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TIMELIKE MINIMAL LAGRANGIAN SURFACES IN THE INDEFINITE
COMPLEX HYPERBOLIC TWO-SPACE

JOSEF F. DORFMEISTER AND SHIMPEI KOBAYASHI

Abstract. It has been known for some time that there exist 5 essentially different real

forms of the complex affine Kac-Moody algebra of type A
(2)
2 and that one can associate 4 of

these real forms with certain classes of “integrable surfaces”, such as minimal Lagrangian
surfaces in CP2 and CH2, as well as definite and indefinite affine spheres in R3.

In this paper we consider the class of timelike minimal Lagrangian surfaces in the indefi-
nite complex hyperbolic two-space CH2

1. We show that this class of surfaces corresponds to
the fifth real form.

Moreover, for each timelike Lagrangian surface in CH2
1 we define natural Gauss maps

into certain homogeneous spaces and prove a Ruh-Vilms type theorem, characterizing time-
like minimal Lagrangian surfaces among all timelike Lagrangian surfaces in terms of the
harmonicity of these Gauss maps.

Introduction

It became more and more clear in recent years that many surface classes are characterized
by harmonic maps into some k-symmetric space. In the classical case Ruh-Vilms [25] have
characterized all constant mean curvature surfaces in R3 among all surfaces as those for which
the (classical) Gauss map into the symmetric space S2 = SO3/SO2 is harmonic. Another
case consists of all constant mean curvature surfaces in the real hyperbolic space H3, which
are those surfaces in H3 for which the “normal Gauss map” into the unit tangent bundle of
H3, considered as a 4-symmetric space, is harmonic, [9]. Another group of surfaces with an
analogous characterization seem to be the definite and the indefinite affine spheres, and the
minimal Lagrangian surfaces in CP2 and in CH2, see for examples, [7, 12, 11, 21]. (So far
only in [23] a harmonic “Gauss map” is given explicitly.)

All these examples come in S1-families of surfaces of the same class and can be investigated
by using the loop group technique. Here one observes that the naturally associated moving
frames of an associated family are contained in a specific loop group. In [7] it was observed
that the indefinite affine spheres in R3 are associated with a real form of the affine Kac-

Moody algebra of type A
(2)
2 . Later it was observed that the definite affine spheres (of elliptic

type or of hyperbolic type) also are associated with a real form of type A
(2)
2 , as well as
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the minimal Lagrangian immersions into CP2 and the the minimal Lagrangian immersions
into CH2. In view of the classification of all real forms of the complex affine Kac-Moody

algebra of type A
(2)
2 by Heintze-Groß [13] or Rousseau et al. [3, 4] it became clear, that the

surface types mentioned above correspond exactly to four of the five types of inequivalent real

forms, see [8]. For the case of the complex affine Kac-Moody algebra of type A
(1)
1 it has been

shown in [18] that the real forms of this Kac-Moody algebra are related to constant mean
curvature/constant Gaussian curvature surfaces in the Euclidean 3-space, the Minkowski
3-space or in the hyperbolic 3-space.

In this paper we present the “missing case”. More precisely, we define timelike minimal
Lagrangian surfaces in the indefinite complex hyperbolic space which are associated with the
missing real form, and also define a Gauss map for all Lagrangian surfaces in the indefinite
complex hyperbolic space. These Gauss maps take values in a quasi 6-symmetric space (see
Definition 5) and are Lorentz primitive harmonic if and only if the corresponding Lagrangian
surfaces in the indefinite complex hyperbolic space are minimal. We note that in [10, 14],
the loop group methods for timelike constant mean curvature surfaces and timelike minimal
surfaces in the Minkowski 3-space R3

1 have been developed, and these surfaces correspond to

a real form of the complex affine Kac-Moody algebra of type A
(1)
1 .

This result permits to apply the loop group technique which represents a general procedure
to construct all surfaces of the associated class; in our case all minimal timelike Lagrangian
surfaces in the indefinite complex hyperbolic space. More on this is left to a separate inves-
tigation.

1. Timelike minimal Lagrangian surfaces in CH2
1

In this section, we define timelike Lagrangian surfaces in CH2
1 and discuss their basic prop-

erties. In particular we characterize minimality of a timelike Lagrangian surface by the
vanishing of the so-called “mean curvature” 1-form, Proposition 1.11.

1.1. Surfaces in CH2
1. Let

(1.1) P0 =

0 1 0
1 0 0
0 0 −1

 ,

and consider the three-dimensional complex Hermitian flat space C3
2, that is, C3 together

with the pseudo-Hermitian form of signature (2, 1)

(1.2) 〈z, w〉 = zTP0w̄ = z1w2 + z2w1 − z3w3.

Vectors v ∈ C3
2 satisfying 〈v, v〉 < 0 or 〈v, v〉 > 0 will be called “negative” and “positive”

respectively. Clearly, the set of these vectors is open in C3
2 and C× acts freely on these sets

by multiplication.

Definition 1. The real part and the imaginary part of the indefinite Hermitian inner product
of C3

2 define a pseudo-Riemannian metric g and a symplectic form Ω, respectively:

(1.3) 〈 , 〉 = Re〈 , 〉+
√
−1 Im〈 , 〉 = g( , ) +

√
−1Ω( , ).
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Then the indefinite complex hyperbolic space CH2
1, see [6, Section 2], defined by

(1.4) CH2
1 = {C×v | v ∈ C3

2, 〈v, v〉 < 0}
is a two-dimensional complex manifold. Let

U2,1 =

{
A
∣∣∣ Invertible real linear map in C3

2

satisfying 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ C3
2.

}
.

Then C× ·U2,1 is a connected reductive Lie group which acts transitively on the set of negative
(resp. positive) vectors. As a consequence, U2,1 acts transitively on CH2

1 and it is easy to
verify that the stabilizer in U2,1 of the negative vector e3 = (0, 0, 1)T is given by the diagonal
block form matrix group U1,1 × U1 in U2,1, where U1,1, is the group of isometries of the
indefinite Hermitian metric of C2

1 given by (z, w) = z1w2 + z2w1.

As a consequence, CH2
1 can be represented as the indefinite Hermitian symmetric space, see

for example [26, Section 2]:

(1.5) CH2
1 = U2,1/U1,1 × U1.

The complex manifold CH2
1 carries naturally the pseudo-Hermitian metric induced from C3

2.
The projection is a pseudo-Riemannian submersion.

Remark 1.1. The indefinite complex hyperbolic space CH2
1 is known to be anti-isometric

(the metrics differ by a minus sign) to the complex de Sitter space CP2
1 of all positive lines

of complex Hermitian flat space C3
1 with signature (1, 2), see [1, p. 96].

Let H5
3 be the anti-de Sitter sphere (note again that the signature of C3

2 is (2, 1)):

H5
3 =

{
v ∈ C3

2 | 〈v, v〉 = −1
}
.

Then there exists the Boothby-Wang type fibration π : H5
3 → CH2

1 given by v 7→ C×v, [5, 6].
The tangent space of H5

3 at p ∈ H5
3 is

TpH
5
3 = {w ∈ C3

2 | Re〈w, p〉 = 0}.
Moreover, the space

Hp = {w ∈ TpH5
3 | 〈w, p〉 = 0}

is a natural horizontal subspace. Recall that the projection π from H5
3 to CH2

1 is a pseudo-
Riemannian submersion. Moreover, note that the form

ζ(p) = Im〈p, ·〉
is a contact form and H5

3 is a contact manifold. Note also that H5
3 can be represented as the

symmetric space

H5
3 = U2,1/U1,1,

where U1,1 here more precisely means the block form matrix group U1,1 × {1}.

Since π is a pseudo-Riemannian submersion, we will make use of the pseudo-Riemannian
metric g and the symplectic form Ω on CH2

1 which is given by

(1.6) g(a, b) = Re〈ã, b̃〉, Ω(a, b) = Im〈ã, b̃〉,

where a, b ∈ TpCH2
1 and ã, b̃ ∈ Tp̃H5

3 are the vectors in the horizontal subspace Hp̃ ⊂ Tp̃H
5
3

corresponding uniquely to a and b respectively via π.
3



Lemma 1.2. Let D be a simply connected domain in R2 and f : D → CH2
1 a Lagrangian

map, (thus satisfying Ω(df, df) = 0). Then there exists a lift f : D→ H5
3 such that

(1.7) 〈df, f〉 = 0.

This lift is unique up to a constant factor from S1. A lift f of a Lagrangian map f with the
condition (1.7) as above will be called a horizontal lift.

Proof. Let f̂ : D → H5
3 be a lift of f . Then 〈d̂f, f̂〉 + 〈̂f, d̂f〉 = 0, that is, 〈d̂f, f̂〉 takes purely

imaginary values. Moreover, the Lagrangian condition for f means that 〈d̂f, f̂〉 is a closed

1-form. Since D is a simply connected domain in R2, the form 〈d̂f, f̂〉 is exact. Hence there

exists a real function η : D → R such that
√
−1dη = 〈d̂f, f̂〉. Then we put f = e

√
−1η f̂ and

〈df, f〉 = 0 follows. �

Remark 1.3. A horizontal lift f : D→ H5
3 of f is sometimes called a Legendre lift of f : D→

CH2
1, since for a horizontal lift of a Lagrangian immersion the condition (1.7) is equivalent

with ζ(f(q))(df(q)) = 0, equivalently Im〈df, f〉 = 0, and this means that f is a Legendre
immersion into the contact manifold H5

3 . For a more general discussion of the notion a
Legendre lift see Section 3.

Let f : M → CH2
1 be a Lagrangian immersion from a two-dimensional manifold M . Then f

induces a pseudo-Riemannian metric on M . If we restrict the immersion f to any contractible
open subset D of M , then the induced metric of f is represented, on D, by using the horizontal
lift f, as

(1.8) ds2 = Re〈df, df〉 = g(df, df).

Note, the second equality above comes from the fact that two horizontal lifts of f only differ
by a constant scalar factor from S1.

In what follows we will consider exclusively timelike surfaces. Hence the induced metric ds2

is assumed to be indefinite. Moreover, we always assume that all surfaces are Lagrangian.

Remark 1.4. For a Lagrangian immersion f in CH2
1, we obtain for the complex structure J

of CH2
1 the identity g(J ◦ df, J ◦ df) = g(df, df). The definition of a Lagrangian surface

implies that J ◦df is perpendicular to df and a timelike vector. As a consequence, g(df, df)
is not spacelike. Hence we have the following corollary.

Corollary 1.5. There does not exist any spacelike Lagrangian surface in CH2
1.

1.2. Moving frame. In this subsection we discuss moving frames of timelike Lagrangian
surfaces in CH2

1. First we discuss null coordinates, that is, for an indefinite metric g =∑
i,j gij dxidxj on a surface M , such that g11 = g22 = 0 and g12 = g21 6= 0. The existence of

null coordinates can be found for example in [27] or [2, Prop 14.1.18 and Remark 14.1.19].
In our case, this result is formulated as follows:

Theorem 1.6. Let f : D → CH2
1 be a timelike Lagrangian immersion and f a horizontal

lift of f. Then the metric (1.8) induced by f (and f) on D is Lorentzian. In particular, in a
neighbourhood of any point of D null coordinates exist for f (and f).
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For a horizontal lift f of a timelike Lagrangian immersion f we thus have:

(1.9) Re 〈fu, fu〉 = Re 〈fv, fv〉 = 0, and Re 〈fu, fv〉 never vanishes.

From the horizontality 〈df, f〉 = 0, we have 〈fu, f〉 = 〈fv, f〉 = 0. Moreover, taking the
derivative with respect to v and u, respectively, we obtain 〈fu, fv〉 = 〈fv, fu〉. Hence, 〈fu, fv〉
is real and never vanishes. Assuming without loss of generality 〈fv, fu〉 > 0 we finally obtain:

(1.10) 〈fu, fu〉 = 〈fv, fv〉 = 0, and 〈fu, fv〉 = 〈fv, fu〉 is always positive,

and

Im〈fu, fv〉 = Ω(fu, fv) = 0.

Moreover, we have just seen that 〈fu, fv〉 is always positive. Therefore, we can assume that
there exists a real function ω : D→ R such that

〈fu, fv〉 = eω and ds2 = 2eωdudv

holds. Then we consider the coordinate frame

(1.11) F =
(
e−ω/2fu, e

−ω/2fv, f
)
.

It is straightforward to see that F takes values in U2,1, that is,

(1.12) P0FTP0 F̄ = id, equivalently F−1 = P0F̄TP0

holds, where P0 is defined in (1.1). Then | detF|2 = 1 and F ∈ U2,1 = S1 · SU2,1 follows.

We now want to compute the Maurer-Cartan form of F . For this we will use the mean
curvature vector of f .

First we consider the decomposition

D× C3
2 = df(R2)⊕ df(R2)⊥ ⊕ df(R2)⊥⊥

of the trivial bundle into three real, pairwise perpendicular rank 2 subbundles, where

H = df(R2)⊕ df(R2)⊥

is the natural horizontal subspace of Tf(z)H
5
3 . The vectors {fu, fv}, {

√
−1fu,

√
−1fv}, and

{
√
−1f, f} form a basis of these real two-dimensional subspaces respectively. Their pairwise

Hermitian products can be read off from the formulas listed just above. By the definition
of the metric g the projection π̂ from D × C3

2 to C3
2 induces an isometry from df(R2) onto

df(R2) and from df(R2)⊥ onto df(R2)⊥. The vector
√
−1f is annihilated by dπ.

More precisely, putting E1 = fu and E2 = fv we obtain basis vectors of df(R2). Then√
−1E1 =

√
−1fu and

√
−1E2 =

√
−1fv and

√
−1fu and

√
−1fv are in df(R2)⊥. The differ-

ential of π maps the vectors onto df(R2) and df(R2)⊥, respectively.

Recall that from [24, Theorem 1, c)], the second fundamental form IIf for a timelike La-
grangian surface f in CH2

1 can be obtained by the second fundamental form II f for a hor-
izontal lift f in H5

3 which takes values in the horizontal subspace H, given as IIf = dπII f:
see [24, Theorem 1]. Since f is in H5

3 ⊂ C3
2, and XY f takes values in C3

2 and the second
fundamental form II f can be given by

II f(X, Y ) = g(XY f, e1)e1 − g(XY f, e2)e2,
5



with X, Y ∈ Γ(TD) and e1 and e2 being perpendicular vectors of df(R2)⊥ of “length” 1 and
−1 respectively. Note that II f(X, Y ) takes values in TpH. Then the mean curvature vector
H of f is defined by 1

2
TrgII

f, that is,

(1.13) H =
1

2

{
II f(∂s, ∂s)− II f(∂t, ∂t)

}
=

1

2

{
g(∂2s f− ∂2t f, e1)e1 − g(∂2s f− ∂2t f, e2)e2

}
,

where {∂s, ∂t} is the orthonormal frame with respect to the indefinite metric ds2. In our

case we define e1 =
√
−1√
2

(E1 +E2)e
−ω

2 and e2 =
√
−1√
2

(E1 −E2)e
−ω

2 and ∂s = 1√
2
e−

ω
2 (∂u + ∂v),

∂t = 1√
2
e−

ω
2 (∂u−∂v). Then, from equation (1.13) it follows by a straightforward computation

H = e−2ω
{
g(fuv,

√
−1E1)

√
−1E2 + g(fuv,

√
−1E2)

√
−1E1

}
.

Now the mean curvature H of the original immersion f is given by

dπ(H) = H.

By abuse of notation we will also call H the mean curvature vector of f . A straightforward
computation shows that we obtain the following description of H:

H = g(e−ωfuv,E1)E2 + g(e−ωfuv,E2)E1,

where {E1,E2} = {
√
−1e−ω/2fu,

√
−1e−ω/2fv} is a null basis of df(R2)⊥. We thus compute H

as the component of e−ωfuv in df(R2)⊥. Since g(fuv, fu) = g(fuv, fv) = 0, we obtain e−ωfuv =
H + aif + bf. Taking inner products yields b = −g(fuv, f) = 1 and a = 0. Thus altogether we
obtain:

(1.14) H = e−ωfuv − f.

Remark 1.7. In general, for a surface f in H5
3 , the second fundamental form can be written

in the form
II(X, Y ) = g(XY f, e1)e1 − g(XY f, e2)e2 − g(XY f, e3)e3,

where {e1, e2, e3} are perpendicular vectors in df(R2)⊥ ⊂ Tf(p)H
5
3 of lengths 1 and −1 and

−1, respectively. If f is a Legendre immersion, then e3 =
√
−1f and g(XY f, e3) = 0 from the

Legendrian condition ζ(f(q))(df(q)) = 0.

Now we can prove the following theorem.

Theorem 1.8. The Maurer-Cartan form F−1dF = F−1Fudu + F−1Fvdv can be computed
as

U = F−1Fu =

 `+ ωu
2

m eω/2

−Qe−ω `− ωu
2

0
0 eω/2 0

 ,(1.15)

V = F−1Fv =

m− ωv
2
−Re−ω 0

` m+ ωv
2

eω/2

eω/2 0 0

 ,(1.16)

where

(1.17) Q = 〈fuuu, f〉, R = 〈fvvv, f〉, ` = 〈H, fu〉, m = 〈H, fv〉,
and H is the mean curvature vector in (1.14). Moreover, `, m, Q and R take purely imaginary
values.
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Proof. Writing F := (f1, f2, f3) and using the last equation in (1.12), we obtain F−1dF =
P0F̄ tP0dF . A straightforward computation now shows that

U = F−1Fu =

 〈f1u, f2〉 〈f2u, f2〉 〈f3u, f2〉
〈f1u, f1〉 〈f2u, f1〉 〈f3u, f1〉
−〈f1u, f3〉 −〈f2u, f3〉 −〈f3u, f3〉

 ,

and V is obtained from U by switching the subscripts u and v. We want to compute the
coefficients of U and V in more detail. First we note that by the definition of the coordinate
frame F in (1.11), we have

f1u = e−ω/2
(
fuu −

ωu
2
fu

)
, f2u = e−ω/2

(
fvu −

ωu
2
fv

)
, f3u = fu,(1.18)

A straightforward computation by using (1.18) shows that

〈f1u, f2〉 = e−ω〈fuu, fv〉 −
ωu
2
, 〈f2u, f2〉 = e−ω〈fvu, fv〉, 〈f3u, f2〉 = eω/2,

〈f1u, f1〉 = e−ω〈fuu, fu〉, 〈f2u, f1〉 = e−ω〈fvu, fu〉 −
ωu
2
, 〈f3u, f1〉 = 0,

−〈f1u, f3〉 = −e−ω/2〈fuu, f〉, −〈f2u, f3〉 = −e−ω/2〈fvu, f〉, −〈f3u, f3〉 = 0.

Then it is easy to see that −〈f2u, f3〉 = eω/2. Further, 〈fuu, fv〉 can be computed by (1.14) as

〈fuu, fv〉 = 〈fu, fv〉u − 〈fu, fvu〉 = ωue
ω − eω〈fu,H〉

and thus 〈f1u, f2〉 can be rephrased as

〈f1u, f2〉 =
ωu
2
− 〈fu,H〉 =

ωu
2

+ `.

Here, since H is the mean curvature vector f, that is, H can be represented by {E1,E2} =
{
√
−1e−ω/2fu,

√
−1e−ω/2fv}, Re〈H, fu〉 = Re〈H, fv〉 = 0 and thus −〈fu,H〉 = 〈H, fu〉 = `, that

is, ` and m take purely imaginary values. Similarly, we have 〈f2u, f1〉 = −ωu
2

+`. Further since
〈fu, f〉 = 0 and 〈fu, fu〉 = 0, we have 〈fuu, f〉 = 0 and thus −〈f1u, f3〉 = 0. By using 〈fu, fu〉 = 0,
the second derivative of 〈fu, f〉 = 0 with respect to u implies 〈fuuu, f〉 = −〈fuu, fu〉. Moreover,
the derivative of 〈fu, fu〉 = 0 with respect to u implies that Re〈fuu, fu〉 = 0, thus Q = 〈fuuu, f〉
takes purely imaginary values and 〈f1u, f1〉 = −Qe−ω.

Finally we obtain U as in (1.15). A similar computation for F−1Fv shows that V is as in
(1.16). �

Definition 2. By using the purely imaginary functions Q, R, ` and m in (1.17), we define
two differentials as

C = Q du3 +R dv3 = 〈fuuu, f〉 du3 + 〈fvvv, f〉 dv3,(1.19)

L = ` du+m dv = 〈H, fu〉 du+ 〈H, fv〉 dv.(1.20)

The form C will be called the cubic differential and L will be called the mean curvature
1-form (some authors also call it “Maslov form”). Both forms take purely imaginary values.

Remark 1.9. The cubic differential C and the mean curvature 1-form L are defined by using
a horizontal lift f instead of the original immersion f , however, C and L are independent
of the choice of a horizontal lift. Thus they are an invariant of the timelike Lagrangian
immersion f .

7



1.3. Fundamental theorem. The Maurer-Cartan form α = F−1dF of the coordinate
frame for a timelike Lagrangian immersion f in CH2

1 satisfies the Maurer-Cartan equation
dα + α ∧ α = 0, that is

Uv − Vu + [V ,U ] = 0

holds. Then a straightforward computation shows that we have the following system of
partial differential equations:

ωuv = eω −QRe−2ω +m`,(1.21)

`v −mu = 0,(1.22)

Qve
−2ω + (e−ω`)u = 0, Rue

−2ω + (e−ωm)v = 0.(1.23)

In the following we show the fundamental theorem of timelike Lagrangian surfaces in CH2
1.

Theorem 1.10. Let f : D → CH2
1 be a timelike Lagrangian immersion and f a horizontal

lift of f . Further let ds2 = 2eωdudv, C = Q du3 +R dv3 and L = ` du+m dv be the metric,
the cubic differential and the mean curvature 1-form of f . Then these functions ω,Q,R, `
and m satisfy the system of partial differential equations (1.21), (1.22) and (1.23).

Conversely let ds2 = 2eωdudv, C = Q du3+R dv3 and L = ` du+m dv be defined by solutions
of the system of partial differential equations (1.21), (1.22) and (1.23) with purely imaginary
Q, R, ` and m. Then there exists a timelike Lagrangian immersion f such that the metric,
the cubic differential and the mean curvature 1-form are ds2, C and L, respectively.

Proof. We only need to prove the converse. Since ω, C and L satisfy (1.21), (1.22) and (1.23),
there exists an F : D→ U2,1 such that F−1dF = Udu+Vdv with U and V defined in (1.15)
and (1.16). Let e3 = (0, 0, 1)T and set f = Fe3. Then it is easy to see that f takes values
in H5

3 : 〈f, f〉 = 〈Fe3,Fe3〉 = −|a|2, if F = aF0, where the latter matrix has determinant 1.
But the determinant of F is in S1, whence |a| = 1. Moreover, it is also straightforward to
see

〈fu, fu〉 = 〈fv, fv〉 = 0,

and 〈fu, fv〉 takes values in R×, that is, f is timelike, is parametrized by null coordinates
and is Legendrian, that is, Im〈fu, fv〉 = 0 holds. Finally taking the Boothby-Wang fibration
π : H5

3 → CH2
1 for f, that is f = π◦f, we have a timelike Lagrangian immersion f in CH2

1. �

1.4. Minimality. In the following, we characterize minimality of a timelike Lagrangian
immersion in CH2

1 in terms of the invariant 1-form L defined in the previous section.

Proposition 1.11. Let f : D→ CH2
1 be a timelike Lagrangian immersion and L the differ-

ential 1-form defined in (1.20). Then L is closed. Moreover, let L denote a purely imaginary
integral of L on D. Then the diagonal matrix

(1.24) D = exp [diag (−L,−L, 0)] = diag (exp [−L, ] , exp [−L, ] , 1) ,

is well-defined and det(FD) is constant. Furthermore, f is minimal if and only if L ≡ 0
if and only if the determinant detF is constant. Thus, without loss of generality we can
assume that detF ≡ 1 holds.

Proof. The closedness of L follows from (1.22). Thus

D = diag (exp [−L] , exp [−L] , 1)
8



is well-defined. It is also easy to see that Tr{(FD)−1d(FD)} = 0, thus det(FD) is constant.
Since L is only determined up to a purely imaginary constant, we can adjust this constant
such that the determinant of FD is identically 1.

Moreover, by (1.20) the mean curvature vector H vanishes if and only if ` = m = 0 and this
is equivalent with L = 0. �

Remark 1.12.

(1) Since L takes purely imaginary values, the function exp (2L) takes values S1. It is
called Lagrangian angle function of f , [21, after Lemma 3.1].

(2) Note that FD is in U2,1. The last column of this matrix is the same (horizontal lift)
as the one of F . However, the first two columns are rotated. Hence FD is in general
no longer a coordinate frame of some timelike Lagrangian immersion.

(3) Since FD also has constant determinant (in S1), one can easily change to a new
“frame” which has determinant 1. This can be done naturally in several ways: one
can multiply the matrix FD by a−1/3, where a = det(FD) is or one can multiply

on the right by the matrix D̂ = diag(a−1/2, a−1/2, 1). Actually, by replacing the lift

f of the original timelike Lagrangian immersion f by the lift f̂ = a−1f , a ∈ S1, one
obtains the same mean curvature 1-form L and thus automatically F̂D(0, 0) = id,
whence also det(FD) ≡ 1.

(4) If a timelike Lagrangian surface f is minimal, then of the two normalizations just
discussed the last option seems to be preferable, since in this case the new immersion
f̂ leads directly to a coordinate frame which satisfies F(0, 0) = id.

(5) It is known that there are no compact minimal surfaces in a pseudo-Riemannian
manifold with non-positive curvature, see for example [19, p. 379].

2. Characterization of a timelike minimal Lagrangian surfaces

In this section, we characterize a timelike minimal Lagrangian surface in terms of a family
of flat connections. For this purpose, we first consider the associated family of a timelike
minimal Lagrangian surface and naturally introduce the so-called “spectral parameter” λ
into the Maurer-Cartan form α of the coordinate frame F . In Theorem 2.3, we characterize
the minimality of a timelike Lagrangian surface in terms of a family of connections d + αλ.

2.1. Associated family. Let f : M → CH2
1 be a timelike minimal Lagrangian immersion.

Then there exists the metric 2eωdudv, the cubic differential C and the mean curvature 1-
form L which vanishes identically on M associated to f . Then it is clear from (1.21), (1.22)
and (1.23), that the integrability conditions for a minimal surface are m = ` = 0 and the
partial differential equation

(2.1) ωuv = eω −QRe−2ω,
with purely imaginary functions Q and R satisfying Qv = 0 and Ru = 0, and a real valued
function ω.

Remark 2.1. The equation (2.1) is the original Tzitzéica equation of indefinite affine spheres
up to sign which can be easily adjusted by the change of coordinates (u, v). However, the
affine spheres have real cubic differential and the timelike minimal Lagrangian surfaces in
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CH2
1 have purely imaginary cubic differential, thus a solution of the Tzitzéica equation gives

two different classes of surfaces.

In this case, by Theorem 1.10, there exists a family of solutions parametrized by λ ∈ R>0

(2.2)
{
eω

λ

, Cλ, Lλ
}
λ∈R>0

such that

ωλ = ω, Cλ = λ−3Q du3 + λ3R dv3, Lλ = L = 0.

Then by Theorem 1.10, there exists a family of timelike Lagrangian minimal surfaces {f̂λ}λ∈R>0

such that f̂λ|λ=1 = f . It is natural to call the family {f̂λ}λ∈R>0 the associated family of f .
The parameter λ will be called the spectral parameter.

Remark 2.2. It is important to note that the parameter λ above can actually be chosen from
C× without restricting the integrability condition. The solutions to some PDE’s mentioned
in the proof of Theorem 1.10 can thus be computed for all λ ∈ C×. This is an important
information, since in the discussion of the construction method via loop groups one will carry
out the group splittings on the unit circle, while one discusses surfaces only for λ ∈ R>0.

Let F̂ be the coordinate frame of a horizontal lift f̂λ of f̂λ. Then the Maurer-Cartan form
α̂ = Ûdu + V̂dv of F̂ for the associated family {f̂λ}λ∈R>0 is given by Û and V̂ as in (1.15)
and (1.16) where we have replaced Q,R, ` and m by λ−3Q, λ3R , 0 and 0, respectively.

Then consider

(2.3) F = F̂G, G = diag(λ, λ−1, 1)

and thus

α = F−1dF = Udu+ V dv

with U = G−1ÛG and V = G−1V̂G. Since G takes values in U2,1 for any λ ∈ R>0, thus

GF̂e3 is isometric to F̂e3. Define fλ = π ◦GF̂e3. Thus we do not distinguish {f̂λ}λ∈R>0 and
{fλ}λ∈R>0 , and it will be also called the associated family.

2.2. A family of flat connections. Let us return now to the general case of a timelike
Lagrangian immersion f , with horizontal lift f and coordinate frame F with D defined
in (1.24) such that FD(0, 0) = id. Then it is easy to see that the Maurer-Cartan form

(FD)−1d(FD) = Ûdu+ V̂dv can be computed as

(2.4) Û =

 ωu
2

m eω/2+L

−Qe−ω −ωu
2

0
0 eω/2−L 0

 , V̂ =

 −ωv
2
−Re−ω 0

` ωv
2

eω/2+L

eω/2−L 0 0

 .

From the discussion in the previous section, it is natural to introduce a family of Maurer-
Cartan forms αλ for the Maurer-Cartan form α of the timelike Lagrangian surface f : M →
CH2

1 as

(2.5) αλ = Uλdu+ V λdv,

for λ ∈ C×, where Uλ and V λ are given by
10



(2.6)

Uλ =

 ωu
2

λm λ−1eω/2+L

−λ−1Qe−ω −ωu
2

0
0 λ−1eω/2−L 0

 , V λ =

 −ωv
2

−λRe−ω 0
λ−1` ωv

2
λeω/2+L

λeω/2−L 0 0

 .

Note that in this general situation we permit, opposite to the last subsection, m 6= 0 and
` 6= 0.

It is clear that αλ|λ=1 is the Maurer-Cartan form of the frame FD of f . In the following
theorem using the family of Maurer-Cartan forms αλ, we characterize, when a timelike
Lagrangian surface in CH2

1 actually is minimal.

Theorem 2.3. Let f : D → CH2
1 be a timelike Lagrangian surface in CH2

1. Then the
following statements are equivalent:

(1) f is minimal.
(2) The mean curvature 1-form L = `du+mdv vanishes.
(3) d + αλ gives a family of flat connections on D× U2,1.

Moreover, if any of these three statements above holds, then we have Qv = 0 and Ru = 0.

Proof. The equivalence (1)⇔ (2) follows from Proposition 1.11. Let us compute the flatness
of d + αλ. In terms of Uλ and V λ, it is equivalent with Uλ

v − V λ
u + [V λ, Uλ] = 0, and a

straightforward computation shows that this is equivalent with the following equations:

ωuv − eω +QRe−2ω −m` = 0,

(me−ω)v +Rue
−2ω = 0, (`e−ω)u +Qve

−2ω = 0,

(λ−1 − λ2)m = 0, (λ−2 − λ)` = 0.

The first three equations are just (1.21) and (1.23), respectively. The remaining two equations
are satisfied for all λ ∈ C× if and only if m = ` = 0 and this is equivalent with that f is
minimal. This completes the proof. �

Remark 2.4. The choices of Uλ and V λ in (2.8) are natural in view of the quasi 6-symmetric
space (induced by the order 6 automorphism σ̂) in Section 5. The Maurer-Cartan form α
can be decomposed into the eigenspaces of the order 6 automorphism σ̂, and the j-th degree
of the spectral parameter λ in the Maurer-Cartan form corresponds to the j-th eigenspace.
This will be explained in more detail in Section 5.4.

We have thus found by two different approaches to the same restricted matrices depending
on λ and it is clear that for the minimal timelike Lagrangian case it suffices to consider
matrices of the type

αλ = Uλdu+ V λdv,(2.7)

with

Uλ =

 ωu
2

0 λ−1eω/2

−λ−1Qe−ω −ωu
2

0
0 λ−1eω/2 0

 , V λ =

−ωv
2
−λRe−ω 0

0 ωv
2

λeω/2

λeω/2 0 0

(2.8)
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and Qv = 0, Ru = 0 and ωuv − eω +QRe−2ω = 0.

Corollary 2.5. Let Q, R be purely imaginary functions and ω be a real function. Moreover
define Uλ and V λ as in (2.8) and αλ = Uλdu + V λdv, and assume dαλ + αλ ∧ αλ = 0
for λ ∈ C×. Then Qv = 0, Ru = 0 and ωuv − eω + QRe−2ω = 0, and there exists a
family of timelike minimal Lagrangian surfaces {fλ}λ∈R× in CH2

1 with the cubic differential
C = λ−3Q du+ λ3R dv and the induced metric ds2 = 2eωdudv.

Definition 3. The solution of (F λ)−1dF λ = αλ defined in (2.7) with Uλ and V λ as in
(2.8) and with initial condition F λ(0, 0) = id will be called the extended frame of a timelike
minimal Lagrangian surface f . The associated family {fλ}λ∈R× is defined by F λe3|λ∈R× with
e3 = (0, 0, 1)T .

Example 1 (Real projective space). Let Q = R = 0, and ω = 2 log
(

2
−2+uv

)
. Then it is easy

to see that ω is a solution of the Tzitzeica equation ωuv = eω − QRe−2ω = eω. Then the
extended frame F λ can be explicitly obtained as

F λ = exp(λ−1uN+)

e−ω/2 0 0
0 eω/2 0
0 0 1

 exp(λvN−), N+ =

0 0 1
0 0 0
0 1 0

 , N− = −NT
+ .

Then the horizontal lift f = fλ|λ=1 can be computed explicitly as

f =
1

2− uv

 2u
2v

2 + uv

 .

Clearly f is the anti-de Sitter sphere H2
1 in R3

2. And the immersion f = π ◦ f is a part of the
indefinite real projective space in CH2

1.

Example 2 (Clifford type cylinder). Let Q = −R =
√
−1, then ω = 0 is a solution of the

Tzitzeica equation ωuv = eω −QRe−2ω. Then the coefficient matrices of the Maurer-Cartan
form of α = Uλ

vacdu+V λ
vacdv are constant and the equation (F λ)−1dF λ = αλ can be integrated

directly. We obtain F λ = exp(Uλ
vacu+ V λ

vacv) with

Uλ
vac = λ−1

 0 0 1
−
√
−1 0 0

0 1 0

 , V λ
vac = λ

0
√
−1 0

0 0 1
1 0 0

 .

Clearly F is the extended frame of some timelike minimal Lagrangian immersion and a direct
computation shows that the horizontal lift f = fλ|λ=1 = Fe3|λ=1 can be computed as

f = F0f0,

where with δ = e2π
√
−1/3 we have

f0 =
1√
3

 e
√
−1(δu−δ2v)

−e
√
−1(δ2u−δv)

e
√
−1(u−v)

 , and F0 =
1√
3

−√−1δ2
√
−1δ −

√
−1√

−1δ −
√
−1δ2

√
−1

1 −1 1

 .

Then an another direct computation shows that F0 ∈ U2,1 and 〈f0, f0〉 = −1. The timelike
surface f0 is an analogue of the Clifford torus in CP2, see for example [11]. Let us consider
the curves v = −u+ a (a ∈ R) , where u and v denote on null coordinates. Then

f0|v=−u+a =
1√
3

(e−
√
−1u−δ2a,−e−

√
−1u−δa, e2

√
−1u−a)T .
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Therefore the surface close up, and f0 becomes a cylinder.

3. Legendrian lifts of general timelike Lagrangian immersions into CH2
1

We have so far only considered timelike minimal Lagrangian immersions from contractible
open domains in R2 into CH2

1. In the literature, usually immersions are defined on arbitrary
Lorentz surfaces (or, more generally, on any real surface of dimension two).

Thus, when considering a timelike Lagrangian immersion f : M → CH2
1, the question comes

up whether there always exists a Legendrian lift f : M → H5
3 . As a consequence, the question

arises, in what sense, if any, a timelike Legendrian immersion is naturally associated with a
given timelike Lagrangian immersion.

At one hand, for any contractible open subset U of M such a lift exists, by what was discussed
in the beginning of this paper. So the main question is, in what sense a “global” lift exists.
In this section we will show that either a given timelike Lagrangian immersion f : M → CH2

1

already has a global timelike Legendrian lift f : M → H5
3 , or there exists a threefold cover

M̂ of M , such that the natural lift of f to f̂ : M̂ :→ CH2
1 has a timelike Legendrian lift

f̂ : M̂ → CH2
1 of f̂ .

Definition 4. A Lagrangian map f : M → CH2
1 is called liftable, if there exists some

Legendrian map f : M → H5
3 such that f = π ◦ f.

3.1. The basic transformation formula for horizontal lifts and frames. Now let M
be a Lorentz surface and let f : M → CH2

1 be a Lagrangian immersion. It is known, see
for example [27, Section 3.2], that the universal cover of M is diffeomorphic to R2, where
the Lorentz metric, however, is not known, in general. For simplicity we will thus assume
without loss of generality that the universal cover actually is equal to R2 and denote it by
D.

By π̃ : D→M we denote the universal covering of M . Then we infer that D is contractible
and f̃ : D → CH2

1, p 7→ f ◦ π̃(p), is again a Lagrangian immersion. Moreover, by what was

discussed previously, f̃ admits a global horizontal lift f̃ : D → H5
3 . Now it is easy to derive

the following

Proposition 3.1. We retain the notation and the assumptions just made above. Let π1(M)
denote the fundamental group of M , considered as a group of Deck transformations acting
on D. Then for γ ∈ π1(M) we obtain:

(1) γ∗f̃ : D→ H5
3 is another global horizontal lift of f̃ .

(2) There exists some uniquely determined scalar c̃(γ) ∈ S1 satisfying

(3.1) γ∗f̃ = c̃(γ)̃f,

(3) The map c̃ : π1(M)→ S1, γ 7→ c̃(γ), is a (well defined) homomorphism.

Proof. Since γ ∈ π1(M) acts on D as

(3.2) γ : (u, v)→ (x, y), x = γx(u), y = γy(v),
13



for some strictly increasing one variable functions γx, γy, see [17], it follows by a straight-

forward computation that the map γ∗f̃ : D → H5
3 is another global horizontal lift of f̃ .

Therefore γ∗f̃ = c̃(γ)̃f with some uniquely determined scalar c̃(γ) in S1. By the uniqueness
statement, it follows that c̃ : π1(M)→ S1 is a (well defined) homomorphism. �

Next we recall from (1.11) the definition of the “natural coordinate frame” for a Lagrangian

immersion and apply it to f̃:

(3.3) F̃ =
(
e−ω/2f̃u, e

−ω/2f̃v, f̃
)
,

where (u, v) is a null coordinate system on D. We know that F̃ takes values in U2,1. Then

| det F̃ |2 = 1 and F̃ ∈ U2,1 = S1 · SU2,1 follows. By (3.2)

eω̃dudv = γ∗(eω̃dudv) = (γxuγ
y
v )eγ

∗ω̃dudv

and

c̃(γ)̃fu(u, v) = (γ∗f̃)u(u, v) = f̃u(γ
x(u), γy(v)) · γxu(u),

the frame defined by (3.3) for γ∗f̃ yields

(3.4) γ∗F̃ = c̃(γ)F̃k, where k = diag
(√

(γxu)−1γyv ,
√
γxu(γyv )−1, 1

)
.

Corollary 3.2. If f is minimal Lagrangian, then the homomorphism c̃ satisfies c̃(γ)3 = 1
for all γ ∈ π1(M).

Proof. Since det k = 1 it suffices to note that under our assumptions the determinant of

det F̃ is constant. �

Theorem 3.3. Let f : M → CH2
1 be a timelike minimal Lagrangian immersion and let c̃ be

the homomorphism defined above. Moreover let F be the family of frames defined in (2.3).
Then we obtain for all γ ∈ π1(M) :

γ∗F̃ = c̃(γ)F̃k, where k = diag
(√

(γxu)−1γyv ,
√
γxu(γyv )−1, 1

)
,(3.5)

γ∗F = c̃(γ)Fk, for k as above.(3.6)

Moreover, the homomorphism c̃ can be considered as a homomorphism into the group con-
sisting of three elements: c̃ : π1(M)→ X3, where X3 = {1, δ, δ2} with δ = e2π

√
−1/3.

3.2. The main theorem about global horizontal lifts. Using the results just obtained
we are able now to clarify the relation between timelike minimal Lagrangian surfaces into
CH2

1 and timelike minimal Legendrian surfaces into H5
3 .

Theorem 3.4. Let M be a Lorentz surface and let f : M → CH2
1 be a timelike minimal

Lagrangian immersion. Then either f admits a global horizontal lift f : M → H5
3 or otherwise

there exists a Lorentz surface M̂ and a threefold covering π̂f : M̂ →M such that f̂ = f ◦π̂f is

a timelike minimal Lagrangian immersion which admits a global horizontal lift f̂ : M̂ → H5
3 .

Proof. Considering the homomorphism c̃ discussed in the last subsection we have only two
possibilities:

14



Case 1: The homomorphism c̃ is trivial: In this case we have γ∗F̃ = F̃ and F̃ descends to a
horizontal lift f : M → H5

3 for f .

Case 2: The homomorphism c̃ is not trivial: hence the image of c̃ is the group X3. Let Γ

denote the kernel of c̃ and put M̂ = Γ\D. Then F̃ descends to a horizontal map

f̂ : M̂ → H5
3 ,

with M̂ = Γ\D and f̂ satisfies

γ∗f̂ = ĉ(γ)̂f,

where ĉ : π1(M)/Γ→ X3 ⊂ S1 is the induced homomorphism.

Clearly, Γ is a normal subgroup of π1(M). Moreover, let ξ denote some element of π1(M)

satisfying c̃(ξ) = δ = e
2πi
3 and let Ξ denote the subgroup of π1(M) generated by ξ. Then the

first isomorphism theorem for groups tells us

π1(M)/Γ ∼= X3,

and the second isomorphism theorem for groups tells us

X3
∼= π1(M)/Γ ∼= ΞΓ/Γ ∼= Ξ/Ξ ∩ Γ.

As a consequence, the action of the group Ξ on M̂ is realized by the group X3. But the
image of ĉ is in S1 and thus is annihilated by the Boothby-Wang type projection. Thus the
map

(3.7) f̂ : M̂ → CH2
1, given by f̂ = π ◦ f̂

is invariant under the action of π1(M̂) and actually projects to f . The claim now follows
from the following statements:

(1) f̂ : M̂ → CH2
1 is a timelike minimal Lagrangian immersion with global horizontal lift f̂,

(2) M̂ is a threefold cover of M . �

Corollary 3.5. Let M be any Lorentz surface and f : M → CH2
1 a timelike minimal

Lagrangian immersion. Then either f admits a global horizontal lift (which then is timelike

minimal Legendrian) or there exists a threefold cover π̂ : M̂ → M such that f̂ : M̂ → CH2
1,

given by f̂ = π̂ ◦ f has a global minimal Legendrian lift to H5
3 .

Corollary 3.6. If the Lorenz surface is contractible, then the notions of a timelike minimal
Lagrangian immersion into CH2

1 and a timelike minimal Legendrian immersion from M into
H5

3 are equivalent.

Remark 3.7. The theorem just above shows that the relation between minimal Lagrangian
surfaces and timelike minimal Legendrian surfaces is a bit delicate. Each timelike minimal
Lagrangian surface from M to CH2

1 induces a timelike minimal Legendrian surface in H5
3

either on M itself, or at least on some threefold cover M̂ .

On the other hand, a timelike Legendrian surface f : M → H5
3 , a horizontal map from the

Lorentz surface M to H5
3 , induces trivially a timelike Lagrangian surface f0 : M → CH2

1 by
projection to CH2

1 via the Boothby-Wang type fibration.

The difficulty in the relation between these surface classes is in the (in)coherence of their
domains, as expressed in the theorem above.
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4. Real forms of ΛSL3Cσ

It is clear that the extended frame F λ introduced in the previous section takes values in the
loop group of SU2,1. In this section, we show that the loop group corresponding to a timelike
minimal Lagrangian surface in CH2

1 takes values in a particular real form of Λsl3Cσ (or more

generally of the affine Kac-Moody Lie algebra of type A
(2)
2 ).

4.1. Real forms of Λsl3Cσ. This subsection is a brief digression which is intended to help
to put this paper into a larger context.

4.1.1. The setting of this paper. A straightforward computation shows that the Maurer-
Cartan form αλ in (2.7) of the extended frame F λ satisfies the following two equations
(where we write α(λ) = αλ temporarily):

σ̂(α(ε−1λ)) = α(λ), τ̂(α(λ̄)) = α(λ),

where ε = eπ
√
−1/3 is the sixth root of unity, σ̂ is an order 6 linear outer automorphism of

sl3C and τ̂ is an anti-linear involution of sl3C defined as follows:

σ̂(X) = −Ad(diag(ε2, ε4,−1)P0)X
T(4.1)

and

τ̂(X) = −Ad(P0)X
T
,(4.2)

where P0 is defined in (1.1).

More precisely, the α takes values in the following loop algebra:

(4.3) Λsl3Cτ
σ = {g : C× → sl3C | σ(g(λ)) = g(λ), τ(g(λ)) = g(λ) and g is smooth},

where we defined σ(g)(λ) = σ̂(g(ε−1λ)) and τ(g)(λ) = τ̂(g(λ̄)). Therefore, the extended
frame F takes values in the loop group ΛSL3Cτ

σ whose Lie algebra is Λsl3Cτ
σ:

(4.4) ΛSL3Cτ
σ = {g : C× → SL3C | σ(g(λ)) = g(λ), τ(g(λ)) = g(λ) and g is smooth},

where σ is an order 6 automorphism and τ is an anti-linear involution defined by σ(g)(λ) =
σ̂(g(ε−1λ)) and τ(g)(λ) = τ̂(g(λ̄)) with

σ̂(g) = Ad(diag(ε2, ε4,−1)P0) (gT )−1,(4.5)

τ̂(g) = Ad(P0) (gT )−1.(4.6)

The order 6 automorphism σ̂ and the anti-linear involution naturally arise for minimal La-
grangian surfaces as discussed in Section 2.

4.1.2. The case of A
(2)
2 . The present paper deals with the Lie group SL3C with an outer

automorphism σ̂ and some anti-linear involution τ̂ . It is known [16] that up to isomorphisms
the Lie algebra and the order 6 automorphism are uniquely determined, see [8, Section 7]
for details.

Therefore, in our discussion above we could only change the anti-linear involution τ on
Λsl3Cσ, the so-called the real form involution. Thus we fix the order 6 automorphism σ and
discuss the classification of real form involutions.
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In fact we have up to inner isomorphisms the following classification of real forms of Λsl3Cσ,

or more generally the affine Lie algebra of A
(2)
2 .

Theorem 4.1 ([13]). The real form involutions τ for Λsl3Cσ are classified (up to isomorphism)
as follows:

(1) τ(g)(λ) = −g(1/λ̄)
T
, (2) τ(g)(λ) = Ad(I2,1P0) g(1/λ̄),

(3) τ(g)(λ) = −Ad(I2,1)g(1/λ̄)
T
, (4) τ(g)(λ) = g(λ̄),

(5) τ(g)(λ) = −Ad(P0)g(λ̄)
T
,

where I2,1 = diag(1, 1,−1). The first three are called the almost compact types and the rest
are called the almost split types.

Corollary 4.2. The real form involution (5) in Theorem 4.1 is defined by the anti-linear
involution τ̂ defined in (4.2).

Remark 4.3.

(a) Each involution in Theorem 4.1 corresponds a particular special class of surfaces:
(1) Minimal Lagrangian surfaces in CP2.
(2) Elliptic or hyperbolic affine spheres in R3.
(3) Minimal Lagrangian surfaces in CH2.
(4) Indefinite affine spheres in R3.
(5) Timelike minimal Lagrangian surfaces in CH2

1.

(b) For the first four cases listed above a loop group procedure has already been developed
which allows (at least in principle) to construct all the surfaces of the corresponding
class. This is a consequence of the fact that these surfaces can be characterized by a
certain “Gauss map” to be harmonic. Actually, a harmonic Gauss map has only been
established explicitly for minimal Lagrangian surfaces in CH2, that is, in the case (3).
In all other cases the existence of a harmonic Gauss map can be concluded, since the
Maurer Cartan form of the naturally associated moving frame admits the insertion of
a parameter λ ∈ S1 in such a way as it is know to correspond to a primitive harmonic
map. Below we will modify the construction of (3) in a generalized way so as to fit
the purposes of this paper and to permit to prove a Ruh-Vilms type theorem. For
the remaining cases a Gauss map will be constructed elsewhere.

(c) Actually, when trying to cover all surface classes falling under the scheme outlined
above one also needs to consider what happens if one considers an anti-linear au-
tomorphism which is conjugated by an inner automorphism such that the induced
anti-linear automorphism of the loop group/loop algebra still commutes with σ̂, see
[8, Section 7]. As a matter of fact, such cases did already occur in the paper [18] and
will also occur at least in case (2) above.

5. Three quasi 6-symmetric spaces and Gauss maps

In this section we define for a timelike Lagrangian surface in CH2
1 three quasi 6-symmetric

spaces (see Definition 5) as well as associated Gauss maps into these spaces. These Gauss
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maps are essentially the same. In Theorem 5.7 we characterize a timelike minimal Lagrangian
surface in CH2

1 in terms of its Gauss maps, thus proving a Ruh-Vilms type theorem.

5.1. Various bundles. We first introduce three quasi 6-symmetric spaces of dimension 7
which are bundles over H5

3 . Our approach follows [23] in spirit, but, as a matter of fact, we
translate the work of [23] into an “indefinite version” of that paper. We consider altogether
three spaces, FL1, FL2, and FL3. We first choose a natural basis e1, e2, e3 of C3

2.

(1) FL1 : We now consider C3
2 as the real 6-dimensional symplectic vector space given

by the symplectic form Ω = Im〈 , 〉. Then the family of oriented maximal Lagrangian
(≡ isotropic) subspaces n of C3

2 form a submanifold of the real Grassmannian 3-spaces of
C3

2, that is, they form the oriented Lagrangian Grassmannian manifold LGr(3,C3
2). It is

known [28] that LGr(3,C3
2) can be represented as a homogeneous space U2,1/SO2,1. If the

Lagrangian Grassmannian LGr(3,C3
2) is, in particular, an orbit of SU2,1, it will be called

special Lagrangian Grassmannian and it will be denoted by SLGr(3,C3
2).

Proposition 5.1. SU2,1 acts transitively on SLGr(3,C3
2), and we obtain

SLGr(3,C3
2) = SU2,1/SO2,1.

Next we define:

(5.1) FL1 = {(v, V ) | v ∈ H5
3 , v ∈ V, V ∈ SLGr(3,C3

2)}.
It is easy to verify that SU2,1 acts on FL1. Note that the natural projection from FL1

to CH2
1 is a pseudo-Riemannian submersion which is equivariant under the natural group

actions. Since H5
3 = SU2,1/SU1,1, where SU1,1 means SU1,1 × {1}, the stabilizer at

(e3, spanR{e1, e2, e3}) ∈ FL1

is clearly given by SU1,1 ∩ SO2,1, that is

SO1,1 = {(a, a−1, 1) | a ∈ R×}.
Therefore

FL1 = SU2,1/SO1,1.

(2) FL2 : For the definition of FL2, we consider certain “special regular complex flags”
in C3

2. Here by a regular complex flag we mean a sequence of four complex subspaces,
Q0 = {0} ⊂ Q1 ⊂ Q2 ⊂ Q3 = C3

2 of C3
2, where Qj has complex dimension j. We then define

the notion of a special regular complex flag in C3
2 over q ∈ H5

3 by requiring that we have a
regular complex flag in C3

2, where the space Q1 satisfies Q1 = Cq.

Thus we define:

FL2 = {(w,W ) | w ∈ H5
3 , w ∈ W, W is a special regular complex flag in C3

2}.
The definition of a special flag means that one can find three vectors, q1, q2, q3 ∈ C3

2 with
q = q3, such that (using the signature of C3

2) the vectors q1 and q2 span a subspace with
signature (1, 1). So we obtain a triple q1, q2 and q3 as discussed in the previous case. By
an argument analogous to the previous case we conclude that SU2,1 acts transitively on the
family of special flags. Then the stabilizer of the action at a point (e3, 0 ⊂ Ce3 ⊂ Ce3⊕Ce2 ⊂
Ce3 ⊕ Ce2 ⊕ Ce1) is again given by SO2,1 ∩ diag, where diag denotes the set of all diagonal
matrices in SU2,1. Thus it is again SO1,1.
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Proposition 5.2. SU2,1 acts transitively on FL2, and it can be represented as

FL2 = SU2,1/SO1,1.

Note that the natural projection from FL2 to CH2
1 is a pseudo-Riemannian submersion which

is equivariant under the natural group actions.

(3) FL3 : Finally, using the isometry group SU2,1 of H5
3 , we can directly define a homogeneous

space FL3 as

(5.2) FL3 = {UP1 U
T | U ∈ SU2,1 and P1 = diag(ε2, ε4,−1)P0},

where ε = eπ
√
−1/3 and P0 =

(
0 1 0
1 0 0
0 0 −1

)
as defined in (1.1).

Theorem 5.3. We retain the assumptions and the notion above. Then the following state-
ments hold:

(1) The spaces FLj, (j = 1, 2, 3) are homogeneous under the natural action of SU2,1.
(2) The homogeneous space FLj, (j = 1, 2, 3) can be represented as

FLj = SU2,1/SO1,1, where SO1,1 = {diag(a, a−1, 1) | a ∈ R×}.
In particular they are all 7-dimensional.

Proof. (1), (2): The statements clearly follow from Proposition 5.1, Proposition 5.2 and the
definition of FL3 in (5.2) and the stabilizer at P1 is easily computed as SO1,1. �

5.2. Quasi k-symmetric spaces. It is easy to prove that the fixed point set of the real
form involution τ̂ in (4.6) of SL3C is isomorphic to SU2,1, that is,

SU2,1
∼= {g ∈ SL3C | τ̂(g) = g}.

On the one hand, the order 6 automorphism σ̂ in (4.5) acting on SL3C does not naturally
act on SU2,1, since σ̂ and τ̂ do not commute. However they have the following relation

(5.3) σ̂τ̂ σ̂ = τ̂ .

By abuse of notation we will also denote the order 6 automorphism and the real form
involution on sl3C by σ̂ and τ̂ , respectively. Let xj , j ∈ {0, 1, . . . , 5}, be an eigenvector of σ̂

for the eigenvalue εj = e2π
√
−1j/6, that is, σ̂xj = εjxj. Then (5.3) yields

σ̂τ̂(xj) = εj τ̂(xj).

So τ̂ leaves invariant the eigenspaces gCj ⊂ sl3C of σ̂. And the fixed point algebra of τ̂ is

spanned by all elements of the form xj + τ̂(xj), (j = 0, 1, . . . , 5) and xj arbitrary in gCj . So
the real form decomposes according to the eigenspaces of σ̂ and we have

(5.4) σ̂(xj + τ̂(xj)) = εj(xj + τ̂(xj)).

Thus σ̂ is not an automorphism of the real Lie algebra Fix(τ̂), but its action on Fix(τ̂) is
easy to describe, see Section 5.4.

Definition 5. Let G/K be a real homogeneous space, and τ̂ a real form involution acting on
the complexification GC of G, such that G = Fix(τ̂). Moreover, let σ̂ be an order k (k ≥ 2)
automorphism acting on GC. Then G/K will be called a quasi k-symmetric space if the
following conditions are satisfied
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(1) σ̂τ̂ σ̂ = τ̂ ,
(2) Fix(σ̂)◦ ⊂ KC ⊂ Fix(σ̂).

Remark 5.4. If the automorphism σ̂ of GC in fact acts on G, then the quasi k-symmetric
space G/K is just a k-symmetric space. However, by condition (1), this happens if and only
if k = 2, and thus a quasi k-symmetric space G/K is a k-symmetric space if and only if it is
a (2-)symmetric space.

Corollary 5.5. The homogeneous spaces FLj (j = 1, 2, 3) are quasi 6-symmetric spaces.

Proof. First we note that the group G = SU2,1 has the complexification GC = SL3C and is
the fixed point group of the real form involution τ̂ given in (4.2).

We show that FL3 is a quasi 6-symmetric space. First note that the stabilizer

StabP1 = {X ∈ SU2,1 | XP1 X
T = P1}.

at the point P1 = diag(ε2, ε4,−1)P0 of FL3 is SO1,1. It is easy to verify that the order
6-automorphism σ̂ of SL3C given in (4.5) and the real form involution τ̂ in (4.6) satisfy the
condition (1) in Definition 5. Moreover, a direct computation shows that the fixed point of
σ̂ in SL3C is SOC

1,1. Thus StabP1 satisfies the condition (2) in Definition 5.

Thus FL3 is quasi 6-symmetric space in the sense of Definition 5. Furthermore, for any pair
of homogeneous spaces FLj and FLm there exists a diffeomorphism

φjm : FLm → FLj

and a homomorphism χjm : SU2,1 → SU2,1 such that for any g ∈ SU2,1 and p ∈ FLm we
have

φjm(g.p) = χjm(g).φjm(p),

As a consequence, also FL1 and FL2 are 6-symmetric spaces. �

5.3. Normalized Gauss maps of timelike Lagrangian surfaces in CH2
1. We now define

three Gauss maps for a timelike Lagrangian surface f in CH2
1. Let us assume that f is defined

on a simply connected domain M and that f is a horizontal lift of f . Then we define the
coordinate frame F : M → U2,1 as in (1.11). Moreover, take the diagonal matrix D as in
(1.24) and consider the normalized coordinate frame FD. If necessary replacing f by af with
some constant a ∈ S1, without loss of generality, we can assume

(5.5) F̂ = FD : M → SU2,1,

and F̂ will be called the normalized frame. Note that

D = diag(exp(−L), exp(−L), 1)

where L is the integral of the mean curvature 1-form L as in (1.20). Thus D is well-defined on
M . Furthermore, the normalized frame is well-defined up to SO1,1, that is, any normalized
frame is of the form

(5.6) F̂ k, k ∈ SO1,1,

since by the freedom of the null coordinates (u, v) by (s(u), t(v)), where s, t are positive
functions of one variable each.
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Definition 6. Consider the projections πj ◦ F̂ : M → FLj(j = 1, 2, 3), where πj : SU2,1 →
FLj. Then

gj = πj ◦ F̂ (j = 1, 2, 3)

will be called the normalized Gauss maps of f (with values in FLj). Note that by (5.6) the
maps gj are well-defined on M , that is, independent of coordinates.

Our definitions were a priori not very geometric. But by following [23] we find analogously
three obvious geometric interpretations of the Gauss map.

For FL1: Let g1 : M → FL1 be given by

p 7→ (f(p), spanR{(e−Lfu)(p), (e−Lfv)(p), f(p)}),
where f is a horizontal lift of f such that detFD = 1.

For FL2: Let g2 : M → FL2 be given by

p 7→ (f(p), 0 ⊂ Cf(p) ⊂ Cf(p)⊕ Cfu(p) ⊂ Cf(p)⊕ Cfu(p)⊕ Cfv(p)).

On the other hand we can represent the Gauss map g3 by using the frame F̂ defined in (5.5)
as

g3 = F̂P1 F̂
T , with P1 = diag(ε2, ε4,−1)P0,

where ε = eπ
√
−1/3 and P0 is defined in (1.1).

Remark 5.6.

(1) From the above arguments, it is clear that the normalized Gauss maps gj do not
depend on choices of the coordinates (u, v), but only depend on the Lorentz structure
of M .

(2) It is known that the natural Gauss map g̃1 of a timelike Legendre immersion f : M →
H5

3 is given by the wedge product of f with the tangential Gauss map γ : M →
GrR(2,C3

2), that is g̃1 = (f, γ ∧ f), and that g̃1 takes values in FL1 if and only if f is
minimal (see [23] for example for the CP2 case). Our normalized Gauss map g1 takes
values in FL1 but it does not imply minimality of a timelike Legendre immersion f
since we rotate the tangential Gauss map γ by the factor e−L ∈ S1, and thus obtain
g1 = (f, (e−Lγ) ∧ f).

Let M be a two-dimensional Lorentz surface with null coordinates (u, v) ∈ D ⊂ M , and
let G/K be a quasi k-symmetric space, k > 2 and consider a smooth map g : M → G/K.
Moreover, let F : D → G be a frame of g and α = F−1dF be the Maurer-Cartan form of
F . According to the decomposition of g = k+ p of G/K where k is the Lie algebra of K, we
have

α = αk + αp = αk + αup + αvp ,

where the superscripts u and v denote the u- and v-parts, respectively. Let us denote by σ̂
also the differential of the order k-automorphism, that is, σ̂ is the order k-automorphism of
the Lie algebra gC of GC. Then it is easy to see that σ̂ has the eigenvalues {ε0, ε1, . . . , εk−1}
with ε = e2π

√
−1/k and the complexification gC can be decomposed into k-eigenspaces as

gC = gC0 + gC1 + · · ·+ gCk−1.

Here gCj = {X ∈ gC | σ̂(X) = εjX}. Note that gC0 = kC.
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Definition 7. We retain the notation as above. A smooth map g : M → G/K is called a
Lorentz primitive harmonic map if the following conditions hold:

(5.7) αup and αvp take values in gCk−1 and gC1 , respectively.

5.4. Characterization of the minimality in terms of the normalized Gauss maps.
It is easy to compute the Maurer-Cartan form of the normalized frame F̂ as in (5.5), see
(2.4):

α̂ = F̂−1dF̂ = Ûdu+ V̂ dv,

with

(5.8) Û =

 ωu
2

m eω/2+L

−Qe−ω −ωu
2

0
0 eω/2−L 0

 , V̂ =

 −ωv
2
−Re−ω 0

` ωv
2

eω/2+L

eω/2−L 0 0

 .

From Section 2.2, is natural to introduce the spectral parameter into the Maurer-Cartan
form as follows:

(5.9) α̂λ = αλ

where αλ is defined in (2.5).

On the other hand a straightforward computation shows that the eigenspaces gCj ⊂ sl3C of
the order 6-automorphism σ̂ in (4.1) are

gC0 =


a11 0 0

0 −a11 0
0 0 0

 ∣∣∣∣∣ a11 ∈ C

 , gC1 =


 0 a12 0

0 0 a23
a23 0 0

 ∣∣∣∣∣ a12, a23 ∈ C

 ,

gC2 =


0 0 a13

0 0 0
0 −a13 0

 ∣∣∣∣∣ a13 ∈ C

 , gC3 =


a11 0 0

0 a11 0
0 0 −2a11

 ∣∣∣∣∣ a11 ∈ C

 ,

gC4 =


 0 0 0

0 0 a23
−a23 0 0

 ∣∣∣∣∣ a23 ∈ C

 , gC5 =


 0 0 a13
a21 0 0
0 a13 0

 ∣∣∣∣∣ a21, a13 ∈ C

 .

We now have the main theorem of this paper.

Theorem 5.7. Let f : M → CH2
1 be a timelike Lagrangian surface in CH2

1. Then the
following statements are equivalent:

(1) f is minimal.
(2) The mean curvature 1-form L = ` du+m dv vanishes.
(3) d + α̂λ gives a family of flat connections on D× SU2,1.
(4) The normalized Gauss maps gj (j = 1, 2, 3) are respectively Lorentz primitive har-

monic maps into the quasi 6-symmetric spaces FLj (j = 1, 2, 3).

Proof. The equivalences of (1), (2) and (3) follow from Theorem 2.3. We now show the

equivalence of (4) and (1). First note that the normalized frame F̂ is common for all the
normalized Gauss maps g1, g2 and g3.
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From the eigenspace decomposition of σ̂, αup and αvp can be computed as

αup =

 0 m eω/2+L

−Qe−ω 0 0
0 eω/2−L 0

 du, αvp =

 0 −Re−ω 0
` 0 eω/2+L

eω/2−L 0 0

 dv.

Thus it is easy to see that αup and αvp respectively take values in gC5 and gC1 if and only if
L = m du+ ` dv = 0. Therefore by (5.7), gj(j = 1, 2, 3) is a Lorentz primitive harmonic map
into FLj(j = 1, 2, 3) if and only if f is minimal. �
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