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ABSTRACT: In this paper, a 2-point explicit rational block method for the numerical solution of first
order initial value problem is proposed. The main reason to consider rationat block method is to
improve the numerical accuracy and absolute stability property of existing block multistep methods
that are based on polynomial approximants. The proposed method is found to possess A-stability.
Local truncation error is included as well. Numerical experimentations and results using some test
problems are presented. Numerical results are satisfying in terms of numerical accuracy. Finally, a
conclusion is included.
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1. INTRODUCTION

Conventional block multistep methods (BMMs) are very useful tools in terms of solvability. Firstly, BMMs can
return several numerical approximations for a first order initial value problem within each integration step.
Secondly, BMMs can easily be modified and extended to solve higher order initial value problems directly. Thirdly,
BMMs can easily be implemented on a parallel machine. For excellence surveys and various perspectives of BMMs,
see, for example, Sommeijer B.P. (1992), Watanabe D.S. (1978), Tbrahin Z.B. (2003), Ibrahim Z.B. (2005),
Chollom J.P. (2007), Majid Z.A. (2009), Majid Z.A. (2012), Mehrkanoon S. (2009), Akinfenwa O.A. (2011), Ehigie
J.0. (2011), Ibijola E.A. (2011), Majid Z.A. (2011), Badimus A.M. (2009), Olabode B.T. (2009) and Chartier P.
(1994).

Despite the many great potential of conventional BMMs, they have several stability drawbacks. [mplicit BMMs
were introduced mainly to improve the order of consistencies and stability requirements suffered by most explicit
BMMSs. However, extra computations are required to solve the system of nonlinear equations arise from the
implementations of implicit BMMs, which are very expensive in terms of computational costs when solving large
scale problems. Alternatively, some of the researchers would prefer predictor-corrector BMMs because they allow
the stage-by-stage implementations without the need to solve any system of nonlinear equations. The order of
consistency is determined by the order of the correctors that are usually be the implicit BMMs, while the predictors
are us/ually be the explicit BMMs. However, the stability requirements of predictor-corrector BMMs become more
restricting when the order of the methods increases, which make the numerical solution of stiff problem irnpossible
for larger step-sizes.
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In order to overcome the stability drawbacks and at the same time, retain the advantages of conventional BMMs,
Teh Y.Y. (2013a) suggested the idea of BMMs that are based on rational functions. This idea was first introduced as
the concept of rational block multistep methods (RBMMs). Like conventional block mnitistep methods (BMM:s),
RBMMs can be considered as a set of simultaneously applied rational multistep methods to obtain several pumerical
approximations within each integration step. Why there is such an idea to search for BMMs based on rational
functions? Our readings have shown that there exist some unconventional nurnerical methods that are based on
rational functions, which possess strong stability conditions but yet explicit in nature. Hence, we expected that
RBBMs are cheaper in computational costs compare to existing implicit BMMs and possess strong stability
conditions such as L-stability. For excellence surveys and various perspectives, see, for example, Lambert 1.D.
(1965), Lambert J.D. (1974), Luke Y.L. (1975), Fatunla S.0. (1982), Fatunla S.0O. (1986), van Niekerk F.D. (1987),
van Niekerk F.D. (1988), Ikhile M.N.O. (2001), Ikhile M.N.O. (2002), Ikhile M.N.O. (2004), Ramos H. (2007),
Okosun K.O. (2007a), Okosun K.O. (2007b), Teh Y.Y. (2009), Teh Y.Y. (2011), Yaacob N. (2010), Teh Y.Y.
(2010), Teh Y.Y. (2013b) and Tel Y.Y. (2013c¢).

In Teh Y.Y. (2013a), a 2-point explicit rational block method was dcveloped. However, the previously developed
method is not 4-stable but a method with finite region of absolute stability. In the next section, we develop a 2-point
explicit rational block method which is 4-stable. Section 3 presents the principal local truncation error terms and
establish the absolute stability condition for the newly developed method. Some tests are carried out in order to
verify the validity of the new RBMM in Section 4. Finally, a conclusion is included.

2 FORMULATION OF 2-POINT EXPLICIT RATIONAL BLOCK METHOD

The 2-point explicit rational block method is formulated to solve the following first order initial value problem given
by

¥ = flxy),y@ =n, )

where f{x,y): R x R™ - R™ and f(x,y) is assumed to satisfy all the required conditions such that problem (1)
possesses a unique solution. Suppose that the interval of numerical integration is x € [a, 5] < R and is divided into
a series of blocks with each block containing two points as shown in Figure 1.
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k -th block (k+1)-th

Figure 1 2-point explicit rational block method.

From Figure 1, we have observed that k-th block contains three points ie. x,, X4, and x,,,, and each of these
points is separated equidistantly by a constant step-size h. The next (J + 1)-th block also contains three points. In
the k-th block, we want to use the values y, al x, to compute the approximation values of y,,{ and y,
simultanecusly. In the (k + 1)-th block, previously computed values of ¥, ., is used to generate the approximations
values of ¥, 43 and y, .4 The same computational procedure is repeated to compute the solutions for the next few
blocks until the end-point i.e. x = b is reached. The evalnation information from the previous step in a block could
be used for other steps of the same block (Teh Y.Y. (2013a)).
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Along the x-axis, we consider the points x,, X, +; and X, 4, to be given by

X, = Xo +nh, )
Xp41 = X0+ (m+ 1A, 3)

and
Xpiz = Xg +(n+ 2)h. €}

where h is the step-size. Let us assume that the approximate solution of (1) is locally represented in the range
[x,,Xn41] by the rational approximant

) 5

where ag, @, and by are undetermined coefficients. This rational approximant in equation (5) is required to pass
through the points (x,,,y,) and (X, 11, ¥n+1), and morcover, must assume at these points the derivatives given by
y = f(x,y)andy" = f'(x,y). Altogether, there are four equations to be satisfied i.e.

R(xx) = Ya, 6)
R(X241) = Y1 )
R'(x) = fr) (8)
and
R"(x,) = f,, )

where f, = f{x,,y,) and f, = f' (X, ¥n). On using Ma THEMATICA 8.0, the elimination of the three undetermined
coefficients i.e. ag, a; and by from equations (6) — (9) is the one-step second order rational method found in
Lambert 1.D. (1974),

Zh(f)?

i = ot - (10)
Yner1 = Y 21, — hf)

Equation (10) is the formula to approximate y,,, by using the information at the previous point (x,,,). To
approximate y,.,, we have to assume that the approximate solution of (1) is locally represented in the range
[x,., % 4+2] by the same rational approximant given in equation (5). Now, we required the rational approximant (5) to
pass thraugh the points (x,,¥,), (51, Yausr) a0d (X, 12, Yat2), and moreover, must assume at these points the
derivative given by y' = f(x,y). There are five equations to be satisfied i.e.

R(x,) = Y, an

R(xns1) = Vo1, (12)
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R(xn+2) = Yn+2s (13)
R'(x,) = fu, (14)

and
R'(xp41) = fas1, (15)

where f, = f(x,,v2) and fry1 = f(Xns1, Vas1). On using MATHEMATICA 8.0, the elimination of the four
undetermined coefficients i.e. ag, a;, by and f, from equations (11) — (I5) is the two-step third order rational
method found in Lambert J.D. (1974),

hfn%l(yn-ﬂ - yn)
2(y11+1 - yn) - hfn'l-l'

(16)

Yn+2 = Yn41

Equation (16) is the formula to approximate y,,, by using the information at the previous points {x,,y,) and
(Xn 11, Yn+1). Hence, the 2-point explicit rational block method based an the rational appraximaat (5) consists of
two formulae i.e. formulae (10) and (16).

The implementation of the 2-point explicit rational block method is rather simple: with y, is known, compute the
approximate solution y, .y using formula (10); and then compute the approximate solution y, ., using formula (16)
with the value of y,,,; obtained from formula (10).

3. LOCAL TRUNCATION ERRORS AND STABILITY ANALYSES

Since formulae (10) and (16) are used in the same block to solve for the approximate solutions at x, 5 and x, 4, we
wish to have both formulae possess the same order of accuracy. However, calculations of the principal truncation
errors revealed that formula (10) possessed second order of accuracy, while formula (16) possessed third order of
accuracy. We note that the local truncation errors (LTE) for formula (10) and formula (16) are

1T . 1., .
LRy = * (5047 = 50 ) + 0%, (7)

and

1 . 1., .
LTE(I()) = hé (E(yn )2 - §y7lyﬂ ) + O(hs); (18)

respectively. Therefore, the order of consistency of the entire 2-point explicit rational block method ,fluctuates’
between second order and third order.

To Investigate the linear stability condition for formulae (10) and (16) in the same block, we need to combine both
formulae and apply the Dahquist’s test equation

y = 2y,y(@) = yo,Re(d) <0, (19)
7
to both formulae. With f, 41 = AYn+1, fu = Ay, and f, = A%y, we can obtain the following difference equation
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{20)

A+ 2\2
Vo

Ynaz = (h/l _9

On setting AA = 2z, Y42 = {* and y,47 = {® = 1 in equation (20), then the stability polynomial for the 2-point

explicit rational block method is

2
=0, 2D

2 (z + 2)
¢ z—2
Here, { can be interpreted as the roots of stability polynomial (21). By taking z = x + iy in the roots of equation
(21), we have plotted the region of absolute stability of the 2-point explicit rational block method in Figure 2.

T 8 T

Figure 2 Absolute stability region of 2-point explicit rational block method.

The shaded region in Figure 2 is the region of absolute stability of the 2-point explicit rational block method. Hence,
this shaded region can also be viewed as the ,combined’ region of absolute stability of formulae (10) and (16). The
shaded region is the place where the absolute value of each root of equation (21) is less than or equal to 1. From
Figure 2, we can sce that the region of absolute stability contains the whole lefi-hand half plane which suggests that
our proposed rational block method is A-stable.

4. NUMERICAL EXPERIMENTS

In this section, some test problems are used to verify the validity of the new 2-point explicit rational block method
shown in formulae {10) and (16). We present the maximum absolute errors over the integration interval given by
maxgc oy {|y(x,) — yo |} where N is the number of integration steps. We note that y(x,) and y, are the theoretical
solution and numerical solution of a test problem at point x,,, respectively.

Problem 1

, y'(x) = ~10y(x), y(0) = 1,x € [0,1}

The theoretical solution is given by y(x) = e~ 1%,
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2-point Explicit Rational Block Method

32
64
128
256

3.02055(-03)
7.48959(-04)
1.87214(-04)
4.67803(-05)

Fable 1 Maximum absolute errors with respect to number of integration steps, N (Problem 1)

Problem 2 (Yaakub A R. (2003))

vy (x) 4+ 101y (x) + 100y(x) = 0,y(0) = 1.01,¥'(0) = —2,x € [0,1]

The theoretical solution is given by y(x) = 0.01¢7109% + ¢™%_ Problem 2 can also be written as a system i.e.

y1(x) = y,(x),%,(0) = 1.01,x € [0,1]

_Vlz(x) = —100y, (x) — 101y, (x), y,(0) = —2,x € [0,1]

The theoretical solutions of this system are given by y;(x) = y(x) = 0.01e720% 4 ¢7* 3, (x) = y'(x) =

_8—1001 — X,

N

2-point Explicit Rational Block Method

32
64

128
256

1.78416(-02)
3.98233(-03)
9.39539(-04)
2.32928(-04)

Table 2 Maximwn absotute errors with respect Lo numnber of integration steps, N (Problem 2)

Problem 3 (Ramos H. (2007))

y (x) =1+ y(x)%y(0) = 1,x € [0,1]

Problem 3 is a problem whose solution possesses singularity. The theoretical solution is y(x) = tan(x + n/4).
From the theoretical solution, we have noticed that the solution becomes unbounded in the neighbourhood of the

singularity at x = /4 = 0.785398163367448.

2-point Explicit Rational Block Method

N
32
64
128
256

1.39181(+01)
3.63857(+00)
1.20080(+00)
6.71306(+01)
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Table 3 Maximum absolute errors with respect to number of integration steps, N (Problem 3)

Results from Table 1 and Table 2 showed a consistent pattern i.c. the maximum absolute error decreases whenever
the number of integration step increases. This also means, whenever the step-size becomes smaller, the numerical
solution also approaches the exact solution and therefore convergent. However results from Table 3 showed
fluctuations in the maximuwm absolute errors even if the number of integration step increases. We believed the
fluctuations were caused by the inconsistent in the accuracy exhibited by formula (10) and formula (16). ‘

5. CONCLUSION

In this paper, a 2-point explicit rational block method was introduced. This rational block method was able to
approximate two successive solutions at the points x,, ., and x,, 4, defined in the same block (see Figure 1), within
every single integration step. This rational block method also contained two rational formulae: formula (10)
possesses second order of accuracy, while formula (16) possesses third order of accuracy. Stability analysis showed
that the proposed method is A4-stable. Hence, the proposed method is suitable to solve stiff problems.

Numerical experiments showed that the proposed rational block method generated converging numerical solution
when solving general initial value problems such as Problem 1 and Problem 2. However, this is not the case in
solving Problem 3, which is a problem whose solution possesses singularity. Numerical solution did not converge as
the step-size approaches zero, but the solution was still considered as stable solution. This was most probably caused
by the inconsistent in the accuracy exhibited by formula (10} and formula (16). The inconsistency in the accuracy
also affected Problem 1 and Problem 2, but these are 110t as obvious as Problem 3. Future study should look into this
matter, and redesign rational block method which had exactly one order of accuracy in a same block. Numerical
comparison with other existing block methods should also be included in future study. Last but not least, since A-
stable explicit rational block method is possible, L-stable explicit rational block method will be introduced in the
near future.
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