
Component Based Modelling for Animated Educational Queuing
Networks

Ruzelan Khalid1, Wolfgang Kreutzer2 and Tim Bell2+
1College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok,

Kedah, Malaysia
2Department of Computer Science and Software Engineering, University of Canterbury, Private Bag 4800,

Christchurch 8140, New Zealand

Abstract.This paper presents two well known design patterns that are appropriate for designing Interactive
Simulation components for educational purposes. These are the Delegation Event Model, used for linking
between components, and the MVC (Model-View-Controller) pattern, used for connecting the components
to their visualizations and graphical user interfaces (GUIs). Combining both architectures, we have
constructed Discrete Event Simulation (DES) components for modelling queuing networks in the Flash
environment. The resulting components not only help teachers with little programming skill to construct
simulation models, but also allow learners to conduct various experiments through interactive Graphical
User Interfaces (GUIs) and obtain feedbacks of model behaviour through a range of engaging visualizations.

Keywords: DES, animation, component based modelling, design pattern, Flash simulator

1. Introduction
Ease of use and flexibility are essential criteria for Discrete Event Simulation (DES) tools.

Unfortunately, both often conflict with each other. General-purpose DES simulators (e.g., PSim-J [1] and
SSJ [2]) require significant programming effort for building models. Visual and interactive tools offer a
user-friendly model construction environment. Unfortunately they often lack flexibility, since their
architectures are hidden and difficult to extend with additional simulation logics.

Object oriented simulation libraries have long been used in providing a flexible simulation environment.
However, they do not usually promote ease of use. Component-based simulation tools that provide links
between simulation libraries have been proposed to solve this problem and have been adopted by commercial
simulation tools and other complex software [e.g., see 3, 4].

Our primary focus is to design easy-to-use and extensible DES tools that foster modelling for insight; i.e.,
models that improve understanding through observation. Such models should incorporate interfaces to
visualize model structures, activities to challenge learners’ imagination and understanding, interesting
scenarios to attract learners’ activities, animation to depict model behaviours, and informative feedbacks to
reflect learners’ actions. All models should also be easily accessible. For this, we have used Flash
ActionScript [5] since it offers robust support for component design besides its strengths as an animation tool
and its support for cross-platform and integration with Learning Management Systems (LMSs).

This paper presents the concepts related to the design and development of DES components. It is
organized into six sections. Section 2 presents the basic principle of component-based simulation and
surveys some existing component-based simulators. Section 3 introduces the Delegation Event Model and
examines its usefulness in forging links between DES components. Section 4 presents the MVC (Model-

+ 1ruzelan@uum.edu.my, {2wolfgang.kreutzer, 2tim.bell}@canterbury.ac.nz

 2011 International Conference on Computer and Software Modeling
IPCSIT vol.14 (2011) © (2011) IACSIT Press, Singapore

204

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42980058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

View-Controller) pattern and discusses how it can be utilized for loose coupling between components, their
interfaces (GUIs) and their visualizations. The architecture of how both patterns can be implemented in the
Flash environment is presented in Section 5. Section 6 draws some conclusions.

2. Component Based Simulation
When describing his DEVS (Discrete Event System Specification) formalism, Zeigler [6] proposed that a

simulation model should be built in a hierarchical and modular fashion; i.e., that a model is a collection of
interconnected components. These basic components can be combined to form “higher level” components,
which can then be further connected and aggregated to construct a new sub-model. For building a complex
model, this process can be repeated recursively.

Each component is designed to guide message flows and to control such dynamic messages’ movements.
Messages are generated by the first “upstream” components and then transferred to other “downstream”
components through output ports. Since downstream components are configured by upstream components,
the only task of the downstream components is to react to messages they receive and update the messages’
states. Based on this approach, many simulators have been built and reported; e.g., XCELL+ [7],
SIMFACTORY [8], JSIM [9], Simkit [10], COST [11], Viskit [12] and BPSim++ [13].

Simkit and COST are not user-friendly since they only allow a designer to construct models through an
Application Programming Interface (API). XCELL+ and SIMFACTORY provide easy-to-use GUIs with
which simulation models can be constructed by dragging components onto a canvas and connecting them.
Since their internal architectures are hidden, however, these tools’ extension capabilities are rather limited.
To solve this problem BPSIM++ tries to combine techniques for offering both ease of use and flexibility, but
its resulting models are written in C++ and can therefore not be accessed through a web browser. JSIM and
Viskit are easy-to use and extensible tools with support for web-based simulation, but do not incorporate any
visualization and animation facilities. Many modern simulation software (e.g., Arena [14]) meanwhile are
excellent tools for building sophisticated simulation models and observing animation and visualization,
however the capabilities to support user-directed experimentation during run time are limited.

3. The Delegation Event Model For Linking DES Components
The Delegation Event Model suggests a generic design for how to broadcast many different events (i.e.,

event objects) from an event source to all registered event listener objects. This style of event broadcasting is
analogous to the flow of entities in DES systems, where a temporary entity (an event object) is passed from
an upstream component (an event source) to downstream components (the event listeners). Any downstream
component can then act as an event source to further downstream components. Entities’ and visited
components’ states will be updated during this process, which will continue until the message is destroyed.

This design pattern plays two important roles in building DES simulators. Firstly, it avoids creating a
class which defines an entity type’s lifecycle method; i.e., a sequence of phases that all the entity instances
must step through during their lifetime (e.g., using switch case statements). Writing such lifecycle
descriptions become more complicated if entities need to be split (e.g., based on probabilities or conditions)
at a certain phase of their lifecycles. Secondly, through sub-classing, other developers can extend our
existing architecture to support new high level components (e.g., other simulation metaphors and styles).

Based on this pattern for tracing events triggered by message flows, DES components can be constructed
to simulate and animate the transfer of many types of entities from component to component, using
components’ output ports. Our DES component development is based on the DES framework discussed by
Khalid, Kreutzer and Bell [15], and the class and interface structures found in Moock [5] to build a suitable
implementation in Flash ActionScript, which is illustrated in Fig. 1 (see [16] for a list of the DES
components).

We use five basic classes and two interfaces to implement DES components (e.g., Source, Queue, Decide,
Sink, etc.) based on this pattern; i.e., ComponentSource, EventListenerList, Event Object, SimProcess,
ComponentListener, EventListener and SimProcessListener. ComponentSource (an event source) represents
classes that schedule an instance of the SimProcesss class (a SimProcess object) and broadcast this object to
all registered listeners. Simulation specific ComponentSource classes include Sources, Queues, Servers,

205

Sinks, etc. A ComponentSource object should be composed of EventListenerList objects; i.e., it should
manage a list of the ComponentSource’s event listeners. ComponentSources can be equipped with a GUI to
provide easy access points to its properties.

EventListener

interface class

ComponentListener

handleMsg(SimProcess, Time)

EventObject

EventListenerList

getListener()
addObj()
removeObj()

SimProcess

delay(time,source)

implements

implements

stores

passes to

creates

ComponentSource

listeners:EventListenerList
addSimProcessListener(l)
removeSimProcessListener(l)
executeSimProcess(SimProcess)

SimProcessListener
handleMsg(SimProcess, Time)

Fig. 1: The DES delegation event model structure

The SimProcess (an event object) class encodes entities that can be placed on an Agenda (a list that
stores the next scheduled event for a particular SimProcess object) and will broadcast to ComponentListener
objects when a scheduled event time is reached (i.e., when it should be activated by the simulation Monitor).
The SimProcess class is derived from the EventObject class; a base class that holds a reference to the class
that has scheduled it. In order to receive event notifications from a ComponentSource, the
ComponentListener class must implement the SimProcessListener interface; an interface that specifies a set
of event methods. The SimProcessListener interface implements the EventListener interface; a marker
(empty) interface that enables event listener classes to be notified by ComponentSources. When an event
occurs the ComponentSource invokes a handleMsg (SimProcess, Time) method for each ComponentListener
object.

Source

executeMsg(SimProcess){
...
...
...
}

Time

0

1

2

2

2

3

5

10

Time

Customer#1

Custome#r2

Customer#1

Customer#1

Customer#1

Event

Arrival

Arrival

Join Queue

Seize Server

Delay Server

Customer#2

Customer#3

Customer#1

Join Queue

Arrival

Release Server

10

10

15

Customer#2

Customer#2

Customer#1

Seize Server

Delay Server

Leave

The Monitor
outPort outPort outPort

Queue

executeMsg(SimProcess){
...
...
...
}

handleMsg(SimProcess, time)
...
...
...
}

Server

executeMsg(SimProcess){
...
...
...
}

handleMsg(SimProcess, tme)
...
...
...
}

Sink

executeMsg(SimProcess){
...
...
...
}

handleMsg(SimProcess, time)
...
...
...
}

callback

schedule

schedule
callback

Fig. 2: The flow of a SimProcess object in DES components

Fig. 2 traces a simple flow of a SimProcess object in an M/M/1 queuing scenario. An instance of the
SimProcess class is first created and scheduled in the Event List by invoking a delay (time:Number,
source:Component) method on a Source component (which then becomes the highest upstream component).
The time argument is the time that the next event for this SimProcess object is scheduled to occur and the
source argument refers to the ComponentSource object that scheduled it. The SimProcess object is then

206

removed from the Event List by the Monitor. During the removal activity, the SimProcess object makes a
call back to the event source that scheduled it (in this case a Source object) and invokes an executeMsg
(SimProcess) method on the event source. This event source then executes relevant code (e.g., an animation
method to move the SimProcess object to its downstream component) and broadcasts the SimProcess object
to its all registered listeners by invoking handleMsg (SimProcess, Time).

All registered listeners can respond to the SimProcess object in different ways, but one of them should
instruct the SimProcess object to proceed to its next phase; i.e., by reinserting it into a suitable location on
the Event List. When the next scheduled time is reached, the SimProcess object calls the event source that
scheduled it; the event source executes executeMsg (SimProcess) and broadcasts the SimProcess object to all
of its downstream components. This is repeated until the SimProcess object departs from the system; i.e.,
when it arrives at a Sink - its lowest downstream component.

The main tricky issue in implementing this pattern in an animated simulator is to correctly trigger sorted
events at appropriate times (i.e., to stop or delay events appropriately before triggering next events) based on
a changeable runtime viewing ratio (i.e., a ratio of a given number of simulation time units into a
corresponding number of seconds of animation time). To correctly delay the time between two consecutive
events during animation, we multiply the interval of the delay time between two consecutive events with the
inverse of the current viewing ratio. To smoothly transfer the entity so that it can reach its next component,
we multiply the distance between the two components on a stage with the current viewing ratio and divide by
its route time. Flash’s setInterval and clearInterval functions are important to accomplish the task.

4. The MVC Pattern For Visualizing DES Component States
The MVC pattern prescribes how to structure classes that create and manage user interfaces based on

input-process-output cycles. In doing so, it implements the Observer pattern; i.e., a pattern which notifies a
group of interested objects (the observers) whenever a single object (the subject) changes its state. There are
three reasons why the MVC pattern is so useful for building interactive and attractive DES components.
Firstly, component views can be added or removed at design time or runtime without affecting any other
components’ parts. Learners can therefore freely customize visualizations. Secondly, all views are
concurrently notified through an info object; i.e., an object that contains information about its subject’s
current states. This allows the synchronous display of all of a DES component’s current states, either
graphically (e.g., histograms, graphs, etc.) or in a more abstract fashion (e.g., texts, tables, etc.). Thirdly,
when designed properly, many visualization tools can be reused by different types of DES components.

Fig. 3 shows generic MVC implementation structures for a single DES component. This involves seven
basic classes and four interfaces that cooperate with each other to provide a GUI and suitable visualizations.
The ComponentModel (e.g., Sources, Queues, etc.) class broadcasts its states to all registered observers
through its ComponentUpdate object (info object). This is an object that stores its current states. Each class
should have its own ComponentUpdate class with a unique name (e.g., ServerUpdate, QueueUpdate, etc.).

Observer

AbstractController Observable

ComponentController ObservableSubject

ComponentUpdate

Graph

Histogram

ComponentTools

View Controller

interface class

implements

AbstractView

implementsimplements

Table

ComponentModel

subj:ObservableSubject

implementsimplements

Fig. 3: The DES MVC structure

207

The ComponentModel class implements the Observable interface to provide abstract methods for
maintaining and notifying observer objects. The implementation for the Observable interface is provided by
the ObservableSubject class. An instance of the ObservableSubject class is used in the ComponentModel to
broadcast updates to its observers whenever its internal state changes. By implementing the Observable
interface, the ComponentModel class can freely inherit from any other class; i.e., it can be a subclass of other
class.

To receive input from its views, each ComponentModel must have its own controller (e.g.,
ServerController, QueueController). The model’s controller must extend the AbstractController class; a
class that provides basic services specified in the Controller interface. The Controller interface in turn
contains references to the model and its view. To receive notifications about changing states in the
ComponentModel, all interested views must extend the AbstractView class; a generic implementation of the
View and Observer interfaces. The View interface contains abstract methods to set and retrieve the model
and controller objects observed by this view, while the Observer interface contains an abstract update()
method. It is up to this method to react to the information object sent by a ComponentModel.

5. Example
To demonstrate the ease of use of our DES components, we will develop a queuing network as in Fig. 4.

This sample simulates two types of entities arriving into a system. The first type joints a single queue and
will then be served if one of the two available servers is idle. Upon completion, the entity needs to go to
another queue before leaving the system. The second type chooses the shortest queue between the two
available queues. Some percentage of the entities then exits the system while others need to go to the servers
which process the first type of entity.

Source

Source Decide
(Shortest Queue)

Server

Decide
(Entity Type)

Sink

Queue

Decide
(Probabilities)

Fig. 4: A queuing network system

Based on this structure, teachers need two instances of the Source component, four instances of the
Queue component, five instances of the Resource component, three instances of the Decide components, one
instance of the Sink component and one instance of the Monitor component. A Monitor instance is needed to
coordinate the sequence of entities in a model so that entities can be transferred between components at
appropriate times and in the right orders. All of these component instances need to be dragged and dropped
onto the Flash’s Stage, arranged accordingly and initialized their parameter values including their output
ports; see Fig. 5(a). Fig. 5(b) shows a sample of the model that was constructed in this manner with its own
customized visualizations. All data visualization can be customized and located at any location on the model
stage.

208

(a) Development environment

(b) Runtime environment
Fig. 5: The model environment

6. Conclusions
In this paper, we have proposed two design patterns, the Delegation Event Model and MVC, for

designing and building attractive and interactive DES components. Both patterns are well known, easy to
understand and well documented and fit the needs of DES component design very well. Using these patterns
in the context of building interactive and visual simulation modelling tool has resulted in components that
can be combined to construct attractive simulation models and visualizations that can be easily animated and
permit flexible interactions.

209

In order to obtain feedback from learners about the attractiveness, interactivity and usefulness of
simulation models constructed with our components some experiments have been conducted. Data collected
in this fashion is currently analysed to derive some hypotheses about the effectiveness of visual interactive
simulation in a learning environment. We are also planning to distribute these components to teachers and
seek feedback about their ease of use for model construction.

7. References
[1] J. M. Garrido. Object-Oriented Discrete-event Simulation: A Practical Introduction. New York: Kluwer

Academic/Plenum Publishers, 2001.

[2] P. L’Ecuyer, L. Meliani and J. Vaucher. SSJ: A framework for stochastic simulation in Java. Proc. of the 2002
Winter Simulation Conference. San Diego, 2002: 234-242.

[3] C. Alejandra, P. Mario and V. Antonio. Component-Based Software Quality: Methods and Techniques. Berlin:
Springer, 2003.

[4] C. Atkinson, C. Bunse, H.-G. Gross and C. Peper. Component-Based Software Development for Embedded
Systems: An Overview of Current Research Trends. Berlin: Springer-Verlag, 2005.

[5] C. Moock. Essential ActionScript 2.0. Farnham: O'Reilley, 2004.

[6] B. P. Zeigler. Multifaceted Modeling and Discrete Event Simulation. London: Academic Press, 1984.

[7] R. Conway and W. Maxwell. Modeling asynchronous materials handling systems in XCELL+. Proc. of the 19th
Conference on Winter Simulation. Atlanta, 1987: 202-206.

[8] K. Tumay. Factory simulation with animation: the no programming approach. Proc. of the 1987 Winter
Simulation Conference. Atlanta, 1987: 258-260.

[9] J. A. Miller, Y. Ge, and J. Tao. Component-based simulation environments: JSIM as a case study using Java
Beans. Proc. of the 30th Conference on Winter Simulation Conference. Washington, 1998: 373-382.

[10] A. Buss. Component based simulation modeling with SIMKIT. Proc. of the 2002 Winter Simulation Conference.
San Diego, 2002: 243-249.

[11] G. Chen, and B.K. Szymanski. COST: A component-oriented discrete event simulator. Proc. of the 2002 Winter
Simulation Conference. San Diego, 2002: 776-782.

[12] A. Buss, and C. Blais. Composability and component-based discrete event simulation. Proc. of the 2007 Winter
Simulation Conference. Washington, 2007: 694-702.

[13] N. Melão, and M. Pidd. Using component technology to develop a simulation library for business process
modelling. European Journal of Operational Research. 2007, 172(1): 163-178.

[14] W. D. Kelton, R. P. Sadowski and D. T. Sturrock. Simulation with Arena. New York: Mc-Graw Hill, 2004.

[15] R. Khalid, W. Kreutzer and T. Bell. Combining simulation and animation of queuing scenarios in a Flash-based
discrete event simulator. Proc. of UNISCON'2009. Sydney, 2009: 240-251.

[16] R. Khalid, W. Kreutzer and T. Bell. Flash: Making simulations interactive. Proc. of the SimTecT 2009. Adelaide,
2009: 79-85.

210

