
Identity Credential Issuance with Trusted Computing
Norazah Abd Aziza, Lucyantie Mazalanb

Cyberspace Security Centre, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur
aazahaa@mimos.my, blucyantie.mazalan@mimos.my

ABSTRACT

In a client-server environment that deals with multiple clients,
there is a need to provide a mechanism on the server to
manage the issuance of the client credentials for security
authorization. Credentials created using a particular own
platform identities and functions as an authentication
credentials to authenticate the platform itself in a network
communication. However, these credentials can easily be
shared, copied and stolen. This will led to an anonymous
service sharing and worst to come when the stolen credentials
is using for phishing attacks to the original user. One solution
to the problem is to use tamper-resistant hardware to which a
credential is bound such that a credential can only be
generated and used in connection with the hardware. For that,
manufacturers have started to embed into computers a tamper-
resistant piece of hardware, called trusted platform modules
(TPM), as specified by the Trusted Computing Group. This
mechanism insures that credentials can only be issued with the
TPM existence in the platform thus guarantees the platform
origins. This paper describes the component involved in the
credential issuance method by the server trusted computing
domain. To implement our approach, a client server
application is used as an interface through the secure
communication channel in credential request. The server acts
as a Trusted Third Party to verify authorized users in this
environment.

Keyword-Credential, Trusted Computing, Trusted Third Party

1.0 INTRODUCTION

Trusted Computing (TC) is a technology developed and
promoted by non-profit industry consortium that aims to
enhance the security of the trusted computing hardware and
software building blocks. The main goal of the consortium is
to come out with the specification for Trusted Platform
Module (TPM) [1] and surrounding software architectures
like the TCG Software Stack (TSS) [2]. These components
have potentials to be used for security and trust related
services like remote attestation and key management.

In this paper, we will discuss about credentials to serve the
authentication services of a client server network
environment. In particular, it describes about the credential
issuance and other factors that contribute to the
implementation of such activities. Our approach is supported
for both Windows and Linux platform. Hence, in the first

contribution the question how trust relationships between
remote platforms can be established by using TC is
addressed. The approach presented in this paper allows
establishing trusted communication channels by means of the
TCG’s specified remote attestation. The approach introduces
a so-called attestation proxy that is placed in front of the
actual application and performs a mutual platform attestation
of the two communication parties.

This paper is organized in the following way. It starts with
brief introduction in part one, followed by part two which
detail out the client and server environment in security
purpose. Part three of the paper mentions about the credential
issuance where much of the credential issuer components is
discussed. The development component issue are presented in
part four and finally is part five which describes the basic
architecture of the attempt containing the basic system
requirement continued by the current implementation in part
six. The paper ends with a conclusion.

2.0 CLIENT SERVER ENVIRONMENT

Client-server environment is an exciting architecture that
helps to redefine the end users role in application systems. It
also manages computer resources among multiple end users
in a computer network environment. Basically the client-
server environment is an approach or network design to split
an application’s processing across multiple processors to gain
the maximum benefit at the least cost while minimizing the
network traffic between machines. The key phase is to split
the application processing. In a client-server mode each
processing works independently but in cooperation with other
processors. Both rely on each other to perform an
independent activity to complete the application process. The
distinguishing feature of a client-server system environment
is that it contains cooperative processing capabilities through
the use of networks.

A server acts as a process that resides at the central
location of resource data to provide services to one or more
clients. The server is connected to the network and is made
available to the client. Whereby, a client is an intelligent
workstation processer that is capable on making request to
servers to establish certain application processes. Since the
server is usually the central location for critical data, adequate
trusted securities need to be taken to ensure data safety.
Security is implemented to cater the robust access control,
data integrity, confidentiality and accountability services in
client server environment. The natural question resulted as a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42980658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

corollary of this, is how do we establish trusted securities in
such a system?

One of the approaches available is well known as trusted
computing network environment demonstrated by the TCG
specifications. The goals of trusted computing are to protect
the most sensitive information, such as private and symmetric
keys, from theft or use by malicious code. Trusted computing
assumes that client software is going to be compromised at
some time during its life, and provide protection for its
sensitive keys in case this should happened [3]. This concept
of trusted computing covers a rather vast set of specifications
and standards ranging from the core trusted platform module
to both processor and operating system. Within this
specification a trusted platform is one that behaves in an
expected manner for a particular purpose [4].

Security plays a significant role in a client-server network
environment. Users are typically identified with a user
account, and system-specific controls can be mounted on
these accounts to provide security mechanisms. Security
services such as access control and accountability can be
implemented in this manner, with the accounts providing a
form of stable identity. Other services such as authentication
and non-repudiation clearly also rely on the establishment and
preservation of stable identities. Thus most of the generic
security services are reliant on the provision of stable
identities. This environment, by definition provides a function
of a trusted third party who can provide assurance as to the
identities of entities in the network. With a TPM hardware
embedded in the platform and a trusted third party in work,
the network provides integrity, creation and use of digital
signatures and privacy protection mechanisms.

One of the potential security services is called by the name
of attestation [5]. Attestation is a process of assuring that
information is accurate and obviously a critical concept for
the trusted platform. This is because of the trust in the system
is based on taking measurements and checking the
measurements. If a system is not able to attest the accuracy of
that information, then the trust to the platform does not exist.
Attestation is closely related to authentication. In the network
environment, anonymous authentication access could
facilitate the security mechanism. According to [4], the
authentication concept performed by the access requestor
requires an access to the facilities without necessarily
revealing their identities to external parties. This requirement
stems from the possible need for each individual to maintain
some degree of plausible deniability as to these presences at a
convenor. One of the approaches to perform this requirement
is by using Direct Anonymous Attestation (DAA) [6].

3.0 CREDENTIAL ISSUANCE

Trusted Third Party

In cryptography, a trusted third party (TTP) is an entity
which facilitates interactions between two parties who both
trust the third party; they use this trust to secure their own
interactions. TTPs are common in cryptographic protocols,

for example, a certificate authority (CA) [7]. As an example,
imagine two people, Alice and Bob wish to communicate
securely that use cryptography. Alice may need to obtain a
key that use to encrypt messages in order to send it to Bob. In
this case, the CA is the trusted third party which sends the
key to Alice and Bob. The key then uses by Alice to send
secure messages to Bob as she trust the CA.

The Public Key Infrastructure (PKI) depends on the
concept of a TTP. Nowadays, the PKI technology is widely
used in computing and networking environment. A PKI
enables users of a basically unsecure public network such as
the Internet to securely and privately exchange data through
the use of a public and a private cryptographic key pair. The
key pair is obtained and shared through a TTP. Thus, the
public key cryptography is also based on the digital signing of
public keys. In this case, however, one central authority signs
all the public keys, and everybody trusts the central authority.
The authority’s public key is distributed among the users,
who can use it to verify the signatures on public keys of other
users [8].

With certificate authorities, every user in the system trusts
the CA through a process of digital signing since everything
that signed by CA is considered trusted. The CA sends its
public keys to the users to let them verify the signature. The
users must submit their information (names and public keys)
to ensure the trust is mutual to enrol with the CA. Then the
CA verifies the authenticity of the submitted information and
signs the submitted public key with its private key if
everything is correct. Finally, all the signed information is
sent back to the end users including with the CA signature.

Privacy CA

In a verification process, each TPM has to generate a
unique RSA key pair called Endorsement Key (EK).
Authentication of a valid TPM that belongs to the platform is
done by certification of EK issued by CA or verifier itself
which have knowledge about EKs of all genuine TPM.
Basically, if a verifier wants to ensure that the platform runs
on a secured operating system, TPM will send its
measurements about the platform (PCR value) to the verifier.
Then, TPM needs to validate the PCR using the EK. So,
verifier knows PCR is valid as well as TPM itself. However,
there are problems on privacy issue using this way. All the
transaction would become linkable to each other since two
different verifiers can tell that they talk to the same platform
[9]. Figure 1 illustrates this issue.

Platform

TPM

Verifier 1

Verifier 2

EK, authek (PCR)

EK, authek (PCR)

Figure 1: Privacy issue on verification of secure platform.

To solve this problem, trusted computing group (TCG) has
proposed two protocols which remotely convince a
communication partner that a trusted hardware is indeed a
trusted hardware. These protocols will enable two
communication partners to establish the other end in a
secured computing platform and therefore making sure that it
is a safe data exchange. Some degree of privacy is provided
by these remote identification protocols to users of the
platform. However, the communication partners can only
establish the other end using a trusted hardware device but
not in a particular device [11]. These specified protocols are
Privacy CA and Direct Anonymous Attestation (DAA). In
this paper, we are not discussing about DAA protocol since
we use Privacy CA in our implementation as prototypes. The
Privacy CA protocol was initially used by the group to solve
the above mentioned privacy issue for user that needs the
verification of the platform containing a TPM.

The Privacy CA involves TTP in each transaction and the
party must be fully trusted by all other parties. The Privacy
CA is assumed to know the public parts of the Endorsement
Keys of all valid TPM. This valid TPM refers to an
uncompromised TPM. In contrasts, a rogue TPM is a TPM
that has been compromised and had its secrets extracted.
Now, whenever a TPM needs to authenticate itself to a
verifier, it generates a second RSA key pair, called an
Attestation Identity Key (AIK). Then, it sends the AIK public
key to the Privacy CA, and authenticates this public key
relating to the EK. The Privacy CA will issue a certificate on
the TPM’s AIK if it finds the EK in its list. Through this
protocol, there are two possibilities to detect a rogue TPM
[10]:

1. If the distribution of the EK secret key which was
extracted from a TPM is detected and announced as a
rogue secret key, the Privacy CA can compute the
corresponding public key and remove it from its list of
valid Endorsement Keys.

2. If the Privacy CA gets many requests that are
authorized using the same Endorsement Key, it might
needs to reject that requests. In practice, it’s probably
be determined by some risk-management policy due to
the exact threshold on requests that are allowed before
a TPM is tagged rogue depending on the actual
environment and applications.

4.0 TCG SOFTWARE STACK AND TBS

The TCG also defines an accompanying software
infrastructure called the TCG Software Stack (TSS) as well as
TPM hardware. The TSS is used by TCG as interface
between applications and the TPM (through the TPM driver).
TSS 1.2 specification is provided and standardized by the
TCG. TSS design goals are to supply one single entry point
to the TPM functionality (exclusive TPM access),
synchronize concurrent TPM access, TPM resource
management (key slots, authorization sessions etc.) and
building of TPM commands messages according to TPM

specification. TSS is designed as a stack of discreet modules
with clearly defined interfaces between them.

TCG Device Driver Library (TDDL), TSS Core Services
(TCS) and TSS Service Provider (TSP) are software layers in
TSS. Every layer provides different sets of functionalities.
Figure 2 shows the TCG Software Layering architecture. The
TCG Device Driver Library (TDDL) is an intermediate
module between the TCS and the kernel mode TPM Device
Driver (TDD). The TDDL supplies the conversion between
user mode and kernel mode. TDDL commands are sent at
byte level as a stream to the TPM Device Driver. There is
typically one TDDL per TPM and is provided by the TPM
manufacturer. Access to the TPM is exclusive and
synchronized via the TDDL.

TSS Service Providers (TSP) is the top-most modules and
provides a rich, object-oriented interface for applications to
incorporate the full capabilities of a TCG-enabled platform.
The interface used by the applications to access the TSP is the
TSS Service Provider Interface (TSPI). While not an
architecture requirement, it is intended that the TSP obtain
many TCG services such as TPM byte stream generation, key
management, etc from the TCS [2]. It provides contexts
which are used by applications to manage TPM objects such
as policy, key, PCR and others. Furthermore, it is provided as
a library and used by all high-level applications, for example
a Cryptographic Service Provider (CSP) or user application.
Therefore, the application developers do not need to have in
depth TPM knowledge.

Figure 2: TCG Software Stack Architecture [12]

Microsoft has implemented a good base of functionality in
Windows Vista using the TCG specification such as TSS by
using Microsoft CryptoAPI as interface and BitLocker which
uses TPM to measure boot process attributes and store keys
from full volume data encryption. Before Windows Vista, the
TPM device driver and TDDL are based on vendor specific as
well as some TSS which is supplied by vendor. Then, Vista
comes with a basic TPM abstraction layer called TPM Base

Services (TBS) which a Remote Procedure Calls (RPC) based
service that only accessible from the local machine.

TBS provides virtualization of TPM resources allowing
multiple applications (TSS, OS services etc.) to access the
TPM. It allows restricted access to TPM commands on a “per
command” basis. In TBS, the resources such as key handles
and auth handles are replaced by virtual handles. TBS keeps
the mappings of handles and if TPM runs out of resources,
TBS takes care of swapping out entities from the TPM. In this
situation, the virtual resource handles are not affected. If a
swapped out resource is used again (via its virtual resource
handle) the TBS tries to reload the entity into the TPM [12].

The TBS component is divided into four functional areas.
They are Resource Virtualization, Command Scheduling,
Power Management and Command Blocking [13]. Each
command submitted to the TBS is associated with a specific
entity to ensure that different entities cannot access each
other's resources. This is accomplished by creating one or
more contexts for an entity, which are then associated with
each subsequent command submitted by that entity. Then, the
TBS can execute TPM commands under the appropriate
context after receive the command which includes a context
object. An entity creates the context before it accesses the
TBS and maintains the context until it is finished performing
TBS accesses. For example, in the case of a TSS, the TCG
core services (TCS) component of the TSS would create a
TBS context when it starts up, and it would keep that context
active until it shuts down [13].

5.0 ARCHITECTURE

The overall architecture of the proposed implementation is
depicted in Figure 3. The implementation has the following
characteristics:

• A server machine on Linux platform has the TPM chip
hardware.

• Client machines on Linux or Windows platform have
TPM chip hardware.

• A trusted third party software embedded in the server
and acts as the credential issuer uses the Privacy CA
protocol.

• A database connected to the server is to manage the
information of the client’s credentials.

• The server and the client is connected by the network
and coupled by a secured communication.

• TSS and TBS are softwares performing the trusted
protocols and are installed in both server and client for
TPM application implementation.

Figure 3: Basic Implementation Architecture

The server serves as the manager to the client in regards to
the credential issuance procedure. Request made by the client
through the web services is acknowledged by the server for
the credential procedure in a secured connection
communication. The server inquires the credential from the
credential issuer that is the trusted third party. The trusted
third party grants the credential to the server while the server
replies the credential to the client through secure
communication channel.

In order to fulfil the management of credentials for clients,
the server needs a database to store and clear the information
of the credentials which is requested by the clients. The server
has the requirements to request and revoke that offers the
possibility to record and eliminate the credential’s
information from the database.

6.0 CURRENT IMPLEMENTATION

Referring to the above architecture, installation of all
components must be established in order to proceed with the
development. The current phase of implementation setup is
focusing on providing the environment development for
server and the trusted third party.

These software packages installation and configuration are
required to facilitate the above mentioned components:

• Qt as a cross-platform application framework for
desktop and embedded development. This software
includes an intuitive API and C++ class library
integrated tools for client and server GUI development
in this research. More of the Qt can be found here
[14]. This research uses Qt4 version.

• Secure communication channel and reliable transport
protocol to establish a reliable communication
between server and client. This is to ensure the
security of the data throughout the application process
as well as protecting it during the credential issuance.

• OpenSSL [15] as an open source toolkit implementing
the Secure Sockets Layer (SSL v2/v3) and Transport
Layer Security (TLS v1) protocols, including the
necessary cryptographic operations. The functionality
provided by an OpenSSL engine allows the
implementation of certificates issuance in this research
development.

• TrouSerS TCG Software Stack [2] to provide an API
to the operating systems and applications to implement
the functionality provided by the TPM.

• The TrouSerS TPM Tools [16] is implemented for
testing to check TPM capability on TPM hardware and
software. This tool is a set of open source programs
that provides commands allowing a platform
administrator to manage and diagnose the TPM
resident on a platform.

• TPM Device Driver is required in order to use the
TPM after Linux bootstrapped. This is necessary for
both hardware and software TPM implementation. For
TPM hardware module implementation, the device

driver is specified to the TPM manufacturer. While for
TPM software implementation, the device driver can
be obtained by installing the TPM Emulator. This
research development is currently been done on an
Intel machine provided with Infineon TPM chip [1]
[2]. The experiment outputs are shown in Figure 4 and
5.

Figure 4: Console command to locate existence of the TPM
Device Driver.

Figure 5: Console display the detected PCR value.

• TPM Manager as a realization of open source TPM
management software that provides an easy-to-use
graphical user interface. TPM Manager is installed and
run to for experiment. The experiment outputs are
shown in Figure 6, 7, and 8.

Figure 6: TPM Manager interface display the TPM TSS Status.

Figure 7: TPM Manager interface display the TPM and TSS
Details.

Figure 8: TPM Manager interface display the detected PCR value.

7.0 CONCLUSION AND FUTURE WORKS

This paper describes in general the implementation setup
requirement of current research progress in identity credential
issuance system. The software components that have been
installed and configured are the Qt software, the OpenSSL
engine, the TrouSerS TCG Software Stack, the TrouSerS
TPM Tools, the TPM Device Driver, the TPM Emulator and
the TPM Manager. The future works will focus on the
challenge in implementing the trust and secure of the trusted
third party in order to generate credentials as well as dealing
with different types of attestation protocol. In addition, this
research will also reach on the development of the client
application in Windows platform.

8.0 REFERENCES

TPM Main: Part 1 Design Principles. 1.2 revision 85 edition,
2005.
Trusted Computing Group. Retrieved from
http://trustedcomputinggroup.org.

Challener, D., Yoder, K., Catherman, R., Safford, D. and Van
Doorn, L. (2007). A Practical Guide to Trusted Computing:
Pearson Education, Inc.
Balfe, S., Lakhani, A.D., Paterson, K.G. (2005). Trusted
Computing: Providing security for Peer-to-Peer Networks. In
Proceedings of the 5th IEEE Conference on Peer-to-Peer
Computing, 117-124.
Sadeghi, A.-R. and Stüble, C. (2004). Property-based
attestation for computing platforms: Caring about properties,
not mechanisms. In Proceedings of the New Security
Paradigms Workshop, 67-77.
Balfe, S., Shiqun Li and Jianying Zhou. (2006). Pervasive
Trusted Computing. In Proceedings of the 2nd IEEE Workshop
on Security, Privacy and Trust in Pervasive and Ubiquitous
Computing, -94.
Trusted Third Party. Retrieved from
http://en.wikipedia.org/wiki/Trusted_third_party
Guynes, C. S. and Ron G. Thorn. (1995). Network Security in
a Client/Server Environment. In Proceedings of the ACM
SIGSAC Review, 6-12.
Camenisch, J. (2004). Direct Anonymous Attestation:
Achieving Privacy in Remote Authentication [Presentation].
ZISC Information Security Colloquium. Zurich Research
Laboratory.
IBM Research - Direct Anonymous Attestation. Retrieved
from http://www.zurich.ibm.com/security/daa/
Camenisch, J. (2004). Better Privacy for Trusted Computing
Platforms. In Proceedings of the 9th European Symposium On
Research in Computer Security, 73-88.
TCG Software Stack (TSS) Specification Version 1.2 Level 1
Errata A, Part1: Commands and Structures, March 7, 2007
TPM Based Services. Retrieved from
http://msdn.microsoft.com/en-us/library/aa446796(VS.
85).aspx
Qt for Embedded Linux. Retrieved from http://trolltech.com/
products/qt/features
OpenSSL. Retrieved from http://www.openssl.org/
TrouSerS - An open-source TCG Software Stack
implementation, created and released by IBM. Retrieved from
http://sourceforge.net/projects/trousers/

http://sourceforge.net/projects/trousers/
http://www.openssl.org/
http://trolltech.com/products/qt/features
http://trolltech.com/products/qt/features
http://msdn.microsoft.com/en-us/library/aa446796(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa446796(VS.85).aspx
http://www.zurich.ibm.com/security/daa/
http://trustedcomputinggroup.org/

