof of Proposi-
tion 17, only applying Lemma 20 at a certain point to improve the bound.

We may assume that B = {v1, v2, v3} with v1 = (1, 0) = −u1, v2 =
(0, 1) = −u2 and v3 = (0, 0), and hence u3 = ( 1√

2
, 1√

2
). In addition, we may

assume that
|F ([A], u2) ∩ A| ≥ |F ([A], u1) ∩ A|.

Using the notation of the proof of (22), we set {〈−u1, p〉 : p ∈ A} =
{α0, . . . , αk} with α0 < . . . < αk, and ∆′A = |(A ∩ ∂[A])\(F ([A], u1) ∪
F ([A], u2))|. For i = 0, . . . , k, let Ai = {p ∈ A : 〈u1, p〉 = αi}, let xi = |Ai|
and let ai be the top-most point of Ai; namely, 〈−u2, ai〉 is maximal. Ac-
cording to (22) and (23), we have∑k

i=1(i+ xi − 1)

k
≥ |TA|+ ∆′A + 1

2k
+
k

2
− 1

2
≥
√
|TA|+ 1− 1

2
. (27)
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Let I be the set of all i ∈ {1, . . . , k} such that

i+ xi − 1 ≥
⌈
|TA|+ ∆′A + 1

2k
+
k

2
− 1

2

⌉
= ξ. (28)

Since ξ ≥
√
|TA|+ 1 − 1

2
, if strict inequality holds for some i in (28), then

using Lemma 19 for the proper star constructed in Lemma 20 (a) concludes
the proof of Theorem 7. Thus we assume that

i+ xi − 1 = ξ for i ∈ I.

If i ∈ I and ai 6∈ F ([A], u3), then ξ ≥
√
|TA|+ 1 − 1

2
and using Lemma

19 for the proper star constructed in Lemma 20 (b) concludes the proof of
Theorem 7.

Therefore we may assume that

ai ∈ F ([A], u3) for i ∈ I. (29)

Let θ = |I|. Since i ≥ 1 for i ∈ I and |F ([A], u3) ∩ F ([A], u2))| ≤ 1, we
deduce that

θ ≤ |F ([A], u3)\F ([A], u1)| ≤ min{∆′A + 1, k}. (30)

Since i+ xi − 1 ≤ ξ − 1, if i 6∈ I, we have

ξ −
∑k

i=1(i+ xi − 1)

k
≥ ξ − θ · ξ + (k − θ) · (ξ − 1)

k
=
k − θ
k

.

We deduce from (27) that if i ∈ I, then

i+ xi − 1 = ξ ≥
∑k

i=1(i+ xi − 1)

k
+
k − θ
k

≥ |TA|+ ∆′A + 1

2k
+
k

2
− 1

2
+
k − θ
k

=
|TA|+ ∆′A + 1

2k
+
k

2
+

1

2
− θ

k
.

Finally, if (29) holds and i ∈ I, then we apply both inequalities in (30) and
later the inequality between the arithmetic and the geometric mean to obtain

i+ xi − 1 ≥ |TA|+ θ

2k
+
k

2
+

1

2
− θ

k
=
|TA|
2k

+
k

2
+

1

2
− θ

2k

≥ |TA|
2k

+
k

2
≥
√
|TA|.

Therefore, we conlude Theorem 7 by Lemma 19 and Lemma 20 (a). 2
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5 Proof of Theorem 8

We assume in this section that there are no points of A (resp. B) in the
interior of [A], (resp. [B]).

Recall that ∆X denotes the number of points of X in the boundary of
[X]. It is easy to check that ∆A+B has at least as many points as ∆A and
∆B together, that is:

∆A+B ≥ ∆A + ∆B = tr(A) + tr(B) + 4.

As a motivation for the proof, we note that Conjecture 1 follows if the number
ΩA+B of points of A+B in int([A+B]) is at least

tr(A) + tr(B)− 2

2
=

∆A + ∆B

2
− 3.

Naturally we aim at the stronger Conjecture 5. Given Theorem 7, Theorem 8
follows if A and B being in convex position and |A|, |B| ≥ 4 yield that there
exists a mixed subdivision of A+B satisfying

|M11| ≥
tr(A) + tr(B)

2
. (31)

Throughout the proof we assume that [B] has at most as many vertices
as [A] and v denotes a unit vector (which we assume pointing upwards) not
parallel to any side of [A + B]. We denote by a0 and a1 the leftmost and
rightmost vertex of [A] and by b0 and b1 the leftmost and rightmost vertex
of [B].

To prove (31), we say that A and B form a strange pair if [B] is a triangle
and the three exterior normals to [B] are also exterior normals of edges of
[A].

We will use that, for t, s ≥ 1,

ts ≥ t+ s− 1. (32)

Case 1 A and B are not strange pairs.
We choose a unit vector v as above in the following way: if B is a triangle,

then the upper arc of ∂[B] is an side such that [A] has no side with same
exterior unit normal; if [B] has at least four edges, then the two supporting
lines of [B] parallel to v touch at non-consecutive vertices of [B]. For the
existence of the latter pair of supporting lines, we note that while contin-
uously rotating [B], the number of upper minus lower vertices changes by
either zero or two units at a time when an edge of [B] is parallel to v, and
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a0

a1 = b0

b1

b0 + A B + a1o

a0

a1 = b0

b1

B + a0

o
b1 + A

Figure 7: An illustration of the proof of Claim 21.

after rotation by π it changes to its opposite. Hence, at some position that
difference is zero or one which implies, since [B] has at least four vertices,
that at that position there is at least one upper and one lower vertex, as
required.

Claim 21 One of the two following statements hold:∣∣∣((A+ b0) ∪ (a1 +B)
)
∩ int[A+B]

∣∣∣ ≥ ∆A+∆B

2
− 3, or∣∣∣((a0 +B) ∪ (A+ b1)

)
∩ int[A+B]

∣∣∣ ≥ ∆A+∆B

2
− 3.

(33)

Proof: We may assume that b1 = a0 = o (see Fig. 7). Observe first that the
only repetitions x+ b0 = a1 + y or x+ b1 = a0 + y in these configurations are
the points a1+b0 and a0+b1 (which are interior to [A+B] by our hypothesis).
To prove (33), we verify first that

(i) for every x ∈ A \ {a0, a1} except perhaps two of them, at least one of
x+ b0 or x+ b1 is interior in A+B,

(ii) for every y ∈ B \ {b0, b1} except perhaps two of them, at least one of
a0 + y or a1 + y is interior in A+B.

For (i), we note that if both x + b0 or x + b1 are in ∂[A + B], then they
are the endpoints of a segment translated from [b0, b1] and only two such
translations have their endpoints in ∂[A + B] because A and B are not a
strange pair. The argument for (ii) is similar.
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Now (i) and (ii) say that counting the interior points of (A+b0)∪(a1 +B)
and (a0 +B)∪ (A+ b1) except a0 + b1 and a1 + b0 we have altogether at least
|∆A|+|∆B|−8 of them. Including the latter we have at least |∆A|+|∆B|−6 of
them and at least half of these in either (A+b0)∪(a1+B) or (a0+B)∪(A+b1),
which yields (33). 2

Let us construct the suitable mixed triangulation of [A + B]. For every
path σ on A, we assume that every point of A in σ is a vertex of σ. According
to (33), we may assume that

|(A ∪B) ∩ int[A+B]| ≥ ∆A + ∆B

2
− 3. (34)

Let aupp (alow) be the neighboring vertex of [A] to o on the upper (lower) arc
of ∂[A], and let bupp (blow) be the neighboring vertex of [B] to o on the upper
(lower) arc of ∂[B]. We write ωA

upp and ωA
low to denote the paths determined

by [o, aupp] and [o, alow] and ωB
upp and ωB

low to denote the paths determined by
[o, bupp] and [o, blow], and hence the two dimensionality of [A] and [B] implies

|ωA
upp|, |ωA

low|, |ωB
upp|, |ωB

low| ≥ 1.

Next let σA
upp (σA

low) be the longest path on the upper (lower) arc of ∂[A] start-
ing from o such that every segment s of σA

upp (σA
low) satisfies that s+ [o, bupp]

(s + [o, blow]) is a parallelogram that does not intersect int[A]. Similarly, let
σB

upp (σB
low) be the longest path on the upper (lower) arc of ∂[B] starting from o

such that every segment s of σB
upp (σB

low) satisfies that s+[o, aupp] (s+[o, alow])
is a parallelogram that does not intersect int[B]. Since a1 = b0 = o is a com-
mon point of σA

upp, σA
low, σB

upp, σB
low, we deduce from (34) that

1 + (|σA
upp| − 1) + (|σA

low| − 1) + (|σB
upp| − 1) + (|σB

low| − 1) ≥ ∆A + ∆B

2
− 3,

equivalently,

|σA
upp|+ |σA

low|+ |σB
upp|+ |σB

low| ≥
∆A + ∆B

2
. (35)

We construct the mixed subdivision by considering the subdivisions into
suitable paralleograms of σA

upp + ωB
upp and σB

upp + ωA
upp that have ωA

upp + ωB
upp

in common, and the subdivisions into suitable parallelograms of σA
low + ωB

low

and σB
low + ωA

low that have ωA
low + ωB

low in common (see Figure 8).
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a0

a1 = b0

b1

A B

Figure 8: An illustration of the parallelograms of the mixed subdivision in
Case 1.

In particular, |ωA
upp|, |ωB

upp| ≥ 1, (32) and (35) yield that

|M11| ≥ (|σA
upp| − |ωA

upp|)|ωB
upp|+ (|σB

upp| − |ωB
upp|)|ωA

upp|+ |ωA
upp| · |ωB

upp|+
+(|σA

low| − |ωA
low|)|ωB

low|+ (|σB
low| − |ωB

low|)|ωA
low|+ |ωA

low| · |ωB
low|

≥ (|σA
upp| − |ωA

upp|) + (|σB
upp| − |ωB

upp|) + |ωA
upp|+ |ωB

upp| − 1 +

+(|σA
low| − |ωA

low|) + (|σB
low| − |ωB

low|) + |ωA
low|+ |ωB

low| − 1

≥ ∆A + ∆B

2
− 2 =

tr(A) + tr(B)

2
,

proving (31) in Case 1.

Case 2 A and B form a strange pair with |A|, |B| ≥ 4, and [A] and [B] are
not similar triangles

We write αupp (αlow) to denote the number of segments that the points
of A divide the upper (lower) arc of ∂[A]. We denote by b2 the third vertex
of [B] and by [x0, x1] the side of A with x1 − x0 = t(b1 − b0) for t > 0. For
i = 0, 1, 2, let si be the number of segments that the points of B divide the
side of [B] opposite to bi.

Claim 22 There exists a v such that one of the following holds:

αupp ≥ 2 and αupp + s0 + s1 ≥
1

2
(∆A + ∆B), or (36)

αlow, s2 ≥ 2 and αlow + s2 ≥
1

2
(∆A + ∆B). (37)
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Proof: Since αupp +αlow = ∆A and s0 +s1 +s2 = ∆B, the claim easily follows
if there is a v such that, for each the sets A and B, both the upper arc and
the lower arc contain a point of the set strictly between the two supporting
lines parallel to v.

Otherwise, choose a v such that the side [b0, b1] of [B] contains at least 3
points of B (this is possible since |B| ≥ 4). Then [x0, x1] has no other point
of A than x0, x1 and the other side of [A] at xi, i = 0, 1 is parallel to [bi, b2].
As [A] and [B] are not similar triangles , [A] has some more edges, which
in turn yields that [bi, b2] ∩ B = {bi, b2} for i = 0, 1. In summary, we have
αupp = s0 = s1 = 1 and αlow, s2 ≥ 2. Since αlow + s2 > αupp + s0 + s1, we
conclude (37). 2

To prove (31) based on (36) and (37), we introduce some further notation.
After a linear transformation, we may assume that v is an exterior normal
to the edge [b0, b1] of [B]. We say that p, q ∈ ∂[A] are opposite if there exists
a unit vector w such that w is an exterior normal at p and −w is an exterior
normal at q. If p, q ∈ ∂[A] are not opposite, then we write pq the arc of ∂[A]
connecting p and q and not containing opposite pair of points.

First we assume that (36) holds and b2 = o. Since [x0, x1] has exterior
normal v and αupp ≥ 2, there exists a ∈ A\{x0, x1} such that v is an exterior
normal to ∂[A] at a. We write lupp and rupp to denote the number of segments
the points of A divide the arcs ax0 and ax1, respectively. To construct a
mixed subdivision, we observe that every exterior normal u to a side of [A]
in ax0 satisfies 〈u, b0〉 > 0, and every exterior normal w to a side of [A] in ax1

satisfies 〈w, b1〉 > 0. We divide ax0+[o, b0] into suitable s1lupp parallelograms,
and ax1 + [o, b1] into suitable s0rupp parallelograms. It follows from (32) that

|M11| = s1lupp + s0rupp ≥ lupp + rupp + s0 + s1 − 2 = αupp + s0 + s1 − 2

≥ 1
2
(∆A + ∆B)− 2 = 1

2
(tr(A) + tr(B)).

Secondly we assume that (37) holds. Since s2 ≥ 2, we may assume that
o ∈ ([b0, b1]\{b0, b1}) ∩ B. For i = 0, 1, we write s2i to denote the number
of segments the points of B divide [o, bi]. Let x̃0 and x̃1 be the leftmost
and rightmost points of A such that −v is an exterior normal to ∂[A], where
possibly x̃0 = x̃1. Since [A] has sides parallel to the sides [b2, b0] and [b2, b1] of
[B], we deduce that x̃0 6= x0 and x̃1 6= x1. To construct a mixed subdivision,
we set mlow = 0 if x̃0 = x̃1, and mlow to be the number of segments the points
of A divide x̃0, x̃1 if x̃0 6= x̃1. In addition, we write llow ≥ 1 and rlow ≥ 1 to
denote the number of segments the points of A divide the arcs x̃0x0 and x̃1x1,
respectively. We divide x̃0x0 + [o, b0] into suitable llows20 parallelograms, and
x̃1x1 + [o, b1] into suitable rupps21 parallelograms. In addition, if x̃0 6= x̃1,
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then we divide [x̃0x̃1] + [o, b2] into suitable mlow parallelograms. It follows
from (32) that

|M11| = llows20 + rlows21 +mlow ≥ llow + rlow +mlow + s20 + s21 − 2

= αlow + s2 − 2 ≥ 1
2
(∆A + ∆B)− 2 = 1

2
(tr(A) + tr(B)),

finishing the proof of (31) in Case 2.

Case 3 [A] and [B] are similar triangles and |A|, |B| ≥ 4
We recall that s1, s2 and s3 denote the number of segments the points of B

divide the sides of [B] and let s′1, s
′
2, s
′
3 be the number of segments the points

of A divide the corresponding sides of [A]. We have tr(A) = s′1 + s′2 + s′3 − 2
and tr(B) = s1 + s2 + s3 − 2. We may assume that s1 is the largest among
the six numbers and that s′2 ≥ s′3. Readily

|M11| ≥ max{s1s
′
2, s
′
1s2, s

′
1s3}. (38)

If s′2 ≥ 3, then

|M11| ≥ 3s1 ≥ 1
2
(s1 + s2 + s3 + s′1 + s′2 + s′3) > 1

2
(tr(A) + tr(B)).

If s′2 = 2, then s′3 ≤ 2 and

|M11| ≥ 2s1 ≥ 1
2
(s1 + s2 + s3 + s′1 + s′2 + s′3 − 4) = 1

2
(tr(A) + tr(B)).

Therefore we assume that s′2 = s′3 = 1. In particular, we may also assume
that s2 ≥ s3. Since s′1 ≥ 2 and s2 ≥ 1 we have s′1s2 ≥ s′1 +2s2−2. Therefore,

|M11| ≥ max{s1, s
′
1s2}

≥ 1

2
(s1 + s2 + s3 + s′1 − 2)

=
1

2
(tr(A) + tr(B)),

and we conclude (31) in Case 3, as well. 2

6 Proof of Theorem 10

Let A = {a1, . . . , an}. Naturally, [A + A] has a triangulation {F + F : F ∈
TA}, which we subdivide in order to obtain M . We define M to be the
collection of the sums of the form

[ai0 , . . . , aim ] + [aim , . . . , aik ],
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where k ≥ 0, 0 ≤ m ≤ k, ij < il for j < l, and [ai0 , . . . , aik ] ∈ TA.
To show that we obtain a cell decomposition, let

F = [ai0 , . . . , aik ] ∈ TA

be a k-simplex with k > 0 where ij < il for j < l, and hence

F + F =

{
k∑

i=0

αjaij :
k∑

i=0

αj = 2 & ∀αj ≥ 0

}
.

We write relintC to denote the relative interior of a compact convex set C.
For some 0 ≤ m ≤ k, α0, . . . , αk ≥ 0 with

∑k
i=0 αj = 2, we have

k∑
i=0

αjaij ∈ relint ([ai0 , . . . , aim ] + [aim , . . . , aik ]) ⊂ F + F

if and only if
∑

j<m αj < 1 and
∑m

i=0 αj > 1 where we set
∑

j<0 αj = 0. We
conclude that M forms a cell decomposition of [A+ A].

For any d-simplex F ∈ TA, and for any m = 0, . . . , d, we have constructed
one d-cell of M that is the sum of an m-simplex and a (d − m)-simplex.
Therefore

‖M‖ = |TA|
d∑

m=0

(
d

m

)
= 2d|TA|.

7 Proof of Corollary 3

In this section, let A ⊂ R2 be finite and not contained in a line. We prove
four auxiliary statements about A. The first is an application of the case
A = B of Conjecture 1 (see Theorem 2).

Lemma 23
|A+ A| ≥ 4|A| −∆A − 3.

Proof: We have readily ∆A+A ≥ 2∆A. Thus (4) and Theorem 2 yield

|A+A| = 1

2
(tr(A+ A) + ∆A+A + 2) ≥ 2tr(A) + ∆A + 1 = 4|A| −∆A− 3. 2

We note that the estimate of Lemma 23 is optimal, the configuration of
Theorem 2 (b) being an extremal set.

Next we provide the well–known elementary estimate for |A+A| only in
terms of boundary points.
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Lemma 24 Let mA denote the maximal number of points of A contained in
a side of [A]. We have,

|A+ A| ≥ ∆2
A

4
− ∆A(mA − 1)

2
.

Proof: We choose a line l not parallel to any side of [A], that we may assume
to be a vertical line, and denote by s1, . . . , sk the sides of [A] on the upper
chain of [A] in left to right order. Let Ai be the set obtained from A ∩ si by
removing its rightmost point. We may assume that

|A1|+ · · ·+ |Ak| ≥
∆A

2
.

We observe that, for 1 ≤ i < j ≤ k, we have

|Ai + Aj| = |Ai| · |Aj| and (Ai + Aj) ∩ (Ai′ + Aj′) = ∅ if {i, j} 6= {i′, j′}.

It follows that

|A+ A| ≥
∑

1≤i<j≤k

|Ai + Aj| =
∑

1≤i<j≤k

|Ai| · |Aj| = (
k∑

i=1

|Ai|)2 −
k∑

i=1

|Ai|2

≥
(

∆A

2

)2

− (mA − 1)
∆A

2
. 2

The following Lemma can be found in Freiman [4].

Lemma 25 Let ` be a line intersecting [A] in m points of A. If A is covered
by exactly s lines parallel to `, then

|A+ A| ≥ 2|A|+ (s− 1)m− s. (39)

Moreover,

|A+ A| ≥ (4− 2

s
)|A| − (2s− 1). (40)

Proof: We may assume that ` is the vertical line through the origin, that
a1, . . . , as are s points ofA ordered left to right such thatA = ∪si=1(A∩(`+ai))
and that |A ∩ (`+ a1)| = m. Let Ai = A ∩ (ai + `). Then,

|A+ A| = |A1 + A|+ |(A \ A1) + As|

≥
s∑

i=1

(|A1|+ |Ai| − 1) +
s∑

i=2

(|Ai|+ |As| − 1)

= 2|A|+ (s− 1)(|A1|+ |As|)− (2s− 1),
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from which (39) follows. On the other hand,

|A+ A| =
s∑

i=1

|2Ai|+
s−1∑
i=1

|Ai + Ai+1|

≥
s∑

i=1

(2|Ai| − 1) +
s−1∑
=1

(|Ai|+ |Ai+1| − 1)

= 4|A| − (|A1|+ |As|)− (2s− 1).

If the latter estimate is larger than the former one we obtain (40), otherwise
we get the stronger inequality |A+ A| ≥ (4− 2/s2)|A| − (2s− 1). 2

Proof of Corollary 3 Let |A + A| ≤ (4 − ε)|A| where ε ∈ (0, 1) and
ε2|A| ≥ 48. To simply formulae, we set ∆ = ∆A and m = mA.

We deduce from Lemma 23 that ∆ ≥ ε|A| − 3. Substituting this into
Lemma 24 yields

(4− ε)|A| ≥ ∆2

4
− ∆(m− 1)

2
≥ ∆(ε|A| − 3)

4
− ∆(m− 1)

2

=
∆

2
· (1

2
ε|A| −m− 1

2
) ≥ ε|A| − 3

2
· (1

2
ε|A| −m− 1

2
).

Therefore

1
2
ε|A| − (m− 1) ≤ 8

ε

(
1− ε

4

)(
1 +

3

ε|A| − 3

)
+

3

2
<

12

ε
,

as ε|A| − 3 ≥ 48
ε
− 3 > 12

ε
. In particular, m− 1 > 1

2
ε|A| − 12

ε
.

Next let l be the line determined by a side of [A] containing m = mA

points of A, and let s be the number of lines parallel to l intersecting A.
According to (39),

(4− ε)|A| ≥ 2|A|+ (s− 1)(m− 1)− 1 > 2|A|+ (s− 1)(1
2
ε|A| − 12

ε
)− 1,

thus first rearranging, and then applying ε2|A| ≥ 48 yield

2|A| > s · (1
2
ε|A| − 12

ε
) ≥ s · 1

4
ε|A|.

Therefore s < 8
ε
.

We deduce from (40) and s < 8
ε

that

(4− ε)|A| > (4− 2
s
)|A| − 2s > (4− 2

s
)|A| − 16

ε
.

Rearranging, and then applying ε2|A| ≥ 48 imply

s <
2

ε

(
1− 16

ε2|A|

)−1

<
2

ε

(
1 +

32

ε2|A|

)
. 2
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8 Proof of Proposition 6

We call the points of A,

a0 = (0, 0), a1 = (−1,−2), a2 = (2, 1).

If k ≥ 2, then we show that every mixed subdivision M corresponding to
TA and TB satisfies

|M11| ≤ 24. (41)

We prove (41) in several steps. First we verify

[a1, a2] + li is not an edge of M for i = 0, . . . , k, (42)

[a1, a2] + ri is not an edge of M for i = 0, . . . , k − 1. (43)

For (42), we observe that a1 + li+1 if i ≤ k − 1 or a1 + li−1 if i ≥ 1 is a point
of A + B in [a1, a2] + li different from the endpoints. Similarly, for (43), we
observe that a1 + ri+1 if i ≤ k − 2 or a1 + ri−1 if i ≥ 1 is a point of A+B in
[a1, a2] + ri different from the endpoints.

Next, we have

[a0, a2] + [li, ri] is not a parallelogram of M for i = 0, . . . , k − 1,(44)

[a0, a1] + [ri, li+1] is not a parallelogram of M for i = 0, . . . , k − 1,(45)

as li+1 ∈ int [a0, a2] + [li, ri] and li ∈ int [a0, a1] + [ri, li+1].
Let us call the edges of TB of the form either [li, ri] or [ri, li+1] for i =

0, . . . , k − 1 small edges, and the edges of TB of the form either [p, li], [q, li]
for i = 0, . . . , k, or [p, ri], [q, ri] for i = 0, . . . , k − 1 long edges. In other
words, long edges of TB contain either p or q, while small edges of TB contain
neither.

Concerning long edges, we prove that that the number of parallelograms
of M of the form

eA + eB for an edge eA of TA and a long edge eB of TB is at most 12. (46)

If eA is an edge of TA, then there exist at most two cells of M whose sides
are p+ eA. Since TA has three edges, there are at most six of parallelograms
of M of the form eA + eB where eA is an edge of TA and eB is an edge of TB
with p ∈ eB. Since the same estimate holds if q ∈ eB, we conclude (46).

Finally, we prove that that the number of parallelograms of M of the
form

eA + eB for an edge eA of TA and a small edge eB of TB is at most 12.
(47)
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The argument for (47) is based on the claim that if eA+eB is a parallelogram
of M for an edge eA of TA and a small edge eB of TB, then there is a long
edge e′B of TB such that

eA + e′B is a neighboring parallelogram of M . (48)

We have eA 6= [a1, a2] according to (42) and (43). If eA = [a0, a1], then
eB = [li, ri] for some i ∈ {1, . . . , k − 1} according to (45). Now ri + eA
intersects the interior of [A+B] as ri ∈ int [A], thus it is the edge of another
cell of M , as well. This other cell is either a translate of [A], which is
impossible by (42), (43), and as ri 6∈ p+ [A], q + [A], or of the form eA + e′B
for an edge e′B 6= eB of TB containing ri. However, e′B 6= [ri, li+1] by (45),
therefore e′B is a long edge.

On the other hand, if eA = [a0, a2], then eB = [ri, li+1] for some i ∈
{1, . . . , k − 1} according to (44), and (48) follows as above.

Now if eA + e′B is a parallelogram of M for an edge eA of TA and a long
edge e′B of TB, then there is at most one neighboring paralellogram of the
form eA + eB for a small edge eB of TB because eA + eB does not intersect
eA + p and eA + q. In turn, (47) follows from (46) and (48). Moreover, we
conclude (41) from (46) and (47).

Finally, it follows from (41) that if k ≥ 145, then

|M11| ≤ 24 <
√

4k =
√
|TA| · |TB|. 2
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