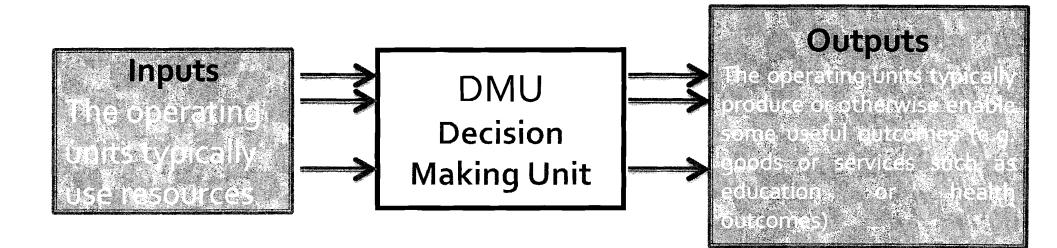
Data Envelopment Analysis Introduction & PIM software

Aston University Birmingham B4 7ET UK **DEA Web:**

www.DEAzone.com/ DEA Software: www.DEAsoftware.co.uk


Data Envelopment Analysis

- Data Envelopment Analysis (DEA) was developed as a method for assessing the comparative efficiencies of organisational units such as the branches of a bank, schools, hospital departments or restaurants.
- The efficiencies assessed reflect the scope for resource conservation at the unit being assessed without detriment to its outputs, or alternatively, the scope for output augmentation without additional resources.
- In using DEA in practice we typically go far beyond the computation of a simple measure of the relative efficiency of a unit. We wish to know what operating practices, mix of resources, scale sizes, scope of activities and so on the operating units may adopt to improve their performance.

www.DEAzone.com

Production process

 DEA: a method to compare homogeneous operating units such as schools, hospitals, police forces, individuals etc on efficiency.

DEA makes it possible to compare the operating units on the levels of outputs they secure relative to their input levels.

Value Based DEA

DMU	Doctor	Nurse	Outpatient	Inpatient
H01.	30	72	1200	360
H02	10	50	1000	1200
H03	35	20	1250	270
HI04	33	44	1100	200
H05	52	91	1300	100
H06	24	40	800	200

Value Based DEA

Relative efficiency of a unit from a value perspective,

Sum of weighted outputs of the unit concerned Sum of weighted inputs of the unit concerned

The weights are determined by a DEA model so as to maximise the efficiency of the operating unit concerned subject to no operating unit attaining an efficiency in excess of 1 when those same weights are applied to its inputs and outputs.

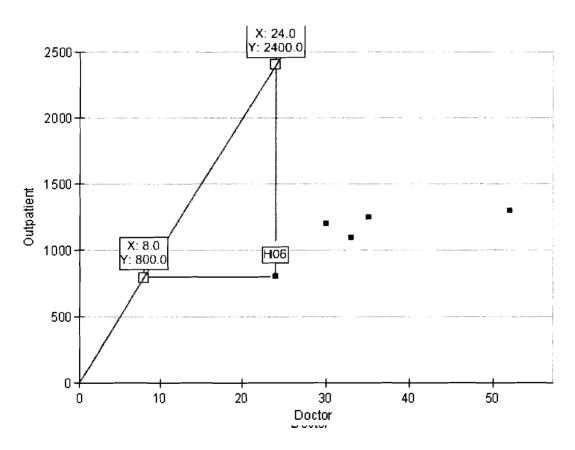
Input/output efficiency

- The measure of efficiency can be taken in the input or the output orientation:
 - <u>Output orientation</u>: The efficiency measure is the proportion of **observed output levels** to **maximum possible output levels** for given input levels (output efficiency).
 - <u>Input orientation</u>: The efficiency measure is the proportion to which the observed input levels can be reduced for given output levels (input efficiency).

A graphical approach

- The table below shows the number of doctors and outpatients in hospitals.
- What is the input efficiency of hospital Ho6?

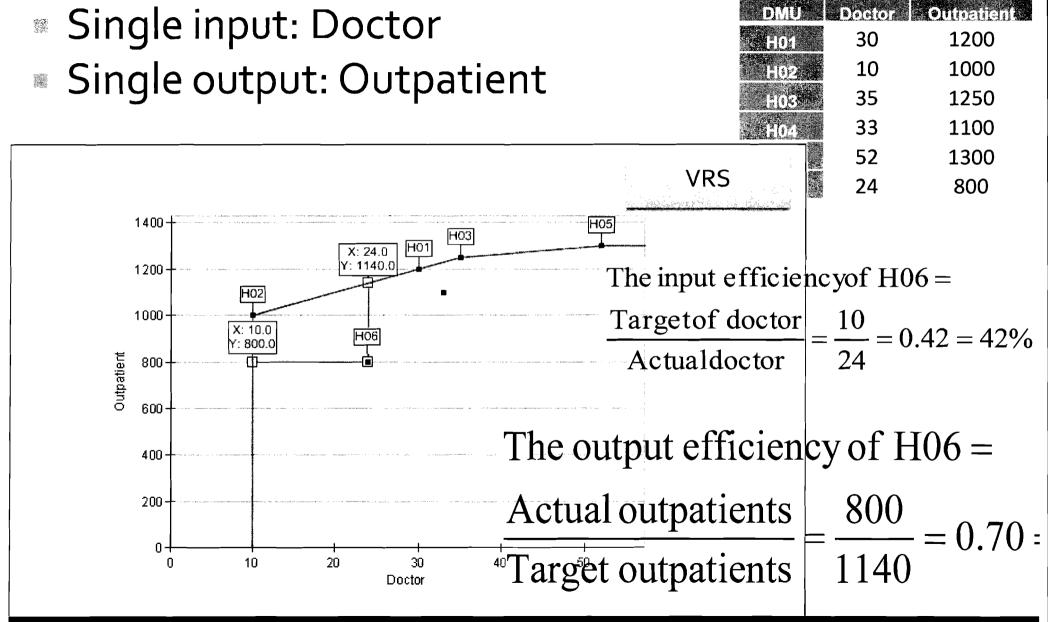
DMU	Doctor	Outpatient
HO1	30	1200
H02	10	1000
H03	35	1250
H04	33	1100
H05	52	1300
H06	24	800

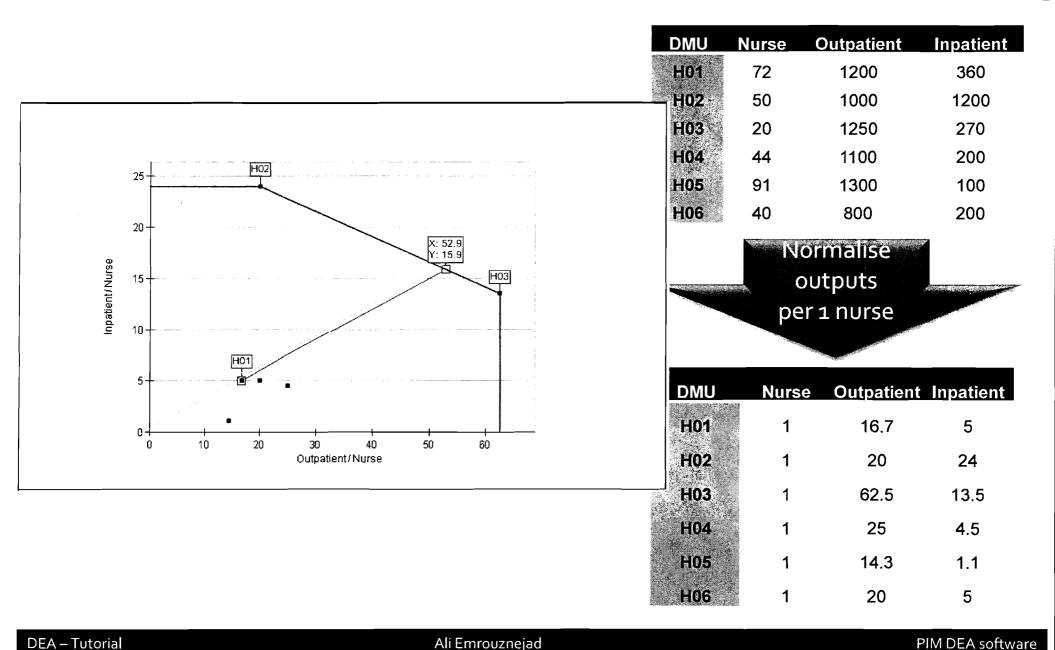

Performance Improvement Management

DEA – Tutorial

Ali Emrouznejad

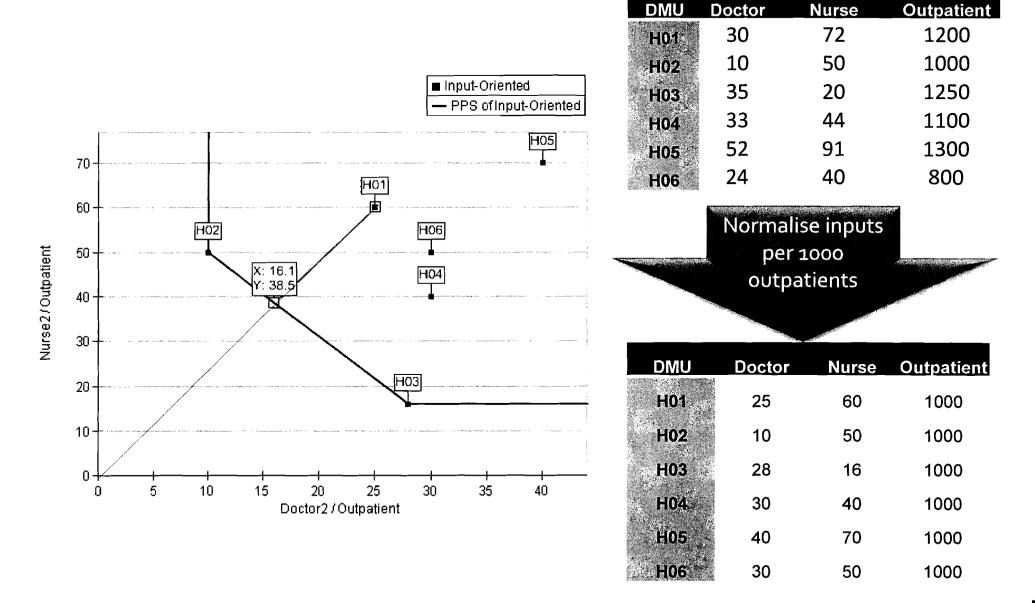
Single input-single output - CRS


Single input: DoctorSingle output: Outpatient


DMU	Doctor	Outpatient
H01	30	1200
H02	10	1000
H08 1.	35	1250
H04	33	1100
HOS	52	1300
. H06	24	800

The relative efficiency of H06 = $\frac{\text{Target of doctor}}{\text{Actual doctor}} = \frac{8}{24}$ $\frac{\text{Actual outpatients}}{\text{Target outpatients}} = \frac{800}{2400}$ = 0.33 = 33%

Single input-single output - VRS

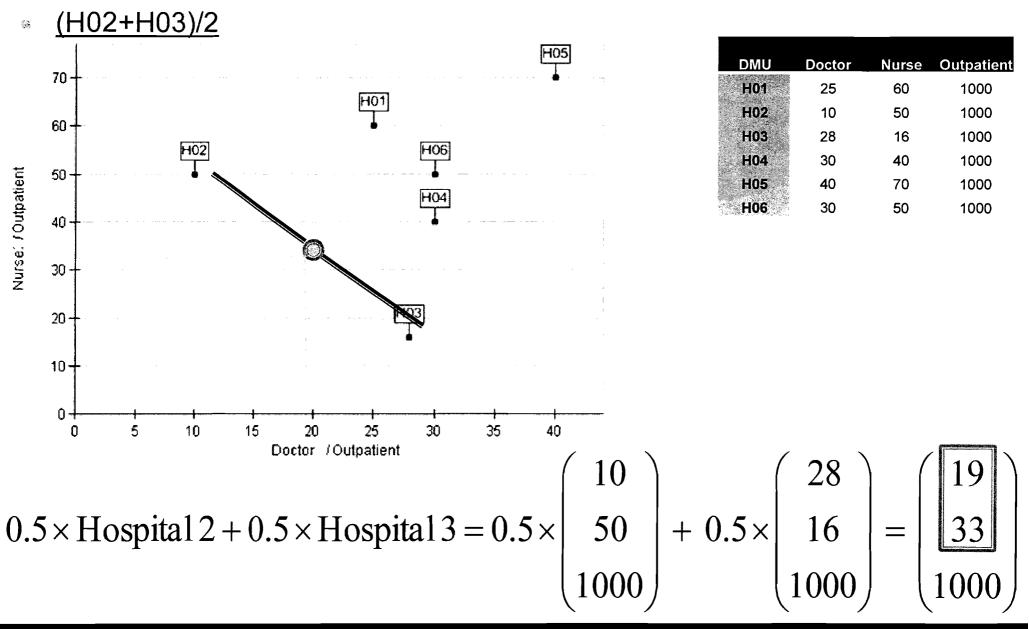


2 outputs & 1 input

Ali Emrouznejad

2 inputs & 1 output

Ali Emrouznejad


Feasible units (hospitals)

- The number of doctors & nurses per 1000 outpatients.
- Input efficiency for Hospital H01?
- Compute the proportion to which its input levels can be lowered without detriment to its output level.
 Identify the minimum possible input levels for H01

DMU	Doctor	Nurse	Outpatient
H01	25	60	1000
H02	10	50	1000
H03	28	16	1000
H04	30	40	1000
H05	40	70	1000
H06	30	50	1000

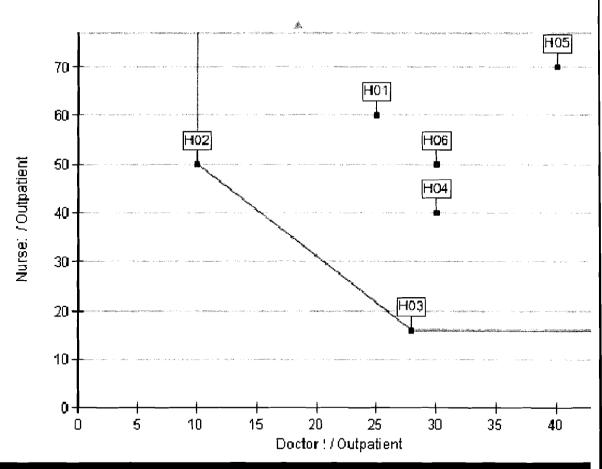
- In DEA we do this by assuming interpolation of hospitals yields input output levels which are feasible in principle.
- Example: take 0.5 of the input-output levels of hospital 2 and 0.5 of of the input-output levels of hospital 3 and combine:

Feasible units (hospitals)

DEA – Tutorial

Feasible units (Hospitals)

The interpolation assumption means that 19 doctors and 33 nurses, <u>though observed at no hospital</u>, are capable of handling 1000 outpatients.

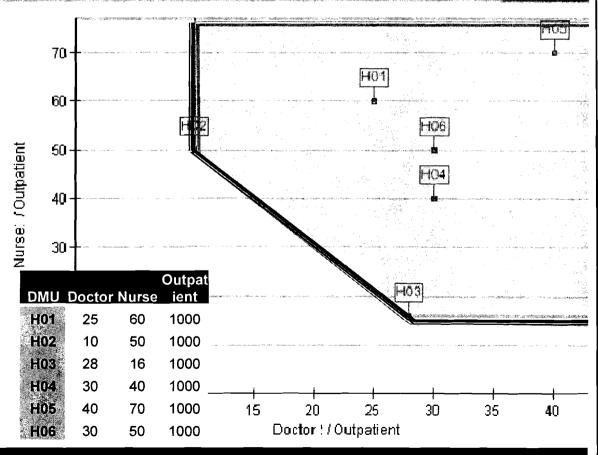

To the extent that any other hospital is also feasible if its input -output levels satisfy

number of doctors \geq 19.

number of nurses \geq 33

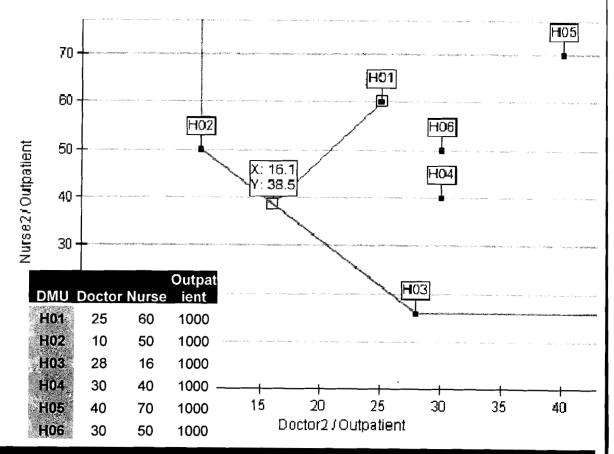
and $outpatients \leq 1000$

are also feasible.



A linear programming approach

Ho2 and Ho3 are efficient, all other hospitals are inefficient. Target for hospital 1 is (16.1, 38.5)


The relative efficiency of H01 = $\frac{\text{Targetof doctor}}{\text{Actual doctor}} =$ $\frac{\text{Targetof nurse}}{\text{Actual nurse}} =$ $\frac{16.5}{25} = \frac{38.5}{60} = 0.64 = 64\%$

A linear programming approach

Ho2 and Ho3 are efficient, all other hospitals are inefficient. Target for hospital 1 is (16.1, 38.5)

The relative efficiency of H01 = Targetof doctor Actualdoctor Targetof nurse Actualnurse $\frac{16.5}{100} = \frac{38.5}{100} = 0.64 = 64\%$ 60

2 inputs / 2 outputs - input orientation

DMU	Doctor	Nurse	Outpatient	Inpatient
HO1	30	72	1200	360
H02	10	50	1000	1200
H03	35	20	1250	270
H04	33	44	1100	200
H05	52	91	1300	100
H06	24	40	800	200

Min θ Such that:

 $\begin{array}{l} 30\,\lambda_{1}+10\,\lambda_{2}+35\,\lambda_{3}+33\,\lambda_{4}+52\,\lambda_{5}+24\,\lambda_{6}\leq30\,\theta\\ 72\lambda_{1}+50\,\lambda_{2}+20\,\lambda_{3}+44\,\lambda_{4}+91\,\lambda_{5}+40\,\lambda_{6}\leq72\,\theta\\ 1200\,\lambda_{1}+1000\,\lambda_{2}+1250\,\lambda_{3}+1100\,\lambda_{4}+1300\,\lambda_{5}+800\,\lambda_{6}\geq1200\\ 360\,\lambda_{1}+1200\,\lambda_{2}+270\,\lambda_{3}+200\,\lambda_{4}+100\,\lambda_{5}+200\,\lambda_{6}\geq360\\ \lambda_{1\prime}\,\lambda_{2\prime}\,\lambda_{3\prime},\lambda_{4\prime}\lambda_{5\prime}\,\lambda_{6}\rangle=0\,. \end{array}$

2 inputs / 2 outputs - output orientation

DMU	Doctor	Nurse	Outpatient	Inpatient
HÖ1	30	72	1200	360
H02 *	10	50	1000	1200
, Н <u>0</u> 3 ,	35	20	1250	270
H04	33	44	1100	200
H05	52	91	1300	100
H06	24	40	800	200

Max θ Such that:

 $\begin{array}{l} 30\,\lambda_{1}+10\,\lambda_{2}+35\,\lambda_{3}+33\,\lambda_{4}+52\,\lambda_{5}+24\,\lambda_{6}\leq30\\ 72\lambda_{1}+50\,\lambda_{2}+20\,\lambda_{3}+44\,\lambda_{4}+91\,\lambda_{5}+40\,\lambda_{6}\leq72\\ 1200\,\lambda_{1}+1000\,\lambda_{2}+1250\,\lambda_{3}+1100\,\lambda_{4}+1300\,\lambda_{5}+800\,\lambda_{6}\geq1200\,\theta\\ 360\,\lambda_{1}+1200\,\lambda_{2}+270\,\lambda_{3}+200\,\lambda_{4}+100\,\lambda_{5}+200\,\lambda_{6}\geq360\,\theta\\ \lambda_{1\prime}\,\lambda_{2\prime}\,\lambda_{3\prime}\,\lambda_{4\prime}\lambda_{5\prime}\,\lambda_{6}\rangle=0\,. \end{array}$

Slacks - input orientation

Name	Doctor	Nurse	Outpatient	Inpatient
HO1	0	40.24	0	96
H02	0	0	0	0
H03	0	0	0	0
H04	0	0	54.49438202	425.28089888
H05			0	D
H06	: 0	0	325	535

Min θ Such that:

 $\begin{array}{ll} 30\,\lambda_{1}+10\,\lambda_{2}+35\,\lambda_{3}+33\,\lambda_{4}+52\,\lambda_{5}+24\,\lambda_{6}+S_{d}=30\,\theta\\ 72\lambda_{1}+50\,\lambda_{2}+20\,\lambda_{3}+44\,\lambda_{4}+91\,\lambda_{5}+40\,\lambda_{6}+S_{n}=72\,\theta\\ 1200\,\lambda_{1}+1000\,\lambda_{2}+1250\,\lambda_{3}+1100\,\lambda_{4}+1300\,\lambda_{5}+800\,\lambda_{6}-S_{0}=1200\\ 360\,\lambda_{1}+1200\,\lambda_{2}+270\,\lambda_{3}+200\,\lambda_{4}+100\,\lambda_{5}+200\,\lambda_{6}-S_{i}=360\\ \lambda_{1}+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}+\lambda_{6}>=1 \qquad \lambda_{1\prime}\,\lambda_{2\prime}\,\lambda_{3\prime},\lambda_{4\prime}\lambda_{5\prime}\,\lambda_{6}>=0\,. \end{array}$

Lambdas & Target – output orientation

Max θ

 $\begin{array}{l} 1200 \ \lambda_1 + 1000 \ \lambda_2 + 1250 \ \lambda_3 + 1100 \ \lambda_4 + 1300 \ \lambda_5 + 800 \ \lambda_6 \geq 1200 \ \theta \\ 360 \ \lambda_1 + 1200 \ \lambda_2 + 270 \ \lambda_3 + 200 \ \lambda_4 + 100 \ \lambda_5 + 200 \ \lambda_6 \geq 360 \ \theta \end{array}$

人名法法格 化化化学 化化化学 化乙酰胺 化化化物 化化物化物 化分析 化分析法 化分析法 化合金

Target **Outpatient for Ho1** =1.22 × 1000 + 0.56 × 1250 =1914 Target **Inpatient for Ho1** = 1.22 × 1200 + 0.56 × 270 = 1611

Name	H02	H03						
-01	1 21714286	0.55714286						
H02	: 1	0						
H03	0	1						
H04	0.53428571	0.86428571						
H05	1.33714286	1.20714286			O			
H06	0.57142857	0.57142857	Outpatient Value	Outpatient Target	Outpatient Gain(%)	Inpatient Value	Inpatient Target	Inpatient Gain(%)
		H01	1200	1913.57	59.46	360	1611	347.5
		H02	1000	1000	0	1200	1200	0
		H03	1250	1250	0	270	270	0
		H04	1100	1614.64	46.7 9	200	874.5	337.25
		H05	1300	2846.07	118.93	100	1930.5	1830.5
		H06	800	1285.71	60.71	200	840	320