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Abstract. In this study. the concept of block multistep methods based on rational approximants is introduced lor the
numerical solution of first order initial value problems. These numerical methods are also called rational block multistep
methods. The main reason to consider block multistep methods in rational selting. is to improve (he numerical accuracy
and absolute stability property of existing block multistep miethods that are based on polynomial approximants. For this
pilot study, a 2-point explicit rational block multistep method is developed. Local truncation error and stability analysis
for this new method are included as well. Numerical experimentations and resulls usimg some (est problems are
presented. Numerical results are satisfying in terins of numerical accuracy. Finally, future issues on (he developments of
rational block multistep methods are discussed.
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INTRODUCTION

Numerical solutions or ordinary differential cquations (ODIEs) have great importance in scientific computation.
as they are widely used (o model the real world problems. Conventional numerical methods which have been widely
used nowadays are those {rom the class of linear multistep methods (LMMs) and the class of Runge-Kutta methods.
Besides methods from these two classes, there are other options such as the predictor-corrector methods. hybrid
methods. extrapolation methods and block multistep methods (BMMs).

BMMs can be considered as a set of simultancously applicd LMMs to obtain several numerical approximations
within each integration step (Sommeijer et al. [1]). For excellence surveys and various perspectives ol BMMs, see,
for example, Sommeijer ¢t al.[1], Watanabe |2]. Ibrahim et al.[3-4]. Chollom ct al.|3]. Majid ¢t al|6-7],
Mehrkanoon et al. [8]. Akinfenwa et al.|9]. Ehigic et al.| TO]. Ibijola et al.[11] and Majid and Suleiman [12]. Implicit
BMMs were introduced mainly to improve the order of consistencics and stability requirements suflfered by most
explicit BMMs. Hlowever. extra computations are required to solve the system of nonlinear equations arise from the
implementations of implicit BMMs. which are very expensive in terms ol computational costs when solving large
scale problems. Alternatively. some of the researchers would prefer predictor-corrector BMMs because they allow
the stage-by-stage implementations without the need to solve any system of nonlinear equations. The order of
consistency is determined by the order of the correctors that are usually be the implicit BMMs, while the predictors
are usually be the explicit BMMs. Towever. the stability requirements of predictor-corrector BMMs become more
restricting when the order of the methods increases, which make the numerical solution of stifl problem impossible
Jor larger step-sizes.

Despite the shortcomings of most BMMs in terms of stability analysis. they are very useflul tools in terms of
solvability. Firstly, BMMs can easily be modified and extended to solve higher order initial value problems directly.
as reported in Majid ¢t al. [6-7]. Ehigie et al. [10]. Badmus and Yahaya | 13] and Olabode | 14]. Sceondly, BMMs
can casily be implemented on a parallel machine. as reported in Sommeijer et al.[1]. Mchrkanoon ct al. [§] and
Chartier |13]. Thus. the potential of BMMs is obvious regardless of their stability drawbacks. In view of this. the
research problem we are going to investigate is: “how can we develop BMMs which possess strong stability
requircments but cheaper computational costs?” Our readings have shown that there exist some unconventional
numerical methods which possess strong stability conditions but yet explicit in nature. These unconventional
methods are known as rational methods because they are numerical methods based on rational functions. FFor
excellence surveys and various perspectives, see. for example. Lambert and Shaw [16]. Lambert [17]. Luke ct al.
[18]. Fatunla |19-20]. van Nickerk [21-22]. Tkhile |23-23]. Ramos |26]. Okosun and Ademiluyi [27-28]. Teh et al.
[29-30]. Yaacob ctal. |31]. Teh |32]. Tehand Yaacob |33-34].

Explicit rational methods are capable in solving stiftf problem and problem whose solution possesses singularity
but they cannot generate several numerical approximations within cach integration step like BMMs. On the other
hand, Adams-Moulton BMMs and backward differentiation BMMs are expensive in implementations due to the
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implicit nature ol the BMMSs. Moreover. all BMMs fail to solve problem whose solution possesses singularity near
the singular point. By comparing the pros and cons of rational methods and BMMs, we come out with the idea to
search for BMMs (hat are based on rational {functions. or so called rational BMMs (RBMMs). We expect RBBMs 1o
be cheaper in computational costs compare to existing implicit BMMs: possess strong stability conditions such as /.-
stability and able to solve stifl problems and problem whose solution possesses singularity.

In the next section. we develop a simple 2-point explicit rational block method as to explain the tormulation idea
of RBMM. Then, we demonstrate the calculation of principal local truncation error term and establish the absolute
stability condition for the newly developed method. Some tests are carried out in order to verify the validity of the
new RBMM. Finally. a conclusion is included.

FORMULATION OF 2-POINT EXPLICIT RATIONAL BLOCK METHOD

The 2-point explicit rational block methed is formulated to solve the following first order initial value problem
given by

yo= f{x). v(ay= o, (1)
where f(x,1):RxR" —->R" and j‘(.r,y) is assumed to satisfy all the required conditions such that prohlem (1)

possesses a unique solution. Suppose that the interval of numerical integration is x € [u, /)J < R and is divided into a

series of blocks with cach block containing two points as shown in Figure 1.

X X

" ol MR RASTI

k -th block (k+1)-th
FIGURE 1. 2-point I:xplicit Rational Block Method

IFrom Figure 1. swe have observed that 4 -th block contains three points v, . x, , and x, ,. and cach of thesc
points is scparated equidistantly by a constant step-size /. The next (/\' + ]\) -th block also contains three points. In

the A -th block. we want to use the values y, at x, to compule the approximation values ol y, | and v,

f
simultancously. In the (k+ l) -th block. previously computed values of y, , is used to generate the approximations
values of" y, ; and . The same computational procedure is repeated to compute the solutions for the next few
blocks until the end-point i.e. x =5 is rcached. The evaluation information from the previous step in a block could
be used lor other steps of the same block. The explanation provides here is nothing new and could be found in Majid
ctal. |7].

Along the x-axis. we consider the points x, . x , and x,, 1o be given by

n-2

X, =X, -+, )
X, =x,+(n+1)h and 3)
X, =x, {0+ 2y, )

where A is the step-size. Let us assume that the approximate solution of (1) is locally represented in the range

[x”,.\’w ]] by the rational approximant



where L g, . a, and A, are undetermined coellicients. This rational approximant in equation (5) is required to pass
through the points {x,.v,) and (x,,.v, ). and moreover, must assume at these points the derivatives given by

y' = f(\y) Ve .f"(""*»"j) and y" = f"(,\-,_\') . Alogether, there are five equations Lo be satistied i.c.

R(x,)=v,. (0)
R{x, V=1, .. (7N
R'(x,)= 1, (8)
"(x,) = £, and 9)
R™(x, )= /1, (10)

where /) = .f'(,\‘”,y” ). fr= L (an ) and S = ‘}""(‘,\'”,_)f’” Y. On using MATHEMATICA 8.0, the elimination of the

four undetermined cocllicients «,. a,. a, and b, Irom cquations (6) -- (10} is the one-step third order rational

method proposed by Lambert and Shaw | 16].

Voo ¥, =0, +ﬁ* Jg/ﬁ) e
B ' 2300

(1)
liquation (11} is the formula to approximate v, by using the information at the previous point (.\‘”‘yn). To
approximate ¥, , . we have to assume that the approximate solution of (1) is locally represented in the range
[,\'”.,\'M] by the same rational approximant given in equation (3). It is crucial to retain the same rational
approximant in the same block. Now. we required the rational approximant (3) to pass through the points (.\'”‘y” )
(,\‘”VI.J/'WIJ and (x,,,.v, ) and morcover. must assume at these points the derivative given by .\"f‘/'(A\',J:).

There are also tive equations to be satislied i.c.

R(x )= v, (12)
Riv, )= (13)
R{x, . )=v, . (14)

R'(x,)= /,, and (15)
R(x) = - (16)

where  f) :,/V(’.\'”.y”) and £, =/ (x, ., ]) On using MATHEMATICA 8.0, the elimination ol the four
undetermined coceflicients a,. a,. a, and b, from cquations (12) - (16) is the two-step third order rational method
proposed by Lambert and Shaw [16].

44 (f, - /;‘I)~—

2
3v, A, = %/l(/ 2/ )+ — - —. (17
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l:quation (17) is the formula to approximate vy, ., by using the information at the previous points (.\'”.v\‘”) and
(an,.,yH ) Hence. the 2-point explicit rational block method based on the rational approximant (3) consists ol two
formulac i.c. formulae (11) and (17).

The implementation of the 2-point explicit rational block method is rather simple: with y is known, compute
the approximate solution y,

, using formula (11): and then compute the approximate solution y, , using formula

(17) with the value of ¥, obtained [rom formula (11).

LOCAL TRUNCATION ERRORS AND STABILITY ANALYSES

Since formulae (11) and (17) are used in the same block to solve for the approximate solutions at x, | and x

2"
we wish o have both formulae possess the same order of accuracy. Lambert and Shaw |16] have showed that the
local truncation errors for formulae (11) and (17) are

( m‘]l
\'/
) -

) .
LTE, =ht ] — v 2 e o). 18
(n 24 18y ( ) e
and
I/ »\
A3
LTE, =4 e ZL” ) +O(h] ¢
Ty =0 0" =5 (7). (19)
N

respectively. From the local truncation errors given in equations (18) and (19). it is casy to verify that both formulae
{(11) and (17) possess third order of accuracy.

To investigate the lincar stability condition for formulae (11) and (17) in the same block. we need to combine
both (ormulac and apply the Dahquist’s test equation

¥= 2 () = 0y, Re(4) <0, (20)

to both formulae. With £, = Ay, . f,=A4y,. fr=2"v, . and f7= A"y . we can obtain the following difference

B IR

cquation
O+ 1204+ T A7 +20° 2 ‘
.yn 2 = 2 T (21)
(h2=3)
Onsetting 2d==z. v , =< and v, =£" =1 in cquation (21). then the stability polynomial for the 2-point explicit
rational block method is
& - (22)
Llere. & can be interpreted as the roots of stability polynomial (22). By taking = = x+iv in the roots of equation

(22). we have plotted the region of absolute stability of the 2-point explicit rational block method in Iigure 2.



FIGURE 2. Absolute Stability Region ol 2-point FExplicit Ratonal I3lock Method.

The shaded region in Figure 2 is the region of absolute stability of the 2-paint explicit rational block mcethod.
[ence. this shaded region can also be viewed as the “combined” region ol absolute stability of formulue (11) and
(17). The shaded region is the place where the absolute value of cach root of equation (22) is less than or cqual to 1.
From Figure 2. we can see that the region of absolute stability does not contain the whole Jefl-hand half plane which
suggests that our proposed rational block method is not .f-stable.

NUMERICAL EXPERIMENTS

In this scction. some test problems are used to verify the validity of the new 2-point explicit rational block
method shown in formulae (11) and (17). We present the maximum absolute errors over the integration interval

given by max ﬂ ‘;(_\-) Y-y “ where N is the number ol integration steps. We note that \(\) and v, arc the
e v U0 ' - = TN o
theoretical solution and numerical solution of a test problem at point x, . respectively.
Problem |
V(x)= —l()y(x).y(()) =], xe [Oa I]

Bt

The theoretical solution is given by y(x) =¢

TABLE (1). Maximum Absolute Errors With Respect To Number of Integration Steps. N (Problem 1)

N 2-point Explicit Rational Block Method
32 1.06069(-04)
64 7.395406(-00)
12 4.88814(-07)
256 3.14280(-08)

Problem 2 (Yaakub and Evans [35])

V' {(x)+101(x) 4100 (x) = 0, 3(0) = 1.0L 1 (0) =2, x £ [0.1]

. N . . . - 100 - . -
['he theoretical solution is given by _v(_\') =0.0le" "™ ¢, Problem 2 can also be written as a system i.e.
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1(x) =3 (x). 1, (0) =101 xe[0.1];

vy (x)==100y (x)-101y, (x). ¥ (0)=-2,xe [0, ]].

The theoretical solutions of this system are given by v, (\] = \(A) =00le"™ e vy (x)= y'(,\‘) ="M g

TABLE (2). Maximum Absolute Errors With Respeet To Number of Integration Steps. N (Problem 2)

N 2-point Explicit Rational Block Method
32 6.26821(-03)
64 6.33638(-04)
128 4.06612(-05)
256 2.35650(-006)

Probiem 53 (Ramos |26])
Vi(x)=t+ J'(X\): (0)=1x€ [0. I]

Problem 3 is a problem whose solution possesses singularity. The theoretical solution is y(x) =tan (A’+ﬂ/4). I'rom
the theoretical solution. we have noticed that the solution becomes unbounded in the neighbourhood ol the
singularity at x = 7/4 = 0.785398163367448..

TABLE (3). Maxunum Absolute Frrors Wath Respeet To Number ol Integration Steps. A (Problem 3)

N 2-point Explicit Rational Block Method
32 1.02625(-02)
64 6.51554(-04)
128 3. 14872(-05)
256 7.33577(-04)

Results from Table [L Table 2 and Table 3 showed a consistent pattern i.¢. the maximum absolute crror decreases
whenever the number of integration increases. This also mcans. whenever the step-size becomes smaller. the
numerical solution also approaches the exuct solution and therefore convergent.

CONCLUSIONS

In this paper. a 2-point explicit rational block method was introduced. This rational block method was able to
approximate two successive solutions at the points x, , and x, , delined in the same block (see Figure 1), within
every single integration step. This rational block method also contained two rational formulae. and both formulac
were found to possess third order of accuracy. Figure 2 showed that the new proposed method has a [inite region of
absolute stability. Numerical experiments showed that the proposed rational block method gencrated converging
numerical solution. Future study will include the numerical comparison with other existing block methods.

Finally. this is the pilot study of rational block method. and many more rational block methods will be developed
in the near luture. ¢.g. implicit rational block method. and predictor-corrector rational block method. From the
rational approximant in (3). we can sce that the degree of the numerator is greater than the degree of the
denominator. We believed that this kind of sclection yields method with finite region of absolute stability. In order
to develop A-stable rational block micthod, we should consider a rational approximant with both numerator and
denominator in cqual degree. O course. £-stable rational block method may be developed il the underlying rational
approximant has the degrce ol denominator greater than the degree of numerator. These directions constitute a vast
research dimensions to be explored in the near future.
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