
Two Bigrams Based Language Model for Auto Correction of Arabic OCR 
Errors 

 
 1Imad Q. Habeeb, 2Shahrul A.M. Yusof, 3Faudziah B. Ahmad 

1, First Author Iraqi Commission for Computers and Informatics, emadkassam@yahoo.com 
*2, Corresponding Author Universiti Utara Malaysia, shahrulazmi@uum.edu.my 

3 Universiti Utara Malaysia, fudz@uum.edu.my 

Abstract 

In Optical character recognition (OCR), the characteristics of Arabic text cause more errors than in 
English text. In this paper, a two bi-grams based language model that uses Wikipedia's database is 
presented. The method can perform auto detection and correction of non-word errors in Arabic OCR 
text, and auto detection of real word errors. The method consists of two parts: extracting the context 
information from Wikipedia's database, and implement the auto detection and correction of incorrect 
words. This method can be applied to any language with little modifications. The experimental results 
show successful extraction of context information from Wikipedia's articles. Furthermore, it also shows 
that using this method can reduce the error rate of Arabic OCR text. 
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1. Introduction 
 

An Arabic text over the years is difficult when treated by the process of optical character recognition 
(OCR), because the letters are connected and their shape is changed depending on their position in the 
words [1-3]. These characteristics cause some errors during the optical character recognition process,  
especially when the texts are worn out or their colors have changed [4, 5]. OCR process usually produces 
two kinds of errors, non-word errors and real word errors.  Non-word error occurs when the word 
produced from the OCR process does not exist in the lexicon. The real word error occurs when the word 
produced from the OCR process exists in the lexicon but does not match with the source text [6, 7]. 

The most widely used technique for finding a list of candidates for word errors is the Levenshtein 
distance algorithm [8, 9]. The Levenshtein distance algorithm is used to calculate the difference between 
two strings where every insertion, deletion, or substitution of a single character is considered as a single 
edit [10]. For example, "foed" is a non-word in English, because it does not in the lexicon. It requires one 
substitution to become "food" that is considered a correct word in English [6]. The candidate words 
obtained from using the edit distance technique, for the previous word "foed" are: "feed" , "food", "ford", 
and "foe".  All these words have a single edit distance.  Now the question is: How to choose the most 
suitable word? What is the best automated method? 

The auto correction process is made up of three sequential steps. These are: (1) identifying the wrong 
words; (2) generate candidate words from the language resources; and (3) ranking the candidate words 
according to their importance in the sentences [11]. When the auto correction is implemented, the 
incorrect word is automatically replaced by the first word in an ordered candidate list [9]. The choice of 
the appropriate technique is very important because it may replace the wrong word by other found in the 
lexicon, but it is unsuitable for the sentence, resulting the desired goal of correction is to be unachieved 
[6]. 

 In this study, a method that combines two bi-grams based language model with the Levenshtein 
distance algorithm [10] will be developed for auto detection and correction of errors in Arabic OCR texts. 
Wikipedia data is used for the study.  The method can be applied to other languages with minimal 
modifications as the study uses freely available Wikipedia that has more than a hundred languages and 
continues to grow [12, 13]. 
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2. Related Work of OCR Error Correction 
 
There are three major approaches to OCR post-processing error correction: (1) proofreading-based 

correction, (2) Lexicon-based correction, and (3) context-based correction[14]. Proofreading-based 
correction requires human to read and rewrite text produced from the OCR process. This is inefficient as 
it is time-consuming, especially when the number of words is in thousands [15].  

The lexicon-based correction is used to identify the non-words errors.  This error happens when the 
word resulted from the OCR does exist in the lexicon [6].  The drawback of this approach is that it cannot 
rely on auto correction because candidate words are arranged without any regard for the context within 
the sentence around the incorrect word. Furthermore, it cannot detect the real word errors [14]. Lastly, 
the context-based takes into account the words surrounding the wrong word. It is more complex than the 
previous techniques and can detect real word errors [16].  

In correcting OCR errors, several methods have been proposed include: using the similarity in shape 
among characters in words[11], using grammar rules [17], word count, i.e., the number of occurrences of 
the word in a large corpus or in the web is used in selecting the right word [18], a combination of a 
dictionary to correct non-word errors, and a model to correct real word errors [19], a matrix of sequence 
and count of characters for all words of resulted text of OCR, where the highest count in the matrix is 
then replaced with the non-word [20]. Others are: confusion sets that use common errors in words[21], 
Google's spelling and suggestions [14], using of multiple systems and select the best output [22], and 
probability based language models [8, 23, 24].  

A language model based on web corpora has been used in recent researches for correcting OCR errors, 
it gathers context information of sentences that are stored in the web corpora [24, 25], the context 
information gathered from texts is used to select the best candidate for wrong-word errors [18]. 

Existing language models, which are using one n-gram to predict the next word [26] will not use in 
this study, instead of that, a language model that uses two bi-grams is proposed to improve the accuracy 
in the selection from the candidate words.  In addition to that, the candidate's list will not be generated 
from millions of words from the lexicon, but it will be generated from a specific set of words to improve 
processing time.  The next section elaborates the method. 

 

2. Proposed Method 
 
The method consists of two stages. First, explains how to design and fill of the language model based 

on Wikipedia’s database. Second stage explains how to detect and correct of Arabic OCR errors. 

2.1. Designing and filling of a language model 
 
In order to use a language model for Arabic language, it needs a free large web corpus. The study used 

a Wikipedia database, which is available freely and can be downloaded as one file in the xml format1.  
The database has been chosen for several reasons : (1) It is the largest free source of Arabic web corpus, 
(2) It contains more than 232,917 Arabic articles in different categories, and (3) There is a rapid growth 
in Arabic articles and (4) the database is constantly updated[27, 28]. 

English language and many other languages that use Latin characters, do not suffer from any problem 
to extract of text from Wikipedia’s database because there are many programs that can be used to extract 
text directly from a Wikipedia dump file. However, these programs are designed to eliminate any 
non-Latin letter[12], and therefore, cannot be used to extract Arabic texts. The  use of  an indirect way in 
the extraction of Arabic texts by downloading pages and articles from Wikipedia’s site and then 
extracting text from them takes a long time[29]. For these reasons; a new method is developed that can 
be used to extract only Arabic text from a Wikipedia database as shown in Fig. 1.  In this method, the 
reading of Wikipedia xml file will be in parts because it is large. 

 

 
1 http://dumps.wikimedia.org/arwiki/ 
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In preprocessing stage, address of images, navigation, and layout are ignored and only text from 

Wikipedia xml file is extracted. Then each text with size less or equal to 5MB is stored as a separate plain 
text file. The text is split into small pieces for two reasons: First, there are thousands of operations that 
will take place on each file and these processes consume time.  Therefore, when the file is a large and the 
process has an error, the work will be repeated from scratch, and this takes additional time.  However, in 
case of file is small, the program will have to re-process only the specific file and thus, takes a shorter 
time. The second reason is, a large file is not recommended to put in the main memory at once because 
this may cause the computer to be hanged or stopped. All files are placed in a specific folder by the 
program automatically. In the segmentation stage, the program extracts only text "T" from input file and 
then split the text "T" into an array of words "W", so that it passed to the classification stage.  

In the classification stage, every word W[i] (W[i] € lexicon) will have variables stored within the 
language model database.  These variables are: (1) frequency of word W[i] in the web corpus, (2) 
frequency of the word W[i-1] when come before word W[i] in the web corpus, (3) frequency of the word 
W[i+1] when come after word W[i] in the web corpus, (4) all words that came after word W[i], i.e., any 
word W[i+1] be on the right of word W[i] and (5) all words that came before word W[i], i.e., any word 
W[i-1] on the left of word W[i]. Variables one, two, and three are stored because they help in calculating 
of probability of the two bi-grams model. In addition to that, variables four and five are stored because 
they help in calculating Levenshtein distance algorithm for specific set of words.  

To illustrate more why these variables are stored, let take variables one, two, and three, the probability 
of one bigram language model for any candidate W[i]  to come instead of a wrong word can be calculated 
from (1)[30]: 
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Where P(W[i]│W[i-1] is the probability of candidate W[i] to come after the word W[i-1], while  f 
(W[i-1] W[i])  is frequency of candidate W[i] to come after a word W[i-1] in corpus, and f (W[i-1]) is 
frequency of the word W[i-1] in same corpus. 

Equation (1) shows that bi-gram language model is used to predict the next word based only on the 
previous word, and this will ignore the impact of the next word to predict the previous word. 
Furthermore, in the absence of the valid word W[i-1],  before the wrong word, then it cannot be used (1) 
to predict the best candidate word for the incorrect word. Based on these, in this study, two bi-grams are 
used in one language model so that the selection of the appropriate word from the candidate’s list 
depends on the probability offered by the two. On the other hand, if one of them has the probability of 
zero, then it can rely upon the second and vice versa. 

Figure 1.  Filling of language model database. 
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Now the probability of two bi-grams model for word W[i] to come after the word W[i-1] and before 
the word W[i+1] is: 
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Where P(W[i]) is the probability of two bigrams language model for word W[i] to come instead of the 
wrong word; 
while  f (W[i] W[i+1])  is frequency of candidate W[i] to come before the word W[i+1] in corpus, and f 
(W[i+1]) is frequency of the word W[i+1] in same corpus. Equation (2) is performed if: ( f (W[i-1] 
W[i])≠0)  and ( f (W[i] W[i+1]) ≠0). However, in case of  
( f (W[i-1] W[i])=0 ) and ( f (W[i] W[i+1]) ≠0), then the equation will be as follows:  
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And if: ( f (W[i-1] W[i])≠0)  and ( f (W[i] W[i+1]) =0), then the equation will be as follows: 
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In case of ( f (W[i-1] W[i])=0)  and ( f (W[i]W[i+1]=0), then the choice of the best candidate for incorrect 
word is based only on least edit distance between them.   

At this point, the explanation should justify why two bi-grams are used instead of one and why 
variables one, two, and three are stored. Now Let return to the variables four and five, which are 
mentioned in beginning of classification stage and illustrate why they are stored; the generating of 
candidates list from millions of words from the lexicon is not used in this study directly, for two reasons: 
(1) It reduces the accuracy because of the huge number of candidates, which may be reaching thousands, 
and (2) It takes long time to process. Instead of that, the list will be generated by using the  Levenshtein 
distance algorithm, but the process is performed by comparing the incorrect word with all words belong 
to valid word that comes after or before it. As an example, to generate of candidates list for incorrect 
word W[i], it needs of comparing W[i] with all words that can come after the valid word W[i-1] and with 
all words that can come before the valid word W[i+1].  

To clarify more, let take the following questions: is it possible, the main verb comes after the same 
verb? Or the word "school" precedes the word "school"? This is impossible. For these reasons, the 
comparison will not use all the words from the lexicon in generating of a candidate’s list, but the 
comparison will use all the words that could come after or before the valid word, and these words are 
extracted from the huge amount of data automatically, which is here Wikipedia’s database.  

Incorrect words in any texts can be added to the database inadvertently because of the automatic way 
of storing words. For this, the program performs a procedure to delete any word from the database if they 
do not exist in the lexicon (this study uses a lexicon with 2158342 Arabic words), and all letters, numbers 
and symbols used in ASCII table for Arabic and English were added and treated like words. This is 
because any word, symbol, number or letter that is not in the lexicon will be treated as an error by the 
program that uses this method for correction of Arabic OCR text.  

In this study, smoothing method will not be applied in the Language Model, and this will give a 
probability of zero for cases where the words that are not contained in the lexicon and for unknown 
words, i.e., the words that are present in the lexicon, but are not found in web corpus. During training of 
the language model, zero is assigned to their probability, and the choice of the best candidate for 
incorrect word is based only on least edit distance between them. 

2.2. Detection and correction of Arabic OCR errors 
The process of detection and correction of incorrect words in Arabic OCR text is shown in Fig. 2. In 

this process, there are differences in detecting and correction of errors in OCR based on the type of the 
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error, while the non-word errors will be detected and corrected automatically, the real word errors will 
not be corrected automatically, but will be identified and the task of correcting the errors is passed to the 
user. This is because non-word errors are easily identified through the lexicon in which any word outside 
of the lexicon is wrong. On the other hand, real word errors cannot be determined by the lexicon because 
they already exist in the lexicon, but are determined by the language model which does not guarantee 
100% that they are wrong. Real errors are detected and passed the correction tasks to the user to correct. 
This is better than the user is reading the text word by word to identify real word errors, because this 
process is a tiring if mistakes are in thousands.   

 

 
 

Initially, Arabic OCR text is read and stored in memory. In the segmentation stage, the text is split 
into an array of words "W" using the space between the words as a divider. In filter stage, real word 
errors are determined by language model and then identified within the input text to make it easier for the 
user to see them. On the other hand, the non-word errors are identified by filtering all words in array "W" 
of Arabic OCR text with lexicon words, where any word from array "W" not exists in the lexicon will 
identify as non-word. Furthermore, a temporary table called "Temporary" is created in memory, which 
has the same properties as the original table in the database. The purpose is to reduce dependence on the 
database to speed up the correction process. The table "Temporary" will fill with records from the 
database, where each record is referring only to one valid word from Arabic OCR text. At this point, all 
valid words from Arabic OCR text will be found in the table "Temporary", then each non-word will pass 
through the auto correction stage, and this process will continue for all non-words in the Arabic OCR 
text. Correction stage involves three levels as shown in Fig. 3.  If first level fails, then the operation 
proceeds to the second and if that fails, then the operation proceeds to the third and if that fails, then the 
word will be indicated as incorrect word in the Arabic OCR text without correction. 

 

Figure 2.  Auto detection and correction process. 
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Fig. 3 shows that the first level is performed by searching on single edit distance between the 

non-word with all words belonging to the correct word that preceded it, or with all words belonging to 
the correct word that followed. If the result is one candidate word, then the non-word will be replaced by 
candidate word. If else, then two cases are presented: First, if there is more than one candidate words, 
then the results are filtered with language model. Second, if no candidate word, then the searching on 
single edit distance is performed again, but between the non-word and all words in the lexicon, if there 
are a candidate’s words, then the results are filtered with language model. If else, the operation is moved 
to next level. 

At the second and third levels, the previous steps are all returned except that for second level; the 
searching is on two edit distance and for third level; the searching is on three edit distance. If results of 
three levels are null, then no auto correction is performed for this non-word. Furthermore, for each level, 
there are cycles of correction, as an example: after changing a non-word W[i] by a valid word "X" 
depending on the valid word W[i-1], the non-word W[i+m] is corrected based on the word  "X" and so 
on. 

 

3. Experimental Result and Evaluation 
To implement the method, a prototype is designed using VB.NET under MS Visual Studio.net 2010. 

The database is designed using MS SQL server 2008. All Arabic Wikipedia articles are downloaded as 
one dump xml file. The result of split of a dump xml file into small pieces is 4149 files; their format is txt. 
The sizes of resulted files lie between 0.5 to 5MB. To evaluate the method on incorrect word errors, a 
Library from Google, which depends on the algorithm of edit distance2, is used to generate lists of 
candidates for any incorrect word. Furthermore, OmniPage18 program with support for Arabic is used to 
generate the OCR text file.  OmniPage18 program has been subjected on pages of an old book that have 
poor quality; the resolution of scanning is 300 pixel / inch. Title of the book is “The analysis of the 
Arabic human culture” by "Ali Alordy". Number of words in the pages is 9856. Fig. 4 shows a sample 
from page from this book.  

 
2 http://code.google.com/p/google-diff-match-patch/ 

 
Figure 3.  Procedure for generating of candidates list for one non-word. 
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The test results are shown in Table 1. Row one in Table 1 shows that the total number of words in the 

OCR text files is 9856 words. Row two shows that the number of both non-word errors and real-word 
errors resulted from using OmniPage18 program is 1039 words, where non-word errors are 822 words as 
shown in row three. Real word errors are 217 words in row four. 

Auto detection of non-word errors by using this method is performed and the result is 804 words as 
shown in row five, with a detection ratio of 97.81% in row six. The detection ratio is calculated through 
((804 * 100) / 822). The auto correction of non-word errors using this method performs a valid 
correction for 772 non-words from 822 (row seven). The error rate improvement for non-word errors is 
93.91% (row eight).  The improvement ratio is calculated through ((772 * 100) / 822). 

Furthermore, the auto detection of real word errors by using this method is performed and the result is 
165 real words from 217 as shown in row nine, with a detection ratio of 76.03% in row ten, the detection 
ratio is calculated through ((165 * 100) / 217).  There was no auto correction for real word errors, but 
they will be identified to the user in input text so that he can correct them. The reason is described in 
section ΙΙΙ.  The results in Table 1 show that usage of this method will result in the decrease of error rate 
in OCR text file. 
 

 
Figure 4. Sample of page has poor quality. 

  

Two Bigrams Based Language Model for Auto Correction of Arabic OCR Errors 
Imad Q. Habeeb, Shahrul A.M. Yusof, Faudziah B. Ahmad

78



 

4. Conclusion and Future Work 
This paper presents a new method to perform auto detection and correction.  The method produced a 

high accuracy for incorrect words in Arabic OCR text.  The method can be used for any language with 
little modifications. It consists of two parts: extract the context information from huge volume of data, 
and implementation of automatic correction of errors resulting from the OCR. Data used to extract 
context information, relied on hundreds of thousands of Arabic articles in the Wikipedia site.   

The experimental results show success in the extraction of context information from Wikipedia’s 
articles. It also shows that using the method can reduce considerable error rate.  Further research can be 
done to develop methods that can correct real word errors in Arabic OCR text, develop algorithms to 
improve images with low resolution, and develop a language model for a grammar in Arabic language is 
as well needed. Another potential project includes producing e non-static language resources 
automatically for Arabic Language such as words list of names, verbs, prepositions and adjectives. In 
addition to that, it can use this method to correct errors in automatic speech recognition of Arabic 
language. 
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