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Abstract—This paper examines the implementation of the
Singular Value Decomposition (SVD) method to detect the
presence of wireless signal. The method is used to find the
maximum and minimum eigenvalues. We simulated the algorithm
using common digital signal in wireless communication namely
rectangular pulse shape, raised cosine and root-raised cosine
to test the performance of the signal detector. The SVD-based
signal detector was found to be more efficient in sensing signal
without knowing the properties of the transmitted signal. The
execution time is acceptable compared to the favorable energy
detection. The computational complexity of SVD-based detector
is medium compared to the energy detector. The algorithm is
suitable for blind spectrum sensing where the properties of the
signal to be detected are unknown. This is also the advantage of
the algorithm since any signal would interfere and subsequently
affect the quality of service (QoS) of the IEEE 802.22 connection.
Furthermore, the algorithm performed better in the low signal-
to-noise ratio (SNR) environment.

Index Terms—Cognitive radio, singular value decomposition
(SVD), signal detector.

I. INTRODUCTION

Spectrum sensing in cognitive radio (CR) has been a very
important function to enable the state of the art technology
in revolutionizing spectrum efficient utilization. In responding
to the idea of CR coined by Joseph Mitola in [1], IEEE
802.22 Working Group (WG) was formed in 2004. The
WG is expected to develop and incorporate CR functionality
in a standard known as Wireless Regional Area Networks
(WRAN). The new standard is going to operate in TV bands
between 54-862MHz [2]. The standard is expected to deliver
broadband access to data networks on vacant TV channels at
the same time avoiding harmful interference to the licensed
users in rural areas within a typical radius of 17km to 30km
[3].

In order to rationalize the use of CR, a very efficient
spectrum management needs to be implemented in cognitive
radio networks. As stated in [4], the spectrum management
process consists of four major steps: 1) spectrum sensing,
2) decision making, 3) spectrum sharing and 4) spectrum
mobility. The first and second steps are very crucial in enabling
the CR technology. CR users are expected to be able to detect
primary user (PU) networks and find the spectrum holes or
the unused spectrum in order to utilize them.

Several spectrums sensing algorithms such as classical
energy detection (ED), the eigenvalue-based detection, the
covariance-based detection and feature-based detection are
reported in the literature to detect primary signal. Discussions
about the these techniques and algorithms as well as their pros
and cons can be found in [5], [6], [7], [8], [9]. According

to Kortun et al. [10], the most accurate techniques that can
simultaneously achieve both high probability of detection and
low probability of false alarm with very minimal knowledge
about the primary user signals and noise spectrum are the
eigenvalue-based detection techniques introduced by Liang
and Zhang in [11]. It is mentioned in the literature that
maximum-maximum eigenvalue (MME) method has many
advantages over the rest of sensing methods listed above. This
is due to the fact that the decision of signal presence can be
done without prior knowledge of the primary signal and noise.

In the eigenvalue-based detection methods, the decision
threshold is derived from random matrix theory (RMT) to
determine the hypothesis testing for signal detection. The
methods are using the eigenvalue decomposition technique to
find the eigenvalues in order to compare with the threshold.
The SVD is quite similar to the eigenvalue decomposition
method. However, the SVD is very general in the sense that
it can be applied to any m×n matrix, whereas the eigenvalue
decomposition method can only be applied to certain classes
of square matrices. Nevertheless, the two decompositions are
related. Furthermore, the SVD has got several advantages
compared to other decomposition methods as listed below
[12]:

i. more robust to numerical error;
ii. exposes the geometric structure of a matrix an important

aspect of many matrix calculations; and
iii. quantify the resulting change between the underlying

geometry of those vector spaces.
The rest of the paper is organized as follows. Next section
gives the overview of related works done using SVD. Section
III introduces the common signal detection model for spectrum
sensing. In section IV, the SVD-based signal detection is
highlighted in brief. Section V outlined the algorithm used
for signal detection. In section VI, we discussed about the
MME threshold used in this paper. Section VII, we describe
the simulation parameters and results of implementing SVD-
based signal detector. Finally, the conclusion is given in section
VIII.

II. RELATED WORKS

Before the introduction of SVD-based detection, researchers
discover that by analyzing the eigenvalues from a signal
received matrix, the threshold for detecting of primary signal
can be calculated. Most of the researchers used the eigenvalue
decomposition technique as mentioned above. This method
is known as eigenvalue-based detection. Discussion on the
method can be found in [11], [13], [10].
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SVD-based detection was introduced by Xu et al. in [3]
and [14]. Both papers used SVD technique to detect wireless
microphone signal in a wideband cognitive radio network.
In WRAN, the system needs to detect both digital TV and
wireless microphone signals since both services are incumbent
in the frequency bands. However, in some countries, wireless
microphone is not protected by the law as in US where
FCC Part 74 protects the service. For example, Malaysia only
licenses the equipment through type approval, which is not
protected by the law.

This paper used the SVD method to detect common signals
rather than restrict it to the only digital TV and wireless
microphone since any other signal would effect the WRAN
quality of service (QoS).

III. SYSTEM MODEL

In detecting a signal, two hypotheses are involved: H0,
signal does not presence; and H1, signal presence. The received
signal samples under two hypotheses are given respectively as
follows [15], [16], [17], [18]:

H0 : yi = ηi (n)
H1 : yi = xi (n)+ηi (n)

(1)

where xi(n) is the transmitted signal samples, through a
wireless channel consisting of path loss, multipath fading and
time dispersion effects, and ηi(n) is the white noise which is
independent and identically distributed (iid) with zero mean
and σ2

η variance. Note that xi(n) can be the superposition of
the received signals from multiple primary users, hence, no
synchronization is needed here.

There are two probabilities involved for signal detector:
probability of detection, Pd , which defines, the hypothesis
H1, the probability of the detecting algorithm having detected
the presence of the primary signal; and probability of false
alarm, Pf a, which defines, at hypothesis H0, the probability of
the detecting algorithm claiming the presence of the primary
signal. Test statistic for an energy detector is given by

Ti =
1
Ns

Ns

∑
n=i
|yi (n) |2 (2)

Under the hypothesis H0, it shows a Gaussian random
distribution when number of signal sample (Ns) is large with
mean σ2

η and variance 2
Ns

σ2
η . Hence, for a given probability

of false alarm Pf a, the threshold γ of an energy detector can
be derived as

γ = σ
2
η

(
1+

√
2Q−1

(
Pf a
)

√
Ns

)
(3)

where Q(x) =
(
1/
√

2π
)´

∞

x e−t2/2dt is the normal Q-function.
In this paper we consider three types of signals at the re-

ceiver: rectangular pulse, raised cosine and root-raised cosine
since these are common signals in today digital communica-
tion system.

IV. SVD BASED SIGNAL DETECTOR

SVD plays an important role in signal processing and
statistics, particularly in the area of a linear system. For a time
series y(n) with n = 1,2, . . . ,N, commonly, we can construct
a Henkel matrix with M = N−L+1 rows and L columns as
follows:

R =


y(1) y(2) · · · y(L)
y(2) y(3) · · · y(L+1)

...
...

. . .
...

y(N−L+1) y(N−L+2) · · · y(N)

 (4)

then R is an M × L matrix. Its elements can be found by
substituting of y(n)

Rml = y(m+ l−1) , m = 1,2, . . .M and l = 1,2, . . .L. (5)

Using SVD, R can be factorized as

R = UΣVH (6)

where U and V are an M ×M and L× L unitary matrix,
respectively. The columns of U and V are called left and right
singular vectors, respectively. The Σ = diag(λ1,λ2, . . . ,λm) is
a diagonal matris whose nonnegative entries are the square
roots of the positive eigenvalues of RHR or RRH . These
nonnegative entries are called the singular values of R and they
are arranged in a decreasing manner with the largest number
in the upper left-hand corner of the matrix. The [ ]H denotes
the Hermitian transpose of a matrix.

Whenever no primary signal or other signal is present,
the received signal y(n) includes only AWGN contribution
such that its singular values are similar and close to zero.
When other signals are active whose power is higher than a
threshold, there will exist several dominant singular values to
represent these signals. As a result, the signal can be detected
by examining the presence of dominant singular values.

V. ALGORITHM FOR SIGNAL DETECTION

In implementing the SVD-based signal detector, we adopt
method by Zeng and Liang (2007) in [11]. The algorithm to
detect the presence of a signal is as follows:

Step 1: Select number of column of a covariance matrix,
L such that k < L < N − k [19], where N is the number of
sampling points and k is the number of dominant singular
values. In this paper, k = 2 and L = 16.

Step 2: Factorized the covariance matrix to form the equa-
tion as in (6).

Step 3: Obtain the maximum and minimum eigenvalues of
the covariance matrix which are λmax and λmin.

Step 4: Compute threshold value, γ . The threshold value
determination will be highlighted in the next section.

Step 5: Compare the ratio with the threshold. If λmax
λmin

> γ ,
the signal is present, otherwise, the signal is not present.
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VI. THRESHOLD DETERMINATION

Decision threshold and probability of false alarm are de-
rived based on limiting distribution of eigenvalues based on
random matrix theory. The decision statistic for the maximum-
minimum eigenvalue (MME) detection is defined as the ratio
of maximum to minimum eigenvalues of received signal
covariance matrix as follows:

Ty =
λmax

λmin
(7)

Based on the decision statistic in (7), the detection threshold,
γ , must be estimated for a required probability of false alarm.
To define the threshold in terms of Pf a or vice versa, the
density of the test statistic, Ty, is required. The density can
be found asymptotically i.e. both the threshold values and the
probabilities of detection and false alarm are derived based
on asymptotical (limiting) distributions of eigenvalues that is
mathematically tractable and less complicated [10].

An asymptotic formula of signal detection threshold in
term of desired probability of false alarm for MME has been
proposed in [11]. The detection threshold in terms of desired
probability of false alarm is calculated by using the results of
the theorem in [20] and [11], as follows (in our case, M = 1):

γmme =
(
√

Ns+
√

L)
2

(
√

Ns−
√

L)
2

×

(
1+ (

√
Ns+
√

L)
− 2

3

(NsL)
1
6
·F−1

1

(
1−Pf a

)) (8)

where F−1
1 denotes the inverse of cumulative distribution

function (CDF) of the Tracy-Widom distribution of order 1
[21].

The threshold definition in (8) is formulated based on
deterministic asymptotic values of the minimum and maximum
eigenvalues of the covariance matrix, R, when the number
of samples, Ns is very large. As shown in the equation, it
is defined only in terms of number of samples, Ns, level of
covariance matrix, L and the desired probability of false alarm,
Pf a.

VII. SIMULATIONS

A. Simulation parameters

It is assumed that the channel is not changing during the
period of samples. The level of the covariance matrix, i.e. the
column of the matrix is L = 16. The results are averaged over
103 tests using Monte-Carlo Simulations written in Matlab.
Simulation results are taken using QPSK modulated random
primary signal and independent and identically distributed
(i.i.d.) noise samples with Gaussian distribution are used.
Three types of signal namely rectangular pulse, raised cosine
and root-raised cosine were tested and compared. To find the
threshold, we require the probability of false alarm is Pf a≤ 0.1
and probability of detection is Pd > 0.9 as required by IEEE
802.22 standard.

B. Simulation results

Figure 1 shows simulation results of the Pd when the SVD-
based method and a classical energy detector (ED) are used
for comparison when SNR is from -16dB to -4dB. From these
figures, it can be concluded that the SVD-based detection can
overcome the flaws in ED when dealing with low SNRs. It
can be noticed from the graphs that the performance of the
ED drops dramatically below -8dB of the SNR.

Although ED at certain points better than the SVD based
detection, but the overall performance of the detector is better
than the ED. It is also shown in the graphs that the SVD-based
method works better in detecting the rectangular pulse signal,
raised cosine the second and root-raised cosine the third. The
ED’s performance for all three signals is quite similar.

In terms of performance of the detector, the receiver operat-
ing characteristics (ROC) curves are shown in figure 2. Both
methods were simulated at -8dB SNR and tested for three
types of signal. We plot the Pd under H1 against Pf a under
H0 when Pf a changes from 0.01 to the desired value of 0.1.
It is clearly shown that the ROC curves of the SVD-based
detection are much higher than the ED’s which proves the
good performance of the detector.

Although the SVD-based detection is the best compared to
the ED’s on the overall, it is also noticing that performances
of SVD are dropping but the ED’s are rising. The dropping
in SVD-based detection is consistent with previous results but
the rising of ED’s might be due to the type of the signals used
where both raise cosine and root-raised cosine are higher in
signal energy.

VIII. CONCLUSIONS

In this paper, we implemented a SVD-based approach
to detect common signals in today’s digital communication
system. The rationale of detecting common signals is that, in
order for a CR system to operate with an exceptable quality
of service (QoS), the CR need to avoid interference not only
to/from primary users but any other signals, which could affect
the delivery of information to the system.

The brief simulation results show that SVD of the data
matrix is very useful in finding the dominant singular values
in which the presence of other signals can be detected. The
method is more robust to numerical errors and very fast. These
qualities are desirable in IEEE 802.22 standard since it is
easily suited the need to shorten the period of sensing and
hence making the system reliable.
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(a) Rectangular pulse signal

(b) Raised cosine

(c) Root-raised cosine

Figure 1: Comparison of Pd between the SVD method and
energy detector for a) Rectangular pulse, b) Raised cosine and
c) Root-raised cosine

(a) Rectangular pulse signal

(b) Raised cosine signal

(c) Root raised cosine signal

Figure 2: Comparison of ROC curves between SVD method
and energy detector for a) Rectangular pulse, b) Raised cosine
and c) Root-raised cosine
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