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Abstract 

Neural networks in the brain are structured in three-dimensional (3-D) space, and the networks 

evolve through development and learning, whereas two-dimensional (2-D) crossbars have 

essentially been optimized for a fully connected neural network, which results in a significant 

increase in unused memristors. Here, we present a prototype of molecular neural networks on 

wetware consisting of a space-free synaptic medium immersed in monomer solution. In the 

medium, conductive polymer wires are grown between multiple electrodes through learning 

only when necessary, i.e., no polymer wire is pre-placed, unlike present 2-D crossbar devices. 

Through experiments, we found the necessary growth conditions for synaptic polymer wires. 

We first demonstrated the learning of simple Boolean functions and then data-encoding tasks by 

using our system comprising the synaptic media and their external controllers. These results are 

valuable for expanding the concept of space-free synapse development, i.e., extending our 2-D 

synaptic media to 3-D is possible in principle. 

Introduction 

An artificial neural network (ANN) is one of the key components in recent artificial intelligence 

(AI) based on deep learning technologies, and is capable of performing a variety of computational 

tasks such as cognition, prediction, optimization, and intuitive representation1,2. Present digital 

computers based on von Neumann architectures are, however, not well-adapted to perform ANN 

computing because of the physical separation of the arithmetic and memory units3,4, which has 

increased the strong demand for acceleration of AI computing by using special hardware5.  

Among various AI accelerators, including present digital and analog AI accelerators built with 

silicon complementary metal–oxide semiconductor (CMOS) technologies6, a two-dimensional 

(2-D) array of memristors is one of the promising devices for area- and power-efficient edge-AI 



devices because of their resistive and nonvolatile properties and highly parallel analogue 

multiply–accumulate (MAC) fashion7. Memristors at a glance are similar to classical two-

terminal resistors, but the resistance can be modified by applying voltage across the terminals, 

whereas it is retained when the magnitude of the voltage is sufficiently small8. These resistive and 

nonvolatile properties are quite suitable for implementing artificial synapses having resistive and 

long-term analog memory properties in ANNs, when the memristors are placed at the crossing 

points of two perpendicularly crossing nanowires9. This structure is referred to as a 2-D crossbar. 

Their early implementations were limited to small-scale crossbars, e.g., a 6×9-memristor crossbar 

for pattern classification10, 32×32-memristor crossbar for sparse representation and pattern 

matching11, 128×64-memristor crossbar for recurrent neural networks implementing long-short 

term memory (LSTM), and, recently, large-scale (2.5M) memristor crossbars for LSTM12 and a 

reconfigurable crossbar architecture of 4M memristors13 have been fabricated and demonstrated.  

As 2-D memristor crossbars are targeted to accelerate AI computing, there exists a large structural 

difference between biological neural networks in the brain and the crossbars. Indeed, the brain 

has a three-dimensional (3-D) structure, i.e., neural tissues are structured in 3-D space. From the 

early stage of neuronal development, necessary neuronal wires, such as axons, dendrites, and 

synapses and their networks are grown as a result of natural unsupervised and supervised learning 

through their environment. On the other hand, 2-D memristor crossbars are optimized for fully 

connected (and hence, for unstructured) ANNs where all the possible synaptic connections 

between input and output neurons, i.e., memristors and wiring crossbars, are pre-placed upon 

device fabrication, which results in a significant increase in unused memristors as a result of 

learning, especially in structured ANNs14. 

Here, we present a wetware prototype of a molecular synaptic medium where organic polymer 

wires are grown in monomer solution only if necessary, and demonstrate growth of synaptic 

networks on the medium. Recently, various organic synaptic devices have been reported in 

terms of different switching mechanisms and specialized benefits, e.g., low-power 

consumption15 and 3-D building ability16,17. We employ a conducting polymer, poly(3,4-

ethylenedioxy-thiophene) doped with poly(styrene sulfonate) anions (PEDOT:PSS). It has 

attracted significant attention recently because of its wide variety of functionality, e.g., high 

conductivity18, high thermoelectric conversion19,20, and high chemical sensitivity with bio-

adaptability21,22, transparency, flexibility, and high environmental durability. Recently, their 

applications to elementary nonvolatile synapses and their 2-D array have also been 



demonstrated15,23; however, as with 2-D memristor crossbars, they are not a space-free medium, 

as all the synapses between inputs and outputs are pre-placed. Although growth of wire-shaped 

conducting polymers has been reported, where their possible applications to information 

processing have naively been suggested24–27, their concrete application has not been shown yet. 

In this study, we show the concrete application of conductive polymer wires to an ANN where 

the growth process is directly linked to the learning process of artificial synapses. We first 

demonstrate an elementary ANN called a simple perceptron trained by linearly separable datasets 

(Boolean functions) implemented in our molecular-electronic hybrid ANN system consisting of 

the molecular synaptic media and their electronic controllers. We then present an ANN called an 

autoencoder performing unsupervised data-encoding (feature-extraction) tasks implemented in 

our system, and demonstrate that 3×3 (9 pixels) binary letters are successfully compressed into 

3-bit code. No polymer wire exists before the learning, unlike 2-D memristor crossbar devices, 

but for now, necessary PEDOT:PSS wires are developed between electrodes (corresponding to 

artificial neurons) through the learning process. Consequently, a significantly small number of 

synapses (PEDOT:PSS wires) always developed, as compared to the number of contributable 

synapses in computer-simulated autoencoders having fully connected network structures. The 

complementary replacement of poorly grown polymers with better ones arose because of 

nonlinearity and variability upon updating the weights, which eventually resulted in a variability-

tolerant synaptic device based on the natural selection. As extending our 2-D synaptic media to 

3-D is possible in principle, as shown in Supplementary Information Figure S6, the proposed 

methodology will provide possible solutions to the present problem called “Missing One 

Dimension” upon implementing 3-D neural networks on a 2-D chip28. 

 

Method 

Through electropolymerization, PEDOT wires are grown between electrodes immersed in EDOT 

[3,4-ethylenedioxythiophene] solution by applying bipolar alternate current (AC) voltage to the 

electrodes. It has been reported that a single and straight conducting polymer wire grows between 

electrodes with the sharp apex immersed in monomer solution when the gap distance is short and 

absolute bipolar square-wave AC voltage with a 50% duty cycle is applied25. We conducted an 

investigation in order to perform the wire growth of PEDOT, where PEDOT growth with aprotic 

electrolytes, PSS, LiClO4, BMIPF6, TBAPF6, and p-Ts were also attempted, and the PEDOT:PSS 

gave the best controllability and reproducibility with the thin shape of the wires. Precursor 



solution was prepared containing 0.135M EDOT and 0.02M PSS in acetonitrile and ultrapure 

water ratio of 1:1. Liquid EDOT and PSS solution were obtained from Sigma-Aldric. Electrodes 

reported in Fig. 1–3 were fabricated by the conventional photolithography technique. Cr (10 nm) 

and Au (190 nm) were deposited on a glass substrate by using EB1100 (Canon Anelva). The 

electrode array tip reported in Fig. 4 is composed of a sputtered Cr(50 nm)/Pd(40 nm)/Au(500 

nm) layer and Au(500 nm) plating film on a Pyrex glass substrate and a top coat polyimide film 

of 1-μm thickness. A solution trough made of polydimethylsiloxane was placed on the substrates 

with electrodes and filled with EDOT solution. The bipolar AC voltage with a square shape was 

generated using the arbitrary waveform generator WF1973 connected to a high-speed bipolar 

amplifier HSA4101 (NF Corporation). The AC voltage was applied to one side of the electrode, 

whereas the opposite electrode was connected to the grounded state (GND). Growing wire images 

were observed by the inverted optical microscope Olympus IX73 or metallurgical microscope 

KEYENCE VHX-500.  

Results and Discussion 

Electropolymerization of PEDOT:PSS 

Figure 1a illustrates our setup where a bias electrode (left) is connected to an AC voltage source 

(𝑉s), and the other (right, ground electrode) is connected to the ground. This setup results in the 

directional polymerization of the monomer EDOT into PEDOT (see Method section for the 

experimental details). Here, we employ PSS, being a dopant of the formed PEDOT wires, as an 

electrolyte in monomer solution. Figure 1b shows a PEDOT:PSS wire bridging tips of bilateral 

triangular electrodes. No wire exists initially; however, applying 𝑉s to the bias electrode initiates 

growth of the microwires from both tips of the electrodes toward the center, and eventually, the 

wires contact each other. The long-distance growth of PEDOT:PSS wires frequently induces 

dendritic branching of the wires, as shown in Fig. 1c. Among various waveforms of AC voltages, 

the bipolar alternative voltage with a square waveform 𝑉s ≡ 𝑉a ∙ sgnሺsinሺ2𝜋𝑓ୱ 𝑡ሻሻ ൅  𝑉offset , 

where 𝑉a , sgnሺ∙ሻ , 𝑓s , 𝑡 , and 𝑉offset  represent the amplitude, sign function (∈ ሼെ1,0,1ሽ ), 

frequency, time, and direct current (DC) offset voltage, respectively, was employed for effective 

wire growth. In this study, 𝑓s  and 𝑉a  were set at 0.3–100 kHz and 4–20 V, respectively. 

Bipolarity of 𝑉s is very important to the nature of wire growth because polymerization initiates 

from a dominant anodic electrode only. As shown in Fig. 1a, as the polarity of the electrodes 

(anode and cathode) is alternatively exchanged by 𝑉s, when 𝑉offset is set at the ground potential, 

symmetric wire growth initiated from both the electrodes will be observed. Negative and positive 



𝑉offset will induce asymmetric wire growth initiated from the dominant anodic electrode only. 

When 𝑉offset is negative, the ground electrode becomes the dominant anodic, and wire growth is 

initiated from the ground electrode, whereas the bias electrode becomes the dominant anodic 

when 𝑉offset  is positive, which results in wire growth from the bias electrode. Further, the 

nonzero 𝑉offset  increases the number of branches upon wire growth. Increasing |𝑉offset| 

eventually terminates the wire growth, which gives rise to polymerization at the entire surface of 

the anodic electrode. 

We found a clear frequency dependence of growth rate and diameters of the PEDOT:PSS wires. 

Figure 1d shows PEDOT:PSS wires grown by different 𝑓s, where low 𝑓s induced thick and slow 

wire growth (Fig. 1d left), whereas high 𝑓s resulted in thin and fast wire growth (Fig. 1d right). 

Figure 1e summarizes the dependence of the wire diameter on 𝑓s ranging from 100 Hz to 2 MHz, 

where the wire diameter and 𝑓s  has a following relationship;  

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟ሺ𝜇𝑚ሻ ൌ  98
ඥ𝑓௦
൘          (1) . 

This relationship indicates that the wire thickness, i.e., cross-section of wire, area of circle, is 

proportional to the wavelength, 1 𝑓௦⁄ . Appling the square-wave AC voltage with a 50% duty 

cycle means that the anodic DC voltage is applied for half of the wavelength at the front edge of 

the growing wire. We consider that lengthwise polymerization arises at the moment of polarity 

𝑉s  switch so that the growth speed depends on the frequency. Subsequent polymerization in 

lateral direction during static potential difference 𝑉a is kept makes wire thicker. 

We also found that i) 𝑉a had an influence on the growth rate, i.e., a higher 𝑓s required a larger 

𝑉a to maintain tolerable growth rates of wires in the experiments, and that ii) the number of grown 

wires was increased by increasing 𝑉a. At the beginning of the growth process, a single wire or a 

few wires were grown. When thick wires grown from both the electrodes were contacted (the 

joint conductance ranged from several tens of S to several hundreds of S in our experiments), 

further wire growth initiated from the electrodes was attenuated because spreading currents in the 

solution converged on the grown wire. On the other hand, when thin wires were contacted (the 

spreading current was not fully converged on the thin wires), the subsequent wires were 

successively grown between the electrodes. Figures 1f, 1g, and 1h show images of grown wires 

taken after around 15 min of growth for each when 𝑉a ൌ 7.5, 10, and 15 V, respectively, with 

common 𝑓s (20 kHz). The subsequent increase in 𝑉a (൐15 V) gave rise to H2 gas bubbling at 



the dominant cathodic electrode because of a small nonzero 𝑉offset , which resulted from 

electrolysis of the water solvent. The further increase in 𝑉a caused bubbling at both the electrodes 

because the magnitudes of 𝑉offset became relatively small compared to the increased 𝑉a. Gas 

generation was abruptly observed when the number of wires was increased. 

The conductance between electrodes increases with the wire growth. We can stop wire growth at 

any given time and the grown wire would keep its shape and conductance steadily; therefore, they 

can be used as resistive change memory. We measured the current flows through the wire by 

applying a small DC (0.1 V) voltage, avoiding polymerization. Oxidation potential of monomer 

EDOT is ca. -0.8V. In our experiment, test voltage larger than 0.4V made grown wires thicker 

after many number of measurement cycles. The electric circuit used for the measurement is 

explained in the Method section. Figure 1i shows the conductance increase between electrodes 

with the 250-μm gap with a growth voltage of 10 kHz and 40 Vpp for 1s in a cycle of growth. 

First, an abrupt increase in conductance occurs after 60 cycles because of the first wire’s contact. 

The conductivity of PEDOT:PSS wire grown in this way was 0.01–1 S/cm without wire diameter 

dependence. The first and second wire connection shows a stepwise increase, while the 

subsequent increase is continuous, because the multiple wires start multiple connections, 

attaching to each other. The conductance maximum is determined according to a saturation of the 

number of wires or occurrence of H2 gas bubbling that disrupts the wirings physically. The break-

out condition of the H2 gas complexity depends on the combination of Vpp and frequency of the 

applied AC voltage and shape of the electrodes.  

The optimal condition, which favors the progress of the machine learning process, is continuous, 

and there is a linear conductance increase in a wider range. Figure 1j shows the wire growth 

between electrodes with a round shape apex of curvature radius of 50 μm, gap length of 50 μm, 

and 100-kHz AC square voltage with 25 Vpp. The conductance increases continuously and attains 

a saturated conductance of 17 μS. The inserted image shows a large number of wires with high 

density, where it is difficult to see the wire because its diameter is about 0.2 μm. No wire grows 

between the wider electrode with the larger curvature radius of 100 μm and gap length of 50 μm 

until the Vpp is increased over 40 V, which causes H2 gas bubbling.  

The wire grows directionally along the electrical potential gradient in solution. The primary wire 

generally grows close to the shortest path between the apex of electrodes. The subsequent wire 

growth frequently shows an elongation along the outer line of electrical force, as seen in Figs. 1f 



and 1i. They eventually move and fall into the center wire fascicle, as shown in Figs. 1g and 1h. 

The drastic movement of the wire is considered due to the heat convection of solution raised from 

the electrical current flow. The high directivity of wire growth can be used to realize multiple 

wiring for plural electrodes. Figure 1k shows a wire sorting for three electrodes from one electrode 

controlling the respective conductance. The growth voltage applied to three plural electrodes was 

20 kHz and 25 Vpp with a 0.1-V offset, which advanced wire growth from the single counter 

electrode. A programmed Arduino controlled the mechanical relay of the plural electrode to attain 

the conductivity ratio, where the conductivity was set to 2, 1, and 5 for the top, middle, and bottom 

electrodes, respectively. After a wire connected to the middle electrodes, growth to the bottom 

and top electrodes conditioned and eventually attained an ordered ratio. The performance of 

multiple wiring is a peculiar competence of polymer wire growth. It is possible for the polymer 

wire to crosslink and grow between designated electrodes. Movies and images of the various 

polymer growths are shown in the Supplemental Information. 

Supervised learning - Simple perceptron for simple logic gate -  

An elemental function in learning is synapse plasticity, and the synapse component in a physical 

ANN structure is required to have a resistive change ability and memory function. Synapse weight 

in an ANN should both increase and decrease in accordance with the order from a learning 

program. The direction of the conductance change of PEDOT:PSS wire will only increase with 

the stiffening of the material. In a physical ANN configuration, synapse weight consists of two 

positive and negative elements, because the negative weight has the critical role of product-sum 

operation in an ANN. It is a general way to control the conductance of memristive devices in an 

only increasing manner through learning, and the decrease operation is used only when the 

saturated device must be reset. In our case, learning should complete before saturation of wire 

growth.  

We preliminarily demonstrated simple logic AND and OR gates consisting of two input and one 

output neurons connected to two negative and positive synapses, as shown in Fig. 2a, trained by 

the simple perceptron algorithm. Four pairs of electrodes for polymer wire growth played the role 

of synapse. The four pairs of electrodes were connected to four electrical circuits, which were 

used to measure the conductance, as shown in Fig. 2b, where the circuit and relay are abbreviated 

comprehensibly. Test current flowing through the polymer wire was converted to voltage and 

read by the Arduino as synapse weights. Output results Y were calculated using Equation (1), 



mentioned in the Method section. The Arduino controlled the mechanical relay according to the 

installed simple perceptron program, shown in Fig. 2c. 

As depicted in Fig. 3, the program starts and the TEST protocol switches all relay to test circuit. 

When the test circuit is connected, a DC test voltage of 1 V is applied. The Arduino reads serial 

output values at a time for all synapses, 1p, 1n, 2p, and 2n, and memorizes them as synapse 

weights of w1p, w1n, w2p, and w2n, respectively. Next is a random call of input X1 and X2 from four 

combinations of 1 and –1, as shown in Fig. 3f. With the synapse weights and input, a perceptron’s 

outputs Y are calculated as follows: 

Y ൌ 𝑠𝑔𝑛൛൫𝑤ଵ୮െ𝑤ଵ୬൯Xଵ ൅ ൫𝑤ଶ୮െ𝑤ଶ୬൯Xଶ െ θൟ               (2) 

where 𝑠𝑔𝑛ሺ𝑥ሻ is the sign function to split a product to 1 or –1, i.e., if 𝑥 < 0, 𝑠𝑔𝑛ሺ𝑥ሻ = –1, and 

if 𝑥 ≧0, 𝑠𝑔𝑛ሺ𝑥ሻ = 1. θ is the decision threshold, which has an effect on the learning progress, 

because the initial weight of physical synapses is not zero. A finite θ value was needed to prompt 

smooth progress of learning in an earlier stage. In the next step of the decision, if the outputs Y 

are the same as the supervisee signal T, the YES flow goes back to new epoch. If Y is not T, the 

NO flow goes to learning, where some synapses have to change their weight to become close to 

the correct answer. The training signal will be made by an error function as follows: 

  ∆W௜ ൌ εሺT െ YሻX୧,                           (3) 

where ε is a positive constant. For example, if the inputs X1 and X2 are 1 and –1 for the AND gate, 

T is –1 and Y is 1. When ε = 0.05, the training functions, ΔW1 and ΔW2, are -0.1 and +0.1, which 

indicates that synapse 1 should decrease by 0.1 and synapse 2 should increase by 0.1 of their 

weight, respectively. For the polymer case, an order of the synapse weight update is converted to 

an order to control mechanical relay. In this case, the Arduino program makes the order to make 

a connection to the AC growth power supply and GND for only the synapses of 1n and 2p. The 

relays for the other half of the synapse without growth order and synapse with the right answer, 

ΔW = 0, maintain the neutral position. After the learning is completed, the decision of Y=T always 

becomes YES. Therefore, the test is repeated but no further learning order is commanded. We 

can stop the program running sooner or later. 

Figure 2d shows typical conductance changes through learning of the AND gate. During the 

learning phase, an AC voltage of 25 kHz and 30 Vpp for 1 s was applied. During the test phase, a 

DC voltage of 0.5 V for 0.5 s was applied and the current was measured. The conductance of w1p 

abruptly increases to 0.3 μS at the 130th epoch, but 2p exhibits no wire bridging for a while. The 



w2p abruptly increases to 0.6 μS and w1p subsequently increases to 0.7 μS at around the 290th 

epoch. After the polymer bridging in both 1p and 2p pairs of electrodes was attained, output 

results Y for every input combination yielded the correct answer against the supervised signal T 

of the AND gate. A pair of single wires or a few polymer wiring attained their logic functions by 

maintaining a balance of synapse weight. We performed the learning for the OR, NAND, and 

NOR as well, which are shown in Supplemental Information.  

Unsupervised learning - Autoencoder for feature extraction - 

An autoencoder is an unsupervised learning algorithm of an ANN, which learns a representation 

for a set of data, typically reducing the data dimensionality. The encoded data has its abstract 

feature extracted from the original high-dimensional data. Recently appeared powerful AI have 

involved autoencoders inside of their deep neural networks, so the autoencoder concept has 

become more widely used for learning. The autoencoder generally comprises a hidden layer 

between the encoder and decoder, as shown in Fig. 3a. The encoder compresses inputted data Vi 

through a synapse network of wij to a low-dimensional dataset of hj. The decoder decompresses 

the data set of hj through the same synapse network of wij to the new dataset of Vdi. Mandatory of 

the autoencoder algorithm is the self-replication of Vdi from Vi by changing the synapse weight 

wij. If the inputted Vi and outputted Vdi are not same, the only erroneous wis are updated, so no 

supervised data is needed, as shown in Fig. 3b. The learning is complete when all Vdi becomes 

identical to Vi for all input databases.  

 

We tried to make a polymer ANN that realizes feature extraction of three 3×3 binary letters into 

3-pixel codes, learned in an autoencoder manner. The ANN consists of 9 input neurons and 3 

hidden neurons, where a hidden neuron should comprise positive and negative synapses; therefore, 

the ANN require 54 synapses. The autoencoder built of an 9×6-polymer ANN used 9 substrates 

with 6 pairs of electrodes, which correlate with a single input neuron Vi and 6 hidden neurons hj±, 

as shown in Fig. 3c. The 9 divided terminals of the respective hidden neurons hj± are short-

circuited outside. Each of the 9 Vi neurons and 6 hidden hi± neurons are connected to respective 

electrical circuit boards, consists of four relays and Op amp based I/V convertor and only one 

terminal to electrode for polymer as shown in Fig. 3d. Total 15 boards are connected to each 

neuron of Vi and hi. The autoencoder algorithm has two test phases. One is encoding to work-out 

the hidden neuron hi with Vi input; the other is the decoding process to work-out the output neuron 

Vdi with hi input, as shown in Fig. 3b. 



At the first test phase, positive and negative test DC voltage, +0.1V or -0.1V correlating with 

binary data of a letter, X, H or T, were applied to Vi for 0.1s, where, the binary signal 1 or -1 

correlates with the black and white colour, positive and negative test voltage, respectively. Here, 

the system measure the current flows into hj+ and hj- at a time, which correlate with a result of 

sum of products ∑ ൫𝑤௜௝ା𝑉௜൯
ଽ
௜  and ∑ ൫𝑤௜௝ି𝑉௜൯

ଽ
௜ , respectively. Encoded signal from nine-bit to 

three-bit at hidden neuron hi are calculated from the current values as follows. 

ℎ௝ ൌ 𝑠𝑔𝑛൛∑ ൫𝑤௜௝ା𝑉௜൯
ଽ
௜ െ ∑ ൫𝑤௜௝ା𝑉௜൯ െ 𝜃ଽ

௜ ൟ               (4) 

Now hidden neuron hj should have any one data set of 3 pixel from 8 kinds shown in Fig. 3a 

bottom. In the next test phase, test DC voltage +0.1V or -0.1V correlating with hj were applied 

to hj± and a current flow into neuron Vdi were measured, where the neurons Vi and Vdi means 

single physical terminal Vi. Here, when hi is +1, +0.1V and -0.1V were applied for hi+ and hi-, 

simultaneously, when hi is -1, voltages of opposite polarity were applied. Measured current at a 

board connected terminal of neuron Vi correlate with a result of sum of products ∑ ൫𝑤௜௝ℎ௝൯
ଷ
௝ . 

Decoded Vdi were calculated as follows. 

𝑉ௗ௜ ൌ 𝑠𝑔𝑛൛∑ ൫𝑤௜௝൯
ଷ
௝ െ 𝜃ൟ                     (5) 

In the learning phase, when the Vi and Vdi are not same, which synapse weight should be increased 

or decreased is decided by following error function;    

∆W௜௝ ൌ ϵሺ𝑉௜ െ 𝑉ௗ௜ሻℎ௝                   (6). 

When the ∆W௜௝ is not zero, terminals of the selected neuron i and j are connected to the AC 

growth voltage of 20 kHz and 40 Vpp and the GND for 1s, thus the polymer wire in wij grows. 

The polarity of ∆W௜௝ selects the learning terminal hi+ or hi-. The rest terminals are floated. 

After the learning phase, two test phases start again. When the all 𝑉௜ െ 𝑉ௗ௜ becomes zero in 

each epoch many times repeatedly, no weight update take place, so that means the 

learning complete. 

  

A typical result of the autoencoder machine learning by using polymer wire growth for three 9-

pixel characters X, H, T is shown in Figure 3e. The upper panel shows the error rate, which is the 

ratio of the number of Vi≠Vdi in 9, and the lower panel shows the conductance change for all 54 

synapses during learning. One learning epoch is one cycle for one data set. The three characters 

were input in series every three epochs. It is clear that the error rate decreases gradually as the 

learning proceeds, and they eventually converge to zero. The conductance of the polymer 

increases in a respective manner, showing small fluctuations. The start of the conductance 



increase is after 100 epochs because of the gap length between electrodes of 400 μm, as shown in 

Fig. 3c. The achieved network results encoded from X, H, and T letters to (1, –1, –1), (–1, –1, –

1), and (1, 1, 1), respectively, where these combinations were incidentally determined through 

the learning.  

 

Figure 3f shows the update order for wire growth indicated by a red line, and the resulting 

conductance change is indicated by the green color depth for all 54 synapses, where the learning 

epoch flows from top to bottom. The lower block in Fig. 3f shows the same update order and 

weight change of a synapse simulated in software for comparison. Whereas the polymer 

autoencoder has been converged after 500 learning epochs, the software converges the same 

autoencoder within about 30–60 learning epochs. This is because the single growth order for the 

polymer does not make the conductance increase, because of the noticeable nonlinearity of 

conductance increase against growth order, as shown in Fig. 1i. It was interesting that the polymer 

ANN consists of a small number of synapses, which has a significant weight of conductance. As 

shown in Figs. 3g and 3h, whereas the polymer ANN consists of almost 30 synapses with zero 

weight, the software simulated ANN always has less than 10 zero-weight synapses. It is 

considered that the complementary replacement of the poorly grown polymer with a better 

polymer arose because of the individual specificity of polymers resulting in a natural selective 

network consisting of a minimum requirement of wiring. 

 

We made improvements to the machine learning system being poised to respond to increases in 

node number. Figure 4a shows an array of electrodes, which has a round shape with a gap length 

of 50 μm. The electrode array tip consists of 90 pairs of electrodes, of which the terminals are 

wire-bonded to hard wirings of the outside. The electrodes are covered by polyimide film, leaving 

the facing area bare, as shown in Fig. 4a; therefore, polymer growth for every pair of electrodes 

can be operated in a single solution trough at a time. The control electric board mounts a shift 

resistor to control 8 mechanical relays to the terminals. Only four signal lines from the Arduino 

can control all 8×N terminal relays on N boards simultaneously, because the shift resistors are 

connected in series.  

 

We performed an autoencoder machine learning of three 3×3 binary letters again by using this 

system. Seven boards for upstream and seven boards for downstream were used. All boards shared 

three inner circuit switching signals and used the same four signals to the series of shift resistors, 



and seven test-out terminals in the lower stream were connected to the read terminal in the 

Arduino. Eventually, the number of occupied terminals in the Arduino was only 17 even if the 

number of network synapses increased more, which is considerably decreased from the previous 

system occupying 60 terminals. In this case, all synapse weights and polymer resistances were 

measured to switch 8 times from terminal 1 to 8 simultaneously at every board with the 

application of a test DC voltage of 0.1 V to opposite electrodes. The measured conductance was 

assigned to all synapse weights 𝜔௜௝, respectively. The hi and Vdi were derived by using the 𝑤௜௝, 

immediately, in a manner of Equations (3) and (4) in the Method section. The update order for 

synapse weight determined by Equation (5) was randomly selected depending of the error rate. 

The update order was realized to connect the facing mechanical relay of designated pairs of 

electrodes to grow the polymer, where the upper stream connects to the growth AC voltage of 

100 kHz and 12 Vp–p and the lower stream connects to the GND. 

 

Figures 4c and 4d show optical microscope images of a typical polymer wiring after learning. 

They have respective conductance related to the number of polymers bridging between the 

electrodes. Figures 4e–f show the error rate and conductance change during the learnings. The 

conductance increase starts within a few tens of learning epochs, and the learning completes 

within 100 epoch or less. Figure 4f shows the results of over-writings of X, H, and T after the 

learning of I, L, and P. The improved condition of the hard-wiring and improved electrode array 

and solution trough made the machine learning process for the polymer wire easy and reliable. 

The success probability of the autoencoder learning became nearly tenfold that of previous 

devices. 

 

In comparison with other material-based techniques, the single learning epoch and entire term for 

learning completion in this technique are extremely long, i.e., the one epoch is almost 1.5 second 

and the number of epoch for learning were from one to few hundreds. The memristor device 

consisting of metal oxide layers10,11,29,30 can be operated by short epoch, e.g., one epoch is 

generally less than sub-milli-second and the number of learning epoch to complete similar task 

are in few tens. Silver atomic switch device31 seems to require relatively longer time period, e.g., 

order of second was needed to make memristive conductance change, though the switching can 

be operated in nano-second order. Organic memristive devices15-17 require relatively longer time 

period than the order of milli-seconds to realize effective conductance change. Slower weight 



update ability in our polymer grows system is trade off relationship with the benefit of the space-

free growth ability, of which synaptic medium grows only when necessary. 

 

It should be noted that the PEDOT:PSS wires bridging between electrodes can be dried and hold 

the resistance permanently in the ambient condition, though they will never be updated. Figures 

4c and 4d show polymer wires after drying, maintaining the bridging. The conductance of the 

dried wire slightly decreases with the weight difference of less than 5% than that in solution. We 

confirmed that a dried wire maintained the same conductance in ambient conditions for 6 months. 

We still have the problem of wire breaking due to capillary phenomena in the drying process 

arising in 10% of pairs of electrodes. It is expected to be solved by improving the drying process 

or resolving the use in a solution cell. Machine learning using polymer wire growth does not 

require expensive equipment and extreme conditions. A resistance array of polymer wires is a 

preferable candidate of a learnable tip with arranged multi resistances to adopt tasks in future 

neuromorphic hardware. 

 

The wire directionally grows along the electrical potential gradient, so it can connect between 

designated terminals in 3-D free space in principle, though the polymer wire shown in this study 

basically grew on a 2-D bottom plane of solution. We tried polymer wiring in 3-D space using 

sharpened metal tips and buried metal terminals as well. Wiring was easily attained; however, the 

conductance control of the 3-D multi-branching was very difficult to perform (see Supplemental 

Information). It is considered that the multi-terminals we made were too large. Based on the 

condition we investigated, a challenge to overcome was fabricating multi-electrodes with a small 

area contacting solution, e.g., 102–1002 μm2, with a fine pitch of 50–400 μm, where they faced 

each other at a distance of 50–400 μm. A small metal-exposing area is effective in making a 

sharp pathway of electrical potential gradient. The right ratio of pitch and gap length is needed to 

branch the wires connecting a number of vicinal counter electrodes. Finely fabricated multi-

terminals should make the 3-D polymer wiring possible. 

Conclusions 

We have investigated PEDOT:PSS wire growth between electrodes in monomer solution and 

attained good conditions to control its resistance change that can be used as resistive change 

memory. A machine learning system specialized for polymer wire growth was developed and 

performed learnings to form an ANN synaptic weight arrangement consisting of polymer wires. 



The resistance array of polymer wires showed a high capability for synapse weight update by 

increasing their number of wires bridging between electrodes. Autoencoder learning that enables 

feature extraction of three 9-pixel binary data into 3-pixel data was successfully demonstrated by 

using the 54-polymer synapse on an electrode array tip. Because of the high durability of the 

material, the learned resistance array of the PEDOT:PSS polymer wires could be used as a 

learnable tip to adopt a task in future neuromorphic hardware. The developed technique has 

machine learning versatility for various materials that can change its resistivity by introducing 

external voltage or current. In the near future, an on-demand and easy-to-use approach for the 

learning of neuromorphic hardware for the end user will be proposed. This work broadens the 

variety of candidate materials and frameworks to create physical neuromorphic hardware. 

  



 

Figure caption 

Fig. 1 PEDOT:PSS polymer wire growth in EDOT monomer solution. a Simple schematic of 

experimental setup and molecular structural formula. b–d and f–h Optical microscope images of 

grown PEDOT:PSS wire between electrodes in EDOT solution by applying bipolar AC voltage 

with square shape. b Bipolar AC voltage of 300 Hz and 8 Vpp for electrodes with gap of 150 μm. 

c Bipolar AC voltage of 300 Hz and 10 Vpp for electrodes with gap of 600 μm. d Bipolar AC 

voltage with voltage offset of 0.1 V, of which the frequency increased from 300 to 50 kHz and 

Vpp also increased from 8 to 10 V, was applied for electrodes with a gap of 150 μm. e Frequency 

dependence on diameter of PEDOT:PSS wire. f–h Time series of wire growth by applying AC 

voltage of 20 kHz at 15, 20, and 30 Vpp, respectively. Images were taken after 5 minutes from the 

voltage application or increase. i and j Conductance change between electrodes with polymer 

growth by applied AC voltage of i 10 kHz with 40 Vpp for electrodes with 250-μm gap and j 100 

kHz with 25 Vpp for electrodes with 50-μm gap with round shape, respectively. k Plural polymer 

wiring control branching to three different electrodes from single one by applied AC voltage of 

20 kHz and 25 Vpp with 0.1-V offset. The conductance ratio was set as 2:1:5 for 

top:middle:bottom electrodes. 

 

Fig. 2 Machine learning of simple logic gate comprising wiring polymer. a Two input and one 

output single ANN layer, where a synapse consists of two positive and negative divided synapses. 

b Scheme of machine learning system for polymer wire growth, which consists of a substrate with 

four pairs of electrodes, four electrical circuits that can switch between growth or test mode, an 

AC power supply, DC power supply, and Arduino. c Flowchart of simple perceptron algorithm. 

A step of decision “Y equal to T or not” proceeds a learning epoch. d Optical microscope image 

of after AND gate learning for four pairs of electrodes and polymer wired between 1p and 2p 

pairs of electrodes. e Conductance change during AND gate learning. f Reference chart of input 

Xi and supervisor T for AND, OR, NAND, and NOR gate.  

 

Fig. 3 Unsupervised autoencoder learning by 54 synapses of polymer wiring. a 

Representation of an autoencoder consisting of input neuron Vi, hidden neuron hj, and output 

neuron Vdi forming two encode and decode ANN layers. Hidden neuron hj consists of positive 

and negative divided neurons. b Flowchart of autoencoder algorithm. c Grass substrates with 6 

pairs of Au electrodes, which correlate to an input neuron Vi and 6 hidden neurons hj. The pairs 



of electrodes have a sharp apex with a gap of 250 μm. d Electric circuit board for autoencoder 

learning. e Error rate and conductance change of a successful autoencoder learning by polymer 

wire synapses, which can encode three 9-pixel characters (X, H, T) into respective 3-pixel data. f 

Upper block: update order for wire growth (red line) and conductance change for all 54 synapses 

(green color depth) shown with learning flow from top to bottom. Lower block: an example of 

same update order and weight change resulting in software autoencoder calculation. g and h 

Histogram of synapse weight that constitute accomplished autoencoder for g conductance of 

polymer wire and h numerical value in software. 

 

Fig. 4 Machine learning system being poised to respond to increasing node number. a 

Electrode array tip for polymer wire growth consisting of 90 pairs of Au electrodes with 50-μm 

gap with round shape. Wiring area is covered by polyimide film. b Schematic circuit diagram of 

an electric circuit board with simultaneous switching system to multi terminals. The photo shows 

the external appearance of the system consisting of 15 boards. c and d Typical optical microscope 

images of polymer wires bridging the electrodes, which were taken after drying. e and f Error rate 

and conductance change during autoencoder learnings for e (X, Y, Z) and f (I, L, P) and over-

written (X, H, T). 
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