
Enhancing DCCP Congestion Control Mechanism
for Long Delay Link

Shahrudin Awang Nor, Suhaidi Hassan, Osman Ghazali, and Mohd. Hasbullah Omar
InterNetWorks Research Laboratory, School of Computing, UUM College of Arts and Sciences,

Universiti Utara Malaysia, 06010 UUM Sintok, Kedah Darul Aman, Malaysia.
{shah, suhaidi, osman, mhomar}@uum.edu.my

Abstract—Most of the multimedia applications use the User
Datagram Protocol (UDP) as a transport layer protocol because
it is suitable for the delivery of multimedia data over the
Internet. However, the use of UDP could endanger the stability
of the network because there is no congestion control applied.
To a certain extent, the network can collapse if too many
applications deliberately use this protocol. Subsequently, instead
of using the UDP, the applications have choices to use the
Datagram Congestion Control Protocol (DCCP), which has a
built-in congestion control that can provide a better network.
Nevertheless, the congestion control mechanism in the Congestion
Control Identifier (CCID)-2 TCP-like can cause problems
when delivering multimedia data over a long delay link. To
alleviate the problems, such as longer time taken for achieving
maximum throughput, and throughput fluctuation during a
congestion avoidance phase, two approaches have been used,
i.e. setting of an appropriate slow-start threshold value and
adjusting congestion window during a congestion avoidance
phase. “TCP-like Threshold Window (TCP-like TW)” has been
developed and modeled in the Network Simulator 2 (ns-2). For a
long delay link, the TCP-like TW congestion control mechanism
is able to minimize the time taken to achieve the maximum
throughput. It also can smooth the fluctuation of throughput
after achieving the maximum throughput.

Keywords
congestion control

I. INTRODUCTION

Datagram Congestion Control Protocol [1] is a
congestion-controlled transport protocol for the delivery
of multimedia data in the Internet. Basically, DCCP is a
transport protocol which is an unreliable protocol like User
Datagram Protocol (UDP), but it provides congestion control
like Transmission Control Protocol (TCP). In this paper, a
new congestion control mechanism is introduced, namely
TCP-like Threshold Window (TCP-like TW). It can alleviate
the congestion problem in DCCP and achieve maximum
throughput faster than the traditional DCCP mechanisms over
long delay link networks. In addition, it also can improve the
throughput, jitter, and with acceptable packet loss.

II. DATAGRAM CONGESTION CONTROL PROTOCOL

Datagram Congestion Control Protocol (DCCP) [1] is a
new transport protocol. In short, DCCP is an unreliable
transport protocol like UDP, but it provides congestion control
mechanism like TCP. The historical record and the motivation
behind the DCCP is described in Request For Comment (RFC)

4336 [2]. DCCP can be easily extended to support multiple
congestion control mechanisms. Currently, DCCP has three
congestion control mechanisms, TCP-like, TCP-Friendly Rate
Control (TFRC) and TCP-Friendly Rate Control for Small
Packet (TFRC-SP), specified. The introduction of DCCP has
taken the TCP’s friendliness issue in mind. DCCP is designed
so that it can deliver multimedia data like UDP but with
congestion control so that it behaves fairly, or friendly to
other transport protocols such as TCP when they coexist
in the network. In contrast to UDP, DCCP is an unreliable
with congestion control mechanism transport protocol that can
share the bandwidth fairly with other congestion controlled
protocol such as TCP. In case of congestion in the network,
the increase in the occupation of sender’s queue introduces
higher end-to-end delay, and subsequently packet discarding
will occur in sender’s queue [3].

III. RELATED WORK

The appearance of various real-time applications on
the Internet has led to new types of real-time traffic.
Nowadays, the most common real-time applications are
bursty, such as video conferencing, IP telephony, and audio
and video streaming. For these applications, the current
network often assumes traffic with smooth changes in
required bandwidth. However, more bursty real-time traffic is
becoming increasingly common and must be accommodated.
Applications that create such traffic include online games,
video conferencing, and streaming with compressed encoding.
Real-time traffic not only creates burstiness on the Internet, but
also requires short delay transmission. Supporting this sort of
traffic on the Internet is increasingly important.

Nowadays, TCP is still the dominant protocol on the Internet
[4], [5], [6]. In order to successfully deploy DCCP widely
on the Internet, it is vital to ensure that DCCP is fully
compatible with the existing TCP flows, as showed by Nor et
al. regarding the friendliness of DCCP towards TCP flows in
the network [7]. Furthermore, DCCP with CCID-2 utilizing a
TCP congestion control and it works similar to the congestion
control of TCP. So it is important to study the multimedia
traffic using DCCP with CCID-2 because DCCP is foreseen
as a replacement transport protocol for TCP in the future.

There are several works done by researchers regarding
multimedia traffic for DCCP. Quoc Truong Tong et al.
[8] evaluated and proposed an algorithm to improve the
TCP fairness of DCCP flow control for bursty real-time

—Datagram Congestion Control Protocol; TCP-like;

313

1st IEEE International Symposium on Telecommunication Technologies

978-1-4673-4786-0/12/$31.00 ©2012 IEEE

ADMIN
Typewritten Text

ADMIN
Typewritten Text
*

ADMIN
Line

ADMIN
Typewritten Text

ADMIN
Typewritten Text
*Corresponding Author

applications. They showed that their proposed algorithm
improves the fairness between TCP and DCCP flows without
negative effect on real-time characteristics. The performance
evaluations of DCCP for bursty multimedia traffic in real-time
applications are done by S. Takeuchi et al. [9]. Their work
investigated the DCCP performance for various traffic flows,
focusing on how DCCP flows affect TCP flows and vice versa.
Through those simulations, they examined an unfair bandwidth
distribution problem caused by the incompatibility of DCCP
with the fast recovery algorithm of TCP.

IV. INITIAL SLOW-START THRESHOLD IN SLOW-START
PHASE

The normal network scenario, i.e. the network with short
delay link, the size of initial slow-start threshold state variable
(ssthresh) size is set to 20 packets to work well. The
problem arises when there is a long delay link in the network
connection. When there is a long delay link to deliver data,
there will be a longer time for the the data delivery to achieve
the maximum bandwidth available. This is due to the reason
that long delay link has higher Round Trip Time (RTT), so
that it requires more time to deliver the data to the receiver, as
well as the Acknowledgments (ACKs) which is used by the
sender to increase the congestion window for the next sending
data.

The congestion window concept is important in TCP, as
well as DCCP. With higher congestion window, the higher
the volume of packets can be sent at the certain time
simultaneously. Like buffer in the network, if congestion
window grows faster, then the throughput will reach the
maximum level faster. During slow-start phase, the congestion
window grows exponentially, e.g. if starting from the value
of 1, then at the next RTT it will become 2, then 4, 8, 16,
32, and so on. The slow-start concept in TCP is defined in
RFC 2581 [10], RFC 2001 [11] and RFC 1122 [12]. The
limited slow-start for TCP with large congestion window is
also defined in RFC 3742 [13].

Since the congestion window concept in TCP is also
applicable DCCP, the faster the congestion window grows,
then the faster the maximum bandwidth will be achieved. It
leads to better utilization of bandwidth for the data delivery
by DCCP. Nevertheless, similar to TCP, the initial slow-start
threshold in DCCP plays an important role in terms of time
consumed in order to get the maximum throughput. The
value of initial slow-start threshold size limits the current
congestion window grow during the slow-start phase at the
beginning of the connection where the congestion window
grows exponentially.

The idea in this research regarding the use of higher initial
slow-start value at the beginning of slow-start phase is to make
the congestion window size (cwsize) to increase to the value
of initial slow-start value faster, or in other words, to minimize
the time taken for congestion window (cwnd) state variable to
exceed its maximum value in slow-start phase. In slow-start
phase, the cwsize will increase exponentially. Once the value
of cwnd exceeds the initial slow-start value, it then enters
the second phase, the congestion avoidance phase where the
cwsize increases linearly. During this phase, the congestion

window increases slower than during the slow-start phase.
In brief, the purpose of increasing the initial ssthresh of the
congestion window is to make the expansion of cwnd to be
faster, so that the maximum bandwidth will be achieved faster.

Since DCCP is a new transport protocol, most of the
research works of DCCP are related to its performance
[14], [15]. Nevertheless, since TCP-like congestion control
mechanism follows the standard TCP, the improvement works
on the TCP regarding slow-start threshold [16], [17] and
standard TCP-like [18], [19] are related to DCCP as well.

V. CONGESTION WINDOW IN CONGESTION AVOIDANCE
PHASE

TCP-like utilizes congestion window to cope with the
congestion like the one in TCP. It is like a buffer in the network
where it can expand and shrink in size depending on the
condition of the network. For TCP, cwnd is a state variable that
limits the amount of data a TCP can send. At any given time, a
TCP might not send data with a sequence number higher than
the sum of the highest acknowledged sequence number and
the minimum of cwnd and receiver window (rwnd). In more
specific definition, cwnd is a sender-side limit on the amount of
data the sender can transmit into the network before receiving
an acknowledgment (ACK), while the rwnd is a receiver-side
limit on the amount of outstanding data.

Similar to TCP, cwsize in TCP-like will be reduced
after congestion events are detected. There are two types
of congestion events, i.e. through timeout and through the
receiving of three duplicate ACKs by the sender. If timeout
is detected, the process will start all over again, that is, cwnd
will be initialized to one and the slow-start phase will initiate
with a new ssthresh value which is half of the current cwnd
value. During slow-start phase, the value of cwnd increases
exponentially until the cwnd reaches the new ssthresh size.
Then the congestion avoidance phase will take place after the
cwnd reaches the new ssthresh size and cwnd will increase by
one unit linearly until a congestion event is detected through
the receiving of three duplicate ACKs. After this, the current
cwnd will be halved, and the process of increasing cwnd by
one continues, and so on and so forth. The proses of halving
the cwnd size is kept continuing until timeout is detected.
Upon the detection of timeout, the congestion avoidance phase
will be ended and the cwnd size is initialized to the very
beginning state and the slow-start phase is revoked gain, with
the new ssthresh is set to half of the current cwnd.

One formula commonly used to update cwnd during
congestion avoidance is as in Equation 1 taken from RFC
2581 [10]:

cwnd += SMSS∗SMSS/cwnd (1)

where SMSS is the sender maximum segment size. This
adjustment is executed on every incoming non-duplicated
ACK. It provides an acceptable approximation to the
underlying principle of increasing cwnd by one full-sized
segment per RTT. If the formula yields zero, the result is
rounded up to one byte. Another acceptable way to increase
cwnd during congestion avoidance is to count the number of

314

bytes that have been ACKed for new data. When the number
of bytes ACKed reaches cwnd, the cwnd is incremented by
up to SMSS bytes. When a TCP sender detects segment loss
using the retransmission timer, the value of ssthresh must be
set according to Equation 2 [10]:

ssthresh = max(FlightSize/2,2∗SMSS) (2)

where FlightSize is the amount of outstanding data in the
network.

VI. SIMULATION ENVIRONMENT

All the experiments are done as a basis for the design of
the new congestion control mechanism for DCCP. It is based
on the adjustment of two parameters in standard TCP-like,
namely slow-start threshold and congestion window. The
experiments determine the performance of the TCP-like with
the modification of the two parameters and they are done
individually in order to identify specifically for each of them.

These experiments apply to long delay link networks, where
the threshold size adjustment will be applied at the slow-start
phase, and congestion window during congestion avoidance
phase. The simulations are set under controlled-environment
where all the bandwidth, nodes and routers are pre-set with
only TCP and DCCP flows competing with each other.

In the simulation experiments, the senders and receivers of
TCP-like and TCP are used over long delay link network.
The experiments are carried out by means of simulation with
the simulation topology as shown in Fig. 1. The network
simulation topology uses classic dumbbell topology. Dumbbell
topology is a very common topology that has been used in
many TCP network simulations.

Simulation topology

For all the experiments, the simulations consist of TCP
and DCCP senders. At the receiver’s side, there are TCP and
TCP-like receivers. All the senders and receivers are connected
to the routers through 10 Mbps links with 1 ms propagation
delay.

In the simulation environment, DCCP has been simulated
as a competing protocol to TCP, so that it can be seen how the
other protocol such as DCCP behaves when they coexist with
TCP. The utilization of bandwidth by these two competing
protocols is set into a scenario so that a DCCP sender will fully
utilize the 2 Mbps bandwidth with the sending rate of 2 Mbps
Constant Bit Rate (CBR) traffic. The CBR packet size used
is 500 bytes. In this case, TCP sender sends the file transfer

data using File Transfer Protocol (FTP) application so that the
friendliness of DCCP protocol towards TCP can be monitored.
Unlike DCCP, where the transmission bit rate can be set by
the application like CBR, the maximum bit rate occupied by
FTP application on TCP will be calculated by the transport
protocol itself based on the link bandwidth provided, packet
size, propagation delay, etc. From the simulation results, the
analysis will be done to see how cwsize drop affects the
performance of DCCP.

The network topology used in the simulation includes two
interconnected routers, Router 1 and Router 2 with queue size
of 20 packets. For the router to router connection, a long delay
bottleneck link is set to have a bandwidth of 2 Mbps with 300
ms propagation delay. This long delay bottleneck link can be
used as an emulation of satellite or wireless links with a fixed
forward link delay of 300 ms and fixed return link delay of
300 ms. This assumption is reasonable based on Henderson
and Katz [20] for the satellite link. There is also research
done by other researchers that used this assumption for a long
delay link [21]. In addition, the bottleneck link is considered
to have enough bandwidth allocation for the data transfer to
flow from the sender to the receiver. For simplicity, instead
of using other types of queue management such as Random
Early Detection (RED), the type of queue management used
in this link is Drop Tail, which implements First-In First-Out
(FIFO). The network simulator ns-2 [22] with DCCP module
[23] installed is chosen for the simulation.

TCP NewReno is used for all of the simulations because it
is one of the most popular TCP variants used in the Internet
nowadays [24], [25], [26], and for DCCP, the congestion
control used is TCP-like. The throughput is measured between
Router 1 and Router 2 where the TCP-like and TCP flows
compete with each other on the long delay link. The
TCP connection is monitored while it coexists with DCCP
connection.

VII. EXPERIMENTS AND RESULTS

There are two main experiments done to improve the
performance of TCP-like. Both experiments, i.e. Experiments
VII-A and VII-B are related to initial ssthresh size and
congestion window adjustment, respectively, with the main
concentration on the throughput of the TCP-like flow.
Susequently, Experiment VII-C gives the performance of the
newly designed congestion control, TCP-like TW.

A. Experiment 1 - Initial Slow-start Threshold size

The common initial ssthresh size for DCCP is 20
packets and the optimal size of initial ssthresh for the best
performance of TCP-like is investigated. The simulation time
for Experiment 5-1 is set to 200 seconds because this period
is long enough to get the whole picture of the performance
of TCP-like which is affected by the initial ssthresh size. Six
different initial slow-start values are used, i.e. 20, 50, 100,
200, 300 and 400 packets. In the case, the slow-start phase
that is investigated happens at the beginning of the connection.
In all the simulation experiments, the FTP application using
TCP is started first, i.e. at time 0.5 seconds, whereas the CBR

Fig. 1.

315

I.TABLE AVERAGE THROUGHPUT, PACKET LOSS, AVERAGE DELAY AND

AVERAGE JITTER FOR DIFFERENT CWND DROP

cwnd Size Drop
for TCP-like

50% 25% 5%

Average Throughput
(kbps)

TCP-like 1396.65 1607.06 1737.36

TCP 282.46 281.33 272.74

Packet Loss (%)
TCP-like 0.002400 0.003994 0.016820

TCP 0 0 0

Average Jitter (ms)
TCP-like 1.285047 1.277461 1.273508

TCP 0.000086 0.000146 0.000226

Average Delay (ms)
TCP-like 309.9404 313.2521 330.1065

TCP 305.7689 307.7152 316.9234

application for TCP-like is started at time 10 seconds. It is
assumed that 10 seconds is enough to allow the TCP data flow
to utilize the bandwidth without any contention with another
flow, so that the effect on throughput of having other flows
joining the bottleneck link after that can be monitored.

The purpose of this experiment is to find the optimum value
for initial ssthresh size in DCCP with TCP-like congestion
control mechanism. The graph in Fig. 2 shows several different
times taken to exceed the maximum throughput with different
initial ssthressh size, i.e. 20, 50, 100, 200, 300 and 400
packets. It is noted that the results for the 300 and 400 packets
are the same as for the 200 packets one. For normal initial
ssthresh size, where the size is 20, it can be seen that it
exceeds the maximum bandwidth at about the simulation time
of 160 ms, whereas for the initial ssthresh size of 200 packets,
the maximum throughput is gained at the time of about 100
ms. This is because the increase of throughput is exponential
during slow-start phase, i.e. until its current cwnd exceeds the
initial ssthresh size. After that, the congestion avoidance phase
will be entered where the throughput is increasing linearly. An
experiment

It shows that with the initial ssthresh of high value, in
this case of 200 packets, the maximum throughput can be
obtained faster. The values of initial ssthresh of higher than
200 packets do not give any better result. The optimum value
of 200 packets for the initial ssthresh size has given the best
performance in this research in terms of throughput.

It is shown that TCP-like with the adjustment of initial
ssthresh size can improve the performance of the TCP-like in
terms of faster time required to obtain the matured throughput
during slow-start phase over long delay link network. The
slow-start phase can be in action during the initial connection
establishment or reconnection after idle time.

From the experiment result for packet loss as given in
TABLE I, the percentage of packet loss or Packet Loss Ratio
(PLR) is 0.0277% for initial ssthresh size of 200 packets,
which is within the specification by Telecommunication
Standardization Sector of the International Telecommunication
Union (ITU-T). ITU-T recommendation G.1010 [27] states
that PLR must be less than 1% for video data.

Throughput for TCP-like with Different Initial Slow-start Size

B. Experiment 2 - Congestion Window Drop

In all simulations, all data traffics have to go through
a bottleneck link with 2 Mbps bandwidth and 300 ms
propagation delay for long delay link. This bottleneck link
is the link that connects the two routers in the simulation
topology. So it is the link that limits the sending rate of the
application data between these two routers. The reduction of
cwsize drop of 25% and 5% are done for TCP-like congestion
control mechanisms. The results presented are given in the
TABLE I which shows the average throughput, packet loss,
delay and jitter for TCP-like and TCP flows. As for the
throughput, Fig. 3 gives the throughput graph of the TCP and
TCP-like where the congestion window adjustment is applied.

Throughput for TCP and TCP-like

The result is as in the Fig. 3, where the standard TCP-like
mechanism is used with the drop of 50% when congestion
events are detected.

1) Congestion Window Drop of 50%: In normal case when
the congestion is detected during congestion avoidance phase,
the current cwsize is halved, or in other words, the current
cwsize is divided by two. This is a standard in the operation of
TCP, as well as TCP-like. Same as depicted in Fig. 3, it shows
the throughput graph of TCP-like over time. The halving or
drop of 50% from the current congestion window is equivalent
to the current value of the congestion window divided by two.

Similar to TCP, cwsize in TCP-like is halved whenever
there is a congestion event detected during congestion
avoidance phase through the receiving of three duplicate
acknowledgments by the sender. Fig. 3 shows that the
throughput of TCP-like is fluctuated like the zigzag pattern
when it enters congestion avoidance phase at the time around
170 seconds until the end of the simulation time.

Fig. 2.

Fig. 3.

316

2) Congestion Window Drop of 25%: Fig. 4 shows the
throughput graph of TCP-like over time with cwnd drop of
25%. This is equivalent to the value of current cwnd multiplied
by 0.75, or in other words, the new congestion window is 25%
below the current one.

As in Fig. 4, the throughput is improved compared to the
previous experiment with cwnd drop of 50%. There are better
throughput and jitter for TCP-like flow with acceptable packet
loss, with packet loss ratio (PLR) is less than 1% as ITU-T
Recommendation G.1010 [27] sets the PLR for video data
to be less than 1% as a standard. ITU-T Recommendations
is a recommendation by International Telecommunication
Union (ITU) for defining elements in information and
communication technologies (ICTs) infrastructure. G.1010 is
a recommendation by ITU for End-user multimedia QoS
categories, under G series which is for Transmission systems
and media, digital systems and networks.

Throughput of TCP-like with cwnd Drop of 25%

3) Congestion Window Drop of 5%: Fig. 5 shows the
throughput graph of TCP-like over time with cwnd drop of
5%. This is equivalent to the value of current congestion
window multiply by 0.95. It means that the new cwnd is
just 5% below the current one. Fig. 5 depicts the result that
shows how the throughput and jitter are improved a lot for
TCP-like flow when the drop of TCP-like’s cwsize is reduced
by 5%. The throughput and jitter for TCP-like flow are better
compared to the previous experiment with cwnd drop of 25%
with acceptable packet loss. PLR is also less than 1% and it
is in accordance to ITU-T Recommendation G.1010 [27].

Throughput of TCP-like with cwnd Drop of 5%

C. Experiment 3 - Performance of TCP-like TW

The purpose of the experiment is to study the performance
of TCP-like TW with the existing TCP-like over long delay
link. A single DCCP sender and a single TCP sender are used,
together with their receivers. The common initial slow-start
threshold state variable (ssthresh) size is 20 packets. Then,
the optimized size of initial ssthresh for the best performance
of TCP-like TW can be found.

Fig. 5 and Fig. 3 show the friendliness of DCCP TCP-like
TW and DCCP TCP-like, respectively, with TCP flows over
long delay link. They can coexist together in harmony over
long delay link network and the throughput is shared fairly
between the two flows.

From the simulation result for the experiment of TCP and
DCCP TCP-like TW, the throughput for TCP flow is about 300
kbps while it is 1.7 Mbps for TCP-like TW flow. Likewise, for
the experiment of TCP and DCCP TCP-like, the throughput
for TCP flow is similar, i.e. 300 kbps while the throughput for
DCCP TCP-like is 1.3 Mbps. It is obvious that TCP-like TW
outperforms the TCP-like.

The comparison of TCP-like TW and TCP-like is depicted
as in Fig. 6. The overall view shows that TCP-like TW
algorithm can achieve the maximum throughput value faster
and with more stable state for the rest of the connection.

Comparison of Throughput for TCP-like TW and TCP-like over
Long Delay Link

The beginning part of the throughput of TCP-like TW and
TCP-like as displayed in Fig. 6 shows the difference between
these two congestion control schemes and how the TCP-like
TW outperforms the TCP-like during the beginning and the
entire time of the connection.

The throughput for the TCP-like is having a zigzag pattern
which is not intended for the entire connection. As in the Fig.
6, the TCP-like throughput takes longer time to exceed the
maximum value of the throughput because it has to enter the
congestion avoidance phase after the congestion window value
exceeds the initial ssthresh in the first phase, i.e. slow-start
phase, which is small.

At the second phase, the drop of the congestion window
state variable (cwnd) of TCP-like which is 50% consumes
time for the current cwnd to increase to the maximum value,
i.e. before a congestion event is detected. For TCP-like TW,
the drop is reduced to only 5% of the current cwnd, and it
is proven that the performance of DCCP is enhanced through
smoother and more stable throughput.

Fig. 4.

Fig. 5.

Fig. 6.

317

CII.

In more detail, as shown by TABLE II, the average
throughput and average jitter of TCP-like TW outperform the
TCP-like whereas TCP-like TW gives a bit higher of average
delay and packet loss.

OMPARISON OF TCP-LIKE TW, TCP-LIKE AND TCP IN

TERMS OF AVERAGE THROUGHPUT, PACKET LOSS, AVERAGE DELAY AND

AVERAGE JITTER FOR LONG DELAY LINK

Average Throughput
(kbps)

TCP-like TW
TCP

1697.57
273.12

TCP-like
TCP

1301.43
282.11

Packet Loss (%)
TCP-like TW
TCP

0.021031
0

TCP-like
TCP

0.002399
0

Average Delay (ms)
TCP-like TW
TCP

328.493
329.155

TCP-like
TCP

309.645
309.076

Average Jitter (ms)
TCP-like TW
TCP

0.642
55.016

TCP-like
TCP

1.841
52.827

VIII. CONCLUSION

A new congestion control technique introduced for DCCP,
called TCP-like TW, is a combination of two improved
techniques, i.e. Threshold and Window. TCP-like TW is
proven through simulation to give better performance on long
delay link. With this new TCP-like TW, the time taken to
achieve the maximum bandwidth utilized can be optimized
during slow-start and congestion avoidance phases, and the
throughput will be more stable with less fluctuation when
it is at its stable state at the maximum bandwidth utilized.
For multimedia data, TCP-like TW mechanism gives better
throughput with a bit higher in packet loss and it meets
the specification by ITU-T for video data delivery. As a
conclusion, TCP-like TW can perform better performance
over long delay link where it can reduce the time taken
for exceeding the maximum throughput and smoothen the
throughput at the stable state for the entire of the connection
with better delay.

REFERENCES

[1] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” Internet Engineering Task Force, RFC 4340, Mar.
2006.

[2] S. Floyd, M. Handley, and E. Kohler, “Problem Statement
for the Datagram Congestion Control Protocol (DCCP),” Internet
Engineering Task Force, RFC 4336, Mar. 2006. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4336.txt

[3] R. N. V. M. S. Nunes, “Selective Frame Discard for Video Streaming
over IP Networks,” in Proceedings of the 7th Conference on Computer
Networks (CRC2004), 2004.

[4] S. Floyd, “Congestion Control Principles,” Internet Engineering Task
Force, RFC 2914, Sep. 2000.

[5] J. Yu and S. Choi, “Modeling and analysis of TCP dynamics over IEEE
802.11 WLAN,” in Fourth Annual Conference on Wireless on Demand
Network Systems and Services 2007 (WONS ’07), Jan. 2007, pp. 154
–161.

[6] M. Arlitt and C. Williamson, “An analysis of TCP reset behaviour
on the internet,” ACM SIGCOMM Computer Communication
Review, vol. 35, pp. 37–44, Jan. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1052812.1052823

[7] S. A. Nor, S. Hassan, O. Ghazali, and A. S. M. Arif, “Friendliness of
DCCP towards TCP over large delay link networks,” in the Proceedings
of International Conference on Information and Network Technology
2010 (ICINT 2010), vol. 5, Shanghai, China, 22–24 June 2010, pp.
286–291.

[8] Q. T. Tong, H. Koga, K. Iida, and Y. Sakai, “TCP Fairness Improvement
of DCCP Flow Control for Bursty Real-Time Applications,” First
International Conference on Communications and Electronics 2006
(ICCE ’06), pp. 66–71, Oct. 2006.

[9] S. Takeuchi, H. Koga, K. Iida, Y. Kadobayashi, and S. Yamaguchi,
“Performance evaluations of DCCP for bursty traffic in real-time
applications,” Proceedings of The 2005 Symposium on Applications and
the Internet (SAINT ’05), pp. 142–149, 31 Jan.-4 Feb. 2005.

[10] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
Internet Engineering Task Force, RFC 2581, Apr. 1999.

[11] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms,” Internet Engineering Task Force, RFC
2001, Jan. 1997.

[12] R. Braden, “Requirements for Internet Hosts – Communication Layers,”
Internet Engineering Task Force, RFC 1122, Oct. 1989.

[13] S. Floyd, “Limited Slow-Start for TCP with Large Congestion
Windows,” Internet Engineering Task Force, RFC 3742, Mar. 2004.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3742.txt

[14] S. Bhatti, M. Bateman, and D. Miras, “A comparative performance
evaluation of DCCP,” in International Symposium on Performance
Evaluation of Computer and Telecommunication Systems 2008 (SPECTS
2008), 2008, pp. 433–440.

[15] I. S. Chowdhury, J. Lahiry, and S. F. Hasan, “Performance analysis of
Datagram Congestion Control Protocol (DCCP),” in 12th International
Conference on Computers and Information Technology 2009 (ICCIT
’09), 2009, pp. 454–459.

[16] Z. Kaiyu, K. L. Yeung, and V. O. K. Li, “Throughput modeling of TCP
with slow-start and fast recovery,” in IEEE Global Telecommunications
Conference 2005 (GLOBECOM ’05), vol. 1, 2005, p. 5.

[17] R.-S. Cheng, H.-T. Lin, W.-S. Hwang, and C.-K. Shieh, “Improving
the ramping up behavior of TCP slow start,” in 19th International
Conference on Advanced Information Networking and Applications 2005
(AINA 2005), vol. 1, Mar. 2005, pp. 807 – 812 vol.1.

[18] A. Chaintreau, F. Baccelli, and C. Diot, “Impact of TCP-like congestion
control on the throughput of multicast groups,” IEEE/ACM Transactions
on Networking, vol. 10, no. 4, pp. 500–512, 2002.

[19] Y. Zhao and L. Song, “Stability of TCP-Like Congestion Control
Algorithm,” in 2nd International Symposium on Computational
Intelligence and Design 2009 (ISCID ’09), vol. 1, 12-14 Dec. 2009,
pp. 374–377.

[20] T. R. Henderson and R. H. Katz, “Transport Protocols for
Internet-Compatible Satellite Networks,” vol. 17, no. 2, 1999, pp.
326–344.

[21] A. Sathiaseelan and G. Fairhurst, “Use of Quickstart for Improving the
Performance of TFRC-SP Over Satellite Networks,” in International
Workshop on Satellite and Space Communications (IWSSC2006), Spain,
14–15 Sep. 2006, pp. 46–50.

[22] “The VINT Project. The Network Simulator - ns-2,”
http://www.isi.edu/nsnam/ns/, retrieved on 20 January 2011.

[23] N.-E. Mattsson, “A DCCP module for ns-2,” Master’s thesis, 2004.
[24] A. Chydzinski and A. Brachman, “Performance of AQM Routers in the

Presence of New TCP Variants,” in Proceedings of Second Int Advances
in Future Internet (AFIN) Conf, 2010, pp. 88–93.

[25] S. Henna, “A Throughput Analysis of TCP Variants in Mobile Wireless
Networks,” in Proceedings of Third International Confonference on Next
Generation Mobile Applications, Services and Technologies (NGMAST
’09), 2009, pp. 279–284.

[26] C. Grimm and H. Schwier, “Empirical Analysis of TCP Variants and
Their Impact on Grid FTP Port Requirements,” in Proceedings of Third
International Conference on Networking and Services (ICNS), 2007.

[27] “ITU-T Recommendation G.1010 End-user multimedia QoS catagories,”
International Telecommunication Union, Tech. Rep., Mar. 2003.
[Online]. Available: http://www.itu.int/rec/T-REC-G.1010

TABLE

318

