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Abstract 

We present the result and accuracy comparison of generalized positivity-

preserving schemes for triangular Bézier patches of 1C  and 2C  scattered 
data interpolants that have been constructed. We compare three methods 

of 1C  schemes using cubic triangular Bézier patches and one 2C  scheme 
using quintic triangular Bézier patches. Our test case consists of four sets 
of node/test function pairs, with node-count ranging from 26 to 100 data 
points. The absolute maximum and mean errors are computed using 

3333 ×  evaluation points on a uniform rectangular grid. 

1. Introduction 

The problem of interpolating positive scattered data in the plane is described as 

follows: given a set of N arbitrarily distributed points ( ){ }N
iii yx 1, =  in ,2R  referred 
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to as nodes, along with data values 0≥iz  at the nodes, we wish to construct a 

smooth function RRF →2:  such that ( ) iii zyxF =,  for Ni ...,,1=  which 

preserves the positivity of data points. Since continuity of first partial derivatives is 
sufficient smoothness for most applications, and smoother surfaces are more costly 
to construct, most triangulation-based methods of positivity-preserving scattered 

data interpolation produce ( ).21 RCF ∈  However, in this paper, we also consider 

one method that produces 2C  functions. 

The criteria for assessing the effectiveness of a scattered-data interpolation 
method include accuracy in reproducing test functions, computational costs in both 
preprocessing and evaluation, storage requirements, flexibility in handling 
constraints, and appearance of the interpolatory surface. Furthermore, the most 
accurate method for one data set (or collection of data sets) may perform poorly on 
another [9]. The results reported in this paper are only focusing on testing of 
accuracy of the latest positivity-preserving triangulation-based method by using four 
different node sets/test functions pair. 

We will consider three previous local methods of positivity-preserving based on 
1C  continuous schemes using cubic triangular Bézier patches proposed by [1, 8] and 

[11] and a 2C  continuous scheme using quintic triangular Bézier patches as 
discussed in [10]. For a convenience, we denote the methods proposed in [1, 8, 11] 

and [10] as CO- ,1C  PGU- ,1C  SPM- 1C  and SPM- ,2C  respectively. 

In order to show the effectiveness of the shape preserving method, we have 
focused on the ability of the method to preserve the positivity of data points rather 
than to produce smoothness quality of the surfaces. This is due to the fact that in 
order to produce the positivity-preserving surfaces, we need to adjust some of the 
control points that might affect the quality of the overall constructed surface. 

2. Triangulation-based Method of Positivity-preserving Scattered 
Data Interpolation 

Consider a triangle T (as in Figure 1) with vertices ( ) ,, 111 yxV  ( ) ,, 222 yxV  

( )333 , yxV  and barycentric coordinates u, v, w such that any point ( )yxV ,  on the 

triangle can be expressed as ,321 wVvVuVV ++=  where 1=++ wvu  and 
.0,, ≥wvu  A Bézier triangular patch P on T is defined as 
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( ) ,!!!
!,, kjin

ijk wvukji
nwvuB =  

and ijkb  are the Bézier ordinates or control points of P. 

 

Figure 1. Triangle T. 

Assume that the Bézier ordinates at vertices are assumed to be strictly positive, 
i.e., .0,, 000000 >nnn bbb  Sufficient conditions on the remaining Bézier ordinates 

shall be derived to ensure the entire Bézier patch to be positive. For the purpose of 
this paper, we use the four algorithms [1, 8, 10, 11] and their underlying methods as 
in the following proposition. 

Proposition 1 [1]. Let the cubic Bézier triangular patch be 

( ) 2
210

2
201

2
210

333 333,, uvbwubvubwvuwvuP ++++β+α=  

uvwbvwbwvbuwb 111
2

012
2

021
2

102 6333 ++++  

with ,0,, ≥wvu  ,1=++ wvu  where ,300 α=b  ,030 β=b  ,003 =b  0>  

and .1≥β≥α  If ,3,,,,,, 111102012021120201210 abbbbbbb −≥  where a is the 

unique solution in ( ]38,1  of the equation ( ) −α+α−α+α− 222 542772816 aa  

,027 3 =α2a  then ( ) .1,0,,,0,, =++≥∀≥ wvuwvuwvuP  

Proposition 1 gives sufficient condition for ( ) 0,, ≥wvuP  by prescribing the 

value of the Bézier ordinates in each triangle not smaller than the lower bounds 
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a3−  and this common lower bound of Bézier ordinates (except at vertices) is 

bounded below by the value of .31−  Piah et al. [8] followed the similar approach as 

in [1] but offers more relaxed sufficient conditions by prescribing the value of the 
Bézier ordinates in each triangle not smaller than the lower bounds ( )0>− tt  

which are unbounded below compared [1]. This is stated in the following 
proposition. 

Proposition 2 [8]. Consider the cubic Bézier triangular patch ( )wvuP .,  with 

,300 Ab =  ,030 Bb =  ,003 Cb =  .0,, >CBA  If ,,,,,, 102012021120201210 bbbbbb  

,1
0

0111 stb −=−≥  where 0s  is the unique solution of the ( ) 1=sG  with 

( ) ,
1

1
1

1
1

1
+

+
+

+
+

=
CsBsAs

sG  

then ( ) .1,0,,,0,, =++≥∀≥ wvuwvuwvuP  

The value of 0s  for the given values of A, B, C is obtained by false position 

method [3] with an initial estimate for the root is the value of s for which the line 
joining N8  and M8  has the value 1, where ( )CBAM ,,max=  and =N  

( ).,,min CBA  

Both the schemes in [1] and [8] are constructed by considering the same value 
of the inner and edge Bézier ordinates lower bound. By extending the work of [8, 
11], propose improved sufficient positivity conditions using cubic Bézier triangle 
where the lower bounds of the edge and inner Bézier ordinates are adjusted 
independently while still ensuring positivity of the triangular patches. This is stated 
in the following proposition. 

Proposition 3 [11]. Consider the cubic Bézier triangular patch ( )wvuP ,,  with 

,300 Ab =  ,030 Bb =  ,003 Cb =  .0,, >CBA  If ,, 1012021 ybb −≥  ,201b  

,2102 yb −≥  3120210, ybb −≥  and 0111 xb −≥  (where )0, 0 >xyi  such that 1y  is 

the unique solution of ( ) ,0643 222
1

3
1

4
1 =−+++ CBBCyyCBy  2y  is the unique 

solution of ( ) ,0643 222
2

3
2

4
2 =−+++ CAACyyCAy  3y  is the unique solution of 

( ) 0643 222
3

3
3

4
3 =−+++ BAAByyBAy  and 0x  is given by 
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( ) ( ) ( )
0
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1

03
1

03
1

0
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+++  

with ( ),,,min 3210 yyyy =  then ( ) 0,, ≥wvuP  for all ,0,, ≥wvu  .1=++ wvu  

All the above three methods concentrate only on generating the resulting 1C  
smooth surfaces. Thus, motivated by previous works in [8, 10], we derive the 
sufficient conditions on Bézier points in order to ensure that surfaces comprising 

quintic Bézier triangular patches are always positive and satisfy 2C  continuity 
conditions as given in the following proposition. 

Proposition 4 [10]. Consider the quintic Bézier triangular patch ( )wvuP ,,  

with ,500 Ab =  ,050 Bb =  ,005 Cb =  where .0,, >CBA  If ,1 00 srbijk −=−≥  

( ) ( ) ( )0,5,0,0,0,5,, ≠kji  and ( ) ,5,0,0  where 0s  is the unique solution of 

,1
1

1
1

1
1

1
444 =

+
+

+
+

+ CsBsAs
 then ( ) ,0,, ≥wvuP  ,0,, ≥∀ wvu  ++ vu  

.1=w  

Similar as in [8], the value of 0s  for the given values of A, B, C is obtained by 

false position method [3] but with an initial estimate for the root will be the value of 
s for which the line joining N80  and M80  has the value 1, where =M  

( )CBA ,,max  and ( ).,,min CBAN =  

3. Test Result 

We will illustrate our accuracy test using four test functions/node sets pair, i.e., 
test function 1 is evaluated on 36 node points [6], test function 2 is evaluated on 63 
node points [5], test function 3 is evaluated on 26 node points [7], and test function 4 
is evaluated on 100 node points [9]. Figure 2 shows the triangulated domains for the 
node sets and the test functions are displayed in Figure 3. The test functions are as 
follows: 

( )

( )

( ) ( )

( ( ) ( ) ) ( ) ( )

[ ] [ ]
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),4.1,4.14.1,4.1,,1111, 2222
2 −−∈−+−+= xyxyyxxyxF  

( ) 44
3 , yxyxF +=  

and 

( ) ( ) ( ) ( ) ( ) .75.075.0, 2105210521052105
4

2222 yxyx eeeeyxF −−−−−−−− ++=  

 

(a)                                                                    (b) 

 

(c)                                                                   (d) 

Figure 2. Triangulation domain: (a) 36 node points, (b) 63 node points, (c) 26 node 
points, and (d) 100 node points. 
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(a)                                                                (b) 

 
(c)                                                                (d) 

Figure 3. Surfaces of test function: (a) ,1F  (b) ,2F  (c) 3F  and (d) .4F  

For each data set (node set/test function pair), the absolute maximum and mean 
errors are computed using 3333 ×  evaluation points of uniform rectangular grid. 
We have chosen the method described in [4] to estimate the first order derivatives at 

the data points for all data sets. The estimation of second order derivatives by 2C  
quintic method is obtained by applying the method of quadratic fitting [10] with the 
six nearest neighbours for first data set, twenty nearest neighbours for the second 
data set and fifteen nearest neighbours for the third and fourth data sets. 

The first test function 1F  is evaluated on 36 node points defined on rectangular 

domain ( ) ( )1,02,0 ×=D  (Figure 2(a)), where the minimum value of ( )yxF ,1  on 

D is 0. The estimated error for all of the methods is given in Table 1. It can be seen 

that among the 1C  interpolating surfaces, SPM- 1C  method is slightly better when 

compared to CO- 1C  [1] and PGU- 1C  [8] methods. However, the SPM- 2C  
positivity-preserving method is the best performer among others. 
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Table 1. Maximum and mean errors (test function )1F  

Method Maximum error Mean error 

CO- 1C  0.30962521823046 0.02028720197238 

PGU- 1C  0.30962521823637 0.02025760108418 

SPM- 1C  0.30337582787194 0.02023212419521 

SPM- 2C  0.29790965400000 0.02017058643524 

The second test function ([5]), 2F  is evaluated on 63 node points defined on 

rectangular domain ( ) ( )4.1,4.14.1,4.1 −×−=D  (Figure 2(b)), where the minimum 

value of ( )yxF ,2  on D is 0. The estimated error for all the methods is given in 

Table 2. For this data set, SPM- 1C  cubic and SPM- 2C  quintic positivity-preserving 

methods perform almost similar and slightly better when compared to CO- 1C  [1] 

and PGU- 1C  [8] methods. 

Table 2. Maximum and mean errors (test function )2F  

Method Maximum error Mean error 

CO- 1C  0.38121498881100 0.04886427357678 

PGU- 1C  0.38121498879810 0.04880146871918 

SPM- 1C  0.37559422208724 0.04856107463984 

SPM- 2C  0.37399672900514 0.04672331328514 

In third example, we use the data points which are defined on a sparse non-
rectangular domain consisting of 26 node points (Figure 2(c)), where =xmin  

,9375.0−  ,9688.0max =x  8906.0min −=y  and 1max =y  taken from [7]. The 

data values are evaluated from function ( )yxF ,3  whose minimum value of 3F  in 

this domain is 0.0003. For this sparse data set, the evaluation points are defined on 
rectangular grid [ ] [ ].0000.1,8906.09688.0,9375.0 −×−  Of the 1089 evaluation 
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points, 317 are not contained in the convex hull of the nodes and therefore required 
extrapolation. To evaluate the point beyond the convex hull of the rectangular grid, a 

similar extrapolation procedure which provides 1C  extrapolation is used. The 
extrapolation points are determined by considering the function values from 
triangles having edges along convex hull of data set. The area of triangles formed by 
boundary edges with extrapolation points is used as a weight of this extrapolation 
procedure. Table 3 gives the maximum and mean absolute interpolation errors (772 
interpolation points) for all four methods. It can be seen that for this sparse node of 

ungridded scattered data, SPM- 1C  cubic is the best performer among others. 

Table 3. Maximum and mean errors (test function )3F  

Method Maximum error Mean error 

CO- 1C  0.31863914920889 0.04146193757220 

PGU- 1C  0.31863914918925 0.04295779521786 

SPM- 1C  0.30875649903190 0.04123935175095 

SPM- 2C  0.31129191572976 0.04701430313475 

The fourth data set also has been defined on a dense non-rectangular grid 
domain consisting of 100 node points (Figure 2(d)), where ,0096.0min =x  

,9983.0max =x  009.0min =y  and 9982.0max =y  taken from [9]. The data 

values are evaluated from function ,4F  where the minimum value of 4F  in this 

domain is 0.0001. The grids of evaluation points are defined on rectangular grid 
[ ] [ ]9982.0,0090.09983.0,0096.0 ×  with 178 evaluation points not in the convex 

hull of the nodes and also required extrapolation as described earlier. The maximum 
and mean absolute interpolation errors (911 interpolation points) for all the methods 
are given in Table 4. It can be seen that for this dense node ungridded scattered data, 

SPM- 2C  positivity-preserving method is the best performer among others. 
However, as stated in [9], this test function is quite challenging due to its multiple 
feature and abrupt transitions, and therefore in terms of maximum errors, it is clearly 
seen that maximum error for fourth data set is the biggest compared to the other data 
sets. 
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Table 4. Maximum and mean errors (test function )4F  

Method Maximum error Mean error 
CO- 1C  0.53071047400598 0.03592742156490 

PGU- 1C  0.53223521271406 0.03581209909939 

SPM- 1C  0.48909435271271 0.03329492880695 

SPM- 2C  0.44332571028901 0.03318843060028 

We also summarized our accuracy test by giving the minimum values of the test 
functions for the non-positivity and positivity preserved of all the methods as in 
Table 5. 

Table 5. Minimum value of test functions for non-positivity and positivity-preserved 
methods 

Surface and methods 
Non-positivity-preserved Positivity-preserved 

Test 
function 

No. of 
points 

2C  quintic 1C  cubic 2C  quintic 1C  cubic 
1F  36 −0.09714 −0.07095 0 0 

2F  63 −0.08955 −0.08727 0 0 

3F  26 −0.09208 −0.00244 0 0 

4F  100 −0.02777 −0.01415 0 0 

4. Conclusion 

From Table 5, we conclude that SPM- 2C  quintic has an advantage to preserve 
the positivity of surfaces although the minimum value is more negative when 

compared to 1C  cubic. However, as previously stated, the inner and edge Bézier 
ordinates in this method may be assigned the same lower bound when compared to 

SPM- 1C  cubic positivity-preserved method where the lower bounds of the edge and 
inner Bézier ordinates can be adjusted independently while still ensuring positivity 
of the triangular patches. 
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