
RELATIONSHIP BASED REPLICATION ALGORITHM FOR DATA

GRID

YUHANIS YUSOF

SCHOOL OF COMPUTING

UNIVERSITI UTARA MALAYSIA

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42980015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

DISCLAIMER

We are responsible for the accuracy of all opinions, technical comment, factual report, data,

figure, illustration in this report. We bear full responsibility for the checking whether

material submitted is subjected to copyright or ownership right. UUM does not accept any

liability for the accuracy of such comment, report and other technical and factual

information and the copyright or ownership right claims.

RESEARCHER

YUHANIS YUSOF

 ii

ACKNOWLEDGEMENT

The author wish to express her gratitude to Universiti Utara Malaysia for the financial

support under the ‘Penyelidikan Individu Berimpak Tinggi’ research grant and for

facilitating the management of the research.

 iii

Abstract

Data Grid is an infrastructure that manages huge amount of data files and provides

intensive computational resources across geographically distributed systems. To

increase resource availability and to ease resource sharing in such environment, there

is a need for replication services. This research proposes a replication algorithm,

termed as Relationship based Replication (RBR) that integrates users, grid and

system perspective. In particular, the RBR includes information of three different

relationships in identifying file(s) that requires replication; file-to-user, file-to-file

and file-to-grid. Such an approach overcomes existing algorithms that is based either

on users request or resource capabilities as an individual. The Relationship based

Replication algorithm aims to improve the Data Grid performance by reducing the

job execution time, bandwidth and storage usage. The RBR was realized using a

network simulation (OptorSim) and experiment results revealed that it offers better

performance than existing replication algorithms.

Keywords: grid computing, data replication, data grid, replica creation, replica

quantity.

 iv

Table of Contents

ACKNOWLEDGEMENT ... ii

Abstract ... iii

Table of Contents .. iv

List of Figures .. vii

List of Tables .. viii

List of Abbreviations .. ix

CHAPTER ONE INTRODUCTION .. 1

 Introduction ... 1 1.1

 Research Motivation .. 4 1.2

 Objectives of the Research ... 6 1.3

 Significance of the Research .. 7 1.4

 Scope of the Research .. 7 1.5

 Report Layout .. 8 1.6

CHAPTER TWO RELATED WORKS .. 9

 Data Grid ... 9 2.1

 The Challenges in Scientific Grid ... 10 2.2

2.2.1 High Energy Physics .. 10

2.2.2 Climate Modeling ... 12

2.2.3 Bioinformatics .. 12

2.2.4 Astronomy ... 12

 Data Grid Layered Architecture ... 13 2.3

 Existing Grid System ... 15 2.4

2.4.1 Storage Resource Broker .. 15

2.4.2 Grid Data Farm .. 16

2.4.3 Globus Toolkit ... 16

 Replication in Data Grids ... 18 2.5

2.5.1 Resource Identification ... 19

2.5.2 Number of Replicas .. 27

2.5.3 Replica Placement .. 30

 Summary of Chapter .. 37 2.6

 v

CHAPTER THREE RESEARCH METHODOLOGY 39

 Formulate Resource Selection Function ... 40 3.1

 Formulate Replica Quantity Function ... 41 3.2

 Develop Relation-based Replication (RBR) algorithm...................................... 41 3.3

 Develop Simulation Model... 41 3.4

 Evaluate the Proposed Relation-based Replication Algorithm (RBR) 44 3.5

3.5.1 Performance Metrics .. 44

3.5.1.1 Mean Job Execution Time .. 44

3.5.1.2 Efficient Network Usage (ENU) ... 45

3.5.1.3 Storage Element Usage ... 45

3.5.1.4 Computing Element Usage (CE Usage) 46

3.5.2 Parameter Settings .. 46

3.5.2.1 Number of submitted jobs (Workload Test) 47

3.5.2.2 Access History Length ... 47

3.5.2.3 Storage Metric (D) ... 47

3.5.2.4 Job Delay ... 48

 Summary of Chapter .. 48 3.6

CHAPTER FOUR RELATIONSHIP BASED REPLICATION ALGORITHM

 .. 49

 Resource Selection ... 49 4.1

4.1.1 File-To-User Relationship (F2U) .. 50

4.1.2 File-to-File Relationship (F2F) ... 54

4.1.3 File-To-Grid Relationship (F2G) .. 55

 Replica Quantity .. 56 4.2

 RBR Algorithm .. 60 4.3

 RBR Implementation ... 61 4.4

4.4.1 Integration of RBR into OptorSim .. 62

 Summary of Chapter .. 65 4.5

CHAPTER FIVE RESULTS AND DISCUSSIONS ... 67

 Number of Jobs .. 67 5.1

 Length of Access History ... 72 5.2

 vi

 Storage Size ... 78 5.3

 Summary of Chapter .. 83 5.4

CHAPTER SIX CONCLUSION ... 84

 Contribution of the Research .. 85 6.1

 Future Work ... 86 6.2

REFERENCES .. 88

 vii

LIST OF FIGURES

Figure 1.1 A High-Level View of Data Grid (Srikummar Venugopal, 1996) 4

Figure 2.1 Overview of Data Grid Architecture .. 14

Figure 2.2: Globus Data Grid Architecture ... 17

Figure 3.1: Research Steps ... 39

Figure 3.2: The Proposed RBR Component in OptorSim Architecture 43

Figure 3.3: The EU Data Grid Testbed Sites and Their Associated Network Geometry 44

Figure 4.1: File Request in Time Interval .. 52

Figure 4.2: Calculation for FileLifetime .. 53

Figure 4.3: Dependencies between Files .. 55

Figure 4.4: The Relationship-based Replication Algorithm .. 61

Figure 4.5: UML Package Diagram of OptorSim .. 62

Figure 4.6: UML Class Diagram of OptorSim .. 64

Figure 4.7: RBR in OptorSim .. 65

Figure 5.1: Workload Test Results of (a) MJET, (b) ENU, (c) ASU and (d) CEU 72

Figure 5.2: Access History Test Result for (a) MJET, (b) ENU, (c) ASU and (d) CEU 77

Figure 5.3: Storage Size Test Result on (a) MJET, (b) ENU, (c) ASU and (d) CEU 82

 viii

LIST OF TABLES

Table 2.1: Summary of Work in Replica Quantity .. 29

Table 2.2: Summary of Work in Replica Placement.. 36

Table 4.1: Examples of Files and its Related Information ... 58

Table 4.2: Examples of ENoR ... 59

Table 5.1: Parameter Settings for Workload Test .. 67

Table 5.2: Simulation Results for Workload Test .. 68

Table 5.3: Efficiency Result for Workload Test .. 69

Table 5.4 Parameter Settings for Access History Test ... 73

Table 5.5: Simulation Results for Access History Test ... 74

Table 5.6: Efficiency Result for Access History Test .. 75

Table 5.7: Parameter Settings for Storage Size Test .. 78

Table 5.8: Simulation results for Storage Size Test ... 79

Table 5.9: Efficiency Result for Storage Size Test .. 79

 ix

List of Abbreviations

AC Access Cost

ASU Average Storage Usage

CE Computing Element

CE Usage Computing Element Usage

CDN Content Delivery Network

ENU Efficient Network Usage

EU DataGrid European data grid

FL File Lifetime

FV File Value

FW File Weight

ISP Information Service Provider

LALW Last Access Largest Weight

LFU Least Frequently Used

LRU Least Recently Used

MJET Mean Job Execution Time

MONARC
Model Of Networked Analysis At

Regional Centers

NoA Number Of Access

PBRP Popularity Based Replica Placement

QAC Queue Access Cost

QL Queue Length

RBR

RC

Relationship based Replication

Read Cost

RLS Replica Location Services

 x

RB Resource Broker

SBU Simple Bottom-Up

SC Storage Cost

SE Storage Element

SE Usage Storage Element Usage

TCP/IP
Transmission Control Protocol / Internet

Protocol

TH Threshold Value

 1

CHAPTER ONE

INTRODUCTION

 Introduction 1.1

With rapid advances in scientific instrumentation and simulation, scientific data are

growing fast in both data size and data analysis complexity. The next generation of

scientific applications in domains as diverse as high energy physics, climate

modeling, and earth sciences involve the production of large datasets from

simulations or large-scale experiments. Analysis of these datasets and their

dissemination among researchers located over a wide geographic area requires high

capacity resources such as supercomputers, high bandwidth networks, and mass

storage systems.

The grid computing (Foster & Kesselman, 1999; G.A.Gravvanis, 2009) paradigm

unites geographically-distributed and heterogeneous computing, storage, and

network resources and provide unified, secure, and pervasive access to their

combined capabilities. Therefore, grid platforms enable sharing, exchange,

discovery, selection, and aggregation of distributed heterogeneous resources such as

computers, databases, visualization devices, and scientific instruments (Venugopal,

Buyya, & Winton, 2006). Hence leading to the creation of virtual organizations

(Foster, 2002a; Foster, Kesselman, & Tuecke, 2001; Wasson & Humphrey, 2003) by

allowing geographically-distributed communities to pool resources in order to

achieve common objectives. These resources can be divided into computing or

storage units that can be accessed or shared by large numbers of remote users.

Computing unit or Computational Grid (Frederic Magoulès, 2010) focuses on

 2

supplying computing power, while storage unit or data grid focuses on enabling and

facilitating reliable access and sharing of data management resources in widely

distributed locations.

A data grid (Chervenak et al., 2003; Foster, Alpert, et al., 2002) is an infrastructure

that deals with huge amounts of data to enable grid applications to share data files in

a coordinated manner. Such an approach is seen to provide fast, reliable and

transparent data access. Nevertheless, data grid creates a challenging problem in a

grid environment because the volume of data to be shared is large despite the limited

storage space and network bandwidth (Nicholson, Cameron, Doyle, Millar, &

Stockinger, 2008; Wilkinson, 2009). Furthermore, resources involved are

heterogeneous as they belong to different administrative domains in a distributed

environment. It is unfeasible for all users to access a single instance of data (e.g. a

data file) from one single organization (e.g. site). This would lead to the increase of

data access latency. Furthermore, one single organization may not be able to handle

such a huge volume of data by itself.

Motivated by these considerations, a common strategy is used in data grids as well as

in distributed systems, and this strategy is known as replication. Replication vouches

efficient access without large bandwidth consumption and access latency (A.

Chervenak, I. Foster, C. Kesselman, C. Salisbury, & Tuecke., 2001; Chervenak et

al., 2002; Guy, Kunszt, Laure, Stockinger, & Stockinger, 2002; Lamehamedi,

Shentu, Szymanski, & Deelman, 2003; Lamehamedi, Szymanski, Shentu, &

Deelman, 2002; Otoo, Olken, & Shoshani, 2002; Ranganathan & Foster, 2001b).

The replication technique is one of the major factors affecting the performance of

 3

data grids (You, Chang, Chen, Tian, & Zhu, 2006). Creating replicas can reroute

client requests to certain replica sites and offer higher access speeds. Hence, well-

defined replication strategies will smooth data access, and reduce job execution cost

(Tang, Lee, Tang, & Yeo, 2006). Such a strategy should also be able to deal with

dynamic changes in the grid environment, such as dynamic resource availability and

access patterns.

Figure 1.1 shows a high-level view example of a worldwide data grid, consisting of

computational and storage resources in different countries that are connected by high

speed networks. The thick lines show high bandwidth networks linking the major

centers and the thinner lines are lower capacity networks that connect the latter to

their subsidiary centers. The data which were generated from an instrument,

experiment, or a network of sensors is stored in its principal storage site and is

transferred to the other storage sites around the world on request through the data

replication mechanism. Users query their local replica catalog to locate datasets that

they require. The data may be transmitted to a computational site such as a cluster or

a supercomputer facility for processing. After processing, the results may be sent to a

visualization facility, a shared repository, or to the desktops of the individual users.

 4

.

 Research Motivation 1.2

Replication can be motivated by two issues, availability of data (fault tolerance) and

system performance (Abdelsalam A. Helal, Abdelsalam A. Heddaya, & Bharat B.

Bhargava, 1996; Caitriana M. Nicholson, 2006). In a data grid, the high level of

reliability (Caitriana M. Nicholson, 2006; Xie, Dai, & Poh, 2004) of the main data

storage sites makes fault tolerance less of an issue, while the large file sizes increase

the file access times of grid jobs. Therefore, performance becomes the main

motivation for replication in data grids.

In the context of the data grid, increasing the performance of the system can be

achieved by improving the overall resource usage, which includes network and

Figure 1.1 A High-Level View of Data Grid (Srikummar Venugopal, 1996)

 5

storage resources (Lamehamedi & Szymanski, 2007). Improving network resource

usage is achieved by good utilization of network bandwidth that is considered as an

important factor affecting job execution time (Yang, Huang, & Hsiao, 2008).

Meanwhile, improving storage resource usage is achieved by good utilization of

storage space usage (Al Mistarihi & Yong, 2008).

Performing data replication introduces additional problems: the decision of

replication must be wisely made (identifying the appropriate data file to be

replicated), replicas must be properly located, their numbers must be properly

determined, their lifetime must be managed properly, and the related storage and

resources must be utilized efficiently. To sum up, data replication process has to take

into account both users’ and system’s perspectives. Even though these problems can

be solved by existing replication algorithms (Chang, 2006; Mansouri, Garmehi,

Sargolzaei, & Shadi, 2008; Pangfeng & Jan-Jan, 2006; Ranganathan & Foster,

2001a; Ranganathan, Iamnitchi, & Foster, 2002; Rasool, Jianzhong, Oreku, Shuo, &

Donghua, 2008; Ruay-Shiung, Hui-Ping, & Yun-Ting, 2008; Shorfuzzaman,

Graham, & Eskicioglu, 2008; Tang, Lee, Tang, & Yeo, 2005; Tang et al., 2006;

Tang, Lee, Yeo, & Tang, 2005; Wang, Yang, & Chiang, 2007; Yang, Fu, & Huang,

2007; Yi-Fang, Pangfeng, & Jan-Jan, 2006), existing work require enhancements due

to the absence of system’s perspective in terms of replication decision making.

The replication is performed (deciding the file to be replicated and the required

number of replicas) based on users’ perspective, i.e. according to number of access

of a file. Therefore, the number of times a system makes replication has a possibility

 6

to be increased. As a result, the network usage would be affected, this is because

each replication consumes network bandwidth and increases network traffic.

Moreover, the replication decision of current works does not involve the deletion

process of unwanted replicas in their decision. Thus the storage cost will be

increased. In this context, storage cost is the space used to store data. Therefore,

increasing the storage cost would lead to less storage availability. According to

(David G. Cameron, 2005) less storage availability would lead to longer job

execution time and larger network usage because only fewer replicas can be

accommodated in the data grid, and most files will be read remotely.

 Objectives of the Research 1.3

The main goal of this research is to develop a replication algorithm aimed at

improving the performance of the data grid system. In order to achieve this goal, the

following research objectives were formulated:

a. To formulate a resource selection function to identify which data file

requires replication.

b. To formulate a replica quantity function that determines the required

number of replicas for the identified data file.

c. To design a replication algorithm that integrates the proposed resource

selection and replica quantity functions.

d. To evaluate the proposed algorithm in a simulation environment.

 7

 Significance of the Research 1.4

The proposed replication algorithm can be considered as a long-term strategy that

aims at best utilization of grid resources usage, namely reducing storage use and

reducing network bandwidth consumption. In other words, this proposed algorithm

gives a bird’s eye view on all components; in a grid environment, the system

designers or system administrators would be interested in this view in order to

determine the overall resource requirements and to configure, to monitor, and to

control the overall system components.

The proposed replication algorithm is also beneficial for grid users as job execution

time is reduced. Users’ jobs which are under execution would require data files and

the grid system in turn would place the required files (i.e. replicas) as close as

possible to the users (i.e. requesting sites).

 Scope of the Research 1.5

This research focused on replica creation in a data grid system. Details of the scope

is as below:

i. Data used in this research is of read-only type. Thus, this research has not

considered the consistency of write types and overheads of update propagation

costs in this research.

ii. This research focuses on a tree-like-structured grid model, which reflects the

hierarchical structure in grid systems (David, 2003; Hoschek, Jaen-Martinez,

Samar, Stockinger, & Stockinger, 2000; Ranganathan & Foster, 2001b). The

hierarchical data grid model is a common architecture used in various research

 8

works (Abawajy, 2004; David, 2003; Hoschek et al., 2000; Ranganathan &

Foster, 2001b).

iii. The modality of data that is used in this work is in the form of structured data,

specifically source code data.

 Report Layout 1.6

The remainder of this report is organized as follows:

Chapter 2 provides an overview of the background material and establishes the

concepts and issues covered in the thesis. In this chapter, a brief critical study and

survey of the relevant existing studies are presented.

Chapter 3 describes the steps taken in achieving the defined aim and objectives. The

chapter also presents the brief information on the grid architecture and the utilized

simulator. The performance evaluation metrics that were used as benchmarks to

evaluate the proposed algorithm are also presented in this chapter.

Chapter 4 describes the research solution that is encapsulated in a replica creation

algorithm for solving the research problem. The algorithm requirements and design

are explained in detail using appropriate examples. This chapter also covers the

implementation of the proposed algorithm, which includes the integration of the

proposed algorithm into the simulation environment.

Chapter 5 presents the results obtained in the simulation experiments. Additionally,

comparison is made with exiting replication algorithms.

Chapter 6 summarizes the research work, highlights research contributions, and

gives direction for future work related to this research.

 9

CHAPTER TWO

RELATED WORKS

This chapter first explores: data grid and the challenges of data grid by illustrating

some examples of the growth of data requirements for the scientific applications.

Then related data-intensive studies are explored in order to provide an overview of

the area and domain of this research. Then data replication strategies of Replica

Creation Stage are discussed in details, each strategy discussed with the

corresponding related works. The analysis of the features and limitations on the state

of the art of replica creation stage strategies is performed.

 Data Grid 2.1

The term data grid (Allcock et al., 2002; Allcock et al., 2001; Foster, 2002b) refers to

an infrastructure that provides data management services for users in order to access,

store, transfer, and replicate data files located within distributed storage media.

Moreover, a data grid connects a collection of hundreds of geographically distributed

computers and storage resources to facilitate sharing of data, storage resources, and

computational power (Chervenak et al., 2003; Johnston, 2002).

Through the linking of all these equipment, the Grid can provide a platform through

which users can access aggregated computational, storage, and networking resources

to execute their data-intensive applications using remote data (Avery, 2002; Foster,

Kesselman, Nick, & Tuecke, 2002). It promotes a rich environment for users to

analyze data and share the results with their collaborators across institutional and

 10

geographical boundaries (Magoulès, Pan, Tan, & Kumar, 2009; Shen, 2008;

Srikummar Venugopal, 2006).

 The Challenges in Scientific Grid 2.2

The first Grid was conceived by computing science (Gagliardi, Jones, Grey, Bégin,

& Heikkurinen, 2005; Hey & Trefethen, 2005). The scale of scientific experiments

has grown so fast that traditional methods of computing used to solve associated

problems are now quite inadequate. Scientific experiments such as high-energy

physics (F. Berman, G. Fox, & Hey., 2003; The LHCb Collaboration. LHCb

Computing Model. Technical Report CERN-LHCC-2004-036/G-084, CERN,

January 2005), climate modeling, earthquake engineering (Foster, 2000; Fox et al.,

2002), bioinformatics (Kelly et al., 2004), and astronomy are generating huge

volumes of data which are measured in terabytes and rising to petabytes within just a

couple of years (Magoulès & Yu, 2009). There are many examples that illustrate the

spectacular growth of data requirements for scientific applications (Yu & Buyya,

2005), as will be described in the following sections.

2.2.1 High Energy Physics

The most cited example of massive data generation in the field of High Energy

Physics (HEP) (High Energy Physics Experiment Website) is the Large Hadron

Collider (LHC), which is the most powerful giant particle accelerator at CERN (the

European Organization for Nuclear Research) (European Organization for Nuclear

Research (CERN)). HEP consists of four main experiments namely ALICE (The

ALICE Collaboration. ALICE Computing Model. Technical Report CERN-

 11

LHCC-2004-038/G-086, CERN, January 2005.), ATLAS (The ATLAS

Collaboration. The ATLAS Computing Model. Technical Report CERN-LHCC-

2004-037/G-085, CERN, January 2005.), CMS (CMS Data Challenge 2004;

Holtman, 2001; The CMS Collaboration. The CMS Computing Model.

Technical Report CERN-LHCC-2004-035/G-083, CERN, January 2005.), and

LHCb (The LHCb Collaboration. LHCb Computing Model. Technical Report

CERN-LHCC-2004-036/G-084, CERN, January 2005), which are designed to

understand the fundamental particles of matter and the forces acting between them.

HEP experiments will produce several petabytes of raw and derived data that will be

accessed from different centers around the world through very heterogeneous

computational resources. The raw data are generated at a single location (CERN)

where the accelerator and experiment are hosted, but the computational capacity

required to analyze them implies that the analysis must be performed at

geographically distributed centers. In practice, CERN’s experiments are

collaborations among thousands of physicists from about 300 universities and

institutes in 50 countries.

 12

2.2.2 Climate Modeling

Another example of science that faces large quantities of data is climate model

computations (Chervenak et al., 2003). Climate modeling requires long duration

simulations and generates very large files that are needed to analyze the simulated

climate (Bernholdt et al., 2005). These simulations, however, will produce tens of

petabytes of output in future and if this output is to be useful it must be distributed to

climate researchers at various institutions.

2.2.3 Bioinformatics

Genomics require programs such as genome sequencing projects, which produce

huge amounts of data. The analysis of these raw biological data requires very large

computing resources. Bioinformatics (Kelly et al., 2004) involve the integration of

computers, software tools, and databases in an effort to address these biological

applications, since genome sequences provide copious information about species

from microorganisms to human beings. The analysis and comparison of genome

sequences are necessary for the investigation of genome structures which is useful

for the prediction about the functions and activities of organisms.

2.2.4 Astronomy

Another data-intensive application in the astronomy field is the Sloan Digital Sky

Survey (SDSS) (Sloan Digital Sky Survey website. Available online at:

http://www.sdss.org/) which aims to map in detail one quarter of the entire sky and

 13

determines the positions and absolute brightness of more than 100 million celestial

objects. It will also measure the distances to more than a million galaxies. SDSS and

other astronomy applications are performed in several regions of the electromagnetic

spectrum and produce an enormous amount of data.

There are many other examples which could be drawn from chemistry (Dooley,

Milfeld, Guiang, Pamidighantam, & Allen, 2006), engineering (Farooq, Majumdar,

& Parsons, 2007), and earth science (Foster, Alpert, et al., 2002). Suffice to say that

science in general is facing a flood of data as technology develops and that in many

cases, grids are seen as a viable solution to address these problems.

 Data Grid Layered Architecture 2.3

The applications layer provides services and access interfaces for a specific

community. These services invoke services provided by the layers below and

customize them to suit the target domains, such as high energy physics, biology, and

climate modeling.

 14

The services layer is divided into two sub-layers: the high-level sub-layer and the

low-level sub-layer. The high-level sub-layers are the services located in the upper

layer such as replication management, replica selection optimization, and resource

allocation. The high-level sub-layers make use of the low-level sub-layers in order

to improve the service quality for users. Replication management service manages

the number of replicas and their locations in the grid sites in order to optimize the

grid resource usage. However, the replica selection service provides the best replica

location for the users or the jobs under execution. The low-level services at the same

layer provide services to the upper level such as replication, data cataloguing, and

resource monitoring. The data catalogue service provides a number of services such

as record all replicas and their physical locations on the grid sites, register the newly

created replicas, and delete the replicas from the registry that has been decided to be

High energy

Physics

Experiment

Data Visualization Climate Modeling

Replication Management Resource Allocation

Replication Data Cataloguing Resource Monitoring

File Transfer Protocol

Authentication Protocol

Networking Protocol

DatabaseFile SystemOperating System

Hardware/InstrumentsNetworkStorage System

Applications

Services

Connectivity

Grid Fabric

Figure 2.1 Overview of Data Grid Architecture

 15

deleted by the replication management service. The replication service is different

from the replication management service. The replication management service

decides, and the replication service executes what has been decided by the

replication management service. Once the replication management decides to create

a new replica, the replication service creates a new copy of the specified file and uses

data transfer service to move the copy (replica) to the underlying site location that is

determined by the replication management service.

The connectivity layer consists of protocols used to query resources in the grid fabric

layer and to conduct data transfers between them. These protocols are built on core

protocols for communication such as TCP/IP and file transfer protocols (for example

GridFTP). The grid fabric consists of software and physical hardware components

such as computing and storage resources.

 Existing Grid System 2.4

This section explores the current grid systems and middleware architecture and

features by highlighting the replication mechanism.

2.4.1 Storage Resource Broker

SRB (Mathew J. Wyatt, Nigel G.D. Sim, Dianna L. Hardy, & Atkinson, 2007) is

a client- server middleware that provides a management system for data replica and a

uniform single interface. SRB manages heterogeneous distributed data storage to

allow users to access files and database seamlessly. The unified view of the data files

stored in disparate media and locations are provided, and transparent to the users so

that the dispersed data appears to the user as stored locally (Krishnamurthy, Sanders,

 16

& Cukier, 2002). Data replication in SRB is applicable if the data is required to be

much closer to the user (Rajasekar et al., 2003). Replicas can be created using SRB

or from outside the system and several forms of data replication are possible.

2.4.2 Grid Data Farm

Grid data farm (Othman, O'Ryan, & Schmidt, 2001) is defined as a group of physical

files that distributed across grid sites and appear to the user as a single logical file

system that stored in the form of fragments. Individual fragments can be replicated

and managed in order to provide service to the data-intensive applications. While

executing a program, the process scheduler dispatches it to the site that has the

segment of data that is required by the program. If the sites that house the required

data are overloaded, the file system creates a replica of the required fragment on

another site.

2.4.3 Globus Toolkit

As defined and explained by Ian Foster (Vazhkudai, Tuecke, & Foster, 2001) Globus

is:

• A community of users who collaborate on sharing of grid resources across

cooperate, institutional, and geographic boundaries. Globus also is a

community of developers for the development of open source software, and

related documentation for building grids and grid based applications for

distributed computing and resource federation.

• The infrastructure that supports this community such as: code repositories,

interface, protocols, email lists, and problem tracking systems.

 17

• The software itself, which consists of a set of libraries and programs for

solving common problems that occur when building distributed system

services and applications.

The Globus data grid architecture (Karl et al., 1998; The Globus Alliance) is divided

into two main layers: high-level services and core services, as shown in Figure 2.3.

The hierarchical organization explains the possibilities for using the core services to

build the high-level service, so that many data management services and complex

storage management systems such as Storage Resource Broker (SRB), can share

common low level mechanisms. The services that Globus offers are: Security,

Information Services, Resource Management, and Data Management. The

Information Services provide information about the status of grid resources. The

Resource Management uses information from Information Services to enable users

to access available resources and to allow the system to schedule resource

allocations. The Data Management provides the ability to access and manage data

and data resources on the grid [13]. The Globus toolkit provides several components

to move, copy, and locate data.

Replica

Management

Replica

Selection

Resource

Management

Metadata

Repository
Security

Storage

System
Instrumentation

Service ServiceHigh Level

Component

Core Services

Data Grid Specific Services Generic Grid Services

Figure 2.2: Globus Data Grid Architecture

 18

Typical usage scenarios of Globus and hence the proposed replication algorithm is in

High Energy Physics (HEP) applications. High Energy Physics (HEP) data

management requires very large amounts of both processing power and data storage.

The four experiments of the Large Hadron Collider (LHC) will accumulate of the

order of 5-8 petabytes of raw data per year. In addition, during the preparation phase

prior to the start of LHC data taking, a similar order of magnitude of simulated data

will be required to design and optimize the detectors. Each LHC experiment will

form a single Virtual Organization (VO), comprising of the order of 2000 scientists

from over 50 countries. HEP community seeks to take advantage of the distributed

nature of computing grids to provide physicists with the best possible access to both

simulated and real LHC data, from their home institutes. Data replication and

management is hence considered to be one of the most important aspects of HEP

computing grids. The task of replicating LHC data to the various collaborating

institutes within a VO will be handled by Data Management services of Globus, such

 Replication in Data Grids 2.5

One of the principle goals of data grids is to improve transparent access to globally

distributed data, making data access and location as easy as if it is occurring on a

local computer (Guy et al., 2002). Optimization of data access can be achieved via

data replication (Carman, Zini, Serafini, & Stockinger, 2002; Dutka, Slota, Nikolow,

 19

& Kitowski, 2004), whereby identical copies or replicas of data are generated and

stored at distributed sites. Data replication increases the data availability and

reliability for the users and decreases the job execution time, but on the other side the

replication increases the storage cost, and affects the network bandwidth

consumption either positively or negatively. The replication strategies influence the

network bandwidth positively when the number of replicas are balanced and

distributed across grid sites efficiently. However, the replication strategies affect the

network bandwidth negatively when the numbers of replicas are not proportional to

the appropriate replica demand.

as RBR.

2.5.1 Resource Identification

In order to perform a replication, a suitable resource must be identified. In general

there are two types of triggers that can be considered:

Trigger on file request

When the Storage Element of a site is requested for a file which it does not store, this

could trigger a replication strategy. This kind of strategy is also called an

unconditional strategy where replication is performed for every request. The most

well-known replacement policies used commonly in operating systems are: Least

Recently Used (LRU) and Least Frequently Used (LFU) (Silberschatz, Galvin, &

Gagne, 2006), which are used in page replacement to free the storage space for more

important data. LRU and LFU are examples for this kind of replication strategy that

is deployed in data grids (Ranganathan & Foster, 2001b). In the LRU strategy, the

 20

requested site caches the required replica, and if the local storage is full or the

current free space is insufficient for the required replica, the least important (victim)

replica should be determined and deleted in order to free storage. The victim replica

in LRU is the replica that has the maximum period of time between the current time

and the last time the replica was requested. However in LFU, the victim replica is the

replica that has the least number of requests, or also known as the least popular

replica.

Trigger on popularity conditions

Another possible trigger could be a file on some other Storage Element of the site

reaching a certain level of popularity. This would require monitoring of all file

popularities, perhaps in a central database or by a publish/subscribe method (one

Storage Element could subscribe to another one to receive regular updates of its top

ten most popular files, for example), and this kind of strategy is also called a

conditional strategy.

The process of determining the popularity of a file (identifying which file is to be

replicated), may vary from one mechanism to another. The most common

characteristic that is widely used to define popularity is the Number of Access (NoA)

to the file (Ruay-Shiung et al., 2008; Tang, Lee, Tang, et al., 2005; Tang et al.,

2006). NoA stands for the access rate of the file within a certain time interval.

However, determining the certain time interval differs from one mechanism to

another. File access pattern analysis has always been employed as a powerful tool to

 21

design efficient replication decision (Ko, Morales, & Gupta, 2007; Meyer, Annis,

Wilde, Mattoso, & Foster, 2006).

For example, in (Ranganathan & Foster, 2001a) the authors consider NoA only in

the current time interval. The performance of five distinct strategies had been

evaluated using simulation framework; 1) Best Client: replica is created for the client

who accesses the file the most; 2) Cascading: a replica is created on the path to the

best client; 3) Plain Caching: a local copy is stored upon initial request; 4) Caching +

Cascading: combines plain caching and cascading; and 5) Fast Spread: file copies are

stored at each node on the path to the best client. The evaluation was done using

three different kinds of access patterns. Similar to the work undertaken in this study,

the research does not include consistency issues and the data used in the work was

read-only data. The three different access patterns are:

i. Random access pattern, which has no locality in patterns;

ii. Data contain a small amount of temporal locality—temporal locality

means that the potential access to the popular file in the past is more than

others—where some accessed files are likely to be accessed again; and

iii. Data contain small amount of geographical and temporal locality—the

files recently accessed by client are likely to be accessed by nearby clients.

On the other hand, there are work (Rasool et al., 2008; Shorfuzzaman et al., 2008;

Tang et al., 2006; Tang, Lee, Yeo, et al., 2005; Wang et al., 2007; Yang et al., 2007)

that consider NOA in the present and past time intervals, which means that the

popularity of the file is determined by analyzing the access history of different time

 22

intervals. It has been acknowledged the fact that files that are requested in the

present are apt to be requested in the near future. Therefore, popularity of a file

depends on the number of access made to the file by the users. And yet, different

calculations are used to determine the popularity of the file. In (Tang, Lee, Yeo, et

al., 2005), two replication mechanisms were proposed in the multi-tier architecture

for data grids, including Simple Bottom-Up (SBU) and Aggregate Bottom-Up

(ABU). The SBU algorithm replicates any data file that exceeds a pre-defined

threshold. The main shortcoming of SBU is the lack of consideration to the

relationship with historical access records. For the sake of addressing the problem,

ABU is designed to aggregate historical records to the upper tier until it reaches the

root.

The authors in (Tang et al., 2006) determined the popularity of the file by analyzing

data access history, the average number of access, and computed NoA. Files with

NoA values that are greater than the computer average NoA will be replicated.

Hence, the order of which files to be replicated depends on the NoA. The larger the

NoA, the more popular the file is, and it will be given a higher priority during the

replication process. In (Rasool et al., 2008; Rasool, Li, & Zhang, 2009), the average

access frequency (freq���) is calculated as a ratio of the sum of all access

frequencies to the total number of files, then the files which have access frequency

greater than or equal to freq��� are marked for replication.

Nevertheless, these replication strategies do not consider the time period of when the

files were accessed. If a file was accessed for a number of times in the past, while

 23

none was made recently, the file would still be considered popular and hence it will

be replicated. Some economical model-based replica schemes have been proposed.

The authors in (Bell, Cameron, Capozza, et al., 2003; Cameron et al., March 2004)

use an auction protocol to make the replication decision where the files are evaluated

using two prediction functions, namely a binomial-based function and a Zipf-based

function. In (Ben Charrada, Ounelli, & Chettaoui), the evaluation of the files is

performed based on number of requests and the existing number of replicas. In (Ben

Charrada, Ounelli, & Chettaoui, 2010), the authors suggested that the file must be

replicated if it has been requested too many times and there are not enough copies. In

other words, the file will be replicated if its average weight exceeds the average

weight of the entire grid. Average weight of a file is calculated by dividing number

of requests of the underlying file by the number of existing copies, while the average

weight of the entire grid is calculated by dividing the total number of requests of the

files by the number of existing copies.

Meanwhile, an optimal replication strategy (DORS) has been proposed by (Wuqing,

Xianbin, Zhuowei, Yuping, & Shuibing, 2010), where the authors empirically

inferred a threshold to decide whether to replicate the file or not. The threshold is

represented by the storage system’s relative capacity, which is defined as the ratio of

the storage size to the total data set sizes (R). When the number of the file’s replicas

is greater than R, the file will not be replicated, but when the number of the file’s

replicas is less than R, the file will be replicated.

The work represented in (Zhong, Zhang, & Zhang, 2010) proposed a replication

strategy where replicas are automatically increased according to file access. Once the

 24

number of accesses of a certain replica is higher than a threshold, it is labeled as “hot

data” and replicated.

The algorithms proposed in (Ruay-Shiung et al., 2008) and (Sashi & Thanamani,

2010) are called Last Access Largest Weight (LALW) and Dynamic Replica

Creation and Placement (DRCP) respectively, and both of which tried to solve this

problem. The key point of these two algorithms is to give different weights to files

having different ages.

The LALW and DRCP algorithms are similar to other algorithms (Rasool et al.,

2008; Tang et al., 2006; Tang, Lee, Yeo, et al., 2005) by means of using information

on access history to determine the popularity of a file. However, an innovation is

included by adding a tag to each access history record of a file. The weight of the

record decays to half of its previous weight after a constant time interval. Older

access history records have smaller weights; it means that a more recent historical

record is more important. An Access Frequency is calculated to represent the

importance of access histories in different time intervals.

However, the above approaches (i.e. LALW and DRCP) assume that the decay rate

is constant and equals ½, and this means all files decay at the same rate, regardless of

the access rate of each one. As a result, the decay rate of weight will be slower.

Subsequently the storage element will take time to delete the unwanted files (i.e. the

less popular files).

 25

The popularity of the file or the file value is used in two directions: the first direction

is to trigger replica creation/deletion strategy as mentioned before. The second

direction is to trigger replica replacement strategy, as the less valuable file is

replaced by the most valuable file. The difference between replica deletion and

replica replacement is that replica deletion is invoked before the replica replacement

strategy where the files that have the minimum values are deleted. Meanwhile, the

replica replacement strategy is invoked when there is no space for newly created

replica in the underlying storage element, and given such a situation, the replica of

low value would be replaced by the replica of higher value. The most well-known

replacement policies used commonly in operating systems are: Least Recently Used

(LRU) and Least Frequently Used (LFU) (Silberschatz et al., 2006), which are used

in page replacement to free the storage space for more important data. LRU and LFU

are examples for this kind of replication strategy that is deployed in data grids

(Ranganathan & Foster, 2001b). In (Teng & Junzhou, 2005; Tian & Luo, 2007,

2010), the authors proposed a prediction-based replica replacement algorithm using a

two-stage process to evaluate the popularity of a replica. They considered some

features such as bandwidth and replica size. The simulation results demonstrated that

their algorithm contributed to better grid performance. The work in (Zhao, Xu,

Xiong, & Wang, 2009) suggested a replica replacement algorithm based on

economic model and opportunity cost, the files have been evaluated using zipf-like

distribution prediction model and then weighted using the file transfer cost model. If

the needed replica has a higher weight than the replica with the lowest weight in

local storage, that file will be deleted and the new replica will be transferred into the

 26

local site. In (Wuqing et al., 2010), the authors proposed a replacement policy that

determines the victim file using two kinds of evaluations.

Firstly by evaluating the replica’s access frequency using the half-life principle that

is used in (Ruay-Shiung et al., 2008; Sashi & Thanamani, 2010), and secondly by

evaluating the replica’s access cost that is affected by replica size and network

bandwidth. Both evaluations are combined together, and the replica with minimum

value will be replaced by the newly created replica.

Data replication has two direct improvements on the performance of the data grid.

One is to speed up data access, which leads to a shorter execution time of grid jobs;

and the other one is to save bandwidth between sites, which can avoid network

congestion with the sudden frequently required data. However, replication is also

bounded by two factors: the size of storage available at different sites within the data

grid and the bandwidth between these sites (Venugopal, Buyya, & Ramamohanarao,

2006). Furthermore, the files in a data grid are mostly large (Rahman, Barker, &

Alhajj, 2008, 2009); so, replication to every site and hosting unlimited number of

replicas would be unfeasible. Therefore deciding the optimal number of is needed.

The common cost functions that are used in the literature (Al Mistarihi & Yong,

2008; Garmehi & Mansouri, 2007; Kalpakis, Dasgupta, & Wolfson, 2001; Mansouri

et al., 2008; Pangfeng & Jan-Jan, 2006; Ranganathan et al., 2002; Yi-Fang et al.,

2006) are listed below:

Communication Cost (Read Cost): a lot of research studies considered

allocating replicas to sites that minimize the read cost (Garmehi & Mansouri,

 27

2007; Kalpakis et al., 2001; Mansouri et al., 2008). Read cost is usually defined

as the cost of transferring a file over the data grid system to the end user.

Storage Cost (Replication Cost): the cost of storing a file at a certain site (Al

Mistarihi & Yong, 2008; Mansouri et al., 2008; Pangfeng & Jan-Jan, 2006;

Ranganathan et al., 2002; Yi-Fang et al., 2006). The storage cost might reflect

the size of the file, the throughput of the site, or the fact that a copy of the file is

residing at a specific site, which is also called replication cost.

Access Cost: the time taken to access the data files in replica sites (Caitriana M.

Nicholson, 2006).

2.5.2 Number of Replicas

The denser the distribution of replicas is, the shorter the distance a client needs to

travel in obtaining a copy of the replica (Pangfeng & Jan-Jan, 2006). In other words,

increasing number of replicas would lead to higher data availability. However, given

the size of resources included within a data grid, the cost of maintaining multiple

copies of resources (i.e. data files) and storing them in the data grid system would be

expensive; therefore, the number of replicas should be bounded. A mechanism for

creating replicas that allows the achievement of availability and performance goals

without consuming undue amounts of storage and bandwidth is thus needed.

The work in (Ranganathan et al., 2002) suggested a algorithm that helps to determine

number of replicas needed to maintain the desired availability in P2P communities

 28

so that each site within the data grid is authorized to create replicas for the files. The

availability of a file depends on the failure rate of peers in the network. A function

has been developed to calculate the number of replicas needed for a certain

availability threshold. However this algorithm has disadvantages: firstly, the exact

number of replicas is not determined; rather it depends on the location service

accuracy which depends on the existing number of replicas. The accuracy of the

replica location service determines the percentage of accessible files, and thus if the

location service is ineffective, more replicas are created to ensure data availability.

Secondly, the replica deletion mechanism is not considered, thus the storage cost

may be increased.

Meanwhile in (Pangfeng & Jan-Jan, 2006; Yi-Fang et al., 2006), the authors had not

taken into account the issue of availability to determine the number of replicas. The

problem of determining number of replica has been formulated as follows: given the

amount of workload a replica server can handle (D), find the minimum number of

replica so that the maximum workload is not more than (D).

Furthermore, (Mansouri et al., 2008) proposed an algorithm formulated by using a

dynamic programming-based algorithm. The purpose of their proposed algorithm is

to find the optimal number of data file replica over data grid systems, so that the read

cost (transferring file over the data grid system to the end-user) and the cost of

storage (site building cost) can be minimized. The drawback of those approaches

(Mansouri et al., 2008; Pangfeng & Jan-Jan, 2006; Yi-Fang et al., 2006) is that

 29

storage capacity has been neglected. As a result, if the site has insufficient space, it

will not be chosen to host the replica even if it offers low overall cost.

Another variable was investigated by (Ruay-Shiung et al., 2008) who identified the

number of replicas that need to be created, based on the access frequencies of each

file that has been requested. By calculating the quotient of average access frequency

of popular file divided by average access frequency of all files, the number of replica

can be determined.

Meanwhile (Al Mistarihi & Yong, 2008) proposed a replication strategy that makes

replication decisions whether to increase the number of replicas to face the high

volume of requests, or to reduce the number of replicas to save more storage space.

Evidently, increasing the number of replicas will decrease the response time, but the

storage cost will be increased accordingly (Al Mistarihi & Yong, 2008).

Table 2.1: Summary of Work in Replica Quantity

Authors Technique Variables Methodology

(Ranganathan

et al., 2002)
Dynamic

Placement

Algorithm

� availability Determine how many

replicas are needed to

maintain the desired

availability

(Pangfeng &

Jan-Jan, 2006;

Yi-Fang et al.,

2006)

Optimal

Number of

Replica

� workload (sum

of data requests

Given the total amount

of workload a server can

handle, then decide the

minimum number of

replica

(Mansouri et

al., 2008)
Optimal

Number of

� read cost Find number of replica

so that the overall cost is

 30

Replica

(ONR)

� storage cost minimized

(Ruay-Shiung

et al., 2008)

Latest Access

Largest

Weight

(LALW)

� access

frequency

By calculating the

quotient of average

access frequency of

popular file divided by

average access

frequency of all files, the

number of replica is

determined

(Al Mistarihi

& Yong,

2008)

Replica

Management

in Grid

(RmGrid)

� replica request

� storage cost

By increasing the

number of replicas of the

most valuable files and

decreasing the number of

replicas of the less

valuable files

2.5.3 Replica Placement

Replica placement is the process of identifying where to place copies of replicated

data files within a data grid system. Transferring a data file from a site to a client

consumes an amount of bandwidth. One challenge that is raised from this is to locate

candidate sites where the replica could be hosted (Rahman et al., 2008) so as to

minimize the amount of bandwidth used.

In (Ranganathan & Foster, 2001a), Rangthan and Foster introduced six replication

strategies. They compared those six strategies by measuring average response time

and the total bandwidth consumed for each strategy. The lower the response time and

the lower the bandwidth consumption, the better the replication strategy is. However,

there is a trade-off between response time and bandwidth consumption. The authors

 31

concluded that if users are focused on lower response time, then the Cascading

strategy would be the best option. On the other hand, if users prefer the consumption

of bandwidth to be the most important issue, then Fast Spread is the better choice of

all the six strategies. Nevertheless, these two strategies also do not consider storage

cost. If a particular file is no longer popular, it will still be stored by the storage

element. That will therefore be a waste of free storage. In the Fast Spread replication

strategy, the replica is copied to every node it visits when it is brought backward to

the requesting node. In contrast to Fast Spread, Modified Fast Spread (MFS) (Bsoul,

Al-Khasawneh, Kilani, & Obeidat, 2010) does not necessarily copy the replica to

every node it visits when it is brought backward. It is copied to the visited node in

two cases. The first case is if the visited node has sufficient free storage space to

store the requested replica. The second case is if the node’s free storage space is less

than the size of the requested replica, and this replica was found more important than

a group of existing replicas that their sizes are greater than or equal to the size still

needed to make the node’s storage able to store it.

In a different approach, the authors of (Yang et al., 2007) proposed a dynamic

maintenance strategy called Dynamic Maintenance Service (DMS) to improve the

performance of the grid environment. DMS decides where to place the replicas based

on two main parameters: request frequency and free storage space. However, the

replica deletion mechanism is not considered; rather the system does not locate the

replica at a site unless there is enough space even if it brings benefit to system

performance.

 32

Meanwhile, (Wang et al., 2007) proposed a replica placement scheme that tries to

overcome the bottleneck caused by increasing the downlinks, which are occurring at

the same time. The proposed strategy chooses the best site to host the replica

according to the evaluation result based on the number of user request and

transmission cost. The purpose of the strategy is to replicate the file to a site that

provides minimum average transmission cost. Transmission cost is defined to be

inversely proportional to bandwidth, and the site that provides the minimum average

transmission cost is selected.

Following the bandwidth aspect, (Park, Kim, Ko, & Yoon, 2004) proposed a

replication strategy, called Bandwidth Hierarchy based Replication (BHR) to reduce

access time by avoiding network congestion. BHR reduces the time taken to access

and transfer the file. It places a replica at a high bandwidth location. However, such

an approach only considers transmission cost and does not guarantee to minimize the

overall cost.

A load balancing replication strategy has been proposed by (Rasool et al., 2008),

where the most frequently accessed file is placed closed to the users and the decision

of replica placement is made based on the access load and the storage load of the

candidate replica servers and their sibling nodes. In relation to this, (Rahman,

Barker, & Alhajj, 2005) discussed various replication strategies namely;

MinimizeExpectedUtil, MaximizeTimeDiffUtil, MinimizeMaxRisk, and

MinimizeMaxAvgRisk while considering the utility and risk indexes, and making

the replica placement decision by optimizing the average response time. They

 33

concluded that considering both current network state and file requests are better

than considering the file requests alone.

Meanwhile, (Rahman et al., 2008) proposed a static replica placement algorithm to

place replica files in best p candidate nodes that minimizes the total response of each

site by using Lagrangean Relaxation, which is a heuristic approach (Fisher, 2004) to

measure the response time of each client node to its nearest server node. The

algorithm is most likely the p-median problem. They also used the user requests and

network latency as parameters to decide when to maintain replica dynamically.

Work by (Garmehi & Mansouri, 2007) suggested an algorithm that is formulated by

using a dynamic programming method to find optimal placement k replicas of an

object, such that the overall cost (i.e. storage cost plus read cost) is minimized. Read

cost is defined as the data transfer cost and storage cost is the cost of placing replicas

at the sites. However, the algorithm does not guarantee the availability of the file, as

the priority choice of location is given to those who provide cheaper services

regardless of its availability.

The authors in (Lin, Wu, & Liu, 2008; Yi-Fang et al., 2006) proposed a placement

algorithm so that the workload of user requests among the replicas is balanced. The

workload is defined as number of requests that a server satisfies. Given the data

usage and maximum workload allowed for each replica server, they suggested

algorithm can efficiently determine the minimum number of replicas required. On

the other hand, the authors in (Ranganathan et al., 2002) suggested a algorithm that

 34

provides a function that evaluates the placement of replica. The objective of this

function is to maximize the difference between the replication benefits and

replication cost (storage cost and transfer time). The benefit is the reduction in

transfer time to the potential users, the storage cost is the storage cost at the remote

site, and the transfer time is the duration from the current location to the new

location. Yet again, the replica deletion mechanism was still not considered, thus the

storage space cost may be increased.

Then (Abawajy, 2004) proposed an improvement, namely in the form of the

Proportional Share Replication policy. The method places replicas on the optimal

locations when the number of sites and total replicas to be distributed is known.

Meanwhile, the work on replication algorithm by (Shorfuzzaman et al., 2008) had

resulted in a Popularity Based Replica Placement (PBRP) algorithm for hierarchical

data grids. The idea behind PBRP is to place replicas as close as possible to those

clients that frequently request data files. Further work by (Rasool et al., 2009)

presented a replica placement strategy in multi-tier data grid that categorized the files

based on their access frequency into two groups: 1) Most Frequent Files (MFF) that

are replicated and placed at the parent node of their respective best clients, where the

best client for a file is a client which generates the maximum request for that file,

and 2) Least Frequent Files (LFF) that are placed at one tier below the root of the

data grid along the path of their best client. In (Ben Charrada et al., 2010), a dynamic

placement algorithm was proposed that takes into account the dynamicity of sites in

the data grid, since a site can at any time leave the grid and possibly join again later.

Thus, two parameters were investigated: the request number for each file by each

 35

site, and utility of each site that involves the number of times the site did not answer

to a file request due to its absence from the grid.

Then, (Ruay-Shiung et al., 2008) proposed a replication mechanism that replicates

the popular file to a suitable site according to the access frequencies for each file that

has been requested. Access frequency is an essential parameter that should be taken

into account when determining replica placement. However, some important

parameters such as overall cost (i.e. storage cost and read cost), distance and

availability should not be neglected; otherwise the overall system performance is

degraded.

The work presented in (Naseera & Murthy, 2009) suggested a replica placement

mechanism that deploys an agent at every site that holds the master copy of files for

which replicas are to be created. The main function of each agent is to select the

candidate site for placing the replica based on response time and job execution time.

The replica is placed at the site that minimizes the time taken for obtaining all the

files required by the job. However, storage capacity is ignored as a result if the site is

full and provides the minimum response time; it will not be selected to host the

replica. On the other hand, a priori replica placement was proposed in (Challal &

Bouabana-Tebibel, 2010), where the replicas are created and placed before starting

jobs and launching any work on the grid. The replication is performed at once after

the original copies are created and before any file request has been made. The main

objectives are to maximize the distance between identical replicas and to minimize

the distance between different replicas, so that each site can find the different

 36

replicas faster within its vicinity. However, this approach does not cope with the

dynamicity of grid environment, and moreover, the storage capacity is not taken into

consideration.

Table 2.2: Summary of Work in Replica Placement

Authors Technique Variable Methodology

(Wang et al.,

2007)

Fair Replica

Placement

� Bandwidth

� Number of user

request

Duplicate the file to a

node that provides

minimum average

transmission cost

(maximum bandwidth)

(Ranganathan

et al., 2002)

Dynamic

Placement

Algorithm

� Storage Cost

� Transfer Time

Maximize the

deference between

replication benefit and

replication cost

(Garmehi &

Mansouri,

2007)

Optimal

Placement of

Replicas

� Communication/read

Cost

� Storage Cost

Place the replica so

that the overall cost

(read and storage cost)

is minimized

(Yang et al.,

2007)

Dynamic

Maintenance

Services

(DMS)

� Request Frequency

� Storage Capacity

If the request

frequency of file is

more than the

maximum request rate,

and there is free space

in the site then DMS

will duplicate file to

that location

Ruay-Shing et

al. (Ruay-

Shiung et al.,

2008)

Latest Access

Largest

Weight

(LALW)

� Access Frequency According to the

access frequencies for

each file that has been

requested, a popular

file is replicated to a

suitable site

 37

Through the literature review on this subject, it was concluded that there are many

drawbacks of the current replica creation strategies, and there is a need for enhancing

these strategies even further. Obviously, in order to get benefits from replication

strategies, the storage cost and the read cost must be minimized. From the literature,

it was observed that there is a lack of suitable current replication algorithms for the

management of data grid resource usage (i.e. network and storage resources), and

thus more enhancement is needed.

 Summary of Chapter 2.6

In this chapter, the background on the issues that are covered in this study has been

provided. This chapter was divided into two main parts; first part presented a brief

description and characteristics of data grids and some challenges of the applications

running in such environment. The second part presented the need for a replication

algorithm in a data grid environment. Related works of data replication was

analytically investigated and presented. This included the related research and

progress in replication algorithms, and recent works in this research domain. The

second aspect is concerned with the individual functions of the replication algorithm,

where some parameters have been neglected by other replication algorithms, which

should be considered. For example, in evaluating the files to determine which file is

to be replicated and deleted, the implementer needs to consider the dependency

relationships between files, period of time it has been in the system and the decay or

growth rate of the file request.

 38

In the response to the literature survey presented in this study, it is proposed that

there is a need for an enhanced replication algorithm that embodies all the core

functions listed above, and moreover, it should include the neglected parameters by

other works as discussed in this chapter. In the next chapter, the methodology

and simulation setting employed in this research work will be detailed.

 39

CHAPTER THREE

RESEARCH METHODOLOGY

This chapter presents the undertaken steps for this research. This research starts by

formulating a Resource Selection function that determines the importance of a file to the

users and data grid system. This is followed by a second stage that focuses on formulating a

replica number function that utilizes the developed resource selection function. The third

stage of the research is to integrate the two functions in a replication algorithm (proposed as

the Relationship-based Replication algorithm) that is later evaluated in a simulation

environment. Figure 3.1 illustrates the undertaken steps for research.

Formulate Replica Quantity Function

Formulate Resource Selection function

Develop Relationship based Replication

Algorithm (RBR)

Develop Simulation Model

Evaluate the proposed RBR

Figure 3.1: Research Steps

 40

 Formulate Resource Selection Function 3.1

In order to formulate the resource selection function, information on number of

access of a resource (e.g data file) is combined with information on resource

dependencies and age. Hence, the function is designed by utilizing three types of

relationships:

1) File-to-users (F2U) (Madi, 2012) - Relationship that describes the behavior

of a file being requested by users, and notes the change to this

request(whether is a growth or decay change). The relationship is represented

using the exponential model. If the change is seen to be in the form of

growth, then the particular resource is assumed to be important, and vice

versa.

2) File-to-file relationship (F2F) (Madi, 2012) - Relationship that describes the

behavior of a file requesting other files, and notes the level of dependency of

the file. Resources that are highly dependent on is likely to be more important

than the others.

3) File-to-grid (F2G) - Relationship that describes lifetime of a file in the grid

system.

Details of the resource selection formulation along an example of utilization of the

function are presented in Chapter 4.

 41

 Formulate Replica Quantity Function 3.2

The second step of the research is to formulate the a function that determines the

appropriate number of copies for the identified resources. In designing this function,

we adapt the work presented in 2012 (Madi, 2012) that integrates the importance of

the file to the users and the grid system. The produced function (described in detail

in section 4.2) presents users with the estimated number of required replicas.

 Develop Relation-based Replication (RBR) algorithm 3.3

The third step of this research was to formulate an algorithm that integrates the

proposed functions and this is illustrated in the upcoming chapter, specifically in

Figure 4.4.

 Develop Simulation Model 3.4

In this research, the OptorSim (Bell, Cameron, Millar, et al., 2003; Cameron et al.,

March 2004; Cameron et al., 2004) simulator was utilized to simulate the proposed

replication algorithm. The main idea of OptorSim is when given a grid topology,

resources, and a set of jobs and optimization strategy, it can simulate data movement

around these job runs and supply information on various factors that could be used to

evaluate the performance of the optimization strategy. The key advantage of

OptorSim is that it is much closer to reality since it is based on the EU DataGrid

architecture (Cameron et al., March 2004), which is widely used by grid computing

communities (Bell, Cameron, Millar, et al., 2003; David G. Cameron, 2005; The

European Data Grid Project). Furthermore, OptorSim is capable of providing a

testbed similar to the original data grid environment by providing multiple grid sites

 42

with storage elements that can be used to create and store replicas. Users can also set

the parameters of OptorSim according to their requirements to run the simulation. A

more detailed architecture and implementation of OptorSim can be found in (Al-

Mistarihi & Yong, 2008; David, 2003; Hong, Xue-dong, Xia, Zhen, & Wen-xing,

2008; Lei, Vrbsky, & Hong, 2007; Ruay-Shiung et al., 2008; Shorfuzzaman et al.,

2008).

The RBR algorithm works in the background of the data grid system in such a way

that there is no direct connection with users. RBR relies on other existing data grid

core services, such as Replica Location Services (RLS) that provides information

related to the physical file locations, and Information Service Provider (ISP)

(Vazhkudai et al., 2001) such as Network Weather Services (Wolski, 1997) to

provide the network availability and status. As shown in Figure 3.2, RBR offers the

following functionalities:

1. gathers replica locations information from RLS;

2. gathers network bandwidth information from the NWS;

3. gathers job information from the history file; and

4. makes decisions on replica creation and replica quantity.

 43

The study of RBR was carried out using the EU DataGrid (Cameron et al., 2004)

In EU DataGrid, a set of high energy physics analysis jobs was generated from the

Compact Muon Solenoid (CMS) (Ruay-Shiung et al., 2008) experiments in the

European Organization for Nuclear Research (CERN) (CMS Data Challenge 2004;

Holtman, 2001) project. Jobs were based on the CDF use-case as described in

(European Organization for Nuclear Research (CERN)).

The EU DataGrid topology includes 20 sites in USA and Europe as shown in Figure

3.3. Within this model, each site, excluding CERN and FNAL, was assigned with a

Computing and Storage Element. CERN and FNAL were allocated with Storage

Elements only, since they produce the original files and store them.

RBR

Figure 3.2: The Proposed RBR Component in OptorSim Architecture

 44

 Evaluate the Proposed Relation-based Replication Algorithm (RBR) 3.5

The proposed RBR is compared against existing algorithms that includes the LALW

(Ruay-Shiung et al., 2008) and DRCM (Madi, 2012). The evaluation is based on the

performance metrics and parameter settings.

3.5.1 Performance Metrics

3.5.1.1 Mean Job Execution Time

This is defined as the average time required to execute a job starting from the time it

is scheduled to the Computing Element until it has finished processing all of the

Caltech

UCSD
UFL

Lyon CERN Torino

Pisa

Firenze

Catania

Bologna

Bari
Perugia

Roma

Bristol

Moscow

Wisconsin

FNAL

USA1

USA3

French
Switzerland

Italy

UK
Russia

USA2

RAL

Imperial

Perugia

622M

10G
2.5G

10G
2.5G

2.5G 10G

155M

155M

10G

2.5G

1G

1G

10G

Router

CMS testbed site

Figure 3.3: The EU Data Grid Testbed Sites and Their Associated Network Geometry

 45

required files. It is calculated by accumulating the time taken by each job and

divided by the number of jobs (Bell, Cameron, Capozza, et al., 2003; Bell, Cameron,

Millar, et al., 2003; Ben Charrada et al., 2010; Cameron et al., 2003; Cameron et al.,

2004; Ruay-Shiung et al., 2008), as shown in the following formula:

MJET = 	
∑������������������

�
 (3.1)

where,
������ : start time of job execution,

�!"#$%&'%": completion time of job execution, and

(: total number of processed jobs in the simulation.

3.5.1.2 Efficient Network Usage (ENU)

ENU is defined as a measure of how well the replication strategy uses the network

(Bell, Cameron, Millar, et al., 2003). It is computed as:

)*+ =	
,��-.��	/�0�	�11�223	,456789:;8<=>

,��-.��	/�0�	�11�223	,7<9:7	?875	:995>>
 (3.2)

where *� @AB 	C�D 	�EE FF is the number of accesses that Computing Element reads a

file from a remote site, *%"#GHI$&HJKL is the total number of file replication that occurs,

and (*� @AB 	C�D 	�EE FF +	*GJI$G	OHG"	$II"LL) is the number of times that Computing

Element reads a file from a remote site or reads a file locally.

A lower value would indicate that the utilization of network bandwidth is more

efficient. In order to get a low ENU, the numerator, *%"#GHI$&HJKL , should be small.

3.5.1.3 Storage Element Usage

The average of all storage reserve capacity in the data grid can reflect the total

system storage cost (Bell, Cameron, Millar, et al., 2003; Cameron et al., 2004). The

 46

Average Storage Usage (ASU) metric is computed by the following equation (Bell,

Cameron, Millar, et al., 2003):

ASU =
∑ T

U
V
�WX (F�B �)

Y
× 100% (3.3)

where,

+: storage usage space that is reserved by the data files,

*: number of sites in the data grid, and

^: total capacity of the storage medium.

3.5.1.4 Computing Element Usage (CE Usage)

This is defined as the percentage of time that a CE is active (transferring or

processing data) during the simulation. The CE usage of the whole grid is computed

by aggregating the CE usage of each individual CE. CE usage is a metric that could

be of interest to resource owners, as high CE usage would mean that the workload is

balanced across the grid (Bell, Cameron, Millar, et al., 2003). Low CE usage, on the

other hand, would mean that some CEs have long queues while others are underused.

3.5.2 Parameter Settings

In order to expose the throughput and system performance, the simulation was

executed on different scenarios that employ different parameter settings. The

parameters that may influence replication algorithms includes (Ruay-Shiung et al.,

2008): number of submitted jobs, access history length, storage metric (D) and job

delay time.

 47

3.5.2.1 Number of submitted jobs (Workload Test)

System scalability can be tested by the number of jobs running during the simulation.

In this research, to simulate different number of jobs, the maximum number of

submitted jobs was increased by a factor of four and the minimum was decreased by

a factor of four, i.e. number of jobs that is considered in our evaluation varied

between 200 and 4000 jobs.

3.5.2.2 Access History Length

This is defined as the period of time for which the information on file access is kept.

The history of file access is used by replication algorithms to identify the most

popular file in the next time window. Therefore the length of access history used in

the calculations must be carefully chosen to produce accurate prediction. If the

history does not go back in time far enough, the statistics of file access may not be

accurate, but if the history goes back too far, it may provide overdue and useless

information. Thus the length of access history considered for evaluation varies

between 10
3
 seconds and 10

6
 seconds, where the reasons for which are detailed out

in Chapter 5.

3.5.2.3 Storage Metric (D)

It is defined as the ratio of the Storage Element size to the total dataset size (Tang,

Lee, Tang, et al., 2005; Tang et al., 2006)

_ = `&J%$a"	bG"c"K&	`Hd"

eJ&$G	f$&$L"&	`Hd"
 (3.4)

If the value of _ > 1, then there is enough space in the storage element to hold all

files that a job would require. Hence, there is no need for any deletion and the

 48

replication strategy will have little effect on the performance of the grid. If _ h 1,

than the storage element is not capable of storing all required files so deletion must

take place and choices have to be made on which replicas to keep. In order to study

the effect of storage metric, different file sizes that vary between 200 to 2000 MB

were considered and used in the experiments.

3.5.2.4 Job Delay

This is defined as the rate at which jobs are submitted to the data grid. The job delay

was fixed at 25 seconds in all of the experiments.

 Summary of Chapter 3.6

This chapter describes the steps taken in achieving the aim of the research. Five

stages undertaken; formulation of resource selection, formulation of replica quantity,

development of RBR algorithm, development of OptorSim simulator and the

performance evaluation of the proposed RBR. In the upcoming chapter, details of

the RBR algorithm and its evaluation are presented.

 49

CHAPTER FOUR

RELATIONSHIP BASED REPLICATION ALGORITHM

In this chapter, the implementation of Relationship-based Replication (RBR)

algorithm to improve performance of a grid system is described. To that end, a detail

design of RBR that includes the resource selection function and replica quantity

function is presented.

 Resource Selection 4.1

In a data grid, when a resource (e.g a data file) is required by a job and is not

available on a local storage, it may either be replicated or read remotely. If a file has

been replicated, in the future, when it is requested, any job can accessed it quickly

and the job execution time can be reduced. However, if replicating a resource file

requires the deletion of other resources such as data file(s), future jobs that require

the deleted resources may consume additional computational time. Therefore, a

decision must be made whereby only the most resource files are replicated and the

least ones are deleted. The replication decision includes two issues: 1) which file

should be created/deleted and 2) how many copies to be created/deleted. The

proposed algorithm (RBR) includes the perspectives of two parties: users and

system.

Due to the limited storage capacity, replication decision should be made to conform

users’ needs so that high demanded files (popular replicas) are efficiently maintain

and files that are rarely utilized are removed.

 50

4.1.1 File-To-User Relationship (F2U)

Popularity of a file depends on the number of access made to the file by users (Tang,

Lee, Yeo, et al., 2005). With this, popular data files can be identified by analyzing

the file access history. Many real world phenomena can be modeled by functions that

describe how things grow or decay as time passes. Examples of such phenomena

include the studies of populations and bacteria (Ranganathan & Foster, 2001a,

2001c; Ranganathan et al., 2002). The work presented by (Madi, 2012) adopts the

exponential growth/decay model in determining popularity of a file. This is due to

the fact that each file has its own number of access and the value increases by the

increase of access rate and vice versa. If the access rate increases, so does the

growth/decay rate.

If we use *O
& to represent the number of accesses for file i at time j, and *O

&3k to

represent the number of accesses at time t + 1, the exponential growth/decay model

would be given by:

*O
&3k = 	*O

& × (1 + m) (4.1)

where r is the growth or decay rate in number of accesses of a file in one time

interval. Therefore, the value of r using the following formula can be calculated:

 m = n*O
&3k *O

&o p − 1 (4.1.1)

Assume j is the number of passed intervals, and *O
& indicates the number of access

for the file i at time interval j, then we get the sequence of access numbers:

*O
r	*O

k	*O
s	*O

t	. …	*O
&�k	*O

& 	

 51

Therefore, there are j − 1 time intervals, and each time interval has a growth or

decay rate in number of accesses of a file. So according to the exponential

growth/decay model, the equation can be written as in the following:

mr = n*O
k *O

ro p − 1,

mk = n*O
s *O

ko p − 1,

ms = n*O
t *O

so p − 1,

m&�k = n*O
& *O

&�ko p − 1	 	 	 	 	 	 					 						(4.1.2)

Therefore the average rate for all intervals is:

 m = ∑ mH&�k
r j − 1⁄ (4.1.3)

Having known the average accessed rate (growth or decay) for a file during the past

intervals, the number of access for the upcoming time interval can be estimated,

which is termed as the File Lifetime (Madi, 2012) :

xyz{	|yi{jy}{ = 	*O
& × (1 + m)		 	 	 	 	 	 						(4.1.4)

In order to avoid extreme cases where the growth or decay rate is equal to infinity, it

is assumed that all files have been accessed for at least once. Using the data that is

provided in Figure 4.2, an example to explain the concept of the strategy is presented

in the following paragraph. In the example, there are four time intervals (t1, t2, t3,

t4) with different number of accesses (NOA) of five data files.

 52

Figure 4. 1: An example of files requests in time interval

There are five different files (A, B, C, D, and E) accessed during the four time

intervals (jk, js, jt, and j�) In order to calculate the File Lifetime value of each file,

the average growth/decay rate of the file during four time intervals is calculated and

substituted into equations (4.1.3) and (4.1). Figure 4.3 shows the process of

calculating the values for files A, B, and C. In the same way, the value of 1.76 was

obtained as the number of access for file D, and 13.1 for file E.

Figure 4.1: File Request in Time Interval

 53

Figure 4.2: Calculation for FileLifetime

m =
(−0.25) + (−0.2) + (−0.16)

3
= −0.21

*�
� = 10 ∗ (−0.21 + 1) = 7.9

 jk js jt j� j�

A 20 15 12 10 *�
�

- The average growth/decay rate of file A is:

- The estimated number of access of file A is:

m =
0.18 + 0.20 + (−0.38)

3
= 0.001

*�� = 15 ∗ (0.001 + 1) = 15.0

 jk js jt j� j�

B 17 20 24 15 *�
�

- The average growth/decay rate of file B is:

- The estimated number of access of file B is:

m =
(−0.13) + 0.54 + 0.50

3
= −0.30

*�
� = 30 ∗ (0.30 + 1) = 39.1

 jk js jt j� j�

C 15 13 20 30 *�
�

- The average growth/decay rate of file C is:

- The estimated number of access of file C is:

 54

4.1.2 File-to-File Relationship (F2F)

As mentioned in Chapter one, the data files that are used in this research are in the

form of source code modality. Thus, there is a possibility of having files that require

other files in order to be executed or compiled. In other words, there may exist

dependency relationship between files (Kapitza, 2003; Kreft, Booth, & Wimpenny,

1998; Kremer, 1993). We utilized such relationship as additional factor that

contributes in identifying resources that are to be replicated. Such an approach is

seen to contribute in determining importance of a file to the resource management

system, and, is represented as File Weight. This research employs the calculation of

File Weight as described in (Madi, 2012) :

xyz{	�{y�ℎj = ∑ x|H × _|H
K
H�k (4.2)

where,

(: total number of files in a grid system,

x|: File Lifetime as ����	�������� = 	��
� × (� + �) and

_|: dependency level of other files on the underlying file, and if there is no

dependency, DL is assumed to be zero. This is counted as number of files that are

dependent on the resource file.

In order to understand how to calculate file weight, we make use of the previous

example. Suppose that files, as shown in Figure 4.1 have some dependencies among

them, as depicted in Figure 4.3. The present dependency relationships in Figure 4.4

would suggest that file B is more important than file A as there are three files (A, C,

and E) that depend on file B while none exist for file A. Hence, the File Weight of

files A, B, C, D, and E are obtained as follows:

 55

File	Weight(t, A) = 0

File	Weight(t, FileB) = (8	x	0.35) +	(39	x	0.33) + (8	x	0.15) = 16.86

File	Weight(t, C) = 0

File	Weight(t, D) = 0

File	Weight(t, FileB) = (8	x	0.15) = 1.2

4.1.3 File-To-Grid Relationship (F2G)

The third relationship that is incorporated in this research is the File-To-Grid (F2G)

relationship. Such relationship refers to the time period of existence for a particular

resource, in other words, the age of a data file. Such a relationship is important as it

shows the vitality of the file. For example, if there are two files having the same

number of access, but of different age, then the older file is considered to be less

popular than the younger one. This is because the younger file seems to be more

valuable as it receives the same amount of request but in a shorter time period. The

age of the file can be calculated as the time file being included in the grid until the

current time.

A

(8)
C

(39)

B

(15)E

(8)

D

(2)0.15 0.35 0.33

0.15

Figure 4.3: Dependencies between Files

 56

xyz{	¦�{ = 	�y}{I'%%"K& −	�y}{$&&$I§ (4.3)

The work presented in this research evaluates a resource file by combining

information from users, file management and the grid itself. With this, the F2G

relationship along with the F2U and F2F are taken into consideration when

determining the importance of a resource. Hence, the File Value is computed as the

following equation:

xyz{	¨©zª{(j, i) = «HG"¬HO"&Hc"(&,O)3«HG""Ha§&(&,O)

«HG"	$a"(&,O)
 (4.4)

xyz{|yi{jy}{ (FL) , xyz{�{y�ℎj (FW) and xyz{	¦�{ (FA) are used to compute the

xyz{	¨©zª{ (FV) that is used as an indicator of the volume of demand for a file in a

grid system, and the proposed replication algorithm will decide which file to be

replicated. The larger the value of xyz{	¨©zª{ (FV), the more important the file is to

the grid system.

 Replica Quantity 4.2

In determining the number of replication or deletion, we adapt the replica quantity

strategy implemented in (Madi, 2012). Nevertheless, we are employing the proposed

xyz{	¨©zª{ (FV) in the strategy. In this strategy, RBR triggers the resource selection

 57

function (equation 4.4) and use it to calculate file power of users’ perspective

(x®'L"%L). This is computed as follows:

x®'L"%L =
«¯

∑ 	«¯∀?875>
 (4.5)

where,

FP: file power from user’s perspective, and

FV: File Value.

Additionally, there is also information from the view point of the system that is

represented by the availability of a resource in the system (Madi, 2012). This

depends on the current number of replicas of the underlying file and is computed as:

x®L±L&"c = ,J�
∑ 	,J�∀?875>

 (4.6)

where,

FP: file power from system’s perspective, and

NoC: number of copies of the underlying file.

Later, a balance between users’ perspective and system’s perspective (Madi, 2012) is

determined and the utilized function is as follows:

�²³´��´ = µ¶ ∗ �²´·´��� (4.7)

where, TH is the threshold value that determines how many percent the number of

copies that are supposed to exist to meet the users request of the underlying file. The

threshold value is specified in the form of percentage, which varies according to the

grid situation, such as the current bandwidth, the type of the running applications and

jobs, and the workload of the system (number of jobs and number of files).

 58

With this, the replica quantity function for this research will be as follows:

¸¹º» =
n¼½¾¿ÀÁ¿�	(ÂÃ×¼½¿Ä¿ÅÀÆ)p×∑ 	�ÇÈ∀����´

ÂÃ
 (4.9)

where, ENoR: the estimated number of replicas.

There are three cases that may occur:

Case 1: if the)*ÉÊ > 0, then the system will replicate ENoR replicas of the

underlying file,

Case2: if the)*ÉÊ h 0, then the system will delete ENoR of existing replicas, and

Case 3: if the)*ÉÊ = 0, then neither replication nor deletion is required.

In order to illustrate how the strategy works, consider the following example:

Assume a grid system has 15 files and their corresponding values and number of

existing copies exists as shown in Table 4.2. Assume that the threshold value (TH)

used is 50%, that means the FPÌF �F should double the value of FPFÍFB @.

pies

File name File value
Number

of copies

File1 26 1

File2 30 2

File3 32 1

File4 31 3

File5 28 4

File6 20 2

File7 10 3

File8 15 5

File name File value
Number

of copies

File9 25 1

File10 22 4

File11 13 1

File12 9 2

File13 11 3

File14 8 1

File15 17 1

Total 297 34

Table 4.1: Examples of Files and its Related Information

 59

The main concern here is to determine which file needs to be replicated and which

file needs to be deleted. The first step is to calculate the power of each file in terms

of users’ perspective, and system perspective according to formulas (4.5), (4.6), and

(4.9). For example, the power of File1 from users’ perspective and system’s

perspective, and ENoR for File1 are computed as follows:

x®(xyz{1)'L"%L =
26
297

= 0.088

x®(xyz{1)L±L&"c =
1
34

= 0.029

ENoR =
(0.088 − 2 × 0.029) × 34

2
= 0.488 ≅ 0.5 ≅ 1

Due to the fact that number of replica values must be in the form of integer number,

so the ENoR value is rounded up to the nearest integer. Therefore, the estimated

number of replicas is 1, which means File1 needs to be replicated once. In the same

way, all FP values and ENoR for each file are computed as shown in Table 4.3.

Table 4.2: Examples of ENoR

File name Users power System power ENoR

File1 0.088 0.029 0.5

File2 0.101 0.059 -0.3

File3 0.108 0.029 0.8

File4 0.104 0.088 -1.2

File5 0.094 0.118 -2.4

File6 0.067 0.059 -0.9

File7 0.034 0.088 -2.4

File8 0.051 0.147 -4.1

 60

File9 0.084 0.029 0.4

File10 0.074 0.118 -2.7

File11 0.044 0.029 -0.3

File12 0.030 0.059 -1.5

File13 0.037 0.088 -2.4

File14 0.027 0.029 -0.5

File15 0.057 0.029 0.0

The results from Table 4.2 show that File1 needs to be replicated by one copy as

ENoR approximately equals to one, while three copies of File10 need to be deleted

where its ENoR values approximately equal to three. Meanwhile, the ENoR for File2

and File9 approximately equal to 0, and therefore no action will occur as they are

considered to be stable files. The rest of the files are in the same manner. To this end,

there will be three lists of files, where the first list contains files that need to be

replicated, the second list contains files that need to be deleted, and the third list

contains files that require no further action.

 RBR Algorithm 4.3

This section presents the algorithm of the proposed replication strategy. It integrates

both of the proposed resource selection and replica quantity functions. The algorithm

is as the one illustrated in Figure 4.4.

 61

 4.4

 RBR Implementation 4.4

As stated previously in Chapter three, the RBR is realized via the OptorSim

simulator. The following sub sections discuss the integration of RBR into OptorSim.

Input: Number of Access of each file (*É¦(iyz{y)), Number of file intervals, j,
Dependency Level (_z), File Size, Bandwidth between sites, Number of existing

copies of each file (*É^(iyz{y));

Output: Number of Replicas for the Identified Resource

Procedures:
/* Resource Identification */

1: for each files in the data grid

2: Calculate m ← ∑ mH&�k
r j − 1⁄

3: Calculate xyz{|yi{jy}{(j, i)	ªÒy(�	*O
& × (1 + m)		

4: Calculate xyz{�{y�ℎj(j, i) using ∑ x|H × _|H
K
H�k 	

5: Calculate xyz{¦�{	using �y}{I'%%"K& −	�y}{$&&$I§

6: Calculate xyz{	¨©zª{(j, i) using
«HG"¬HO"&Hc"(&,O)3«HG""Ha§&(&,O)

«HG"	$a"(&,O)

/*Replica Quantity */

7: Calculate x®'L"%L using
«HG"¯$G'"

∑ 	«HG"¯$G'"∀?875>

8: Calculate x®L±L&"c using
,J�

∑ 	,J�∀?875>

9: Calculate ENoR using
n¼½¾¿ÀÁ¿�	(ÂÃ×¼½¿Ä¿ÅÀÆ)p×∑ 	�ÇÈ∀����´

ÂÃ

10: if ()*ÉÊ>0) then Add iyz{y to Popular_List

11: else if ()*ÉÊ<0) then Add iyz{y to Unwanted_List

12: else if ()*ÉÊ=0) then Add iyz{y to Stable_List

Figure 4.4: The Relationship-based Replication Algorithm

 62

4.4.1 Integration of RBR into OptorSim

OptorSim is capable of simulating many areas of the grid and these areas can be

divided into packages, where each package contains a collection of related classes.

The package diagram shown in Figure 3.4 describes those within OptorSim and their

relations. Starting at the lowest level, the optorsim.time package deals with how time

is measured within the simulation, while optorsim.infrastructure simulates the

underlying grid infrastructure including the network, grid sites, and basic

components of the site: computing Element and Storage Element. The P2P network

and messaging system along with the auctioning process is included in the

optorsim.auctions package. The functionality of replica management components

including Replica Location Service is implemented in the optorsim.reptorsim

package, while the replica optimization strategies are in the optorsim.optor package.

Optorsim is the highest level package that simulates the resource broker and users,

and also controls the GUI.

optorsim optorsim.time

optorsim.auctionsoptorsim.optor optorsim.infrastructure

optorsim.reptorsim

Figure 4.5: UML Package Diagram of OptorSim

 63

There exist three replication algorithms employed in OptorSim, namely, LFU, LRU,

and Economic algorithm. In this work, we include three additional algorithms

namely, the LALW (Ruay-Shiung et al., 2008), RBR (Madi, 2012) and RBR which

is the proposed algorithm. The RBR and LALW along with other replication

algorithms that have already been implemented in OptorSim, are written in Java and

integrated into the optorsim.optor package of the simulator where it is termed as

RBROptimiser, DRCMOptimiser and LALWOptimiser. These Java classes directly

extend the skelOptor class that exists in optorsim.optor package as shown in Figure

4.5. The implementing classes and subclasses are shown as a UML class diagram in

Figure 4.6. In general, the simulation works as follows: the process starts when users

submit a job to the RB, which in turn searches for appropriate CE, and schedules the

job to any CE by following one of the scheduling algorithms defined in the

parameter file. When the CE is ready to execute a job, it starts to process the files

that are needed for the job.

 64

The order of processing the files is according to the access pattern defined in the

parameter file. The CE then calls the local optimizer to find the best replica for the

file. The CE then reads the file and processes it, before calling for the next file until

all files for the job have been processed. In the OptorSim, each site has its own

replica optimizer termed as local optimizer, and its main role is to find the best

replica and replicate it in the local SE according to the chosen strategy. In this work,

the Simple Optimizer is used as a local optimizer that finds the “best” replica of the

<<interface>>

Optimisable

+getAccessCost()

+getBestFile()

SkelOptor

+getAccessCost()

+getBestFile()

ReplicatinrOptimiser

+getBestFile()

+chooseFilesToDelete()

LfuOptimiser

+chooseFilesToDelete()

LruOptimiser

+chooseFilesToDelete()

EconomicOptimiser

+getBestFile()

EcoBinModelOptimiser

+chooseFilesToDelete()

EcoZipModelOptimiser

+chooseFilesToDelete()

ABRSOptimiser

+getFileValue()

+getReplicasToCreate()

+getReplicaNo()

+getRC()

+getBestLocations()

+CreateReplicas()

+chooseFilesToDelete()

LALWOptimiser

+getFileValue()

+getReplicasToCreate()

+getReplicaNo()

+getBestLocations()

+CreateReplicas()

+chooseFilesToDelete()

Figure 4.6: UML Class Diagram of OptorSim

 65

required file but never replicates, as all files are read by remote I/O. The replication

decision is made by the proposed algorithm, RBR. In constant time interval, RBR

gets information of the files from Replica Catalogue (RC). RC holds the mappings of

logical file to physical file names (Silberschatz et al., 2006), evaluates the files in the

system, and makes the replication decision if it is necessary. When the replication

process has been performed, the RBR registers the new replica into the RC as shown

in Figure 4.7.

 Summary of Chapter 4.5

This chapter presents the relationship-based replication algorithm termed as RBR.

The RBR include three viewpoints in deciding files that requires replication: the file-

RBR

Figure 4.7: RBR in OptorSim

 66

to-user (F2U), file-to-file (F2F) and file-to-grid relationships (F2G). Such an

approach is hoped to minimize the job execution time, network bandwidth

consumption, and storage element usage. The performance evaluation of this

algorithm is discussed in the next chapter where the RBR is also compared against

existing replication algorithms.

 67

CHAPTER FIVE

RESULTS AND DISCUSSIONS

In order to evaluate the proposed RBR, we conducted a comparative evaluation

against the DRCM (Madi, 2012), LALW (Ruay-Shiung et al., 2008) and other

existing algorithms (LFU and LRU) that are built-in the utilized simulator A series

of tests with their results are presented based on the parameters discussed in the

previous Chapter.

 Number of Jobs 5.1

It is important to understand how replication algorithms perform with the increase of

numbers of jobs on the grid (Ruay-Shiung et al., 2008). Using the Queue Access

Cost scheduler, we undertake the workload test by conducting various number of

jobs, ranging from 200 to 4000. The basic parameter settings used in this experiment

is shown in Table 5.1, and result of the workload test is shown in Table 5.2.

Table 5.1: Parameter Settings for Workload Test

Parameter Value

Number of Jobs 200, 500, 1000, 2000, 4000

Scheduler QAC scheduler

Site Policy All Job Types

Access history length 1000000 ms

Storage metric (D) 0.67

Max. Queue Size 200

Job Delay 2500 ms

 68

Table 5.2: Simulation Results for Workload Test

Number of

Jobs
Metrics LRU LFU LALW DRCM RBR

200

MJET 4582 4398 3931 3792 3545

ENU 56.22 55.23 37.87 35.16 31.92

ASU 34.58 33.96 34.13 29.91 27.73

CEU 21.83 19.53 22.15 23.54 23.41

500

MJET 10911 8994 7839 7791 7566

ENU 46.19 47.46 36.88 31.17 30.06

ASU 36.17 37.45 35.71 32.42 28.78

CEU 18.87 20.31 25.91 26.38 27.15

1000

MJET 17108 17030 16241 14522 12311

ENU 44.42 43.21 34.25 28.94 26.88

ASU 39.49 39.64 37.12 35.46 29.97

CEU 24.34 25.6 30.25 32.62 34.27

2000

MJET 56567 55948 54133 52689 50361

ENU 45.76 46.42 32.45 27.19 24.36

ASU 40.63 40.64 38.63 36.11 30.54

CEU 21.5 20.43 25.74 31.75 33.83

4000

MJET 114652 106979 104129 103771 103396

ENU 45.83 47.53 30.89 25.37 22.73

ASU 40.62 40.64 40.11 37.63 31.54

CEU 23.96 23.88 28.11 31.91 33.27

In order to show the efficiency of the DRCM over the existing algorithms, the

efficiency values are calculated. For example, the RBR outperformed DRCM by

14.15% in ENU metric, LRU by 5.12% in MJET metric, and 14.51% in ASU metric.

 69

Table 5.4 shows the efficiency of the RBR -as percentage values- over other existing

algorithms.

Table 5.3: Efficiency Result for Workload Test

Metrics LRU LFU LALW DRCM

MJET 7.87% 7.43% 24.25% 5.12%

ENU 41.12% 40.97% 23.09% 14.15%

ASU 17.89% 18.02% 19.55% 14.51%

CEU 30.22% 32.30% 15.30% 9.04%

In what follows, we discuss and analyze the result that is presented in Table 5.2. The

results show a linear increase in the MJET as the number of jobs on the grid

increases. This is because, as more jobs are submitted, the queue at the sites

increases. If the job submission rate is higher than the grid’s job processing rate, this

build-up of queues is inevitable. Hence, a preferred algorithm is an algorithm that

has less MJET. As shown in Figure 5.1, for MJET, the RBR is the best among

existing algorithms. Utilizing the RBR, the mean job execution time is reduced and

is noted to better by 5.12% over DRCM, 24.25% over LALW, and about 7 % over

LRU and LFU.

Referring to the Average Storage Usage (ASU), the LFU and LRU algorithms are

noted to utilize more storage as they replicate files to the local storage. This is

followed by the LALW and DRCM. However, by using RBR, the storage usage is

reduced by outperforming LRU, LFU, LALW, and DRCM by 17.89%, 18.02%,

19.55%, 14.51% respectively.

 70

On the other hand, results of Efficient Network Usage (ENU) show a slight linear

decrease as number of jobs on the grid increases. This is because at the start of the

simulation the queues are small, but they build up quickly while the files are

replicated in the grid. Once the replication process has established, the execution

time are reduced and the queue is shorten. The ENU gradually decreases with the

increment in number of jobs because the amount of replication decreases over time.

The LRU and LFU have the highest effective network usage, showing that they are

poor at making replication decisions. The RBR uses the lowest amount of network

resources for the tested number of jobs because it is able to make better decision in

deciding file that requires replication.

Looking at the Computing Element Usage (CEU) metric, it can be seen that the CEU

generally grows as the number of jobs increases, reflecting the heavy workload.

However, there is an obvious drop between 1000 and 2000, this is because with the

higher number of jobs, the scheduling algorithm is sending most of the extra jobs to

a few sites from where the data are easily accessible, leading to more uneven

distribution of jobs around the grid. The same trend, although less marked, there is a

slight drop seen with RBR. This indicates that RBR leads to make a good balance in

the grid, this is because RBR distribute the replicas among the sites taking into

account the workload of the sites in the grid and places of the existing replicas,

which in turn drive the scheduling algorithm to make a balance while submitting the

jobs, as they send the job to the computing elements that are close to the data

 71

(a)

(b)

1000

21000

41000

61000

81000

101000

121000

200 500 1000 2000 4000

M
JE

T
 (

se
co

n
d

s)

Number of Jobs

LRU

LFU

LALW

DRCM

ABRS

0

10

20

30

40

50

60

200 500 1000 2000 4000

E
N

U
 (

%
)

Number of Jobs

LRU

LFU

LALW

DRCM

ABRS

 72

(c)

(d)

(d)

 Length of Access History 5.2

In this experiment, the effect of access history length on the performance of RBR

and other existing algorithms is investigated. Using QAC scheduling algorithm and

submitting 500 jobs to the grid, the access history length varying between 10
3
 ms

0

5

10

15

20

25

30

35

40

45

200 500 1000 2000 4000

A
S

U
 (

%
)

Number of Jobs

LRU

LFU

LALW

DRCM

ABRS

10

15

20

25

30

35

40

200 500 1000 2000 4000

C
E

U

Number of Jobs

LRU

LFU

LALW

DRCM

ABRS

Figure 5.1: Workload Test Results of (a) MJET, (b) ENU, (c) ASU and (d) CEU

 73

and 10
6
 ms. In order to test the behavior of RBR in different cases, namely when the

access history has a poor information on file accesses, and when the access history

has enough information on file accesses. Thus, we consider in this experiment that

job submission rate (job delay) varying between 1000 ms and 2500 ms. The MJET,

ENU, and ASU are measured. The basic parameter setting is shown in Table 5.4

while the result is provided in Table 5.5.

Table 5.4 Parameter Settings for Access History Test

Parameter Value

Number of Jobs 500

Scheduler QAC scheduler

Site Policy All Job Types

Access history length 10
3
 ms, 10

4
 ms, 10

5
 ms, 10

6
 ms

Storage metric (D) 0.67

Max. Queue Size 200

Job Delay
1000 ms, 1500 ms, 2000 ms,

2500 ms

The first test in this experiment considers access history length of 1000 ms and job

delay of 1000 ms. This means that the access history contains information on only

one job files, i.e. the access history length may not be adequate as we have 500 jobs.

However, we also include experiment that considers an access history length of 10
6

ms while the job delay is defined at 2500 ms, hence indicating that the access history

would have a view of the overall access patterns.

 74

Table 5.5: Simulation Results for Access History Test

Access

History

Length

Job

Delay
Metrics LRU LFU LALW DRCM RBR

10
3

1000

MJET 7543 7127 11995 11295 11189

ENU 30.96 30.85 47.26 46.26 40.29

ASU 35.83 34.4 37.27 28.91 27.13

 CEU 21.49 20.25 23.53 25.31 27.41

10
4
 1500

MJET 11518 9745 10980 10740 10570

ENU 43.18 43.13 44.26 43.26 41.56

ASU 38.19 36.5 37.36 30.11 28.98

CEU 23.3 18.35 24.28 26.35 28.15

10
5
 2000

MJET 10816 10327 9972 9346 9039

ENU 43.74 47.87 40.26 37.26 33.88

ASU 35.98 37.67 37.91 32.98 29.37

CEU 22.75 19.4 24.98 26.49 28.47

10
6
 2500

MJET 10911 8994 7839 7791 7566

ENU 46.19 47.46 36.88 31.17 30.06

ASU 36.17 37.45 35.71 32.42 28.78

CEU 18.87 20.31 25.91 26.38 27.15

Based on data tabulated in table 5.5, the efficiency of the RBR -as percentage

values- over other existing algorithms is shown in Table 5.6.

 75

Table 5.6: Efficiency Result for Access History Test

 LRU LFU LALW DRCM

MJET 3.98% -8.21% 3.98% 2.06%

ENU 11.14% 13.89% 13.56% 7.70%

ASU 21.83% 21.75% 22.93% 8.17%

CEU 28.67% 41.97% 12.64% 6.36%

Figure 5.2 clearly shown that the performance of all algorithms get worse until the

access history contains enough information on the files, and there is not a large

variation in mean job time of each algorithm. The poor performance of LALW,

DRCM, and RBR with small access histories, however, LFU and LRU are the best

performer. LALW, DRCM and RBR perform badly with small access history

because the files values changes rapidly that seemingly worthless files will be

deleted when they are likely to be requested in the near future. Those strategies

namely LALW, DRCM and RBR require a large access history to be able to assess

well which files are worth keeping. There is no noticeable effect of the length of

access history on both of storage element usage and computing element usage.

 76

(a)

(b)

1000

3000

5000

7000

9000

11000

13000

1000 10000 100000 1000000

M
JE

T
 (

se
co

n
d

s)

Access History

LRU

LFU

LALW

DRCM

ABRS

0

10

20

30

40

50

60

1000 10000 100000 1000000

E
N

U
 (

%
)

Access History

LRU

LFU

LALW

DRCM

ABRS

 77

(c)

(d)

0

5

10

15

20

25

30

35

40

45

1000 10000 100000 1000000

A
S

U
 (

%
)

Access History

LRU

LFU

LALW

DRCM

ABRS

10

15

20

25

30

1000 10000 100000 1000000

C
E

U

Access History

LRU

LFU

LALW

DRCM

ABRS

Figure 5.2: Access History Test Result for (a) MJET, (b) ENU, (c) ASU and (d) CEU

 78

 Storage Size 5.3

The sizes of the files and in turn the value of D may affect the performance of each

replication algorithm. The less storage space available at a site would lead to a

longer job execution time and higher network usage as fewer replicas can be

accommodated in the grid. In this experiment, we investigate the performance of

RBR with different storage size. The settings used in this experiment is shown in

Table 5.7 and the results is shown in Table 5.8.

Table 5.7: Parameter Settings for Storage Size Test

Parameter Value

Number of Jobs 500

Scheduler QAC scheduler

Site Policy All Job Types

Access history length 1000000 ms

Storage metric (D) 0.05, 0.37, 0.66, 1.31

Max. Queue Size 200

Job Delay 2500 ms

 79

Table 5.8: Simulation results for Storage Size Test

Storage Metric Metrics LRU LFU LALW DRCM RBR

0.05

MJET 12004 11221 10820 10821 10932

ENU 89.21 88.91 89.26 88.94 88.46

ASU 94.66 93.94 91.11 91.24 90.47

CEU 25.25 24.22 25.29 26.38 27.21

0.37

MJET 10529 10281 9734 9486 9272

ENU 55.19 53.22 53.68 52.98 50.75

ASU 57.21 56.36 53.98 53.91 47.35

CEU 24.31 24.93 23.32 25.84 26.71

0.66

MJET 10011 9484 9250 8123 6985

ENU 46.49 47.56 35.34 33.88 29.57

ASU 37.47 38.11 36.97 32.71 27.52

CEU 24.53 25.78 25.44 25.52 26.19

1.31

MJET 6712 7101 8174 8210 8117

ENU 13.79 14.13 15.92 15.88 16.42

ASU 21.92 18.95 23.34 19.21 18.83

CEU 27.52 21.91 29.62 30.02 32.59

Data in Table 5.9 shows the efficiency of the RBR -as percentage values- over other

existing algorithms.

Table 5.9: Efficiency Result for Storage Size Test

 LRU LFU LALW DRCM

MJET 10.06% 7.30% 7.04% 3.64%

ENU 9.52% 9.14% 4.63% 3.38%

ASU 12.82% 11.18% 10.34% 6.55%

CEU 10.91% 16.38% 8.71% 4.58%

 80

Based on the data depicted in Table 5.8, for the smallest value of D (i.e. D=0.05), the

MJET all replication algorithms is high, as replication lose its advantage compared

to remote access and each new job is more likely to request files which have not

been requested before, because the available space in the storage elements is very

limited. The job scheduler submits the jobs evenly among the sites, even if the sites

have a heavy workload, and thus the increasing number of jobs that are waiting in

the queue in the sites are increased as well as the mean job time. For the highest

value of D (i.e. D = 1.31) as shown in Figure 5.3, the LRU and LFU are slightly

faster than other strategies, because the files are likely to be read locally as LRU and

LFU always replicate the files. Looking at ENU metric in Figure 5.3, it is noticeable

that ENU falls as D decreases, for all replication algorithms due to the same reason,

as there is enough space in storage elements to the extent that all of the replicas can

be accommodated and read locally. The RBR perform the best when (D= 0.37) and

D = 0.66 as it gives the shortest job execution time and smallest value of ENU. This

is because LALW and DRCM ignore the age of the file, which in turn will give the

recently created files small value and then later will be deleted because of their low

value. However, RBR evaluates the files taking into account their ages with the aim

of keeping the potential popular file available.

Moreover, RBR outperforms LALW by 3.38% in improving ENU. This is because

number of replications required by RBR is less DRCM – RBR adds more restrictions

in evaluating the files that depends on three criteria to determine files that require

replication as compared to only two by DRCM.

Looking at CE metric in Figure 5.3, there is a little variation in the computing

element usage when value of D < 1. This is because the files are spread around the

 81

sites, in this case RBR outperform other replication algorithms. When D > 1 (i.e.

D=1.3) there is a noticeable increase in computing element usage meaning that

replication algorithms lead to make balance in grid system. Due to large storage

space that allows the sites to store all the files in grid system, therefore every site in

grid is likely to be a candidate that chosen by job scheduler to run the job. As a

result, job scheduler has more choices when submitting the jobs to the grid sites and

can balance number of jobs at each site.

(a)

(b)

1000

3000

5000

7000

9000

11000

13000

0.05 0.37 0.66 1.31

M
JE

T
 (

se
co

n
d

s)

D

LRU

LFU

LALW

DRCM

ABRS

0

10

20

30

40

50

60

70

80

90

100

0.05 0.37 0.66 1.31

E
N

U
 (

%
)

D

LRU

LFU

LALW

DRCM

ABRS

 82

(c)

(d)

0

10

20

30

40

50

60

70

80

90

100

0.05 0.37 0.66 1.31

A
S

U
 (

%
)

D

LRU

LFU

LALW

DRCM

ABRS

10

15

20

25

30

35

0.05 0.37 0.66 1.31

C
E

U

D

LRU

LFU

LALW

DRCM

ABRS

Figure 5.3: Storage Size Test Result on (a) MJET, (b) ENU, (c) ASU and (d) CEU

 83

 Summary of Chapter 5.4

In this chapter, we presented the result of our simulation experiments. In the

simulation experiments, different scenarios were employed to evaluate the RBR and

other relevant replication algorithms. The simulation results showed an overall

improvement of the performance of data grid when RBR was employed. As a result

the overall bandwidth consumption decreases, and RBR is a better algorithm for

storage usage. In addition, the RBR greatly affects the work of job scheduler and in

turn the overall computing element usage.

In the next chapter, the conclusion and contribution of the research work presented in

this report will be described. It will also include some suggestion on how the work

can be continued in the future.

 84

CHAPTER SIX

CONCLUSION

This chapter presents a conclusion of the research work as explored and described in

the report. The research contributions are supported by the experimental results

which are highlighted. The applicability of the proposed algorithm in the real world

is also presented, followed by a discussion of the research limitations. Eventually,

several possible future research directions to realize and extend the work are also

identified and recommended.

Data replication is a technique to move and cache data close to users. By replication,

data access performance can be improved dynamically. The general idea of

replication is to store copies of data in different locations so that data can be easily

recovered if one copy at one location is lost or unavailable. Therefore, the proposed

algorithm (RBR) has been designed and implemented as a response to the need of an

alternative replication algorithm in the established domain, where data proliferation

and limited resources in data grids are common. The main problem that is addressed

by this research is how to make a decision on replica creation in order to satisfy both

the grid resources and grid users.

Resource satisfaction is achieved by reducing the overall cost which includes

reducing storage cost and network bandwidth. On the other hand, user satisfaction is

achieved by reducing job execution time. The proposed RBR allows for greater user

satisfaction and resource satisfaction simultaneously because it complies with grid

 85

resource limitations and the requirements of the users’ job. Making a decision on

replication and deletion is not an easy task. It was observed that considering all grid

request patterns in evaluating the files which will influence the decision, is better

than considering only the most well-known request. In this context, the most well-

known request is the request which is made directly by the user for a specific data

file. Additionally, it was learned that considering the distribution of the replication

along with other parameters such as the transfer time of data file among sites, and

workload of each site have a significant effect on the overall system performance,

specially the job execution time, because grid sites expose geographical localities in

the data grid environment.

 Contribution of the Research 6.1

The contribution of this research work is related to the proposing of a new replica

creation algorithm that enhances the performance of the data grid by reducing job

execution time and reducing the overall grid resource cost. This has been achieved

by proposing the followings:

i. a resource selection function

This research proposes a new function (as in equation 4.4) to be used in

determining the suitability or urgency of a resource (i.e data file) to be replicated.

The larger the value of the proposed xyz{	¨©zª{ (FV), the more important the

resource is to the grid system. The utilized exponential model evaluates the

resource in terms of user demand behavior and notes the importance of the resource

to the users. This is complemented by utilizing information on the resource

 86

relationships with existing resources. Additionally, the time period of a resource is

also considered in the formulation of the function.

ii. a replica quantity function

The proposed RBR also consist a function in determining the number of replication

that is suitable or required by the identified resource. The proposed function 9as in

equation 4.6) adapts the one presented in (Madi, 2012) by employing the proposed

xyz{	¨©zª{ (FV). The proposed function determines the number of replica by

considering existing volume of demand and storage space.

iii. a replication algorithm that is based on relationships

Based on the two proposed functions, this research integrates them into an algorithm

that contributes in determining which resource that requires replication and how

many copies of it would be beneficial to the data grid system. The proposed

Relationship-based Replication (RBR) is shown in Figure 4.4.

iv. the implementation of RBR in a data grid simulator (OptorSim)

This implementation can be used by other researchers for comparison or

modification purposes. It presents the proposed RBR and existing replication

algorithms.

 Future Work 6.2

The work reported in this research has opened up several avenues for exploration

and one of the main extensions is in the area of replica management. Once the

 87

resource and number of replication has been identified, research can also be

undertaken to determine the optimized location of the newly created replica. Storing

a replica in the most suitable site would contribute in reducing job execution time.

The second strategy that could be included in replica maintenance is the re-location

of existing resource (and its replicas) in the data grid system. This is required as the

volume and pattern of demand can changed dynamically. Hence, a function or

algorithm that relocates resource file and their replicas to sites that provide better

services in the context of the current situation and network conditions would

beneficial.

 88

REFERENCES

A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, & Tuecke., S. (2001). The Data Grid:

Towards an Architecture for the Distributed Management and Analysis of Large

Scientific Datasets. Journal of Network and Computer Applications, 23.

Abawajy, J. H. (2004). Placement of file replicas in data grid environments. Lecture Notes in

Computer Science, 66-73.

Abdelsalam A. Helal, Abdelsalam A. Heddaya, & Bharat B. Bhargava. (1996). Replication

techniques in distributed systems: Kluwer Academic Publishers.

Al-Mistarihi, H. H. E., & Yong, C. H. (2008). Response Time Optimization for Replica

Selection Service in Data Grids. Journal of Computer Science, 4(6), 487-493.

Al Mistarihi, H. H. E., & Yong, C. H. (2008). Replica management in data grid.

International Journal of Computer Science and Network Security IJCSNS, 8(6), 22.

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I., Kesselman, C., . . .

Tuecke, S. (2002). Data management and transfer in high-performance

computational grid environments. Parallel Computing, 28(5), 749-771.

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Kesselman, C., Meder, S., . . .

Foster, I. (2001, 17-20 April 2001). Secure, efficient data transport and replica

management for high-performance data-intensive computing. Paper presented at the

IEEE Mass Storage Systems and Technologies.

Avery, P. (2002). Data Grids: a new computational infrastructure for data-intensive science.

Philosophical Transactions of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences, 360(1795), 1191.

Bell, W. H., Cameron, D. G., Capozza, L., Millar, P., Stockinger, K., & Zini, F. (2003).

Simulation of Dynamic Grid Replication Strategies in OptorSim. Journal of High

Performance Computing Applications, 17(4).

Bell, W. H., Cameron, D. G., Millar, A. P., Capozza, L., Stockinger, K., & Zini, F. (2003).

Optorsim: A grid simulator for studying dynamic data replication strategies.

International Journal of High Performance Computing Applications, 17(4), 403-

416.

Ben Charrada, F., Ounelli, H., & Chettaoui, H. (4-6 Nov. 2010). An Efficient Replication

Strategy for Dynamic Data Grids. Paper presented at the P2P, Parallel, Grid, Cloud

and Internet Computing (3PGCIC), 2010 International Conference on.

Ben Charrada, F., Ounelli, H., & Chettaoui, H. (2010, 4-6 Nov. 2010). An Efficient

Replication Strategy for Dynamic Data Grids. Paper presented at the Proceedings of

International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

(3PGCIC),.

Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., . . . Fox, P.

(2005). The earth system grid: Supporting the next generation of climate modeling

research. Proceedings of the IEEE, 93(3), 485-495.

Bsoul, M., Al-Khasawneh, A., Kilani, Y., & Obeidat, I. (2010). A threshold-based dynamic

data replication strategy. The Journal of Supercomputing, 1-10.

Caitriana M. Nicholson. (2006). File management for HEP data grids. PhD thesis,

University of Glasgow.

Cameron, D. G., Carvajal-Schiaffino, R., Millar, A. P., Nicholson, C., Stockinger, K., &

Zini, F. (2003). UK grid simulation with OptorSim. Paper presented at the

Proceedings of UK e-Science All Hands Meeting, Nottingham, UK.

Cameron, D. G., Carvajal-Schiaffino, R., Millar, A. P., Nicholson, C., Stockinger, K., &

Zini, F. (March 2004). Evaluating scheduling and replica optimisation strategies in

OptorSim. Journal of Grid Computing, 57-69.

 89

Cameron, D. G., Millar, A. P., Nicholson, C., Carvajal-Schiaffino, R., Stockinger, K., &

Zini, F. (2004). Analysis of scheduling and replica optimisation strategies for data

grids using OptorSim. Journal of Grid Computing, 2(1), 57-69.

Carman, M., Zini, F., Serafini, L., & Stockinger, K. (2002). Towards an economy-based

optimisation of file access and replication on a data grid. Paper presented at the

Proceedings of Second IEEE International Symposium on Cluster Computing and

the Grid (CCGRID'02).

Challal, Z., & Bouabana-Tebibel, T. (2010). A priori replica placement strategy in data

grid. Paper presented at the Proceedings of 2010 International Conference on

Machine and Web Intelligence (ICMWI), .

Chang, H. P. (2006). A Dynamic Data Replication Strategy Using Access-Weights in Data

Grids.

Chervenak, A., Deelman, E., Foster, I., Hoschek, W., Iamnitchi, A., Kesselman, C., . . .

Tierney, B. (2002). Giggle: A framework for constructing scalable replica location

services. Paper presented at the International IEEE Supercomputing Conference (SC

2002), Baltimore, USA.

Chervenak, A., Deelman, E., Kesselman, C., Allcock, B., Foster, I., Nefedova, V., . . .

Drach, B. (2003). High-performance remote access to climate simulation data: A

challenge problem for data grid technologies. Paper presented at the Super

Computing.

CMS Data Challenge 2004. http://www.uscms.org/s&c/dc04/.

David G. Cameron. (2005). Replica management and optimisation for data grids. PhD.

Thesis, University of Glasgow.

David, W. B. (2003). Evaluation of an economy-based file replication strategy for a data

grid. Paper presented at the International Workshop on Agent based Cluster and

Grid Computing.

Dooley, R., Milfeld, K., Guiang, C., Pamidighantam, S., & Allen, G. (2006). From proposal

to production: Lessons learned developing the computational chemistry grid

cyberinfrastructure. Journal of Grid Computing, 4(2), 195-208.

Dutka, L., Slota, R., Nikolow, D., & Kitowski, J. (2004). Optimization of Data Access for

Grid Environment. Paper presented at the Grid Computing.

European Organization for Nuclear Research (CERN).

http://public.web.cern.ch/Public/Welcome.html.

F. Berman, G. Fox, & Hey., T. (2003). The Grid: Past, Present, Future, Grid Computing:

Making the Global Infrastructure a Reality. London, UK: Wiley Press.

Farooq, U., Majumdar, S., & Parsons, E. W. (2007). Engineering grid applications and

middleware for high performance. Paper presented at the Proceedings of the 6th

international workshop on Software and performance.

Fisher, M. L. (2004). The Lagrangian relaxation method for solving integer programming

problems. Management science, 1861-1871.

Foster, I. (2000). Internet computing and the emerging grid. Nature Web Matters, 7.

Foster, I. (2002a). The grid enabling resource sharing within virtual organizations. Paper

presented at the WWW 2000 Conference.

Foster, I. (2002b). The Grid: A New Infrastructure for 21st Century Science. PHYSICS

TODAY, 55(2), 42-47.

Foster, I., Alpert, E., Chervenak, A., Drach, B., Kesselman, C., Nefedova, V., . . . Williams,

D. (2002). The Earth System Grid II: Turning climate datasets into community

resources. Paper presented at the Annual Meeting of the American Meteorological

Society.

Foster, I., & Kesselman, C. (1999). The Grid: Blueprint for a New Computing Infrastructure.

San Francisco: Morgan Kaufmann Publishers, 24(677), 8.

 90

Foster, I., Kesselman, C., Nick, J. M., & Tuecke, S. (2002). Grid services for distributed

system integration. Computer, 35, 37-46.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the Grid: Enabling scalable

virtual organizations. International Journal of Supercomputing Applications, 15(3),

200-222.

Fox, G., Ko, S. H., Pierce, M., Balsoy, O., Kim, J., Lee, S., . . . Varank, M. (2002). Grid

services for earthquake science. Concurrency and Computation: Practice and

Experience, 14(6 7), 371-393.

Frederic Magoulès. (2010). Fundamentals of grid computing: theory, algorithms and

technologies. USA: Chapman & Hall/CRC Numerical Analysis & Scientific

Computing.

G.A.Gravvanis, J. P. M., H.R. Arabina, D.A. Power (Ed.). (2009). Grid Technology and

Applications: Recent Developments. New York: Nova Science Publishers, Inc.

Gagliardi, F., Jones, B., Grey, F., Bégin, M. E., & Heikkurinen, M. (2005). Building an

infrastructure for scientific Grid computing: status and goals of the EGEE project.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 363(1833), 1729.

Garmehi, M., & Mansouri, Y. (2007, 17-20 Dec. 2007). Optimal Placement Replication on

Data Grid Envirments. Paper presented at the Proceedings of Information

Technology, (ICIT 2007). 10th International Conference on.

Guy, L., Kunszt, P., Laure, E., Stockinger, H., & Stockinger, K. (2002). Replica

management in data grids. Paper presented at the Global Grid Forum.

Hey, T., & Trefethen, A. E. (2005). Cyberinfrastructure for e-Science. Science, 308(5723),

817.

High Energy Physics Experiment Website. http://www.hep.net.

Holtman, K. (2001). CMS data grid system overview and requirements. CMS Note, 37.

Hong, L., Xue-dong, Q., Xia, L., Zhen, L., & Wen-xing, W. (2008). Fast Cascading

Replication Strategy for Data Grid. Paper presented at the Proceedings of the 2008

International Conference on Computer Science and Software Engineering-Volume

03.

Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H., & Stockinger, K. (2000). Data

management in an international data grid project. Lecture Notes in Computer

Science, 77-90.

Johnston, W. E. (2002). Computational and data Grids in large-scale science and

engineering. Future Generation Computer Systems, 18(8), 1085-1100.

Kalpakis, K., Dasgupta, K., & Wolfson, O. (2001). Optimal placement of replicas in trees

with read, write, and storage costs. IEEE Transactions on Parallel and Distributed

Systems, 628-637.

Kapitza, S. P. (2003). The statistical theory of global population growth. Paper presented at

the Formal descriptions of developing systems.

Karl, S. B., Czajkowski, K., Fitzgerald, S., Foster, I., Johnson, A., Kesselman, C., . . .

Tuecke, S. (1998). Application Experiences with the Globus Toolkit. Paper presented

at the Proceedings of Eighth IEEE Symposium on High Performance Distributed

Computing.

Kelly, N., Jithesh, P. V., Simpson, D. R., Donachy, P., Harmer, T. J., Perrott, R., . . . McKee,

S. (2004). Bioinformatics data and the grid: The GeneGrid data manager. Paper

presented at the UK e-Science All Hands Meeting 2004 (AHM04).

Ko, S. Y., Morales, R., & Gupta, I. (2007). New worker-centric scheduling strategies for

data-intensive grid applications. Paper presented at the Proceedings of the 8th

ACM/IFIP/USENIX international conference on Middleware.

Kreft, J. U., Booth, G., & Wimpenny, J. W. T. (1998). BacSim, a simulator for individual-

based modelling of bacterial colony growth. Microbiology, 144(12), 3275.

 91

Kremer, M. (1993). Population growth and technological change: one million BC to 1990.

The Quarterly Journal of Economics, 108(3), 681-716.

Krishnamurthy, S., Sanders, W. H., & Cukier, M. (2002). Performance evaluation of a

probabilistic replica selection algorithm. Paper presented at the Proceedings of the

Seventh International Workshop on Object-Oriented Real-Time Dependable

Systems, (WORDS 2002). .

Lamehamedi, H., Shentu, Z., Szymanski, B., & Deelman, E. (2003, April 2003). Simulation

of dynamic data replication strategies in data grids. Paper presented at the

Proceedings of 12th Heterogeneous Computing Workshop (HCW2003), Nice,

France, .

Lamehamedi, H., Szymanski, B., Shentu, Z., & Deelman, E. (2002). Data Replication

Strategies in Grid Environments. Paper presented at the Fifth International

Conference on Algorithms and Architectures for Parallel Processing.

Lamehamedi, H., & Szymanski, B. K. (2007). Decentralized data management framework

for data grids. Future Generation Computer Systems, 23(1), 109-115.

Lei, M., Vrbsky, S. V., & Hong, X. (2007). A dynamic data grid replication strategy to

minimize the data missed. Paper presented at the Proceedings of 3rd International

Conference on Broadband Communications, Networks and Systems.

BROADNETS. .

Lin, Y. F., Wu, J. J., & Liu, P. (2008). A List-Based Strategy for Optimal Replica Placement

in Data Grid Systems. Paper presented at the Proceedings of Parallel Processing,

2008. ICPP'08. 37th International Conference on.

Madi, M. (2012). Replica Creation Algorithm for Data Grid. (PhD), Universiti Utara

Malaysia, Sintok.

Magoulès, F., Pan, J., Tan, K. A., & Kumar, A. (2009). Introduction to grid computing (Vol.

6): CRC.

Magoulès, F., & Yu, L. (2009). Grid resource management: towards virtual and services

compliant grid computing: CRC Press.

Mansouri, Y., Garmehi, M., Sargolzaei, M., & Shadi, M. (2008). Optimal Number of

Replicas in Data Grid Environment. Paper presented at the First International

Conference on Distributed Framework and Applications, 2008. DFmA 2008. .

Mathew J. Wyatt, Nigel G.D. Sim, Dianna L. Hardy, & Atkinson, I. M. (2007).

YourSRB: A cross platform interface for SRB and Digital Libraries. Paper presented

at the Proceedings of the fifth Australasian symposium on ACSW frontiers-Volume

68.

Meyer, L., Annis, J., Wilde, M., Mattoso, M., & Foster, I. (2006). Planning spatial

workflows to optimize grid performance. Paper presented at the Proceedings of the

2006 ACM symposium on Applied computing.

Naseera, S., & Murthy, K. V. M. (2009). Agent Based Replica Placement in a Data Grid

Environement. Paper presented at the Proceedings of First International Conference

on Computational Intelligence, Communication Systems and Networks.

CICSYN'09.

Nicholson, C., Cameron, D. G., Doyle, A. T., Millar, A. P., & Stockinger, K. (2008).

Dynamic data replication in lcg 2008. Concurrency and Computation: Practice and

Experience, 20(11), 1259-1271.

Othman, O., O'Ryan, C., & Schmidt, D. (2001). The Design and Performance of an Adaptive

CORBA Load Balancing Service. IEEE Distributed Systems Online, 2(4), 48-60.

Otoo, E., Olken, F., & Shoshani, A. (2002). Disk cache replacement algorithm for storage

resource managers in data grids. Paper presented at the 2002 ACM/IEEE

conference on Supercomputing, Baltimore, Maryland

 92

Pangfeng, L., & Jan-Jan, W. (2006, 16-19 May 2006). Optimal replica placement strategy

for hierarchical data grid systems. Paper presented at the Cluster Computing and the

Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on.

Park, S. M., Kim, J. H., Ko, Y. B., & Yoon, W. S. (2004). Dynamic data grid replication

strategy based on Internet hierarchy. International Workshop on Grid and

Cooperative Computing, 1001, 1324–1331.

Rahman, R. M., Barker, K., & Alhajj, R. (2005). Replica placement in data grid:

considering utility and risk. Paper presented at the Proceedings of Information

Technology: Coding and Computing, 2005. ITCC 2005. International Conference

on.

Rahman, R. M., Barker, K., & Alhajj, R. (2008). Replica placement strategies in data grid.

Journal of Grid Computing, 6(1), 103-123.

Rahman, R. M., Barker, K., & Alhajj, R. (2009). Performance evaluation of different replica

placement algorithms. International Journal of Grid and Utility Computing, 1(2),

121-133.

Rajasekar, A., Wan, M., Moore, R., Schroeder, W., Kremenek, G., Jagatheesan, A., . . .

Olschanowsky, R. (2003). Storage resource broker-managing distributed data in a

grid. Computer Society of India Journal, special issue on SAN, 33(4), 42-54.

Ranganathan, K., & Foster, I. (2001a). Design and Evaluation of Dynamic Replication

Strategies for a High Performance Data Grid. Paper presented at the International

Conference on Computing in High Energy and Nuclear Physics, Beijing.

Ranganathan, K., & Foster, I. (2001b). Identifying Dynamic Replication Strategies for a

High-Performance Data Grid. International Grid Computing Workshop, 75-86.

Ranganathan, K., & Foster, I. (2001c). Identifying dynamic replication strategies for a high-

performance data grid. Grid Computing—GRID 2001, 75-86.

Ranganathan, K., Iamnitchi, A., & Foster, I. (2002). Improving data availability through

dynamic model-driven replication in large peer-to-peer communities. Paper

presented at the Global and Peer-to-Peer Computing on Large Scale Distributed

Systems Workshop.

Rasool, Q., Jianzhong, L., Oreku, G. S., Shuo, Z., & Donghua, Y. (2008). A load balancing

replica placement strategy in Data Grid. Paper presented at the Proceedings of

Third International Conference on Digital Information Management, ICDIM,

London, UK.

Rasool, Q., Li, J., & Zhang, S. (2009). Replica Placement in Multi-tier Data Grid. Paper

presented at the Proceedings of 2009 Eighth IEEE International Conference on

Dependable, Autonomic and Secure Computing.

Ruay-Shiung, C., Hui-Ping, C., & Yun-Ting, W. (2008). A dynamic weighted data

replication strategy in data grids. Paper presented at the AICCSA 2008:

Proceedings of IEEE/ACS International Conference on computer systems and

applications.

Sashi, K., & Thanamani, A. S. (2010). A New Replica Creation and Placement Algorithm

for Data Grid Environment. Paper presented at the Proceedings of 2010

International Conference on Data Storage and Data Engineering.

Shen, S. (2008). Grid computing: International Symposium on Grid Computing: Springer-

Verlag New York Inc.

Shorfuzzaman, M., Graham, P., & Eskicioglu, R. (2008). Popularity-Driven Dynamic

Replica Placement in Hierarchical Data Grids. Paper presented at the Parallel and

Distributed Computing, Applications and Technologies, 2008. PDCAT 2008.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2006). Operating System Principles: Wiley

India Pvt. Ltd.

Sloan Digital Sky Survey website. Available online at: http://www.sdss.org/

 93

Srikummar Venugopal. (2006). Scheduling Distributed Data-Intensive Applications on

Global Grids. (PhD thesis), PhD thesis, University of Melbourne, Australia.

Tang, M., Lee, B., Tang, X., & Yeo, C. (2005). Combining data replication algorithms and

job scheduling heuristics in the data grid. Lecture notes in computer science, 3648,

381.

Tang, M., Lee, B. S., Tang, X., & Yeo, C. K. (2006). The impact of data replication on job

scheduling performance in the Data Grid. Future Generation Computer Systems,

22(3), 254-268.

Tang, M., Lee, B. S., Yeo, C. K., & Tang, X. (2005). Dynamic replication algorithms for the

multi-tier Data Grid. Future Generation Computer Systems, 21(5), 775-790.

Teng, M., & Junzhou, L. (2005). A prediction-based and cost-based replica replacement

algorithm research and simulation. Paper presented at the Proceedings of 19th

International Conference on Advanced Information Networking and Applications,

(AINA 2005). .

The ALICE Collaboration. ALICE Computing Model. Technical Report CERN-LHCC-

2004-038/G-086. (CERN, January 2005.).

The CMS Collaboration. The CMS Computing Model. Technical Report CERN-

LHCC-2004-035/G-083. (CERN, January 2005.).

The ATLAS Collaboration. The ATLAS Computing Model. Technical Report CERN-

LHCC-2004-037/G-085. (CERN, January 2005.).

The European Data Grid Project. http://eudatagrid.web.cern.ch/eu-datagrid/. from

http://eudatagrid.web.cern.ch/eu-datagrid/

The Globus Alliance. http://www.globus.org/.

The LHCb Collaboration. LHCb Computing Model. Technical Report CERN-LHCC-2004-

036/G-084. (CERN, January 2005).

Tian, T., & Luo, J. (2007). A Prediction-based Two-Stage Replica Replacement Algorithm.

Paper presented at the Proceedings of 11th International Conference on Computer

Supported Cooperative Work in Design, (CSCWD 2007).

Tian, T., & Luo, J. (2010). A VO-Based Two-Stage Replica Replacement Algorithm.

Network and Parallel Computing, 41-50.

Vazhkudai, S., Tuecke, S., & Foster, I. (2001). Replica selection in the globus data grid.

Paper presented at the Proceedings of International Workshop on Data Models and

Databases on Clusters and the Grid (DataGrid 2001).

Venugopal, S., Buyya, R., & Ramamohanarao, K. (2006). A taxonomy of data grids for

distributed data sharing, management, and processing. ACM Computing Surveys

(CSUR), 38(1), 3.

Venugopal, S., Buyya, R., & Winton, L. (2006). A Grid service broker for scheduling e

Science applications on global data Grids. Concurrency and Computation: Practice

and Experience, 18(6), 685-699.

Wang, C., Yang, C., & Chiang, M. (2007). A Fair Replica Placement for Parallel Download

on Cluster Grid. Lecture Notes in Computer Science, 4658, 268.

Wasson, G., & Humphrey, M. (2003). Policy and enforcement in virtual organizations.

Paper presented at the Proceedings of the 4th International Workshop on Grid

Computing.

Wilkinson, B. (2009). Grid computing: techniques and applications: Chapman & Hall/CRC.

Wolski, R. (1997). Forecasting network performance to support dynamic scheduling using

the network weather service. Paper presented at the Proceedings of The Sixth IEEE

International Symposium on High Performance Distributed Computing.

Wuqing, Z., Xianbin, X., Zhuowei, W., Yuping, Z., & Shuibing, H. (2010, 20-22 Aug.

2010). A Dynamic Optimal Replication Strategy in Data Grid Environment. Paper

presented at the Proceedings of International Conference on Internet Technology

and Applications, .

 94

Xie, M., Dai, Y. S., & Poh, K. L. (2004). Computing systems reliability: models and

analysis: Springer Us.

Yang, C. T., Fu, C. P., & Huang, C. J. (2007). A dynamic file replication strategy in data

grids. Paper presented at the TENCON 2007-2007 IEEE Region 10 Conference.

Yang, C. T., Huang, C. J., & Hsiao, T. C. (2008). A Data Grid File Replication Maintenance

Strategy Using Bayesian Networks. Paper presented at the Intelligent Systems

Design and Applications, 2008. ISDA'08.

Yi-Fang, L., Pangfeng, L., & Jan-Jan, W. (2006). Optimal placement of replicas in data grid

environments with locality assurance. Paper presented at the Parallel and Distributed

Systems, 2006. ICPADS 2006. 12th International Conference on.

You, X., Chang, G., Chen, X., Tian, C., & Zhu, C. (2006). Utility-Based Replication

Strategies in Data Grids. Paper presented at the Fifth International Conference on

Grid and Cooperative Computing.

Yu, J., & Buyya, R. (2005). A taxonomy of scientific workflow systems for grid computing.

ACM Sigmod Record, 34(3), 44-49.

Zhao, W., Xu, X., Xiong, N., & Wang, Z. (2009). A Weight-Based Dynamic Replica

Replacement Strategy in Data Grids. Paper presented at the Proceedings of Asia-

Pacific Services Computing Conference, .

Zhong, H., Zhang, Z., & Zhang, X. (2010). A Dynamic Replica Management Strategy Based

on Data Grid. Paper presented at the Proceedings of 2010 Ninth International

Conference on Grid and Cloud Computing.

