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Abstract

M/G/C/C state dependent queuing networks consider service rates as a function of the number of residing entities (e.g.,
pedestrians, vehicles, and products). However, modeling such dynamic rates is not supported in modern Discrete
Simulation System (DES) software. We designed an approach to cater this limitation and used it to construct the M/G/C/C
state-dependent queuing model in Arena software. Using the model, we have evaluated and analyzed the impacts of
various arrival rates to the throughput, the blocking probability, the expected service time and the expected number of
entities in a complex network topology. Results indicated that there is a range of arrival rates for each network where the
simulation results fluctuate drastically across replications and this causes the simulation results and analytical results exhibit
discrepancies. Detail results that show how tally the simulation results and the analytical results in both abstract and
graphical forms and some scientific justifications for these have been documented and discussed.
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Introduction

M/G/C/C state dependent networks are typical systems in our

life. The examples include pedestrians flow through corridors,

vehicles movement on roads, products delivery through accumu-

lating conveyers, etc. Here the term M/G/C/C state dependent

means that inter-arrival time distribution is Markovian, service

time follows a General distribution, which is dependent on the

number of customers in the system, C parallel servers and a total

capacity of C. Since the service time depends on the number of

residing entities (i.e., pedestrians, vehicles, products, etc.), we can

control the system’s service time and throughput through their

arrival rates. Slow arrival rates cause less residing entities and thus

make them to be serviced faster. This however causes little

throughputs at certain period of time. High arrival rates increase

the number of residing entities and thus make them to be serviced

slower. This however may increase the throughputs at the end. A

higher value of arrival rates than its capacity tolerance limit will

cause congestion. This situation tends to create havoc instead of

improving the throughput. Thus, controlling the arrival rates so

that the throughput of the system is optimized is crucial especially

in an emergency evacuation case.

Yuhaski and Smith have presented linear and exponential

models for uni-directional service times in terms of walking speed

as follows [1]:

Linear:

Vn~
A

C
(Cz1{n) ð1Þ

Exponential:

Vn~A exp {
n{1

b

� �c� �
ð2Þ

where

c~

ln
ln Va=Að Þ
ln Vb=Að Þ

� �

ln
a{1

b{1

� � , b~
a{1

ln
A

Va

� �� �1=c
~

b{1

ln
A

Vb

� �� �1=c
,

c, b = Shape and scale parameters for the exponential model,

Vn = Average walking speed for n pedestrians in a corridor,
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Va = Average walking speed when crowd density is 2 ped/

m2 = 0.64 m/sec,

Vb = Average walking speed when crowd density is 4 ped/

m2 = 0.25 m/sec,

A = V1 = Average walking speed when there is a single

pedestrian = 1.5 m/sec,

n = Number of pedestrians in a corridor,

a = 2 6 L 6W,

b = 4 6 L 6W,

C = 5 6 L 6W,

L = Length of the corridor, and

W = Width of the corridor.

Based on the models, Cheah [2] developed the limiting

probabilities for the number of pedestrians in an M/G/C/C state

dependent queuing model as follows:

Pn~
lE(S)½ �n

n!f (n)f (n{1):::f (2)f (1)
P0 , n~1,2,3, . . . ,C: ð3Þ

where, P{1
0 ~1z

XC

n~1

lE(S)f gi

i!f (i)f (i{1):::f (2)f (1)

" #
:

In this model, E(S) is the expected service time of a single

pedestrian in a corridor of length L, Pn is the probability when

there are n pedestrians in the corridor, P0 is the probability when

there is no pedestrian in the corridor, and f(n) is the service rate

and is given byf (n)~
Vn

V1
. C meanwhile refers to the capacity of

the corridor. Tregenza [3] showed that the capacity is equal to the

highest integer that is less than five times the area of the corridor in

square meters. Any pedestrians attempting to enter a full capacity

corridor will be blocked. The probability of such blocking (Pbalk) is

equal to Pn where n equals C. The different performance measures

of the corridor can then be computed as

h~l(1{Pbalk), E(N)~
XC

n~1

nPn and E(T)~
E(N)

h

where h is the steady state throughput through corridor, E(N) is

the expected number of pedestrians in the system and E(T) is the

expected service time in seconds.

Kawsar et al. [4] used an M/G/C/C model to evaluate

performances of pedestrian traffic flow within a complex

topological network that is the Dewan Tuanku Syed Putra (DTSP)

hall room of Universiti Sains Malaysia. Their main premise is that

its throughput can be increased by controlling the arrival rate to

each of its source corridors and such control is crucial in an

emergency case, e.g. fire, explosion, etc. Based on the optimal

arrival rate, performances of each source corridor and its relevant

exit corridors in terms of their throughputs, blocking probabilities,

expected service time and expected number of entities have been

documented and discussed in details.

Analytical results of the network can be validated using a

discrete event simulation model [5,6]. In this model, pedestrians

(entities) seize a unit (a space in a corridor) of available servers (the

capacity of the corridor) and delay it as a function of the current

number of busy servers (the number of residing pedestrians). The

unit will be released once the pedestrian seizing it has finished its

travel time and later be seized by another pedestrian. This kind of

mechanism can flexibly be programmed using any procedural or

object oriented programming (OOP) languages, e.g. C [7], Java

[8], C++ [9,10], etc. and has been focused and discussed in detail

in the previous paper [11]. However, constructing basic libraries

for structuring and running the model (e.g. simulation clock,

simulation calendar and engine, distribution types, statistical

reports, etc.) and embedding animations for getting insight into

its inner processes (that is to show the pedestrians’ behavior and

flows over time) will demand programming experiences and

consume time. Modern simulation software offers libraries and

facilities for the model’s structures, animation and analysis either

in abstract and graphical forms. However, their inner workings are

only based on common queuing mechanisms, that is servers’

service time cannot be changed once they have been seized by

entities.

Most simulation software only permits us to specify entities’

service times or servers’ processing times based on certain

distributions, e.g. Exponential, Poisson, Gamma, etc. The service

times determine how long they will seize (be delayed by) the

servers and any updates during these times are not allowed. Such

mechanism limits us from representing the M/G/C/C networks

that consider the entities must dynamically be delayed as a

function of the number of seized servers. Thus, the main

contribution of this paper is the approach how to support this

important feature using most simulation tools. Other contributions

include the thorough investigations and reports on the range that

the simulation and analytical results will exhibit some discrepan-

cies.

We organized this paper as follows. The subsequent section

briefly discusses the main limitation of commercial simulation tools

in modeling M/G/C/C networks and presents ideas how this

limitation can be tackled. Further, we focus on the modeling of the

networks using modules available in Arena software. In the

following section the simulation results are compared with

analytical results of the selected complex topological network.

Reports on how tally the simulation results and the analytical

results in abstract and graphical forms and some discussion on this

are documented and discussed. Finally, the last section summarizes

the findings and presents some conclusions.

Table 1. Pedestrians’ Attributes.

lastLocation = lastLocation + Vn21 6 (currentEventTime – lastEventTime)

lastEventTime = currentEventTime

delayTime = (lengthOfCorridor 2 lastLocation)/Vn

occurTime = currentEventTime + delayTime

doi:10.1371/journal.pone.0058402.t001

Table 2. Model’s Variables.

p(c) = sumBlockedPedestrians/sumArrivalPedestrians

h = sumDepartedPedestrians/simulationLength

L = sumTimeSpentInCorridybyAllPedestrians/simulationLength

W = sumTimeSpentInCorridybyAllPedestrians/sumDeparture

doi:10.1371/journal.pone.0058402.t002
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Materials and Methods

Discrete Event Simulation Model
Any simulation software can be tailored to model the M/G/C/C

networks. However, we have not found any report on how this is

possible. Our main challenge is to dynamically update the

pedestrians’ service rates as a function of their density in a

corridor, since most simulation tools do not permit the increment

or decrement of a server’s delay time (processing time) once it has

been in a busy state. Alternatively, we could model the networks

using a conveyer approach where its length and velocity are based

on the capacity of the corridor and the number of pedestrians

residing in it. However, since the velocity cannot also be changed

during run time, this limits us from further investigation on how

these conversions are possible. In spite of this fact, there has been

some researches utilizing the M/G/C/C mathematical model with

its states is set constant to evaluate the performances of material

handling systems in which accumulating conveyers are used to

deliver products (e.g. see [12,13]).

To solve this, we can store pedestrians in a queue. The waiting

time they spent in the queue represents their travel time through a

corridor and its buffer size (that is the maximum number of

pedestrians that can enter the queue) represents the capacity of the

corridor. Full capacity blocks pedestrians from entering the queue

and accumulates them in another queue. Whenever there is an

event in the queue (that is entrance and departure of a pedestrian),

two things will happen. First, the current walking speed of the

corridor, Vn needs to be updated and the value must be assigned to

all other residing pedestrians. Second, the pedestrians have to

calculate their delay time (remaining time) to exit the corridor that is

by considering their remaining distance to cross the corridor and

the current value of the Vn. Thus, pedestrians should have

attributes as listed in Table 1. Note that the formula is used to

update a pedestrian’s current location in a corridor based on the

previous walking speed whenever a new pedestrian enters or an

existing pedestrian leaves the corridor.

To implement this logic, a simulation tool should support a

mechanism for removing entities from their queue so that their

states can be updated and a mechanism for delaying their delay

times so that they can be freed whenever their occurred times have

been reached.

In addition to these attributes, pedestrians should also have

other auxiliary attributes that measure the time that they have

spent in the corridor that is timeEnterCorridor, timeExitCorridor,

timeSpentInCorridor, etc. The timeEnterCorridor stores the time a

relevant pedestrian enters the corridor, timeExitCorridor stores the

time he/she exits the corridor while the timeSpentInCorridor stores

the time that he/she has spent to cross the corridor (that is

timeExitCorridor – timeEnterCorridor). Using this logic, the perfor-

mances of the corridor can be stored in relevant variables and

evaluated using the relationships listed in Table 2.

Arena as an Implementation Tool
We used Arena [14,15,16], SIMAN-based simulation software,

to model the M/G/C/C networks. Besides the fact that the

software does not allow us to variably change a server’s service

Figure 1. Arena model for M/G/C/C networks.
doi:10.1371/journal.pone.0058402.g001
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time once it has been seized by an entity, it also offers no direct

access to entities in queue. Fortunately, it provides a module for

removing entities from their queue. This feature enables us to

remove, update their current states (e.g. their current locations,

delay time, etc.) and flow them back to the queue. Figure 1 shows

our basic model for the M/G/C/C networks. Although it is

implemented in Arena, the structures and logic of flowing

pedestrians throughout their lifecycles are straight forward and

can easily be implemented in any other DES software, e.g.

SIMUL8 [17], ExtendSim [18], etc.

We first create a sample of pedestrians according to the

exponential distribution using the Create module (1). Their

creations are based on time between arrivals. Thus, we have to

convert the l (that is pedestrian arrival rate in the mathematical

models) to 1/l in order to present the time between their arrivals

to the corridor. This 1/l should also be specified as the model’s

Figure 2. Structures of Series, Splitting and Merging Topologies in Arena. (a) Series Topology. (b) Splitting Topology. (c) Merging Topology.
(d) Storing Pedestrian at a Relevant Corridor. (e) Removing Relevant Pedestrian. (f) Routing Pedestrian to Relevant Corridor.
doi:10.1371/journal.pone.0058402.g002

Table 3. Comparison of Analytical and Two Simulation Results.

Model p(c) h L W CPU (s)

Analytic 0.11 4.45 95.66 21.49 -

Simulation (Cruz et al., 2005) 95% CI 0.00 [0.00, 0.00] 4.99 [4.97, 5.00] 46.80 [45.54, 48.05] 9.39 [9.10, 9.68] 1100

Simulation (our) 95% CI 0.01 [0.00, 0.02] 4.96 [4.91, 5.02] 48.23 [43.71, 52.75] 9.80 [8.62, 10.98] 5142

doi:10.1371/journal.pone.0058402.t003
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first event that is the creation time for the first pedestrian.

However, omitting this will not affect the model’s performances

since it will be run for a long period of time (that is until its steady

state). Besides these pedestrians, we have to create one dummy

entity (the Create module (8)) that will iteratively activate a

mechanism to remove pedestrians and update their current states.

Every arrival must be counted. For this, we used an Assign

module. It allows us to declare and assign relevant values to

variables or attributes, and has been used throughout the model to

update its states. In the Assign module (2), we defined variables that

respectively store the number of pedestrians that have entered and

that have been blocked from entering the corridor for calculating

its blocking probability (see Table 2), and an attribute that stores

their identification numbers (IDs) for later use in the model. The

IDs are assigned based on the number of pedestrians in the system,

and this global variable must always be updated every time a new

pedestrian arrives at the system.

Each pedestrian tries to seize a space in the corridor. This

situation can be presented using the Seize module (3) that allocates

a unit (a space) of available servers (the capacity of the corridor) to

the pedestrian. The capacity of the corridor (that is 56 length 6
width) has first to be declared in another place (e.g. using the

Expression spreadsheet). If all available units are busy, the

pedestrian will automatically be queued until the unit is available

to be seized.

Every successful pedestrian will initially be introduced to the

physical corridor. The Assign module (4) defines variables relating

to this, that is its area, its capacity and its current number of

residing pedestrians and will be used to calculate the current travel

speed in the corridor. Since there are two mathematical models for

calculating the speed that is linear and exponential models (see

Equation (1) and Equation (2)), we used the Decide module (5) to

offer the option. However, only the exponential models were used

to analyze and report the analytical and simulation results in this

paper. In the Exponential Model decision module, we have to use the

Initial Exponential Walking Speed and Assign Exponential Walking Speed

blocks to clearly differentiate the speed for a single pedestrian (that

is 1.5m/s) and the speed for occupied pedestrians that are greater

than one in a relevant corridor. We have to do this since Arena

software only has a built-in mathematical function for an

exponential function with base e. Thus, we have to convert

n{1

b

� �c

in the Equation (1) to ec ln n{1
bð Þ. However, this natural

logarithmic is undefined if n{1 = 0, that is when there is a single

pedestrian in a corridor.

When pedestrians start travelling through the corridor, we

have to initialize their entrance time to the current simulation

clock value and their current travel distance to zero. This is

accomplished by the Assign module (6). Simultaneously, a signal

(that denotes the arrival event) needs to be sent using the Signal

module (7) to force the Hold module (9) (that is a type of queue

that releases its residing entities when receiving a signal or

satisfying a condition) to release the dummy entity and then

activate the Remove module (10). The Remove module removes

pedestrians from their queue (the Queue module (12)) in order to

update (the Assign module (11)) their states that is their current

travel distance, their remaining time to exit the corridor and the

time points that these events happen. This time will later be used

for calculating the pedestrians’ new states (see Table 1). We also

need to assign (the Assign module (13)) their current number of

state changes (loop IDs) that will be used as a search criterion

later in the model. After performing the task, the dummy entity

flows back to the Hold module (9) and waits for another signal.

The pedestrians cannot perform their delay times (remaining

times to exit the corridor) while in queue. To solve this, we can

duplicate them using the Separate module (14). The original

pedestrians flow back to their queue after updating their states,

while their clones (that have the same attributes and values)

perform their delay time using the Delay module (15). After the

delay time, they enter the Assign module (16) where the values of

their IDs and loop IDs are assigned to new variables and used as

search criteria (accomplished by the Search module (17)) to match

their original pedestrians that satisfy both values.

The result of the search is either true (found) or false (not

found). If the original pedestrian was not found, the duplicated

pedestrian will instantly be destroyed to claim computer memory

spaces. Else, it will send a signal (that denotes the departure

event) using the Signal module (18) to the Hold module (9). The

Hold module then releases the satisfying pedestrian from its queue

that then frees (the Release module (19)) his/her space to be seized

by other pedestrians. Before being destroyed, the pedestrian

measures the performance of the corridor using the Assign

module (20) and sends a signal (the Signal module (21)) to the

Hold module (9) to force all pedestrians to update their new

states.

We cannot control the cross lines from the Remove module (10) to

the Assign module (11) since the Remove module has two exit points,

that is the Original exit point to route the dummy entity to a

decision block to wait for the next events or to iteratively remove

pedestrians from their queue, and the Removed Entity exit point to

route the removed pedestrians to update their states and return to

their queue.

The basic model can easily be extended to support series, splitting

and merging topologies. Since these topologies relate to the flow of

pedestrians through various corridors, we should provide relevant

mechanisms to perform these logics. First, we have to create a

unique queue for each corridor so that we can store its residing

pedestrians and update them accordingly, e.g. when there is an

arrival or a departure event. Second, we have to attach an

attribute to the pedestrians (e.g. toCorridor that will take their next

corridor number) so that we can travel them correctly from

corridor to corridor. The value of the attribute must be updated

once a relevant pedestrian exits its current corridor and used

throughout the model to support the logical statements of the

model, e.g. when we want to remove or search pedestrians in their

queue. Third, we have to create and send a unique signal number

Figure 3. DTSP Network.
doi:10.1371/journal.pone.0058402.g003
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every time the pedestrian enters/exits their corridor to enable us to

update their current states in the corridor.

Figure 2 shows snapshots of the three topology structures.

Figure 2 (a to c) show Arena modules used for flowing pedestrians

from corridor to corridor in series, splitting and merging corridors

respectively. The structures are straightforward and can easily be

comprehended by model designers who are familiar with high

level DES software. Figure 2 (d to f) meanwhile show the

modifications that must be made to our previous engine in order to

store pedestrians in, remove pedestrian from and route pedestrians

to relevant corridors. All the three topologies share the same

engine.

Results and Discussion

Comparison of Analytical and Simulation Results
We run our simulation model using Process Analyzer. This

application eases the analysis and comparisons of simulation

results based on different model inputs. Our model’s input controls

are arrival rate, the length of a corridor, its length and width and

pedestrians’ average travelling distance since we have many source

inputs of a corridor. The output responses are its blocking

probability, throughput, expected number of pedestrians and their

mean travel time.

All simulation results documented in this paper were carried out

for 20000 seconds, and 10 and 30 replications respectively. We

Figure 4. Graph of blocking probabilities measures against variable rates for source corridors. (a) Blocking Probabilities for Corridor 6.
(b) Range of Discrepancies for Corridor 6. (c) Blocking Probabilities for Corridor 7. (d) Range of Discrepancies for Corridor 7. (e) Blocking Probabilities
for Corridor 8. (f) Range of Discrepancies for Corridor 6.
doi:10.1371/journal.pone.0058402.g004

Simulation Model of State Dependent Queuing System

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e58402



purposely ran each scenario for two different replication numbers

to investigate if there would be any improvement of its outputs’

half widths. Before being used to validate the analytical results of

the considered networks [4], we first compared our simulation

results with the simulation results reported in the previous paper

[11]. We found that our simulation results were only less than 5%

difference with theirs. Our simulation model also reported almost

the same results as theirs for the obvious discrepancies results

between analytical and simulation models (when l= 5 pedestrian/

Table 4. Arrival Rates and Their Minimum Number of Replications.

Corridor Rate Analytic Simulation

Min Max Average h0 Diff (%) h n

14.00 0.0025 0.0000 0.2596 0.0313 0.0304 97.12 0.0016 11319.83

6 14.20 0.0111 0.0000 0.2357 0.0396 0.0278 70.18 0.0020 5909.73

14.40 0.0437 0.0000 0.2800 0.1013 0.0408 40.31 0.0051 1949.49

14.60 0.1259 0.0000 0.3019 0.1279 0.0457 35.74 0.0064 1532.72

14.00 0.0007 0.0000 0.1777 0.0278 0.0208 74.89 0.0014 6730.59

7 14.50 0.0148 0.0000 0.2878 0.1402 0.0443 31.61 0.0070 1199.18

15.00 0.1494 0.0937 0.3123 0.2714 0.0166 6.12 0.0136 45.00

15.50 0.2953 0.2979 0.3343 0.3226 0.0035 1.08 0.0161 1.40

9.50 0.0001 0.0000 0.2004 0.0183 0.0180 98.20 0.0009 11571.12

8 10.00 0.0060 0.0000 0.2671 0.0998 0.0341 34.15 0.0050 1399.33

10.50 0.1286 0.2123 0.3067 0.2800 0.0093 3.33 0.0140 13.32

11.00 0.3036 0.3298 0.3430 0.3374 0.0014 0.43 0.0169 0.22

9.50 0.0001 0.0000 0.2031 0.0309 0.0200 64.82 0.0015 5042.27

10.00 0.0028 0.0000 0.2544 0.1589 0.0317 19.92 0.0079 476.08

10.10 0.0052 0.0000 0.2709 0.1963 0.0261 13.32 0.0098 212.79

10.20 0.0096 0.0184 0.2757 0.2045 0.0216 10.56 0.0102 133.88

10.30 0.0174 0.1518 0.2833 0.2377 0.0142 5.99 0.0119 43.01

10.40 0.0303 0.2115 0.2894 0.2675 0.0068 2.55 0.0134 7.80

9 10.50 0.0504 0.2205 0.2962 0.2789 0.0070 2.52 0.0139 7.63

10.60 0.0791 0.2415 0.3025 0.2947 0.0050 1.71 0.0147 3.49

10.70 0.1156 0.2703 0.3101 0.3011 0.0040 1.32 0.0151 2.08

10.80 0.1563 0.2915 0.3156 0.3084 0.0025 0.79 0.0154 0.76

10.90 0.1963 0.2924 0.3225 0.3191 0.0024 0.74 0.0160 0.65

11.00 0.2313 0.3162 0.3302 0.3223 0.0016 0.49 0.0161 0.28

6.40 0.0005 0.0000 0.1439 0.0137 0.0141 102.77 0.0007 12674.93

6.50 0.0014 0.0000 0.2472 0.0939 0.0372 39.58 0.0047 1880.33

6.60 0.0039 0.0000 0.2592 0.1222 0.0379 31.03 0.0061 1155.51

10 6.70 0.0101 0.0000 0.2725 0.1989 0.0263 13.23 0.0099 210.13

6.80 0.0248 0.1266 0.2792 0.2370 0.0162 6.82 0.0119 55.79

6.90 0.0554 0.1523 0.2924 0.2565 0.0143 5.56 0.0128 37.14

7.00 0.1068 0.2509 0.3047 0.2891 0.0052 1.80 0.0145 3.89

6.00 0.0039 0.0000 0.2474 0.1777 0.0191 10.73 0.0089 138.20

6.10 0.0089 0.0351 0.2596 0.2077 0.0178 8.58 0.0104 88.33

6.20 0.0193 0.1290 0.2729 0.2291 0.0123 5.37 0.0115 34.59

6.30 0.0394 0.2190 0.2835 0.2647 0.0059 2.21 0.0132 5.87

6.40 0.0730 0.2578 0.2945 0.2813 0.0036 1.27 0.0141 1.93

11 6.50 0.1203 0.2679 0.3052 0.2969 0.0029 0.98 0.0148 1.15

6.60 0.1742 0.2902 0.3190 0.3121 0.0019 0.61 0.0156 0.44

6.70 0.2246 0.3132 0.3256 0.3212 0.0012 0.38 0.0161 0.17

6.80 0.2654 0.3238 0.3379 0.3331 0.0012 0.36 0.0167 0.15

6.90 0.2962 0.3298 0.3464 0.3425 0.0012 0.36 0.0171 0.16

7.00 0.3193 0.3465 0.3562 0.3524 0.0009 0.27 0.0176 0.09

doi:10.1371/journal.pone.0058402.t004
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second, length = 8 meters and width = 4.5 meters) that we

noticed in the paper as in Table 3.

Table 3 also reports the CPU (Central Processing Unit) time

consumed by both models for running the scenario. We can

observe that Cruz’s model ran faster (1100 seconds using CPU

Pentium II 400 MHz, 64 MB RAM, under Windows NT 4.00)

than our model (5142 seconds using CPU Intel 2 Core Duo,

2.00 GHz, 2GB RAM, under Windows XP Professional). Other

analyses on CPU times showed that their model is better than our

model (in terms of speed) for any scenario that its arrival rates

create blocking. We expected this since our model structures

involve storing, searching and removing pedestrians from a queue

while their model can directly access pedestrians in a queue to

update their states and has implemented an optimization

technique.

In the networks under study [4] as shown in Figure 3, there are

six source corridors that is Corridors 6 to 11. Figure 4 shows the

graph of blocking probabilities measures against variable rates for

three of these corridors. There are no blockings until certain points

where the blocking probabilities start to increase. For example, for

Corridor 7 (Fig. 4(c)), the blocking probability remains zero until

blocking starts to appear at about l<14 ped/s. However, there

are some discrepancies between analytical and simulation results.

Figure 4(d) zooms the Fig. 4(c) chart to show that at around the

arrival rates 13.5 and 15.5 ped/s, there are significant differences

between analytical and simulation (both 10 and 30 replications)

results.

For each corridor, there is a range of arrival rates where

simulation and animation results exhibit discrepancies. The range

could be made smaller if we reduce its blocking probability half

width since the blocking probability determine the corridor’s

throughput, expected service time and expected number of

entities. In order to reduce the half width (and thus get a better

range of the 95% confidence interval), we have to increase its

simulation replication number, n. Kelton [15] approximated the

minimum number of replications to achieve a relevant expected

half width; i.e.:

n%n0
h2

0

h2

where n0 is the number of the initial replication, h0 is its half width

and h is our expected half width.

We used the formula to find the minimum number of

replications that will reduce the half widths of blocking probabil-

ities for all source corridors to less than 5% of their averages.

Table 4 shows the range of arrival rates (that simulation and

animation results show discrepancies) and their minimum number

of replications to achieve the expected half widths for all source

corridors.

We can see that for Corridor 6, the blocking probability half

widths for 14.00#l#14.60 are so big compared to their averages,

since the blocking probabilities fluctuate across replications. For

l= 14.40 pedestrians/second as an example, its minimum

blocking probability is 0.0000 while its maximum is 0.2800 with

the half width of 0.0408. It is clear that the analytical blocking

probability value is located within the minimum and maximum

range. If we run our simulation model for 1950 replications, we

could decrease the half width to 0.0051 and thus decrease the

average of the blocking probability and the simulation results

could consistent with the analytical results. However, to run such a

big replication number is unpractical and consumes time. Other

ranges that the average blocking probabilities could be decreased

through the decrease of their half widths are 14.00#l#14.50

(Corridor 7), 9.50#l#10.00 (Corridor 8), 9.50#l#10.30 (Cor-

ridor 9), 6.40#l# 6.80 (Corridor 10) and 6.00#l#6.10

(Corridor 11).

There are ranges where simulation results and analytical results

will not ever consistent since their analytical blocking probabilities

are not located within the minimum and maximum blocking

probabilities. The range are 15.00#l#15.50 (Corridor 7),

10.50#l#11.00 (Corridor 8), 10.40#l#11.00 (Corridor 9),

6.90#l#7.00 (Corridor 10) and 6.30#l#7.00 (Corridor 11).

No matter how many replications we run our simulation model,

their blocking probability half widths for the ranges will not be

significantly reduced.

We can observe that the half widths of the blocking probabilities

for Corridor 10 could be decreased if we run our model for 150

replications. For example, l= 6.80 needs 56 replications to

decrease its current half width (that is 0.0162) to its target half

width (that is 0.0119). This 150 replication number will also

improve other arrival rates. Unfortunately, it will not improve the

blocking probability half widths of l located between 6.90 and

7.00. As a proof of our premises, we ran our simulation model for

150 replications and observed their results. The results of the

range of arrival rates and its half widths for Corridor 10 are shown

in Table 5.

We can see that the maximum throughput will happen if arrival

rates are 14.00#l#14.42 (Corridor 6), 13.50#l#14.00 (Corridor

7), 9.5#l# 10.00 (Corridor 8), 9.00#l#9.50 (Corridor 9),

6.20#l#6.40 (Corridor 10) and 5.00#l# 6.00 (Corridor 11). On

the hand, analytical results reported that the maximum through-

put will happen when the arrival rates are 14.18 (Corridor 6),

14.46 (Corridor 7), 10.11 (Corridor 8), 10.29 (Corridor 9), 6.75

(Corridor 10) and 6.21 (Corridor 11). Detailed comparisons

between analytic and simulation results for all corridors are tabled

in Appendices S1, S2, S3, S4, S5, S6.

Conclusions

We have validated the analytical results of a selected M/G/C/C

network. From outputs of both models, we observed that the

optimal throughput of any corridors happens right before its

blocking starts, and the value can be achieved by controlling the

arrival rates to the corridor. Smaller arrival rates move pedestrians

smoother but cause less throughput at the end. Higher arrival rates

meanwhile cause congestion and eventually decrease its final

throughput.

Our analysis showed that there is discrepancy between

analytical and simulation results on the value of an arrival rate

Table 5. Arrival Rates and Half Widths for Corridor 10.

l 30 replications 150 replication

Average h Diff (%) Average h Diff (%)

6.4000 0.0137 0.0141 102.9197 0.0339 0.0107 31.5634

6.5000 0.0939 0.0372 39.6166 0.0672 0.0143 21.2798

6.6000 0.1222 0.0379 31.0147 0.1091 0.0147 13.4739

6.7000 0.1989 0.0263 13.2227 0.1738 0.0134 7.7100

6.8000 0.2370 0.0162 6.8354 0.2212 0.0101 4.5660

6.9000 0.2565 0.0143 5.5750 0.2574 0.0063 2.4476

7.0000 0.2891 0.0052 1.7987 0.2815 0.0033 1.1723

doi:10.1371/journal.pone.0058402.t005
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that will cause congestion. However, both models reported almost

the same performance measures for arrival rates that are smaller

or significantly higher than the value. The results can give ideas on

the range of arrival rates that will maximize the throughputs of the

source corridors.

As in the analytical model, our simulation model only considers

the average travelling distances that pedestrians need to travel from

various input sources to exit corridors. However, the exact distance

from each source input to the end of corridors needs to be modeled

in order to evaluate the real performances of the network so that its

results can be used as guidance in an emergency case, e.g. to find the

average time to clear the hall. Besides this, the model could be an

extremely valuable tool when planning an emergency plan for the

network, .e.g. by changing arrival rates to any other distribution

types, channeling the flow of pedestrians in the network, etc. Our

future researches include embedding animations to our simulation

model where decision makers can directly change arrival rates to

each of its input sources and see their impacts to pedestrians’

behavior and the model’s performances. Various performances

through graphs, histograms, and tables will help them to get insight

into the inner working of the network.
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