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Abstract 

 

Data Grid is an infrastructure that manages huge amount of data files and provides 

intensive computational resources across geographically distributed systems. To 

increase resource availability and to ease resource sharing in such environment, there 

is a need for replication services. This research proposes a replication algorithm, 

termed as Relationship based Replication (RBR) that integrates users, grid and 

system perspective. In particular, the RBR includes information of three different 

relationships in identifying file(s) that requires replication; file-to-user, file-to-file 

and file-to-grid. Such an approach overcomes existing algorithms that is based either 

on users request or resource capabilities as an individual. The Relationship based 

Replication algorithm aims to improve the Data Grid performance by reducing the 

job execution time, bandwidth and storage usage. The RBR was realized using a 

network simulation (OptorSim) and experiment results revealed that it offers better 

performance than existing replication algorithms.   

 

 

Keywords: grid computing, data replication, data grid, replica creation, replica 

quantity.   
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CHAPTER ONE 

INTRODUCTION 

 Introduction 1.1

With rapid advances in scientific instrumentation and simulation, scientific data are 

growing fast in both data size and data analysis complexity. The next generation of 

scientific applications in domains as diverse as high energy physics, climate 

modeling, and earth sciences involve the production of large datasets from 

simulations or large-scale experiments. Analysis of these datasets and their 

dissemination among researchers located over a wide geographic area requires high 

capacity resources such as supercomputers, high bandwidth networks, and mass 

storage systems. 

 

The grid computing (Foster & Kesselman, 1999; G.A.Gravvanis, 2009) paradigm 

unites geographically-distributed and heterogeneous computing, storage, and 

network resources and provide unified, secure, and pervasive access to their 

combined capabilities. Therefore, grid platforms enable sharing, exchange, 

discovery, selection, and aggregation of distributed heterogeneous resources such as 

computers, databases, visualization devices, and scientific instruments (Venugopal, 

Buyya, & Winton, 2006). Hence leading to the creation of virtual organizations 

(Foster, 2002a; Foster, Kesselman, & Tuecke, 2001; Wasson & Humphrey, 2003) by 

allowing geographically-distributed communities to pool resources in order to 

achieve common objectives. These resources can be divided into computing or 

storage units that can be accessed or shared by large numbers of remote users. 

Computing unit or Computational Grid (Frederic Magoulès, 2010) focuses on 
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supplying computing power, while storage unit or data grid focuses on enabling and 

facilitating reliable access and sharing of data management resources in widely 

distributed locations. 

A data grid (Chervenak et al., 2003; Foster, Alpert, et al., 2002) is an infrastructure 

that deals with huge amounts of data to enable grid applications to share data files in 

a coordinated manner. Such an approach is seen to provide fast, reliable and 

transparent data access. Nevertheless, data grid creates a challenging problem in a 

grid environment because the volume of data to be shared is large despite the limited 

storage space and network bandwidth (Nicholson, Cameron, Doyle, Millar, & 

Stockinger, 2008; Wilkinson, 2009).  Furthermore, resources involved are 

heterogeneous as they belong to different administrative domains in a distributed 

environment. It is unfeasible for all users to access a single instance of data (e.g. a 

data file) from one single organization (e.g. site).  This would lead to the increase of 

data access latency. Furthermore, one single organization may not be able to handle 

such a huge volume of data by itself.  

 

Motivated by these considerations, a common strategy is used in data grids as well as 

in distributed systems, and this strategy is known as replication. Replication vouches 

efficient access without large bandwidth consumption and access latency (A. 

Chervenak, I. Foster, C. Kesselman, C. Salisbury, & Tuecke., 2001; Chervenak et 

al., 2002; Guy, Kunszt, Laure, Stockinger, & Stockinger, 2002; Lamehamedi, 

Shentu, Szymanski, & Deelman, 2003; Lamehamedi, Szymanski, Shentu, & 

Deelman, 2002; Otoo, Olken, & Shoshani, 2002; Ranganathan & Foster, 2001b). 

The replication technique is one of the major factors affecting the performance of 
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data grids (You, Chang, Chen, Tian, & Zhu, 2006). Creating replicas can reroute 

client requests to certain replica sites and offer higher access speeds. Hence, well-

defined replication strategies will smooth data access, and reduce  job execution cost 

(Tang, Lee, Tang, & Yeo, 2006). Such a strategy should also be able to deal with 

dynamic changes in the grid environment, such as dynamic resource availability and 

access patterns. 

 

Figure 1.1 shows a high-level view example of a worldwide data grid, consisting of 

computational and storage resources in different countries that are connected by high 

speed networks. The thick lines show high bandwidth networks linking the major 

centers and the thinner lines are lower capacity networks that connect the latter to 

their subsidiary centers. The data which were generated from an instrument, 

experiment, or a network of sensors is stored in its principal storage site and is 

transferred to the other storage sites around the world on request through the data 

replication mechanism.  Users query their local replica catalog to locate datasets that 

they require. The data may be transmitted to a computational site such as a cluster or 

a supercomputer facility for processing. After processing, the results may be sent to a 

visualization facility, a shared repository, or to the desktops of the individual users. 
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 Research Motivation 1.2

Replication can be motivated by two issues, availability of data (fault tolerance) and 

system performance (Abdelsalam A. Helal, Abdelsalam A. Heddaya, & Bharat B. 

Bhargava, 1996; Caitriana M. Nicholson, 2006). In a data grid, the high level of 

reliability (Caitriana M. Nicholson, 2006; Xie, Dai, & Poh, 2004) of the main data 

storage sites makes fault tolerance less of an issue, while the large file sizes increase 

the file access times of grid jobs. Therefore, performance becomes the main 

motivation for replication in data grids. 

 

In the context of the data grid, increasing the performance of the system can be 

achieved by improving the overall resource usage, which includes network and 

Figure 1.1 A High-Level View of Data Grid (Srikummar Venugopal, 1996) 
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storage resources (Lamehamedi & Szymanski, 2007). Improving network resource 

usage is achieved by good utilization of network bandwidth that is considered as an 

important factor affecting job execution time (Yang, Huang, & Hsiao, 2008). 

Meanwhile, improving storage resource usage is achieved by good utilization of 

storage space usage (Al Mistarihi & Yong, 2008). 

 

Performing data replication introduces additional problems: the decision of 

replication must be wisely made (identifying the appropriate data file to be 

replicated), replicas must be properly located, their numbers must be properly 

determined, their lifetime must be managed properly, and the related storage and 

resources must be utilized efficiently. To sum up, data replication process has to take 

into account both users’ and system’s perspectives. Even though these problems can 

be solved by existing replication algorithms (Chang, 2006; Mansouri, Garmehi, 

Sargolzaei, & Shadi, 2008; Pangfeng & Jan-Jan, 2006; Ranganathan & Foster, 

2001a; Ranganathan, Iamnitchi, & Foster, 2002; Rasool, Jianzhong, Oreku, Shuo, & 

Donghua, 2008; Ruay-Shiung, Hui-Ping, & Yun-Ting, 2008; Shorfuzzaman, 

Graham, & Eskicioglu, 2008; Tang, Lee, Tang, & Yeo, 2005; Tang et al., 2006; 

Tang, Lee, Yeo, & Tang, 2005; Wang, Yang, & Chiang, 2007; Yang, Fu, & Huang, 

2007; Yi-Fang, Pangfeng, & Jan-Jan, 2006), existing work require enhancements due 

to the absence of system’s perspective in terms of replication decision making.  

 

The replication is performed (deciding the file to be replicated and the required 

number of replicas) based on users’ perspective, i.e. according to number of access 

of a file. Therefore, the number of times a system makes replication has a possibility 
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to be increased. As a result, the network usage would be affected, this is because 

each replication consumes network bandwidth and increases network traffic. 

Moreover, the replication decision of current works does not involve the deletion 

process of unwanted replicas in their decision. Thus the storage cost will be 

increased. In this context, storage cost is the space used to store data. Therefore, 

increasing the storage cost would lead to less storage availability. According to 

(David G. Cameron, 2005) less storage availability would lead to longer job 

execution time and larger network usage because only fewer replicas can be 

accommodated in the data grid, and most files will be read remotely.  

 Objectives of the Research 1.3

The main goal of this research is to develop a replication algorithm aimed at 

improving the performance of the data grid system. In order to achieve this goal, the 

following research objectives were formulated: 

a. To formulate a resource selection function to identify which data file 

requires replication.  

b. To formulate a replica quantity function that determines the required   

number of replicas for the identified data file.   

c. To design a replication algorithm that integrates the proposed resource 

selection and replica quantity functions.  

d. To evaluate the proposed algorithm in a simulation environment.  
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 Significance of the Research 1.4

The proposed replication algorithm can be considered as a long-term strategy that 

aims at best utilization of grid resources usage, namely reducing storage use and 

reducing network bandwidth consumption. In other words, this proposed algorithm 

gives a bird’s eye view on all components; in a grid environment, the system 

designers or system administrators would be interested in this view in order to 

determine the overall resource requirements and to configure, to monitor, and to 

control the overall system components. 

 

The proposed replication algorithm is also beneficial for grid users as job execution 

time is reduced. Users’ jobs which are under execution would require data files and 

the grid system in turn would place the required files (i.e. replicas) as close as 

possible to the users (i.e. requesting sites). 

 Scope of the Research 1.5

This research focused on replica creation in a data grid system. Details of the scope 

is as below:  

i. Data used in this research is of read-only type. Thus, this research has not 

considered the consistency of write types and overheads of update propagation 

costs in this research.  

ii. This research focuses on a tree-like-structured grid model, which reflects the 

hierarchical structure in grid systems (David, 2003; Hoschek, Jaen-Martinez, 

Samar, Stockinger, & Stockinger, 2000; Ranganathan & Foster, 2001b). The 

hierarchical data grid model is a common architecture used in various research 
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works (Abawajy, 2004; David, 2003; Hoschek et al., 2000; Ranganathan & 

Foster, 2001b).  

iii. The modality of data that is used in this work is in the form of structured data, 

specifically source code data.  

 Report Layout 1.6

The remainder of this report is organized as follows: 

Chapter 2 provides an overview of the background material and establishes the 

concepts and issues covered in the thesis. In this chapter, a brief critical study and 

survey of the relevant existing studies are presented. 

Chapter 3 describes the steps taken in achieving the defined aim and objectives. The 

chapter also presents the brief information on the grid architecture and the utilized 

simulator. The performance evaluation metrics that were used as benchmarks to 

evaluate the proposed algorithm are also presented in this chapter.  

Chapter 4 describes the research solution that is encapsulated in a replica creation 

algorithm for solving the research problem. The algorithm requirements and design 

are explained in detail using appropriate examples. This chapter also covers the 

implementation of the proposed algorithm, which includes the integration of the 

proposed algorithm into the simulation environment.  

Chapter 5 presents the results obtained in the simulation experiments. Additionally, 

comparison is made with exiting replication algorithms.  

Chapter 6 summarizes the research work, highlights research contributions, and 

gives direction for future work related to this research. 
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CHAPTER TWO 

RELATED WORKS 

This chapter first explores: data grid and the challenges of data grid by illustrating 

some examples of the growth of data requirements for the scientific applications. 

Then related data-intensive studies are explored in order to provide an overview of 

the area and domain of this research. Then data replication strategies of Replica 

Creation Stage are discussed in details, each strategy discussed with the 

corresponding related works. The analysis of the features and limitations on the state 

of the art of replica creation stage strategies is performed. 

 Data Grid 2.1

The term data grid (Allcock et al., 2002; Allcock et al., 2001; Foster, 2002b) refers to 

an infrastructure that provides data management services for users in order to access, 

store, transfer, and replicate data files located within distributed storage media. 

Moreover, a data grid connects a collection of hundreds of geographically distributed 

computers and storage resources to facilitate sharing of data, storage resources, and 

computational power (Chervenak et al., 2003; Johnston, 2002). 

 

Through the linking of all these equipment, the Grid can provide a platform through 

which users can access aggregated computational, storage, and networking resources 

to execute their data-intensive applications using remote data (Avery, 2002; Foster, 

Kesselman, Nick, & Tuecke, 2002). It promotes a rich environment for users to 

analyze data and share the results with their collaborators across institutional and 
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geographical boundaries (Magoulès, Pan, Tan, & Kumar, 2009; Shen, 2008; 

Srikummar Venugopal, 2006). 

 The Challenges in Scientific Grid 2.2

The first Grid was conceived by computing science (Gagliardi, Jones, Grey, Bégin, 

& Heikkurinen, 2005; Hey & Trefethen, 2005). The scale of scientific experiments 

has grown so fast that traditional methods of computing used to solve associated 

problems are now quite inadequate. Scientific experiments such as high-energy 

physics (F. Berman, G. Fox, & Hey., 2003; The LHCb Collaboration. LHCb 

Computing Model. Technical Report CERN-LHCC-2004-036/G-084, CERN, 

January 2005), climate modeling, earthquake engineering (Foster, 2000; Fox et al., 

2002), bioinformatics (Kelly et al., 2004), and astronomy are generating huge 

volumes of data which are measured in terabytes and rising to petabytes within just a 

couple of years (Magoulès & Yu, 2009). There are many examples that illustrate the 

spectacular growth of data requirements for scientific applications (Yu & Buyya, 

2005), as will be described in the following sections. 

2.2.1 High Energy Physics  

The most cited example of massive data generation in the field of High Energy 

Physics (HEP) (High Energy Physics Experiment Website) is the Large Hadron 

Collider (LHC), which is the most powerful giant particle accelerator at CERN (the 

European Organization for Nuclear Research) (European Organization for Nuclear 

Research (CERN)). HEP consists of four main experiments namely ALICE (The  

ALICE  Collaboration. ALICE  Computing  Model. Technical  Report CERN-
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LHCC-2004-038/G-086, CERN, January 2005.), ATLAS (The ATLAS 

Collaboration. The ATLAS Computing Model. Technical Report CERN-LHCC-

2004-037/G-085, CERN, January 2005.), CMS (CMS Data Challenge 2004; 

Holtman, 2001; The  CMS  Collaboration.   The  CMS  Computing  Model.   

Technical  Report CERN-LHCC-2004-035/G-083, CERN, January 2005.), and 

LHCb (The LHCb Collaboration. LHCb Computing Model. Technical Report 

CERN-LHCC-2004-036/G-084, CERN, January 2005), which are designed to 

understand the fundamental particles of matter and the forces acting between them. 

HEP experiments will produce several petabytes of raw and derived data that will be 

accessed from different centers around the world through very heterogeneous 

computational resources. The raw data are generated at a single location (CERN) 

where the accelerator and experiment are hosted, but the computational capacity 

required to analyze them implies that the analysis must be performed at 

geographically distributed centers. In practice, CERN’s experiments are 

collaborations among thousands of physicists from about 300 universities and 

institutes in 50 countries. 
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2.2.2 Climate Modeling 

Another example of science that faces large quantities of data is climate model 

computations (Chervenak et al., 2003). Climate modeling requires long duration 

simulations and generates very large files that are needed to analyze the simulated 

climate (Bernholdt et al., 2005). These simulations, however, will produce tens of 

petabytes of output in future and if this output is to be useful it must be distributed to 

climate researchers at various institutions. 

 

2.2.3 Bioinformatics 

Genomics require programs such as genome sequencing projects, which produce 

huge amounts of data. The analysis of these raw biological data requires very large 

computing resources. Bioinformatics (Kelly et al., 2004) involve the integration of 

computers, software tools, and databases in an effort to address these biological 

applications, since genome sequences provide copious information about species 

from microorganisms to human beings. The analysis and comparison of genome 

sequences are necessary for the investigation of genome structures which is useful 

for the prediction about the functions and activities of organisms. 

 

2.2.4 Astronomy 

Another data-intensive application in the astronomy field is the Sloan Digital Sky 

Survey (SDSS) (Sloan Digital Sky Survey website. Available online at: 

http://www.sdss.org/ ) which aims to map in detail one quarter of the entire sky and 
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determines the positions and absolute brightness of more than 100 million celestial 

objects. It will also measure the distances to more than a million galaxies. SDSS and 

other astronomy applications are performed in several regions of the electromagnetic 

spectrum and produce an enormous amount of data. 

There are many other examples which could be drawn from chemistry (Dooley, 

Milfeld, Guiang, Pamidighantam, & Allen, 2006), engineering  (Farooq, Majumdar, 

& Parsons, 2007), and earth science (Foster, Alpert, et al., 2002). Suffice to say that 

science in general is facing a flood of data as technology develops and that in many 

cases, grids are seen as a viable solution to address these problems. 

 Data Grid Layered Architecture 2.3

The applications layer provides services and access interfaces for a specific 

community. These services invoke services provided by the layers below and 

customize them to suit the target domains, such as high energy physics, biology, and 

climate modeling. 
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The services layer is divided into two sub-layers: the high-level sub-layer and the 

low-level sub-layer. The high-level sub-layers are the services located in the upper 

layer such as replication management, replica selection optimization, and resource 

allocation.  The high-level sub-layers make use of the low-level sub-layers in order 

to improve the service quality for users. Replication management service manages 

the number of replicas and their locations in the grid sites in order to optimize the 

grid resource usage. However, the replica selection service provides the best replica 

location for the users or the jobs under execution. The low-level services at the same 

layer provide services to the upper level such as replication, data cataloguing, and 

resource monitoring. The data catalogue service provides a number of services such 

as record all replicas and their physical locations on the grid sites, register the newly 

created replicas, and delete the replicas from the registry that has been decided to be 

High energy 
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Data Visualization Climate Modeling

Replication Management Resource Allocation

Replication Data Cataloguing Resource Monitoring

File Transfer Protocol

Authentication Protocol

Networking Protocol

DatabaseFile SystemOperating System

Hardware/InstrumentsNetworkStorage System
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Figure 2.1 Overview of Data Grid Architecture 
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deleted by the replication management service. The replication service is different 

from the replication management service. The replication management service 

decides, and the replication service executes what has been decided by the 

replication management service. Once the replication management decides to create 

a new replica, the replication service creates a new copy of the specified file and uses 

data transfer service to move the copy (replica) to the underlying site location that is 

determined by the replication management service. 

The connectivity layer consists of protocols used to query resources in the grid fabric 

layer and to conduct data transfers between them. These protocols are built on core 

protocols for communication such as TCP/IP and file transfer protocols (for example 

GridFTP). The grid fabric consists of software and physical hardware components 

such as computing and storage resources. 

 Existing Grid System 2.4

This section explores the current grid systems and middleware architecture and 

features by highlighting the replication mechanism. 

2.4.1 Storage Resource Broker 

SRB (Mathew  J.  Wyatt, Nigel  G.D.  Sim, Dianna  L.  Hardy, & Atkinson, 2007) is 

a client- server middleware that provides a management system for data replica and a 

uniform single interface.  SRB manages heterogeneous distributed data storage to 

allow users to access files and database seamlessly. The unified view of the data files 

stored in disparate media and locations are provided, and transparent to the users so 

that the dispersed data appears to the user as stored locally (Krishnamurthy, Sanders, 
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& Cukier, 2002). Data replication in SRB is applicable if the data is required to be 

much closer to the user (Rajasekar et al., 2003). Replicas can be created using SRB 

or from outside the system and several forms of data replication are possible.  

2.4.2 Grid Data Farm 

Grid data farm (Othman, O'Ryan, & Schmidt, 2001) is defined as a group of physical 

files that distributed across grid sites and appear to the user as a single logical file 

system that stored in the form of fragments. Individual fragments can be replicated 

and managed in order to provide service to the data-intensive applications. While 

executing a program, the process scheduler dispatches it to the site that has the 

segment of data that is required by the program. If the sites that house the required 

data are overloaded, the file system creates a replica of the required fragment on 

another site. 

2.4.3 Globus Toolkit 

As defined and explained by Ian Foster (Vazhkudai, Tuecke, & Foster, 2001) Globus 

is: 

• A community of users who collaborate on sharing of grid resources across 

cooperate, institutional, and geographic boundaries. Globus also is a 

community of developers for the development of open source software, and 

related documentation for building grids and grid based applications for 

distributed computing and resource federation. 

• The infrastructure that supports this community such as: code repositories, 

interface, protocols, email lists, and problem tracking systems.  
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• The software itself, which consists of a set of libraries and programs for 

solving common problems that occur when building distributed system 

services and applications. 

 

The Globus data grid architecture (Karl et al., 1998; The Globus Alliance) is divided 

into two main layers: high-level services and core services, as shown in Figure 2.3. 

The hierarchical organization explains the possibilities for using the core services to 

build the high-level service, so that many data management services and complex 

storage management systems such as Storage Resource Broker (SRB), can share 

common low level mechanisms. The services that Globus offers are: Security, 

Information Services, Resource Management, and Data Management. The 

Information Services provide information about the status of grid resources. The 

Resource Management uses information from Information Services to enable users 

to access available resources and to allow the system to schedule resource 

allocations. The Data Management provides the ability to access and manage data 

and data resources on the grid [13]. The Globus toolkit provides several components 

to move, copy, and locate data. 
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Typical usage scenarios of Globus and hence the proposed replication algorithm is in 

High Energy Physics (HEP) applications. High Energy Physics (HEP) data 

management requires very large amounts of both processing power and data storage.   

 

The four experiments of the Large Hadron Collider (LHC) will accumulate of the 

order of 5-8 petabytes of raw data per year. In addition, during the preparation phase 

prior to the start of LHC data taking, a similar order of magnitude of simulated data 

will be required to design and optimize the detectors. Each LHC experiment will 

form a single Virtual Organization (VO), comprising of the order of 2000 scientists 

from over 50 countries. HEP community seeks to take advantage of the distributed 

nature of computing grids to provide physicists with the best possible access to both 

simulated and real LHC data, from their home institutes. Data replication and 

management is hence considered to be one of the most important aspects of HEP 

computing grids. The task of replicating LHC data to the various collaborating 

institutes within a VO will be handled by Data Management services of Globus, such 

 

 Replication in Data Grids 2.5

One of the principle goals of data grids is to improve transparent access to globally 

distributed data, making data access and location as easy as if it is occurring on a 

local computer (Guy et al., 2002). Optimization of data access can be achieved via 

data replication (Carman, Zini, Serafini, & Stockinger, 2002; Dutka, Slota, Nikolow, 
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& Kitowski, 2004), whereby identical copies or replicas of data are generated and 

stored at distributed sites. Data replication increases the data availability and 

reliability for the users and decreases the job execution time, but on the other side the 

replication increases the storage cost, and affects the network bandwidth 

consumption either positively or negatively. The replication strategies influence the 

network bandwidth positively when the number of replicas are balanced and 

distributed across grid sites efficiently. However, the replication strategies affect the 

network bandwidth negatively when the numbers of replicas are not proportional to 

the appropriate replica demand.  

as RBR. 

2.5.1 Resource Identification 

In order to perform a replication, a suitable resource must be identified. In general 

there are two types of triggers that can be considered: 

 

Trigger on file request 

When the Storage Element of a site is requested for a file which it does not store, this 

could trigger a replication strategy. This kind of strategy is also called an 

unconditional strategy where replication is performed for every request. The most 

well-known replacement policies used commonly in operating systems are: Least 

Recently Used (LRU) and Least Frequently Used (LFU) (Silberschatz, Galvin, & 

Gagne, 2006), which are used in page replacement to free the storage space for more 

important data. LRU and LFU are examples for this kind of replication strategy that 

is deployed in data grids (Ranganathan & Foster, 2001b). In the LRU strategy, the 
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requested site caches the required replica, and if the local storage is full or the 

current free space is insufficient for the required replica, the least important (victim) 

replica should be determined and deleted in order to free storage. The victim replica 

in LRU is the replica that has the maximum period of time between the current time 

and the last time the replica was requested. However in LFU, the victim replica is the 

replica that has the least number of requests, or also known as the least popular 

replica. 

 

Trigger on popularity conditions 

Another possible trigger could be a file on some other Storage Element of the site 

reaching a certain level of popularity. This would require monitoring of all file 

popularities, perhaps in a central database or by a publish/subscribe method (one 

Storage Element could subscribe to another one to receive regular updates of its top 

ten most popular files, for example), and this kind of strategy is also called a 

conditional strategy.  

 

The process of determining the popularity of a file (identifying which file is to be 

replicated), may vary from one mechanism to another. The most common 

characteristic that is widely used to define popularity is the Number of Access (NoA) 

to the file (Ruay-Shiung et al., 2008; Tang, Lee, Tang, et al., 2005; Tang et al., 

2006). NoA stands for the access rate of the file within a certain time interval. 

However, determining the certain time interval differs from one mechanism to 

another. File access pattern analysis has always been employed as a powerful tool to 
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design efficient replication decision (Ko, Morales, & Gupta, 2007; Meyer, Annis, 

Wilde, Mattoso, & Foster, 2006).  

 

For example, in (Ranganathan & Foster, 2001a) the authors consider NoA only in 

the current time interval. The performance of five distinct strategies had been 

evaluated using simulation framework; 1) Best Client: replica is created for the client 

who accesses the file the most; 2) Cascading: a replica is created on the path to the 

best client; 3) Plain Caching: a local copy is stored upon initial request; 4) Caching + 

Cascading: combines plain caching and cascading; and 5) Fast Spread: file copies are 

stored at each node on the path to the best client. The evaluation was done using 

three different kinds of access patterns. Similar to the work undertaken in this study, 

the research does not include consistency issues and the data used in the work was 

read-only data. The three different access patterns are:  

i. Random access pattern, which has no locality in patterns;  

ii. Data contain a small amount of temporal locality—temporal locality 

means that the potential access to the popular file in the past is more than 

others—where some accessed files are likely to be accessed again; and 

iii. Data contain small amount of geographical and temporal locality—the 

files recently accessed by client are likely to be accessed by nearby clients.  

 

On the other hand, there are work (Rasool et al., 2008; Shorfuzzaman et al., 2008; 

Tang et al., 2006; Tang, Lee, Yeo, et al., 2005; Wang et al., 2007; Yang et al., 2007) 

that consider NOA in the present and past time intervals, which means that the 

popularity of the file is determined by analyzing the access history of different time 
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intervals. It has been acknowledged the fact that files that are requested in the 

present are apt to be requested in the near future. Therefore, popularity of a file 

depends on the number of access made to the file by the users. And yet, different 

calculations are used to determine the popularity of the file. In (Tang, Lee, Yeo, et 

al., 2005), two replication mechanisms were proposed in the multi-tier architecture 

for data grids, including Simple Bottom-Up (SBU) and Aggregate Bottom-Up 

(ABU). The SBU algorithm replicates any data file that exceeds a pre-defined 

threshold. The main shortcoming of SBU is the lack of consideration to the 

relationship with historical access records. For the sake of addressing the problem, 

ABU is designed to aggregate historical records to the upper tier until it reaches the 

root.  

 

The authors in (Tang et al., 2006) determined the popularity of the file by analyzing 

data access history, the average number of access, and computed NoA. Files with 

NoA values that are greater than the computer average NoA will be replicated. 

Hence, the order of which files to be replicated depends on the NoA. The larger the 

NoA, the more popular the file is, and it will be given a higher priority during the 

replication process. In (Rasool et al., 2008; Rasool, Li, & Zhang, 2009), the average 

access frequency (freq���) is calculated as a ratio of the sum of all access 

frequencies to the total number of files, then the files which have access frequency 

greater than or equal to freq��� are marked for replication. 

Nevertheless, these replication strategies do not consider the time period of when the 

files were accessed. If a file was accessed for a number of times in the past, while 
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none was made recently, the file would still be considered popular and hence it will 

be replicated. Some economical model-based replica schemes have been proposed.  

The authors in (Bell, Cameron, Capozza, et al., 2003; Cameron et al., March 2004) 

use an auction protocol to make the replication decision where the files are evaluated 

using two prediction functions, namely a binomial-based function and a Zipf-based 

function. In (Ben Charrada, Ounelli, & Chettaoui), the evaluation of the files is 

performed based on number of requests and the existing number of replicas. In (Ben 

Charrada, Ounelli, & Chettaoui, 2010), the authors suggested that the file must be 

replicated if it has been requested too many times and there are not enough copies. In 

other words, the file will be replicated if its average weight exceeds the average 

weight of the entire grid. Average weight of a file is calculated by dividing number 

of requests of the underlying file by the number of existing copies, while the average 

weight of the entire grid is calculated by dividing the total number of requests of the 

files by the number of existing copies.  

 

Meanwhile, an optimal replication strategy (DORS) has been proposed by (Wuqing, 

Xianbin, Zhuowei, Yuping, & Shuibing, 2010), where the authors empirically 

inferred a threshold to decide whether to replicate the file or not. The threshold is 

represented by the storage system’s relative capacity, which is defined as the ratio of 

the storage size to the total data set sizes (R). When the number of the file’s replicas 

is greater than R, the file will not be replicated, but when the number of the file’s 

replicas is less than R, the file will be replicated. 

The work represented in (Zhong, Zhang, & Zhang, 2010) proposed a replication 

strategy where replicas are automatically increased according to file access. Once the 
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number of accesses of a certain replica is higher than a threshold, it is labeled as “hot 

data” and replicated.     

 

The algorithms proposed in (Ruay-Shiung et al., 2008) and (Sashi & Thanamani, 

2010) are called Last Access Largest Weight (LALW) and Dynamic Replica 

Creation and Placement (DRCP) respectively, and both of which tried to solve this 

problem. The key point of these two algorithms is to give different weights to files 

having different ages. 

The LALW and DRCP algorithms are similar to other algorithms (Rasool et al., 

2008; Tang et al., 2006; Tang, Lee, Yeo, et al., 2005) by means of using information 

on access history to determine the popularity of a file. However, an innovation is 

included by adding a tag to each access history record of a file. The weight of the 

record decays to half of its previous weight after a constant time interval. Older 

access history records have smaller weights; it means that a more recent historical 

record is more important. An Access Frequency is calculated to represent the 

importance of access histories in different time intervals. 

However, the above approaches (i.e. LALW and DRCP) assume that the decay rate 

is constant and equals ½, and this means all files decay at the same rate, regardless of 

the access rate of each one. As a result, the decay rate of weight will be slower. 

Subsequently the storage element will take time to delete the unwanted files (i.e. the 

less popular files).  
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The popularity of the file or the file value is used in two directions: the first direction 

is to trigger replica creation/deletion strategy as mentioned before. The second 

direction is to trigger replica replacement strategy, as the less valuable file is 

replaced by the most valuable file. The difference between replica deletion and 

replica replacement is that replica deletion is invoked before the replica replacement 

strategy where the files that have the minimum values are deleted. Meanwhile, the 

replica replacement strategy is invoked when there is no space for newly created 

replica in the underlying storage element, and given such a situation, the replica of 

low value would be replaced by the replica of higher value. The most well-known 

replacement policies used commonly in operating systems are: Least Recently Used 

(LRU) and Least Frequently Used (LFU) (Silberschatz et al., 2006), which are used 

in page replacement to free the storage space for more important data. LRU and LFU 

are examples for this kind of replication strategy that is deployed in data grids 

(Ranganathan & Foster, 2001b). In (Teng & Junzhou, 2005; Tian & Luo, 2007, 

2010), the authors proposed a prediction-based replica replacement algorithm using a 

two-stage process to evaluate the popularity of a replica. They considered some 

features such as bandwidth and replica size. The simulation results demonstrated that 

their algorithm contributed to better grid performance. The work in (Zhao, Xu, 

Xiong, & Wang, 2009) suggested  a  replica  replacement  algorithm  based  on  

economic  model  and opportunity cost, the files have been evaluated using zipf-like 

distribution prediction model and then weighted using the file transfer cost model. If 

the needed replica has a higher weight than the replica with the lowest weight in 

local storage, that file will be deleted and the new replica will be transferred into the 
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local site. In (Wuqing et al., 2010), the authors proposed a replacement policy that 

determines the victim file using two kinds of evaluations.  

Firstly by evaluating the replica’s access frequency using the half-life principle that 

is used in (Ruay-Shiung et al., 2008; Sashi & Thanamani, 2010), and secondly by 

evaluating the replica’s access cost that is affected by replica size and network 

bandwidth. Both evaluations are combined together, and the replica with minimum 

value will be replaced by the newly created replica. 

Data replication has two direct improvements on the performance of the data grid. 

One is to speed up data access, which leads to a shorter execution time of grid jobs; 

and the other one is to save bandwidth between sites, which can avoid network 

congestion with the sudden frequently required data. However, replication is also 

bounded by two factors: the size of storage available at different sites within the data 

grid and the bandwidth between these sites (Venugopal, Buyya, & Ramamohanarao, 

2006).  Furthermore, the files in a data grid are mostly large (Rahman, Barker, & 

Alhajj, 2008, 2009); so, replication to every site and hosting unlimited number of 

replicas would be unfeasible. Therefore deciding the optimal number of is needed.  

The common cost functions that are used in the literature (Al Mistarihi & Yong, 

2008; Garmehi & Mansouri, 2007; Kalpakis, Dasgupta, & Wolfson, 2001; Mansouri 

et al., 2008; Pangfeng & Jan-Jan, 2006; Ranganathan et al., 2002; Yi-Fang et al., 

2006)  are listed below: 

Communication Cost (Read Cost): a lot of research studies considered 

allocating replicas to sites that minimize the read cost (Garmehi & Mansouri, 
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2007; Kalpakis et al., 2001; Mansouri et al., 2008). Read cost is usually defined 

as the cost of transferring a file over the data grid system to the end user.  

 

Storage Cost (Replication Cost): the cost of storing a file at a certain site (Al 

Mistarihi & Yong, 2008; Mansouri et al., 2008; Pangfeng & Jan-Jan, 2006; 

Ranganathan et al., 2002; Yi-Fang et al., 2006). The storage cost might reflect 

the size of the file, the throughput of the site, or the fact that a copy of the file is 

residing at a specific site, which is also called replication cost. 

 

Access Cost: the time taken to access the data files in replica sites (Caitriana M. 

Nicholson, 2006). 

2.5.2 Number of Replicas 

The denser the distribution of replicas is, the shorter the distance a client needs to 

travel in obtaining a copy of the replica (Pangfeng & Jan-Jan, 2006). In other words, 

increasing number of replicas would lead to higher data availability. However, given 

the size of resources included within a data grid, the cost of maintaining multiple 

copies of resources (i.e. data files) and storing them in the data grid system would be 

expensive; therefore, the number of replicas should be bounded. A mechanism for 

creating replicas that allows the achievement of availability and performance goals 

without consuming undue amounts of storage and bandwidth is thus needed.  

 

The work in (Ranganathan et al., 2002) suggested a algorithm that helps to determine 

number of  replicas  needed to maintain the desired availability in P2P communities 
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so that each site within the data grid is authorized to create replicas for the files. The 

availability of a file depends on the failure rate of peers in the network. A function 

has been developed to calculate the number of replicas needed for a certain 

availability threshold. However this algorithm has disadvantages: firstly, the exact 

number of replicas is not determined; rather it depends on the location service 

accuracy which depends on the existing number of replicas. The accuracy of the 

replica location service determines the percentage of accessible files, and thus if the 

location service is ineffective, more replicas are created to ensure data availability. 

Secondly, the replica deletion mechanism is not considered, thus the storage cost 

may be increased. 

 

Meanwhile in (Pangfeng & Jan-Jan, 2006; Yi-Fang et al., 2006), the authors had not 

taken into account the issue of availability to determine the number of replicas. The 

problem of determining number of replica has been formulated as follows: given the 

amount of workload a replica server can handle (D), find the minimum number of 

replica so that the maximum workload is not more than (D).  

 

Furthermore, (Mansouri et al., 2008) proposed an algorithm formulated by using a 

dynamic programming-based algorithm. The purpose of their proposed algorithm is 

to find the optimal number of data file replica over data grid systems, so that the read 

cost (transferring file over the data grid system to the end-user) and the cost of 

storage (site building cost) can be minimized. The drawback of those approaches 

(Mansouri et al., 2008; Pangfeng & Jan-Jan, 2006; Yi-Fang et al., 2006) is that 
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storage capacity has been neglected. As a result, if the site has insufficient space, it 

will not be chosen to host the replica even if it offers low overall cost. 

 

Another variable was investigated by (Ruay-Shiung et al., 2008) who identified the 

number of replicas that need to be created, based on the access frequencies of each 

file that has been requested. By calculating the quotient of average access frequency 

of popular file divided by average access frequency of all files, the number of replica 

can be determined. 

 

Meanwhile (Al Mistarihi & Yong, 2008) proposed a replication strategy that  makes 

replication decisions whether to increase the number of replicas to face the high 

volume of requests, or to reduce the number of replicas to save more storage space. 

Evidently, increasing the number of replicas will decrease the response time, but the 

storage cost will be increased accordingly (Al Mistarihi & Yong, 2008). 

 

Table 2.1: Summary of Work in Replica Quantity 

Authors Technique Variables Methodology 

(Ranganathan 

et al., 2002) 
Dynamic 

Placement 

Algorithm 

� availability Determine how many 

replicas are needed to 

maintain the desired 

availability 

 
(Pangfeng & 

Jan-Jan, 2006; 

Yi-Fang et al., 

2006) 

Optimal 

Number of 

Replica 

� workload (sum 

of data requests  

 

 

 

Given the total amount 

of workload a server can 

handle, then decide the 

minimum number of 

replica 

(Mansouri et 

al., 2008) 
Optimal 

Number of 

� read cost Find number of replica 

so that the overall cost is 
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Replica 

(ONR) 

 

� storage cost minimized 

(Ruay-Shiung 

et al., 2008) 

Latest Access 

Largest 

Weight 

(LALW) 

� access 

frequency 

By calculating the 

quotient of average 

access frequency of 

popular file divided by 

average access 

frequency of all files, the 

number of replica is 

determined 

 

(Al Mistarihi 

& Yong, 

2008) 

Replica 

Management 

in Grid 

(RmGrid) 

� replica request 

� storage cost 

By  increasing the 

number of replicas of the 

most valuable files and 

decreasing the number of 

replicas of the less 

valuable files 

 

 

2.5.3 Replica Placement 

Replica placement is the process of identifying where to place copies of replicated 

data files within a data grid system. Transferring a data file from a site to a client 

consumes an amount of bandwidth. One challenge that is raised from this is to locate 

candidate sites where the replica could be hosted (Rahman et al., 2008) so as to 

minimize the amount of bandwidth used. 

 

In (Ranganathan & Foster, 2001a), Rangthan and Foster introduced six replication 

strategies. They compared those six strategies by measuring average response time 

and the total bandwidth consumed for each strategy. The lower the response time and 

the lower the bandwidth consumption, the better the replication strategy is. However, 

there is a trade-off between response time and bandwidth consumption. The authors 
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concluded that if users are focused on lower response time, then the Cascading 

strategy would be the best option. On the other hand, if users prefer the consumption 

of bandwidth to be the most important issue, then Fast Spread is the better choice of 

all the six strategies. Nevertheless, these two strategies also do not consider storage 

cost. If a particular file is no longer popular, it will still be stored by the storage 

element. That will therefore be a waste of free storage. In the Fast Spread replication 

strategy, the replica is copied to every node it visits when it is brought backward to 

the requesting node. In contrast to Fast Spread, Modified Fast Spread (MFS) (Bsoul, 

Al-Khasawneh, Kilani, & Obeidat, 2010) does not necessarily copy the replica to 

every node it visits when it is brought backward. It is copied to the visited node in 

two cases. The first case is if the visited node has sufficient free storage space to 

store the requested replica. The second case is if the node’s free storage space is less 

than the size of the requested replica, and this replica was found more important than 

a group of existing replicas that their sizes are greater than or equal to the size still 

needed to make the node’s storage able to store it. 

 

In a different approach, the authors of (Yang et al., 2007) proposed a dynamic 

maintenance strategy called Dynamic Maintenance Service (DMS) to improve the 

performance of the grid environment. DMS decides where to place the replicas based 

on two main parameters: request frequency and free storage space. However, the 

replica deletion mechanism is not considered; rather the system does not locate the 

replica at a site unless there is enough space even if it brings benefit to system 

performance.  
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Meanwhile, (Wang et al., 2007) proposed a replica placement scheme that tries to 

overcome the bottleneck caused by increasing the downlinks, which are occurring at 

the same time. The proposed strategy chooses the best site to host the replica 

according to the evaluation result based on the number of user request and 

transmission cost. The purpose of the strategy is to replicate the file to a site that 

provides minimum average transmission cost. Transmission cost is defined to be 

inversely proportional to bandwidth, and the site that provides the minimum average 

transmission cost is selected.  

 

Following the bandwidth aspect, (Park, Kim, Ko, & Yoon, 2004) proposed a 

replication strategy, called Bandwidth Hierarchy based Replication (BHR) to reduce 

access time by avoiding network congestion. BHR reduces the time taken to access 

and transfer the file. It places a replica at a high bandwidth location. However, such 

an approach only considers transmission cost and does not guarantee to minimize the 

overall cost. 

 

A load balancing replication strategy has been proposed by (Rasool et al., 2008), 

where the most frequently accessed file is placed closed to the users and the decision 

of replica placement is made based on the access load and the storage load of the 

candidate replica servers and their sibling nodes. In relation to this, (Rahman, 

Barker, & Alhajj, 2005) discussed various replication strategies namely; 

MinimizeExpectedUtil, MaximizeTimeDiffUtil, MinimizeMaxRisk, and 

MinimizeMaxAvgRisk while considering the utility and risk indexes, and making 

the replica placement decision by optimizing the average response time. They 
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concluded that considering both current network state and file requests are better 

than considering the file requests alone.  

 

Meanwhile, (Rahman et al., 2008) proposed a static replica placement algorithm to 

place replica files in best p candidate nodes that minimizes the total response of each 

site by using Lagrangean Relaxation, which is a heuristic approach (Fisher, 2004) to 

measure the response time of each client node to its nearest server node. The 

algorithm is most likely the p-median problem. They also used the user requests and 

network latency as parameters to decide when to maintain replica dynamically. 

 

Work by (Garmehi & Mansouri, 2007) suggested an algorithm that is formulated by 

using a dynamic programming method to find optimal placement k replicas of an 

object, such that the overall cost (i.e. storage cost plus read cost) is minimized. Read 

cost is defined as the data transfer cost and storage cost is the cost of placing replicas 

at the sites. However, the algorithm does not guarantee the availability of the file, as 

the priority choice of location is given to those who provide cheaper services 

regardless of its availability. 

 

The authors in (Lin, Wu, & Liu, 2008; Yi-Fang et al., 2006) proposed a placement 

algorithm so that the workload of user requests among the replicas is balanced. The 

workload is defined as number of requests that a server satisfies. Given the data 

usage and maximum workload allowed for each replica server, they suggested 

algorithm can efficiently determine the minimum number of replicas required. On 

the other hand, the authors in (Ranganathan et al., 2002) suggested a algorithm that 
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provides a function that evaluates the placement of replica. The objective of this 

function is to maximize the difference between the replication benefits and 

replication cost (storage cost and transfer time). The benefit is the reduction in 

transfer time to the potential users, the storage cost is the storage cost at the remote 

site, and the transfer time is the duration from the current location to the new 

location. Yet again, the replica deletion mechanism was still not considered, thus the 

storage space cost may be increased. 

 

Then (Abawajy, 2004) proposed an improvement, namely in the form of the 

Proportional Share Replication policy. The method places replicas on the optimal 

locations when the number of sites and total replicas to be distributed is known.  

Meanwhile, the work on replication algorithm by (Shorfuzzaman et al., 2008) had 

resulted in a Popularity Based Replica Placement (PBRP) algorithm for hierarchical 

data grids. The idea behind PBRP is to place replicas as close as possible to those 

clients that frequently request data files. Further work by (Rasool et al., 2009) 

presented a replica placement strategy in multi-tier data grid that categorized the files 

based on their access frequency into two groups: 1) Most Frequent Files (MFF) that 

are replicated and placed at the parent node of their respective best clients, where the 

best client for a file is a client which generates the maximum request for that file, 

and 2) Least Frequent Files (LFF) that are placed at one tier below the root of the 

data grid along the path of their best client. In (Ben Charrada et al., 2010), a dynamic 

placement algorithm was proposed that takes into account the dynamicity of sites in 

the data grid, since a site can at any time leave the grid and possibly join again later. 

Thus, two parameters were investigated: the request number for each file by each 
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site, and utility of each site that involves the number of times the site did not answer 

to a file request due to its absence from the grid. 

 

Then, (Ruay-Shiung et al., 2008) proposed a replication mechanism that replicates 

the popular file to a suitable site according to the access frequencies for each file that 

has been requested. Access frequency is an essential parameter that should be taken 

into account when determining replica placement. However, some important 

parameters such as overall cost (i.e. storage cost and read cost), distance and 

availability should not be neglected; otherwise the overall system performance is 

degraded. 

 

The work presented in (Naseera & Murthy, 2009) suggested a replica placement 

mechanism  that deploys an agent at every site that holds the master copy  of files for 

which replicas are to be created. The main function of each agent is to select the 

candidate site for placing the replica based on response time and job execution time. 

The replica is placed at the site that minimizes the time taken for obtaining all the 

files required by the job. However, storage capacity is ignored as a result if the site is 

full and provides the minimum response time; it will not be selected to host the 

replica. On the other hand, a priori replica placement was proposed in (Challal & 

Bouabana-Tebibel, 2010), where the replicas are created and placed before starting  

jobs and launching any work on the grid. The replication is performed at once after 

the original copies are created and before any file request has been made. The main 

objectives are to maximize the distance between identical replicas and to minimize 

the distance between different replicas, so that each site can find the different 
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replicas faster within its vicinity. However, this approach does not cope with the 

dynamicity of grid environment, and moreover, the storage capacity is not taken into 

consideration. 

Table 2.2: Summary of Work in Replica Placement 

Authors Technique Variable Methodology 

(Wang et al., 

2007) 

Fair Replica 

Placement 

� Bandwidth 

� Number of user 

request 

Duplicate the file to a 

node that provides 

minimum average 

transmission cost 

(maximum bandwidth) 

 

(Ranganathan 

et al., 2002) 

Dynamic 

Placement 

Algorithm 

� Storage Cost 

� Transfer Time 

Maximize the 

deference between 

replication benefit and 

replication cost 

 

(Garmehi & 

Mansouri, 

2007) 

Optimal 

Placement of 

Replicas 

� Communication/read 

Cost 

� Storage Cost 

Place the replica so 

that the overall cost 

(read and storage cost) 

is minimized 

  

(Yang et al., 

2007) 

Dynamic 

Maintenance 

Services 

(DMS)  

� Request Frequency 

� Storage Capacity 

If the request 

frequency of file is 

more than the 

maximum request rate, 

and there is free space 

in the site then DMS 

will duplicate file to 

that location 

 

Ruay-Shing et 

al. (Ruay-

Shiung et al., 

2008) 

Latest Access 

Largest 

Weight 

(LALW) 

� Access Frequency According to the 

access frequencies for 

each file that has been 

requested, a popular 

file is replicated to a 

suitable site 
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Through the literature review on this subject, it was concluded that there are many 

drawbacks of the current replica creation strategies, and there is a need for enhancing 

these strategies even further. Obviously, in order to get benefits from replication 

strategies, the storage cost and the read cost must be minimized. From the literature, 

it was observed that there is a lack of suitable current replication algorithms for the 

management of data grid resource usage (i.e. network and storage resources), and 

thus more enhancement is needed. 

 Summary of Chapter 2.6

In this chapter, the background on the issues that are covered in this study has been 

provided. This chapter was divided into two main parts; first part presented a brief 

description and characteristics of data grids and some challenges of the applications 

running in such environment. The second part presented the need for a replication 

algorithm in a data grid environment. Related works of data replication was 

analytically investigated and presented. This included the related research and 

progress in replication algorithms, and recent works in this research domain. The 

second aspect is concerned with the individual functions of the replication algorithm, 

where some parameters have been neglected by other replication algorithms, which 

should be considered. For example, in evaluating the files to determine which file is 

to be replicated and deleted, the implementer needs to consider the dependency 

relationships between files, period of time it has been in the system and the decay or 

growth rate of the file request.  
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In the response to the literature survey presented in this study, it is proposed that 

there is a need for an enhanced replication algorithm that embodies all the core 

functions listed above, and moreover, it should include the neglected parameters by 

other works as discussed in this chapter. In  the  next  chapter,  the  methodology  

and  simulation  setting  employed  in  this research work will be detailed.  

 



 

 39 

CHAPTER THREE 

RESEARCH METHODOLOGY 

This chapter presents the undertaken steps for this research. This research starts by 

formulating a Resource Selection function that determines the importance of a file to the 

users and data grid system. This is followed by a second stage that focuses on formulating a 

replica number function that utilizes the developed resource selection function. The third 

stage of the research is to integrate the two functions in a replication algorithm (proposed as 

the Relationship-based Replication algorithm) that is later evaluated in a simulation 

environment. Figure 3.1 illustrates the undertaken steps for research. 

 

 

  

 

 

 

 

 

Formulate Replica Quantity Function 

Formulate Resource Selection function 

Develop Relationship based Replication 

Algorithm (RBR) 

Develop Simulation Model  

Evaluate the proposed RBR 

Figure 3.1: Research Steps 
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 Formulate Resource Selection Function 3.1

In order to formulate the resource selection function, information on number of 

access of a resource (e.g data file) is combined with information on resource 

dependencies and age. Hence, the function is designed by utilizing three types of 

relationships:  

1) File-to-users (F2U) (Madi, 2012) - Relationship that describes the behavior 

of a file being requested by users, and notes the change to this 

request(whether is a growth or decay change). The relationship is represented 

using the exponential model. If the change is seen to be in the form of 

growth, then the particular resource is assumed to be important, and vice 

versa. 

2) File-to-file relationship (F2F) (Madi, 2012) - Relationship that describes the 

behavior of a file requesting other files, and notes the level of dependency of 

the file. Resources that are highly dependent on is likely to be more important 

than the others. 

3) File-to-grid (F2G) - Relationship that describes lifetime of a file in the grid 

system.  

 

Details of the resource selection formulation along  an example of utilization of the 

function  are presented in Chapter 4.  
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 Formulate Replica Quantity Function 3.2

The second step of the research is to formulate the a function that determines the 

appropriate number of copies for the identified resources. In designing this function, 

we adapt the work presented in 2012 (Madi, 2012) that integrates the importance of 

the file to the users and the grid system. The produced function (described in detail 

in section 4.2) presents users with the estimated number of required replicas.  

 Develop Relation-based Replication (RBR) algorithm 3.3

The third step of this research was to formulate an algorithm that integrates the 

proposed functions and this is illustrated in the upcoming chapter, specifically in 

Figure 4.4.  

 Develop Simulation Model  3.4

In this research, the OptorSim (Bell, Cameron, Millar, et al., 2003; Cameron et al., 

March 2004; Cameron et al., 2004) simulator was utilized to simulate the proposed 

replication algorithm. The main idea of OptorSim is when given a grid topology, 

resources, and a set of jobs and optimization strategy, it can simulate data movement 

around these job runs and supply information on various factors that could be used to 

evaluate the performance of the optimization strategy. The key advantage of 

OptorSim is that it is much closer to reality since it is based on the EU DataGrid 

architecture (Cameron et al., March 2004), which is widely used by grid computing 

communities (Bell, Cameron, Millar, et al., 2003; David G. Cameron, 2005; The 

European Data Grid Project). Furthermore, OptorSim is capable of providing a 

testbed similar to the original data grid environment by providing multiple grid sites 
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with storage elements that can be used to create and store replicas. Users can also set 

the parameters of OptorSim according to their requirements to run the simulation. A 

more detailed architecture and implementation of OptorSim can be found in (Al-

Mistarihi & Yong, 2008; David, 2003; Hong, Xue-dong, Xia, Zhen, & Wen-xing, 

2008; Lei, Vrbsky, & Hong, 2007; Ruay-Shiung et al., 2008; Shorfuzzaman et al., 

2008). 

 

The RBR algorithm works in the background of the data grid system in such a way 

that there is no direct connection with users. RBR relies on other existing data grid 

core services, such as Replica Location Services (RLS) that provides information 

related to the physical file locations, and Information Service Provider (ISP) 

(Vazhkudai et al., 2001) such as  Network Weather Services (Wolski, 1997) to 

provide the network availability and status. As shown in Figure 3.2, RBR offers the 

following functionalities: 

1. gathers replica locations information from RLS; 

2. gathers network bandwidth information from the NWS; 

3. gathers job information from the history file; and 

4. makes decisions on replica creation and replica quantity. 

 

 

 

 



 

 43 

 

 

 

 

 

 

 

 

 

The study of RBR was carried out using the EU DataGrid (Cameron et al., 2004) 

 

In EU DataGrid, a set of high energy physics analysis jobs was generated from the 

Compact Muon Solenoid (CMS)  (Ruay-Shiung et al., 2008) experiments in the 

European Organization for Nuclear Research (CERN) (CMS Data Challenge 2004; 

Holtman, 2001) project.  Jobs were based on the CDF use-case as described in 

(European Organization for Nuclear Research (CERN)).  

 

The EU DataGrid topology includes 20 sites in USA and Europe as shown in Figure 

3.3. Within this model, each site, excluding CERN and FNAL, was assigned with a 

Computing and Storage Element. CERN and FNAL were allocated with Storage 

Elements only, since they produce the original files and store them. 

 

 

RBR 

Figure 3.2: The Proposed RBR Component in OptorSim Architecture 
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 Evaluate the Proposed Relation-based Replication Algorithm (RBR) 3.5

The proposed RBR is compared against existing algorithms that includes the LALW 

(Ruay-Shiung et al., 2008) and DRCM (Madi, 2012). The evaluation is based on the 

performance metrics and parameter settings. 

3.5.1 Performance Metrics 

3.5.1.1 Mean Job Execution Time 

This is defined as the average time required to execute a job starting from the time it 

is scheduled to the Computing Element until it has finished processing all of the 
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Figure 3.3: The EU Data Grid Testbed Sites and Their Associated Network Geometry 
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required files. It is calculated by accumulating the time taken by each job and 

divided by the number of jobs (Bell, Cameron, Capozza, et al., 2003; Bell, Cameron, 

Millar, et al., 2003; Ben Charrada et al., 2010; Cameron et al., 2003; Cameron et al., 

2004; Ruay-Shiung et al., 2008), as shown in the following formula: 

 

MJET = 	
∑������������������

�
              (3.1) 

where, 
������ : start time of job execution, 

�!"#$%&'%": completion time of job execution, and 

(: total number of processed jobs in the simulation. 

 

3.5.1.2 Efficient Network Usage (ENU) 

ENU is defined as a measure of how well the replication strategy uses the network 

(Bell, Cameron, Millar, et al., 2003). It is computed as:  

)*+ =	
,��-.��	/�0�	�11�223	,456789:;8<=>

,��-.��	/�0�	�11�223	,7<9:7	?875	:995>>
                                   (3.2) 

where *� @AB 	C�D 	�EE FF is the number of accesses that Computing Element reads a 

file from a remote site, *%"#GHI$&HJKL is the total number of file replication that occurs, 

and (*� @AB 	C�D 	�EE FF +	*GJI$G	OHG"	$II"LL) is the number of times that Computing 

Element reads a file from a remote site or reads a file locally.  

 

A lower value would indicate that the utilization of network bandwidth is more 

efficient. In order to get a low ENU, the numerator, *%"#GHI$&HJKL , should be small.   

 

3.5.1.3 Storage Element Usage 

The average of all storage reserve capacity in the data grid can reflect the total 

system storage cost (Bell, Cameron, Millar, et al., 2003; Cameron et al., 2004). The 
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Average Storage Usage (ASU) metric is computed by the following equation (Bell, 

Cameron, Millar, et al., 2003): 

 

ASU =
∑ T

U
V
�WX (F�B �)

Y
× 100%      (3.3) 

where, 

+: storage usage space that is reserved by the data files, 

*: number of sites in the data grid, and 

^: total capacity of the storage medium. 
 

3.5.1.4 Computing Element Usage (CE Usage) 

This is defined as the percentage of time that a CE is active (transferring or 

processing data) during the simulation. The CE usage of the whole grid is computed 

by aggregating the CE usage of each individual CE. CE usage is a metric that could 

be of interest to resource owners, as high CE usage would mean that the workload is 

balanced across the grid (Bell, Cameron, Millar, et al., 2003).  Low CE usage, on the 

other hand, would mean that some CEs have long queues while others are underused. 

3.5.2 Parameter Settings 

In order to expose the throughput and system performance, the simulation was 

executed on different scenarios that employ different parameter settings. The 

parameters that may influence replication algorithms includes (Ruay-Shiung et al., 

2008): number of submitted jobs,  access history length, storage metric (D) and job 

delay time. 
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3.5.2.1 Number of submitted jobs (Workload Test) 

System scalability can be tested by the number of jobs running during the simulation. 

In this research, to simulate different number of jobs, the maximum number of 

submitted jobs was increased by a factor of four and the minimum was decreased by 

a factor of four, i.e. number of jobs that is considered in our evaluation varied 

between 200 and 4000 jobs. 

3.5.2.2 Access History Length 

This is defined as the period of time for which the information on file access is kept. 

The history of file access is used by replication algorithms to identify the most 

popular file in the next time window. Therefore the length of access history used in 

the calculations must be carefully chosen to produce accurate prediction. If the 

history does not go back in time far enough, the statistics of file access may not be 

accurate, but if the history goes back too far, it may provide overdue and useless 

information. Thus the length of access history considered for evaluation varies 

between 10
3
 seconds and 10

6
 seconds, where the reasons for which are detailed out 

in Chapter 5. 

3.5.2.3 Storage Metric (D) 

It is defined as the ratio of the Storage Element size to the total dataset size (Tang, 

Lee, Tang, et al., 2005; Tang et al., 2006) 

_ = `&J%$a"	bG"c"K&	`Hd"

eJ&$G	f$&$L"&	`Hd"
        (3.4) 

If the value of _ > 1, then there is enough space in the storage element to hold all 

files that a job would require. Hence, there is no need for any deletion and the 
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replication strategy will have little effect on the performance of the grid. If _ h 1, 

than the storage element is not capable of storing all required files so deletion must 

take place and choices have to be made on which replicas to keep. In order to study 

the effect of storage metric, different file sizes that vary between 200 to 2000 MB 

were considered and used in the experiments. 

3.5.2.4 Job Delay 

This is defined as the rate at which jobs are submitted to the data grid. The job delay 

was fixed at 25 seconds in all of the experiments. 

 Summary of Chapter 3.6

This chapter describes the steps taken in achieving the aim of the research. Five  

stages undertaken; formulation of resource selection, formulation of replica quantity, 

development of RBR algorithm, development of OptorSim simulator and the 

performance evaluation of the proposed RBR.  In the upcoming chapter, details of 

the RBR algorithm and its evaluation are presented.  
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CHAPTER FOUR 

RELATIONSHIP BASED REPLICATION ALGORITHM 

In this chapter, the implementation of Relationship-based Replication (RBR) 

algorithm to improve performance of a grid system is described. To that end, a detail 

design of RBR that includes the resource selection function and replica quantity 

function is presented.   

 Resource Selection 4.1

In a data grid, when a resource (e.g a data file) is required by a job and is not 

available on a local storage, it may either be replicated or read remotely. If a file has 

been replicated, in the future, when it is requested, any job can accessed it quickly 

and the job execution time can be reduced. However, if replicating a resource file 

requires the deletion of other resources such as data file(s), future jobs that require 

the deleted resources may consume additional computational time. Therefore, a 

decision must be made whereby only the most resource files are replicated and the 

least ones are deleted. The replication decision includes two issues: 1) which file 

should be created/deleted and 2) how many copies to be created/deleted. The 

proposed algorithm (RBR) includes the perspectives of two parties: users and 

system.  

 

Due to the limited storage capacity, replication decision should be made to conform 

users’ needs so that high demanded files (popular replicas) are efficiently maintain 

and files that are rarely utilized are removed.  
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4.1.1 File-To-User Relationship (F2U) 

Popularity of a file depends on the number of access made to the file by users (Tang, 

Lee, Yeo, et al., 2005). With this, popular data files can be identified by analyzing 

the file access history. Many real world phenomena can be modeled by functions that 

describe how things grow or decay as time passes. Examples of such phenomena 

include the studies of populations and bacteria (Ranganathan & Foster, 2001a, 

2001c; Ranganathan et al., 2002). The work presented by (Madi, 2012) adopts the 

exponential growth/decay model in determining popularity of a file. This is due to 

the fact that each file has its own number of access and the value increases by the 

increase of access rate and vice versa. If the access rate increases, so does the 

growth/decay rate.  

 

If we use *O
& to represent the number of accesses for file i at time j, and *O

&3k to 

represent the number of accesses at time t + 1, the exponential growth/decay model 

would be given by: 

*O
&3k = 	*O

& × (1 + m)        (4.1) 

where r is the growth or decay rate in number of accesses of a file in one time 

interval. Therefore, the value of r using the following formula can be calculated: 

 m = n*O
&3k *O

&o p − 1             (4.1.1) 

 

Assume j is the number of passed intervals, and *O
& indicates the number of access 

for the file i at time interval j, then we get the sequence of access numbers: 

*O
r	*O

k	*O
s	*O

t	. …	*O
&�k	*O

& 	  
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Therefore, there are j − 1 time intervals, and each time interval has a growth or 

decay rate in number of accesses of a file. So according to the exponential 

growth/decay model, the equation can be written as in the following: 

mr = n*O
k *O

ro p − 1, 

mk = n*O
s *O

ko p − 1,  

ms = n*O
t *O

so p − 1,  

m&�k = n*O
& *O

&�ko p − 1	 	 	 	 	 	 					 						(4.1.2) 

Therefore the average rate for all intervals is: 

 m = ∑ mH&�k
r j − 1⁄                        (4.1.3) 

 

Having known the average accessed rate (growth or decay) for a file during the past 

intervals, the number of access for the upcoming time interval can be estimated, 

which is termed as the File Lifetime (Madi, 2012) :   

xyz{	|yi{jy}{ = 	*O
& × (1 + m)		 	 	 	 	 	 						(4.1.4) 

 

In order to avoid extreme cases where the growth or decay rate is equal to infinity, it 

is assumed that all files have been accessed for at least once. Using the data that is 

provided in Figure 4.2, an example to explain the concept of the strategy is presented 

in the following paragraph. In the example, there are four time intervals (t1, t2, t3, 

t4) with different number of accesses (NOA) of five data files.  

 

 

 



 

 52 

 

 

 

 

 

 

 

 

 

Figure 4. 1: An example of files requests in  time interval 

 

There are five different files (A, B, C, D, and E) accessed during the four time 

intervals (jk, js, jt, and j�) In order to calculate the File Lifetime value of each file, 

the average growth/decay rate of the file during four time intervals is calculated and  

substituted into equations (4.1.3) and (4.1). Figure 4.3 shows the process of 

calculating the values for files A, B, and C. In the same way, the value of 1.76 was 

obtained as the number of access for file D, and 13.1 for file E.  

 

 

 

 

 

 

 

Figure 4.1: File Request in Time Interval 
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Figure 4.2: Calculation for FileLifetime 

 

m =
(−0.25) + (−0.2) + (−0.16)

3
= −0.21 

*�
� = 10 ∗ (−0.21 + 1) = 7.9 

 jk js jt j� j� 

A 20 15 12 10 *�
� 

- The average growth/decay rate of file A is: 

- The estimated number of access of file A is: 

 

m =
0.18 + 0.20 + (−0.38)

3
= 0.001 

*�� = 15 ∗ (0.001 + 1) = 15.0 

 jk js jt j� j� 

B 17 20 24 15 *�
� 

- The average growth/decay rate of file B is: 

- The estimated number of access of file B is: 

 

m =
(−0.13) + 0.54 + 0.50

3
= −0.30 

*�
� = 30 ∗ (0.30 + 1) = 39.1 

 jk js jt j� j� 

C 15 13 20 30 *�
� 

- The average growth/decay rate of file C is: 

- The estimated number of access of file C is: 
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4.1.2 File-to-File Relationship (F2F) 

As mentioned in Chapter one, the data files that are used in this research are in the 

form of source code modality. Thus, there is a possibility of having files that require 

other files in order to be executed or compiled. In other words, there may exist  

dependency relationship between files (Kapitza, 2003; Kreft, Booth, & Wimpenny, 

1998; Kremer, 1993). We utilized such relationship as additional factor that 

contributes in identifying resources that are to be replicated. Such an approach is 

seen to contribute in determining importance of a file to the resource management 

system, and, is represented as File Weight. This research employs the calculation of 

File Weight as described in (Madi, 2012) : 

 

xyz{	�{y�ℎj = ∑ x|H × _|H
K
H�k                                                                              (4.2) 

where, 

(: total number of files in a grid system, 

x|: File Lifetime as ����	�������� = 	��
� × (� + �) and 

_|: dependency level of other files on the underlying file, and if there is no 

dependency, DL is assumed to be zero. This is counted as number of files that are 

dependent on the resource file. 

 

In order to understand how to calculate file weight, we make use of the previous 

example. Suppose that files, as shown in Figure 4.1 have some dependencies among 

them, as depicted in Figure 4.3. The present dependency relationships in Figure 4.4 

would suggest that file B is more important than file A as there are three files (A, C, 

and E) that depend on file B while none exist for file A. Hence, the File Weight of 

files A, B, C, D, and E are obtained as follows: 
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File	Weight(t, A) = 0 

File	Weight(t, FileB) = (8	x	0.35) +	(39	x	0.33) + (8	x	0.15) = 16.86 

File	Weight(t, C) = 0 

File	Weight(t, D) = 0 

File	Weight(t, FileB) = (8	x	0.15) = 1.2 

 

 

 

 

 

 

 

4.1.3 File-To-Grid Relationship (F2G) 

The third relationship that is incorporated in this research is the File-To-Grid (F2G) 

relationship. Such relationship refers to the time period of existence for a particular 

resource, in other words, the age of a data file. Such a relationship is important as it 

shows the vitality of the file. For example, if there are two files having the same 

number of access, but of different age, then the older file is considered to be less 

popular than the younger one. This is because the younger file seems to be more 

valuable as it receives the same amount of request but in a shorter time period.  The 

age of the file can be calculated as the time file being included in the grid until the 

current time.   

A

(8)
C

(39)

B

(15)E

(8)

D

(2)0.15 0.35 0.33

0.15

Figure 4.3: Dependencies between Files 
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xyz{	¦�{ = 	�y}{I'%%"K& −	�y}{$&&$I§              (4.3) 

 

The work presented in this research evaluates a resource file by combining 

information from users, file management and the grid itself. With this, the F2G 

relationship along with the F2U and F2F are taken into consideration when 

determining the importance of a resource. Hence, the File Value is computed as the 

following equation: 

 

xyz{	¨©zª{(j, i) = «HG"¬HO"&Hc"(&,O)3«HG""Ha§&(&,O)

«HG"	$a"(&,O)
                                             (4.4) 

 

xyz{|yi{jy}{ (FL) , xyz{�{y�ℎj (FW) and xyz{	¦�{ (FA) are used to compute the 

xyz{	¨©zª{ (FV) that is used as an indicator of the volume of demand for a file in a 

grid system, and the proposed replication algorithm will decide which file to be 

replicated. The larger the value of  xyz{	¨©zª{ (FV), the more important the file is to 

the grid system.  

 Replica Quantity 4.2

In determining the number of replication or deletion, we adapt the replica quantity 

strategy implemented in (Madi, 2012). Nevertheless, we are employing the proposed 

xyz{	¨©zª{ (FV) in the strategy. In this strategy, RBR triggers the resource selection 
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function (equation 4.4) and use it to calculate file power of users’ perspective 

(x®'L"%L).  This is computed as follows: 

 

x®'L"%L =
«¯

∑ 	«¯∀?875>
                                                        (4.5) 

where,  

FP: file power from user’s perspective, and 

FV: File Value.  

 

Additionally, there is also information from the view point of  the system that is 

represented by the availability of a resource in the system (Madi, 2012). This 

depends on the current number of replicas of the underlying file and is computed as: 

 

x®L±L&"c = ,J�
∑ 	,J�∀?875>

                                                        (4.6) 

where, 

FP: file power from system’s perspective, and 

NoC: number of copies of the underlying file. 

 

Later, a balance between users’ perspective and system’s perspective (Madi, 2012) is 

determined  and the utilized function is as follows:  

 

�²³´��´ = µ¶ ∗ �²´·´���                                                                                     (4.7) 

where, TH is the threshold value that determines how many percent the number of 

copies that are supposed to exist to meet the users request of the underlying file. The 

threshold value is specified in the form of percentage, which varies according to the 

grid situation, such as the current bandwidth, the type of the running applications and 

jobs, and the workload of the system (number of jobs and number of files). 
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With this, the replica quantity function for this research will be as follows:  

 

¸¹º» =
n¼½¾¿ÀÁ¿�	(ÂÃ×¼½¿Ä¿ÅÀÆ)p×∑ 	�ÇÈ∀����´

ÂÃ
                                              (4.9) 

where, ENoR: the estimated number of replicas. 

 

 

There are three cases that may occur: 

Case 1: if the )*ÉÊ > 0, then the system will replicate ENoR replicas of the 

underlying file, 

Case2: if the )*ÉÊ h 0, then the system will delete ENoR of existing replicas, and 

Case 3: if the )*ÉÊ = 0, then neither replication nor deletion is required. 

 

In order to illustrate how the strategy works, consider the following example: 

Assume a grid system has 15 files and their corresponding values and number of 

existing copies exists as shown in Table 4.2. Assume that the threshold value (TH) 

used is 50%, that means the FPÌF �F should double the value of  FPFÍFB @. 

 

pies 

 

 

 

 

 

 

File name File value 
Number 

of copies 

File1 26 1 

File2 30 2 

File3 32 1 

File4 31 3 

File5 28 4 

File6 20 2 

File7 10 3 

File8 15 5 

 

File name File value 
Number 

of copies 

File9 25 1 

File10 22 4 

File11 13 1 

File12 9 2 

File13 11 3 

File14 8 1 

File15 17 1 

Total 297 34 

 

Table 4.1: Examples of Files and its Related Information 
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The main concern here is to determine which file needs to be replicated and which 

file needs to be deleted. The first step is to calculate the power of each file in terms 

of users’ perspective, and system perspective according to formulas (4.5), (4.6), and 

(4.9). For example, the power of File1 from users’ perspective and system’s 

perspective, and ENoR for File1 are computed as follows: 

x®(xyz{1)'L"%L =
26
297

= 0.088 

x®(xyz{1)L±L&"c =
1
34

= 0.029 

ENoR =
(0.088 − 2 × 0.029) × 34

2
= 0.488 ≅ 0.5 ≅ 1 

 

Due to the fact that number of replica values must be in the form of integer number, 

so the ENoR value is rounded up to the nearest integer. Therefore, the estimated 

number of replicas is 1, which means File1 needs to be replicated once. In the same 

way, all FP values and ENoR for each file are computed as shown in Table 4.3. 

 

Table 4.2: Examples of ENoR 

File name Users power System power ENoR 

File1 0.088 0.029 0.5 

File2 0.101 0.059 -0.3 

File3 0.108 0.029 0.8 

File4 0.104 0.088 -1.2 

File5 0.094 0.118 -2.4 

File6 0.067 0.059 -0.9 

File7 0.034 0.088 -2.4 

File8 0.051 0.147 -4.1 
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File9 0.084 0.029 0.4 

File10 0.074 0.118 -2.7 

File11 0.044 0.029 -0.3 

File12 0.030 0.059 -1.5 

File13 0.037 0.088 -2.4 

File14 0.027 0.029 -0.5 

File15 0.057 0.029 0.0 

 

 

The results from Table 4.2 show that File1 needs to be replicated by one copy as 

ENoR approximately equals to one, while three copies of File10 need to be deleted 

where its ENoR values approximately equal to three. Meanwhile, the ENoR for File2 

and File9 approximately equal to 0, and therefore no action will occur as they are 

considered to be stable files. The rest of the files are in the same manner. To this end, 

there will be three lists of files, where the first list contains files that need to be 

replicated, the second list contains files that need to be deleted, and the third list 

contains files that require no further action. 

 RBR Algorithm 4.3

This section presents the algorithm of the proposed replication strategy. It integrates 

both of the proposed resource selection and replica quantity functions. The algorithm 

is as the one illustrated in Figure 4.4. 
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 RBR Implementation 4.4

As stated previously in Chapter three, the RBR is realized via the OptorSim 

simulator. The following sub sections discuss the integration of RBR into OptorSim.  

Input: Number of Access of each file (*É¦(iyz{y)), Number of file intervals,  j, 
Dependency Level (_z), File Size, Bandwidth between sites, Number of existing 

copies of each file (*É^(iyz{y));  
 

Output: Number of Replicas for the Identified Resource   

 

Procedures:  
/* Resource Identification */ 

1: for each files in the data grid  

2: Calculate m ← ∑ mH&�k
r j − 1⁄  

3: Calculate xyz{|yi{jy}{(j, i)	ªÒy(�	*O
& × (1 + m)		

4: Calculate xyz{�{y�ℎj(j, i) using  ∑ x|H × _|H
K
H�k 	

5: Calculate xyz{¦�{	using �y}{I'%%"K& −	�y}{$&&$I§ 

 

6: Calculate xyz{	¨©zª{(j, i) using  
«HG"¬HO"&Hc"(&,O)3«HG""Ha§&(&,O)

«HG"	$a"(&,O)
 

 

/*Replica Quantity */ 

7: Calculate x®'L"%L using  
«HG"¯$G'"

∑ 	«HG"¯$G'"∀?875>
 

8: Calculate x®L±L&"c using 
,J�

∑ 	,J�∀?875>
 

9: Calculate ENoR using 
n¼½¾¿ÀÁ¿�	(ÂÃ×¼½¿Ä¿ÅÀÆ)p×∑ 	�ÇÈ∀����´

ÂÃ
 

10:  if ()*ÉÊ>0) then  Add iyz{y to Popular_List  

11:  else if ()*ÉÊ<0) then  Add iyz{y to Unwanted_List  

12:  else if ()*ÉÊ=0) then  Add iyz{y to Stable_List  
 

Figure 4.4: The Relationship-based Replication Algorithm 
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4.4.1 Integration of RBR into OptorSim 

OptorSim is capable of simulating many areas of the grid and these areas can be 

divided into packages, where each package  contains a collection of related classes. 

The package diagram shown in Figure 3.4 describes those within OptorSim and their 

relations. Starting at the lowest level, the optorsim.time package deals with how time 

is measured within the simulation, while optorsim.infrastructure simulates the 

underlying grid infrastructure including the network, grid sites, and basic 

components of the site: computing Element and Storage Element. The P2P network 

and messaging system along with the auctioning process is included in the 

optorsim.auctions package. The functionality of replica management components 

including Replica Location Service is implemented in the optorsim.reptorsim 

package, while the replica optimization strategies are in the optorsim.optor package. 

Optorsim is the highest level package that simulates the resource broker and users, 

and also controls the GUI. 

  

 

 

 

 

 

 

 

 

 

optorsim optorsim.time

optorsim.auctionsoptorsim.optor optorsim.infrastructure

optorsim.reptorsim

Figure 4.5: UML Package Diagram of OptorSim 
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There exist three replication algorithms employed in OptorSim, namely, LFU, LRU, 

and Economic algorithm. In this work, we include three additional algorithms 

namely,  the LALW (Ruay-Shiung et al., 2008),  RBR (Madi, 2012) and RBR which 

is the proposed algorithm. The RBR and LALW along with other replication 

algorithms that have already been implemented in OptorSim, are written in Java and 

integrated into the optorsim.optor package of the simulator where it is termed as 

RBROptimiser, DRCMOptimiser and LALWOptimiser. These Java classes directly 

extend the skelOptor class that exists in optorsim.optor package as shown in Figure 

4.5. The implementing classes and subclasses are shown as a UML class diagram in 

Figure 4.6. In general, the simulation works as follows: the process starts when users 

submit a job to the RB, which in turn searches for appropriate CE, and schedules the 

job to any CE by following one of the scheduling algorithms defined in the 

parameter file. When the CE is ready to execute a job, it starts to process the files 

that are needed for the job. 
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The order of processing the files is according to the access pattern defined in the 

parameter file. The CE then calls the local optimizer to find the best replica for the 

file. The CE then reads the file and processes it, before calling for the next file  until 

all files for the job have been processed. In the OptorSim, each site has its own 

replica optimizer termed as local optimizer, and its main role is to find the best 

replica and replicate it in the local SE according to the chosen strategy. In this work, 

the Simple Optimizer is used as a local optimizer that finds the “best” replica of the 

<<interface>>

Optimisable

+getAccessCost()

+getBestFile()

SkelOptor

+getAccessCost()

+getBestFile()

ReplicatinrOptimiser

+getBestFile()

+chooseFilesToDelete()

LfuOptimiser

+chooseFilesToDelete()

LruOptimiser

+chooseFilesToDelete()

EconomicOptimiser

+getBestFile()

EcoBinModelOptimiser

+chooseFilesToDelete()

EcoZipModelOptimiser

+chooseFilesToDelete()

ABRSOptimiser

+getFileValue()

+getReplicasToCreate()

+getReplicaNo()

+getRC()

+getBestLocations()

+CreateReplicas()

+chooseFilesToDelete()

LALWOptimiser

+getFileValue()

+getReplicasToCreate()

+getReplicaNo()

+getBestLocations()

+CreateReplicas()

+chooseFilesToDelete()

Figure 4.6: UML Class Diagram of OptorSim 
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required file but never replicates, as all files are read by remote I/O. The replication 

decision is made by the proposed algorithm, RBR. In constant time interval, RBR 

gets information of the files from Replica Catalogue (RC). RC holds the mappings of 

logical file to physical file names (Silberschatz et al., 2006), evaluates the files in the 

system, and makes the replication decision if it is necessary. When the replication 

process has been performed, the RBR registers the new replica into the RC as shown 

in Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Summary of Chapter 4.5

This chapter presents the relationship-based replication algorithm termed as RBR. 

The RBR include three viewpoints in deciding files that requires replication: the file-

RBR 

Figure 4.7: RBR in OptorSim 
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to-user (F2U), file-to-file (F2F) and file-to-grid relationships (F2G).  Such an 

approach is hoped to minimize the job execution time, network bandwidth 

consumption, and storage element usage. The performance evaluation of this 

algorithm is discussed in the next chapter where the RBR is also compared against 

existing replication algorithms.  
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CHAPTER FIVE 

RESULTS AND DISCUSSIONS 

In order to evaluate the proposed RBR, we conducted a comparative evaluation 

against the DRCM (Madi, 2012), LALW (Ruay-Shiung et al., 2008) and other 

existing algorithms (LFU and LRU) that are built-in the utilized simulator A series 

of tests with their results are presented based on the parameters discussed in the 

previous Chapter.  

 Number of Jobs 5.1

It is important to understand how replication algorithms perform with the increase of 

numbers of jobs on the grid (Ruay-Shiung et al., 2008). Using the Queue Access 

Cost scheduler, we undertake the workload test by conducting various number of 

jobs, ranging from 200 to 4000.  The basic parameter settings used in this experiment 

is shown in Table 5.1, and result of the workload test is shown in Table 5.2. 

 

Table 5.1: Parameter Settings for Workload Test 

Parameter Value 

Number of Jobs 200, 500, 1000, 2000, 4000 

Scheduler QAC scheduler 

Site Policy All Job Types 

Access history length 1000000 ms 

Storage metric (D) 0.67 

Max. Queue Size 200 

Job Delay 2500 ms 
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Table 5.2: Simulation Results for Workload Test 

Number of  

Jobs 
Metrics LRU LFU LALW DRCM RBR 

200 

MJET 4582 4398 3931 3792 3545 

ENU 56.22 55.23 37.87 35.16 31.92 

ASU 34.58 33.96 34.13 29.91 27.73 

CEU 21.83 19.53 22.15 23.54 23.41 

500 

MJET 10911 8994 7839 7791 7566 

ENU 46.19 47.46 36.88 31.17 30.06 

ASU 36.17 37.45 35.71 32.42 28.78 

CEU 18.87 20.31 25.91 26.38 27.15 

1000 

MJET 17108 17030 16241 14522 12311 

ENU 44.42 43.21 34.25 28.94 26.88 

ASU 39.49 39.64 37.12 35.46 29.97 

CEU 24.34 25.6 30.25 32.62 34.27 

2000 

MJET 56567 55948 54133 52689 50361 

ENU 45.76 46.42 32.45 27.19 24.36 

ASU 40.63 40.64 38.63 36.11 30.54 

CEU 21.5 20.43 25.74 31.75 33.83 

4000 

MJET 114652 106979 104129 103771 103396 

ENU 45.83 47.53 30.89 25.37 22.73 

ASU 40.62 40.64 40.11 37.63 31.54 

CEU 23.96 23.88 28.11 31.91 33.27 

 

 

In order to show the efficiency of the DRCM over the existing algorithms, the 

efficiency values are calculated. For example, the RBR outperformed DRCM by 

14.15% in ENU metric, LRU by 5.12% in MJET metric, and 14.51% in ASU metric. 
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Table 5.4 shows the efficiency of the RBR -as percentage values- over other existing 

algorithms.  

Table 5.3: Efficiency Result for Workload Test 

Metrics LRU LFU LALW DRCM 

MJET 7.87% 7.43% 24.25% 5.12% 

ENU 41.12% 40.97% 23.09% 14.15% 

ASU 17.89% 18.02% 19.55% 14.51% 

CEU 30.22% 32.30% 15.30% 9.04% 

 

In what follows, we discuss and analyze the result that is presented in Table 5.2. The 

results show a linear increase in the MJET as the number of jobs on the grid 

increases. This is because, as more jobs are submitted, the queue at the sites 

increases. If the job submission rate is higher than the grid’s job processing rate, this 

build-up of queues is inevitable. Hence, a preferred algorithm is an algorithm that 

has less MJET. As shown in Figure 5.1, for MJET, the RBR is the best among 

existing algorithms. Utilizing the RBR, the mean job execution time is reduced and 

is noted to better by 5.12% over DRCM, 24.25% over LALW, and about 7 % over 

LRU and LFU.  

 

Referring to the Average Storage Usage (ASU), the LFU and LRU algorithms are 

noted to utilize more storage as they replicate files to the local storage. This is 

followed by the LALW and DRCM. However, by using RBR, the storage usage is 

reduced by outperforming LRU, LFU, LALW, and DRCM by 17.89%, 18.02%, 

19.55%, 14.51% respectively.  
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On the other hand, results of Efficient Network Usage (ENU) show a slight linear 

decrease as number of jobs on the grid increases. This is because at the start of the 

simulation the queues are small, but they build up quickly while the files are 

replicated in the grid. Once the replication process has established, the execution 

time are reduced and the queue is shorten. The ENU gradually decreases with the 

increment in number of jobs because the amount of replication decreases over time. 

The LRU and LFU have the highest effective network usage, showing that they are 

poor at making replication decisions. The RBR uses the lowest amount of network 

resources for the tested number of jobs because it is able to make better decision in 

deciding file that requires replication.  

 

Looking at the Computing Element Usage (CEU) metric, it can be seen that the CEU 

generally grows as the number of jobs increases, reflecting the heavy workload. 

However, there is an obvious drop between 1000 and 2000, this is because with the 

higher number of jobs, the scheduling algorithm is sending most of the extra jobs to 

a few sites from where the data are easily accessible, leading to more uneven 

distribution of jobs around the grid. The same trend, although less marked, there is a 

slight drop seen with RBR. This indicates that RBR leads to make a good balance in 

the grid, this is because RBR distribute the replicas among the sites taking into 

account the workload of the sites in the grid and places of the existing replicas, 

which in turn drive the scheduling algorithm to make a balance while submitting the 

jobs, as they send the job to the computing elements that are close to the data 
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 Length of Access History 5.2

In this experiment, the effect of access history length on the performance of RBR 

and other existing algorithms is investigated. Using QAC scheduling algorithm and 

submitting 500 jobs to the grid, the access history length varying between 10
3
 ms 
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Figure 5.1: Workload Test Results of  (a) MJET, (b) ENU, (c) ASU and (d) CEU 
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and 10
6
 ms. In order to test the behavior of RBR in different cases, namely when the 

access history has a poor information on file accesses, and when the access history 

has enough information on file accesses. Thus, we consider in this experiment that 

job submission rate (job delay) varying between 1000 ms and 2500 ms. The MJET, 

ENU, and ASU are measured. The basic parameter setting is shown in Table 5.4 

while the result is provided in Table 5.5. 

 

Table 5.4 Parameter Settings for Access History Test 

Parameter Value 

Number of Jobs 500 

Scheduler QAC scheduler 

Site Policy All Job Types 

Access history length 10
3
 ms, 10

4
 ms, 10

5
 ms, 10

6
 ms 

Storage metric (D) 0.67 

Max. Queue Size 200 

Job Delay 
1000 ms, 1500 ms, 2000 ms, 

2500 ms 

 

The first test in this experiment considers access history length of 1000 ms and job 

delay of 1000 ms. This means that the access history contains information on only 

one job files, i.e. the access history length may not be adequate as we have 500 jobs. 

However, we also include experiment that considers an access history length of 10
6
 

ms while the job delay is defined at 2500 ms, hence indicating that the access history 

would have a view of the overall access patterns. 
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Table 5.5: Simulation Results for Access History Test 

Access 

History 

Length 

Job 

Delay 
Metrics LRU LFU LALW DRCM RBR 

10
3
 

1000 

MJET 7543 7127 11995 11295 11189 

ENU 30.96 30.85 47.26 46.26 40.29 

ASU 35.83 34.4 37.27 28.91 27.13 

 CEU 21.49 20.25 23.53 25.31 27.41 

10
4
 1500 

MJET 11518 9745 10980 10740 10570 

ENU 43.18 43.13 44.26 43.26 41.56 

ASU 38.19 36.5 37.36 30.11 28.98 

CEU 23.3 18.35 24.28 26.35 28.15 

10
5
 2000 

MJET 10816 10327 9972 9346 9039 

ENU 43.74 47.87 40.26 37.26 33.88 
 

ASU 35.98 37.67 37.91 32.98 29.37 

CEU 22.75 19.4 24.98 26.49 28.47 

10
6
 2500 

MJET 10911 8994 7839 7791 7566 

ENU 46.19 47.46 36.88 31.17 30.06 

ASU 36.17 37.45 35.71 32.42 28.78 

CEU 18.87 20.31 25.91 26.38 27.15 

 

Based on data tabulated in table 5.5,  the efficiency of the RBR -as percentage 

values- over other existing algorithms is shown in Table 5.6.  
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Table 5.6: Efficiency Result for Access History Test 

 LRU LFU LALW DRCM 

MJET 3.98% -8.21% 3.98% 2.06% 

ENU 11.14% 13.89% 13.56% 7.70% 

ASU 21.83% 21.75% 22.93% 8.17% 

CEU 28.67% 41.97% 12.64% 6.36% 

 

Figure 5.2 clearly shown that the performance of all algorithms get worse until the 

access history contains enough information on the files, and there is not a large 

variation in mean job time of each algorithm. The poor performance of LALW, 

DRCM, and RBR with small access histories, however, LFU and LRU are the best 

performer. LALW, DRCM and RBR perform badly with small access history 

because the files values changes rapidly that seemingly worthless files will be 

deleted when they are likely to be requested in the near future. Those strategies 

namely LALW, DRCM and RBR require a large access history to be able to assess 

well which files are worth keeping. There is no noticeable effect of the length of 

access history on both of storage element usage and computing element usage. 
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Figure 5.2: Access History Test Result for  (a) MJET, (b) ENU, (c) ASU and (d) CEU 
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 Storage Size 5.3

The sizes of the files and in turn the value of D may affect the performance of each 

replication algorithm. The less storage space available at a site would lead to a 

longer job execution time and higher network usage as fewer replicas can be 

accommodated in the grid. In this experiment, we investigate the performance of 

RBR with different storage size. The settings used in this experiment is shown in 

Table 5.7 and the results is shown in Table 5.8. 

 

Table 5.7: Parameter Settings for Storage Size Test 

Parameter Value 

Number of Jobs 500 

Scheduler QAC scheduler 

Site Policy All Job Types 

Access history length 1000000 ms 

Storage metric (D) 0.05, 0.37, 0.66, 1.31 

Max. Queue Size 200 

Job Delay 2500 ms 
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Table 5.8: Simulation results for Storage Size Test 

Storage Metric Metrics LRU LFU LALW DRCM RBR 

0.05 

MJET 12004 11221 10820 10821 10932 

ENU 89.21 88.91 89.26 88.94 88.46 

ASU 94.66 93.94 91.11 91.24 90.47 

CEU 25.25 24.22 25.29 26.38 27.21 

0.37 

MJET 10529 10281 9734 9486 9272 

ENU 55.19 53.22 53.68 52.98 50.75 

ASU 57.21 56.36 53.98 53.91 47.35 

CEU 24.31 24.93 23.32 25.84 26.71 

0.66 

MJET 10011 9484 9250 8123 6985 

ENU 46.49 47.56 35.34 33.88 29.57 

ASU 37.47 38.11 36.97 32.71 27.52 

CEU 24.53 25.78 25.44 25.52 26.19 

1.31 

MJET 6712 7101 8174 8210 8117 

ENU 13.79 14.13 15.92 15.88 16.42 

ASU 21.92 18.95 23.34 19.21 18.83 

CEU 27.52 21.91 29.62 30.02 32.59 

 

Data in Table 5.9 shows the efficiency of the RBR -as percentage values- over other 

existing algorithms.  

Table 5.9: Efficiency Result for Storage Size Test 

 LRU LFU LALW DRCM 

MJET 10.06% 7.30% 7.04% 3.64% 

ENU 9.52% 9.14% 4.63% 3.38% 

ASU 12.82% 11.18% 10.34% 6.55% 

CEU 10.91% 16.38% 8.71% 4.58% 
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Based on the data depicted in Table 5.8, for the smallest value of D (i.e. D=0.05), the 

MJET all replication algorithms is high, as replication lose its advantage compared 

to remote access and each new job is more likely to request files which have not 

been requested before, because the available space in the storage elements is very 

limited. The job scheduler submits the jobs evenly among the sites, even if the sites 

have a heavy workload, and thus the increasing number of jobs that are waiting in 

the queue in the sites are increased as well as the mean job time. For the highest 

value of D (i.e. D = 1.31) as shown in Figure 5.3, the LRU and LFU are slightly 

faster than other strategies, because the files are likely to be read locally as LRU and 

LFU always replicate the files. Looking at ENU metric in Figure 5.3, it is noticeable 

that ENU falls as D decreases, for all replication algorithms due to the same reason, 

as there is enough space in storage elements to the extent that all of the replicas can 

be accommodated and read locally. The RBR perform the best when (D= 0.37) and 

D = 0.66 as it gives the shortest job execution time and smallest value of ENU. This 

is because LALW and DRCM ignore the age of the file, which in turn will give the 

recently created files small value and then later will be deleted because of their low 

value. However, RBR evaluates the files taking into account their ages with the aim 

of keeping the potential popular file available.  

Moreover, RBR outperforms LALW by 3.38% in improving ENU. This is because 

number of replications required by RBR is less DRCM – RBR adds more restrictions 

in evaluating the files that depends on three criteria to determine files that require 

replication as compared to only two by DRCM. 

Looking at CE metric in Figure 5.3, there is a little variation in the computing 

element usage when value of D < 1. This is because the files are spread around the 
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sites, in this case RBR outperform other replication algorithms. When D > 1 (i.e. 

D=1.3) there is a noticeable increase in computing element usage meaning that 

replication algorithms lead to make balance in grid system. Due to large storage 

space that allows the sites to store all the files in grid system, therefore every site in 

grid is likely to be a candidate that chosen by job scheduler to run the job. As a 

result, job scheduler has more choices when submitting the jobs to the grid sites and 

can balance number of jobs at each site. 
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Figure 5.3: Storage Size Test Result on (a) MJET, (b) ENU, (c) ASU and (d) CEU 
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 Summary of Chapter 5.4

In this chapter, we presented the result of our simulation experiments. In the 

simulation experiments, different scenarios were employed to evaluate the RBR and 

other relevant replication algorithms. The simulation results showed an overall 

improvement of the performance of data grid when RBR was employed. As a result 

the overall bandwidth consumption decreases, and RBR is a better algorithm for 

storage usage. In addition, the RBR greatly affects the work of job scheduler and in 

turn the overall computing element usage. 

In the next chapter, the conclusion and contribution of the research work presented in 

this report will be described. It will also include some suggestion on how the work 

can be continued in the future.   
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CHAPTER SIX 

CONCLUSION  

This chapter presents a conclusion of the research work as explored and described in 

the report. The research contributions are supported by the experimental results 

which are highlighted. The applicability of the proposed algorithm in the real world 

is also presented, followed by a discussion of the research limitations. Eventually, 

several possible future research directions to realize and extend the work are also 

identified and recommended.  

 

Data replication is a technique to move and cache data close to users. By replication, 

data access performance can be improved dynamically. The general idea of 

replication is to store copies of data in different locations so that data can be easily 

recovered if one copy at one location is lost or unavailable. Therefore, the proposed 

algorithm (RBR) has been designed and implemented as a response to the need of an 

alternative replication algorithm in the established domain, where data proliferation 

and limited resources in data grids are common. The main problem that is addressed 

by this research is how to make a decision on replica creation in order to satisfy both 

the grid resources and grid users. 

 

Resource satisfaction is achieved by reducing the overall cost which includes 

reducing storage cost and network bandwidth. On the other hand, user satisfaction is 

achieved by reducing job execution time. The proposed RBR allows for greater user 

satisfaction and resource satisfaction simultaneously because it complies with grid 
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resource limitations and the requirements of the users’ job. Making a decision on 

replication and deletion is not an easy task. It was observed that considering all grid 

request patterns in evaluating the files which will influence the decision, is better 

than considering only the most well-known request. In this context, the most well-

known request is the request which is made directly by the user for a specific data 

file. Additionally, it was learned that considering the distribution of the replication 

along with other parameters such as the transfer time of data file among sites, and 

workload of each site have a significant effect on the overall system performance, 

specially the job execution time, because grid sites expose geographical localities in 

the data grid environment.  

 Contribution of the Research 6.1

The contribution of this research work is related to the proposing of a new replica 

creation algorithm that enhances the performance of the data grid by reducing job 

execution time and reducing the overall grid resource cost. This has been achieved 

by proposing the followings:  

 

i. a resource selection function  

This research proposes a new function (as in equation 4.4) to be used in 

determining the suitability or urgency of a resource (i.e data file) to be replicated. 

The larger the value of the proposed xyz{	¨©zª{ (FV), the more important the 

resource is to the grid system. The utilized exponential model evaluates the 

resource in terms of user demand behavior and notes the importance of the resource 

to the users. This is complemented by utilizing information on the resource 
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relationships with existing resources. Additionally, the time period of a resource is 

also considered in the formulation of the function.  

 

ii. a replica quantity function  

The proposed RBR also consist a function in determining the number of replication 

that is suitable or required by the identified resource. The proposed function 9as in 

equation 4.6) adapts the one presented in (Madi, 2012) by employing the proposed 

xyz{	¨©zª{ (FV). The proposed function determines the number of replica by 

considering existing volume of demand and storage space. 

 

iii. a replication algorithm that is based on relationships 

Based on the two proposed functions, this research integrates them into an algorithm 

that contributes in determining which resource that requires replication and how 

many copies of it would be beneficial to the data grid system. The proposed 

Relationship-based Replication (RBR) is shown in Figure 4.4. 

  

iv. the implementation of RBR in a data grid simulator (OptorSim)  

This implementation can be used by other researchers for comparison or 

modification purposes. It presents the proposed RBR and existing replication 

algorithms.  

 Future Work 6.2

The work reported in this research has opened up several avenues for exploration 

and one of the main extensions is in the area of replica management. Once the 



 

 87 

resource and number of replication has been identified, research can also be 

undertaken to determine the optimized location of the newly created replica. Storing 

a replica in the most suitable site would contribute in reducing job execution time.   

The second strategy that could be included in replica maintenance is the re-location 

of existing resource (and its replicas) in the data grid system. This is required as the 

volume and pattern of demand can changed dynamically. Hence, a function or 

algorithm that relocates resource file and their replicas to sites that provide better 

services in the context of the current situation and network conditions would 

beneficial. 
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