
TCP-Friendliness of Rate-based Congestion Control
Protocols

Suhaidi Hassan
Faculty of Information Technology, Universiti Utara Malaysia

06010 UUM Sintok, Malaysia
(suhaidiOuum.edu.my}

Abstract-The main purpose of rate-based TCP-friendly con-
gestion control protocols is to ensure that the application's traffic
shares the network in a fairly and friendly manner with the
dominant TCP traffic. In this work, we compare the performance
of two rate-based TCP-friendly congestion control protocols,
namely the Rate AdapIation Protocol (RAP) and TCP-Friendly
Rate Control Protocol (TFRC). Our experimental results reveal
that the equation-based TFRC is able to achieve throughput
that is close to the throughput of a TCP connection using the
same network path under the same network conditions. Also,
the results demonstrate that the TFRC is friendlier and robust
in most of our experiments, as compared to RAP.

Keywords: Communications software, congestion control pro-
tocols

I. INTRODUCTION

Unfair competition for bandwidth among TCP and non-
congestion-controlled applications (such as UDP) can cause
major threats to the Internet. TCP's rapid back-offs during the
congestion period make it vulnerable to bandwidth stealing
by non-congestion-controlled applications. Thus, deploying
a large scale of such non-congestion-controlled applications
in the Internet might result in extreme unfairness towards
competing TCP traffic. It is therefore important for the non-
TCP applications to be designed in such a way that they are
responsive to network congestion as well as being friendly to
the competing TCP'applications in terms of bandwidth sharing.

The classic example of TCP-unfriendliness is provided by
UDP-based applications which do not employ congestion
control 'mechanisms and their negative impacts are discussed
in [I]. This problem appears behuse the UDP traffic does not
respond to congestion signals, which causes TCP Rows to back
off. The UDP traffic continues to dominate the handwidth,
which negatively affects the throughput of the other good
network citizen. To overcome this problem, it is crucial for
such applications to employ TCP-friendly congestion control
mechanisms.

The main purpose of rate-based TCP-friendly congestion
control protocols that have been developed to support the
deployment of multimedia applications in the 'Internet is to
ensure that the application's traffic shares the network in a
fairly and friendly manner with the dominant TCP traffic. In
this paper, we compare the performance of two rate-based
TCP-friendly congestion control protocols, namely the Rate
Adaptation Pmtocol (RAP) and TCP-Friendly Rate Control
Protocol (TFRC). Both TCP-friendly protocols. use different

rate-adaptation schemes: TFRC employs the equation-based
scheme, while RAP employs the AIMD-based scheme.

The investigation on the issue of friendliness among the
competing protocols is very important to enable the protocol
researchers to gain a greater understanding about the resource
(especially bandwidth) utilisation akong competing proto-
cols that co-exist on a network path. Friendliness behaviour
among these competing protocols is crucial in safeguarding
the stability of the Internet. This means that the TCP-friendly
applications, while attempting to improve their bandwidth
utilisation, must also be fair towards the competing TCP
applications.

This paper is organised as follows. In Section 11, a brief
background is presented on the TCP-friendly rate-based con-
trol protocols used in the study. The experimental design
and its rationale are described in Section 111. In Section IV,
the results of the simulation experiments are discussed, and
the protocols' performance is evaluated. Finally, Section V
concludes the paper.

11. BACKGROUND

A. Rate Adaptation Protocol (RAP)

RAP [2] was developed by Rejaei et al. at the University of
Southern California as part of an end-to-end QoS architecture.
RAP is a sender-based congestion control scheme. Each data
packet sent by the RAP sender is acknowledged by the
receiver. The congestion detection is based on packet losses,
as in TCP where the ACKs are used to detect packet loss and
infer the RTT. Packet losses are determined when there are
gaps in the sequence number of the transmitted packets as well
as when transmission timeouts occur. Due to the fact that real-
time streaming applications are essentially semi-reliable, RAP
decouples congestion control and error control, leaving the
application layer to deal with the latter. The receiver module
observes these gaps and notifies the sender accordingly.

Using the acknowledgement from the receiver, the sender
can estimate the R'M and losses. The RAP sender keeps a
history of each packet sent out and not yet acknowledged or'
lost. This transmission history is used to estimate the RTT
as well as to detect losses. The estimation of the round-trip
time (RTT), called the Smoothed R'IT (SRTT), is computed
as the exponential weighted moving average (EWMA) of RTT
samples. where SRTT = gSRTT + BRTTaampre. RlT
samples can he gathered from the time interval between the

0-7803-8114-9/03/$17.00 02003 IEEE. 248

sending of a data packet and the reception of the corresponding
ACK. RAP computes the timeouts based on JacobsodKarel's
TCP algorithm [3], that timeout = S R T T +4SRTTu,,where
SRlT,,, is the variations of SRT1: computed as SRTT,,, =
~(SRTT-RTT,,,,i,I + iSRTT,,,.

The protocol uses the Additive Increase Multiplicative De-
crease (AIMD) approach to emulate the TCP behaviour in the
rate-based environment. Using AIMD, the source's sending
rate is increased additively and repeatedly when there is no
congestion, but when congestion occurs, it decreases the rate
instantly in half. The source's sending rate is changed by
reducing the interpacket gap (IPG) between the transmitted
packets, which consequently increases the transmission rate. In
the event of no losses, the sender depends on RTT estimation
in adjusting the sending rate.

?ere are .two types of rate adaptation employed by RAP
coarse grain (CG) and fine grain (FG) adaptation. In CG
adaptation, RAP merely uses the AIMD approach for rate
adjustment. The use of fine grain adaptation is intended to
make RAP more stable and responsive to transient congestion.
In this work, both types of:RAP adaptation granularities are
used for comparison against the other protocol under study.

B. TCP-Friendly Rate Control Protocol (TFRC)

TFRC [4] is a rate-based, end-to-end congestion control
protocol which is intended for unicast playback of Internet
streaming applications. 1: was developed at ACIRI by Floyd
et al. Like RAP, TFRC is a source-based, rate control protocol.
The sender uses the slow start technique at the beginning of the
transmission phase, during which it tries to increase its sending
rate multiplicatively at every RTT until it detects a loss. Packet
losses are identified by gaps in the sequence number of the
transmitted packet at the receiver module.

The receiver measures the packet loss rate and feeds this
information back to the sender at regular intervals. The
sender uses the feedback information to measure the RTT
to the receiver. Like RAP, it also uses the exponential filter
tRTT = PRTTaampie + (1 - P)tRTT to .maintain the fine
time granularity, where equals i, ~ R T T is the round trip
time, and RTT,,,,i, is the sample of RTT gathered from
the time interval between the sending of a data packet and
the reception of the,corresponding ACK. However, the re-
transmission timeout t R T 0 is calculated as t R T 0 = 4t,tt
which is found to work reasonably well in providing fairness
with TCP [4]. This simple empirical calculation of t R T o

is due to the fact that the use,of the timeout value is less
important in TFRC as compared to TCP. Recall that in TCP,
the accurate value of t ~ ~ o is needed for,schedulig the packet
transmissions, which is not the case with TFRC. .In TFRC,
this timeout value is used only for the estimation of -TCP

In order to derive an acceptable TCP-friendly transmission,
the TFRC sender adjusts its transmission rate based'on the
measured loss rate and RTT. The adjustment of the sending
rate to achieve TCP-friendliness is based upon a control
equation'derived from the TCP throughput model. The control
equation is as follows:

.throughput. . : .

(1)
S

tRTT $& + tRTO &P(l+ 3 2 9)
TTFRC =

where s is the maximum segment (packet) size, tRTT is the
round trip time, p is the probability of loss event, and ~ R T O

is the retransmission timeout.
The transmission rate of the sender is adjusted directly to

match the calculated transmission rate. The rate adjustment
process is made periodically at a certain interval. In the
event of packet losses, the sender restricts its sending rate
to the equivalent TCP rate using Equation I . Otherwise, the
transmission rate is doubled.

111. EXPERIMENTAL DESIGN AND RATIONALE

A suite of experiments is conducted in this study to in-
vestigate how the throughput of the flows is affected as a
result of the rate adjustment process performed by the TCP-
friendly sources when competing with their TCP counterparts
in different network scenarios. In doing this, the throughputs of
each rate-based and TCP flows are respectively measured, and
the average bottleneck bandwidth share of each of the flows
is calculated based on their average throughput. The aim is
to determine the degree of friendliness (i.e. fairness) of the
TCP-friendly rate-based protocols by comparing their average
bandwidth share against that of the TCP flows. We used the
simulator ns-2 [SI to perform our simulation experiments.

The first step to determine the degree of friendliness is to
calculate the bandwidth share of the bottleneck link based
on the throughput ratio of the competing connections. Simply
stated, the friendliness ratio, F, can he expressed as [61:

kf denotes the total number of monitored TCP-friendly
connections, and kt denotes the total number of monitored
TCP connections. Throughput of the TCP-friendly connections
is denoted by Tf, T i , . . . , Ti,, while the throughput of the
TCP connections is denoted' by Tf, Ti, . . . , TLc.

As generally known, simulation experiments involving TCP
normally have to deal with a wide range of variables, en-
vironments and implementation flavours (or variants). This
causes difficulty in isolating a particular variable and studying
its relation with a particular parameter because of inter-
dependency among these variables. To minimise the related
problems, the scope of comparison is limited to those related
only to the following experiments involving:
a Queue management policy. In this set of experiments, we

use RED [71 queue.management policy as a comparison
with the normal DropTail policy. RED is known for its
ability to distribute the losses evenly across the competing
flows and avoid buffer overflow over a wide range of
connections.

249

h. Botfleneck delay. A smaller bottleneck delay indicates a
smaller round-.trip time. Connections become more aggres-
sive and achieve a larger share of bandwidth with a shorter
RTT.

c. Bottleneck bandwidth. TCP uses the AIMD algorithm. At
a smaller bottleneck bandwidth, TCP losses hecome more
dominant, thus TCP'deviates from the AIMD algorithm -
paving the way for non-TCP applications to get a bigger
share of the bandwidth.

d. Loss rate. The use of Equation 1 in controlling the sender's
rate warrants that at a loss rate higher than 5%, a rate-based
control protocol will still he TCP-friendly.

The evaluation of a TCP-friendly protocol behaviour includes
comparing the average bandwidth share obtained by both pro-
tocols when competing with TCP, respectively under different
scenarios. We compare the performance of the rate-based pro-
tocols against two TCP implementations, namely TCP Reno
[XI and TCP with Selective Acknowledgements (SACK) 191.
Both are popular TCP implementations .nowadays. Currently,
most Internet traffic is TCP Reno-based [lo], [XI, while TCP
SACK is currently gaining popularity and is implemented and
deployed in many commercial and experimental products, such
as in Microsoft Windows 98, Linux 2.1.9, "d Digital Unix
4.0.

In these simulation experiments, we use two sets of com-
peting protocols, namely the TCP friendly protocols (RAP
and TFRC) and the two variants of TCP (Reno or SACK).
We attach an FTP application to the TCP sources. Corre-
spondingly, we use an application that produces a constant
hit rate (CBR) traffic pattern for the TCP-friendly sources.
The intermediate routers are configured using DropTail and
RED queue management policies. Packet losses are simulated
by packet drops at overflowed router buffers.

Figure 1 illustrates the network topology used in the exper-

Fig. 1. Simulation topology far TCP-friendly experiments

iments. Two sets of (n+l) competing sources are used, where
0 5 n < CO. One set of these sources act as the TCP-friendly
rate-based source (either RAP or TFRC) transmitting TCP-
friendly traffic into the network, and another'set running as
TCP sources with TCP Reno or SACK; The TCP-friendly
source TFs, sends data to (and receives acknowledgements
from) the receiverkink agent TFr;. Similarly, TCP source
TCPs, sends data to (and receives acknowledgements from)
TCPr, receiver agent.

A fair comparison can only he achieved with caeful se-
lection of simulation parameters. Similar parameter values are
used for all flows wherever possible. For this purpose, a source
packet size of 1000 bytes and ACK size of 40 bytes are used.
The intermediate routers are connected by a bottleneck link

~

250

with initial bandwidth set to 1.5 Mbps and initial link delay
of 20 ms. The flows from both sources share the bottleneck
bandwidth. The TCP flow is an FTP session and has
unlimited data to send. Side links connected to the bottleneck
link have bandwidth of 10 Mbps with a 6ms delay factor. The
routers have a single output queue for each attached link, and
initially use RED queue management policy. The second round
of the simulation uses the DropTail policy as an alternative
to RED. .We use the standard (default) its-2 parameters for
configuring the routers. All simulation experiments were run
with a simulation length of 100 seconds, i.e. long enough for
achieving their steady state behaviour.

IV. RESULTS AND DISCUSSIONS

A substantial number of simulation experiments have been
conducted to evaluate the performance of these two TCP-
friendly protocols under various simulation scenarios. The fol-
lowing subsections present our results for these experiments.
All the results, where appropriate, are obtained using a level
of confidenceof 95%: '~ a ' .

A. Queue Management Policies: DropTail versus RED
In the first set of experiments, the performance of TCP-

friendly protocols when using the DropTail queue manage-
ment policy, is compared. It is discovered that in general
the TCP-friendly protocols show poor friendliness results in
all the experiments using DropTail as queue management.
Nevertheless, TCP-friendly protocols are friendlier with TCP
SACK as compared to TCP Reno. TCP SACK obtains more
bandwidth share in all the cases, which therefore leads to
higher throughput.

From these results, we can conclude that the use of DropTail
queue management does not facilitate a fair bandwidth sharing
of the TCP-friendly protocols coexisting with either TCP Reno
or SACK. Thus, the use of DropTail queue management does
not enhance the friendliness of TCP-friendly protocols.Unlike
TCP Reno, TCP SACK senders transmit only those segments
that have been lost, enabling them to obtain a bigger share
of the bandwidth. This in turn affects the friendliness of the
competing TFRC. However, this transmission feature of TCP
SACK cannot heat the aggressiveness of CG RAP connections
which, combined with the inefficiency of the DropTail queue
management, are able to dominate the bottleneck bandwidth.

In the second set of experiments, we evaluate the per-
formance of TCP-friendly protocols versns TCP Reno 'and
SACK using RED as a queue management policy. It is
observed that when using RED at intermediate routers, the
TCP-friendly protocols become friendlier towards competing
TCP Reno connections. The average throughput of TCP Reno
connections is slightly higher than that of the TFRC. The
higher throughput can result from the ability of TCP Reno
to acquire more bandwidth share.

TFRC shows the best friendliness result when competing
with TCP SACK. This implies that the bandwidth is fairly
shared by the two competing protocols: The performance of
RAP against TCP Reno is also improved when using RED,
even though the results are still considerably unfavourable.

., In the case of R&P versus TCP SACK, the performance of
CG RAP is slightly better with RED. The.performance of
FG RAP improves considerably when using RED instead of
DropTail. FG RAP is, able to capture properly the short-term
trends in congestion under heavy load. Consequently, FG RAP
can respond to the distress of TCP SACK, making it.friendlier
in seizing bandwidth which leads to its favourable throughput.

In summary, the friendliness of TFRC is better compared to
RAP, regardless of the queue management policy implemented
at the intermediate routers. The use of 'RED improves the
friendliness of RAP and TFRC. Again, TFRC scores better
compared to RAP when using RED. Within TFRC experi-
ments, TFRC works achieved better friendliness results with
TCP SACK compared to TCP Reno. The sharing of bottleneck
bandwidth is relatively fairer in the case of TFRC versus
SACK compared to TFRC versus TCP Reno.

'

-'
. .

B. Varying Bottleneck'Delay , .

. ' In this experiment; we~varythe bottleneck delay from ~10
ms to 50 ms.,For simplicity of analysis, we use a total of 30
competing TCP and TCP-friendly connections. Figure 2 shows

1 , I _ I

Fig. 2. Effects of vary& bottleneck delay on TCP-fnendliness , .

the simulation results.
It is observed that the friendliness of RAP improves as the

bottleneck delay is increased. At a lower bottleneck delay,
the RAP connections are'more 'aggressive in obtaining the

-bandwidth share. As we increase the delay, the TCP SACK
connections obtain'more share.of, the.bottleneck bandwidth,
thus improve the friendliness results. On the other hand; the
TFRC connections achieve-a more stable performance against
the competing TCP SACK connections as we increase the
delay, compared to the RAP connections. The friendliness ratio
of TFdC is not affected by.the change'of the bottleneck delay,
indicating that both TFRC and TCP cohnections achieve a fair
bandwidth sharing.

C. Varying Bottleneck Bandwidth
in this experiment, the bottleneck bandwidth is increased

from 0.5 Mhps to 10.0 Mhps while keeping other parameters
constant. Again, for simplicity of analysis, we use only.15
sources of TCP-friendly protocols competing with 15 TCP
counterpart sources in this experiment. The simulation results
?e displayed in Figure 3.

When the ,bottleneck bandwidth is increased from 0.5Mbps
to 3.0Mbps, the TCP-friendly connections become friendlier
with the TCP connections. As the bandwidth is increased from
3.0Mbps to 10.OMbps, the W C connections s tar ' to show

. , ~. .

Fig. 3. Effects of varying bottleneck bandwidth on TCP-friendliness

the sign of unfriendliness towards the TCP connections. The
TFRC connections receive more bandwidth share compared to
the TCP connections. In contrast, the RAP connections get a
decreased share of bottleneck bandwidth as the bandwidth is
increased from 3.0Mbps to 1O.OMbps.

D. Loss Rate
In this set of experiments, the effect of increasing the loss

rate on the TCP-friendly .protocols is explored. We conduct
the experiment using three different loss rates, which are 1%,
5 % and 15%. The AIMD-based rate adaptation scheme will
still be TCP-friendly at these loss rates up to 5% [I l l . Tables
I shows the simulation results.

The results clearly show that RAP, which uses AIMD to
control its rate, begins to perform unsatisfactorily at loss
rate increase of 5%. With the same increase, TFRC is still
behaving satisfactorily in terms of friendliness with TCP.
With fewer packet losses in the network links, the TCP-
friendly connections behave adaptively, thus friendlier to TCP
connections,

TABLE 1

EFFECT OF INCREASING Loss RATE ON RAP AND TFRC

1.40 1.62 0.95 1.w
1.42

V. CONCLUSION

This work presented a performance comparison of two TCP-
friendly rate-based adaptation protocols, namely RAP and
TFRC, conducted using a set of experimental suites. Both
TCP-friendly protocols use packet loss and RTT estimations to
adjust dynamically the transmission behaviour of the sender.
Our simulation results suggest that the equation-based TFRC
is more TCP-friendly over the wide range of tested parameters,
as compared to RAP. Also, our results suggest, in general, that
the use of TCP SACK can facilitate better bandwidth sharing
among the competing connections, thus enhancing throughput
of the connections.

In addition, the experimental results show that both pro-
tocols perform better in the presence..of RED as queue
management policy. This is mainly due to the ability of RED
to distribute losses evenly across the flows and avoid buffer
overflow over a wide range of connections. The effects of

251

varying the bottleneck delay and bottleneck link bandwidth
on friendliness of TCP-friendly protocols have also been
explored. The results also show that these protocols especially
perform better at lower loss rate below 5%. At loss rates
higher than 5%, bandwidth sharing with the competing TCP
connections is no longer fair, resulting in poor friendliness
results.

Our experimental results reveal that the equation-based
TFRC is able to achieve throughput that is close to the
throughput of a TCP connection using the same network
path under the same network conditions. Also, the results
demonstrate that the TFRC is friendlier and robust in most
of our experiments, as compared to RAP.

REFERENCES
[I] S. Floyd and K. Fall, "Promoting the Use of End-to-End Congestion

Control in the Internet," IEEWACM Trnnseactions on Neworking,
vol. 7(4). pp. 458472, August 1999. http:l/www.acm.orgldV.

[Z] , R. Rejaie, M. Handely, and D. Esuin, "RAP: An End-to-end Rate-based
Congestion Conb'ol Mechanism for Realtime Streams in the Intemet," in
Proc. o f lEEE INFOCOM99, vol. 3, (New York, NY). pp. 1337-1345,
March 1999. http:llnetwehusc.edu/reralpub.html.

131 V. Paison and M. Allman, "Computing TCP's Retransmission Timer."
RFC 2988, November 2000. http://wwwietf.org/.html.

[4] S. Floyd. M. Handley, 1. Padhye, and 1. Widmer. "Equation-Based
Congestion Control for Unicast Applications,'' Technical Repan TF-
00-003. Intemational Computer Science Institute, March 2000.

[5] T. V. Project, 'The Network Simulator - ns-2." URL:
http: l lwww. is i .edulns"~~~.

[6] S. Hassan, Simulotion-based Perfo-once Evaluation of TCP-Friendly
Protocols f o r Supporting Multimedia Applications in the Internet. PhD
Lhesis, School of Computing, University of Leeds, August 2002.

[7] S. Floyd and V. Jacobson, "Random Early Detection Galeways for
Congestion Avoidance," IEEWACM Transactions on Networking, vol. I ,
pp. 397413, August 1993.

[SI W. Stevens, 'TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms." RFC 2001, January 1997.

[9] S. Floyd and K. Fall, "Simulation-based Compaxisons of Tahw, Reno,
and SACK TCP:' Computer Communicorion Review, vol. 26. pp. 5-21,
July 1996.

[IO] S . Bhattachatjee, Active Neworks: Architectures, Composition, and
Applicotions. PhD thesis. Georgia lnititute of Technology, 1999.

I1 11 1. Mahdavi and S. Floyd, "TCP-Friendly Unicast Rate-Based Flow Con-
trol." Technical note sent to the end2end-interest mailing list, January
1997.

252

http:l/www.acm.orgldV
http:llnetwehusc.edu/reralpub.html
http://wwwietf.org/.html

