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ABSTIUCT: In this paper, a 2-point explicit rational block method for the numerical solution of first 
order initial value problem is proposed. The main reason to consider rationat block method is to 
improve the numerical accuracy and absolute stability property of esisting block multistep methods 
that are based 011 polynomial approximants. The proposed method is found to possess A-stability. 
Local truncation error is included as well. Numerical experirnerltatiorls and results using sorne test 
problems are presented. Numerical result5 ace satistling in tenns of nwnerical accuracy. Finally, a 
conclusion is included. 
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Conventional block multistep methods (BMMs) are very useful tools in terms of solvability. Firstly, BMMs can 
return several numerical approximations for a first order initial value problem within each integration step. 
Secondly, BMMs can easily be modified and extended to solve higher 01-tier initial value problems directly. Thirdly, 
BMMs can easily be implemented on a parallel machine. For excellence surveys and various perspectives of HMMs, 
see, for example, Sommeijer B.P. (1992), Watanabe D.S. (1978), Ibrahun Z.B. (2003), Ibrahim Z.B. (2005), 
Cholloln J.P. (2007), Majid Z.A. (2009), Majid Z.A. (2012), Mehrkannon S. (2009), Akinfenwa O.A. (201 l), Ehigie 
J.O. (201 l), Ibijola E.A. (201 I), Majid Z.A. (201 I), Bahnus A.M. (2009), Olabode B.T. (2009) and Chartier P. 
(1994). 

Despite the many great potential of conventional BMMs, they have several stability drawbacks. Implicit DMMs 
were introduced niainly to improve the order of consistencies and stability requirements suffered by rnost explicit 
BMMs. However, extra computations are required to solve the system of nonlinear equations arise £rom the 
i~nplernentatior~s of implicit BMMs, which are very expensive in telrns of computational costs when solving large 
scale problems. Alternatively, some of the researct~ers would prefer predictor-corrector BMMs because they allow 
the stage-by-stage implementations without the need to solve any system of nonlinear equations. The order of 
consistency is determined by the order of the correctors that are usually be the implicit BMMs, while the predictors 

/ 
are usually be the explicit BMMs. However, the stability requirements of predictor-corrector HMMs become morc 
restricting when the order of the methods increases, which rnake the numerical solution of stiff problem impossible 
for larger step-sizes. 
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In order to overconle the stability drawbacks and at the same time, retain the advantages of conventional BMhds, 
Teh Y.Y. (2013a) suggested the idea of BMMs that are based on rational functions. This idea was first i~ltroduced as 
the concept of rational block niultistep methods (RBMMs). Like cor~ventional block m~~ltistep nlethods (BMMs), 
RBMMs can be considered as a set of sjmultaneously applied rational multistep methods to obtain several r~urnerical 
approsllnations within each integration step. Why thcre is such an idea to search for Bhfi4s based on rational 
functions? Our readings have sllown that there exist some unconventional numerical methods that are based on 
rational functions, which posscss strong stability conditions but yet explicit in nature. Hence, we expected chat 
RBBMs are cheaper in computational costs compare to existing implicit BMMs and possess strong stability 
conditions such as L-stability. For exceIlence surveys and various perspectives, see, for example, Lanlbert J.D. 
(1965), Lambert J.D. (1974), Luke Y.L. (1975), Fatunla S.O. (1982), Fatunla S.O. (1986), vall Niekerk F.D. (1987), 
van Niekerk F.D. (1988), Ikhile M.N.O. (2001), lkhile M.N.O. (2002), M i l e  M.N.O. (2004), Rarnos 1.1. (2007), 
Okosun K.O. (2007a), Okosun K.O. (2007b), Teh Y.Y. (2009), Teh Y.Y. (2011), Yaacob N. (2010), Tell Y.Y. 
(2010), Teh Y.Y. (2013b) and Tell Y.Y. (2013~). 

In Tch Y.Y. (2013a), a 7-poi1lt explicit rational block nicthod was dcvclopcd. However, the previously developed 
n~etllod is not A-stable but a method with finite region of absolute stability. 111 the next section, we deveIop a 2-po~nt 
explicit rational block method which is A-stable. Section 3 presents the principal local truncation error terms and 
establish the absolute stab~lity condition for the newly developed rnetllod. Soine tests are carrizd out ul order to 
verifjl the validity of the new RUMM in Section 4 Finally, a conclusion is included. 

2. FORMIJLATION OF 2-POINT EXPLICIT RATIONAL BLOCK METHOD 

The 2-point explicit rational block niethod is formulated to solve thc following first order initial value problem given 

by 

where f ( x ,  y ) :  IR x Rm -, R'" and f ( x ,  y) is  assumed to satisfy a11 the required conditions such that problem (1) 
possesses a unique solution. Suppose that the interval of numerical integration is x E [u, b] c R and is divided into 
a series of blocks with each block containing two points as shown in Figure 1. 

k -th block (k + 1) -th 

Figure 1 ?-point csplicit rational block method. 

From Figure 1, we hdve observed that k-th block contains three points i.e. x,, x,,,, and x,,,, and each of these 
points is separated equidistantly by a constant step-sizc h. The next ( k  + 1)-th block also contains three points. In 
the k-th block. we want to use the values y, at x,, to compute  he approxi~nation values of y,,, ar~d y , , , ~  
simultaneously. I11 the (k t 1)-th block, previously computed values of Y , , ~  is used to generate the approx~mations 
values of y,,,, and yn+.+. The same computational procedure is repeated to conipute the solutions for the next few 
blocks until the end-point i.e. x = b is reached. The evaluation information from the previous step in a block could 
be used for other steps of the same block (Teh Y.Y. (2013a)). 
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Along the x-axis, we consider points x,, x,+, and x ,+~ to be given by 

x,, = x,, t nh, 

x,,, = xo + (n + l )h ,  

and 

where h is the step-size. Let us assurrle that the approximate solution of ( 1 )  is locally represented in the range 

[x,, x,., by the rational approxiniant 

where a,, al and bo are undetermined coefficie~lts. 'This rational approxuuant ill equation (5) is required to pass 
tlvougll the points (x,,, y,) and (x, ,~,  yntl) ,  and moreover, must assume at these points the derivatives given by 
Y' = f ( x ,  y )  and y'' = f l (x ,  y ) .  Altogether, there are four equations to be satisfied i.e. 

where fn = f (x,, y,) and f l l  = f '(x,, , y,). On using Mri THE.iLG1 TIC11 8.0, the elimination of the three undetermined 
coefficients i.e. ao, al and bo fi-om equations (6) - (9) is the one-step second order ratiorial method found UI 

Larnbert J.D. (1974), 

Equation (10) is the fomlula to approximate y , , ~  by using the information at the previous point (x,, y,,). 'To 
approximate y,,,, we have to assume that the approximate solution of ( 1 )  is locally represe~lted in the range 
[x,,, x,,,,] by the same ratiorial approxitnant given in equation (5). Now, wc required the rational approxhnant (5)  to 
pass through the points (x,,, y,,), (x,,~, yn+J and (x,,+,, y,,+,), and moreover, must assume at these points the 
derivative given by y' = f ( x ,  y ) .  There are five equations to be satisfied i.e. 
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and 

where fn = f ( x , ~ ,  y,,) and f,+, = f (x ,+~ ,  y,,,,). On using MATHEAntATICA 8.0, the eliminatiotl of the four 
undetermined coefficients i.e. ao, a,, bo and fn from equations (1 1) - (IS) is the two-step ttiird order rational 
method found in Lambert J.D. (1974), 

Equation (16) is the formula to approximate by using Uie jnfornmalion at the previous points (x,, y,,) attd 
( x , + ~ ,  y,,,). Hence, the 2-point explicit rational block method based on the rational approximatit ( 5 )  consists of 
two fonnulae i.e. formulae (10) and (16). 

The implementation of the 2-point explicit rational block method is rather sh~lple: with y,, is hiown, compute the 
approximate solution y,, using formula (10); and then compute tlie approximate solution y,,, uslng for~nula (16) 
with the value of y,,,, obtained &om fol.mula (10). 

3. LOCAL TRUNCATION EKKORS AND STABILITY ANALYSES 

Since formulae (10) and (16) are used in ttie sarne block to solve for the approximate solutions at x,,, aid x , ) + ~ ,  we 
wish to have both formulae possess the sane order of accuracy. lIowever, calculations of the principal buncation 
errors revealed that formula (10) possessed seco~id order of accuracy, while fornlula (16) possessed third order of 
accuracy. We note that the local truncation errors (LTE) for forniula (10) and formula (16) are 

and 

respectively. Tlierelbre, the order of consistency of the entire 2-point explicit rational block nictilod ,fluctuates' 
between second order and third order. 

To investigate the liuear stability condition for formulae (10) and (16) in the satne block, we need to combine both 
formulae and apply tlie Dahquist's test equation 

Y' = LY, y(a> = YO, Re(A) < 0, (19) 
/ 

to both fonnulae. With fn+, = /ZY,~,~, f,, = /Zyn and f,: = / Z Z y n ,  we car1 obtain the following difference equation 



INTERNATIONAL CONFERENCE ON THE ANALYSIS AND MATHEMATICAL APPLICATIONS IN ENGINEERING AND SCIENCE 
19th-22nd Jan 2014, CSRI, Curtin University, Sarawak. Malaysia 

On setting hA = Z, y,,+z = and yn+, = ( O  = 1 in equation (20), then the stability polynomial for the '-point 
explicit rational block method is 

Here, ( can be interpreted as the roots of stability polynomial (21). By taking z - x + iy in the roots of equation 
(21), we have plotted the region of absolute stability of the 7-poult explicit rational block method in Figure 2. 

Figure 2 Absolute stability region of 2-point explicit rational block method. 

The shaded region in Figure 2 is die region of absolute stability of the >-point explicit rational block method. tleuce, 
this shaded region can also be viewed as the .,combined' region of absolute stability of formulae (10) and (16). T l ~ c  
shaded region is the place where the absolute value of each root of equation (21) is less than or equal to 1. From 
Figure 2, we can see that the region of absolute stability contains the whole left-hand half plane which suggests that 
our proposed rational block method is A-stable. 

4. NUMERICAL EXPERIMENTS 

In this section, some test problenls are used to verify the validity of tlie new 2-point explicit rational block method 
shown in formulae (10) and (16). We present the lnaxirnum absolute errors over the iutegration interval giver1 by 
r n a ~ ~ ~ ~ { l y ( x , , )  -y, 1) where N is the number of integration steps. We note that y(x,) and y, ate the theoretical 
solution and nurncrical solution of a test probleni at point x,, rcspectively. 

Problem I 

/ yf(x) = -10y(x),y(O) = l , x  E [0,1] 

The theoretical solution is given by y(x) = e-lox. 
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N 2-point Explicit Rational Block Method 
32 3.02055(-03) 

'Table I Maxirnum absolute errors with respect to number of Ir~tegation steps, N (Problern 1) 

Qroble1712 (Yaakub A.R. (2003)) 

The tlleoretical solution is given by y(x) = O.O1e-lOOX + e-". Problenz 2 can also be written as a system i.e 

The theoretical solutions of this system are given by yl(x) = y(x) = 0.01e- '~~ '  + e-", y,(x) = y'(x) = 
- e - l O O ~  - e-x. 

-- 
N 2-point Explicit Rational Block Method 
32 1.784 16(-02) 

'Table 2 Maxirnuln absolute errors with respect to liun~ber of integration steps, N (Problem 2) 

Problem 3 (Rarnos H. (2007)) 

Problern 3 is a problem whose solution possesses singularity. The theoretical solution is y(x) = tan(x + 7r/4). 

From the theoretical solution, we have noticed that the solution becomes unbounded in the neighbol~rhood of the 
singularity at x = 7r/4 r-. 0.785398163367448. 

N 2-point Explicit Rational Block Method -- 
3 2 1.39181(+01) 
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Table 3 Maximum absol~~te errors with respect to number of integation steps, N (Problem 3) 

Results &on1 Table 1 and Table 2 showed a consistent pattern i.c. the maximum absolute error decreases whenever 
the number of integration step increases. This also means, whenever the step-size beconies smaller, the numerical 
solution also approaches the exact solution and therefore convergent. However results from Table 3 showed 
fluctuations in the maximum absolute errors even if tlie number of integration step increases. We believed the 
fluctuations were caused by the inconsistent in the accuracy exhibited by formula (10) and formula (16). 

5. CONCLUSION 

In this paper, a 2-point explicit rational block method was introduced. This rational block method was able to 
approximate two successive solutions at tlie points x,,+, and x , + ~  defined in the same block (see Figure I), within 
every single integration step. ?Tiis rational block nietliod also contained two rational forn~ulae: formula (10) 
possesses second order of accuracy, while formula (16) possesses third order of accuracy. Stability analysis showed 
that the proposed method is A-stable. Hence, the proposed method is suitable to solve stiff problems. 

Nutnerical experiments showed that the proposed rational block method generated converging numerical solution 
when solving general initial value problems such as Problem 1 and Problem 2. However, this is not the case in 
solving I'rohlem 3, which is a problenl whose solution possesses singularity. Numerical solution did not converge as 
the step-size approaches zero, but the solution was still considered as stable solution. This was most probably caused 
hy the inco~isistent in the accuracy exhibited by fonnula (10) and formula (16). The inconsistency in the accuracy 
also affected Problem I and P~oblenz 2, but these are 11ot as obvious as Problem 3. Future study should look into this 
matter, and redesign rational block method which had exactly one order of accuracy in a sane  block. Numerical 
cornparisoil with other existing block methods sl~ould also be included in future study. Last but not least, since A- 
stable explicit rational block method is possible, L-stable explicit rational block method will be introduced in tlie 
near future. 
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