

HOKKAIDO UNIVERSITY

Title	Melatonin suppression during a simulated night shift in medium intensity light is increased by 10-minute breaks in dim light and decreased by 10-minute breaks in bright light
Author(s)	Lee, Sang-II; Kinoshita, Saki; Noguchi, Anna; Eto, Taisuke; Ohashi, Michihiro; Nishimura, Yuki; Maeda, Kaho; Motomura, Yuki; Awata, Yasuhiro; Higuchi, Shigekazu
Citation	Chronobiology International, 37(6), 897-909 https://doi.org/10.1080/07420528.2020.1752704
Issue Date	2020-06
Doc URL	http://hdl.handle.net/2115/81619
Rights	This is an Accepted Manuscript of an article published by Taylor & Francis in Chronobiology International on June 2020, available online: http://www.tandfonline.com/10.1080/07420528.2020.1752704.
Туре	article (author version)
File Information	LCBI-2019-0234.R2_Proof_hi2.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Melatonin suppression during a simulated night shift in medium intensity light is increased by 10-minute breaks in dim light and decreased by 10-minute breaks in bright light

Journal:	Chronobiology International
Manuscript ID	LCBI-2019-0234.R2
Manuscript Type:	Original Reports
Date Submitted by the Author:	n/a
Complete List of Authors:	LEE, SANG-IL; Kyushu University Graduate School of Design Faculty of Design, Department of Human Science; Hokkaido University Faculty of Engineering, Division on Human Environmental Systems Kinoshita, Saki; Kyushu University, Graduate School of Integrated Frontier Science, Department of Kansei Science Noguchi, Anna; Kyushu University, Graduate School of Integrated Frontier Science, Department of Kansei Science Eto, Taisuke; Kyushu University, Graduate School of Integrated Frontier Science, Department of Kansei Science Ohashi, Michihiro; Kyushu University, Graduate School of Integrated Frontier Science, Department of Kansei Science Ohashi, Michihiro; Kyushu University, Graduate School of Integrated Frontier Science, Department of Kansei Science Email address Nishimura, Yuki; Kyushu University, Graduate School of Integrated Frontier Science, Department of Kansei Science Email address Nishimura, Yuki; Kyushu University, Graduate School of Integrated Frontier Science, Department of Kansei Science Email address; National Institute of Occupational Safety and Health Japan Noborito District Maeda, Kaho; Japan Aerospace Exploration Agency Institute of Aerospace Technology Tsukuba Space Center, Ground Facilities Department Motomura, Yuki; Kyushu University Graduate School of Design Faculty of Design, Department of Human Science Awata, Yasuhiro; Japan Aerospace Exploration Agency Institute of Aerospace Technology Tsukuba Space Center, Ground Facilities Department Higuchi, Shigekazu; Kyushu University Graduate School of Design Faculty of Design, Department of Human Science
Keywords:	Humans, Night shift work, Intermittent light at night exposure, Light adaptation, Short duration, Melatonin suppression, Subjective sleepiness, Performance

2	
3	
4	
5	
6	
/	SCHOLARONE"
8	Manuscripts
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 13	
ст ДД	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	URL: http://mc.manuscriptcentral.com/lcbi E-mail: ICBI-peerreview@journals.tandf.co.uk

Melatonin suppression during a simulated night shift in medium intensity light is increased by 10-minute breaks in dim light and decreased by 10-minute breaks in bright light

Sang-il Lee^{a, b}, Saki Kinoshita^c, Anna Noguchi^c, Taisuke Eto^c, Michihiro Ohashi^c, Yuki Nishimura^{c, e}, Kaho Maeda^d, Yuki Motomura^a, Yasuhiro Awata^d, and Shigekazu Higuchi^{a*}

^aDepartment of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan; ^bDivision of Human Environmental Systems, Faculty of Engineering, Hokkaido University, Sapporo, Japan; ^cDepartment of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University, Fukuoka, Japan; ^dGround Facilities Department, Japan Aerospace Exploration Agency, Tsukuba, Japan; eNational Institute

epartment, ыщ f Occupational Safety and Heum *corresponding author: Shigekazu Higuchi, Ph.D Department of Human Science Faculty of design, Kyushu University 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan

Abstract

6	2	Exposure to light at night results in disruption of endogenous circadian
7 8	3	rhythmicity and/or suppression of pineal melatonin, which can consequently lead
9	4	to acute or chronic adverse health problems. In the present study, we investigated
11	5	whether exposure to very dim light or very bright light for a short duration
12	6	influences melatonin suppression, subjective sleepiness, and performance during
13 14	7	exposure to constant moderately bright light. Twenty-four healthy male
15 16	8	university students were divided into two experimental groups: Half of them
17	9	(mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10)
18	10	min) light conditions of medium intensity light (430 ly medium breaks) vs. very
20	10	dim light ($(1, 1)$ with heads) and the other helf (mean equilibrium light ($(2, 1)$ with heads) and the other helf (mean equilibrium light)
21	11	dim light (< 1 ix, dim breaks) and the other nail (mean age: 21.3 ± 2.3 years)
22 23	12	participated in an experiment for short-duration light conditions of medium
24	13	intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright
25 26	14	breaks). Each simulated night shift consisting of 5 sets (each including 50-minute
27	15	night work and 10-minute break) was performed from 01:00 to 06:00h. The
28 29	16	subjects were exposed to medium intensity light (550 lx) during the night work.
30	17	Each 10-minute break was conducted every hour from 02:00 to 06:00h. Salivary
31 32	18	melatonin concentrations were measured, subjective sleepiness was assessed, the
33	19	psychomotor vigilance task was performed at hourly intervals from 21:00h until
34 35	20	the end of the experiment. Compared to melatonin suppression between 04:00
36	21	and 06:00h in the condition of medium breaks, the condition of dim breaks
37 38	22	significantly promoted melatonin suppression and the condition of bright breaks
39	23	significantly diminished melatonin suppression However, there was no
40 41	24	remarkable effect of either dim breaks or bright breaks on subjective sleepiness
42	25	and performance of the psychomotor vigilance tack. Our findings suggest that
43 44	25	and performance of the psycholitotor vignance task. Our findings suggest that
45	20	periodic exposure to light for short durations during exposure to a constant light
46 47	27	environment affects the sensitivity of pineal melatonin to constant light
47	28	depending on the difference between light intensities in the two light conditions
49 50	29	(i.e., short light exposure vs. constant light exposure). Also, our findings indicate
50 51	30	that exposure to light of various intensities at night could be a factor influencing
52	31	the light-induced melatonin suppression in real night work settings.
53 54		
55	32	Keywords: Humans; Night shift work; Intermittent light at night exposure; Light
56 57	33	adaptation; Short duration; Melatonin suppression; Subjective sleepiness;

Performance

35 Introduction

The 24-h light-dark cycle in nature is known as the strongest zeitgeber (i.e., time giver) for almost all mammalians. In humans, the suprachiasmatic nuclei (SCN), i.e., the circadian pacemaker, regulates circadian rhythmicity throughout the body via phototransduction input from ganglion cells in the retina (Weaver 1998). For instance, the SCN restrains pineal melatonin production during the daytime and allows melatonin secretion during the night. It has been believed that the release timing and the amount of melatonin secretion are related to the regulation of physiological and behavioral circadian rhythm (Macchi & Bruce 2004). However, the extension of daylight duration in modern life by using artificial lighting at night is likely to lead to acute melatonin suppression and circadian disturbances, which are partially responsible for some health problems (Smolensky et al. 2015; Smolensky et al. 2016; Lunn et al. 2017; Touitou et al. 2017).

The magnitude of melatonin suppression varies depending on light intensity (Zeitzer et al. 2000), exposure duration (Aoki et al. 1998), and wavelength composition (Brainard et al. 2001). Recently, however, there is growing evidence that prior light history has an impact on the magnitude of melatonin suppression in response to a subsequent light stimulus at night. Several studies have suggested that less daylight can increase melatonin sensitivity to light at night (Hebert et al. 2002; Smith et al. 2004). A field study with human subjects showed that melatonin suppression in response to 500 lx light at night was greater following exposure to dim light (wearing dark goggles with 2% transmission lenses) for one week than following exposure to bright light for one week (Hebert et al. 2002). Similar results were obtained in laboratory studies on melatonin suppression (Smith et al. 2004) and circadian phase shift (Chang et al. 2011). The results of those studies, however, were likely to have been affected by great differences in the intensities of prior light conditions. One study, however, showed significantly dampened melatonin suppression in response to blue light (460 nm monochromatic light) following 2-h exposure to dim white light (18 lx) compared to that following 2-h dark adaptation (Jasser et al. 2006). Taken together, the results suggest that melatonin sensitivity to a light stimulus can be increased or decreased depending on the relative intensity of a prior light stimulus to the target light stimulus. Although the mechanism involved in the effect of prior light history is not clear, it seems that a long period of photic adaptation alters the absolute response threshold of photoreceptors and/or photosensory inputs from the photoreceptors to the

Chronobiology International

SCN. In humans, the visual photoreceptors (i.e., rods and cones) and especially a small subset of retinal ganglion cells expressing melanopsin (mRGC) contribute to non-visual effects on the circadian system (Gooley et al. 2012); those are designed to adapt to various changes in ambient light in a short time. For instance, exposure of the eves to bright light desensitizes the visual photoreceptors to facilitate response to intensity increment (i.e., light adaptation) (Fain et al. 2001). Conversely, darkness fully recovers the photoreceptors from the desensitized state (i.e., dark adaptation) (Lamb & Pugh 2004). It should be noted, however, that the time required for photo-regeneration becomes longer as the photopigment bleaches more. Recently, evidence of the adaptation capacity of mRGC to light has been provided (Wong et al. 2005). One study with young human subjects, for example, showed that blocking short-wavelength light, which dramatically activates the mRGC, by using orange-colored contact lenses (i.e., blue light-filtering lenses) immediately reduced melatonin suppression but that the reduction in melatonin suppression disappeared 16 days after wearing the blue light-filtering lenses (Gimenez et al. 2014).

If two lights of different intensities are emitted alternately for long or short durations, can the effects of the short duration exposure be ignored? Some researchers have demonstrated that using intermittent light (e.g., alternate exposure to bright light and darkness) during the night for multiple days is effective for shifting the phase of human circadian rhythm (Baehr et al. 1999; Rimmer et al. 2000; Crowley et al. 2003; Gronfier et al. 2004; Smith et al. 2009). A mathematical model of the effects of brief light on the human circadian pacemaker has been proposed for explaining the results of previous investigations (Kronauer et al. 1999). Recent studies, however, showed that even brief (12 minutes or shorter) exposure to bright light was able to elicit circadian phase delay and melatonin suppression after previous adaptation to dim light during a constant routine (Chang et al. 2012; Rahman et al. 2017).

Although there is a possibility that exposure to darkness or dimmer light or brighter light can alter (at least temporarily) the sensitivity of non-visual responses to a subsequent light stimulus, the intermittent light conditions used in most previous studies are far from real working conditions. Furthermore, the effects of short exposure to very dim light during night work under light of constant medium intensity are unknown. In the present study, we therefore investigated whether short-duration exposure to very dim light or very bright light influences melatonin suppression, subjective sleepiness, and performance during exposure to constant light of medium intensity.

2 3	103	
4 5	104	Materials and Methods
6 7	105	Subjects
8	106	Twenty-four healthy male university students participated in this study. Twelve subjects
9 10	107	(mean \pm SD age: 20.0 \pm 0.9 years) participated in Experiment 1 and the remaining 12
11 12	108	subjects (mean \pm SD age: 21.3 \pm 2.5 years) participated in Experiment 2. None of the
13 14	109	participants showed extreme morningness or extreme eveningness as assessed by a
15 16	110	Japanese version of the Morningness-Eveningness Questionnaire (Ishihara et al. 1984).
17	111	Subjects who had engaged in night shift work or who had experienced time zone travel
18 19	112	(i.e., at least > 1 time zone) in the previous three months were excluded from the study.
20 21	113	Signed written informed consent to take part in the research study, which was approved
22 23	114	by the Ethical Committee of Kyushu University, was obtained from all participants. The
24	115	experiments were conducted in accordance with the Declaration of Helsinki.
25 26	116	
27 28	117	Experimental light conditions
29 30	118	The vertical illuminance and irradiance of each light condition were measured at eye
31	119	level in a sitting position using an illuminance spectroradiometer (CL-500A, KONICA
32 33	120	MINOLTA INC., Japan). Two experimental chambers were used for the experiment
34 35	121	(chamber 1) and for 10 min breaks (chamber 2). In chamber 1, light-emitting diode
36	122	(LED) ceiling lights (HH-LC569A, Panasonic Inc., Japan) were set up for exposure to
38	123	constant medium intensity light (~550 lx). Fluorescent ceiling lights (FPL36CW, Panasonic
39 40	124	Inc., Japan) were used for medium breaks (~430 lx) or bright breaks (~4700 lx). For dim
41 42	125	breaks (<1 lx), incandescent bulbs were installed on the floor as indirect lighting.
43	126	Detailed information on each light condition is given in Table 1. Melanopic lux was
44 45	127	calculated using an excel-based toolbox provided by the Lucas Group at the University
46 47 48 49	128	of Manchester (Enezi et al. 2011).
	129	(http://lucasgroup.lab.manchester.ac.uk/measuringmelanopicilluminance/).
50	130	
51	131	Procedure
53 54	132	Two experiments with a crossover design, including dim breaks vs. medium breaks
55 56	133	(Experiment 1) and bright breaks vs. medium breaks (Experiment 2), were conducted to
57	134	investigate the effects of each short-duration (10 min) light exposure condition on
58 59	135	melatonin suppression, subjective sleepiness, and performance during exposure to
60	136	constant bright light. Each participant was therefore required to visit our laboratory

Page 7 of 28

Chronobiology International

twice with an interval of 2 weeks. Six participants simultaneously participated in each experiment. Prior to the experiment, participants were instructed to sleep for more than 7 hours between 00:00 and 08:00h for one week. An accelerometry-based activity monitor (Lifecorder plus, Suzuken Co Ltd, Japan) and daily sleep diary were used to confirm the implementation of sleep intervention during the control period. Furthermore, each participant sent us a message via a mobile phone shortly before bedtime and shortly after waking up. If there was no message from a participant, we called the participant to confirm his situation. The participants were instructed not to drink alcohol from three days before the experiment. Also, excessive exercise, napping, and caffeine consumption were not allowed commencing the day before the experiment.

The procedures used for Experiment 1 and Experiment 2 were same (Figure 1). The participants arrived at the experimental facility at about 12:00h and dressed into the experimental clothes (short-sleeved T-shirt, short pants, and no socks) after receiving brief instructions for the experiment. The participants stayed in chamber 1 in a sitting position from 13:00h until the end of the experiment. The room illuminance was 275 lx (vertical illuminance at eye level) from 13:00 to 19:00h. The light illuminance was then changed into a dim light (< 10 lx) from 19:00 to 01:00h. The participants were allowed to use portable devices (e.g., smartphone, tablet pc, laptop, set to minimum brightness) and read books between 19:00 and 00:00h. For reference, the illuminances of the self-illuminating portable devices were measured under 2 lx at a distance of 20 cm from the center of each screen. The participants started simulated night work in a sitting position from 00:00 to 06:00h (practice session between 00:00 and 01:00h) in chamber 1. The light illuminance was changed to medium intensity light (550 lx) from 01:00 until 06:00h. Each break condition was conducted every hour from 02:00 to 06:00h in chamber 2 and lasted 10 min. During each break, all of the participants performed light stretching (~ 2 min in a standing position) and a word chain game (Shiritori, ~5 min in a sitting position) and answered questionnaires (~3 min in a sitting position) that addressed subjective sleepiness (Karolinska sleepiness scale, KSS) and 'dummy variables' (e.g., physical fatigue and mood state). Each break was followed by 50-min of simulated night work in which the participants conducted PVT and answered the KSS and dummy questionnaires for 10 min followed by card games for 20 min. After a 5-min rest period, the participants conducted PVT, collected saliva, and answered the KSS for 15 min (Figure 1b). The order of the break conditions in each experiment (i.e., Experiment 1 or Experiment 2) was random for each participant. For example, some participants

performed the medium breaks on the first visit and the bright breaks (or dim breaks) on
the next visit, and vice versa for other participants. Participants had dinner at 19:00h
(typical Japanese food, the same dishes for all participants in every experiment) and a
late-night snack at 23:30h (rice, miso soup). No drinks except for water were provided
throughout each experiment.

Salivary samples were collected hourly using a plain cotton plug (Salivette Sarstedt, Germany) from 21:00h until the end of the experiment. Participants did not drink any water for 15 min prior to each salivary sample collection. Subjective sleepiness was evaluated using the KSS at 1-hour intervals from 21:00 to 06:00h, 5 min before collecting the salivary sample. Subjective sleepiness during each break was also evaluated to confirm the acute effects of the break on sleepiness. Each participant performed the Psychomotor Vigilance Task (PVT) twice with a 1-hour interval, soon after the break and shortly before the next break. The PVT was performed for 5 min using Presentation (Neurobehavioral Systems Inc., Albany, CA). A visual stimulus was displayed randomly on the PC display at intervals of 2 to 10 sec. Participants were instructed to press the space key on the keyboard as soon as possible after the appearance of the visual stimulus. A beep sound was emitted from each earphone if the participants did not react within 3000 msec.

190 Sample analysis

Salivary melatonin concentrations were measured by radioimmunoassay kit (RK-DSM; Buhlmann Laboratories AG, Allschwil, Switzerland). Melatonin area under the curve (AUC; trapezoidal approximation) between 21:00 and 06:00h was calculated to evaluate the overall effect of each break condition on melatonin suppression. Data of three participants were excluded from analysis of the results for bright breaks, since each participant showed a gap longer than 1 hour in the time of dim light melatonin onset (DLMO) between the conditions (medium breaks vs. bright breaks). DLMO was determined by linear interpolation between two time points at which melatonin concentration crossed the 3.0 pg/ml threshold (Benloucif et al. 2008).

201 Statistical analysis

In statistical comparisons between the conditions (medium break vs. bright break or
medium break vs. dim break) for the melatonin profile, subjective sleepiness (KSS),
performance (PVT), repeated-measures two-way ANOVA (SPSS 23.0, IBM[©] SPSS[©]

Page 9 of 28

Statistics) with light conditions and time (during the simulated night work) as independent factors was conducted. Greenhouse-Geisser correction was performed when Mauchily's sphericity assumption was largely violated. A two-sided, paired Student's t-test was used for planned comparisons between the light conditions during the night work when a significant interaction between the independent factors was found. For the comparison of numbers of PVT lapses between the conditions, the Wilcoxon signed-rank test was conducted. A P-value of less than 0.05 was considered statistically significant.

214Results215Melatonin suppression

Figure 2 shows the melatonin profiles obtained from each experiment. In both
experiments, melatonin gradually increased under the dim light condition (21:0001:00h) but was immediately attenuated by light exposure (550 lx) from 01:00h in both
experiments. However, the aspects of melatonin suppression were different with the

220 light conditions during breaks.

In Experiment 1 (Figure 2a), repeated-measures two-way ANOVA with light condition (medium break vs. dim break) and time (01:00~06:00h) showed a main effect in light condition ($F_{1,11} = 6.966$, P = 0.027) but not in time ($F_{1,951,21,463} = 0.511$, P =0.603, ns). There was a significant interaction between condition and time ($F_{2.827, 31.095} =$ 3.826, P = 0.021). A paired t-test for melatonin concentrations at each time point showed that the dim break resulted in greater melatonin suppression than did the medium break at 04:00, 05:00, and 06:00h (P = 0.011, P = 0.007, and P = 0.001, respectively). A comparison of the melatonin AUCs between the conditions showed that there was a significant tendency for lower melatonin concentration in the dim break condition compared to that in the medium break condition.

Similarly, in Experiment 2 (Figure 2b), repeated-measures two-way ANOVA with light condition (medium break vs. bright break) and time (01:00~06:00h) showed a main effect in light condition ($F_{1,8} = 9.837$, P = 0.014) but not in time ($F_{5,40} = 0.981$, P = 0.441, ns). A significant interaction between condition and time was found ($F_{5,40}$ = 4.484, P = 0.002). A paired t-test for melatonin concentrations at each time point showed that the bright break resulted in lower melatonin suppression than did the medium break at 04:00, 05:00, and 06:00h (P = 0.009, P = 0.038, and P = 0.001, respectively). There was also a significant tendency for higher melatonin concentration

in the bright breaks than in the medium breaks at 05:00h (paired t-test, P = 0.050). The melatonin AUC in the bright breaks was significantly greater than that in the medium breaks.

243 Subjective sleepiness (KSS)

The results for subjective sleepiness are shown in Figure 3. In Experiment 1 (dim breaks), subjective sleepiness gradually increased over time during the simulated night work span ($F_{8, 34.031} = 9.066$; p < 0.001), but it showed almost the same pattern in the conditions (medium vs. dim) ($F_{1,11} = 0.723$; p = 0.413). In addition, no significant interaction was found between conditions and time ($F_{8, 42.824} = 1.709$; p = 0.167). Similarly, in Experiment 2 (bright breaks), there was a significant main effect of time $(F_{8, 64} = 14.030; p < 0.001)$, but no main effect of condition $(F_{1, 8} = 0.018; p = 0.897)$, and no interaction between condition and time ($F_{8, 64} = 1.195$; p = 0.316) were found.

- 26 252 27 253

PVT

Figure 4 shows the results for reaction speed (mean reciprocal reaction time: mean 1/RT) (Basner & Dinges 2011) in the two experiments. In ANOVA analysis for mean 1/RT, there were significant main effects of time in Experiment 1 (dim breaks) (F_{8, 27,005} = 8.729; p = 0.001) and in Experiment 2 (bright breaks) (F_{8.16,421} = 11.593; p = 0.001). However, mean 1/RT was not significantly different between conditions in both experiments ($F_{1,11} = 0.0004$; p = 0.984 in Experiment 1, $F_{1,8} = 0.018$; p = 0.897 in Experiment 2). Also, no interactions between conditions and time were found ($F_{8, 88} =$ 0.927; p = 0.499 in Experiment 1, $F_{8, 22, 129} = 1.073$; p = 0.377 in Experiment 2).

A comparison of the numbers of lapses at each time point (Wilcoxon signedrank test) showed that there was no significant difference at any time points between medium breaks and dim breaks and between medium breaks and bright breaks (Figure 4).

267 Discussion

In the present study, we investigated whether periodic short-duration exposures (for 10 min at hourly intervals) to very bright (bright breaks) or very dim light (dim breaks) affect physiological responses including melatonin suppression, subjective sleepiness, and performance during exposure to constant medium intensity light. We found that both the dim breaks and bright breaks indirectly, rather than directly, affected melatonin suppression

Page 11 of 28

1

Chronobiology International

2	
3	
4	
5	
6	
7	
, 8	
٥	
10	
10	
11	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

during the experiments: the dim breaks promoted melatonin suppression, whereas the
bright breaks diminished melatonin suppression. A possible reason for these results is
that the dim breaks or the bright breaks sensitized or desensitized pineal melatonin to
the subsequent constant light exposure during the experiment.

277 The effect of brief light exposure during each break on melatonin synthesis was 278 first observed at the 04:00h time point, just before the 3rd break in both experiments, 279 and the sensitized or desensitized states lasted until the end of the experiment (i.e., 06:00h). However, this does not mean that the first break had no effect at all, but rather 280 281 it seems that adaptation to dim light for 4 hours before the start of the experiment 282 caused strong melatonin suppression by sensitizing melatonin responsiveness to light 283 (see melatonin suppressions at 02:00h in Figure 2). This may indicate that melatonin 284 sensitivity can be changed shortly after short-duration exposure to light. Our results might suggest that using brief photo-adaptation probably enables real-time adjustment 285 286 of melatonin sensitivity against a current light stimulus depending on relative photic 287 intensity.

288 Although the results of the present study are similar to previous findings of prior 289 light history having an effect on melatonin (see Introduction section), the underlying 290 mechanisms responsible for the results appear to be different. In previous studies, it is 291 more likely to be a compensatory adaptation by long-term adaptation of photoreceptors 292 to a given photo-environment. On the other hand, although the mechanisms by which 293 short adaptations during breaks contribute to melatonin sensitivity are not known, they 294 seem to be associated with bleaching and recovery mechanism of photoreceptors in the 295 retina. For instance, the bleached photopigments might be partially recovered by the 296 dim breaks, leading to an increase in gain of the phototransduction cascade. Likewise, 297 profound bleaching of a substantial fraction of the photopigments due to exposure to 298 very bright light during the bright break might lead to attenuation of melatonin 299 sensitivity to the subsequent light (Fain et al. 2001). On the other hand, visual 300 photoreceptors, including rods and cones, saturate at a relatively low-intensity level of 301 light (Lucas et al. 2003). Given that mRGC compensate the functional limitations of the 302 visual photoreceptors for higher light intensities (Gooley et al. 2012), it might be more 303 important to understand whether the mRGC has such capacity of light adaptation. The 304 photopigment melanopsin has been shown to be homologous to invertebrate opsin 305 (rhabdomeric opsin) (Shichida & Matsuyama 2009), and it has therefore been 306 hypothesized that melanopsin uses the rhabdomeric phototransduction cascade (Hillman et al. 1983). Although controversial, several previous studies have provided evidence of
a bi- or tri-stable signaling state in mammalian melanopsin including, for example, redlight enhancement for pupil response to blue light (Graham et al. 2008; Mure et al.
2009; Emanuel & Do 2015).

Another in vitro study demonstrated that prior light stimulus alters the sensitivity of rat mRGC to subsequent light exposure in a way similar to that of photoreceptor adaptation, rather than neural network adaptation: a brief flash desensitized the cells whereas darkness re-sensitized the cells without synaptic inputs from rods and cones (Wong et al. 2005). According to the study, mRGC completed light adaptation (i.e., desensitization) within 5 min. On the other hand, the kinetics of dark adaptation appeared to be even slower for mRGC than for rods, as the cell showed a striking increase in sensitivity after 30~40 min of dark adaptation and kept increasing for at least 2 h and 40 min. More recent studies, however, have shown that synaptic inputs from the classical photoreceptors (i.e., rods and cones) via the inner plexiform layer to mRGC increase the sensitivity of mRGC to light (Wong et al. 2007). Based on these results, exposure to very bright light for 10 min (i.e., bright breaks) might be sufficient to cause a massive decrease in the photosensitivity of mRGC, and this phenomenon likely lead to the attenuation of melatonin suppression in Experiment 1. However, recovery in near darkness for 10 min (i.e., dim breaks) was probably not sufficient to elicit a significant increase in the photosensitivity of mRGC; rather, synaptically mediated signals from partially dark-adapted classical photoreceptors might be more responsible for the promotion of melatonin suppression in Experiment 2.

There were no remarkable effects of dim breaks or bright breaks on alertness, i.e., subjective sleepiness and performance of the psychomotor vigilance task. As an indirect alerting effect of light via retinal projection to the SCN, the magnitude of melatonin suppression was thought to be involved in subjective sleepiness (Cajochen 2007). Nonetheless, subjective sleepiness or reaction speed (i.e., mean 1/RT) was consistently increased or decreased over time in a similar pattern regardless of the break conditions. Similarly, unlike medium breaks, bright breaks and dim breaks did not have an additional effect on the number of lapses. On the other hand, as a direct alerting effect of light (Souman et al. 2018), the bright breaks were expected to be able to delay the decrease in alertness. However, we could not find such a beneficial effect even when we compared the reaction velocities or numbers of lapses before and after the bright breaks (Figure 4b and Figure 5b). Moreover, although acute reduction of

Chronobiology International

subjective sleepiness tended to emerge during each break session, it seems to be a temporal effect associated with moving to a break room or a light stretch during each break session, rather than than a direct alerting effect of light during each break. Nevertheless, it should be noted that the participants were continuously exposed to medium intensity light during the simulated night work, and this might have diluted the additional effects of bright breaks or dim breaks on alertness considering the dose-response relationship between light intensity and alertness (Cajochen et al. 2000). Also, high sleep pressure due to prior wakefulness might be partially responsible for the results, since the participants did not take a nap before the start of the experiments.

Epidemiological studies conducted over the past few decades have suggested adverse relationships of night shift work with acute and chronic adverse health problems (Kantermann et al. 2010; Parent et al. 2012; Evans & Davidson 2013; Kamdar et al. 2013). Direct effects of exposure to bright white light, especially blue-enriched light, on the circadian system, such as melatonin suppression and circadian misalignment, for example, between the biological clock and the social-behavioral cycle have been suspected as factors involved in the risks (Wittmann et al. 2006; Touitou et al. 2017). Nonetheless, in some ways, exposure to bright white light (i.e., blue-enriched light) is also helpful for keeping night workers awake and providing better visibility, leading to better performance and fewer accidents due to human errors (Cajochen 2007; Chellappa et al. 2011; Kraneburg et al. 2017). For attenuation of melatonin suppression without a negative effect on performance, the use of lighting with less short-wavelength components (Kozaki et al. 2008) and wearing blue light-filtering goggles (Kayumov et al. 2005), or a red-visor cap (Higuchi et al. 2011), have been proposed. In addition to these proposals, a countermeasure for night shift workers is also suggested by our findings that bright breaks can reduce melatonin suppression by light without having adverse effects on sleepiness or performance.

However, a field study in which the effect of bright light exposure during a short break (~20 min) in night work on melatonin was investigated showed no such desensitization in melatonin suppression. In that field study, the subjects showed greater melatonin suppression in night work when they took a break with exposure to bright light (2500 lx) than when they took a break with exposure to normal light (300 lx) (Lowden et al. 2004). However, a limitation of that field study is that the timing and duration of the breaks were not strictly controlled. Another limitation is that the subjects were allowed to leave the workplace for a short period. These limitations, however,

rather remind us about a question if similar results could be obtained by conducting bright breaks in a real night workplace. Additionally, it is uncertain in the present study whether the hourly repetitive execution of breaks was essential to achieve persistent effects on melatonin suppression. Although taking rest breaks is known to be effective for decreasing accident risks, recovering from physical fatigue and maintaining arousal level, taking breaks more than once per hour tends to disturb work (Tucker 2003). In this regard, it is essential to clarify the minimum number of breaks that is necessary to obtain the same results as those in the present study.

In the present study, although the pace of melatonin synthesis was remarkably diminished after light exposure (~550 lx), we did not observe dramatic melatonin suppression as found in some previous studies using a protocol and illuminance level similar to the present study. For example, McIntyre et al. (1989) reported that 1-h light exposure (500 lx) from midnight caused about 40% suppression of melatonin compared to the melatonin concentration just before light exposure (Mcintyre et al. 1989). Laakso et al. (1993) reported that melatonin suppression following 1-h light exposure from 23:00h amounted to as much as 53% (Laakso et al. 1993). Ethnicity might be partially responsible for the inconsistency in melatonin suppression induced by nocturnal light exposure. Higuchi et al. (2007) reported that melatonin suppression following 2-h light exposure (1000 lx) was greater in Caucasian than Asian subjects (Higuchi et al. 2007a). Although Aoki et al. (1998) also found that melatonin suppression amounted to as much as 40.1% following 2-h light exposure (500 lx) in Asian subjects (Aoki et al. 1998), dark adaptation by 5-h sleep before the light exposure possibly influenced the result (Jasser et al. 2006). Subjects in the previous study were directly exposed to a specially designed light source in a fixed position. However, in the present study, we used ceiling light, and the gaze of each participant was not strictly fixed; hence, the light intensity reaching the retina might have been less than 550 lx in the present study.

There is a question that remains unanswered: Can bright breaks or dim breaks modify the circadian phase shift caused by light exposure? There have been practical interventions using intermittent light to entrain the circadian clock of shift workers to long-term night shift duty (Baehr et al. 1999; Crowley et al. 2003; Smith et al. 2009; Smith & Eastman 2012). Intermittent light was used for multiple days in those previous studies, mainly to delay the phase of the circadian pacemaker. However, the results for melatonin in the present study indicate the possibility that circadian phase delay during night work can not only be promoted by conducting dim breaks, but it can also be

Page 15 of 28

Chronobiology International

409 attenuated by conducting bright breaks. Given the greater melatonin suppression in the
410 condition of dim breaks than in the condition of medium breaks, conducting dim breaks
411 during night work can probably cause a larger phase delay than can continuous
412 exposure to medium intensity light. Modulation of circadian phase to both advance and
413 delay might be easier by conducting bright or dim breaks based on the human phase
414 response curve (St Hilaire et al. 2012).

This study has several limitations. We measured salivary melatonin levels at hourly intervals; hence, acute effects of breaks on melatonin could not be determined in the present study. All of the participants in this study were healthy young male adults. However, inter-individual differences in the sensitivity of pineal melatonin have been shown in previous studies. Although there is still lack of agreement, there has been an accumulation of evidence indicating an age-dependent difference in pineal melatonin sensitivity (Charman 2003; Higuchi et al. 2014; Lee et al. 2018). Also, one study has suggested greater sensitivity in females than in males (Monteleone et al. 1995). The experiments in this study were conducted in different seasons: The experiment for dim breaks was conducted in summer (July), while the experiment for bright breaks was conducted in winter (from January to February). It has been reported that melatonin suppression by light at night is greater in winter than in summer (Higuchi et al. 2007b). Therefore, it is necessary to verify the reproducibility of our findings for different seasons.

In addition, inter-individual differences in the photo-sensitivity of pineal melatonin have been shown in previous studies (Higuchi et al. 2008; Santhi et al. 2012; Phillips et al. 2019). Indeed, in the present study, some participants showed strong melatonin suppression during light exposure, while others, especially participants who had a relatively low melatonin level at 01:00h (e.g., below 10 pg/ml), showed weak melatonin suppression. Furthermore, some participants showed quick recovery from the melatonin suppression and an increase in melatonin concentration over time. It remains unclear what causes the individual differences, but several recent studies have suggested that genetic variations in the clock genes are associated with inter-individual differences in melatonin suppression (Chellappa et al. 2012; Akiyama et al. 2017). Further investigation should be carried out to identify the individual differences in non-visual photo-sensitivity.

8441Our findings suggest that periodic exposure to light for a short duration during0442exposure to constant light affects melatonin sensitivity to the constant light depending

on the difference between light intensities in the light conditions (i.e., exposure to short light vs. exposure to constant light). In most previous studies, the effects of light with fixed intensity and/or spectral composition on the circadian system were investigated. However, humans generally do not stay at the same place for long duration; the light environment surrounding us frequently changes in real life. In this regard, the findings in the present study suggest that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real life. Acknowledgments We thank Takuya Tsuyama at Kyushu University for his help in the preparation of this study. This work was supported by the Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research (KAKENHI) number 19H03316. **Declaration of interest statement** The authors report no conflict of interest. Review Only

2		
3	459	References
4 5	460	Akiyama T Katsumura T Nakagome S Lee SL Joh K Soeiima H Fujimoto K Kimura
6	461	R Ishida H Hanihara T Yasukouchi A Satta Y Higuchi S Oota H 2017 An
7	462	ancestral haplotype of the human PERIOD2 gene associates with reduced
8	463	sensitivity to light-induced melatonin suppression. Plos One 12
9	464	Aoki H. Yamada N. Ozeki Y. Yamane H. Kato N. 1998. Minimum light intensity
10	465	required to suppress nocturnal melatonin concentration in human saliva
11	466	Neurosci Lett 252.91-94
13	467	Baehr EK Fogg LF Eastman CI 1999 Intermittent bright light and exercise to entrain
14	468	human circadian rhythms to night work Am I Physiol-Reg I 277. R1598-
15	469	R1604
16	470	Basner M Dinges DF 2011 Maximizing Sensitivity of the Psychomotor Vigilance Test
17	471	(PVT) to Sleen Loss Sleen 34:581-591
18	472	Benloucif S Burgess HJ Klerman EB Lewy AJ Middleton B Murphy PJ Parry BL
20	473	Revell VL 2008 Measuring Melatonin in Humans I Clin Sleep Med 4:66-69
21	474	Brainard GC Hanifin JP Greeson JM Byrne B Glickman G Gerner E Rollag MD
22	475	2001. Action spectrum for melatonin regulation in humans: evidence for a novel
23	476	circadian photoreceptor. J Neurosci, 21:6405-6412.
24	477	Cajochen C. 2007. Alerting effects of light. Sleep Med Rev. 11:453-464.
25	478	Cajochen C. Zeitzer JM. Czeisler CA. Dijk DJ. 2000. Dose-response relationship for
20	479	light intensity and ocular and electroencephalographic correlates of human
28	480	alertness. Behav Brain Res. 115:75-83.
29	481	Chang AM, Santhi N, St Hilaire M, Gronfier C, Bradstreet DS, Duffy JF, Lockley SW,
30	482	Kronauer RE, Czeisler CA. 2012. Human responses to bright light of different
31	483	durations. J Physiol-London. 590:3103-3112.
32	484	Chang AM, Scheer FAJL, Czeisler CA. 2011. The human circadian system adapts to
33 34	485	prior photic history. J Physiol-London. 589:1095-1102.
35	486	Charman WN. 2003. Age, lens transmittance, and the possible effects of light on
36	487	melatonin suppression. Ophthalmic Physiol Opt. 23:181-187.
37	488	Chellappa SL, Steiner R, Blattner P, Oelhafen P, Gotz T, Cajochen C. 2011. Non-Visual
38	489	Effects of Light on Melatonin, Alertness and Cognitive Performance: Can Blue-
39	490	Enriched Light Keep Us Alert? PLoS One. 6.
40 41	491	Chellappa SL, Viola AU, Schmidt C, Bachmann V, Gabel V, Maire M, Reichert CF,
42	492	Valomon A, Gotz T, Landolt HP, Cajochen C. 2012. Human Melatonin and
43	493	Alerting Response to Blue-Enriched Light Depend on a Polymorphism in the
44	494	Clock Gene PER3. J Clin Endocrinol Metab. 97:E433-E437.
45	495	Crowley SJ, Lee C, Tseng CY, Fogg LF, Eastman CI. 2003. Combinations of bright
46 47	496	light, scheduled dark, sunglasses, and melatonin to facilitate circadian
47 48	497	entrainment to night shift work. J Biol Rhythms. 18:513-523.
49	498	Emanuel AJ, Do MTH. 2015. Melanopsin Tristability for Sustained and Broadband
50	499	Phototransduction. Neuron. 85:1043-1055.
51	500	Enezi J, Revell V, Brown T, Wynne J, Schlangen L, Lucas R. 2011. A "melanopic"
52	501	spectral efficiency function predicts the sensitivity of melanopsin photoreceptors
53	502	to polychromatic lights. J Biol Rhythms. 26:314-323.
54 55	503	Evans JA, Davidson AJ. 2013. Health Consequences of Circadian Disruption in
56	504	Humans and Animal Models. Prog Mol Biol Transl. 119:283-323.
57	505	Fain GL, Matthews HR, Cornwall MC, Koutalos Y. 2001. Adaptation in vertebrate
58	506	photoreceptors. Physiol Rev. 81:117-151.
59		
60		

2		
3	507	Gimenez MC, Beersma DG, Bollen P, van der Linden ML, Gordijn MC. 2014. Effects
4	508	of a chronic reduction of short-wavelength light input on melatonin and sleep
5	509	patterns in humans: evidence for adaptation. Chronobiol Int. 31:690-697.
6 7	510	Gooley JJ, Mien IH, St Hilaire MA, Yeo SC, Chua ECP, van Reen E, Hanley CJ, Hull
/ 8	511	JT Czeisler CA Lockley SW 2012 Melanopsin and Rod-Cone Photoreceptors
9	512	Play Different Roles in Mediating Pupillary Light Responses during Exposure to
10	512	Continuous Light in Humans I Neurosci 32:14242-14253
11	515	Graham DM Wong KV Shaniro P Frederick C Pattabiraman K Berson DM 2008
12	515	Melanonsin ganglion cells use a membrane-associated rhabdomeric
13	516	nhototransduction cascade. I Neurophysiol. 00:2522, 2532
14	517	Granfiar C. Wright KD. Kronguar DE. Jawatt ME. Czaislar CA. 2004. Efficiency of a
15	510	Gionnel C, wright KF, Kionauel KE, Jewett ME, Czelsiel CA. 2004. Efficacy of a
16 17	518	single sequence of intermittent oright light pulses for delaying circadian phase in
1/ 10	519	numans. Am J Physiol-Endoc M. 28/:E1/4-E181.
10	520	Hebert M, Martin SK, Lee C, Eastman CI. 2002. The effects of prior light history on the
20	521	suppression of melatonin by light in humans. J Pineal Res. 33:198-203.
21	522	Higuchi S, Fukuda T, Kozaki T, Takahashi M, Miura N. 2011. Effectiveness of a Red-
22	523	visor Cap for Preventing Light-induced Melatonin Suppression during
23	524	Simulated Night Work. J Physiol Anthropol. 30:251-258.
24	525	Higuchi S, Ishibashi K, Aritake S, Enomoto M, Hida A, Tamura M, Kozaki T,
25	526	Motohashi Y, Mishima K. 2008. Inter-individual difference in pupil size
26	527	correlates to suppression of melatonin by exposure to light. Neurosci Lett.
2/ วง	528	440:23-26.
20 20	529	Higuchi S, Motohashi Y, Ishibashi K, Maeda T. 2007a. Influence of eye colors of
30	530	Caucasians and Asians on suppression of melatonin secretion by light. Am J
31	531	Physiol-Reg I. 292:R2352-R2356.
32	532	Higuchi S, Motohashi Y, Ishibashi K, Maeda T. 2007b. Less exposure to daily ambient
33	533	light in winter increases sensitivity of melatonin to light suppression.
34	534	Chronobiol Int. 24:31-43.
35	535	Higuchi S, Nagafuchi Y, Lee S, Harada T, 2014. Influence of Light at Night on
36	536	Melatonin Suppression in Children, J Clin Endocrinol Metab. 99:3298-3303.
3/ 20	537	Hillman P. Hochstein S. Minke B. 1983. Transduction in Invertebrate Photoreceptors -
30	538	Role of Pigment Bistability Physiol Rev 63:668-772
40	539	Ishihara K Saitoh T Inoue Y Miyata Y 1984 Validity of the Japanese Version of the
41	540	Morningness-Eveningness Questionnaire Percent Mot Skills 59.863-866
42	541	Iasser SA Hanifin IP Rollag MD Brainard GC 2006 Dim light adaptation attenuates
43	542	acute melatonin suppression in humans I Biol Rhythms 21:394-404
44	543	Kamdar BB Tergas AI Mateen FI Bhayani NH Oh I 2013 Night-shift work and risk
45	544	of breast cancer: a systematic review and meta-analysis Breast Cancer Res
40 47	545	Treat 138.201_301
47 48	545	Kantarmann T. Juda M. Vattar C. Raannahara T. 2010. Shift work rasaarah: Whara da
49	540	we stand where should we go? Sleep and Biological Phythms 8:05 105
50	547	We stand, where should we go? Sheep and Diological Kirythins. 6.95-105.
51	548 540	Kayumov L, Casper KF, Hawa KJ, Pereiman B, Chung SA, Sokaisky S, Shapiro CM.
52	549	2005. Blocking low-wavelength light prevents nocturnal melatonin suppression
53	550	with no adverse effect on performance during simulated shift work. J Clin
54	551	Endocrinol Metab. $90:2/55-2/61$.
55	552	Kozaki I, Koga S, Toda N, Noguchi H, Yasukouchi A. 2008. Effects of short
56 57	553	wavelength control in polychromatic light sources on nocturnal melatonin
57 58	554	secretion. Neurosci Lett. 439:256-259.
59		
60		

1		
2		
5 4	555	Kraneburg A, Franke S, Methling R, Griefahn B. 2017. Effect of color temperature on
5	556	melatonin production for illumination of working environments. Appl Ergon.
6	557	58:446-453.
7	558	Kronauer RE, Forger DB, Jewett ME. 1999. Quantifying human circadian pacemaker
8	559	response to brief, extended, and repeated light stimuli over the phototopic range.
9	560	J Biol Rhythms. 14:500-515.
10	561	Laakso ML, Hatonen T, Stenberg D, Alila A, Smith S. 1993. One-Hour Exposure to
11	562	Moderate Illuminance (500-Lux) Shifts the Human Melatonin Rhythm. J Pineal
12 12	563	Res. 15:21-26.
13	564	Lamb TD, Pugh EN. 2004. Dark adaptation and the retinoid cycle of vision. Prog Retin
15	565	Eye Res. 23:307-380.
16	566	Lee SI, Matsumori K, Nishimura K, Nishimura Y, Ikeda Y, Eto T, Higuchi S. 2018.
17	567	Melatonin suppression and sleepiness in children exposed to blue-enriched white
18	568	LED lighting at night. Physiol Rep. 6.
19	569	Lowden A, Akerstedt T, Wibom R. 2004. Suppression of sleepiness and melatonin by
20	570	bright light exposure during breaks in night work. J Sleep Res. 13:37-43.
21	571	Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW, 2003, Diminished
22	572	pupillary light reflex at high irradiances in melanopsin-knockout mice Science
23	573	299·245-247
25	574	Lunn RM Blask DE Coogan AN Figueiro M Gorman MR Hall JE Hansen J Nelson
26	575	RI Panda S. Smolensky MH Stevens RG Turek FW Vermeulen R Carreon T
27	576	Caruso CC Lawson CC Thaver KA Twery MI Ewens AD Garner SC
28	577	Schwing PI Boyd WA 2017 Health consequences of electric lighting practices
29	578	in the modern world: A report on the National Toxicology Program's workshop
30	579	on shift work at night artificial light at night and circadian disruption. Sci Total
3 I 3 2	580	Environ 607:1073-1084
33	581	Macchi MM Bruce IN 2004 Human nineal physiology and functional significance of
34	587	malatonin Front Neuroandoorinal 25:177 105
35	502 502	Mointure IM Norman TP, Durroug CD, Armstrong SM, 1080, Human Malatanin
36	202 501	Suppression by Light Is Intensity Dependent J Dingel Des. 6:140-156
37	504	Montologno D. Egnosito C. Longogo A. Mai M. 1005. Daga Dright Light Symmony
38	505	Monteleone P, Esposito G, Lafocca A, Maj M. 1995. Does Bright Light Suppless
39	380 597	Nocturnal Metatonin Secretion More in women Than Men. J Neural Transm-
40 //1	587	Gen. 102:75-80.
42	588	Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, Cooper HM. 2009.
43	589	Melanopsin Bistability: A Fly's Eye Technology in the Human Retina. PLos
44	590	Une. 4.
45	591	Parent ME, El-Zein M, Rousseau MC, Pintos J, Siemiatycki J. 2012. Night Work and
46	592	the Risk of Cancer Among Men. Am J Epidemiol. 1/6:/51-/59.
47	593	Phillips AJK, Vidafar P, Burns AC, McGlashan EM, Anderson C, Rajaratnam SMW,
48	594	Lockley SW, Cain SW. 2019. High sensitivity and interindividual variability in
49 50	595	the response of the human circadian system to evening light. Proc Natl Acad Sci
51	596	U S A. 116:12019-12024.
52	597	Rahman SA, Hilaire MAS, Chang AM, Santhi N, Duffy JF, Kronauer RE, Czeisler CA,
53	598	Lockley SW, Klerman EB. 2017. Circadian phase resetting by a single short-
54	599	duration light exposure. Jci Insight. 2.
55	600	Rimmer DW, Boivin DB, Shanahan TL, Kronauer RE, Duffy JF, Czeisler CA. 2000.
56	601	Dynamic resetting of the human circadian pacemaker by intermittent bright
5/ 59	602	light. Am J Physiol-Reg I. 279:R1574-R1579.
50 59	603	Santhi N, Thorne HC, van der Veen DR, Johnsen S, Mills SL, Hommes V, Schlangen
60	604	LJM, Archer SN, Dijk DJ. 2012. The spectral composition of evening light and

2		
3	605	individual differences in the suppression of melatonin and delay of sleep in
4	606	humans. J Pineal Res. 53:47-59.
5	607	Shichida Y. Matsuyama T. 2009. Evolution of opsins and phototransduction. Philos T R
6 7	608	Soc B. 364:2881-2895.
/ 8	609	Smith KA Schoen MW Czeisler CA 2004 Adaptation of human pineal melatonin
9	610	suppression by recent photic history I Clin Endocrinol Metab 89:3610-3614
10	611	Smith MR Fastman CL 2012 Shift work: health performance and safety problems
11	612	traditional countermeasures and innovative management strategies to reduce
12	613	circadian misalignment. Nat Sci Sleen 4:111, 132
13	614	Smith MD Eage LE Eastman CL 2000 Practical Interventions to Promote Circadian
14	615	A dentation to Dorman ont Night Shift Work: Study 4. J Dial Dhythma 24:161
15	015	Adaptation to Permanent Night Shift Work. Study 4. J Biol Knythins. 24.101-
16	010	$\frac{1}{2}$
1/ 10	61/	Smolensky MH, Hermida RC, Reinberg A, Sackett-Lundeen L, Portaluppi F. 2016.
10 10	618	Circadian disruption: New clinical perspective of disease pathology and
20	619	basis for chronotherapeutic intervention. Chronobiol Int. 33:1101-1119.
21	620	Smolensky MH, Sackett-Lundeen LL, Portaluppi F. 2015. Nocturnal light pollution and
22	621	underexposure to daytime sunlight: Complementary mechanisms of
23	622	circadian disruption and related diseases. Chronobiol Int. 32:1029-1048.
24	623	Souman JL, Tinga AM, te Pas SF, van Ee R, Vlaskamp BNS. 2018. Acute alerting
25	624	effects of light: A systematic literature review. Behav Brain Res. 337:228-239.
26	625	St Hilaire MA, Gooley JJ, Khalsa SBS, Kronauer RE, Czeisler CA, Lockley SW. 2012.
27	626	Human phase response curve to a 1 h pulse of bright white light. J Physiol-
20 20	627	London. 590:3035-3045.
30	628	Touitou Y, Reinberg A, Touitou D. 2017. Association between light at night, melatonin
31	629	secretion, sleep deprivation, and the internal clock: Health impacts and
32	630	mechanisms of circadian disruption. Life Sci. 173:94-106.
33	631	Tucker P. 2003. The impact of rest breaks upon accident risk, fatigue and performance:
34	632	a review. Work Stress. 17:123-137.
35	633	Weaver DR. 1998. The suprachiasmatic nucleus: A 25-year retrospective. J Biol
36	634	Rhythms. 13:100-112.
3/ 20	635	Wittmann M. Dinich J. Merrow M. Roenneberg T. 2006. Social ietlag: Misalignment of
30	636	biological and social time. Chronobiol Int 23:497-509
40	637	Wong KY Dunn FA Berson DM 2005 Photoreceptor adaptation in intrinsically
41	638	nhotosensitive retinal ganglion cells Neuron 48:1001-1010
42	639	Wong KY Dunn FA Graham DM Berson DM 2007 Synaptic influences on rat
43	640	ganglion-cell photoreceptors I Physiol-London 582.279-296
44	641	Zeitzer IM Dijk DI Kronauer RF Brown FN Czeisler CA 2000 Sensitivity of the
45	642	human circadian pacemaker to pocturnal light: melatonin phase resetting and
40 47	643	suppression I Physiol-London 526:695-702
48	644	suppression. 5 Thysion Dondon. 520.075 762.
49	645	
50	045	
51		
52		
53		
54		
55		
30		

	Night Shift Light		10 Min Breaks	
	(01:00-06:00h)		(4 per night, 1/h)	
	Medium	Medium	Bright Light	Dim Ligh
	Intensity Light	Intensity Light		Dini Lign
Illuminance (lx)	550	430	4700	1
Color temperature (K)	4500	3850	5000	-
Photon flux (log ₁₀ 1/cm²/sec)	14.70	14.54	15.62	12.63
Melanopic lux	83.37	52.86	787.84	0.09

Figure 1. Experimental protocol (a) and details of the experimental tasks during the break and during the simulated night work (b). Participants always stayed in chamber 1 from 13:00h to the end of the experiment (i.e., 06:00h the next morning) except for when they took breaks in chamber 2. Figure 2. Melatonin profiles (means \pm standard error) and AUCs (means + standard error) in Experiment 1 (a: medium breaks vs. dim breaks) and Experiment 2 (b: medium breaks vs. bright breaks). The black arrows indicate the times when breaks were conducted. **: p < 0.01, *: p < 0.05Figure 3. Subjective sleepiness (means \pm standard error) in Experiment 1 (a: medium breaks vs. dim breaks) and Experiment 2 (b: medium breaks vs. bright breaks). The black arrows indicate the times when breaks were conducted. Figure 4. Cognitive performance (i.e., reaction speed [mean 1/RT]; a, b) and number of lapses (c, d) in Experiment 1 (medium breaks vs. dim breaks; left columns) and Experiment 2 (medium breaks vs. bright breaks; right columns). The black arrows indicate the times when breaks were conducted.

Figure 1. Experimental protocol (a) and details of the experimental tasks during the break and during the simulated night work (b). Participants always stayed in chamber 1 from 13:00h to the end of the experiment (i.e., 06:00h the next morning) except for when they took breaks in chamber 2.

338x190mm (600 x 600 DPI)

Figure 2. Melatonin profiles (means \pm standard error) and AUCs (means + standard error) in Experiment 1 (a: medium breaks vs. dim breaks) and Experiment 2 (b: medium breaks vs. bright breaks). The black arrows indicate the times when breaks were conducted. **: p < 0.01, *: p < 0.05

190x275mm (300 x 300 DPI)

190x275mm (300 x 300 DPI)

Figure 4. Cognitive performance (i.e., reaction speed [mean 1/RT]; a, b) and number of lapses (c, d) in Experiment 1 (medium breaks vs. dim breaks; left columns) and Experiment 2 (medium breaks vs. bright breaks; right columns). The black arrows indicate the times when breaks were conducted.

190x275mm (300 x 300 DPI)