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Abstract-The main purpose of rate-based TCP-friendly con- 
gestion control protocols is to ensure that the application's traffic 
shares the network in a fairly and friendly manner with the 
dominant TCP traffic. In this work, we compare the performance 
of two rate-based TCP-friendly congestion control protocols, 
namely the Rate AdapIation Protocol (RAP) and TCP-Friendly 
Rate Control Protocol (TFRC). Our experimental results reveal 
that the equation-based TFRC is able to achieve throughput 
that is close to the throughput of a TCP connection using the 
same network path under the same network conditions. Also, 
the results demonstrate that the TFRC is friendlier and robust 
in most of our experiments, as compared to RAP. 

Keywords: Communications software, congestion control pro- 
tocols 

I. INTRODUCTION 

Unfair competition for bandwidth among TCP and non- 
congestion-controlled applications (such as UDP) can cause 
major threats to the Internet. TCP's rapid back-offs during the 
congestion period make it vulnerable to bandwidth stealing 
by non-congestion-controlled applications. Thus, deploying 
a large scale of such non-congestion-controlled applications 
in the Internet might result in extreme unfairness towards 
competing TCP traffic. It is therefore important for the non- 
TCP applications to be designed in such a way that they are 
responsive to network congestion as well as being friendly to 
the competing TCP'applications in terms of bandwidth sharing. 

The classic example of TCP-unfriendliness is provided by 
UDP-based applications which do not employ congestion 
control 'mechanisms and their negative impacts are discussed 
in [I]. This problem appears behuse the UDP traffic does not 
respond to congestion signals, which causes TCP Rows to back 
off. The UDP traffic continues to dominate the handwidth, 
which negatively affects the throughput of the other good 
network citizen. To overcome this problem, it is crucial for 
such applications to employ TCP-friendly congestion control 
mechanisms. 

The main purpose of rate-based TCP-friendly congestion 
control protocols that have been developed to support the 
deployment of multimedia applications in the 'Internet is to 
ensure that the application's traffic shares the network in a 
fairly and friendly manner with the dominant TCP traffic. In 
this paper, we compare the performance of two rate-based 
TCP-friendly congestion control protocols, namely the Rate 
Adaptation Pmtocol (RAP) and TCP-Friendly Rate Control 
Protocol (TFRC). Both TCP-friendly protocols. use different 

rate-adaptation schemes: TFRC employs the equation-based 
scheme, while RAP employs the AIMD-based scheme. 

The investigation on the issue of friendliness among the 
competing protocols is very important to enable the protocol 
researchers to gain a greater understanding about the resource 
(especially bandwidth) utilisation akong competing proto- 
cols that co-exist on a network path. Friendliness behaviour 
among these competing protocols is crucial in safeguarding 
the stability of the Internet. This means that the TCP-friendly 
applications, while attempting to improve their bandwidth 
utilisation, must also be fair towards the competing TCP 
applications. 

This paper is organised as follows. In Section 11, a brief 
background is presented on the TCP-friendly rate-based con- 
trol protocols used in the study. The experimental design 
and its rationale are described in Section 111. In Section IV, 
the results of the simulation experiments are discussed, and 
the protocols' performance is evaluated. Finally, Section V 
concludes the paper. 

11. BACKGROUND 

A. Rate Adaptation Protocol (RAP) 

RAP [2] was developed by Rejaei et al. at the University of 
Southern California as part of an end-to-end QoS architecture. 
RAP is a sender-based congestion control scheme. Each data 
packet sent by the RAP sender is acknowledged by the 
receiver. The congestion detection is based on packet losses, 
as in TCP where the ACKs are used to detect packet loss and 
infer the RTT. Packet losses are determined when there are 
gaps in the sequence number of the transmitted packets as well 
as when transmission timeouts occur. Due to the fact that real- 
time streaming applications are essentially semi-reliable, RAP 
decouples congestion control and error control, leaving the 
application layer to deal with the latter. The receiver module 
observes these gaps and notifies the sender accordingly. 

Using the acknowledgement from the receiver, the sender 
can estimate the R'M and losses. The RAP sender keeps a 
history of each packet sent out and not yet acknowledged or' 
lost. This transmission history is used to estimate the RTT 
as well as to detect losses. The estimation of the round-trip 
time (RTT), called the Smoothed R'IT (SRTT), is computed 
as the exponential weighted moving average (EWMA) of RTT 
samples. where SRTT = gSRTT + BRTTaampre. RlT 
samples can he gathered from the time interval between the 
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sending of a data packet and the reception of the corresponding 
ACK. RAP computes the timeouts based on JacobsodKarel's 
TCP algorithm [3], that timeout = S R T T  +4SRTTu,,where 
SRlT,,, is the variations of SRT1: computed as SRTT,,, = 
~(SRTT-RTT,,,,i,I + iSRTT,,,. 

The protocol uses the Additive Increase Multiplicative De- 
crease (AIMD) approach to emulate the TCP behaviour in the 
rate-based environment. Using AIMD, the source's sending 
rate is increased additively and repeatedly when there is no 
congestion, but when congestion occurs, it decreases the rate 
instantly in half. The source's sending rate is changed by 
reducing the interpacket gap (IPG) between the transmitted 
packets, which consequently increases the transmission rate. In 
the event of no losses, the sender depends on RTT estimation 
in adjusting the sending rate. 

?ere are .two types of rate adaptation employed by RAP 
coarse grain (CG) and fine grain (FG) adaptation. In CG 
adaptation, RAP merely uses the AIMD approach for rate 
adjustment. The use of fine grain adaptation is intended to 
make RAP more stable and responsive to transient congestion. 
In this work, both types of:RAP adaptation granularities are 
used for comparison against the other protocol under study. 

B. TCP-Friendly Rate Control Protocol (TFRC) 

TFRC [4] is a rate-based, end-to-end congestion control 
protocol which is intended for unicast playback of Internet 
streaming applications. 1: was developed at ACIRI by Floyd 
et al. Like RAP, TFRC is a source-based, rate control protocol. 
The sender uses the slow start technique at the beginning of the 
transmission phase, during which it tries to increase its sending 
rate multiplicatively at every RTT until it detects a loss. Packet 
losses are identified by gaps in the sequence number of the 
transmitted packet at the receiver module. 

The receiver measures the packet loss rate and feeds this 
information back to the sender at regular intervals. The 
sender uses the feedback information to measure the RTT 
to the receiver. Like RAP, it also uses the exponential filter 
tRTT = PRTTaampie + (1 - P)tRTT to .maintain the fine 
time granularity, where equals i, ~ R T T  is the round trip 
time, and RTT,,,,i, is the sample of RTT gathered from 
the time interval between the sending of a data packet and 
the reception of the,corresponding ACK. However, the re- 
transmission timeout t R T 0  is calculated as t R T 0  = 4t,tt 
which is found to work reasonably well in providing fairness 
with TCP [4]. This simple empirical calculation of t R T o  

is due to the fact that the use,of the timeout value is less 
important in TFRC as compared to TCP. Recall that in TCP, 
the accurate value of t ~ ~ o  is needed for,schedulig the packet 
transmissions, which is not the case with TFRC. .In TFRC, 
this timeout value is used only for the estimation of -TCP 

In order to derive an acceptable TCP-friendly transmission, 
the TFRC sender adjusts its transmission rate based'on the 
measured loss rate and RTT. The adjustment of the sending 
rate to achieve TCP-friendliness is based upon a control 
equation'derived from the TCP throughput model. The control 
equation is as follows: 

.throughput. . : .  

(1) 
S 

tRTT $& + tRTO &P(l+ 3 2 9 )  
TTFRC = 

where s is the maximum segment (packet) size, tRTT is the 
round trip time, p is the probability of loss event, and ~ R T O  

is the retransmission timeout. 
The transmission rate of the sender is adjusted directly to 

match the calculated transmission rate. The rate adjustment 
process is made periodically at a certain interval. In the 
event of packet losses, the sender restricts its sending rate 
to the equivalent TCP rate using Equation I .  Otherwise, the 
transmission rate is doubled. 

111. EXPERIMENTAL DESIGN AND RATIONALE 

A suite of experiments is conducted in this study to in- 
vestigate how the throughput of the flows is affected as a 
result of the rate adjustment process performed by the TCP- 
friendly sources when competing with their TCP counterparts 
in different network scenarios. In doing this, the throughputs of 
each rate-based and TCP flows are respectively measured, and 
the average bottleneck bandwidth share of each of the flows 
is calculated based on their average throughput. The aim is 
to determine the degree of friendliness (i.e. fairness) of the 
TCP-friendly rate-based protocols by comparing their average 
bandwidth share against that of the TCP flows. We used the 
simulator ns-2 [SI to perform our simulation experiments. 

The first step to determine the degree of friendliness is to 
calculate the bandwidth share of the bottleneck link based 
on the throughput ratio of the competing connections. Simply 
stated, the friendliness ratio, F, can he expressed as [61: 

kf denotes the total number of monitored TCP-friendly 
connections, and kt denotes the total number of monitored 
TCP connections. Throughput of the TCP-friendly connections 
is denoted by Tf,  T i ,  . . . , Ti,, while the throughput of the 
TCP connections is denoted' by Tf, Ti, . . . , TLc. 

As generally known, simulation experiments involving TCP 
normally have to deal with a wide range of variables, en- 
vironments and implementation flavours (or variants). This 
causes difficulty in isolating a particular variable and studying 
its relation with a particular parameter because of inter- 
dependency among these variables. To minimise the related 
problems, the scope of comparison is limited to those related 
only to the following experiments involving: 
a Queue management policy. In this set of experiments, we 

use RED [71 queue.management policy as a comparison 
with the normal DropTail policy. RED is known for its 
ability to distribute the losses evenly across the competing 
flows and avoid buffer overflow over a wide range of 
connections. 
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h. Botfleneck delay. A smaller bottleneck delay indicates a 
smaller round-.trip time. Connections become more aggres- 
sive and achieve a larger share of bandwidth with a shorter 
RTT. 

c. Bottleneck bandwidth. TCP uses the AIMD algorithm. At 
a smaller bottleneck bandwidth, TCP losses hecome more 
dominant, thus TCP'deviates from the AIMD algorithm - 
paving the way for non-TCP applications to get a bigger 
share of the bandwidth. 

d. Loss rate. The use of Equation 1 in controlling the sender's 
rate warrants that at a loss rate higher than 5%, a rate-based 
control protocol will still he TCP-friendly. 

The evaluation of a TCP-friendly protocol behaviour includes 
comparing the average bandwidth share obtained by both pro- 
tocols when competing with TCP, respectively under different 
scenarios. We compare the performance of the rate-based pro- 
tocols against two TCP implementations, namely TCP Reno 
[XI and TCP with Selective Acknowledgements (SACK) 191. 
Both are popular TCP implementations .nowadays. Currently, 
most Internet traffic is TCP Reno-based [lo], [XI, while TCP 
SACK is currently gaining popularity and is implemented and 
deployed in many commercial and experimental products, such 
as in Microsoft Windows 98, Linux 2.1.9, "d Digital Unix 
4.0. 

In these simulation experiments, we use two sets of com- 
peting protocols, namely the TCP friendly protocols (RAP 
and TFRC) and the two variants of TCP (Reno or SACK). 
We attach an FTP application to the TCP sources. Corre- 
spondingly, we use an application that produces a constant 
hit rate (CBR) traffic pattern for the TCP-friendly sources. 
The intermediate routers are configured using DropTail and 
RED queue management policies. Packet losses are simulated 
by packet drops at overflowed router buffers. 

Figure 1 illustrates the network topology used in the exper- 

Fig. 1. Simulation topology far TCP-friendly experiments 

iments. Two sets of (n+l) competing sources are used, where 
0 5 n < CO. One set of these sources act as the TCP-friendly 
rate-based source (either RAP or TFRC) transmitting TCP- 
friendly traffic into the network, and another'set running as 
TCP sources with TCP Reno or SACK; The TCP-friendly 
source TFs, sends data to (and receives acknowledgements 
from) the receiverkink agent TFr;. Similarly, TCP source 
TCPs, sends data to (and receives acknowledgements from) 
TCPr, receiver agent. 

A fair comparison can only he achieved with caeful se- 
lection of simulation parameters. Similar parameter values are 
used for all flows wherever possible. For this purpose, a source 
packet size of 1000 bytes and ACK size of 40 bytes are used. 
The intermediate routers are connected by a bottleneck link 

~ 
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with initial bandwidth set to 1.5 Mbps and initial link delay 
of 20 ms. The flows from both sources share the bottleneck 
bandwidth. The TCP flow is an FTP session and has 
unlimited data to send. Side links connected to the bottleneck 
link have bandwidth of 10 Mbps with a 6ms delay factor. The 
routers have a single output queue for each attached link, and 
initially use RED queue management policy. The second round 
of the simulation uses the DropTail policy as an alternative 
to RED. .We use the standard (default) its-2 parameters for 
configuring the routers. All simulation experiments were run 
with a simulation length of 100 seconds, i.e. long enough for 
achieving their steady state behaviour. 

IV. RESULTS AND DISCUSSIONS 

A substantial number of simulation experiments have been 
conducted to evaluate the performance of these two TCP- 
friendly protocols under various simulation scenarios. The fol- 
lowing subsections present our results for these experiments. 
All the results, where appropriate, are obtained using a level 
of confidenceof 95%: '~ a ' . 

A. Queue Management Policies: DropTail versus RED 
In the first set of experiments, the performance of TCP- 

friendly protocols when using the DropTail queue manage- 
ment policy, is compared. It is discovered that in general 
the TCP-friendly protocols show poor friendliness results in 
all the experiments using DropTail as queue management. 
Nevertheless, TCP-friendly protocols are friendlier with TCP 
SACK as compared to TCP Reno. TCP SACK obtains more 
bandwidth share in all the cases, which therefore leads to 
higher throughput. 

From these results, we can conclude that the use of DropTail 
queue management does not facilitate a fair bandwidth sharing 
of the TCP-friendly protocols coexisting with either TCP Reno 
or SACK. Thus, the use of DropTail queue management does 
not enhance the friendliness of TCP-friendly protocols.Unlike 
TCP Reno, TCP SACK senders transmit only those segments 
that have been lost, enabling them to obtain a bigger share 
of the bandwidth. This in turn affects the friendliness of the 
competing TFRC. However, this transmission feature of TCP 
SACK cannot heat the aggressiveness of CG RAP connections 
which, combined with the inefficiency of the DropTail queue 
management, are able to dominate the bottleneck bandwidth. 

In the second set of experiments, we evaluate the per- 
formance of TCP-friendly protocols versns TCP Reno 'and 
SACK using RED as a queue management policy. It is 
observed that when using RED at intermediate routers, the 
TCP-friendly protocols become friendlier towards competing 
TCP Reno connections. The average throughput of TCP Reno 
connections is slightly higher than that of the TFRC. The 
higher throughput can result from the ability of TCP Reno 
to acquire more bandwidth share. 

TFRC shows the best friendliness result when competing 
with TCP SACK. This implies that the bandwidth is fairly 
shared by the two competing protocols: The performance of 
RAP against TCP Reno is also improved when using RED, 
even though the results are still considerably unfavourable. 



., In the case of R&P versus TCP SACK, the performance of 
CG RAP is slightly better with RED. The.performance of 
FG RAP improves considerably when using RED instead of 
DropTail. FG RAP is, able to capture properly the short-term 
trends in congestion under heavy load. Consequently, FG RAP 
can respond to the distress of TCP SACK, making it.friendlier 
in seizing bandwidth which leads to its favourable throughput. 

In summary, the friendliness of TFRC is better compared to 
RAP, regardless of the queue management policy implemented 
at the intermediate routers. The use of 'RED improves the 
friendliness of RAP and TFRC. Again, TFRC scores better 
compared to RAP when using RED. Within TFRC experi- 
ments, TFRC works achieved better friendliness results with 
TCP SACK compared to TCP Reno. The sharing of bottleneck 
bandwidth is relatively fairer in the case of TFRC versus 
SACK compared to TFRC versus TCP Reno. 

' 

-' 
. .  

B. Varying Bottleneck'Delay , .  

. ' In this experiment; we~varythe bottleneck delay from ~10 
ms to 50 ms.,For simplicity of analysis, we use a total of 30 
competing TCP and TCP-friendly connections. Figure 2 shows 

1 , I _  I 

Fig. 2. Effects of vary& bottleneck delay on TCP-fnendliness , . 

the simulation results. 
It is observed that the friendliness of RAP improves as the 

bottleneck delay is increased. At a lower bottleneck delay, 
the RAP connections are'more 'aggressive in obtaining the 

-bandwidth share. As we increase the delay, the TCP SACK 
connections obtain'more share.of, the.bottleneck bandwidth, 
thus improve the friendliness results. On the other hand; the 
TFRC connections achieve-a more stable performance against 
the competing TCP SACK connections as we increase the 
delay, compared to the RAP connections. The friendliness ratio 
of TFdC is not affected by.the change'of the bottleneck delay, 
indicating that both TFRC and TCP cohnections achieve a fair 
bandwidth sharing. 

C. Varying Bottleneck Bandwidth 
in this experiment, the bottleneck bandwidth is increased 

from 0.5 Mhps to 10.0 Mhps while keeping other parameters 
constant. Again, for simplicity of analysis, we use only.15 
sources of TCP-friendly protocols competing with 15 TCP 
counterpart sources in this experiment. The simulation results 
?e displayed in Figure 3. 

When the ,bottleneck bandwidth is increased from 0.5Mbps 
to 3.0Mbps, the TCP-friendly connections become friendlier 
with the TCP connections. As the bandwidth is increased from 
3.0Mbps to 10.OMbps, the W C  connections s tar ' to  show 

. ,  ~. . 

Fig. 3. Effects of varying bottleneck bandwidth on TCP-friendliness 

the sign of unfriendliness towards the TCP connections. The 
TFRC connections receive more bandwidth share compared to 
the TCP connections. In contrast, the RAP connections get a 
decreased share of bottleneck bandwidth as the bandwidth is 
increased from 3.0Mbps to 1O.OMbps. 

D. Loss Rate 
In this set of experiments, the effect of increasing the loss 

rate on the TCP-friendly .protocols is explored. We conduct 
the experiment using three different loss rates, which are 1%, 
5 %  and 15%. The AIMD-based rate adaptation scheme will 
still be TCP-friendly at these loss rates up to 5% [ I l l .  Tables 
I shows the simulation results. 

The results clearly show that RAP, which uses AIMD to 
control its rate, begins to perform unsatisfactorily at loss 
rate increase of 5%. With the same increase, TFRC is still 
behaving satisfactorily in terms of friendliness with TCP. 
With fewer packet losses in the network links, the TCP- 
friendly connections behave adaptively, thus friendlier to TCP 
connections, 

TABLE 1 

EFFECT OF INCREASING Loss RATE ON RAP AND TFRC 

1.40 1.62 0.95 1.w 
1.42 

V. CONCLUSION 

This work presented a performance comparison of two TCP- 
friendly rate-based adaptation protocols, namely RAP and 
TFRC, conducted using a set of experimental suites. Both 
TCP-friendly protocols use packet loss and RTT estimations to 
adjust dynamically the transmission behaviour of the sender. 
Our simulation results suggest that the equation-based TFRC 
is more TCP-friendly over the wide range of tested parameters, 
as compared to RAP. Also, our results suggest, in general, that 
the use of TCP SACK can facilitate better bandwidth sharing 
among the competing connections, thus enhancing throughput 
of the connections. 

In addition, the experimental results show that both pro- 
tocols perform better in the presence..of RED as queue 
management policy. This is mainly due to the ability of RED 
to distribute losses evenly across the flows and avoid buffer 
overflow over a wide range of connections. The effects of 

251 



varying the bottleneck delay and bottleneck link bandwidth 
on friendliness of TCP-friendly protocols have also been 
explored. The results also show that these protocols especially 
perform better at lower loss rate below 5%. At loss rates 
higher than 5%, bandwidth sharing with the competing TCP 
connections is no longer fair, resulting in poor friendliness 
results. 

Our experimental results reveal that the equation-based 
TFRC is able to achieve throughput that is close to the 
throughput of a TCP connection using the same network 
path under the same network conditions. Also, the results 
demonstrate that the TFRC is friendlier and robust in most 
of our experiments, as compared to RAP. 
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