
Two Bigrams Based Language Model for Auto Correction of Arabic OCR
Errors

 1Imad Q. Habeeb, 2Shahrul A.M. Yusof, 3Faudziah B. Ahmad

1, First Author Iraqi Commission for Computers and Informatics, emadkassam@yahoo.com
*2, Corresponding Author Universiti Utara Malaysia, shahrulazmi@uum.edu.my

3 Universiti Utara Malaysia, fudz@uum.edu.my

Abstract

In Optical character recognition (OCR), the characteristics of Arabic text cause more errors than in
English text. In this paper, a two bi-grams based language model that uses Wikipedia's database is
presented. The method can perform auto detection and correction of non-word errors in Arabic OCR
text, and auto detection of real word errors. The method consists of two parts: extracting the context
information from Wikipedia's database, and implement the auto detection and correction of incorrect
words. This method can be applied to any language with little modifications. The experimental results
show successful extraction of context information from Wikipedia's articles. Furthermore, it also shows
that using this method can reduce the error rate of Arabic OCR text.

Keywords: Auto correction, Arabic OCR errors, Bigram language model, OCR post-processing.

1. Introduction

An Arabic text over the years is difficult when treated by the process of optical character recognition
(OCR), because the letters are connected and their shape is changed depending on their position in the
words [1-3]. These characteristics cause some errors during the optical character recognition process,
especially when the texts are worn out or their colors have changed [4, 5]. OCR process usually produces
two kinds of errors, non-word errors and real word errors. Non-word error occurs when the word
produced from the OCR process does not exist in the lexicon. The real word error occurs when the word
produced from the OCR process exists in the lexicon but does not match with the source text [6, 7].

The most widely used technique for finding a list of candidates for word errors is the Levenshtein
distance algorithm [8, 9]. The Levenshtein distance algorithm is used to calculate the difference between
two strings where every insertion, deletion, or substitution of a single character is considered as a single
edit [10]. For example, "foed" is a non-word in English, because it does not in the lexicon. It requires one
substitution to become "food" that is considered a correct word in English [6]. The candidate words
obtained from using the edit distance technique, for the previous word "foed" are: "feed" , "food", "ford",
and "foe". All these words have a single edit distance. Now the question is: How to choose the most
suitable word? What is the best automated method?

The auto correction process is made up of three sequential steps. These are: (1) identifying the wrong
words; (2) generate candidate words from the language resources; and (3) ranking the candidate words
according to their importance in the sentences [11]. When the auto correction is implemented, the
incorrect word is automatically replaced by the first word in an ordered candidate list [9]. The choice of
the appropriate technique is very important because it may replace the wrong word by other found in the
lexicon, but it is unsuitable for the sentence, resulting the desired goal of correction is to be unachieved
[6].

 In this study, a method that combines two bi-grams based language model with the Levenshtein
distance algorithm [10] will be developed for auto detection and correction of errors in Arabic OCR texts.
Wikipedia data is used for the study. The method can be applied to other languages with minimal
modifications as the study uses freely available Wikipedia that has more than a hundred languages and
continues to grow [12, 13].

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume8, Number1, February 2014

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

72

2. Related Work of OCR Error Correction

There are three major approaches to OCR post-processing error correction: (1) proofreading-based

correction, (2) Lexicon-based correction, and (3) context-based correction[14]. Proofreading-based
correction requires human to read and rewrite text produced from the OCR process. This is inefficient as
it is time-consuming, especially when the number of words is in thousands [15].

The lexicon-based correction is used to identify the non-words errors. This error happens when the
word resulted from the OCR does exist in the lexicon [6]. The drawback of this approach is that it cannot
rely on auto correction because candidate words are arranged without any regard for the context within
the sentence around the incorrect word. Furthermore, it cannot detect the real word errors [14]. Lastly,
the context-based takes into account the words surrounding the wrong word. It is more complex than the
previous techniques and can detect real word errors [16].

In correcting OCR errors, several methods have been proposed include: using the similarity in shape
among characters in words[11], using grammar rules [17], word count, i.e., the number of occurrences of
the word in a large corpus or in the web is used in selecting the right word [18], a combination of a
dictionary to correct non-word errors, and a model to correct real word errors [19], a matrix of sequence
and count of characters for all words of resulted text of OCR, where the highest count in the matrix is
then replaced with the non-word [20]. Others are: confusion sets that use common errors in words[21],
Google's spelling and suggestions [14], using of multiple systems and select the best output [22], and
probability based language models [8, 23, 24].

A language model based on web corpora has been used in recent researches for correcting OCR errors,
it gathers context information of sentences that are stored in the web corpora [24, 25], the context
information gathered from texts is used to select the best candidate for wrong-word errors [18].

Existing language models, which are using one n-gram to predict the next word [26] will not use in
this study, instead of that, a language model that uses two bi-grams is proposed to improve the accuracy
in the selection from the candidate words. In addition to that, the candidate's list will not be generated
from millions of words from the lexicon, but it will be generated from a specific set of words to improve
processing time. The next section elaborates the method.

2. Proposed Method

The method consists of two stages. First, explains how to design and fill of the language model based

on Wikipedia’s database. Second stage explains how to detect and correct of Arabic OCR errors.

2.1. Designing and filling of a language model

In order to use a language model for Arabic language, it needs a free large web corpus. The study used

a Wikipedia database, which is available freely and can be downloaded as one file in the xml format1.
The database has been chosen for several reasons : (1) It is the largest free source of Arabic web corpus,
(2) It contains more than 232,917 Arabic articles in different categories, and (3) There is a rapid growth
in Arabic articles and (4) the database is constantly updated[27, 28].

English language and many other languages that use Latin characters, do not suffer from any problem
to extract of text from Wikipedia’s database because there are many programs that can be used to extract
text directly from a Wikipedia dump file. However, these programs are designed to eliminate any
non-Latin letter[12], and therefore, cannot be used to extract Arabic texts. The use of an indirect way in
the extraction of Arabic texts by downloading pages and articles from Wikipedia’s site and then
extracting text from them takes a long time[29]. For these reasons; a new method is developed that can
be used to extract only Arabic text from a Wikipedia database as shown in Fig. 1. In this method, the
reading of Wikipedia xml file will be in parts because it is large.

1 http://dumps.wikimedia.org/arwiki/

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

73

In preprocessing stage, address of images, navigation, and layout are ignored and only text from

Wikipedia xml file is extracted. Then each text with size less or equal to 5MB is stored as a separate plain
text file. The text is split into small pieces for two reasons: First, there are thousands of operations that
will take place on each file and these processes consume time. Therefore, when the file is a large and the
process has an error, the work will be repeated from scratch, and this takes additional time. However, in
case of file is small, the program will have to re-process only the specific file and thus, takes a shorter
time. The second reason is, a large file is not recommended to put in the main memory at once because
this may cause the computer to be hanged or stopped. All files are placed in a specific folder by the
program automatically. In the segmentation stage, the program extracts only text "T" from input file and
then split the text "T" into an array of words "W", so that it passed to the classification stage.

In the classification stage, every word W[i] (W[i] € lexicon) will have variables stored within the
language model database. These variables are: (1) frequency of word W[i] in the web corpus, (2)
frequency of the word W[i-1] when come before word W[i] in the web corpus, (3) frequency of the word
W[i+1] when come after word W[i] in the web corpus, (4) all words that came after word W[i], i.e., any
word W[i+1] be on the right of word W[i] and (5) all words that came before word W[i], i.e., any word
W[i-1] on the left of word W[i]. Variables one, two, and three are stored because they help in calculating
of probability of the two bi-grams model. In addition to that, variables four and five are stored because
they help in calculating Levenshtein distance algorithm for specific set of words.

To illustrate more why these variables are stored, let take variables one, two, and three, the probability
of one bigram language model for any candidate W[i] to come instead of a wrong word can be calculated
from (1)[30]:

])1i[W(

])i[W]1i[W(
)]1i[W]i[W(

f

f
P (1)

Where P(W[i]│W[i-1] is the probability of candidate W[i] to come after the word W[i-1], while f
(W[i-1] W[i]) is frequency of candidate W[i] to come after a word W[i-1] in corpus, and f (W[i-1]) is
frequency of the word W[i-1] in same corpus.

Equation (1) shows that bi-gram language model is used to predict the next word based only on the
previous word, and this will ignore the impact of the next word to predict the previous word.
Furthermore, in the absence of the valid word W[i-1], before the wrong word, then it cannot be used (1)
to predict the best candidate word for the incorrect word. Based on these, in this study, two bi-grams are
used in one language model so that the selection of the appropriate word from the candidate’s list
depends on the probability offered by the two. On the other hand, if one of them has the probability of
zero, then it can rely upon the second and vice versa.

Figure 1. Filling of language model database.

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

74

Now the probability of two bi-grams model for word W[i] to come after the word W[i-1] and before
the word W[i+1] is:

2/)
])1i[W(

])1i[W]i[W(

])1i[W(

])i[W]1i[W(
(])i[W(

f

f

f

f
P (2)

Where P(W[i]) is the probability of two bigrams language model for word W[i] to come instead of the
wrong word;
while f (W[i] W[i+1]) is frequency of candidate W[i] to come before the word W[i+1] in corpus, and f
(W[i+1]) is frequency of the word W[i+1] in same corpus. Equation (2) is performed if: (f (W[i-1]
W[i])≠0) and (f (W[i] W[i+1]) ≠0). However, in case of
(f (W[i-1] W[i])=0) and (f (W[i] W[i+1]) ≠0), then the equation will be as follows:

])1i[W(

])1i[W]i[W(
])i[W(

f

f
P (3)

And if: (f (W[i-1] W[i])≠0) and (f (W[i] W[i+1]) =0), then the equation will be as follows:

])1i[W(

])i[W]1i[W(
])i[W(

f

f
P (4)

In case of (f (W[i-1] W[i])=0) and (f (W[i]W[i+1]=0), then the choice of the best candidate for incorrect
word is based only on least edit distance between them.

At this point, the explanation should justify why two bi-grams are used instead of one and why
variables one, two, and three are stored. Now Let return to the variables four and five, which are
mentioned in beginning of classification stage and illustrate why they are stored; the generating of
candidates list from millions of words from the lexicon is not used in this study directly, for two reasons:
(1) It reduces the accuracy because of the huge number of candidates, which may be reaching thousands,
and (2) It takes long time to process. Instead of that, the list will be generated by using the Levenshtein
distance algorithm, but the process is performed by comparing the incorrect word with all words belong
to valid word that comes after or before it. As an example, to generate of candidates list for incorrect
word W[i], it needs of comparing W[i] with all words that can come after the valid word W[i-1] and with
all words that can come before the valid word W[i+1].

To clarify more, let take the following questions: is it possible, the main verb comes after the same
verb? Or the word "school" precedes the word "school"? This is impossible. For these reasons, the
comparison will not use all the words from the lexicon in generating of a candidate’s list, but the
comparison will use all the words that could come after or before the valid word, and these words are
extracted from the huge amount of data automatically, which is here Wikipedia’s database.

Incorrect words in any texts can be added to the database inadvertently because of the automatic way
of storing words. For this, the program performs a procedure to delete any word from the database if they
do not exist in the lexicon (this study uses a lexicon with 2158342 Arabic words), and all letters, numbers
and symbols used in ASCII table for Arabic and English were added and treated like words. This is
because any word, symbol, number or letter that is not in the lexicon will be treated as an error by the
program that uses this method for correction of Arabic OCR text.

In this study, smoothing method will not be applied in the Language Model, and this will give a
probability of zero for cases where the words that are not contained in the lexicon and for unknown
words, i.e., the words that are present in the lexicon, but are not found in web corpus. During training of
the language model, zero is assigned to their probability, and the choice of the best candidate for
incorrect word is based only on least edit distance between them.

2.2. Detection and correction of Arabic OCR errors
The process of detection and correction of incorrect words in Arabic OCR text is shown in Fig. 2. In

this process, there are differences in detecting and correction of errors in OCR based on the type of the

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

75

error, while the non-word errors will be detected and corrected automatically, the real word errors will
not be corrected automatically, but will be identified and the task of correcting the errors is passed to the
user. This is because non-word errors are easily identified through the lexicon in which any word outside
of the lexicon is wrong. On the other hand, real word errors cannot be determined by the lexicon because
they already exist in the lexicon, but are determined by the language model which does not guarantee
100% that they are wrong. Real errors are detected and passed the correction tasks to the user to correct.
This is better than the user is reading the text word by word to identify real word errors, because this
process is a tiring if mistakes are in thousands.

Initially, Arabic OCR text is read and stored in memory. In the segmentation stage, the text is split
into an array of words "W" using the space between the words as a divider. In filter stage, real word
errors are determined by language model and then identified within the input text to make it easier for the
user to see them. On the other hand, the non-word errors are identified by filtering all words in array "W"
of Arabic OCR text with lexicon words, where any word from array "W" not exists in the lexicon will
identify as non-word. Furthermore, a temporary table called "Temporary" is created in memory, which
has the same properties as the original table in the database. The purpose is to reduce dependence on the
database to speed up the correction process. The table "Temporary" will fill with records from the
database, where each record is referring only to one valid word from Arabic OCR text. At this point, all
valid words from Arabic OCR text will be found in the table "Temporary", then each non-word will pass
through the auto correction stage, and this process will continue for all non-words in the Arabic OCR
text. Correction stage involves three levels as shown in Fig. 3. If first level fails, then the operation
proceeds to the second and if that fails, then the operation proceeds to the third and if that fails, then the
word will be indicated as incorrect word in the Arabic OCR text without correction.

Figure 2. Auto detection and correction process.

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

76

Fig. 3 shows that the first level is performed by searching on single edit distance between the

non-word with all words belonging to the correct word that preceded it, or with all words belonging to
the correct word that followed. If the result is one candidate word, then the non-word will be replaced by
candidate word. If else, then two cases are presented: First, if there is more than one candidate words,
then the results are filtered with language model. Second, if no candidate word, then the searching on
single edit distance is performed again, but between the non-word and all words in the lexicon, if there
are a candidate’s words, then the results are filtered with language model. If else, the operation is moved
to next level.

At the second and third levels, the previous steps are all returned except that for second level; the
searching is on two edit distance and for third level; the searching is on three edit distance. If results of
three levels are null, then no auto correction is performed for this non-word. Furthermore, for each level,
there are cycles of correction, as an example: after changing a non-word W[i] by a valid word "X"
depending on the valid word W[i-1], the non-word W[i+m] is corrected based on the word "X" and so
on.

3. Experimental Result and Evaluation
To implement the method, a prototype is designed using VB.NET under MS Visual Studio.net 2010.

The database is designed using MS SQL server 2008. All Arabic Wikipedia articles are downloaded as
one dump xml file. The result of split of a dump xml file into small pieces is 4149 files; their format is txt.
The sizes of resulted files lie between 0.5 to 5MB. To evaluate the method on incorrect word errors, a
Library from Google, which depends on the algorithm of edit distance2, is used to generate lists of
candidates for any incorrect word. Furthermore, OmniPage18 program with support for Arabic is used to
generate the OCR text file. OmniPage18 program has been subjected on pages of an old book that have
poor quality; the resolution of scanning is 300 pixel / inch. Title of the book is “The analysis of the
Arabic human culture” by "Ali Alordy". Number of words in the pages is 9856. Fig. 4 shows a sample
from page from this book.

2 http://code.google.com/p/google-diff-match-patch/

Figure 3. Procedure for generating of candidates list for one non-word.

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

77

The test results are shown in Table 1. Row one in Table 1 shows that the total number of words in the

OCR text files is 9856 words. Row two shows that the number of both non-word errors and real-word
errors resulted from using OmniPage18 program is 1039 words, where non-word errors are 822 words as
shown in row three. Real word errors are 217 words in row four.

Auto detection of non-word errors by using this method is performed and the result is 804 words as
shown in row five, with a detection ratio of 97.81% in row six. The detection ratio is calculated through
((804 * 100) / 822). The auto correction of non-word errors using this method performs a valid
correction for 772 non-words from 822 (row seven). The error rate improvement for non-word errors is
93.91% (row eight). The improvement ratio is calculated through ((772 * 100) / 822).

Furthermore, the auto detection of real word errors by using this method is performed and the result is
165 real words from 217 as shown in row nine, with a detection ratio of 76.03% in row ten, the detection
ratio is calculated through ((165 * 100) / 217). There was no auto correction for real word errors, but
they will be identified to the user in input text so that he can correct them. The reason is described in
section ΙΙΙ. The results in Table 1 show that usage of this method will result in the decrease of error rate
in OCR text file.

Figure 4. Sample of page has poor quality.

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

78

4. Conclusion and Future Work
This paper presents a new method to perform auto detection and correction. The method produced a

high accuracy for incorrect words in Arabic OCR text. The method can be used for any language with
little modifications. It consists of two parts: extract the context information from huge volume of data,
and implementation of automatic correction of errors resulting from the OCR. Data used to extract
context information, relied on hundreds of thousands of Arabic articles in the Wikipedia site.

The experimental results show success in the extraction of context information from Wikipedia’s
articles. It also shows that using the method can reduce considerable error rate. Further research can be
done to develop methods that can correct real word errors in Arabic OCR text, develop algorithms to
improve images with low resolution, and develop a language model for a grammar in Arabic language is
as well needed. Another potential project includes producing e non-static language resources
automatically for Arabic Language such as words list of names, verbs, prepositions and adjectives. In
addition to that, it can use this method to correct errors in automatic speech recognition of Arabic
language.

5. References
[1] Aljarrah, I., et al., Automated System for Arabic Optical Character Recognition with Lookup

Dictionary. Journal of Emerging Technologies in Web Intelligence, 2012. 4(4): p. 362-370.
[2] Labidi, M., M. Khemakhem, and M. Jemni, Grid’5000 Based Large Scale OCR Using the DTW

Algorithm: Case of the Arabic Cursive Writing. Recent Advances in Document Recognition and
Understanding, 2011: p. 73.

[3] Oujaoura, M., et al., Zernike moments and neural networks for recognition of isolated Arabic
characters. International Journal of Computer Engineering Science, 2012. 2: p. 17-25.

[4] Al-Rashaideh, H., Preprocessing phase for Arabic Word Handwritten Recognition.
Информационные процессы, 2006. 6(1).

[5] Khorsheed, M.S., Off-line Arabic character recognition–a review. Pattern analysis & applications,
2002. 5(1): p. 31-45.

[6] Daðason, J.F., Post-Correction of Icelandic OCR Text, 2012.
[7] Kukich, K., Techniques for automatically correcting words in text. ACM Computing Surveys

(CSUR), 1992. 24(4): p. 377-439.

Table 1. Results of Proposed Method

Words Classification

Number of words that resulted from using OmniPage18
program.

9856

Non-word & real word errors that resulted from using
OmniPage18 program.

7.81%

Non-word errors that resulted from using OmniPage18
program.

822

Real word errors that resulted from using OmniPage18
program.

217

Non-word errors, that detect by using this method. 804

Detection ratio of non-word errors using this method. 97.81%

Non-word errors that corrected automatically using this
method.

772

Error rate improvement of auto correction of non word
errors using this method.

93.91%

Real word errors, that detect by using this method. 165

Detection ratio of real word errors using this method. 76.03%

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

79

[8] Magdy, W. and K. Darwish, Effect of OCR error correction on Arabic retrieval. Information
Retrieval, 2008. 11(5): p. 405-425.

[9] Naseem, T., A Hybrid Approach for Urdu Spell Checking, 2004, National University.
[10] Navarro, G., A guided tour to approximate string matching. ACM Computing Surveys (CSUR),

2001. 33(1): p. 31-88.
[11] Naseem, T. and S. Hussain, A novel approach for ranking spelling error corrections for Urdu.

Language Resources and Evaluation, 2007. 41(2): p. 117-128.
[12] Vrandecić, D., P. Sorg, and R. Studer. Language resources extracted from Wikipedia. in

Proceedings of the sixth international conference on Knowledge capture. 2011. ACM.
[13] Cucerzan, S. Large-Scale Named Entity Disambiguation Based on Wikipedia Data. in

EMNLP-CoNLL. 2007.
[14] Bassil, Y. and M. Alwani, Ocr post-processing error correction algorithm using google online

spelling suggestion. arXiv preprint arXiv:1204.0191, 2012.
[15] Lee, Y.-S. and H.-H. Chen, Analysis of error count distributions for improving the post-processing

performance of OCCR. Communication of Chinese and Oriental Languages Information Processing
Society, 1996. 6(2): p. 81-86.

[16] Shaalan, K., et al., Arabic Word Generation and Modelling for Spell Checking. Language Resources
and Evaluation (LREC). Istanbul, Turkey. Pages, 2012: p. 719-725.

[17] Guyon, I. and F. Pereira. Design of a linguistic postprocessor using variable memory length Markov
models. in Document Analysis and Recognition, 1995., Proceedings of the Third International
Conference on. 1995. IEEE.

[18] Lapata, M. and F. Keller. The Web as a baseline: Evaluating the performance of unsupervised
Web-based models for a range of NLP tasks. in Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational Linguistics. 2004.

[19] Mays, E., F.J. Damerau, and R.L. Mercer, Context based spelling correction. Information
Processing & Management, 1991. 27(5): p. 517-522.

[20] Liu, L.-M., et al. Adaptive post-processing of OCR text via knowledge acquisition. in Proceedings of
the 19th annual conference on Computer Science. 1991. ACM.

[21] Tong, X., et al. OCR Correction and Query Expansion for Retrieval on OCR Data -- CLARIT
TREC-5 Confusion Track Report. in TREC. 1996.

[22] Lund, W.B., D.D. Walker, and E.K. Ringger. Progressive alignment and discriminative error
correction for multiple OCR engines. in Document Analysis and Recognition (ICDAR), 2011
International Conference on. 2011. IEEE.

[23] Brill, E. and R.C. Moore. An improved error model for noisy channel spelling correction. in
Proceedings of the 38th Annual Meeting on Association for Computational Linguistics. 2000.
Association for Computational Linguistics.

[24] Choudhury, M., et al., Investigation and modeling of the structure of texting language. International
Journal of Document Analysis and Recognition (IJDAR), 2007. 10(3-4): p. 157-174.

[25] Lapata, M. and F. Keller, Web-based models for natural language processing. ACM Transactions
on Speech and Language Processing (TSLP), 2005. 2(1): p. 3.

[26] Jurafsky, D., et al., Speech and language processing: An introduction to natural language
processing, computational linguistics, and speech recognition. Vol. 2. 2000: MIT Press.

[27] Attia, M., et al., An automatically built Named Entity lexicon for Arabic. 2010.
[28] Remy, M., Wikipedia: The free encyclopedia. Reference Reviews, 2002. 16(6): p. 5-5.
[29] Alkhalifa, M. and H. Rodríguez. Automatically extending NE coverage of Arabic WordNet using

Wikipedia. in Proc. Of the 3rd International Conference on Arabic Language Processing
CITALA2009, Rabat, Morocco. 2009.

[30] Jurafsky, D. and H. James, Speech and Language Processing An Introduction to Natural Language
Processing, Computational Linguistics, and Speech. 2009.

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

80

