
Asian Journal of Applied Science and Engineering, Volume 3, No 2 (2014)                                ISSN 2305-915X                                                      

Copyright © 2012, Asian Business Consortium | AJASE Page 96 

 

 

Linear Active Control Algorithm to Synchronize 

a Nonlinear HIV/AIDS Dynamical System  

Said Al Hadhrami1, Azizan Bin Saaban2, Adyda Binti Ibrahim3
, 

Mohammad Shahzad4, & Israr Ahmad5 
 
1,4,5College of Applied Sciences Nizwa, Ministry of Higher Education, SULTANATE OF OMAN 
2,3,5School of Quantitative Sciences, College of Arts & Sciences, UUM, MALAYSIA  

 

ABSTRACT 

Chaos synchronization between two chaotic systems happens when the 

trajectory of one of the system asymptotically follows the trajectory of 

another system due to forcing or due to coupling. This research paper 

addresses the synchronization problem of an In-host Model for HIV/AIDS 

dynamics using the Linear Active Control Technique. In this study, using 

the Linear Active Control Algorithm based on the Lyapunov stability 

theory, the synchronization between two identical HIV/AIDS chaotic 

systems and the switching synchronization between two different 

HIV/AIDS and Qi 4-D chaotic systems has been observed. Further, it has 

been shown that the proposed schemes have excellent transient 

performance and analytically as well as graphically found that the 

synchronization is globally exponential stable.  Numerical simulations are 

carried out to demonstrate the efficiency of the proposed approach that 

support the analytical results and illustrated the possible scenarios for 

synchronization. All simulations have been done using Mathematica 9.  
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INTRODUCTION 

oday, mathematical theory of chaos is a fundamental base of natural sciences [1]. It 

proves that the complexity of the behavior of a chaotic system stems from the 

exponentially unstable dynamics rather than from the fluctuations or large degree of 

freedom. Mathematically, a chaotic system is a nonlinear deterministic system that plays 

unpredictable and exceedingly complex behavior [1]. After the pioneering work of 

Edwards Lorenz on Chaos [2], there has been tremendous interest worldwide in the 

possibility of using chaos in secure communication, physical  and other basic sciences [3-

5]. Chaos theory plays a vital role in the study of biological Sciences [6-7] and various 

chaotic dynamical models for human immunodeficiency virus (HIV) have been described 

and extensively studied in the literature in a large extent to understand the HIV dynamics, 

the mechanism and spread of disease, to predict its future conduct and some conclusion 

for better treatment and drug therapies [8-10]. These models provide a quantitative 

T 
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understanding of the level of virus production during the long asymptotic stage of HIV 

infection [9]. HIV infects different body cells, but mainly target the CD4+T lymphocytes, 

which are the most copious white blood cells of the immune system. HIV inflects the most 

damage on the CD4+ T cells by causing their decline and destruction, decreasing the 

resistance of the immune system [10] and this causes a certain deaths.  

Many mathematical models of HIV have been proposed and analyze to study the 

dynamics of HIV/AIDS. The utilization of mathematical models support in understanding 

the features of HIV/AIDS and virus infection dynamics have been substantial in the past 

two decades. The effect of saturation and delays have also been discussed [9, 10].  

The chaos control and synchronization have been an attractive field of research in the last two 

decades [11]. Research efforts have explored the chaos control and synchronization and have 

been one of the critical issues in nonlinear sciences due to its potential applications in different 

fields including chemical, physical, biological and many engineering systems [12, 13]. In this 

line, a wide range of different effective control techniques and strategies have been proposed 

and applied successfully to achieve chaos control and synchronization of chaotic systems [14]. 

Noteworthy among those, chaos synchronization using linear active control techniques has 

recently been accepted and considered as one of the most efficient techniques for 

synchronizing both identical as well as nonidentical chaotic systems because of its 

implementation to practical systems such as, Bose-Einstein Condensate, Nonlinear Gyros, 

Ellipsoidal Satellite and Bonhoffer-van der Pol Oscillators [14] etc. 

Chaos synchronization using active control technique was proposed by Bai and Longren 

using the Lorenz system and thereafter has been utilized to synchronize other chaotic and 

hyperchaotic systems [15]. If the nonlinearity of the system is known, linear active control 

techniques can be easily designed according to the given conditions of the chaotic system 

to achieve chaos control and synchronization globally. There are no derivatives in the 

controller or the Lyapunov exponents are not required for their execution and these 

characteristics gives an edge to the Linear Active Control Techniques on other 

conventional control approaches [16]. HIV/AIDS in its various forms have attracted the 

attention of mathematicians for the last two decades. At this stage, it is now significant to 

synchronize the HIV/AIDS chaotic system [17] for further research purposes in order to 

reduce the causes of mortality due to HIV in the future. 

Motivated by the above, the main goal of this paper is to employ the Linear Active Control 

Technique [14] to study and examine the chaos synchronization problem of HIV/AIDS 

chaotic system [17] and to extend the applications of synchronization in treatment of 

HIV/AIDS related epidemics on theoretical ground.  

Based on the Lyapunov Stability Theory [18] and using the Linear Active Control 

Technique, a class of feedback control strategies will be designed to achieve the 

synchronization globally. The controllers will be designed in a way that the nonlinearity of 

the system should not be neglected, and the error signals converges to the equilibrium 

point (origin) asymptotically global with less control effort and enough synchronization 

speed. Numerical simulations and graphs will be furnished to show the efficiency and the 

performance of the proposed approach.  

The remainder of the paper is organized as follows: In unit 2, the Linear Active Control 

Methodology is given. In unit 3, description of the HIV/AIDS model is given, and chaos 
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synchronization of identical and nonidentical HIV/AIDS chaotic systems will be examined 

using the Linear Active Control Technique. In unit 4, numerical simulations will be 

provided to show the effectiveness of the proposed methods and finally the concluding 

remarks are then given in unit 5 

DESIGN OF A LINEAR ACTIVE CONTROLLER  

A particular chaotic system is called the drive or master system and the second system is 

called response or slave system. Many of the synchronization approaches belong to drive-

response (master-slave) system configurations in which the two chaotic oscillators are 

coupled in such a way that the performance of the second (response/slave) system is 

controlled by the first (drive/master) system and the first system is not affected by the 

exertion of the second system. Consider a master system described by the following 

differential equation: 

   ( )x Px f x                           (2.1) 

and the  slave system is described as: 

   ( ) ( )y Qy g y t                           (2.2) 

 Where x, y ϵ Rn are the state vectors, ( ), ( ) : n nf x g y R R are the nonlinear continuous 

sequential functions and , n nP Q R  are constant system matrices of the corresponding 

master and slave systems respectively and 
1( ) R nt   as a control input injected into the 

slave system. The synchronization error of the systems (2.1) and (2.2) is described as: 

    e y x          

                         ( ) ( ) ( )e Qy g y Px f x t      

                                          ( , , ) ( )e Ae F x y e t          (2.3) 

Where,       i 1,2,...,,i i ie y x n  ,  A Q P   is the common part of the system 

matrices in the master and slave systems and ( , ) ( ) ( )F x y g y f x Qy Px     that 

contains the nonlinear functions and non-common terms and  
1

1 2( ) [ ( ), ( ),...., ( )]T n

nt t t t R       as the Linear Active Control input. 

If    /  )  ( ( ) and orf g P Q   then x and y are the states of the two unified chaotic 

systems and if,    /  )  ( ( ) and orf g P Q   , then x and y are the states of two 

nonidentical chaotic systems. 

An appropriate active feedback controller ' ( )t  ' that satisfies the error system converges 

to the equilibrium point (zero),   i.e,    

 lim lim ( ) ( ) 0i i i
t t

e y t x t
 

    , , ,  nx y e R  . 

Then the two chaotic systems (2.1) and (2.2) are said to be synchronized [14].   

Thus the main issue to synchronize two identical/nonidentical chaotic systems is to design 

an appropriate linear active feedback controller that is injected into the slave system to 

follow the master system asymptotically in course of time. The active controller should be 

designed in a way that it vanishes the nonlinear terms and non-common parts and to 



Asian Journal of Applied Science and Engineering, Volume 3, No 2 (2014)                                ISSN 2305-915X                                                      

Copyright © 2012, Asian Business Consortium | AJASE Page 99 

 

 

sustain other linear part to attain asymptotically global stability [14].To achieve 

asymptotically global synchronization using Active Control Technique, let us assumes the 

following theorem.    

Theorem 1. The trajectories of the two (identical or nonidentical) chaotic systems (2.1) and 

(2.2) for all initial conditions,  1 2 1 2(0), (0),...., (0) (0), (0),...., (0)m m nm s s nsx x x y y y  

will be asymptotically global synchronized with a suitable active controller ' ( )t  ' as:      

1

1 2( ) [ ( ), ( ),...., ( )]T n

nt t t t R      . 

Proof:  let us assume that the states of both systems (2.1) and (2.1) are measurable and 

parameters of the master and slave systems are known.  A proper refinement of the Linear 

Active Controller locates the unstable eigenvalue(s) to a stable position. The control signal 
1( ) R nt   is constructed in two parts. The first part eradicates the nonlinear terms from 

(2.3) and the second part ( )v t  acts as an external impute to stabilize the error dynamics 

(2.3),  i.e, ( ) ( , ) ( )t G x y v t         

Where ( ) (y )i iv t Be B x      is a linear feedback controller and 
n nB R  as the 

feedback control matrix [14] that determines the strength of the feedback into the slave 

system. Thus the error dynamics (2.3) becomes: 

  ( ) ( )e Ae v t Ae Be e A B Ce                           (2.4) 

                      Where,  C A B  .  

From equation (2.4), if the error system (2.4) is a linear system of the form, e Ce and if 

the system matrix C is Hurwitz [18], i.e., the real parts of all eigenvalues of the system 

symmetric matrix C are negative, then by the Linear Control Theory [19] the error 

dynamics will be asymptotically stable. 

To achieve globally exponential stability of the errors system (2.4), let us if we select a 

Lyapunov errors function candidate as: 

( ) TV t e Me  

Where, 1 2( , ,... ) R n n

nM dig m m m   is a positive definite matrix and : n nV R R  is a 

positive definite function by construction [3]. 

If an active feedback controller 1

1 2( ) [ ( ), ( ),...., ( )]T n

nt t t t R       is designed such 

that: 

( ) TV e e Ne  , 

Then, : n nV R R is a negative definite function [16] with N as a positive definite 

matrix, then the two systems (2.1) and (2.2) are globally exponential synchronized by the 

Lyapunov Stability Theory [18].. 
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DESCRIPTION OF AN HIV/AIDS CHAOTIC SYSTEM  

HIV is a lentivirus that causes acquired immunodeficiency syndrome (AIDS). AIDS is an 

advanced phase of HIV infection. Recently, P. Das, et.al. [17] presented and studied an In-

host chaotic model for HIV/AIDS dynamics with saturation effect and discrete time delays. 

In [17], the switching phenomena for the stable equilibria is observed when a discrete time 

delays is incorporated. Further, it has been analyzed the stability analysis with and 

without time delays and discussed the effect of various parameters that may control the 

disease transmission.  

   

. The differential equations for the HIV/AIDS model [17] is given as: 

   

1 1

2 2

( )

x az bx

c
y dy xy

x

z q xy s z w t

w q xy s w w




  

 

  

   

 
   


   









                    (3.1.1) 

Where , , , n nx y z w R   are the state variables which represent the number of virions 

(virus particles), number of uninfected targets cells, number of productive infected cells 

and number of latent infected cells respectively at any time in an host cells [17]. 

1 2 1 2, , , , , , , , ,      a b c s and q d sq   as the system parameters. The virus is reproduced by 

the infected cells at a rate of ‘ a ’ that is assumed to be proportional to number of latent 

infected cells ‘ z ’. The uninfected cells are produced by the host cells at a particular rate of 

c

x 
 which depends on the number of virions in the host cells. It is assumed that not all 

newborn cells are uninfected. These uninfected cells die at a rate of ‘ d ’ and become 

infected by the virus at a specific rate ‘ x ’ ( x  is the functional response of the viruses 

in the uninfected cells) entering ‘ z ’ class and ' 'w  class respectively in proportion. A 

proportion ‘ 1q ’ of the infected cells become productively infected while the remaining 

proportion, ‘ 2q ’ become latently infected where, 2 1(1 )q q  . Productive infected cells 

and latent infected cells die at particular rates ‘ 1 1s r d  ’ and 2 2s r d   respectively, 

where ‘ d ’ is a natural deaths rate, 1r  and 2r  are the additional death rates due to 

infection. Only the‘ z ’ cells produce virions, and ' 'w  cells move to the ‘ z ’ class at a per 

capita rate  . Moreover, τ (0 < τ < ∞) is the delay due to the formation of productive 

infected class from the latent infected class. The parameter c is a constant and ‘ ’ is the 

half saturation constant. 
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IDENTICAL SYNCHRONIZATION OF AN HIV/AIDS CHAOTIC SYSTEM 

To study and analyzed the identical synchronization problem for the HIV/AIDS chaotic 

system [17] using linear active control technique, the master-slave system configuration is 

described as: 

  

1 1 1

1 1 1 1

1

1 1 1 1 1 1 1

1 2 1 1 2 1 1

( )

x az bx

c
y dy x y

x

z q x y s z w t

w q x y s w w




  

 

  

   

 
   


   









 (Master system)  

     (3.2.1) 

and 

  

2 2 2 1

2 2 2 2 2

2

2 1 2 2 1 2 2 3

2 2 2 2 2 2 2 4

( )

x az bx

c
y dy x y

x

z q x y s z w t

w q x y s w w



 


   

  

   

    

 
    


    









 (Slave system)       

   (3.2.2) 

Where  1 1 1 1, , , n nx y z w R   and 2 2 2 2, , , n nx y z w R   are the corresponding state vectors 

of master and slave systems respectively, 21 2 1, , , , , ,  ,  , ,a b c d q an sq s d   are the 

parameters of the master and slave systems and 1

1 2 3 4( ) [ ( ), ( ), ( ), ( )]T nt t t t t R        is 

the Linear Active Controller that is yet to be designed. The HIV/AIDS system describes 

chaotic behavior with the parameters:  

1 22 15, 1, 10, 1, 1, 200, 2,     0.10.3, 0.7, 18, 1a b c d and sq q s              . 

From system of equations (3.2.1) and (3.2.2), the errors dynamics can be described as: 

  

1

2 2 2 2 1 1 2

2 1

3 1 3 1 1 1

1 1

1 2 2 1 1 4 3

4 2 4 2

3

2 2 1 1 4

( )

( ) ( )

( ) ( )

c c
e de x y x y

x x

e s e bz s z q x y

e be a

x y t e

e s e q y

e

x x y



 
 

   

  



      
 

        

    

   



















 

     (3.2.3) 

The main goal of this section is to synchronize two identical chaotic systems (3.2.1) and 

(3.2.2) using linear active control technique by defining a feedback controller that the slave 

system force to track the master system and the states of two chaotic systems (3.2.1) and 

(3.2.2) show similar deportment for all future states. To achieve this goal, let us assume the 

following theorem. 



Asian Journal of Applied Science and Engineering, Volume 3, No 2 (2014)                                ISSN 2305-915X                                                      

Copyright © 2012, Asian Business Consortium | AJASE Page 102 

 

 

Theorem 2. The trajectories of the two chaotic systems (3.2.1) and (3.2.2) will achieve 

synchronization asymptotically global for initial conditions,             

( (0), (0), (0), (0)) ( (0), (0), (0), (0))m m m m s s s sx y z w x y z w  with the following control law: 

  

1 1

2 2 2 1 1 2

1 2

3 1 1 1 1 2 2 1 1 4 3

4 2 1 1 2

3

2 4

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

t t

c c
t x y x y t

x x

t bz s z q x y x y t e t

t q x y

e

x

a

y t

 

  
 

    

  

   

     

  
      


   

 

    (3.2.4)  

Proof:   Let us assume that the parameters of the master and slave systems are known and 

states of both systems (3.2.1) and (3.2.2) are measurable.  Substituting equation (3.2.3) in 

equation (3.2.4), we get: 

           

1 1 1

2 2 2

3 1 3 3

4 2 4 4

( )

( )

( )

( ) ( )

e be v t

e de v t

e s e v t

e s e v t

  

  

  

   









                    

    (3.2.5) 

Where,  

1 111 12 13 14

2 221 22 23 24

31 32 33 343 3

41 42 43 444 4

v eb b b b

v eb b b b

b b b bv e

b b b bv e

    
    
     
    
       

    

    

     (3.2.6) 

The error system (3.2.5) to be controlled is a linear system with control input 

1 2 43  , ,     andv v vv as function of 1 2 43  , ,     ande e ee respectively where the constants 'ij sb  

are the feedback gains. As long as these feedbacks stabilize the error system then 

1 2 43  , ,     ande e ee converge to zero as time ’t ' goes to infinity [14]. This implies that the 

two identical chaotic systems (3.2.1) and (3.2.2) are synchronized asymptotically. 

 

Replacing equation (3.2.6) in (3.2.5), we have: 

 

 

1 1 111 12 13 14

2 2 221 22 23 24

31 32 33 3413 3 3

41 42 43 4424 4 4

0 0 0

0 0 0

0 0 0

0 0 0 ( )

e e eb b b bb

e e eb b b bd

b b b bse e e

b b b bse e e

       
       

        
       
                     








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i.e.,  

1 111 12 13 14

2 221 22 23 24

31 32 1 33 343 3

41 42 43 2 444 4
( )

e eb b b b b

e eb d b b b

b b s b be e

b b b s be e

        
    

        
        
                









    

     (3.2.7) 

Thus the aim of this paper is to choose a suitable coupling matrix B be in way that the 

closed loop system (3.2.7) must have all the eigenvalues with negative real parts so that 

the errors dynamics converge to zero as time t tends to infinity. For the particular choice of 

feedback gains: 

           

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0.1

b b b b

b b b b
B

b b b b

b b b b

   
   
    
   
   

  

 

 

With this particular choice of the feedback gain matrix and considering, 

1 21, 1, 1, 2, 1     .  0 1b d s and s       , the errors system (3.2.7) becomes: 

   

1 1

2 2

3 3

4 4

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

e e

e e

e e

e e

    
    

    
    
           









   

     (3.2.8) 

From equation (3.2.8), It can be seen that the error system (3.2.8) is a linear system of the 

form, e Ce . Thus the system matrix 

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

C

 
 

 
 
 

 

 is Hurwitz [19] and 

all the eigenvalues of the system matrix C are negative (-2, -2, -2,-2). Hence the above 

system (3.2.8) is asymptotically stable. To achieve globally exponential stability, let us 

assume a quadratic Lyapunov errors function of the form: 

                     ( ) TV t e Me      

     (3.2.9) 

where  

0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.5

M

 
 
 
 
 
 

 which is a positive definite function.  

It is clear that the Lyapunov errors function, ( ) 0V t  . 
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Now the time derivative of the Lyapunov function along the trajectory of the error system 

(3.2.3) is given as: 

   ( ) T TV t e Me e Me     

  

 
2 2 2 2

1 2 3 411 22 1 33 2 44( ) ( ) ( ) ( ) ( )V t b b e d b e s b e s b e           

   

2 0 0 0

0 2 0 0
( ) 0

0 0 2 0

0 0 0 2

TV t e e

 
 
   
 
 
 

  

Therefore,  ( ) TV t e Ne  and 

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

N

 
 
 
 
 
 

 which is also a positive definite 

matrix. 

Hence based on the Lyapunov stability theory [18], the errors dynamics converge to the 

origin asymptotically global which implies that the two identical chaotic systems (3.2.1) 

and (3.2.2) are globally exponential synchronized. 

NONIDENTICAL SYNCHRONIZATION OF AN HIV/AIDS CHAOTIC SYSTEM  

In this section, two different chaotic systems are described. Both systems are 4-D chaotic 

systems. To achieve switching synchronization between two different chaotic systems, let 

us assume that the HIV/AIDS chaotic system drives the Qi 4-D chaotic system [20]. Thus 

the master-slave system arrangement is described as: 

  

1 1 1

1 1 1 1

1

1 1 1 1 1 1 1

1 2 1 1 2 1 1

( )

x az bx

c
y dy x y

x

z q x y s z w t

w q x y s w w




  

 

  

   

 
   


   









 (Master system)  

     (3.3.1) 

and 

  

2 1 2 2 2 2 2 1

2 2 2 2 2 2 2 2

2 3 2 2 2 2 3

2 4 2 2 2 2 4

( )

( )

x a y x y z w

y a x y x z w

z a z x y w

w a w x y z









    


    


    
    









 (Slave system)       

     (3.3.2) 
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Where  1 1 1 1, , , n nx y z w R   and 2 2 2 2, , , n nx y z w R   are the corresponding state vectors 

of master and slave systems respectively.  21 2 1, , , , , ,  ,  , ,a b c d q an sq s d   are the 

parameters of the master system where 1 2 3 4 , ,  aa nda aa are the parameters of the slave 

systems respectively and 
1

1 2 3 4( ) [ ( ), ( ), ( ), ( )]T nt t t t t R        are the Linear Active 

Controller.  

From systems of equations (3.2.1) and (3.2.2), the error dynamics can be described as: 

 

1 2 1 2 2 2 1

2 2 2 2 2 2 2 2 2 1 1 2

1

3 3 2 2 2 1 1 1 1 3

4 4 4 4 1 2 1 1 2 2 2

1

1 4

1

2 1

1 1( )

( )

( )

a y az y z w

c
e de d a y a x x z w x y

x

e e x y w t w q

e a e b

x y

e a e a w s w w x x y

a x

y z q



 


   

  

   

        


      

  

 

    

  















    (3.3.3) 

To achieve synchronization asymptotically globally using Linear Active Control 

Algorithm, re-defining the controller, 
1

1 2 3 4( ) [ ( ), ( ), ( ), ( )]T nt t t t t R        as: 

 

1 1 2 1 2 2 2 1

2 2 2 2 2 2 2 2 1 1 2

1

3 2 2 2 1 1 1 1 3

4 4 1 2 1 1 2 2 2 4

1

2 1 1

( ) ( )

( ) ( ) ( )

(

(

)

)

( ) ( )

( ) ( )

t a y az y z w v t

c
t d a y a x x z w x y v t

x

t x y w t w q x y v t

t a w s w w x y z q x y

b x

v t

a

 


   

  

    

        

 
     

 


      

    (3.3.4) 

Substituting equation (3.2.4) in equation (3.2.3), we get: 

    

1

2 2 2

3 3 3

1

4 4

1

4 4

( )

( )

( )

( )

v t

e de v t

e e v t

e a e

e

t

ae

v



  



 

 























                             (3.3.5) 

Where       1,2,3,4( ) (y ),i i i i iv t Be B x        

     (3.3.6) 

Replacing system of equations (3.2.5) in equation (3.2.6), we have: 

  

1 111 12 13 14

2 221 22 23 24

31 32 33 343 3

41 42 43 4 444 4

1

e ea b b b b

e eb d b b b

b b b be e

b b b a be e

        
    

        
        
               









 

     (3.3.7) 
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For the following particular choice of feedback gain matrix B,    

  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

27 0 0 0

0 2 0 0

0 0 2 0

0 0 0 7

b b b b

b b b b
B

b b b b

b b b b

   
   

    
   
   

  

  

and considering,  1 21, 1, 1, 2,  1   0.1ab d nd ss      ,  the error system (3.3.7) 

becomes: 

 

       

1 1

2 2

3 3

4 4

3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

e e

e e

e e

e e

    
    

    
    
           









                    (3.3.8) 

 

It is now clear that the error system (3.3.8) is a linear system of the form, e Ce  with the 

system matrix, 

3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

C

 
 

 
 
 

 

 is Hurwitz [19] and all the eigenvalues of the 

system matrix C are negative 

 (-3, -3, -3,-3).  Hence the above error system (3.3.8) is asymptotically stable. 

Let us construct the same Lyapunov errors function candidate with the same positive 

definite matrix as in (3.2.9). The time derivative of the Lyapunov errors function is given 

as: 
2 2 2 2

1 2 3 411 22 33 4 44( ) ( ) ( ) (1 ) ( )V t a b e d b e b e a b e          

   

3 0 0 0

0 3 0 0
( ) 0

0 0 3 0

0 0 0 3

TV t e e

 
 
   
 
 
 

  

Therefore,                                               ( ) TV t e Ne  . 

Hence based on Lyapunov stability theory [18], the errors dynamics approaches to the 

origin asymptotically globally which implies that the two nonidentical chaotic systems 

(3.3.1) and (3.3.2) are globally exponential synchronized. 
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Fig 1: Time Seriesof x1 & x2 For Identical HIV systems
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Fig 2: Time Seriesof y1 & y2 For identical HIV systems
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Fig 3: Time Seriesof z1 & z2 For identical HIV systems



Asian Journal of Applied Science and Engineering, Volume 3, No 2 (2014)                                ISSN 2305-915X                                                      

Copyright © 2012, Asian Business Consortium | AJASE Page 108 

 

 

 

 

 

w1

w2

w2 without control

0 1 2 3 4 5

0

2

4

6

8

10

12

Fig 4: Time Seriesof w1 & w2 For identical HIV systems
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Fig 5: Time Seriesof errors For identical HIV systems
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Fig 6: Time Seriesof x1 & x2 HIV and Qi systems
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Fig 7: Time Seriesof y1 & y2 HIV and Qi systems
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Fig 8: Time Seriesof z1 & z2 HIV and Qi systems
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Fig 9: Time Seriesof w1 & w2 HIV and Qi systems
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Fig 12: Convergence of errors



Asian Journal of Applied Science and Engineering, Volume 3, No 2 (2014)                                ISSN 2305-915X                                                      

Copyright © 2012, Asian Business Consortium | AJASE Page 111 

 

 

NUMERICAL SIMULATIONS 

Numerical simulations are furnished to validate not only the advantages and potency of 

the proposed method as well as to overcome the chaotic nature of the HIV model. The 

parameters for the new chaotic system [17] are taken as: 

1 22 15, 1, 10, 1, 1, 200, 2, 0.3, 0.    7, 1 0.1aa b c d q nq d ss            , 

with initial conditions are taken as: (10,7,9,8)  & (2,7,6,2) .  

The parameters for Qi 4-D chaotic system [20] are selected as: 

1 2 3 430, 1  0, 1  10a a anda a    , and initial values are taken as:  (1.1, 2.2,0.3,5.8)  &  

(5.8,1.15, 2.3,0.4) .  

For the above chosen values, we have plotted the time series of state variables for identical 

HIV systems (Figures 1- 6) and for non-identical HIV and Lu systems (Figures 7-10) and it 

is clear that the states grow chaotically in the absence of an acceptable controller.  

The figure 5 illustrates the synchronization errors of two identical HIV/AIDS chaotic 

systems and figures 10 shows the synchronization errors of the two nonidentical 

(HIV/AIDS) and Qi 4-D chaotic systems respectively.  For the two different chaotic 

systems (HIV/AIDS and Qi), that contain parameters mismatches and different structures, 

the controllers ware utilized to synchronize the states of master and slave systems 

asymptotically globally when the controls were switched on at t = 0 s. It has been shown 

that the HIV/AIDS chaotic system is forced to track the Qi 4-D chaotic system and the 

states of two chaotic systems show common conduct after a transient time of 2.8 s while 

for identical HIV/AIDS systems, the two systems show similar behavior after 3.5 s which 

illustrates that the errors signal (figure 10) for two different HIV/AIDS and Qi chaotic 

systems have fast response as compared to identical HIV/AIDS chaotic systems. It has 

been shown that the error signals converges to the origin very smoothly with a minimum 

rate of decay and enough synchronization speed showing that the investigated controllers 

are more robust to accidental mismatch in the transmitter and receiver.   

The figure-11 depicts the derivative of Lyapunov errors functions of identical chaotic 

systems (HIV/AIDS) and nonidentical HIV/AIDS and Qi 4-D chaotic systems. 

Moreover, the figure-12 illustrates the analysis of the synchronization between master and 

slave systems which has been also confirmed by the convergence of the synchronization 

quality defined by the breeding of the error signals: 

       
2 2 2 2

1 2 3 4e e e e e     

SUMMARY AND CONCLUSION 

In this research article, global chaos synchronization of identical and nonidentical of an In-

host model for HIV/AIDS chaotic system has been investigated. Based on Lyapunov 

Stability Theory and using the Linear Active Controller, a class of proper feedback 

controllers was designed to achieve exponentially global stability of the error signals. 

Since the Lyapunov exponents are not required for their execution, Linear Active Control 

Technique is a powerful algorithm for synchronizing two identical as well as nonidentical 

chaotic systems. Results are furnished in graphical forms with time history (Figures 1- 12). 
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In this study, using the Linear Active Control Technique, all graphical as well as analytical 

results shown that the proposed strategies have excellent synchronizing performance and 

that the synchronization is globally exponential stable.  

In addition, the synchronization with negative derivative of the Lyapunov errors functions 

allows large synchronizable interval which shows that the non-progression of the 

HIV/AIDS virions could be maintained to a specific value for a long-term and would be 

especially significant for HIV infection treatment and thus biologically it would be more 

effective to react for treatments such as highly active antiretroviral therapy (HAART), etc. 

that provide a useful option for HIV/AIDS infection treatment. 

This research can be significant for supplementary research in HIV/AIDS for the long-term 

immunological control of HIV/AIDS and crafting of such therapy that changes a 

progression patient in a long-term non-progression by slowing down the reproduction of 

HIV in the body and can prevent people from becoming ill for many years. 

Since the synchronization of two identical as well as nonidentical chaotic systems presumes 

potential applications in the field of nonlinear dynamics, the result of this research work 

should be helpful and could be employed in the field of epidemiology and may be considered 

a good tools in analyzing the spread and control of infectious diseases in the field of HIV/AIDS.  

In numerical simulations, the evolution of the synchronization can be modified by 

choosing different control gain.  We have noticed that by using active control techniques, 

if the convergence time is reduced, the magnitude of the control signals is increased. This 

may lead to a large controller gain and a signal saturation which creates self-excitation and 

noise in the system and the synchronization might be disregarded completely. 

This research work is totally based on theoretical ground, but in practice, it may also be 

disturbed by some additive noise. Further research can be done to overcome on these 

limitations by designing proper gain for the system in studies that can robustly against the 

internal or environmental noise. 
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