Knowledge Management in Technical Education Using Lean Concept

Gurumoorthi.N^a, P.Satheeshkumar^a and N.Jawahar^b

^aPG Scholar, Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai - 625 015, Tamil Nadu, India Tel : 91-98428 07019, E-mail : guru_cit@yahoo.com

^bProfessor, Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai - 625 015, Tamil Nadu, India Tel : 91-(0)452-2482240, Fax : 91-(0)452-2483427, E-mail : jawahartce@yahoo.co.uk

ABSTRACT

Innovation, Flexibility and Rapid change - are the keywords for 21^{st} century business environment. that have traditionally Industries delivered manufactured goods must streamline their processes and focus on the rapidly changing needs of their customers and the capabilities of their suppliers. Lean is one of the promising alternative strategy for achieving continuous improvement in business performance through identifying a company's value stream and then systematically removing all waste. Educational Institutions are now focusing on knowledge management, and knowledge is a new paradigm for the way of work. The key issue in knowledge management in educational institution is faculty-subject allocation problem which can be solved by using the lean concept. This paper mainly concentrates on minimizing the knowledge wastage in technical institution by properly allocating the faculty to subjects. The faculty-subject allocation problem is solved using a meta-heuristic approach and a decision support system can be developed.

Keywords

Technical Education, Knowledge Management, Lean Concept, Meta-Heuristics.

1.0 INTRODUCTION

In the present technological scenario, the institutions have a commitment to provide the best education for each and every student to the needs of them. The engineering education must be designed to prepare students to match the future requirements of their customers, who are Higher learning institutions or Industries or Research organizations. For example, the curriculum should be flexible enough to satisfy the different requirements of different customers. The requirements of the customers are specific to their field and application. The specializations required by the customers of mechanical discipline are: (i) Design, (ii) Production and (iv) Industrial Thermal, (iii) Engineering. Figure 1 shows input-output model of Mechanical Engineering (ME) discipline.

Figure 1: Students graduated with different skills

Faculty of any discipline, in general, possess basic degree in the same discipline and specialization in various fields of the discipline at their higher studies. In addition, their experience will be varying in nature such as years of experience, industrial exposure, subjects handled in the past, research and so on. The knowledge of the faculty helps to a great extent to impart skills that the students acquire during their course and it should not be wasted. The allotment of subjects to faculty plays a vital role in the faculty knowledge usage and student skill acquisition process (Partiban et al, 2004). Proper allocation would result in higher usage of faculty knowledge and hence higher skills to students in their required specialization. In this concern, this paper addresses the problem of faculty allotment to the various subjects so as to provide customers with quality engineers developed for their requirement.

The concept of lean is to reduce defects and unnecessary physical wastages. It is defines as (Capital, 2004) use of equipment and manufacturing space more efficiently and have the ability to produce a more flexible range of products with minimum changeover costs and changeover time. The index to indicate the knowledge waste is developed by applying the concept of minimization of waste, one of the themes of lean principles. A mathematical model is formulated with the objective of minimum knowledge waste subjected to practical constraints such as maximum number of subjects for a faculty, number of students in a batch and so on. The formulation indicates that the problem belongs to zero-one integer programming problem, which is NP hard. Besides, the model discussed in this paper, possible approaches to solve the above problem are discussed.

2.0 PROBLEM DESCRIPTION

2.1 Model

The educational system considered in this study is that of the mechanical engineering curriculum. The curriculum has a span of four years with two semesters in each year. Students have to undergo fundamental and core subjects of mechanical discipline in the first three years and elective subjects in any one of the specializations. Table 1 and Table 2 show the details of the subjects of study proposed for mechanical engineering curriculum that is witnessed to produce engineers with specific specialization.

Semester 's'					
Subject 'i'	1	2	3		
1	English	Mathematics-I	Mathematics-II		
2	Physics	Electrical Engineering	Thermodynamics		
3	Chemistry	C and Data Structures	Mechanics of Dynamics		
4	Mechanical Engineering	Material Science	Mechanics of Solids		
5	Civil Engineering	Electronic Devices and Circuits	Electronics and Microprocessors		
6	Engineering Drawing	Mechanics of Statics	Machine Drawing-I		
7	Physics Lab	C Programming Lab	Strength of Materials Lab		
8	Chemistry Lab	Electrical Engineering Lab	Electrical Machines Lab		
	4	5	6		
1	4 Mathematics-III	5 Engineering Economics & Analysis	6 Computer Aided Manufacturing		
1 2	4 Mathematics-III Thermal Engineering-I	5 Engineering Economics & Analysis Thermal Engineering-II	6 Computer Aided Manufacturing Gas Dynamics		
1 2 3	4 Mathematics-III Thermal Engineering-I Mechanics of Machines-I	5 Engineering Economics & Analysis Thermal Engineering-II Mechanics of Machines-II	6 Computer Aided Manufacturing Gas Dynamics Design of Machine Elements-II		
1 2 3 4	4 Mathematics-III Thermal Engineering-I Mechanics of Machines-I Manufacturing Processes-I	5 Engineering Economics & Analysis Thermal Engineering-II Mechanics of Machines-II Manufacturing Processes-II	6 Computer Aided Manufacturing Gas Dynamics Design of Machine Elements-II Metrology		
1 2 3 4 5	4 Mathematics-III Thermal Engineering-I Mechanics of Machines-I Manufacturing Processes-I Applied Metallurgy	5 Engineering Economics & Analysis Thermal Engineering-II Mechanics of Machines-II Manufacturing Processes-II Design of Machine Elements-I	6 Computer Aided Manufacturing Gas Dynamics Design of Machine Elements-II Metrology Foundry Technology		
1 2 3 4 5 6	4 Mathematics-III Thermal Engineering-I Mechanics of Machines-I Manufacturing Processes-I Applied Metallurgy Machine Drawing-II	5 Engineering Economics & Analysis Thermal Engineering-II Mechanics of Machines-II Manufacturing Processes-II Design of Machine Elements-I Mechanical Measurements	6 Computer Aided Manufacturing Gas Dynamics Design of Machine Elements-II Metrology Foundry Technology Control Systems		
1 2 3 4 5 6 7	4 Mathematics-III Thermal Engineering I Mechanics of Machines-I Manufacturing Processes-I Applied Metallurgy Machine Drawing-II Thermal Engineering Lab	5 Engineering Economics & Analysis Thermal Engineering-II Mechanics of Machines-II Manufacturing Processes-II Design of Machine Elements-I Mechanical Measurements Metallurgy Lab	6 Computer Aided Manufacturing Gas Dynamics Design of Machine Elements-II Metrology Foundry Technology Control Systems Image Processing Lab		

 Table 1: Proposed Core Subjects for ME (Semester - 1 to 6)

Table 2: Proposed Electives for ME (Semester - 7 & 8)

Specialization 'd'		
Semester 's'	Design (1)	Thermal (2)
	Finite Element Methods	Compressors & Blowers
S_7	System Simulation	Air Conditioning
	Vibration Engineering	Cryogenics
	Design for Manufacture	Heat and Mass Transfer
	Computer Aided Design	Internal Combustion Engines
	Gear design	Nuclear Power Engineering
	Computational Methods	Computational Fluid Flow
S_8	Geometric Modeling	Power Plant Engineering
	Fracture mechanics	Automobile Engineering
	Product design	Pollution Control
	Project & Viva-Voce	Project & Viva-Voce
	Production (3)	Industrial Engineering (4)
	Welding Technology	Operations Research
	Materials Technology	Financial Management
S7	Metal Forming Processes	Work System Engineering
57	Theory of Metal Cutting	Human Resource Management.
	Industrial Robotics	Personnel Management
	Production Planning	Entrepreneurship Development

	Plant Layout & Material Handling	Marketing Management
	Non-Traditional Machining	Operations Management
Sa	Machine Tool Design	Supply Chain Management
38	Quality Assurance	Enterprise Resource Planning
	Project & Viva-Voce	Project & Viva-Voce

A specific Number of Faculty (NF) are available in the department. Experience and specializations vary with faculty. They share the teaching load uniformly. It is assumed here as: each faculty has to handle at least " NS_{min} " number of theory subjects and at the maximum of " NS_{max} " number of theory subjects in any semester and the load is balanced with practical subjects. Splitting of subjects to faculty is not allowed. Industrial experience of faculty, faculty involvement in

consultancy, lab development, and research work is not considered, when calculating the experience. The preference of the faculty to handle a particular subject is not considered during allocation. The same faculty can be allotted to more than one subject of a particular semester. For exa mple, core & elective subjects for semester 7 or 8. Table 3 provides a typical faculty data considered in this work.

S.No.	Faculty	Specialization	Subjects Handled	Experience
1.	F ₁	Design	Geometric Modeling, Finite Element Methods, Gas Dynamics	12 Years
2.	F ₂	Thermal	Heat and Mass Transfer, Thermodynamics, Mechanics of Solids	3 Years
3.	F ₃	Production	Manufacturing Processes, Foundry Technology, Applied Metallurgy, Operations Research	7 Years
4.	F_4	Thermal	Thermodynamics, Cryogenics, Gas Dynamics, Heat and Mass Transfer, Engineering Economics & Analysis	18 Years
5.	F ₅	Industrial Engineering	Engineering Economics & Analysis, Supply chain management, Finite Element Methods	3 Years
6.	F ₆	Design	Mechanics of Solids, Geometric Modeling, Fracture Mechanics, Welding Technology	10 Years
7.	F ₇	Production	Plant Layout & Material Handling	1 Year
8.	F ₈	Thermal	Air Conditioning, Gas Dynamics, Applied Metallurgy	7 Years
9.	F ₉	Industrial Engineering	Operations Research, Engineering Economic & Analysis, Marketing Management, Thermodynamics	14 Years
10.	F ₁₀	Industrial Engineering	Marketing Management, Operations Research, Human Resource Management, Cryogenics	5 Years
11.	F ₁₁	Design	Geometric Modeling, Operations Research, Mechanics of Solids	12 Years
12.	F ₁₂	Production	Plant Layout & Material Handling Foundry Technology, Applied Metallurgy	7 Years
13.	F ₁₃	Thermal	Thermodynamics, Cryogenics, Heat and Mass Transfer, Finite Element Methods, Supply Chain Management	19 Years
14.	F ₁₄	Design	Fracture Mechanics, Mechanics of solids Resource	3 Years
15.	F ₁₅	Industrial Engineering	Marketing Management, Operations Research, Supply Chain Management, Cryogenics	4 Years
16.	F ₁₆	Production	Foundry Technology, Manufacturing Processes	2 Years

Table 3: Faculty	Database
------------------	----------

2.2 Objective

The objective is to provide maximum knowledge gain to the students. The allocation of the faculty to the subjects is done matching the characteristic features of the faculty as outlined in Table 3. It is expected that proper match leads to maximum knowledge gain to the student. In this context, the objective of this paper is to allocate subjects to faculty such that Students Knowledge Gain (SKG) that the students could obtain is maximum.

3.0 LEAN CONCEPT MODEL

Figure 2 Lean Concept Model

System	- Educational Institutions
Decision Variable	- Which Faculty is assigned to
	which subject
Result Variable	- Maximize SKG / Minimize
	the total knowledge wastage
Uncontrollable Variable	- Students interest to take
	specializations are changed
	in every year. (Change in
	Demand)
Environment	- Allowing different students
	to take different
	specializations.

The evaluation parameter Faculty Knowledge Wastage Index (FKWI) is derived using the faculty data. Table 4 shows the guidelines proposed for evolving KWI, which is assumed as dependent on three criteria: Specialization, experience and previous experience in the subject.

Table 4: Guidelines for FKWI

S. No.	Specializ -ation	Whether already Handled the Subject	Total Years of Experience	FKWI (Points)	
1.	YES	YES	6 + Years	0	
2.	YES	YES	0 to 6 Years	1	
3.	YES	NO	6 + Years	2	
4.	YES	NO	0 to 6 Years	3	
5.	NO	YES	6 + Years	4	
6.	NO	YES	0 to 6 Years	5	
7.	NO	NO	6 + Years	6	
8.	NO	NO	0 to 6 Years	7	

4.0 MATHEMATICAL MODEL

The objective of this model is to allocate subjects to faculty in ODD/EVEN semester, so as to maximize SKG. Applying the concept of lean, the objective is changed to minimization of Total Knowledge Wastage (TKW), which is the reverse function of SKG. Hence, the objective function for ODD semester becomes:

Minimize TKW =

$$\sum_{\substack{s=1,3,5\\(1)}} \left[\sum_{i=1}^{NS_s} \sum_{j=1}^{NF} M_{sij} \times X_{sij}\right] + \sum_{d=1}^{4} \left[\sum_{i=1}^{NS_7} \sum_{j=1}^{NF} M_{dij} \times X_{dij}\right]$$

The constraints to the problem are,

1. Minimum number of subjects allocated to a faculty

$$\sum_{\substack{s=1,3,5 \\ (2)}} \sum_{i=1}^{NS_s} X_{sij} + \sum_{d=1}^4 \sum_{i=1}^{NS_7} X_{dij} \ge NS_{\min} \text{ , for all j}$$

2. Maximum number of subjects allocated to a faculty

$$\sum_{\substack{s=1,3,5\\(3)}} \sum_{i=1}^{NS_s} X_{sij} + \sum_{d=1}^4 \sum_{i=1}^{NS_7} X_{dij} \le NS_{\max} \text{, for all } j$$

3. Each core subject of semester 1, 3, 5 should be allotted to a faculty

$$\sum_{j=1}^{NF} X_{sij} = 1 \text{ , for s=1, 3, 5 and i=1 to NS}_{s}$$
(4)

4. Each elective subject of 7^{th} semester should be allotted to a faculty

$$\sum_{j=1}^{NF} X_{dij} = 1 \text{ , for all d and } i=1 \text{ to } NS_7$$
(5)

where,

- d Discipline Identifier
- i Subject Identifier
- j Faculty Identifier
- M_{dij} FKWI for the ith subject of 7th semester in dth discipline to jth faculty
- M_{sij} FKWI for the ith subject of sth semester to jth faculty
- NS_{max} Maximum number of theory subjects to be handled by a faculty
- NS_{min} Minimumnumber of theory subjects to be handled by a faculty
- NS_s Number of theory subjects in semester's' (1, 2, 3...)
- Ns₇ Number of theory subjects in 7th Semester s - Semester Identifier. (s=1, 3, 5 for ODD
 - Semester & s=2, 4, 6 for EVEN Semester)
- $\begin{array}{ll} X_{sij}/X_{dij} & \mbox{-}Binary \ Variable \ (X_{sij}/X_{dij}=1, \ \mbox{if allocated or} \\ & X_{sij}/X_{dij}=0, \ \mbox{if not allocated}) \end{array}$

Similarly, the model will be modified to calculate the TKW in EVEN semester.

5.0 PROPOSED METHODOLOGY

Step I: Design of Curriculum. (Table 1 & Table 2)Step II: Creation of faculty database. (Table 3)Step III: Derivation of FKWI subjectwise. (Table 5)

The KWI (M_{sij}) for the i^{h} subject of semester's' to faculty j is derived using the Table 5.

Semester 's'	j	1	2	j	NF	
	1					
	4	2				
1					 	
1	1	1				
	N	S ₁				
		1				
3	2	2				
	İ	i				
	N	c				
	IN	3 1				
5		2				
	-	-				
	i					
	N	S ₅				
		1				
	d=1	Z				
		6				
7		1				
		2				
	d=2					
		6				
	1				 	
		2			 	
	d=4	2				
		6				

Table 5: Knowledge Wastage Index for NF faculties with NS_s subjects

Step IV: Allocation of faculty by solving mathematical model.

6.0 SOLUTION METHODOLOGY

The problem belongs to zero-one IPP. Branch-Bound technique is generally addressed for such problems. However, it is time consuming process and still lacks to provide optimal solution. Meta-heuristic, find much attention nowadays for problems of this nature (Salcedo-Sanz et al, 2006). Figure 3 shows the different meta-heuristic approaches. In these considerations, the meta-heuristic are proposed to solve the above problem.

Figure 3: Meta-Heuristic Search Techniques

7.0 CONCLUSION

The Knowledge Management is not just another expensive fad in the educational arena. The knowledge is a new paradigm for the way of work. Now premier institutions have found a way to use modern technology to perform true knowledge management. The leveraging of an entire institution's intellectual resources is a powerful concept that can become a reality. The key issue in knowledge management in educational institution is faculty-subject allocation problem which can be solved by using the lean concept. The faculty-subject allocation problem is solved using the meta-heuristic approach and a decision support system can be developed.

REFERENCES

- Mekong Capital Limited (2004). Introduction to Lean Manufacturing for Vietnam. Retrieved from http://www.mekongcapital.com
- Partiban.P, Satya Shiva Prasad.K, Jaiguru.N, & Ranjan.R (2004). Decision Support system for Faculty-Course assignment problem. In Proceedings of the National Conference on Challenges in Achieving Global Quality. (pp. 749-753). TCE, Madurai.
- Salcedo-Sanz Sancho, Xu Yong, & Yao Xin (2006). Hybrid meta-heuristics algorithms for task assignment in heterogeneous computing system. *Computers & Operations Research*, 33, (pp.820-835).
- Turban Efraim, & Aranson.J.E. (2001). *Decision Support Systems and Intelligent Systems*. Prentice Hall of India Private Limited.