
Scheduling Jobs in Computational Grid using Hybrid

ACS and GA Approach

Mustafa Muwafak Alobaedy

School of Computing

College of Art and Sciences

University Utara Malaysia, 06010 Sintok, Kedah

new.technology@hotmail.com

Ku Ruhana Ku-Mahamud

School of Computing

College of Art and Sciences

University Utara Malaysia, 06010 Sintok, Kedah

ruhana@uum.edu.my

Abstract—Metaheuristics algorithms show very good

performance in solving various job scheduling problems in

computational grid systems. However, due to the complexity and

heterogeneous nature of resources in grid computing, stand-alone

algorithm is not capable to find a good quality solution in

reasonable time. This study proposes a hybrid algorithm,

specifically ant colony system and genetic algorithm to solve the

job scheduling problem. The high level hybridization algorithm

will keep the identity of each algorithm in performing the

scheduling task. The study focuses on static grid computing

environment and the metrics for optimization are the makespan

and flowtime. Experiment results show that the proposed

algorithm outperforms other stand-alone algorithms such as ant

system, genetic algorithms, and ant colony system for makespan.

However, for flowtime, ant system and genetic algorithm perform

better.

Keywords— job scheduling; hybrid Ant Colony System; Genetic

Algorithm; static grid computing.

I. INTRODUCTION

Computational grid is one of the main services provided by
grid systems. Grid is defined as “Geographically distributed
computers, linked through the internet in a Grid-like manner,
are used to create virtual supercomputers of vast amount of
computing capacity able to solve complex problem from e-
Science in less time than known before” [1]. Grid systems
evolve from existing technology such as distributed computing,
web service, and Internet [2]. Grid systems are classified as
modern High Performance Distributed Systems (HPDSs) along
with the clusters and cloud systems [3]. However, there are
crucial characteristics which differ between them such as scale,
network type, administrative domain, resources structure, and
security [4]. There are many different types of grid systems
such as sensor grid, campus grid, global grid, pc grid, and
utility grid [3], [5]. Grid computing system has been utilized in
various fields such as scientific, education, and commercial
fields [6], [7].

One of the main components in grid computing systems is
resource management system which consists of grid
information server, domain resource manager, and resource
scheduler [8]. The scheduler has the main influence in grid
computing performance [9]. The scheduler’s responsibility is to
map the submitted jobs from users to the suitable and available
resources. The efficiency of the scheduler depends on the

implemented algorithm. Scheduling could be done using
simple algorithms such as greedy or random approach.
However, using more sophisticated algorithms will enhance the
scheduler’s efficiency, which in turn will enhance the grid
performance in general.

Scheduling jobs in grid computing are known as NP-
complete problem due to the problem complexity and
intractable nature of the problem [10]. Such a problem could be
solved using metaheuristic algorithms. These types of
algorithms have the ability to find near optimal solution in
reasonable time rather than optimal solution in a very long
processing time [11]. Metaheuristic algorithms such as Tabu
Search (TS), Genetic Algorithm (GA), and Ant Colony
Optimization (ACO) show very promising performance to
solve various types of scheduling problems [12]. However,
hybridizing two or more algorithms show better performance
than applying a stand-alone algorithm [3]. This is due to the
ability of hybrid approach to skip from local minima using
more options available in the algorithms used in the
hybridization. Hybrid approaches between ACO and GA have
been studied in [13], [14]. However, these hybridized
approaches are different from the proposed hybridized
approach in this study. The ant system (AS) which is a variant
of ACO has been used in [13] and [14] to solve university class
scheduling and robot path planning. In this study, the ant
colony system (ACS) which is another variant of ACO is used
to solve job scheduling in static grid computing environment.

The rest of the paper is organized as follows. Section II
presents the research on ant colony optimization and genetic
algorithm in solving NP hard problems. The implementation of
ACS and GA in grid computing is described in Section III.
Section IV briefly explains the problem formulation and the
benchmark for static grid scheduling. Section V presents the
results of ACS hybrid with GA in grid computing. Finally, the
conclusion is provided in Section VI.

II. METAHEURISTICS ALGORITHM FOR NP PROBLEMS

In computational grid systems, scheduler is an important
component for resource management. Scheduler algorithm has
the responsibility to schedule jobs efficiently [9]. Job
scheduling is known as NP-complete problem which needs
metaheuristics algorithms to be solved. One of the best
metaheuristics algorithms in the field of optimization is ACO.

978-1-4799-4811-6/14/$31.00 ©2014 IEEE

223

ACO is considered as a swarm intelligence algorithm which
mimics the behaviours of real biological ants. ACO is
implemented to solve many problems such as routing,
scheduling, and classification [15]. Many studies have
implemented and enhanced ACO for job scheduling in grid
computing. An ACO approach for job scheduling in grid
system by [16] proposed two types of ants, namely the red and
black ants for the purpose of sharing the search load. The
performance of this algorithm was compared with Min-Min
algorithm presented in [17] and first come first serve.
Experimental results show that this algorithm outperforms the
other two algorithms.

A study presented by [18] proposed a Balanced ACO
(BACO) algorithm for job scheduling in grid. The proposed
algorithm is based on the basic ideas from ACO algorithm.
Each ant in the system represents a job in the grid systems. In
addition, the pheromone value represents the weight for a
resource in the grid system. Higher weight means that the
resource has a better computing capability. The study also
considered the bandwidth speed available between the
scheduler and resource. This algorithm has been implemented
in the Taiwan UniGrid which consists of more than 20
campuses. The experimental results show that BACO
algorithm outperforms the improved ACO [19], fastest
processor to largest task first [20], and Suffrage [21].

A hybrid ACO approach (HACO) for job scheduling in grid
computing proposed in [22] has integrated the heuristic
information to make the algorithm converge faster to the
solution. The experiments used the benchmark model known as
Expected Time to Compute (ETC) model presented in [23].
The performance of HACO was compared with ACO in terms
of makespan criterion. Empirical results show that HACO
outperforms the existing ACO algorithm. A successful variant
of ACO algorithm for job scheduling in computational grid
[24], [25] is the Ant Colony System (ACS) by Dorigo [26].
ACS algorithm enhances ant system in three phases: first, the
exploration mechanism became stronger due to the
implementation of aggressive rule. Second, only the ant who
found the best solution is allowed to deposit the pheromone
trail to the arcs which belong to that solution. Third,
evaporation process will be applied only to the arcs used by
ants to increase the exploration of alternative arcs [27].

Besides ACO-based algorithm, there are many other
algorithms that have been successfully applied to solve
optimization problems. One of these algorithms is GA which is
a metaheuristic algorithm that imitates the principle of genetic
process in living organisms. GA mimics the evolutionary
process by applying selection, recombination, and mutation to
generate solution from the search space. Genetic algorithm is a
well-known algorithm to solve various types of combinatorial
optimization problems. Enhanced Genetic-based scheduling for
grid computing is proposed in [28]. The authors presented an
implementation of Hierarchic Genetic Strategy (HGS) for job
scheduling in dynamic computational grid environment. HGS
has the ability to search the solution space concurrently using
various evolutionary processes. The study focused on bi-
objective optimization specifically, makespan and flowtime
simultaneously have been optimized. Experiments were
conducted under heterogeneous, large scale, and dynamic

environment using grid simulator. HGS was tested with static
and dynamic grid computing environment. The experiment
with static environment is based on ETC matrix model
presented by [29] and for dynamic environment, the authors
used a simulator presented by [30]. HGS was also compared
with two other GA-based schedulers presented in [23], [31].
The results show that HGS outperforms the other GA-based
schedulers. It is not known how HGS will perform against
other metaheuristic algorithms since only GA-based algorithm
was used for comparison.

A study presented by [32] proposed a hybrid approach
between GA and TS for independent batch job scheduling in
grid computing. The hybrid algorithm aims to optimize the
makespan and flowtime as a bio-objectives scheduling
problem. In addition, the authors proposed hierarchical and
simultaneous approaches for optimizing makespan and
flowtime. Two types of hybridization were provided, namely
low and high level hybridization which are known as GA(TS)
and GA+TS algorithms. The experiments conducted have
considered static and dynamic grid computing environment
using HyperSim-G simulator developed by [33]. The proposed
algorithms were compared with GA presented by [31] and TS
presented by [34]. Experimental results show that the proposed
hybrid algorithms outperform the other stand-alone algorithms
in terms of makespan criterion. However, in terms of flowtime
criterion, GA and TS stand-alone algorithms outperform the
proposed hybrid algorithm. Such a contradiction is normal for
job scheduling in grid computing. In spite of the limitation on
the experiments and benchmarking problem, the study has
clearly illustrated the implementation of the hybrid algorithms.

III. PROPOSED ACS+GA FOR JOB SCHEDULING

Hybridization is a term which refers to the approach that
combines two or more algorithms in order to achieve a result
which is not achievable using a stand-alone approach [35].
Algorithms could be hybridized fully or partially to be able to
get the best features of the combined algorithms. There are two
levels of hybridization between algorithms namely, high level
and low level. In high level, which is also called loosely
coupled hybridization, each algorithm preserves its identity. In
other words, each algorithm operates fully in the hybridized
approach. This type of hybridization can be seen as a chain of
algorithm execution (
 . This execution can be further looped in a
certain number of iterations until the termination condition is
satisfied. Through the algorithm execution, the output solution
is passed from to and so on. In low
level hybridization, also known as strongly coupled, the
algorithms interchange their inner procedures. The level of
hybridization reflects the degree of inner exchange among the
hybridized algorithms. In low level hybridization, one of the
algorithms is the main algorithm, which calls other algorithms
at any time of execution (depending on the hybridization
design). The low level hybridization algorithm could be
presented as . In this representation,
 is the main algorithm and is the
subordinated algorithm [36], [37].

This study implemented a high level hybridization
approach namely ACS + GA. ACS will start first for a specific

224

time, and after ACS finishes execution, GA will start to
enhance the solution found by ACS. In other words, the
solution found by ACS will be a part of the initial populations
of GA.

For ACS implementation, the heuristic information needs
to be defined. For static environment, heuristic value is
calculated from the ETC matrix using
where represents the expected time to compute task on

machine , and is the previous load assigned to

machine [38]. Longer computing time and more loads will
produce a smaller heuristic value, which will make the
probability of selecting this machine smaller and vice versa.
The probability of ant to map task to machine is calculated
by:

 {

 { }

where is the pheromone value, is the heuristic value, is

a parameter which determines the relative influence of the
heuristic information, is a random variable uniformly
distributed between [0, 1], is a parameter
which determines the exploration/exploitation rate, and is a
random variable selected according to the probability given by
equation (2) with [27].

∑

For GA algorithm implementation, the output from ACS
algorithm will be a part of the initial population of GA. The
solution will be in the form of a vector. The index of each
element represents the task number while the value of the
vector element represents the machine number assigned to it.
Therefore, the vector size is equal to the total number of tasks
and the values in each element will be any value of non-
negative integer number in the range of (0 to m-1) where m is
the total number of machines in the grid. Figure 1 depicts the
skeleton of the proposed algorithm.

Fig. 1. ACS+GA skeleton.

IV. PROBLEM FORMULATION

The problem in job scheduling for grid computing is known
as a multi-objective problem due to the various criteria in
computational grid such as makespan, flowtime, load
balancing, utilization, matching proximity, turnaround time,
total weighted completion time, and average weighted response
time [39]. In this study, two criteria were implemented namely:
makespan and flowtime with the priority to makespan as the
main optimization objective. Makespan metric measures the
general productivity of the grid computing. The best
scheduling algorithm is the one that can produce a small value
of makespan, which means that the algorithm is able to map
tasks to machines in a good and efficient way. Therefore, the
objective in this study is to minimize the makespan. Makespan
is defined as the time when the last task finishes execution,
formally defined as:

 { }

where is the set of all possible schedules, is the
set of all jobs to be scheduled, and denotes the time when

task finalizes [39]. Flowtime is the second criteria used in this
study which refers to the response time to the user submissions
of task executions. Flowtime is defined as the sum of
finalization times of all tasks, formally defined as:

 ∑ .

These criteria could conflict with each other since limited
resources could be the bottleneck of the system [39].

In order to test the proposed algorithm, a suitable
benchmark is required to reflect the robustness of the
algorithm. The benchmark should reflect the environment
attributes such as resources and jobs heterogeneity. The
considered benchmark for static grid computing is based on the
successful model known as ETC to generate benchmarks on
grid computing introduced by [23]. This model is widely
accepted by researchers to be used for job scheduling in grid
[23], [28], [40]. The benchmark defines a matrix called
Expected Time to Compute. Each row in the matrix
contains the expected time to compute task on machine .
Therefore, ETC has entries where represents the
number of tasks and represents the number of machines.
ETC matrix is again defined using three metrics, namely task
heterogeneity, machine heterogeneity, and consistency. The
task heterogeneity measures the variance in execution time
among tasks while machine heterogeneity measures the
variance in machine speed among machines. The heterogeneity
of tasks and machines is represented with two values of “high”
and “low” respectively. In addition, ETC matrix captures other
possible features of real heterogeneous computing system
using three more metrics to measure the consistencies, namely
consistent, inconsistent, and semi-consistent. The ETC matrix
is considered consistent whenever a machine executes a task

 faster than another machine , therefore, machine will

execute all other tasks faster than machine . ETC matrix is
considered inconsistent when a machine could execute some

tasks faster than machine and some other slower. Finally,
semi-consistent ETC matrix is an inconsistent matrix which has
a consistent submatrix of specific size. Combining all these

Procedure ACS + GA

Initialize parameters and pheromone trails;
While (Termination condition not met) Do

 Construct new solution;

 Update pheromone trails;
End while;

Initialize population (P);

Add(best-so-far solution from ACS to P);

 Evaluate (P);

 While (termination condition not met)

 Ṕ ← Recombine(P);
 Mutate(Ṕ);

 Evaluate(Ṕ);

 P ← Replace(Ṕ P);
 End While;

Return the best solution;

End Procedure;

225

matrices will generate 12 distinct types of possible ETC matrix
[23].

V. EXPERIMENTS AND RESULTS

Metaheuristics algorithms such as ACS and GA have many
parameters that need to be tuned. The values of the parameters
need a lot of tuning in order to achieve the desired performance
[12]. Therefore, the best values have been adopted from the
literature. In this experiment, the parameters values for ACS
and GA were selected based on recommended values from
[27], [41] respectively. Table I presents the parameters values
for ACS algorithm.

TABLE I. ACS PARAMETERS VALUES.

Run time Beta Evaporation rate No of ants q

45second 8 0.6 10 0.9

Table II shows the parameters values for GA. The total
population size of GA set to 10 while the selected population
size as an intermediate population was set to 6. The probability
to operate a crossover operation is 0.9 while the probability to
operate a mutation operation is 0.4 [41].

TABLE II. GA PARAMETERS VALUES.

Run

time

Population

size

Intermediate

size

Crossover

rate

Mutation

rate

45second 10 6 0.9 0.4

Important operators in GA are presented in Table III. To
select a population from the population pool, many operators
are available such as the roulette wheel and ranking. This study
has implemented a tournament operator with value 3 as a
selection operator. For crossover operator, fitness based
operator is found as the best operator compared with m-point
crossover and uniform crossover [41]. Finally, a Re-balanced
operator is used as a mutation operator, which is considered
better than random mutation.

TABLE III. GA IMPLEMENTED OPERATORS

Elitism Selection operator Crossover operator Mutation operator

True Tournament = 3 Fitness based Re-balanced

Experiments have been conducted using Intel® Core (TM)
i7-3612QM CPU @ 2.10GHz and 8G RAM. The grid
computing simulator is developed using visual C#. The time
given for each experiment is 90 seconds (45 seconds for each
algorithm). This time restriction is a very important
requirement to mimic the real environment for job scheduling
in grid computing [31], [42]. Each algorithm was executed 10
times in order to calculate the average values as well as to get
the best run. The first column of each table represents the
instance name with an abbreviation code: x-yyzz as follows:

x represent the type of consistency; c means consistent, i
means inconsistent, and s means semi-consistent.

yy represents the heterogeneity of the tasks; hi means high
and lo means low.

zz represents the heterogeneity of the machines; hi means
high and lo means low.

For example: c_hilo means consistent environment, hi
heterogeneity in tasks and low heterogeneity in machines.

The results show that the proposed algorithm was able to
reduce the makespan significantly on seven instances as
illustrated in Table IV which shows the best makespan values.

TABLE IV. BEST MAKESPAN VALUES.

GA AS ACS ACS+GA

c_hihi 11215488.93 11210553.9 10794610.75 10533616.36

c_hilo 182232.04 184701.33 179762.4 180289.84

c_lohi 374685.96 367182.79 346838.43 345233.25

c_lolo 6138.52 6224.75 6051.82 6001.86

i_hihi 3995843.41 3946883.19 4066163.68 3924281.6

i_hilo 91682.28 90968.26 93829 91709.93

i_lohi 134151.08 133825.44 137176.54 134796.3

i_lolo 3045.32 3140.97 3208.97 3164.29

s_hihi 6223749.51 5991234.31 6119601.97 5854357.25

s_hilo 120447.26 118988.3 120539.13 119123.89

s_lohi 181155.5 176800.44 178584.84 172225.04

s_lolo 4246.4 4296.32 4350.38 4225.71

Table V depicts the average values for makespan. The
proposed algorithm was able to achieve good results on five
instances. However, GA also performs well on four instances.

TABLE V. AVG MAKESPAN VALUES.

 GA AS ACS ACS+GA

c_hihi 11266455.65 11492186.36 10947366.92 10849427.27

c_hilo 183264.856 186640.051 181434.422 180970.805

c_lohi 375322.186 373766.649 353670.849 353882.764

c_lolo 6152.468 6281.502 6120.002 6074.341

i_hihi 4029108.699 4021032.464 4261681.833 4115442.339

i_hilo 91682.28 92311.613 94832.7 93513.988

i_lohi 135625.029 136721.893 144178.472 138746.886

i_lolo 3051.006 3198.568 3279.985 3232.719

s_hihi 6317823.165 6114693.995 6322969.763 6119177.625

s_hilo 120664.355 121995.849 122440.437 120576.822

s_lohi 181734.596 178990.539 181737.421 177965.139

s_lolo 4249.935 4369.079 4399.443 4326.294

The experiments show different performance for flowtime
objective. AS algorithm outperform the other algorithms for
the best and average flowtime values as shown in Table VI and
Table VII. This behavior was expected due to the contradiction
between makespan and flowtime.

TABLE VI. BEST FLOWTIME VALUES.

 GA AS ACS ACS+GA

c_hihi 175890174.2 170869481 167168928 167921346.2

c_hilo 2885387.55 2839818.65 2839974.6 2855393.95

c_lohi 5862262.04 5600439.31 5481314.05 5475878.29

c_lolo 97154.47 95877 95871.53 94911.38

i_hihi 63759167.63 60169758.16 64092691.04 62544930.6

i_hilo 1461297.38 1403670.42 1451182.04 1463099.33

i_lohi 2141505.91 2032456.42 2150374.03 2152416.88

i_lolo 48547.9 48773.48 50707.62 50529.25

s_hihi 98814397.03 90312215.73 95998535.04 92830865.83

s_hilo 1909954.11 1832927.6 1893970.67 1891505.22

s_lohi 2867157.87 2682621.46 2800124.77 2746952.11

s_lolo 67508.13 65545.51 68232.02 67152.14

226

TABLE VII. AVG FLOWTIME VALUES.

 GA AS ACS ACS+GA

c_hihi 176638718.7 174513587.9 171594188.4 171864310.1

c_hilo 2893345.641 2866863.113 2865314.197 2867622.027

c_lohi 5867869.085 5712409.208 5587489.199 5597133.705

c_lolo 97298.915 96857.627 96697.087 96332.486

i_hihi 64261850.79 61409716.3 66654183.7 65559896.86

i_hilo 1461683.727 1422434.616 1489277.24 1492734.607

i_lohi 2163840.832 2068376.494 2256605.345 2212084.909

i_lolo 48579.506 49416.302 51606.347 51580.551

s_hihi 99887497.75 92951306.33 98799209.66 97232283.39

s_hilo 1915659.179 1867344.085 1934073.416 1917926.183

s_lohi 2871564.91 2738879.14 2869869.222 2830359.079

s_lolo 67548.438 67048.336 69185.328 68780.228

In order to represent the performance of the proposed
algorithm visually, a geometric mean is used to normalize the
makespan and flowtime values of the 12 instances [43]. Figure
2 displays the results of the proposed algorithm, which is the
best among other algorithms for best makespan values. In
addition, Figure 3 shows the same for average flowtime values.

Fig. 2. Geometric mean of best makespan for 12 instances.

Fig. 3. Geometric mean of AVG makespan for 12 instances.

For the best and average flowtime values, Figures 4 and 5
present the geometric mean values of 12 instances respectively.
The results show that AS algorithm outperforms other
algorithms.

Fig. 4. Geometric mean of best flowtime for 12 instances

Fig. 5. Geometric mean of AVG flowtime for 12 instances.

VI. CONCLUSION

Job scheduling in grid computing system needs a
metaheuristics algorithm to be solved efficiently. Due to the
complexity of the problem, stand-alone algorithm is
insufficient for some cases. However, hybrid metaheuristics
algorithms perform better than stand-alone algorithm in solving
many combinatorial problems. This study has implemented a
high level hybridization between ACS and GA to solve job
scheduling in grid computing system. The results showed that
the proposed algorithm outperforms other algorithms in terms
of makespan reduction. Future work related to the proposed
hybridization algorithm will focus on hybrid ACS with local
search algorithms and the implementation of the hybrid
algorithm in dynamic grid computing environment.

ACKNOWLEDGMENT

The authors wish to thank the Ministry of Higher Education
Malaysia for funding this study under the Fundamental
Research Grant Scheme, S/O codes 12819 and 11980, and
RIMC, Universiti Utara Malaysia, Kedah, for the
administration of this study.

REFERENCES

[1] F. Xhafa and A. Abraham, “Computational Models and Heuristic
Methods for Grid Scheduling Problems,” J. Futur. Gener. Comput. Syst.,
vol. 26, no. 4, pp. 608–621, 2010.

[2] F. Magoules, I. Pan, K.-A. Tan, and A. Kumar, Introduction to Grid
Computing. Boca Raton: CRC Press, 2009.

[3] J. Kolodziej, Evolutionary Hierarchical Multi-Criteria Metaheuristics for
Scheduling in Large-Scale Grid Systems. Berlin New York: Springer,
2012.

[4] J. Montes, A. Sanchez, and M. S. Perez, “Riding Out the Storm: How to
Deal with the Complexity of Grid and Cloud Management,” J. Grid
Comput., vol. 10, no. 3, pp. 349–366, Aug. 2012.

[5] O. Babafemi, M. Sanjay, and M. Adigun, “Towards Developing Grid-
based Portals for e-Commerce on-Demand Services on a Utility
Computing Platform,” J. IERI Procedia, vol. 4, pp. 81–87, Jan. 2013.

[6] M. L. Bote-Lorenzo, Y. A. Dimitriadis, and E. Gomez-Sanchez, “Grid
Characteristics and Uses: A Grid Definition,” in Proceedings of the 1st
European Across Grids Conference, 2004, vol. 2970, pp. 291–298.

[7] D. Neumann, J. Stober, C. Weinhardt, and J. Nimis, “A Framework for
Commercial Grids—Economic and Technical Challenges,” J. Grid
Comput., vol. 6, no. 3, pp. 325–347, 2008.

[8] A. Abraham, R. Buyya, and B. Nath, “Nature’s Heuristics for
Scheduling Jobs on Computational Grids,” in Proceedings of the 8th
IEEE International Conference on Advanced Computing and
Communications, 2000, pp. 45–52.

227

[9] E. Amiri, H. Keshavarz, N. Ohshima, and S. Komaki, “Resource
Allocation in Grid: A Review,” J. Procedia - Soc. Behav. Sci., vol. 129,
no. 1, pp. 436–440, 2014.

[10] H. B. Prajapati and V. A. Shah, “Scheduling in Grid Computing
Environment,” in Proceedings of the 4th International Conference on
Advanced Computing & Communication Technologies, 2014, pp. 315–
324.

[11] F. Xhafa, B. Duran, and J. Kolodziej, “On Exploitation vs Exploration of
Solution Space for Grid Scheduling,” in Proceedings of the 3rd
International Conference on Intelligent Networking and Collaborative
Systems, 2011, pp. 164–171.

[12] G. Zapfel, R. Braune, and M. Bogl, Metaheuristic Search Concepts a
Tutorial with Applications to Production and Logistics. Berlin,
Heidelberg: Springer, 2010.

[13] I. Chaari, A. Koubaa, H. Bennaceur, S. Trigui, and K. Al-Shalfan,
“SmartPATH: A Hybrid ACO-GA Algorithm for Robot Path Planning,”
in Proceedings of the IEEE Congress on Evolutionary Computation,
2012, no. 1, pp. 1–8.

[14] Al-Mahmud and M. A. H. Akhand, “ACO with GA Operators for
Solving University Class Scheduling Problem with Flexible
Preferences,” in Proceedings of the International Conference on
Informatics, Electronics & Vision, 2014, pp. 1–6.

[15] I. Michelakos, N. Mallios, E. Papageorgiou, and M. Vassilakopoulos,
“Ant Colony Optimization and Data Mining,” in Next Generation Data
Technologies for Collective Computational Intelligence, N. Bessis and
F. Xhafa, Eds. Berlin Heidelberg: Springer, 2011, pp. 31–60.

[16] A. Kant, A. Sharma, S. Agarwal, and S. Chandra, “An ACO Approach
to Job Scheduling in Grid Environment,” in Proceedings of the 1st
International Conference on Swarm, Evolutionary, and Memetic
Computing, 2010, vol. 6466, pp. 286–295.

[17] K. Liu, J. Chen, H. Jin, and Y. Yang, “A Min-Min Average Algorithm
for Scheduling Transaction-Intensive Grid Workflows,” in Proceedings
of the 7th Australasian Symposium on Grid Computing and e-Research,
2009, no. AusGrid, pp. 41–48.

[18] R. Chang, J. Chang, and P.-S. Lin, “An Ant Algorithm for Balanced Job
Scheduling in Grids,” J. Futur. Gener. Comput. Syst., vol. 25, no. 1, pp.
20–27, Jan. 2009.

[19] H. U. I. Yan, X. Shen, X. Li, and M. Wu, “An Improved Ant Algorithm
for Job Scheduling in Grid Computing,” in Proceedings of the 4th
International Conference on Machine Learning and Cybernetics, 2005,
no. August, pp. 2957 – 2961.

[20] D. A. Menasce, D. Saha, S. C. D. S. Porto, V. A. F. Almeida, and S. K.
Tripathi, “Static and Dynamic Processor Scheduling Disciplines in
Heterogeneous Parallel Architectures,” J. Parallel Distrib. Comput., vol.
28, no. 1, 1995.

[21] D. P. da Silva, W. Cirne, and F. V. Brasileiro, “Trading Cycles for
Information: Using Replication to Schedule Bag-of-Tasks Applications
on Computational Grids,” in Proceedings of the 9th International Euro-
Par Conference on Parallel Processing, 2003, vol. 2790, pp. 169–180.

[22] L. M. Nithya and A. Shanmugam, “Scheduling in Computational Grid
with a New Hybrid Ant Colony Optimization Algorithm,” Eur. J. Sci.
Res., vol. 62, no. 2, pp. 273–281, 2011.

[23] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, and B. Yao, “A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems,” J. Parallel Distrib.
Comput., vol. 61, no. 6, pp. 810–837, 2001.

[24] E. S. Kumar and A. Sumathi, “EACS Approach for Grid Workflow
Scheduling in a Computational Grid,” in Proceedings of the 1st
International Conference on Computational Intelligence and Information
Technology, 2011, vol. 250, pp. 276–280.

[25] L. Mou, “An Efficient Ant Colony System for Solving the New
Generalized Traveling Salesman Problem,” in Proceedings of the IEEE
International Conference on Cloud Computing and Intelligence Systems,
2011, pp. 407 – 412.

[26] M. Dorigo and L. M. Gambardella, “Ant Colonies for the Travelling
Salesman Problem,” J. Biosyst., vol. 43, no. 2, pp. 73–81, 1997.

[27] M. Dorigo and T. Stutzle, Ant Colony Optimization. Cambridge,
England: MIT Press, 2004.

[28] J. Kolodziej and F. Xhafa, “Enhancing the Genetic-Based Scheduling in
Computational Grids by a Structured Hierarchical Population,” J. Futur.
Gener. Comput. Syst., vol. 27, no. 8, pp. 1035–1046, 2011.

[29] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Task
Execution Time Modeling for Heterogeneous Computing Systems,” in
Proceedings of the 9th Heterogeneous Computing Workshop, 2000, pp.
185–199.

[30] F. Xhafa and J. Carretero, “Experimental Study of GA-Based Schedulers
in Dynamic Distributed Computing Environments,” in Optimization
Techniques for Solving Complex Problems, E. Alba, C. Blum, P. Isasi,
C. Leon, and J. A. Gomez, Eds. Hoboken, N.J: Wiley, 2009, pp. 423–
441.

[31] J. Carretero, F. Xhafa, and A. Abraham, “Genetic Algorithm Based
Schedulers for Grid Computing Systems,” Int. J. Innov. Comput. Inf.
Control, vol. 3, no. 6, pp. 1–19, 2007.

[32] F. Xhafa, J. Kolodziej, L. Barolli, V. Kolici, R. Miho, and M. Takizawa,
“Evaluation of Hybridization of GA and TS Algorithms for Independent
Batch Scheduling in Computational Grids,” in Proceedings of the
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, 2011, pp. 148–155.

[33] F. Xhafa, J. Carretero, L. Barolli, and A. Durresi, “Requirements for an
Event-Based Simulation Package for Grid Systems,” J. Interconnect.
Networks, vol. 08, no. 02, pp. 163–178, Jun. 2007.

[34] F. Xhafa, J. Carretero, B. B. Dorronsoro, and E. Alba, “Tabu Search
Algorithm for Scheduling Independent Jobs in Computational Grids,” J.
Comput. Informatics, vol. 28, no. 2, pp. 237–250, 2009.

[35] F. Xhafa, J. A. Gonzalez, K. P. Dahal, and A. Abraham, “A GA(TS)
Hybrid Algorithm for Scheduling in Computational Grids,” in
Proceedings of the 4th International Conference on Hybrid Artificial
Intelligence Systems, 2009, vol. 5572, pp. 285–292.

[36] F. Xhafa, J. Kolodziej, L. Barolli, and A. Fundo, “A GA+TS Hybrid
Algorithm for Independent Batch Scheduling in Computational Grids,”
in Proceedings of the 14th International Conference on NetworkBased
Information Systems, 2011, pp. 229–235.

[37] L. Jourdan, M. Basseur, and E.-G. Talbi, “Hybridizing Exact Methods
and Metaheuristics: A Taxonomy,” Eur. J. Oper. Res., vol. 199, no. 3,
pp. 620–629, Dec. 2009.

[38] K. R. Ku-Mahamud and M. M. Alobaedy, “New Heuristic Function in
Ant Colony System for Job Scheduling in Grid Computing,” in
Proceedings of the 17th International Conference on Applied
Mathematics, 2012, pp. 47–52.

[39] F. Xhafa and A. Abraham, “Meta-heuristics for Grid Scheduling
Problems,” in Metaheuristics for Scheduling in Distributed Computing
Environments, F. Xhafa and A. Abraham, Eds. Berlin Heidelberg:
Springer, 2008, pp. 1–37.

[40] G. Ritchie and J. Levine, “A Hybrid Ant Algorithm for Scheduling
Independent Jobs in Heterogeneous Computing Environments,” in
Proceedings of the 23rd Workshop of the UK Planning and Scheduling
Special Interest Group, 2004, pp. 1–7.

[41] F. Xhafa, L. Barolli, and A. Durresi, “An Experimental Study on
Genetic Algorithms for Resource Allocation on Grid Systems,” J.
Interconnect. Networks, vol. 8, no. 4, pp. 427–443, 2007.

[42] F. Xhafa and B. Duran, “Parallel Memetic Algorithms for Independent
Job Scheduling in Computational Grids,” in Recent Advances in
Evolutionary Computation for Combinatorial Optimization, vol. 153, C.
Cotta and J. van Hemert, Eds. Berlin Heidelberg: Springer, 2008, pp.
219–239.

[43] H. Izakian, A. Abraham, and V. Snsel, “Performance Comparison of Six
Efficient Pure Heuristics for Scheduling Meta-Tasks on Heterogeneous
Distributed Environments,” J. Neural Netw. World, vol. 6, no. 09, pp.
695–711, 2009.

228

