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Abstract
The Lyapunov exponent is used to quantify the chaos of a dynamical system, by 
characterizing the exponential sensitivity of an initial point on the dynamical sys-
tem. However, we cannot directly compute the Lyapunov exponent for a dynamical 
system without its dynamical equation, although some estimation methods do exist. 
Information dynamics introduces the entropic chaos degree to measure the strength 
of chaos of the dynamical system. The entropic chaos degree can be used to com-
pute the strength of chaos with a practical time series. It may seem like a kind of 
finite space Kolmogorov-Sinai entropy, which then indicates the relation between 
the entropic chaos degree and the Lyapunov exponent. In this paper, we attempt to 
extend the definition of the entropic chaos degree on a d-dimensional Euclidean 
space to improve the ability to measure the stength of chaos of the dynamical system 
and show several relations between the extended entropic chaos degree and the Lya-
punov exponent.
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1 Introduction

A quantification of chaotic behavior is critical to understanding it. Some criteria to 
measure the strength of chaos of a dynamical system have been proposed such as the 
Lyapunov exponent, KS-entropy, fractal dimension, and so on. In particular, many 
researchers use the Lyapunov exponent to define the chaos, characterizing an expo-
nential sensitivity on an initial point for the dynamical system. However, we cannot 
directly compute it for a dynamical system without its dynamical equation even if 
we know its time series, such as observation data of an experiment. For that reason, 
there exist some estimation methods of the Lyapunov exponent for the time series. 
[1, 9–13]

Information Dynamics (ID) was proposed for synthesizing the dynamics of state 
change and the complexity of a system, and introduced the entropic chaos degree 
(CD) [8]. Some trials have been carried out to characterize chaotic dynamics using 
the CD [2–5]. CD allows the strength of chaos of a practical time series to be com-
puted. It may seem like a kind of finite space Kolomogorov-Sinai entropy (KS 
entropy).

In such situations, some authors have recently discussed the relation between CD 
and the Lyapunov exponent directly, without KS entropy [6]. They showed that in 
many cases, the CD for asymmetric tent maps takes a larger value than its Lyapunov 
exponent. Based on investigations of the difference between the CD and the Lyapu-
nov exponent, they introduced an improved CD, which is the CD with an optional 
term corresponding to the above difference added [7]. They also showed that the 
improved CD coincides with the Lyapunov exponent for any one-dimensional cha-
otic maps under typical conditions.

In this paper, we show that an extended CD coincides with the sum of all Lyapu-
nov exponents for any d-dimensional chaotic maps under a typical condition similar 
to that used for the one-dimensional chaotic maps. We also consider improving the 
computation algorithm of the extended CD to reduce its computational complexity 
while maintaining its computation accuracy.

2  Entropic chaos degree

In this section, we briefly review the definition of the entropic chaos degree for a dif-
ference equation.

Let � be the set of all real numbers and let � be the set of all natural numbers. 
Denote by �d the d-dimensional Euclidean space. Let f be a map I to I where

Now we consider a difference equation such that

For an initial point x0 and finite partitions {Ai} of I such that

I ≡ [a, b]d ⊂ �d, a, b ∈ �, d ∈ �.

xn+1 = f
(
xn
)
, n = 0, 1,… , x0 ∈ I.
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the probability distribution 
(
p
(n)

i,A
(M)

)
 of time n and the joint distribution (

p
(n,n+1)

i,j,A
(M)

)
 of time n and time n + 1 are given as

where 1A is the characteristic function of set A.
The entropic chaos degree D of the orbit {xn} is then defined as in [8]

where p(n)
A
(j|i) is the conditional probability from component Ai to Aj.

We simplify the denotation of D(M,n)(A, f ) as D(M)(A, f ) if the probability distribu-
tion 

(
p
(n)

i,A

)
 is a stationary distribution. Moreover, we simplify the denotation of 

D(M)(A, f ) as D(M)(A) if an orbit {xn} is regarded as a practical stationary time series 
without f.

3  An extension of the entropic chaos degree

In the following, we set

Let the Ld(= N)-equipartitions {Ai} of I be

where

I =

N⋃
k=1

Ak, Ai ∩ Aj = � (i ≠ j),

p
(n)

i,A
(M) =

1

M

n+M−1∑
k=n

1Ai
(xk),

p
(n,n+1)

i,j,A
(M) =

1

M

n+M−1∑
k=n

1Ai
(xk)1Aj

(xk+1)

(1)

D(M,n)(A, f ) =

N∑
i=1

N∑
j=1

p
(n)

i,j,A
(M) log

p
(n)

i,A
(M)

p
(n,n+1)

i,j,A
(M)

=

N∑
i=1

p
(n)

i,A
(M)

(
−

N∑
j=1

p
(n)

A
(j|i)(M) log p

(n)

A
(j|i)(M)

)

f ∶ I → I, I =

d∏
k=1

[
ak, bk

]
⊂ �d,

f (�) =
(
f1(�), f2(�),… , fd(�)

)t
, � = (x1,… , xd)

t.

I =

Ld−1⋃
i=0

Ai, Ai = A(i1⋯id)L
=

d∏
k=1

A
(k)

ik
, ik = 0, 1,… , L − 1
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for any k = 1,… , d.
Further, for any Ai,Aj , i, j = 0, 1,… , Ld − 1 , we divide Aj into 

(
Si,j

)d -equiparti-
tions 

{
B
(i,j)

l

}
0≤l≤(Si,j)d−1

 such that

where

and

for k = 1,… , d.
For each B(i,j)

l
 , we define a function gi,j by

For any Ai,Aj, i ≠ j , we give a function R(Si,j) using gi,j as

Here, the numerator of R(Si,j) is the number of components of {B(i,j)

l
} included in 

Aj ∩ f (Ai) , and the denominator of R(Si,j) is the number of elements of {B(i,j)

l
} 

A
(k)

ik
=

⎧
⎪⎪⎨⎪⎪⎩

�
ak +

bk − ak

L
ik, ak +

bk − ak

L
(ik + 1)

�
(ik = 0, 1,… , L − 2),

�
ak +

bk − ak

L
(L − 1), bk

�
(ik = L − 1)

Aj = A(j1⋯jd)L
=

(Si,j)
d
−1⋃

l=0

B
(i,j)

l
, B

(i,j)

l
= B

(i,j)

(l1⋯ld)Si,j
=

d∏
k=1

B
(i,j,k)

lk

B
(i,j,k)

lk
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
âk +

b̂k − âk

Si,j
lk +

b̂k − âk

Si,j
(lk + 1)

�
(lk = 0, 1,… , Si,j − 2, Si,j ≥ 2)

�
âk +

b̂k − âk

Si,j
(Si,j − 1), b̂k

�
(lk = Si,j − 1)

âk =ak +
bk − ak

L
ik,

b̂k =

{
ak +

bk − ak

L
(ik + 1) (ik = 0, 1,… , L − 2)

bk (ik = L − 1)

gi,j

(
B
(i,j)

l

) ≡
{

1 (B
(i,j)

l
∩ f (Ai) ≠ �)

0 (B
(i,j)

l
∩ f (Ai) = �)

.

(2)
R(Si,j) ≡

(Si,j)
d−1∑

l=0

gi,j

�
B
(i,j)

l

�

�
Si,j

�d .
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included in Aj . Thus R(Si,j) becomes the volume rate of Aj ∩ f (Ai) to Aj under the 
1∕Si,j scale.

We then define an extended entropic chaos degree as follows.

Definition 1 

where S = (Si,j)0≤i,j≤Ld−1.

Remark 1 If we set Si,j = 1 (i, j = 0, 1,… , Ld − 1) , then the extended chaos degree 
DS becomes the chaos degree D, or

where 1 = (1)0≤i,j≤Ld−1.

Remark 2 To give an interpretation to the extension for the entropic chaos degree, 
we consider the information quantity of f (Ai) included in Aj.

The entropic chaos degree D includes an information quantity as

Then the volume of Aj ∩ f (Ai) is treated as m(Aj) where m is the Lebesgue measure 
on �d.

On the other hand, we treat the volume of Aj ∩ (Ai) as m(Aj)R(Si,j) under the scale 
1∕Si,j . Thus, under the scale 1∕Si,j , we use

instead of Eq. (4). Because Eq. (5) can take a negative value, Eq. (5) is no longer any 
information quantities.

We regard the extended entropic chaos degree DS as the entropic chaos degree D 
under the scale 1∕Si,j.

Then we have the following theorem.

Theorem 1 Let L, M be sufficiently large natural numbers. If a map f is stable peri-
odic with period T, then we have

(3)D
(M,n)

S
(A, f ) ≡

Ld−1�
i=0

p
(n)

i,A
(M)

⎛
⎜⎜⎝

Ld−1�
j=0

p
(n)

A
(j�i)(M) log

R(Si,j)

p
(n)

A
(j�i)(M)

⎞
⎟⎟⎠

D
(M,n)

1
(A, f ) = D(M,n)(A, f )

(4)log
1

p
(n)

A
(j|i)(M)

.

(5)log
R(Si,j)

p
(n)

A
(j|i)(M)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



616 K. Inoue et al.

1 3

Proof Let the number M of orbit points be a sufficiently large natural number. If f is 
stable periodic with period T, then there exist ik (k = 1,… ,T) such that

For the same reason, there exist jk for ik = 1,… , T  such that

From Eq. (8), we obtain

We also have

for any Aj under the scale 1∕Si,j.
From Eqs. (9) and (10), we get

Substituting Eqs. (7) and (11) into Eq. (3), we finally have

  ◻

Remark 3 Theorem 1 means that the extended entropic chaos degree takes a quite 
small negative value if f is stable periodic, i.e., from Eq. (6), we have

(6)D
(M,n)

S
(A, f ) = −

d

T

T∑
k=1

log Sik ,jk .

(7)P
(n)

i,A
(M) =

{
1

T
(i = ik)

0 (i ≠ ik)

(8)f (Aik
) = Ajk

(ik ≠ jk).

(9)P
(n)

A
(j|i)(M) =

{
1 (i ∈ ik, j ∈ jk)

0 (i ∉ ik or j ∉ jk)
.

(10)R(Si,j) =
1

(Si,j)
d

(11)log
R(Si,j)

P
(n)

A
(j|i)(M)

=

{
−d log Si,j (i = ik, j = jk)

0 (i ≠ ik or j ≠ jk)
.

(12)

D
(M,n)

S
(A, f ) =

T∑
k=1

P
(n)

ik ,A
(M)

(
P
(n)

A
(jk|ik)(M) log

R(Sik ,jk )

P
(n)

A
(jk|ik)(M)

)

=

T∑
k=1

1

T

(
−d log Sik ,jk

)

= −
d

T

T∑
k=1

log Sik ,jk .

D
(M,n)

S
(A, f ) ⟶ −∞ (Sik ,jk → ∞)
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for any stable periodic orbits.
Thus, the extended entropic chaos degree D(M,n)

S
(A, f ) takes a smaller value as the 

scale 1∕Sik ,jk decreases.

Now we consider the relationship between the extended entropic chaos degree 
and the Lyapunov exponent. For any � = (x1, x2,… , xd)

t , � = (y1, y2,… , yd)
t ∈ Ai , 

we define an approximate Jacobian matrix Ĵ  by

Further, we set that rk(�, �), k = 1, 2,… , d , is an eigenvalue of matrix √
Ĵt(�, �)Ĵ(�, �) . Then we introduce the following assumption.

Assumption 1 For sufficiently large natural numbers L, M, we assume that the fol-
lowing conditions are satisfied. 

(1) Points in Ai are uniformly distributed over the entirety of Ai.
(2) We have rk(�, �) = r

(i)

k
, k = 1, 2,… , d for any �, � ∈ Ai where there exists at least 

one r(i)
j

 for any Ai such that r(i)
j

≥ 1.

Remark 4 If we assume Assumption 1, then we have

or

where m is the Lebesgue measure on �d.

Then we have the following theorem.

Theorem 2 For any Ai, i = 0, 1,… , Ld − 1, we assume Assumption 1. Then we have

 where

and {�1,… , �d} is the Lyapunov spectrum of a map f.

Ĵ(�, �) ≡
(
fi(�) − fi(�)

xj − yj

)

1≤i,j≤d
.

(13)R(Si,j) ⟶
m
(
Aj ∩ f (Ai)

)

m
(
Aj

) (
Si,j → ∞

)

m(Aj ∩ f (Ai)) = m(Aj)R(∞),

lim
S→∞

lim
L→∞

lim
M→∞

D
(M,m)

S
(A, f ) =

d∑
k=1

�k

S → ∞ ⇔ Si,j → ∞ (i, j = 0, 1,… , Ld − 1)
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Proof p(n)(j|i)(M) is the rate of the number of points of Aj ∩ f (Ai) to the number of 
points of f (Ai) , i.e.,

From Assumption 1, for sufficiently large natural numbers L, M, we have

where � is the invariant measure of f.
Now let ck be

Then the volume of Ai is

where m is the Lebesgue measure on Rd.
From Assumption 1, the volume of f (Ai) becomes

Under Assumption 1, we have

Using Eqs. (14), (15), (17), and (18), we obtain

On the other hand, for sufficiently large natural numbers L, M, from 
Eqs. (13) and (16), we have

(14)p(n)(j|i)(M) =

|||Aj ∩ f (Ai)
|||

||f (Ai)
||

.

(15)
|||Aj ∩ f (Ai)

|||
||f (Ai)

||
≃

�
(
Aj ∩ f (Ai)

)

�
(
f (Ai)

) ,

ck =
bk − ak

L
, k = 1, 2,… , d.

(16)m(Ai) =

d∏
k=1

ck, i = 0, 1,… , Ld − 1,

(17)m
(
f (Ai)

)
=

d∏
k=1

r
(i)

k
ck.

(18)
�
(
Aj ∩ f (Ai)

)

�
(
f (Ai)

) ≃
m
(
Aj ∩ f (Ai)

)

m
(
f (Ai)

) .

(19)
p(n)(j�i)(M) ≃

m
�
Aj ∩ f (Ai)

�
d∏

k=1

r
(i)

k
ck

.

(20)
R(Si,j) ⟶

m
�
Aj ∩ f (Ai)

�
d∏

k=1

ck

(Si,j → ∞).
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Thus from Eqs. (19) and (20), we obtain

Finally, for sufficiently large natural numbers L, M, from Eqs. (3) and (21), we have

Here, �(�, �) is the density function of (�, �) , and {�1, �2,… , �d} is the Lyapunov 
spectrum of f.   ◻

4  An improvement of the numerical calculation method 
for the extended entropic chaos degree

Theorem 2 implies that under Assumption 1, the extended entropic chaos degree DS 
for a map f goes to the sum of all Lyapunov exponents for the map f as L, M, and Si,j 
go to ∞ . However, we must treat M and L as finite natural numbers in the numeric 
calculation of the entropic chaos degree.

Now, for any Ai,Aj, i, j = 0, 1,… , Ld − 1 , we define

Using Smax
i,j

 , we compute the extended entropic chaos degree DSmax as follows.

(21)

log
R(Si,j)

p(n)(j|i)(M)
⟶ log

(
d∏

k=1

r
(i)

k

)
(Si,j → ∞)

=

d∑
k=1

log
(
r
(i)

k

)
.

(22)

D
(M,n)

S
(A, f )

⟶

Ld−1�
i=0

p
(n)

i,A
(M)

⎧⎪⎨⎪⎩

Ld−1�
j=0

p
(n)

A
(j�i)(M)

�
d�

k=1

log
�
r
(i)

k

��⎫⎪⎬⎪⎭
(Si,j → ∞)

=

Ld−1�
i=0

p
(n)

i,A
(M)

�
d�

k=1

log
�
r
(i)

k

��

=

Ld−1�
i=0

�
d�

k=1

log
�
r
(i)

k

��
p
(n)

i,A
(M)

⟶ ∫
�,�

�
d�
k

log
�
rk(�, �)

��
�(�, �)

d�
k=1

dxkdyk (L,M → ∞)

=

d�
k=1

�k.

(23)Smax
i,j

≡
⌊

d

√
|||Aj ∩ f (Ai)

|||
⌋
.
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where

In the definition of the extended entropic chaos degree DS (Eq. 3), from Eq. (21), we 
have

if all of Si,j (i, j = 0, 1,… , Ld − 1) are sufficiently large natural numbers. Noticing 
that h(i, j) does not depend on j, we introduce a simplified form DSmax of the extended 
entropic chaos degree DSmax by

where jmax is the number j ∈ {0, 1,… , Ld − 1} such that

That means that the simplified form DSmax uses h(i, jmax) instead of the average of 
h(i, j) in the definition of the extended entropic chaos degree DSmax.

Then we have the following relation.

5  Numerical computation results

In this section, we attempt to numerically compute the extended entropic chaos 
degree for a typical two-dimensional chaotic map. We set M = 1, 000, 000 , 
L =

�√
M
�
 to satisfy that L2 < M.

5.1  Two‑dimensional chaotic map

We consider the Hénon map as a typical two-dimensional chaotic map.
The Hénon map fa,b is given as

(24)D
(M,n)

Smax (A, f ) =

Ld−1�
i=0

p
(n)

i,A
(M)

⎛
⎜⎜⎝

Ld−1�
j=0

p
(n)

A
(j�i)(M) log

R(Smax
i,j

)

p
(n)

A
(j�i)(M)

⎞
⎟⎟⎠
,

Smax =
(
Smax
i,j

)
0≤i,j≤Ld−1.

(25)h(i, j) ≡ log
R(Si,j)

p(n)(j|i)(M)
≃

d∑
k=1

log
(
r
(i)

k

)

(26)D
(M,n)

Smax (A, f ) ≡
Ld−1∑
i=0

p
(n)

i,A
(M)

(
log

R(Smax
i,jmax

)

p
(n)

A
(jmax|i)(M)

)
,

(27)p
(n)

A
(jmax|i)(M) = max

0≤j≤Ld−1 p
(n)

A
(j|i)(M).

(28)D
(M,n)

Smax (A, f ) ⟶

d∑
k=1

�k (L,M → ∞)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



621

1 3

An extension of the entropic chaos degree and its positive effect

where � = (x1, x2)
t ∈ [a1, b1] × [a2, b2].

For a = 1.4, 0 < b ≤ 0.3 , we have

Then the Jacobi matrix Dfa,b(�) of the map fa,b becomes

Thus Dfa,b(�) depends on � and the parameter b. We also cannot keep the orthonor-
mal system with the map f.

In the following, we simplify the denotation of f1.4,b as fb .

5.2  Extended entropic chaos degree for a two‑dimensional chaotic map

First, we show the computation results of the entropic chaos degree D for the Hénon 
map fb in Fig. 1. The entropic chaos degree D for any map always takes a non-neg-
ative value. Therefore, if the sum �1 + �2 is negative, then the entropic chaos degree 
D for fb takes a different amount from the sum �1 + �2 of all Lyapunov exponents 
for fb.

Secondly, we show the computation results of the extended entropic chaos degree 
DSmax for fb in Fig. 2. The extended entropic chaos degree DSmax for fb has almost the 
same change on b in (0, 0.3] as the sum �1 + �2 of all Lyapunov exponents for fb . 
That is, the extended entropic chaos degree DSmax for fb takes nearly the same value 
at most points on b in (0, 0.3] as the sum �1 + �2 of all Lyapunov exponents for fb . 
However, there exist some points on b such that the extended entropic chaos degree 
DSmax for fb takes a quite small amount relative to �1 + �2 for fb.

Now we show the bifurcation diagram of the Hénon map and the computation 
results of Lyapunov exponents �1 and �2 for fb in Figs. 3 and 4, respectively.

(29)fa,b(�) =
(
a − x2

1
+ bx2, x1

)t

ak = −1.8, bk = 1.8, k = 1, 2.

(30)Dfa,b(�) =

(
2x1 b

1 0

)
.

Fig. 1  D versus b for Hénon 
map fb
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At many bifurcation points of the Hénon map, the Lyapunov exponents diverge to 
negative infinity, or do not exist, while the sum of its Lyapunov exponents is always 
log b . The extended CD and the Lyapunov exponents also do not work well at many 
bifurcation points of the Hénon map.

Fig. 2  DSmax versus b for Hénon 
map fb

Fig. 3  (x1)n versus b for Hénon 
map fb

Fig. 4  �k (k = 1, 2) versus b for 
Hénon map fb
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The above implies the following. (1) For any chaotic map f, the extended entropic 
chaos degree DSmax takes almost the same value as the sum of all of its Lyapunov 
exponents. (2) However, for any stable periodic map, the extended entropic chaos 
degree Dmax

S
 does not work well because it takes a finite negative value as a numeri-

cal finiteness of an infinitely negative amount.
Finally, we show the computation results of the simplified form DSmax of the 

extended entropic chaos degree DSmax in Fig. 5.
One finds that the simplified form DSmax takes almost the same value as the 

extended entropic chaos degree DSmax . Therefore, the simplified form DSmax can 
reduce the computation time, while maintaining nearly the same computation accu-
racy as the extended entropic chaos degree DSmax .

Though only dissipative systems are directly considered in this paper, the 
extended CD can be computed for any discrete dynamics, including conservative 
systems, if the dynamics satisfies the conditions of Assumption 1. For dynamics that 
do not satisfy Assumption 1, an appropriate setting for computing the extended CD 
is necessary and will be discussed in future works.

6  Conclusion

In this paper, we introduced an extended chaos degree DS for a d-dimensional 
map f, where f maps from I to I. Firstly, we showed that the extended chaos degree 
DS for a stable periodic orbit takes a quite small value. Secondly, we showed that 
under a typical condition, the extended entropic chaos degree D∞ for a chaotic map 
f becomes the sum of all Lyapunov exponents of map f where M, L, and Si,j for 
i, j,= 1, 2,… , Ld − 1 are infinite. Here, M is the number of mapped points, L is the 
number of partitions on each orthogonal axis, and 1∕Si,j is the scale of Aj ∩ f (Ai) for 
the components Ai , Aj of the finite partitions {Ai} of I.

However, we must treat M, L, Si,j as finite numbers in the computation of the 
extended entropic chaos degree DS . Thus we introduced the extended entropic chaos 
degree DSmax rather than D∞ . We confirmed that the extended entropic chaos degree 
DSmax for the Hénon map fb , which is a typical two-dimensional chaotic map, takes 

Fig. 5  DSmax versus b for Hénon 
map
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almost the same value as the sum of all Lyapunov exponents for fb . On the other 
hand, the extended entropic chaos degree DSmax for the Hénon map fb takes a quite 
small value at some points on b. For any stable periodic map, the extended entropic 
chaos degree Dmax

S
 does not work well because it takes a finite negative value as a 

numerical finiteness of an infinitely negative amount.
Further, we introduced the simplified form DSmax of DSmax . The simplified form 

DSmax can reduce the computation time while maintaining the computation accuracy 
of the approximate form DSmax.
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