
 Extreme Programming and Its Positive Affect on Software Engineering
Teams

Sharifah Lailee Syed-Abdullaha, Mazni Omarb

Department of Computer Science
Universiti Teknologi MARA, Arau Campus, 02600 Arau, Perlis, MALAYSIA

Tel : 04-9875076, Fax : 04-9874225
E-mail : ashlailee@perlis.uitm.edu.my, bmazni@isiswa.uitm.edu.my

ABSTRACT

This paper presents an early empirical study on Extreme
Programming (XP) practices employing Positive Affect metric.
The study was conducted on university students doing
development projects to gain an insight understanding of the
effect of using agile practices on software engineering (SE)
teams. The finding indicates that XP practices do have
positive affectivity on the SE teams. This is to be expected
because of the existence of the practices such as simple design,
pair programming, continuous testing, continuous integration
and frequent review (release) that command feedback. This
finding helps to provide early empirical evidences on the
impact of XP methodology on the positive affectivity of the
developers.

Keywords
Agile methodology, empirical study, XP, positive affect, SE
team

1.0 INTRODUCTION

The traditional methodologies imposed a disciplined process
upon software development, with the aim of making software
development more efficient in order to produce better quality
systems. The detailed process places a strong emphasis on
planning and was inspired by other engineering disciplines.
The most frequent criticism of these methodologies is that
they are bureaucratic. The several phases in the system
development slow down the development process. The
second problem with these methodologies is that the
requirements specifications are not flexible. In reality, it is
difficult to get the software customer to identify their
requirements. Even if the requirements can be identified, the
business world is forever changing. The third problem is the
design documents of these methodologies are too
cumbersome, thus delaying the translation of these designs
into understandable program by the clients.

As a reaction to these problems, a new group of
methodologies evolved, these are known as agile
methodologies. Agile methodologies welcome change and
unpredictability. These new methodologies are more adaptive

than predictive, and more people-oriented than process-
oriented. Adaptive approaches are better when the
requirements are uncertain or volatile as in the new software
being developed nowadays. If the user requirements are not
stable, it is difficult to develop stable designs and follow a
planned process as practised in the formal methodologies.
When faced with unpredictable user requirements and
changes that must be accommodated during software-in-
progress development, developers often experienced stressful
emotions such as anxiety and depression (Syed-Abdullah,
Holcombe, & Gheorge, 2006a, 2006b).

It is the intention of this paper to introduce the most prevalent
agile methodology: Extreme Programming (XP) as the
answer to the existing problems faced by developers when
designing and creating dynamic software applications. The
second part of this paper will explore the possibility of using
XP methodology as a positive affect inducer and to discuss
the findings of a study on the possible impact of the selected
XP practices on the positive affectivity of the SE teams. To
achieve this, a comparison study was conducted on the SE
teams consisted of third year students at University Utara
Malaysia. Findings revealed that the XP methodology does
have an impact on the positive affectivity when most of the
practices were implemented.

2.0 EXTREME PROGRAMMING (XP)

The XP methodology was created in response to problem
domains whose requirements change and also to address the
problem of project risk. XP begins with 4 values;
Communication, Simplicity, Feedback and Courage. It then
builds up to a dozen practices, which all XP projects should
follow. Many of the XP practices were created and tested as
part of the Chrysler C3 project. Beck (2000) introduces XP as
a solution to the problems encountered by the formal
methods. XP focuses on 4 humanistic values which are
communication, simplicity, testing and courage, and also
how each of them is interrelated. XP does not arise out of
nothing but it is an improvement on the existing formal
methods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42980759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In XP, features that provide the most business value to the
customer must be developed first because the real goal of this
approach is to deliver the software that is needed when it is
needed. Requirements are written as user stories, which are
chunks of functionality that are valuable to the customers.
Chunking is a technique in cognitive learning strategy that
allows information to be broken down into smaller and
meaningful collection of knowledge. Through the use of story
cards, it is easier for developers to group different stories
according to main functions. Chunking assist developers
because human has limited memory capacity and often have
difficulty to memorize a large amount of functions or
information (Mazni, Syed-Abdullah, & Holcombe, 2009).

The communication between developer and manager, which
can be lacking in other methods, is highlighted as one of the
main values, which must be emphasized. XP encourages
communication by having the developers collectively owning
all of the code and work in pairs. Collective code ownership
considers that the code belongs to the team and not to the
individual developers. It encourages every developer to
contribute new ideas to all segments of the project and allows
any developer in the team to add functionality, correct errors
or refactor the code. Pair programming is a practice that
requires two developers to sit side by side in front of a
computer. One person types and thinks tactically about the
methods being created, while the other thinks strategically
about how the methods fit into the class. Each partner must
explain what they are doing and this encourages the
development of new ideas and an improvement on the old
approaches. To facilitate a collective code ownership and
continuous integration, pair programmers must swap partners
amongst the team. Pair programming changes the
environment from criticism and competition to learning and
cooperation thus improving group cohesiveness and
communication.

The next value is simplicity. Complex requirements must be
simplified to enhance understanding between team members.
XP simple design evolves through constant refactoring, which
is guided by suitable metaphor and implemented in
accordance to common coding standards. Fowler, Beck,
Brant, Opdyke, and Roberts, 1999 defined refactoring as the
removal of redundant or unused functionality and the
restructuring of obsolete designs in order to improve smelly
codes. Tong (2004) considered too many comments as useless
because it takes too many visual spaces and further suggested
refactoring of these comments by converting them into codes.
System metaphor is a narrative that everyone (customer,
programmer and managers) can associate with when
discussing new functionality. The reason for using a metaphor
is to achieve a common vision and shared vocabulary.

On-site customer is a practice which requires the customer to
sit with the development team on a full-time basis. It is the

customer’s duty to assist in the writing of stories, to answer
questions and to set priorities to the project. Holcombe (2002)
is more realistic in this practice, by balancing between having
customer on site full time, with one hardly there at all; he
proposes regular visits and meetings at both the development
site and the business site. In reality, not all customers could
afford to adhere to on-site customer practice. This is not
because they are not serious but it is due to other managerial
issues.

The humanistic aspect of the communication and the
simplicity aspect promote good teamwork because it is an
important ingredient towards developing quality software. A
stable teamwork will facilitate continuous testing, which will
enhance courage because members are confident of
producing better and well-tested software. The satisfaction of
producing quality software is very important because it will
boost the confidence of the team to produce more challenging
software.

3.0 THE POSITIVE AFFECT OF THE XP
PRACTICES

Past research has shown that a positive affect induction leads
to a greater cognitive flexibility and facilitates creative
problem solving across a broad range of settings. Research
works by Carnevale and Isen (1986), Aspinwall (1998),
Ashby, Isen, & Turken (1999) and Isen (2001), suggest that
positive affect increases a person’s ability to organize ideas in
multiple ways, to access alternative perspectives and also to
improve performance in several tasks that are typically used
as indicators of creativity or innovative problem solving.

In this study, XP methodology was chosen as a positive
inducer because of the existence of several XP practices that
warrant feedback to the developers. Positive feedback about
one’s performance has been known as a positive affect
inducer (Estrada, Isen, & Young, 1997; Syed-Abdullah,
Holcombe, & Gheorge. 2006a). The accumulating evidences
suggest positive affect may predict increased attention to
information and a more careful, thorough processing of any
information when the information is self-relevant or
important. The XP practices associated with feedback seeking
are simple design, pair programming, continuous testing,
continuous integration and frequent review (release).

Studies by Aspinwall and Muraven et al noted that people
must have a surplus of resources such as time, energy and
attention to engage in a proactive behaviour. Using XP
approach, the developers experienced a surplus of time during
coding because less time was engaged in the designing phase.
Using simplified design as an alternative to cumbersome
steps in formal design, XP developers are actually releasing
the stressful task of creation, thus liberating the mind to be
more creative and innovative. By reducing the technical
aspect of the design, the mind was able to approach the

problem solving task through a breadth first approach. Design
is only an early manifestation of ideas, whereas the coding
process allows the developers to realize their idea in a more
concrete way. This approach is considered as a positive affect
inducer because it allows feedback on the design through the
programming code. The ability to see the advantages and
identify the flaws in the design allows the developers to be
more creative in the next part of the system. This is the reason
why simple design can accommodate a flexible requirement
because the process of creating part of the system in this
manner allows the developers to be more innovative in the
problem solving process.

It was observed that the practice of pair programming started
with the initial socializing amongst the pair thus creating a
positive mood amongst them before any formal programming
commenced. The positive mood which is experienced and the
attention of the two developers allow the pair to engage in a
more proactive behaviour. The ability to discuss the
advantages and disadvantages of certain coding ideas enables
the pair to seek improvements and to avoid specific
weaknesses. Even though pair programming was not a
favourite practice, because it was perceived as difficult due to
being time consuming and at a different level of programming
experience, nevertheless, at the end of the project, the
members often acknowledge that their creative ideas were
explored much more during this process. Studies on pair
programming have provided the evidence about the benefits
of pair programming . With pair programming practice,
positive affect is induced through early socializing, more
attention and immediate feedback amongst the pair.

Continuous testing allows feedback on the developed code. In
the normal software testing domain, testing is usually left at
the end of the development cycle thus leaving a very short
time for complete testing. In this situation, often the
developers were faced with products that have too many
defects, as the bugs were discovered too late. The benefit of
testing as the software is developed is that the developers are
always certain that the software developed is always test
compliant. Continuous testing is a practice that is structured
so that different levels of testing can be conducted as the
solution is being built. In the study by Trope and Pomerantz
(1998), participants in whom positive affect has been induced
showed greater interest in the part of the test they had failed
than did neutral mood participants. The emphasis of the
continuous testing enables the developers to feel more
confident about the correctness of the code and therefore
bolster their confidence and self-esteem.

Continuous integration is another feedback seeking practice,
which allows the developers to address performance problems
earlier in the development process. The more frequently the
developers were able to test the integrated system, the more
often they were able to check the functional integrity of the
application as some problems do not manifest themselves

until they are in the integration environment, such as when a
database application is finally tested in a genuine load. The
ability to address the performance problems early and to
continuously improve the system allows the developers to
enjoy a level of self regard or positive affect. Developers
using this practice had the advantage of improving their self-
esteem continuously, as they worked to perfect the
functionality of the integrated system.

Frequent release (review) is another practice that commands
feedback. Feedback from the client be it positive or negative,
is also a positive affect inducer. Accumulating evidences
suggest that positive affect can create an increased interest in
information about one’s liabilities. A study by Trope and
Neter (1994) has shown that prior positive experience
subsequently increased the interest in feedback of high rather
than low self-relevance, even when the feedback was
expected to diagnose weaknesses rather than strengths.

The above theoretical study of XP practices identified these
practices as being a positive affect inducer. A replicated study
in UUM were carried out to determine empirically, whether
teams using these practices would experience higher positive
affectivity than the teams using the design-based Rational
Unified Process (RUP) approach.

H1: The Agile (XP) team will experience a higher level
of positive affectivity than the Formal (RUP) team at

the end of the project.

To test this hypothesis, a comparison study was carried out on
the third year software engineering students in 2008.

3.1 Comparison Study (UUM 2008)

To measure the developers’ state of the positive affect, the
positive affect scale of the Positive and Negative Affect
Schedule (PANAS) was used. Positive affect was induced by
introducing and requiring the XP methodology to be used by
half of the development teams. The studies do not include the
negative affect because previous research has shown that
positive affect can operated as a single construct, indicating
that the fluctuation of the positive affectivity, has no effect on
the negative affectivity of a person .

The validity and reliability of PANAS scale has been
demonstrated by other studies (Watson & Tellegen, 1985;
Watson, Pennebaker, & Folger, 1987; Watson & Clerk,
1997).The Positive Affect scale showed a satisfactory internal
consistency coefficient, Cronbach alpha = 0.78 during the
first reading (Week 2), Cronbach alpha = 0.89 during the
second reading (Week 6) and Cronbach alpha = 0.87 during
the third reading (Week 15). At the beginning of the study,
Independent sample t-test was used to compare the total
mean score for Positive Affect variables and the result
showed no significant difference between Formal teams

[N=28 , Mean Score (M) =34.12, Standard Deviation
(SD)=4.77] and Agile (XP) teams [N=30, Mean Score (M)
=34.53, Standard Deviation (SD)=4.41].

In order to test the hypothesis, Mixed between-within
ANOVA was conducted. It was indicated that there is no
significant difference between the three intervals; Reading 1
(Week 2), Reading 2 (Week 6) and Reading 3 (Week 15) for
both methodologies; Formal (N=28, M1= 34.12 SD1 = 4.77;
N=28 M2 =33.61, SD2 = 5.07; N=28 M3 =33.86, SD3 = 4.57)
and Agile (N=30, M1=34.53, SD1 = 4.41; N=30 M2 = 34.17,
SD2 =5.90; N=30 M3 =35.37, SD3 = 6.37) (see Figure 1 and
Table 1). This may due to the small effect size (eta squared
=0.010). Besides, the results may be moderated by others
factors such as partial adoption of Agile (XP) practices during
this study. This finding supported earlier finding on the
positive effect of Extreme Programming on SE teams (Syed-
Abdullah et al. 2005).

2 6 15

week

33.50

34.00

34.50

35.00

35.50

Mean Score of Positive Affect

Methodology

Agile (XP)

Formal (RUP)

Figure 1: Line graph of the positive affect of the two teams
before treatment (week 2) and after treatments (week 6 and

week15) [UUM 2008]

Table 1: Descriptive Statistics of Positive Affectivity of Both Teams
(UUM 2008)

Note: p< 0.05

At the end of Week 15, the systems were graded by teams of
evaluators consisted of the project client and one lecturer for
each team. The mean scores awarded by both evaluators were
assessed. The following graph shows marks achieved by both
teams according to the projects.

Figure 2: Bar graph showing Teams Performance according
To Project (UUM 2008)

The Mann-Whitney non parametric statistical test was used to
compare the mean scores and the results showed significant
difference in the mean scores for the Formal teams
[M=21.09, SD=2.91] and the Agile (XP) teams [M=23.96,
SD=1.31] The graph indicates that teams using Agile (XP)
approach were awarded higher score than Formal (RUP)
teams.

4.0 DISCUSSION

In this study, even though there was no significant difference
in positive affect between the methodologies, it is interesting
to observe the impact of the XP on the positive affectivity of
the developers which result in higher score being awarded to
the agile teams. The teams using a more flexible approach,
such as the XP methodology, were able to incorporate the
constant changes made by the clients and thus able increase
their positive mood.

When a person experiences a positive affect, they show a
greater preference for a larger variety of actions and are able
to see and think of more possibilities and options to solve
whatever problem is faced. People with a positive affect are
more likely to take action because they are proactive. This
study suggests that when people experience joy and mild
contentment, they are more likely to think of a wider range of
actions, become more resilient over time and are more likely
to develop long-term plans and goals.

ACKNOWLEDGEMENT

The authors would like to express our appreciation to
Software Engineering Project 1 course lecturers, from
Universiti Utara Malaysia, Dr Azman Yasin and Dr Haslina
Mohamad who have given their support towards the
completion of this research. In addition, we would like to
thanks all clients, supervisors and students in this study.

Method N M1 SD1 M2 SD2 M3 SD3

Formal
(RUP)

28 34.12 4.77 33.61 5.07 33.86 4.57

Agile(XP) 30 34.53 4.41 34.17 5.90 35.37 6.37

Car Loan

Post G
rad

H
om

e Loan

C
w

ork C
ustom

ised

LecturerAppoint

RealTime

MAIK

project

0 .0 0

5 .0 0

1 0 .0 0

1 5 .0 0

2 0 .0 0

2 5 .0 0

3 0 .0 0

Mean Evaluation

M e th o d o lo g y

A g i le (X P)

F o r m a l (R U P)

REFERENCES

Anderson, C., & Thompson, L.L. (2004). Affect from top
down: How powerful individuals' positive affect
shapes negotiation. Organizational Behavior and
Human Decision Processes, 95, 125-139.

Ashby, F.G., Isen, A.M., & Turken, A.U. (1999). A
neuropsychological theory of positive affect and its
influence on cognition. Psychological Review, 106,
529-550.

Aspinwall, L.G. (1998). Rethinking the Role of Positive
Affect in Self-Regulation. Motivation and Emotion,
22(1), 1-32.

Beck, K. (2000). Extreme Programming Explained: Embrace
Change. USA: Addison-Wesley.

Carnevale, P.J.D., & Isen, A.M. (1986). The influence of
positive effect and visual access on the discovery of
integrative solutions in bilateral negotiation.
Organizational Behavor and Human Decision
Process, 37, 1-13.

Cockburn, A., & Williams, L. (2000). The Costs and
Benefits Pair Programming in Extreme Programming
Examined, G. Succi and M. Marchesi (eds.).
Addison-Wesley Publishing Co., pp 223-248.

Estrada, C.A., Isen, A.M., & Young, M.J. (1997). Positive
Affect Facilitates Integration of Information and
Decreases Anchoring in Reasoning among
Physicians. Organizational Behavior and Human
Decision Processes, 72(1), 117-135.

M. Fowler, K. Beck, J. Brant, W. Opdyke, & D. Roberts.
(1999). Refactoring: Improving the Design of Existing
Code. Addison Wesley.

Holcombe, M. (2002). Extreme Programming for Real: a
disciplined, agile approach to software engineering.
University of Sheffield, Sheffield, pp. 183.

Isen, A. M. (2001). An influence of positive affect on
decision making in complex situations: Theoretical
Issues with practical implications. Journal of
Consumer Psychology, 11(2), 75-85.

Mazni, O., Syed-Abdullah, S. L., & Holcombe, M. (2009).
Being Agile in Classroom: An Improvement to
Learning Programming. In CD Proceedings of
National ICT in Education Seminar (February 3-4,
2009). Ipoh, Malaysia.

Muraven, M., Tice, D.M., & Baumeister, R.F. (1998). Self
control as limited resource: Regulatory depletion
patterns. Journal of Personality and Social
Psychology, 74, 774-789.

Succi, G., Marchesi, M., Pedrycz, W., & Williams, L. (2002).
Preliminary Analysis of the Effect of Pair
Programming on Job Satisfaction. 3rd International
Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP2002),
Sardinia, Italy, 212-214.

Syed-Abdullah, S.L., Holcombe, M., Karn, J., Cowling, T., &
Gheorge, M. (2005). The Positive Affect of the XP
methodology. Lecture Notes in Computer Science,
LNCS, 3556. (pp. 218-221). Berlin Heidelberg:
Springer-Verlag.

Syed-Abdullah, S. L., Holcombe, M., & Gheorge, M.
(2006a). Extreme Programming and its ability to
improve the creativity and innovative of SE teams.
Paper presented at the Proceedings of National ICT
Conference, UiTM Perlis, Malaysia.

Syed-Abdullah, S., Holcombe, M., & Gheorge, M. (2006b).

The Impact of an Agile Methodology on the Well
Being of Development Teams. Empirical Software
Engineering, 11(1), 143-167. doi:
10.1007/s10664-006-5968-5

Tong, K. L. (2004). Essentials Skills for Agile Development.
Macau Productivity & Tech. Retrieved from
http://www.agileskills.org/pdf/ESAD.pdf

Trope, Y., & Neter, E. (1994). Reconciling competing
motives in self-evaluation: The role of self-control in
feedback seeking. Journal of Personality and Social
Psychology, 66, 646-657.

Trope, Y., & Pomerantz, E.M. (1998). Resolving Conflicts
Among Self-Evaluative Motives: Positive
Experiences as a Resource for Overcoming
Defensiveness. Motivation and Emotion, 22(1),
53-72.

Watson, D., & Tellegen, A. (1985). Towards a consensual
structure of mood, Psychological Bulletin, 98,
219-235.

Watson, D., Pennebaker, J. W., & Folger, R. (1987). Beyond
negative affectivity: Measuring stress and
satisfaction in the workforce. Journal of
Organizational Behavior Management, 8(2), 141-157

http://www.agileskills.org/pdf/ESAD.pdf
http://dx.doi.org/10.1007/s10664-006-5968-5

Watson, D., & Clark, L. A. (1997). Extraversion and its
positive emotional core. In R. Hogan and J.A.
Johnson (Eds.), Handbook of Personality
Psychology, Academic Press, San Diego, Ca.,
767-793

Williams, L. (2002). Pair Programming: Why Have Two Do
the Work of One? In Extreme Programming
Perspectives, M. Marchesi, G. Succi, D. Wells and
L. Willaims (eds.), Addison-Wesley, Boston, pp.
23-33.

	Department of Computer Science
	ABSTRACT
	Keywords
	Agile methodology, empirical study, XP, positive affect, SE team

	1.0 INTRODUCTION
	2.0 EXTREME PROGRAMMING (XP)
	3.0	THE POSITIVE AFFECT OF THE XP PRACTICES
	3.1Comparison Study (UUM 2008)

	ACKNOWLEDGEMENT

