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Abstract: Cassava mosaic disease (CMD) is a major viral disease adversely affecting cassava produc-
tion in Africa and Asia. Genomic regions conferring resistance to the disease have been mapped in
African cassava germplasm through biparental quantitative trait loci (QTL) mapping and genome-
wide association studies. To facilitate the utilization of these markers in breeding pipelines to support
selections, proof-of-concept technical and biological validation research was carried out using in-
dependent pre-breeding and breeding populations. Kompetitive Allele-Specific Polymerase Chain
Reaction (KASP) assays were designed from three single nucleotide polymorphism (SNP) markers
linked to a major resistance locus on chromosome 12 (512_7926132, S12_7926163) and a minor locus
on chromosome 14 (514_4626854). The designed assays were robust and easy to score with >99%
genotype call rate. The overall predictive accuracy (proportion of true positives and true negatives)
of the markers (S12_7926132 and S14_4626854) was 0.80 and 0.78 in the pre-breeding and breeding
population, respectively. On average, genotypes that carried at least one copy of the resistant allele
at the major CMD?2 locus had a significantly higher yield advantage. Nevertheless, variation was
observed in prediction accuracies for the major locus (512_7926132) among sub-families from the
two populations, suggesting the need for context-specific utilization, for example, by screening
for co-segregation of favorable SNP alleles with resistance in the parents being used for crosses.
Availability of these validated SNP markers on the uniplex KASP genotyping platform represents an
important step in translational genetics toward marker-assisted selection to accelerate introgression
of favorable resistant alleles in breeding populations.

Keywords: cassava; CMD resistance; marker-assisted selection; marker predictive accuracy; allele-
specific PCR assay

1. Introduction

Cassava (Manihot esculenta Crantz) is a vegetatively propagated staple crop of great
economic importance. More than 800 million people derive the bulk of their dietary
energy requirements from cassava every day, and over 500 million of them live in sub-
Saharan Africa [1]. Total cassava production in Africa accounts for more than half of
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the world’s production [2]. Due to its inherent tolerance to drought and inadequate soil
nutrients, cassava produces some storage roots where other food crops would fail; hence, it
is considered a food security crop [3,4]. It is cultivated mainly by resource-limited farmers
for its starchy roots which are used as human food, either fresh when low in cyanide or
processed into products such as flour, dehydrated chips, starch, and animal feed [5].

Cassava production is affected by several biotic constraints, including cassava mosaic
disease (CMD) and cassava brown streak disease (CBSD), two of the most devastating viral
diseases affecting production in Africa [6,7]. Cassava mosaic disease occurs throughout
Africa, India, Sri-Lanka, and Indian Ocean islands [8,9]. The disease has recently spread
to major cassava-producing countries in southeast Asia, including Vietham and Cambo-
dia [10,11], and China [12]. In Africa, the disease causes yield losses ranging from 12 to
82% depending on infection type and cassava variety [13]. These translate into an annual
reduction of more than 30 million tons of fresh root yield [14].

Typical symptoms of CMD are leaf mosaic patterns, chlorosis, distortion, reduction
in leaflet size, and general stunting [7,15]. The disease is caused by 11 species of cassava
mosaic geminiviruses [16], which are transmitted either through infected cuttings or the
vector, common whitefly (Bemisia tabaci G.). Of all the integrated management strategies
for the control of CMD or its vector, host plant resistance has proven to be the most efficient
and environment-friendly approach [17]. Resistance to CMD falls into two broad categories:
quantitative resistance derived from historical hybridization between cultivated cassava
and Manihot glaziovii and qualitative resistance conferred by major resistance gene(s) [18].
Genetic studies revealed that the polygenic resistance from M. glaziovii is recessive with a
heritability of about 60% [19,20]. Qualitative resistance, which is conditioned by a major
locus with a dominant effect, was discovered in the 1980s in landraces from Nigeria and
other West African countries [17,21].

Several genetic mapping efforts have been conducted to discover quantitative trait
loci (QTL) linked to CMD resistance in the African cassava germplasm in the last decades.
The first study found two markers: a microsatellite (SSRY28) and a Restriction Fragment
Length Polymorphism RFLP (GY1) that flank a single locus named CMD?2 at distances of
9 and 8 cM, respectively [17]. Subsequently, several additional QTLs were discovered in
landraces and improved varieties from Nigeria [22,23]. However, many of these markers
were shown to be co-located with the CMD?2 locus from the use of a high-density genetic
linkage map developed from genome-wide SNP markers [18]. Recent Genome-Wide As-
sociation Studies (GWAS) in large and diverse germplasm panels confirmed previous
findings. Wolfe et al. [24] carried out marker-trait association analysis in a set of 6000 acces-
sions genotyped across 42,113 SNP markers and found a single chromosomal region that
coincided with the CMD2 locus. The locus accounted for up to 66% of genetic resistance in
the phenotypic variation in African cassava germplasm. More recently, Rabbi et al. [25]
confirmed the same locus on chromosome 12 and reported two additional minor loci on
chromosome 14.

Despite their availability, markers linked to CMD resistance have been under-used
in the breeding pipeline [26]. The slow uptake is caused by a failure to translate genomic
knowledge into tools that are directly useful for breeding to support selection decisions [27].
Marker-assisted selection (MAS) is expected to increase breeding efficiency, particularly for
traits that are controlled by a few QTLs with large effects [28], such as qualitative resistance
to CMD. Indeed, many traits of importance in cassava breeding are either monogenic or
oligogenic [25]. However, the discovery of major QTLs is just the first step toward their
use in MAS.

Before deployment for routine use, trait-linked markers’ predictive ability requires
technical and biological validation in independent populations [29]. Technical validation
assesses the robustness of the marker assay with respect to genotyping call rate and clarity
of genotype classes; biological validation assesses the marker’s accuracy in predicting the
phenotype. The latter depends on the degree of linkage disequilibrium between the marker
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and the functional allele at the underlying trait locus [27] and a consistent allelic effect in
different genetic backgrounds.

Cassava breeding is a slow and costly process due to its annual growth cycle and low
multiplication rate, thereby hindering field phenotyping [30]. MAS has been proposed
to overcome some of these challenges through the following: (i) quick elimination of
genotypes with unfavorable alleles at the early stage of the selection scheme, thus reducing
the number of genotypes requiring field-testing for more complex traits; (ii) selection of
genotypes carrying resistant alleles in the absence of the pathogens or vectors; (iii) rapid
introgression of resistant genes into existing cassava clones, in places where the disease
has recently spread to, for example in Southeast Asian countries [31]; (iv) early selection of
traits that are measured at the later developmental stage of the crop; and (v) identification
of genotypes that are homozygous or heterozygous for the favorable alleles. Despite the
promise from MAS, its use in breeding has been limited, partly due to the delay in marker
conversion and validation [32]. The objective of the present study was first, to convert
the CMD-resistance-linked SNPs to uniplex allele-specific PCR assays and secondly, to
validate trait predictions using newly generated seedlings derived from breeding and
prebreeding populations.

2. Materials and Methods
2.1. Background to Marker Discovery

The markers validated in the present study were derived from Rabbi et al. [25]. In
brief, a genome-wide association study (GWAS) was carried out using a population of
5160 cassava clones from the International Institute of Tropical Agriculture (IITA) breed-
ing program. The population was genotyped using genotyping-by-sequencing (GBS) at
100,000 SNPs and phenotyped for several traits, including CMD resistance from 2013 to
2016. The GWAS analysis uncovered a major locus for CMD resistance on chromosome
12 and two minor peaks on chromosome 14. The major peak on chromosome 12, which
co-locates with the CMD?2 locus is tagged by markers S12_7926132 and S12_7926163. The
two SNPs on chromosome 12 are completely linked (linkage disequilibrium, 2 > 0.98) due
to their close physical proximity (31 bp apart). Marker 514_4626854 tags one of the minor
peaks on chromosome 14. The significant trait-marker associations from the mixed linear
model and genomic region combinations extracted from Rabbi et al. [25] are provided
in Table 1.

Table 1. Summary statistics of selected resistance-linked single nucleotide polymorphism (SNP)
markers from genome-wide association study (GWAS) analysis.

Markers Chr. Location (bp) Allelel Allele 2 B SE p-Value
S12_7926132 12 7926132 G T* 0.89 0.02 p~0
S12_7926163 12 7926163 A G* 0.89 0.02 p~0
S14_4626854 14 4626854 A* G —023 003 1.00x 1074

Chr. = Chromosome location, bp = base pair, § = SNP effect from GWAS, SE = standard error, p-value =
marker-trait association probability value, * Favorable allele.

2.2. Development of Allele-Specific PCR Markers Linked to CMD Resistance

To facilitate MAS for CMD resistance, the markers from GWAS were converted to
uniplex allele-specific PCR assays. These are more suitable for a MAS that requires a large
number of accessions to be genotyped using one or few markers. One hundred base-pairs
sequences flanking the top SNP markers were extracted from the cassava reference genome
(v6.1) (Table 2). To ensure locus specificity of the PCR assays, a nucleotide-nucleotide
BLAST (basic local alignment search tool) search against the genome was done [33]. The
sequences uniquely matched their target regions except for SNP 512_7926163, which had an
additional but shorter hit on the same chromosome (E-Value 4.00 x 107, bit score = 54.7)
(Supplementary Table S1). The Kompetitive allele-specific PCR (KASP) primers were
designed using a proprietary Kraken™ software system from LGC Biosearch Technologies
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(Hoddesdon, UK) with the default parameters. The technical performance of the designed
SNP assays, including call rate, genotype scoring clarity, and performance under varying
DNA concentrations, was assessed using a panel of 188 diverse cassava genotypes.

Table 2. Flanking sequences of SNP markers linked to cassava mosaic disease (CMD) resistance and their Kompetitive
allele-specific PCR (KASP) primers.

Markers SNP angelé)gez};el;lankmg Alf;iﬁa:gjgﬁ:; 2 Primer Common Reference
CTGCACACTCAAAGCTGC-
ATCCTATTTTCCATGTTTCCA- Allele 1: TTCCATGTTTC-
S12 7926132 CCCTCAAATG(G/T)TATCAC- CACCCTCAAATGG; GGAGTACAAGAATCTT- [25]
- AAAGGACAAGATTCTTGTAC- Allele 2: TTCCATGTTTC- GTCCTTTGTGATA
TCCAATGCTGCCACC- CACCCTCAAATGT
AACTCCACC
TGTTTCCACCCTCAAATGG-
TATCACAAAGGACAAGATT-  Allele 1: ACAAAGGACAA-
S12 7926163 CTTGTACTCCA(A/G)TGCTGC- GATTCTTGTACTCCAA; GTTGAAGAGGAAC- [25]
- CACCAACTCCACCTGATGTT- Allele 2: CAAAGGACAA- ATCAGGTGGAGTT
CCTCTTCAACCTCT- GATTCTTGTACTCCAG
GGCTGTTTTA
ACCACTGCATCTTGTGCTCAT- Allele 1: GCACGCTGCAC-
GAGCCATTGCACGCTGCACC-
CTCTTCATTA; CAAAGGTGGGATGC-
S14_4626854 TCTTCATT(G/A)ATCGCTCATT- Allele 2: GCACGCTGCAC- AAATGAGCGAT [25]
TGCATCCCACCTTTGGATAGC- CTCTTCATTG

GCGACTATGAGCTGCATCA

2.3. Predictive Performance of Markers
2.3.1. Study Populations

The performance of the KASP assays was assessed using breeding and prebreeding
populations evaluated in the early stages of selections, seedling nursery (SN), and first
clonal evaluation trials (CET) [30]. These populations are independent of the population
used for the GWAS discovery of the markers used in this study.

The breeding population was part of IITA’s regular recurrent selection breeding
pipeline and had been derived from controlled crosses among elite genotypes in 2018. The
SN trial consisting of 3531 progenies from 74 families (mean family size of 48, ranging
from 5 to 243) was established in January 2019 in Ibadan, Nigeria. A CMD-susceptible
clone (TMEB117) was planted as a spreader row around and among the seedlings to
ensure sufficient exposure to cassava mosaic virus (CMV). The SN trial was planted at
a spacing of 1 m x 0.25 m and harvested 10 months after planting (MAP); a selection
of 350 genotypes (around 10% of the total) was advanced to CET at the same location.
The selection was based on plant vigor and root yield. Susceptibility to CMD in the SN
was not used as a selection criterion to retain variation for the trait at the CET stage. The
CET, carried out between November 2019 and September 2020, was established using
an incomplete block design with a spacing of 1 m between rows and 0.5 m within rows.
Seven checks (TMEB419, TMEB693, IITA-TMS-30572, IITA-TMS-1KN130010, IITA-TMS-
IBA000070, TMS14F1285P0006, and TMS13F2207P0001) were planted in each of the 10 sub-
blocks, making a total of 420 plots.

The prebreeding population was derived from open-pollinated crosses between exotic
and African cassava germplasm. The exotic progenitors were from International Center for
Tropical Agriculture (CIAT), and the African germplasm was from IITA. The objective of
these crosses was to develop germplasm incorporating resistance to CMD, high content
of provitamin A and starch, and tolerance to acid soils and drought. An SN trial of
5608 genotypes from 353 full and half-sib families was established in February 2018 in
Ibadan, Nigeria at a spacing of 1 m x 0.25 m. The mean family size was 16, ranging from
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1 clone to 165 clones. Variety TMEB117 was also planted as CMD spreader rows in the
trial. After harvest at 10 MAP, a subset of the seedlings consisting of 790 accessions based
only on vigor was selected to ensure variation for CMD severity. The selected genotypes
were advanced to a CET and established in Ikenne, Nigeria using an incomplete block
design (18 sub-blocks with 50 plots each) along with four checks (TMEB419, IITA-TMS-
IBA30572, IITA-TMS-IBA(070593, and IITA-TMS-IBA000070). The trial was planted in 2018
and harvested in 2019. The two locations—Ibadan (7°24’ N, 3°54’ E; 200 m above sea level)
and Ikenne (6°52' N 3°42" E; 61 m above sea level)—were selected for the trials because of
the high pressure from CMV. All field management practices were performed according to
technical recommendations and standard agricultural practices for cassava [34,35].

2.3.2. Phenotyping

The SN is the first stage of phenotyping progenies newly generated from crosses.
Seeds are usually pregerminated in pre-nurseries before being transplanted to the field.
This is the early stage where plants are exposed to prevailing pests and diseases for the first
time in their 10 to 12 months of growth. The peaks of incidence and severity of the disease
usually occur at around 3 to 6 MAP during the rainy season. Due to the stochasticity of
CMYV vector (white-fly) in foraging and the related transfer of CMV, plants can escape
infection at the seedling stage. In addition, plants that have been infected late in the season
would fail to show symptoms. Most of the susceptible plants that may have escaped CMD
infection or failed to express symptoms at the SN stage generally show disease symptoms
at CET.

Severity scores for CMD were recorded from 1 to 6 MAP at a month’s intervals at the
SN of the prebreeding population and at 3 MAP for the breeding population. In addition,
at the CETs of the two populations, the genotypes were scored for CMD severity on a
plot-basis at 1, 3, and 6 MAP on a scale from 1 (no symptoms) to 5 (severe symptoms). The
score was based on the maximum severity observed for the plot. At harvest, the genotypes
were evaluated on a plot-basis for yield and yield component traits that included the
number of marketable storage roots, fresh root weight, and shoot weight in kilogram.

2.3.3. Genotyping

Leaf samples were collected from vigorously growing plants at the seedling stage
in both breeding and prebreeding seedling trials. From each plant, three-leaf discs of
6 mm diameter were freeze-dried for at least 72 h and genotyped with three markers
(512_7926163, S12_7926163, and S14_4626854) linked to CMD resistance (Table 2) using
KASP assay at Intertek Laboratory, Australia. Two nontemplate controls (NTC) were
included in each plate. The protocols for the preparation and running of KASP reactions
are provided in the KASP manual [36]. In brief, genotyping was carried out using the high-
throughput PCR SNPline workflow using 1 pL reaction volume in 1536-well PCR plates.
The KASP genotyping reaction mix comprises three components: (i) sample DNA (10 ng);
(ii) marker assay mix consisting of target-specific primers; and (iii) KASP-TF™ Master Mix
containing two universal FRET (fluorescence resonant energy transfer) cassettes (FAM and
HEX), passive reference dye (ROX™), Taq polymerase, free nucleotides, and MgCl, in an
optimized buffer solution. The SNP assay mix is specific to each marker and consists of two
Kompetitive allele-specific forward primers and one common reverse primer. After PCR,
the plates are fluorescently read, and allele calls are made using KRAKEN™ software.

2.4. Data Analysis
2.4.1. Phenotypic Data Analysis

A linear mixed model was used to obtain the best linear unbiased predictions (BLUPs)
for each genotype in the CETs of prebreeding and breeding populations. The model was
fitted using the Ime4 package [37] in R software version 4.0.3 [38]. Checks were considered
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as fixed effects while accessions, and blocks were considered as random effects. The
mathematical model for the incomplete block design by Kling [39] is as follows:

Yij =u+p+ G + Tk(i) + Eij (1)

where Yj; is the vector of phenotype data, p is the grand mean, 3 is the block effect, ¢; is the
check effect, tkg;) is the accession effect, and ¢;; is the residual term.

Broad-sense heritability for CMD severity score at 3 months, root number, and root
weight for the two populations was calculated using the formula below:

H2 = og/(c§+a§> )

where H? is the broad-sense heritability, 0%, is the variance component for the genotype
effect and o2 is the variance component for the residual error.

Pairwise correlation analysis of the traits was determined using the corr.test function in
the psych R package [38] to assess the relationship between CMD severity scores at various
time intervals in the SN and CET as well as between CMD severity scores and yield-related
traits. BLUP estimates were used for the CMD severity score and yield-related traits in
the CETs.

2.4.2. Marker Prediction Analysis Using Logistic Regression

The major CMD resistance locus on chromosome 12 is known to confer a dominant
type of resistance [17,18]. Clones carrying at least one copy of the favorable allele (“T”) at
SNP S12_7926132 are expected to be resistant (score 1 on the disease severity rating scale).
To assess the marker’s performance marker in predicting resistance or susceptibility, the
phenotype was converted into a binary variable (either affected or unaffected). Individuals
with a categorical CMD severity score greater than 1 were classified as affected; all others
were classified as unaffected. Prediction analysis was carried out using binary logistic
regression as implemented in the R package tidymodels [40]. The data were divided into
a training set and a testing set at a ratio of 3:1 based on the binary variable. For the
training set, bootstrapping was carried out to create resamples for model validation. The
markers and families were considered as independent variables. The mathematical model
is as follows:

IOg |:1flp] =o+f+ ﬁ1X1,i + BZXZ,i +...+ ann,i 3)
i

where p; is the probability that a genotype is resistant or susceptible, n is the number of
CMD-resistant markers integrated into the model, ot is the intercept constant, f; is the family
effect, 31, B2 ... Bn are the coefficients for the markers 1,2, ... n,and x4, X2,i ... Xp; is the
value for the markers 1, 2, ... n for genotypes i.

Area under the curve (AUC) values of the receiver operator characteristic (ROC) curve
were used as a single measure that summarizes the discriminative ability of the markers.
The ROC plots sensitivity (true positive rate) against 1-specificity (false positive rate) and
was constructed using the predictive probability as a covariate.

2.4.3. Within-Family Prediction Analysis

To understand the performance of the CMD2-linked SNP (S12_7926132) in different
genetic backgrounds, a within-family prediction analysis was conducted using linear
regression for the SN stage data that considered only families with more than 20 genotypes.
The linear regression was then performed using the /m function in R. Marker alleles (TT,
TG, and GG) of S12_7926132, and the observed CMD severity scores were respectively
considered as independent and response variables.
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2.4.4. Estimation of Biological Metrics

Using a confusion matrix, several performance statistics were estimated to determine
the ability of the markers to predict the response of genotypes to CMD (resistance or
susceptibility). These included accuracy (ACC, the proportion of correctly predicted
genotypes, as either resistant or susceptible); false-positive rate (FPR, the proportion of
genotypes diseased although predicted to be resistant); and false-negative rate (FNR, the
proportion of genotypes resistant although predicted to be susceptible); and these statistics
were calculated using the formula below:

TP + TN

A Al = 4
ceuracy, ACC = 5 T FN T FP £ TN @
False positive rate, FPR = _FP 5)

P R TR YIN

FN

Fal i FNR = ———

alse negative rate, FN FN + TP 6)

where FP = false positive, TN = true negative, FN = false negative, TP = true positive.

3. Results
3.1. Phenotypic Variation for Resistance to CMD

The frequency distribution of CMD severity scores in the two populations revealed, as
expected, a bimodal pattern with two peaks consisting of no symptoms and varying degrees
of symptoms (Figure 1). In the breeding population, more than 65% of the genotypes
evaluated at SN and CET showed resistance to CMD (Supplementary Figure S1); this
expression may be linked to their progenitors. In the CET of the same population, the
number of genotypes (77%) that showed resistance at 6 MAP increased, compared to the
number observed at 1 MAP (65%) and 3 MAP (72%), indicating that some genotypes
recovered from CMYV infection (Supplementary Figure S1). In the prebreeding population,
most of the genotypes evaluated at the SN stage started with no symptoms of CMD (severity
score 1), but as their exposure to CMV increased over time through whitefly vectors, other
classes of CMD severity scores (2-5) also increased (Supplementary Figure S2). Most of
the susceptible plants showed symptoms at 6 MAP. The disease progression between the
seedlings derived from Africa and those with Latin American progenitors was compared
(Supplementary Figure S3). The impact terms of incidence and severity on the half-sibs from
Latin-American progenitors were much higher than on those from African progenitors.

Broad-sense heritability of root number, root weight, and CMD severity score in the
CET trials were 0.21, 0.33, and 0.90, respectively, in the breeding population, and 0.44. 0.46,
and 0.84, respectively, in the prebreeding population (Table 3).

The CMD severity scores recorded at SN and CET were positively correlated in both
breeding and prebreeding populations (Pearson’s r > 0.5, Table 4). A significant positive
correlation was also observed between CMD severity at 1 and 3 MAP for the CETs of
the two populations. A significant negative relationship was observed between disease
severity and root number as well as with root weight in the CETs. However, the magnitude
of the correlation coefficient was higher in the prebreeding population.

Table 3. Broad-sense heritability calculated on a mean plot basis for cassava mosaic disease (CMD)
severity score, root number, and root weight in the clonal evaluation trial (CET).

Breeding Population Pre-Breeding Population
Traits o2 g 0Ze H? o2 g 0%e H?
CMD severity score 1.15 0.13 0.90 0.98 0.18 0.84
Root number 13.02 50.02 0.21 76.96 97.66 0.44
Root weight 5.51 11.04 0.33 41.54 49.52 0.46

(ng is the clonal genotypic variance, 02, is the residual variance, and H? is the broad-sense heritability.
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Figure 1. Frequency distribution of cassava genotypes for cassava mosaic disease (CMD) severity score at 3 months after
planting (MAP) MAP in (a) breeding and (b) prebreeding populations of the two evaluation stages.

Table 4. Pairwise trait correlations for CMD severity score, root number, and root weight in the breeding and prebreed-
ing populations.

Breeding Pre-Breeding
cmdls_CET omd3s_CET  rtno_CET rtwt_CET cmdl1s_CET <md3s_CET rtno_CET rtwt_CET
cmd3s_SN 0.75 0.76 —0.19 —0.28 0.55 0.50 —0.25 —-0.25
cmdls_CET 0.84 —0.21 —0.31 0.68 —0.31 —0.35
cmd3s_CET —0.18 —0.26 —0.29 —0.33
rtno_CET 0.75 0.73

cmdls = CMD severity score at 1 MAP, cmd3s = CMD severity score at 3 MAP, rtno = number of marketable storage roots, rtwt = root
weight, SN = seedling nursery, CET = clonal evaluation trial.

3.2. Performance of Markers Linked to CMD Resistance
3.2.1. Favorable Allele and Genotype Frequencies

The resistance-linked SNP markers in Table 2 were successfully converted to allele-
specific PCR assays. These markers were shown to have a high call rate and scoring
clarity at both the technical validation stage (data not shown) and in the genotyping of
samples from the present study (Supplementary Figure S4). For each marker, we observed
three distinct clusters: favorable homozygous genotypes, unfavorable homozygous geno-
types, and heterozygotes. Due to the close physical proximity between the two SNPs
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on chromosome 12, and the resulting strong linkage disequilibrium (* > 0.98), only the
marker S12_7926132 was used for the downstream analysis. This SNP marker is close to a
peroxidase gene (PEX22), the hypothesized resistant gene at the CMD?2 locus [25].

The frequencies of the favorable alleles S12_7926132 (T) and S14_4626854 (A) were
higher in the breeding population than the pre-breeding population at the SN stage
(Figure 2). For marker S12_7926132, 9.9% and 5.8% had genotype TT, 56.7% and 40.4% had
genotype TG, and 32.6% and 53.4% had genotype GG. For marker S14_4626854, 14.8% and
1.1% had genotype AA, 31.1% and 23.7% had genotype AG, 53.6% and 74.9% had genotype
GG in the SN of the breeding and prebreeding population, respectively (Supplementary
Table S2). We also observed an increase in frequency from SN to CET for both populations
(Figure 2).

o
S

0.751

| s12.7926132(T)
I S14_4626854(A)

0.50 1

Frequency of favourable alleles
=)
o

e
o
S

Populations

Figure 2. Frequency of favorable alleles linked to CMD resistance in the two populations.

3.2.2. Marker Effects on CMD Resistance

Marked differences were observed in the allele substitution effects of the resistance-
linked markers on the degree of resistance and susceptibility, particularly at the CMD2
locus on chromosome 12 (Figure 3). Accessions with genotypes TT and TG had low CMD
severity scores in the breeding and prebreeding populations at SN and CET stages. The
median value of the accessions with at least one copy of resistance allele (TT or TG) in
the SN trials suggests the dominant mode of action of the CMD2 locus. Nevertheless,
between 19 and 34% of genotypes carrying the resistant allele in the SN of the breeding
and pre-breeding populations showed CMD symptoms, indicating that the favorable SNP
allele may not be linked to the functional resistance allele. In the prebreeding population,
the effect of the marker on chromosome 14 revealed that genotype GG was associated with
susceptibility while genotypes AG and AA accounted for resistance. However, there was
no difference between genotypes carrying the resistant and susceptible alleles in the CET
of the breeding population.
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Figure 3. Boxplots showing the effect of the markers associated with CMD resistance in (a) breeding and (b) prebreeding
populations of the two evaluation stages (SN = seedling nursery, CET = clonal evaluation trial). **** indicates p < 0.0001,
*** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05, ns = not significant.

3.2.3. Effect of Resistance-Linked Alleles on Yield Traits

The negative relationship observed between CMD severity and yield-related traits
(root weight and root number) led to the use of a pairwise t-test to compare the different
genotypic classes at the chromosome 12 marker. The average root yield of clones with
genotype TT (1.46 £ 0.85) and TG (1.46 + 0.82) was significantly higher than in those
with two copies of the susceptible allele GG (1.00 £ 0.67) for marker S12_7926132 in the
CET of the breeding population (Figure 4). Similarly, clones carrying one or two copies
of the resistance allele had an average higher root yield in the prebreeding population
than those homozygous for the non-resistance allele (TT, 2.39 £ 1.68; TG, 2.90 & 2.10; and
GG, 1.88 £ 1.70). On the other hand, clones with one copy of the resistant allele linked to
S14_4626854 had an average higher root yield than the homozygotes in the pre-breeding
population. There were no marked differences between genotypic classes of the same
marker for root weight per plant in the breeding population (Figure 4).

3.2.4. Population-Level Marker Performance

To assess the performance of markers at the population level, we carried out binary
logistic regression. Mean prediction accuracy from the training set bootstraps was 76% in
the prebreeding population and 80% in the breeding population (Table 5). The model’s AUC
values were 0.80 for the training set of the breeding population and 0.82 for the prebreeding
population. The mean prediction accuracy and AUC values were approximately similar
in the testing set for both populations. Sensitivities and false-positive rates (1 minus
specificities) of the marker predictions and observed CMD scores in the two populations
are shown in ROC curves (Supplementary Figure S5).
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Figure 4. Effects of marker alleles linked to CMD resistance on root weight per plant in the CET stage of the (a) breeding
and (b) prebreeding populations. **** indicates p < 0.0001, ** indicates p < 0.01, * indicates p < 0.05, ns = not significant.

Table 5. Accuracy and area under curve values for training and testing sets in the breeding and

prebreeding populations.

Population N Accuracy Standard AUC Standard
Error Error
Breeding Training set 1351 0.80 0.003 0.80 0.005
Testing set 450 0.80 0.80
Pre-breeding Training set 2574 0.76 0.003 0.82 0.005
Testing set 857 0.78 0.86

N = number of observations, AUC = area under the curve.

Overall, the markers in the breeding population performed better in predicting re-
sistance (84% accuracy) than susceptibility (67% accuracy) (Table 6). In the prebreeding
population, 71% resistance and 85% susceptibility were predicted.

Table 6. Confusion matrix from the logistic regression model for the
pre-breeding populations.

testing set in breeding and

Truth
Population Prediction  Resistant  Susceptible Ff R FIO\IR MISClanlﬁcatlon
(%) (%) (%)
Breeding Resistant 242 54
Susceptible 45 108 33 16 22.0
Pre-breeding Resistant 269 72
Susceptible 109 405 15 29 212

FPR = false-positive rate, FNR = false-negative rate.
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3.2.5. Performance Metrics of Marker S12_7926132 within the Families

In addition to the population-wide metrics, we also assessed marker performance at
the family level. For this analysis, we considered only the major locus on chromosome 12
and the SN data. Within-family marker-trait regression was significant in the majority of
families from the breeding population (70%) relative to the prebreeding population (40%)
(Figure 5a). The effect size of the resistant allele varied among families. Similarly, within-
family prediction accuracy, as well as false-positive statistics were relatively superior for
the breeding population (accuracy greater than 0.75 and false-positive rate below 0.20) than
in the prebreeding population (Figure 5b). The families with the lowest accuracies and
high false-positive rates in the breeding population share common male parents. For the
prebreeding population, not all families with low accuracies reveal common underlying
relationships. Although the progenitors of these families carried a copy of the favorable
SNP allele, this allele did not co-segregate with the resistant phenotype, particularly for
families derived from Latin-American progenitors. This suggests that the SNP marker may
pre-date the emergence of the causal resistant gene found in the Africa cassava germplasm.
The lower accuracy in the prebreeding population could also be explained by the half-sib
family structure resulting from random pollination. Each half-sib family is derived from
different male parents, each of which may or may not be carrying the functional resistance
gene at the linked SNP marker.
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Figure 5. Within-family performance metrics of marker S12_7926132 assessed using the SN data: (a) allelic substitution
effects and p-values; (b) accuracy versus false-positive rate. Only families with 20 or more individuals were considered.
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4. Discussion

Next-generation sequencing (NGS) has emerged as a powerful tool to detect DNA-
sequence polymorphism-based markers and is becoming an important tool for next-
generation plant breeding [41]. The availability of NGS technologies and high-throughput
genotyping platforms has enabled the construction of high-density genetic linkage maps [42]
and the identification of SNPs associated with CMD resistance [24], quality traits such as
provitamin and dry matter contents [43,44], several agronomic traits [45], stress-related,
quality, and agro-morphological traits [25] in cassava. Despite the discovery of numerous
QTLs linked to key traits, the evidence for the usefulness of the markers tagging these loci
in cassava breeding evaluation program is scarce.

The use of trait-linked SNP markers in MAS allows breeders to preselect genotypes
that combine desired traits for subsequent field evaluation and to screen segregating
populations rapidly, thereby reducing the size of phenotyping trials with associated cost
reductions. Markers linked to CMD resistance can be useful for preemptive breeding or
the rapid transfer of resistant alleles into elite and adapted genetic backgrounds where new
disease outbreaks have been reported. In this study, uniplex SNP markers associated with
CMD resistance were developed and validated in two independent cassava populations.
In comparison to a fixed SNP array, the uniplex PCR assay offers greater cost-effectiveness
and flexibility in terms of genotyping different combinations of sample numbers and
markers [46-50]. The overall performance of the KASP assay was outstanding from the
robustness and ease of scoring of the marker genotype classes.

Technical and biological validation is essential to assess the reliability and accuracy
of markers linked to the trait of interest as well as to establish their utility for practical
applications in plant breeding [51-53]. To ensure a reliable and unbiased estimate of marker
performance, validation was carried out using two independent populations. The first
was a breeding population from IITA’s regular recurrent selection pipeline; the second
was a prebreeding population consisting of progenies from the intercross between exotic
progenitors from American and African varieties.

Area under the curve (AUC) is a useful statistic in measuring the accuracy of the
markers fitted using a logistic regression model in predicting resistance or susceptibility to
CMD. The AUC values range from 0 to 1, where a value of 0.5 indicates model accuracy
no better than random and a value of 1.0 indicates a perfect model fit [54]. The value of
AUC in the training and testing sets of the two populations was greater than 0.7, indicating
that the markers had a good discriminatory ability. Similar prediction accuracies and
AUC values of the testing and training sets across the populations indicated stability
in the model to predict independent data and lack of overfitting. The performance of
marker 512_7926132 in diverse families and different genetic backgrounds observed in
the present study indicated that this marker can be deployed for marker-assisted selection
in breeding programs targeting CMD resistance. However, it should be noted that the
marker did not perform equally well in all families that segregated for the favorable SNP
allele. For example, in the breeding population, families 54, 182, 193, 253, 394, and 397 had
nonsignificant marker effects and low accuracy or high false-positive rates which could
result from related parental clones. The ineffectiveness of the marker in these families
could be due to recombination events between the favorable marker allele and the QTL; the
presence of a functional resistant allele that arose in a haplotype that is already common in
cultivated cassava germplasm; the presence of an inhibitor gene hindering the expression
of CMD2 gene; or clones in the populations that might have a different source of favorable
allele available for exploitation by breeding programs [51,55]. The moderate significance
of marker S14_462684 in the two populations could be attributed to the moderate SNP
effect, low frequency of the favorable allele, as well as the epistatic effect of the major
locus [23,25].

Due to the dominant nature of resistance at CMD?2 locus, the presence of one or two
copies of these alleles in any genotype should confer resistance to CMD. In the study
populations, a bimodal distribution was observed consisting of the resistant group (disease
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score 1) and the susceptible group (score 2 to 5). There was a normal distribution within
the susceptible group with a few individuals showing scores of 2 or 5 and more showing
scores of 3 and 4. The variation in the degree of susceptibility could be due to differences
in viral loads within the plots, time since initial infection, presence of mixed infections
from different CMV strains, or other genetic factors related to fitness and background
immunity [56-58].

While CMD2-linked markers can be used to increase the frequency of the favorable
allele in cassava breeding germplasm, breeders should be cautious of the possibility of driv-
ing the chromosome 12 region to fixation. This can reduce diversity around the CMD?2 locus
genomic region which may affect the genotype’s fitness particularly if the resistant haplo-
type is linked to unfavorable alleles at nearby genes [59,60]. Furthermore, planting varieties
of cassava with exclusive dependency on a single dominant gene might lead to a break-
down in resistance [18,61]. This threat necessitates the pyramiding of additional sources
of resistance including polygenic resistance that are known to be more durable [17,18,61].
Increasing the frequencies of favorable alleles at quantitative resistance can be achieved
through genomic selection, which is better at handling highly polygenic traits [24].

5. Conclusions

The technical and biological performances of two KASP markers were assessed on
major and minor loci linked to CMD resistance in two independent cassava populations.
KASP marker (512_7926132) linked to the CMD2 predicted the resistance or susceptibility
of new seedlings with reasonable accuracy either at the population or family level. In
addition, selection for the resistant allele linked to this locus would increase yield by an
average of at least 27% over genotypes with the susceptible allele, thereby mitigating
the economic impact of CMD. Following successful conversion and validation, the CMD
resistance-linked marker (512_7926132) can be integrated into the breeders” MAS toolbox
and can be used to increase screening capacity at the early stages of selection.

Supplementary Materials: The following are available online at https://www.mdpi.com /2073
-4395/11/3/420/s1, Figure S1: Frequency distribution of cassava genotypes for CMD severity
score in the SN and CET of the breeding population, Figure S2: Frequency distribution of cassava
genotypes for CMD severity score in the SN and CET of the prebreeding population, Figure S3:
Frequency distribution of cassava genotypes for CMD severity score in the SN of the prebreeding
population, Figure S4: Allele discrimination plots from KASP genotyping for SNP markers linked
to resistance to CMD (S12_7926132, S12_7926163, and S14_4626854) in the SN of the breeding and
the pre-breeding population, Figure S5: Receiver operating characteristic (ROC) curve of the true-
positive rate against the false-positive rate for the training and testing sets in the (a) breeding
population and (b) prebreeding population, Table S1: BLAST results of the flanking sequences of the
three SNP markers on the cassava reference genome, Table S2: Number of predicted genotypes for
markers linked to resistance (512_7926132 and S14_4626854) in the seedling nursery of breeding and
prebreeding populations.
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