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Abstract—Metaheuristics algorithms show very good 

performance in solving various job scheduling problems in 

computational grid systems. However, due to the complexity and 

heterogeneous nature of resources in grid computing, stand-alone 

algorithm is not capable to find a good quality solution in 

reasonable time. This study proposes a hybrid algorithm, 

specifically ant colony system and genetic algorithm to solve the 

job scheduling problem. The high level hybridization algorithm 

will keep the identity of each algorithm in performing the 

scheduling task. The study focuses on static grid computing 

environment and the metrics for optimization are the makespan 

and flowtime. Experiment results show that the proposed 

algorithm outperforms other stand-alone algorithms such as ant 

system, genetic algorithms, and ant colony system for makespan. 

However, for flowtime, ant system and genetic algorithm perform 

better. 

Keywords— job scheduling; hybrid Ant Colony System; Genetic 

Algorithm; static grid computing. 

I.  INTRODUCTION 

Computational grid is one of the main services provided by 
grid systems. Grid is defined as “Geographically distributed 
computers, linked through the internet in a Grid-like manner, 
are used to create virtual supercomputers of vast amount of 
computing capacity able to solve complex problem from e-
Science in less time than known before” [1]. Grid systems 
evolve from existing technology such as distributed computing, 
web service, and Internet [2]. Grid systems are classified as 
modern High Performance Distributed Systems (HPDSs) along 
with the clusters and cloud systems [3]. However, there are 
crucial characteristics which differ between them such as scale, 
network type, administrative domain, resources structure, and 
security [4]. There are many different types of grid systems 
such as sensor grid, campus grid, global grid, pc grid, and 
utility grid [3], [5]. Grid computing system has been utilized in 
various fields such as scientific, education, and commercial 
fields [6], [7].  

One of the main components in grid computing systems is 
resource management system which consists of grid 
information server, domain resource manager, and resource 
scheduler [8]. The scheduler has the main influence in grid 
computing performance [9]. The scheduler’s responsibility is to 
map the submitted jobs from users to the suitable and available 
resources. The efficiency of the scheduler depends on the 

implemented algorithm. Scheduling could be done using 
simple algorithms such as greedy or random approach. 
However, using more sophisticated algorithms will enhance the 
scheduler’s efficiency, which in turn will enhance the grid 
performance in general. 

Scheduling jobs in grid computing are known as NP-
complete problem due to the problem complexity and 
intractable nature of the problem [10]. Such a problem could be 
solved using metaheuristic algorithms. These types of 
algorithms have the ability to find near optimal solution in 
reasonable time rather than optimal solution in a very long 
processing time [11]. Metaheuristic algorithms such as Tabu 
Search (TS), Genetic Algorithm (GA), and Ant Colony 
Optimization (ACO) show very promising performance to 
solve various types of scheduling problems [12]. However, 
hybridizing two or more algorithms show better performance 
than applying a stand-alone algorithm [3]. This is due to the 
ability of hybrid approach to skip from local minima using 
more options available in the algorithms used in the 
hybridization. Hybrid approaches between ACO and GA have 
been studied in [13], [14]. However, these hybridized 
approaches are different from the proposed hybridized 
approach in this study. The ant system (AS) which is a variant 
of ACO has been used in [13] and [14] to solve university class 
scheduling and robot path planning. In this study, the ant 
colony system (ACS) which is another variant of ACO is used 
to solve job scheduling in static grid computing environment.  

The rest of the paper is organized as follows. Section II 
presents the research on ant colony optimization and genetic 
algorithm in solving NP hard problems. The implementation of 
ACS and GA in grid computing is described in Section III. 
Section IV briefly explains the problem formulation and the 
benchmark for static grid scheduling. Section V presents the 
results of ACS hybrid with GA in grid computing. Finally, the 
conclusion is provided in Section VI. 

II. METAHEURISTICS ALGORITHM FOR NP PROBLEMS

In computational grid systems, scheduler is an important 
component for resource management. Scheduler algorithm has 
the responsibility to schedule jobs efficiently [9]. Job 
scheduling is known as NP-complete problem which needs 
metaheuristics algorithms to be solved. One of the best 
metaheuristics algorithms in the field of optimization is ACO. 

978-1-4799-4811-6/14/$31.00 ©2014 IEEE 

223



ACO is considered as a swarm intelligence algorithm which 
mimics the behaviours of real biological ants. ACO is 
implemented to solve many problems such as routing, 
scheduling, and classification [15]. Many studies have 
implemented and enhanced ACO for job scheduling in grid 
computing. An ACO approach for job scheduling in grid 
system by [16] proposed two types of ants, namely the red and 
black ants for the purpose of sharing the search load. The 
performance of this algorithm was compared with Min-Min 
algorithm presented in [17] and first come first serve. 
Experimental results show that this algorithm outperforms the 
other two algorithms.  

A study presented by [18] proposed a Balanced ACO 
(BACO) algorithm for job scheduling in grid. The proposed 
algorithm is based on the basic ideas from ACO algorithm. 
Each ant in the system represents a job in the grid systems. In 
addition, the pheromone value represents the weight for a 
resource in the grid system. Higher weight means that the 
resource has a better computing capability. The study also 
considered the bandwidth speed available between the 
scheduler and resource. This algorithm has been implemented 
in the Taiwan UniGrid which consists of more than 20 
campuses. The experimental results show that BACO 
algorithm outperforms the improved ACO [19], fastest 
processor to largest task first [20], and Suffrage [21]. 

A hybrid ACO approach (HACO) for job scheduling in grid 
computing proposed in [22] has integrated the heuristic 
information to make the algorithm converge faster to the 
solution. The experiments used the benchmark model known as 
Expected Time to Compute (ETC) model presented in [23]. 
The performance of HACO was compared with ACO in terms 
of makespan criterion. Empirical results show that HACO 
outperforms the existing ACO algorithm. A successful variant 
of ACO algorithm for job scheduling in computational grid 
[24], [25] is the Ant Colony System (ACS) by Dorigo [26]. 
ACS algorithm enhances ant system in three phases: first, the 
exploration mechanism became stronger due to the 
implementation of aggressive rule. Second, only the ant who 
found the best solution is allowed to deposit the pheromone 
trail to the arcs which belong to that solution. Third, 
evaporation process will be applied only to the arcs used by 
ants to increase the exploration of alternative arcs [27]. 

Besides ACO-based algorithm, there are many other 
algorithms that have been successfully applied to solve 
optimization problems. One of these algorithms is GA which is 
a metaheuristic algorithm that imitates the principle of genetic 
process in living organisms. GA mimics the evolutionary 
process by applying selection, recombination, and mutation to 
generate solution from the search space. Genetic algorithm is a 
well-known algorithm to solve various types of combinatorial 
optimization problems. Enhanced Genetic-based scheduling for 
grid computing is proposed in [28]. The authors presented an 
implementation of Hierarchic Genetic Strategy (HGS) for job 
scheduling in dynamic computational grid environment. HGS 
has the ability to search the solution space concurrently using 
various evolutionary processes. The study focused on bi-
objective optimization specifically, makespan and flowtime 
simultaneously have been optimized. Experiments were 
conducted under heterogeneous, large scale, and dynamic 

environment using grid simulator. HGS was tested with static 
and dynamic grid computing environment. The experiment 
with static environment is based on ETC matrix model 
presented by [29] and for dynamic environment, the authors 
used a simulator presented by [30]. HGS was also compared 
with two other GA-based schedulers presented in [23], [31].  
The results show that HGS outperforms the other GA-based 
schedulers. It is not known how HGS will perform against 
other metaheuristic algorithms since only GA-based algorithm 
was used for comparison.  

A study presented by [32] proposed a hybrid approach 
between GA and TS for independent batch job scheduling in 
grid computing. The hybrid algorithm aims to optimize the 
makespan and flowtime as a bio-objectives scheduling 
problem. In addition, the authors proposed hierarchical and 
simultaneous approaches for optimizing makespan and 
flowtime. Two types of hybridization were provided, namely 
low and high level hybridization which are known as GA(TS) 
and GA+TS algorithms. The experiments conducted have 
considered static and dynamic grid computing environment 
using HyperSim-G simulator developed by [33]. The proposed 
algorithms were compared with GA presented by [31] and TS 
presented by [34]. Experimental results show that the proposed 
hybrid algorithms outperform the other stand-alone algorithms 
in terms of makespan criterion. However, in terms of flowtime 
criterion, GA and TS stand-alone algorithms outperform the 
proposed hybrid algorithm. Such a contradiction is normal for 
job scheduling in grid computing. In spite of the limitation on 
the experiments and benchmarking problem, the study has 
clearly illustrated the implementation of the hybrid algorithms. 

III. PROPOSED ACS+GA FOR JOB SCHEDULING 

Hybridization is a term which refers to the approach that 
combines two or more algorithms in order to achieve a result 
which is not achievable using a stand-alone approach [35]. 
Algorithms could be hybridized fully or partially to be able to 
get the best features of the combined algorithms. There are two 
levels of hybridization between algorithms namely, high level 
and low level. In high level, which is also called loosely 
coupled hybridization, each algorithm preserves its identity. In 
other words, each algorithm operates fully in the hybridized 
approach. This type of hybridization can be seen as a chain of 
algorithm execution (                           
            . This execution can be further looped in a 
certain number of iterations until the termination condition is 
satisfied. Through the algorithm execution, the output solution 
is passed from            to            and so on. In low 
level hybridization, also known as strongly coupled, the 
algorithms interchange their inner procedures. The level of 
hybridization reflects the degree of inner exchange among the 
hybridized algorithms. In low level hybridization, one of the 
algorithms is the main algorithm, which calls other algorithms 
at any time of execution (depending on the hybridization 
design). The low level hybridization algorithm could be 
presented as                       . In this representation, 
           is the main algorithm and            is the 
subordinated algorithm [36], [37].  

This study implemented a high level hybridization 
approach namely ACS + GA. ACS will start first for a specific 
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time, and after ACS finishes execution, GA will start to 
enhance the solution found by ACS. In other words, the 
solution found by ACS will be a part of the initial populations 
of GA.  

For ACS implementation, the heuristic information needs 
to be defined. For static environment, heuristic   value is 
calculated from the ETC matrix using                     
where       represents the expected time to compute task   on 

machine  , and       is the previous load assigned to 

machine    [38]. Longer computing time and more loads will 
produce a smaller heuristic value, which will make the 
probability of selecting this machine smaller and vice versa. 
The probability of ant   to map task   to machine   is calculated 
by:  

   
     {

      {           }           
                                  

                                             
              

where     is the pheromone value,   is the heuristic value,   is 

a parameter which determines the relative influence of the 
heuristic information,   is a random variable uniformly 
distributed between [0, 1],              is a parameter 
which determines the exploration/exploitation rate, and   is a 
random variable selected according to the probability given by 
equation (2) with     [27]. 

   
      

     
          

∑      
          

   

                                            

For GA algorithm implementation, the output from ACS 
algorithm will be a part of the initial population of GA. The 
solution will be in the form of a vector. The index of each 
element represents the task number while the value of the 
vector element represents the machine number assigned to it. 
Therefore, the vector size is equal to the total number of tasks 
and the values in each element will be any value of non-
negative integer number in the range of (0 to m-1) where m is 
the total number of machines in the grid. Figure 1 depicts the 
skeleton of the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. ACS+GA skeleton. 

IV. PROBLEM FORMULATION 

The problem in job scheduling for grid computing is known 
as a multi-objective problem due to the various criteria in 
computational grid such as makespan, flowtime, load 
balancing, utilization, matching proximity, turnaround time, 
total weighted completion time, and average weighted response 
time [39]. In this study, two criteria were implemented namely: 
makespan and flowtime with the priority to makespan as the 
main optimization objective. Makespan metric measures the 
general productivity of the grid computing. The best 
scheduling algorithm is the one that can produce a small value 
of makespan, which means that the algorithm is able to map 
tasks to machines in a good and efficient way. Therefore, the 
objective in this study is to minimize the makespan. Makespan 
is defined as the time when the last task finishes execution, 
formally defined as: 

                                        {            } 

where       is the set of all possible schedules,      is the 
set of all jobs to be scheduled, and    denotes the time when 

task   finalizes [39]. Flowtime is the second criteria used in this 
study which refers to the response time to the user submissions 
of task executions. Flowtime is defined as the sum of 
finalization times of all tasks, formally defined as: 

                          ∑           . 

These criteria could conflict with each other since limited 
resources could be the bottleneck of the system [39]. 

In order to test the proposed algorithm, a suitable 
benchmark is required to reflect the robustness of the 
algorithm. The benchmark should reflect the environment 
attributes such as resources and jobs heterogeneity. The 
considered benchmark for static grid computing is based on the 
successful model known as ETC to generate benchmarks on 
grid computing introduced by [23]. This model is widely 
accepted by researchers to be used for job scheduling in grid 
[23], [28], [40]. The benchmark defines a matrix called 
Expected Time to Compute. Each row in the           matrix 
contains the expected time to compute task     on machine    . 
Therefore, ETC has     entries where   represents the 
number of tasks and   represents the number of machines. 
ETC matrix is again defined using three metrics, namely task 
heterogeneity, machine heterogeneity, and consistency. The 
task heterogeneity measures the variance in execution time 
among tasks while machine heterogeneity measures the 
variance in machine speed among machines. The heterogeneity 
of tasks and machines is represented with two values of “high” 
and “low” respectively.  In addition, ETC matrix captures other 
possible features of real heterogeneous computing system 
using three more metrics to measure the consistencies, namely 
consistent, inconsistent, and semi-consistent. The ETC matrix 
is considered consistent whenever a machine    executes a task 

   faster than another machine    , therefore, machine    will 

execute all other tasks faster than machine    . ETC matrix is 
considered inconsistent when a machine    could execute some 

tasks faster than machine    and some other slower. Finally, 
semi-consistent ETC matrix is an inconsistent matrix which has 
a consistent submatrix of specific size. Combining all these 

Procedure ACS + GA 

Initialize parameters and pheromone trails; 
While (Termination condition not met) Do 

 Construct new solution; 

 Update pheromone trails; 
End while; 

Initialize population (P); 

Add(best-so-far solution from ACS to P); 

 Evaluate (P); 

 While (termination condition not met) 

  Ṕ ← Recombine(P); 
  Mutate(Ṕ); 

  Evaluate(Ṕ); 

  P ← Replace(Ṕ   P); 
 End While; 

Return the best solution; 

End Procedure;  
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matrices will generate 12 distinct types of possible ETC matrix 
[23]. 

V. EXPERIMENTS AND RESULTS 

Metaheuristics algorithms such as ACS and GA have many 
parameters that need to be tuned. The values of the parameters 
need a lot of tuning in order to achieve the desired performance 
[12]. Therefore, the best values have been adopted from the 
literature.  In this experiment, the parameters values for ACS 
and GA were selected based on recommended values from 
[27], [41] respectively. Table I presents the parameters values 
for ACS algorithm. 

TABLE I.  ACS PARAMETERS VALUES. 

Run time Beta Evaporation rate No of ants q 

45second 8 0.6 10 0.9 

 

Table II shows the parameters values for GA. The total 
population size of GA set to 10 while the selected population 
size as an intermediate population was set to 6. The probability 
to operate a crossover operation is 0.9 while the probability to 
operate a mutation operation is 0.4 [41]. 

TABLE II.  GA PARAMETERS VALUES. 

Run 

time 

Population 

size 

Intermediate 

size 

Crossover 

rate 

Mutation 

rate 

45second 10 6 0.9 0.4 

 

Important operators in GA are presented in Table III. To 
select a population from the population pool, many operators 
are available such as the roulette wheel and ranking. This study 
has implemented a tournament operator with value 3 as a 
selection operator. For crossover operator, fitness based 
operator is found as the best operator compared with m-point 
crossover and uniform crossover [41]. Finally, a Re-balanced 
operator is used as a mutation operator, which is considered 
better than random mutation.  

TABLE III.  GA IMPLEMENTED OPERATORS 

Elitism Selection operator Crossover operator Mutation operator 

True Tournament = 3 Fitness based Re-balanced 

 

Experiments have been conducted using Intel® Core (TM) 
i7-3612QM CPU @ 2.10GHz and 8G RAM. The grid 
computing simulator is developed using visual C#. The time 
given for each experiment is 90 seconds (45 seconds for each 
algorithm). This time restriction is a very important 
requirement to mimic the real environment for job scheduling 
in grid computing [31], [42]. Each algorithm was executed 10 
times in order to calculate the average values as well as to get 
the best run. The first column of each table represents the 
instance name with an abbreviation code: x-yyzz as follows: 

x represent the type of consistency; c means consistent, i 
means inconsistent, and s means semi-consistent. 

yy represents the heterogeneity of the tasks; hi means high 
and lo means low. 

zz represents the heterogeneity of the machines; hi means 
high and lo means low. 

For example: c_hilo means consistent environment, hi 
heterogeneity in tasks and low heterogeneity in machines. 

The results show that the proposed algorithm was able to 
reduce the makespan significantly on seven instances as 
illustrated in Table IV which shows the best makespan values. 

TABLE IV.  BEST MAKESPAN VALUES. 

 
GA AS ACS ACS+GA 

c_hihi 11215488.93 11210553.9 10794610.75 10533616.36 

c_hilo 182232.04 184701.33 179762.4 180289.84 

c_lohi 374685.96 367182.79 346838.43 345233.25 

c_lolo 6138.52 6224.75 6051.82 6001.86 

i_hihi 3995843.41 3946883.19 4066163.68 3924281.6 

i_hilo 91682.28 90968.26 93829 91709.93 

i_lohi 134151.08 133825.44 137176.54 134796.3 

i_lolo 3045.32 3140.97 3208.97 3164.29 

s_hihi 6223749.51 5991234.31 6119601.97 5854357.25 

s_hilo 120447.26 118988.3 120539.13 119123.89 

s_lohi 181155.5 176800.44 178584.84 172225.04 

s_lolo 4246.4 4296.32 4350.38 4225.71 

 

Table V depicts the average values for makespan. The 
proposed algorithm was able to achieve good results on five 
instances. However, GA also performs well on four instances. 

TABLE V.  AVG MAKESPAN VALUES. 

  GA AS ACS ACS+GA 

c_hihi 11266455.65 11492186.36 10947366.92 10849427.27 

c_hilo 183264.856 186640.051 181434.422 180970.805 

c_lohi 375322.186 373766.649 353670.849 353882.764 

c_lolo 6152.468 6281.502 6120.002 6074.341 

i_hihi 4029108.699 4021032.464 4261681.833 4115442.339 

i_hilo 91682.28 92311.613 94832.7 93513.988 

i_lohi 135625.029 136721.893 144178.472 138746.886 

i_lolo 3051.006 3198.568 3279.985 3232.719 

s_hihi 6317823.165 6114693.995 6322969.763 6119177.625 

s_hilo 120664.355 121995.849 122440.437 120576.822 

s_lohi 181734.596 178990.539 181737.421 177965.139 

s_lolo 4249.935 4369.079 4399.443 4326.294 

 

The experiments show different performance for flowtime 
objective. AS algorithm outperform the other algorithms for 
the best and average flowtime values as shown in Table VI and 
Table VII. This behavior was expected due to the contradiction 
between makespan and flowtime. 

TABLE VI.  BEST FLOWTIME VALUES. 

  GA AS ACS ACS+GA 

c_hihi 175890174.2 170869481 167168928 167921346.2 

c_hilo 2885387.55 2839818.65 2839974.6 2855393.95 

c_lohi 5862262.04 5600439.31 5481314.05 5475878.29 

c_lolo 97154.47 95877 95871.53 94911.38 

i_hihi 63759167.63 60169758.16 64092691.04 62544930.6 

i_hilo 1461297.38 1403670.42 1451182.04 1463099.33 

i_lohi 2141505.91 2032456.42 2150374.03 2152416.88 

i_lolo 48547.9 48773.48 50707.62 50529.25 

s_hihi 98814397.03 90312215.73 95998535.04 92830865.83 

s_hilo 1909954.11 1832927.6 1893970.67 1891505.22 

s_lohi 2867157.87 2682621.46 2800124.77 2746952.11 

s_lolo 67508.13 65545.51 68232.02 67152.14 
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TABLE VII.  AVG FLOWTIME VALUES. 

  GA AS ACS ACS+GA 

c_hihi 176638718.7 174513587.9 171594188.4 171864310.1 

c_hilo 2893345.641 2866863.113 2865314.197 2867622.027 

c_lohi 5867869.085 5712409.208 5587489.199 5597133.705 

c_lolo 97298.915 96857.627 96697.087 96332.486 

i_hihi 64261850.79 61409716.3 66654183.7 65559896.86 

i_hilo 1461683.727 1422434.616 1489277.24 1492734.607 

i_lohi 2163840.832 2068376.494 2256605.345 2212084.909 

i_lolo 48579.506 49416.302 51606.347 51580.551 

s_hihi 99887497.75 92951306.33 98799209.66 97232283.39 

s_hilo 1915659.179 1867344.085 1934073.416 1917926.183 

s_lohi 2871564.91 2738879.14 2869869.222 2830359.079 

s_lolo 67548.438 67048.336 69185.328 68780.228 

 

In order to represent the performance of the proposed 
algorithm visually, a geometric mean is used to normalize the 
makespan and flowtime values of the 12 instances [43]. Figure 
2 displays the results of the proposed algorithm, which is the 
best among other algorithms for best makespan values. In 
addition, Figure 3 shows the same for average flowtime values. 

 

Fig. 2. Geometric mean of best makespan for 12 instances. 

 

Fig. 3. Geometric mean of AVG makespan for 12 instances. 

For the best and average flowtime values, Figures 4 and 5 
present the geometric mean values of 12 instances respectively. 
The results show that AS algorithm outperforms other 
algorithms. 

 

Fig. 4. Geometric mean of best flowtime for 12 instances 

 
Fig. 5. Geometric mean of AVG flowtime for 12 instances. 

VI. CONCLUSION 

Job scheduling in grid computing system needs a 
metaheuristics algorithm to be solved efficiently. Due to the 
complexity of the problem, stand-alone algorithm is 
insufficient for some cases. However, hybrid metaheuristics 
algorithms perform better than stand-alone algorithm in solving 
many combinatorial problems. This study has implemented a 
high level hybridization between ACS and GA to solve job 
scheduling in grid computing system. The results showed that 
the proposed algorithm outperforms other algorithms in terms 
of makespan reduction. Future work related to the proposed 
hybridization algorithm will focus on hybrid ACS with local 
search algorithms and the implementation of the hybrid 
algorithm in dynamic grid computing environment. 
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