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Abstract. Increasingly fine-grained cloud billing creates incentives to review the
software execution footprint in virtual environments. For example, virtual execu-
tion environments move towards lower overhead: from virtual machines to con-
tainers, unikernels, and serverless cloud computing. However, the execution foot-
print of security components in virtualized environments has either remained the
same or even increased. We present Flowrider, a novel key provisioning mecha-
nism for cloud networks that unlocks scalable use of symmetric keys and signifi-
cantly reduces the related computational load on network endpoints. We describe
the application of Flowrider to common transport security protocols, the results
of its formal verification, and its prototype implementation. Our evaluation shows
that Florwider uses up to an order of magnitude less CPU to establish a TLS ses-
sion while preventing by construction some known attacks.

Keywords: Network Security, Software Defined Networking, Secure Communication,
Key Management, Cloud Security

1 Introduction

Throughout the past decade, cloud computing has evolved to support a panoply of or-
chestration, deployment, and billing approaches. Notable trends are the use of resource
description templates [11], emergence of serverless computing [24] and fine-grained
resource billing [29,53]. Resource description templates allow to dynamically deploy
workloads and provision them with cryptographic material or network and application
configuration. Most major cloud providers offer serverless computing3. This defers the
operation of the server platform to the cloud provider, while allowing developers to
focus on the application code. Cloud users are billed for the number of function invo-
cations and consumed computation resources, rather than for a pre-purchased unit of
computation such as a bare-metal server or a virtual machine. Finally, serverless plans
are billed based on the CPU, memory, and I/O operations that functions consume. Fine-
grained billing provides strong incentives to develop and deploy applications that utilize
a minimum amount of computing resources. This calls for a rigorous review of software
development and deployment approaches to reduce the use of computing resources.

3See Amazon Lambda, Google Cloud Functions, Azure Functions, Salesforce Evergreen, etc.
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Consider software-defined networking (SDN): separation of control and data planes
helps network configuration and management; however, network operations security
did not keep up with new capabilities enabled by SDN. So far, the distribution of cryp-
tographic material to network endpoints leverage to a limited extent the logical central-
ization of network control [50]. As a result, public-key cryptography, rather than sym-
metric key cryptography, remains almost pervasively the tool of choice for enabling se-
cure network traffic in virtualized deployments regardless of the network architecture.
While public-key cryptography is robust and scalable, it introduces key management
complexity and is relatively CPU-expensive; with fine-grained billing in place, this di-
rectly translates into additional financial costs. On virtualized hosts where tenants share
a common entropy pool, generating asymmetric keys may slow down applications if
sufficient entropy is not available [25]. Some network endpoints may even lack the
computational capacity to generate cryptographic material without disrupting their own
operations. Generating keys on a dedicated host with deep entropy pools can reduce the
key creation overhead. On the other hand, while generating symmetric keys requires
less computational power and has firmware support on many platforms, the use of sym-
metric keys leads to challenges such as secure key provisioning and key authentication.
This introduces the research question: can the SDN model be leveraged to conveniently
provision symmetric keys and reduce computational resource consumption?

We posit that the answer is yes and demonstrate this with Flowrider, a novel key
provisioning mechanism for network endpoints in SDN deployments that considers the
practicalities of cloud systems deployment. In particular, Flowrider takes a reactive, on-
demand, and automatic approach that embeds key distribution into the network flow
establishment. Furthermore, Flowrider makes key distribution agnostic of the network
topology and communication patterns in the system, of which it does not require any
early knowledge. Overall, Flowrider reduces the number of steps for providing sym-
metric key material to endpoints and the time required to set up secure communication.

By conveniently enabling the use of symmetric keys [46], Flowrider reduces by an
order of magnitude the computation load of secure channel establishment on network
endpoints and simplifies key management in SDN deployments [38], without compro-
mising communication security properties. Minor modifications of network endpoints
introduce another contribution - flow-specific symmetric keys - that enable per-flow
cryptographic isolation of network traffic. Flowrider is compatible with common trans-
port layer security protocol suites including (D)TLS v1.2 [12,40] and v1.3 [18,17]. Our
contribution is three-fold:

– We describe a key provisioning mechanism that leverages the use of symmetric
encryption keys in virtualized deployments within an administrative domain.

– We describe the mechanism and functioning of flow-specific symmetric keys, for
establishing secure channels between network endpoints.

– We detail how the proposed mechanism works in the (D)TLS security suites v1.2
and v1.3, where it also prevents the “Selfie” attack [13] by construction.

Our Flowrider implementation shows reduced computation effort and fewer round-
trips to generate authentication credentials and establish secure communication between
endpoints. Note that Flowrider primarily targets controlled enterprise environments and
does not focus on privacy for network endpoints.
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The rest of this paper is organized as follows. We introduce the necessary back-
ground in Section 2 and describe the system model, threat model, and assumptions in
Section 3. In Section 4, we introduce the Flowrider key provisioning mechanism. In
Section 5, we describe the use of Flowrider with (D)TLS. In Section 6, we provide a
formal security analysis of Flowrider with ProVerif, followed by an experimental eval-
uation in Section 7. We review the related work in Section 8 and conclude in Section 9.

2 Background

We first introduce the main concepts and context considered in the rest of the paper.

2.1 Deployment in Virtualized Environments

In modern distributed systems, workloads are commonly deployed using a resource or-
chestration system such as Kubernetes [14], Micado [28] or Rancher4. Workloads are
deployed based on a resource description expressed in a template encoded in a domain-
specific language such as TOSCA [49]. Based on the deployment template, an orches-
trator creates and configures workload environments (virtual machine images, contain-
ers, or microservices), and deploys them on the underlying hardware. The orchestrator
also deploys network components - such as the network controller and network func-
tions - and implements a network configuration defining the communication topology
between workload containers. Depending on operating considerations, the orchestra-
tor may be co-located with the network controller. Orchestrators commonly maintain
a control channel to patch and update the workloads, re-provision cryptographic mate-
rial, and collect operation logs. Finally, deployments can be dynamically reconfigured
depending on the availability of resources (such as memory, CPU, IO, and bandwidth).

2.2 SDN and OpenFlow

SDN emerged in response to the increasing complexity of network deployments, facili-
tating operation and management of virtualized networks [1]. Its operational advantages
lead to wide adoption in enterprise deployments [42]. We next introduce several rele-
vant components of the SDN model.

The data plane contains hardware and software routing components and implements
routing policies that satisfy network administrator goals. It is optimized for forwarding
speed but may contain logic for in-network processing [39]. The Southbound API is a
vendor-agnostic set of instructions implemented by the data plane, allowing two-way
communication between the data and the control planes. In this paper, we consider the
OpenFlow protocol [36]. The control plane is an abstraction layer transforming high-
level network operator goals into discrete routing policies based on a global network
view. Network functions are used by network administrators to express their network
configuration goals using a set of high-level commands. Examples of such applications
are firewalls, intrusion detection systems, traffic shapers, etc. In this paper, we use a
custom network function to generate symmetric keys for establishing secure channels
between network endpoints.

4https://rancher.com/
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Fig. 1: High-level system architecture and components
2.3 Secure Channels

To establish a secure channel, two parties authenticate with each other and derive key
material to protect their communication. To this end, two fundamental approaches exist.

The first approach uses a symmetric pre-shared key held by both parties. Advan-
tages of this approach include the typically small size of keys, computationally effi-
cient operations needed to use those keys, and resilience against cryptanalysis using
quantum-based algorithms. On the other hand, pre-shared keys are typically more diffi-
cult to manage, requiring dedicated management procedures to provide, distribute, and
revoke them. Management tasks become especially complicated in large and dynamic
systems.

The second approach is based on public-key cryptography, where each party ac-
quires the other’s public share of a key pair. In practice, this is a bare raw public key, or
a public certificate including the public key and signed by a trusted certification author-
ity. This approach is widely used: since only public information is shared, management
tasks are simpler compared to pre-shared keys and can be automated through dedi-
cated Public Key Infrastructure. On the other hand, this approach results in much larger
key material, heavier computation load when performing cryptographic operations, and
higher entropy requirements on the communication parties.

3 Network Scenario

Consider the network scenario illustrated in Figure 1: an orchestration node collocated
on a network controller deploys two endpoints, i.e. C as Client and S as Server, as
well as an OpenFlow Switch on the communication path between C and S. Also, it
configures the network controller to establish and manage the network flows between
the endpoints. For monitoring and patch management purposes, the orchestrator node
establishes at deployment time and maintains a secure channel with the endpoints. Note
that this approach is in-line with the industry best-practice recommendations [20].

We assume that the network controller established at deployment time three secure
communication channels: with C, with S, and with the Switch. These can practically
be enforced through (D)TLS sessions. The Switch is able to forward network traffic
between C and S, according to the established flows.

For simplicity and with no loss of generality, we hereafter focus on the scenario
in Figure 1. Nevertheless, the solution presented in this paper seamlessly works also
in more complex and scalable scenarios, where multiple switches, as well as multiple
pairs of client and server peers, are deployed. We assume that the network deployment
follows best practices in terms of capacity for network flows, flow establishment rate,
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and the number of peers engaged in acceptable traffic shapes. This includes proper allo-
cation of bandwidth resources and a sufficient number of deployed switches to prevent
bottleneck points and congestion.

With reference to Figure 1, C intends to securely communicate with S. As discussed
in Section 2.3, typical approaches to establish a secure communication channel rely on
either: a symmetric key pre-shared between C and S; or asymmetric key material either
pre-provisioned at orchestration time, exchanged during the secure channel establish-
ment, or acquired out-of-band, such as through a custom PKI infrastructure. We argue
that, currently, the above approaches display at least the following limitations.

First, if C and S use multiple network flows, communications on each network flow
occur over secure channels created with the same pairwise set of key material. Thus,
compromising the single set of key material leads to endangering the data security on
all network flows between the two endpoints.

Second, asymmetric key material, e.g. raw public keys and public certificates re-
quire computationally- and resource-demanding operations on the endpoints. This be-
comes critical in virtualized environments and serverless model with fine-grained re-
source billing and limited entropy pools.

Third, while use of symmetric keys is computationally lightweight and faster than
public-key approaches, they are rarely used to establish secure communication between
endpoints due to constraints in key provisioning and management. Symmetric keys are
harder to distribute and revoke, especially in large-scale and dynamic distributed work-
load deployments.

Fourth, provisioning of symmetric key material must occur before communication
between the endpoints can start. Moreover, it requires pre-knowledge of the network
topology and of the communication patterns expected from the two endpoints, further
complicating the management of symmetric key material. We describe an alternative
solution allowing to: (i) provide per-flow key material, where a single key compro-
mise does not affect the security of other flows; (ii) distribute symmetric key material
in a way that is fast, dynamic, and automatic. This approach does not require a priori
knowledge of the network topology and communication patterns among the involved
endpoints; (iii) facilitate centralized maintenance of software and hardware for crypto-
graphic operations and key generation.

Flowrider achieves this by provisioning the Client and Server with a flow-specific
symmetric key used to establish a secure communication channel. Key provisioning
is done at flow installation time, whenever the Client initiates a new communication
session with the Server. This approach, further described in Section 4, can be used with
various protocol suites for secure channel establishment. In Section 5, we additionally
detail how it can be implemented in the (D)TLS suite without transcending the isolation
between the transport and encryption layers of a communication session.

4 Key Provisioning Method

We next describe Flowrider, a novel key distribution method for cloud networks. In
particular, Flowrider enables fast, automatic on-demand provisioning of symmetric pre-
shared keys to peer endpoints. Pre-shared keys are distributed contextually with the
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establishment of a network flow between two endpoints and is associated with that
respective network flow. Once received, the endpoints can use the pre-shared key to
establish a secure channel for communicating over that network flow.

Flowrider builds on the following rationale: each time the Client initiates a session
with the Server and triggers the establishment of a new network flow, the network con-
troller generates a new symmetric pre-shared key associated to that flow, and provisions
it to both endpoints. To convey the concept, in this paper we assume that the control
plane operates in a reactive mode. However, this is not a hard requirement: packets can
be matched on the switch while matching packets can be mirrored and upstreamed to
the controller.

In the network scenario illustrated in Figure 1, the network Controller provides the
Client and the Server with symmetric per-flow keys. Key provisioning is done over the
secure channel between the Controller and the Client (C) and Server (S), pre-established
at deployment time. Key provisioning is contextual to establishment of a new network
flow between C and S, involving the Switch and the Controller.

First packet P to S

Request for information

Provide K

Provide K

Flow setup information

Forward packet P

Secure session establishment

Secure data exchange

Client/C: Switch: Network controller: Server/S:

No matching flow

Create new flow F
[The network controller generates a symmetric key K]

Install K for flow FInstall K for flow FInstall K for flow FInstall K for flow F

Fig. 2: Step-by-step general execution

We illustrate a run-through of Flowrider in Figure 2, with the following steps:

1. C sends the first packet P addressed to S. The packet reaches the Switch.
2. The Switch does not find in its flow table a flow rule matching with packet P.
3. The Switch sends a control message to the network controller.
4. The network controller:

(a) Generates a flow rule F to handle traffic between C and S matching packet P.
(b) Generates a cryptographic symmetric key K associated to F, together with a

related key identifier5.
5. The network controller provisions the key K and the related key identifier to both

C and S, through the respective pre-established secure channel. The network con-
troller may additionally provide C with the IP address of S, echoing what is speci-
fied in the control message from the Switch.

5As a possible optimization, the network controller may have generated in advance a number
of symmetric keys, which would thus be immediately available to distribute.
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6. C and S install the received key K and related key identifier. If the message from the
controller includes also an IP address, C verifies that to be the destination address
of its original request to S. This prevents possible internal adversaries from carrying
out misbinding attacks based on IP-spoofing.

7. The network controller communicates to the Switch the new flow rule F.
8. The Switch forwards the packet P to S, according to the flow rule F.
9. C and S use the key K to establish a secure session, for example using the (D)TLS

Handshake protocol (see Section 5).
10. C and S use the flow F to exchange packets over the established secure channel.

Note that steps 5 and 7 occur concurrently.

4.1 Discussion

In Flowrider, the network controller distributes symmetric keys ad-hoc and on-demand
when installing network flows between C and S. Flowrider generates and provisions
symmetric keys on a per-flow basis. Hence, different flows between two peer endpoints
are related to different and independent security domains. Therefore, compromising the
symmetric key associated with a flow does not endanger the security of any other flow
between the two endpoints. Note that provisioning symmetric key material is embedded
in the OpenFlow control traffic to upstream matching packets and install network flows.

The symmetric key material provided with Flowrider is an alternative to state-of-
the-art use of certificates and asymmetric cryptography. Flowrider reduces computa-
tional efforts on network endpoints, and hence lowers economic costs. It also reduces
entropy requirements for the network endpoints, which is particularly important in vir-
tualized networks.

Section 5 describes how Flowrider can be embodied in versions 1.2 and 1.3 of the
security protocol suites TLS and DTLS, without transcending the isolation between the
transport layer and (D)TLS. Flowrider is easily and effectively deployable in existing
network scenarios that use (D)TLS. Further optimizations are possible, such as indirect
provisioning of pre-shared keys to the Server endpoint, through local key derivation on
the Server. Section 5.4 describes this optimization with (D)TLS.

The process in Figure 2 refers to a common execution pattern, i.e. where the estab-
lishment of the network flow between C and S is triggered by C sending a first packet
P. Flowrider supports alternative execution patterns, where the SDN deployment is not
configured in reactive mode and establishing the network flow - and the consequent key
provisioning to C and S - is triggered by the Switch or the network controller, forcing
the installation or change of a flow rule. This can happen when enforcing management
network policies at deployment time, or when dynamically addressing changes in the
network topology and traffic load.

In case of a compromise, the Controller will revoke every flow key issued to a pair
of peers. Determining if a peer was compromised can be achieved through intrusion-
and anomaly-detection, which are out of the scope of this work. When the Controller
determines that one peer P was compromised, the Controller promptly revokes each
per-flow key K issued to P which is not yet expired, and notifies any other peer than P
that has been provided with K, over the respective secure control channel. This requires
the Controller to store at least the key identifier of each non-expired per-flow key.
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5 Compatibility with (D)TLS

While Flowrider can be used with various common transport security protocols, we next
discuss compatibility with the TLS and DTLS security suites. In Sections 5.2 and 5.3,
we describe the embodiment in version 1.2 and 1.3 of (D)TLS, allowing Flowrider to
be immediately deployable without breaking existing security standards.

5.1 Transport Layer Security

Most of the network traffic exchanged today, especially on the Internet, is protected at
the transport layer. That is, two communicating peers establish a secure channel, namely
session, and use it to secure the entire application message. The protected message is
then handed over to the transport layer, e.g. to the TCP or UDP protocol, for delivery
to the other peer. Such secure communication is typically achieved using the protocol
suites Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS).

The TLS 1.2 protocol suite [12] secures the exchange of application data over TCP
among two peers, namely Client and Server, by preventing the eavesdropping, tamper-
ing, and forgery of exchanged messages. The two main protocols composing the TLS
suite are the Handshake protocol and the encapsulation Record protocol. The Client
initiates the Handshake execution with the Server, by sending a ClientHello Handshake
message. Following the Handshake protocol, the two peers agree on a number of secu-
rity parameters and establish key material to later secure their communications.

The Handshake execution is fundamentally based on two possible approaches, de-
pending on the type of security material pre-installed on the two peers and used during
the secure session establishment. In the first approach, the two peers own one or more
symmetric pre-shared keys [19], and the Client can suggest to the Server which key it
intends to use during the Handshake. In the second approach, the peers rely on asym-
metric key pairs, and public keys are exchanged either as conveyed in public certificates
[8] or as raw public keys [51] generated by manufacturers and installed on nodes be-
fore deployment. A node must use out-of-band means for validating raw public keys
received from other peers, and usually retains a list of trusted peer identities. Upon suc-
cessful Handshake completion, peers can exchange application data messages over the
established secure session, using the Record protocol.

The DTLS 1.2 protocol suite [40] provides secure communication of application
data over unreliable datagram protocols such as UDP. DTLS is based on TLS, provides
equivalent security guarantees, and relies on analogous Handshake and Record proto-
cols. The DTLS protocol suite has several differences from TLS, to deal with the unre-
liable underlying datagram transport protocols it runs on. In particular, it does not sup-
port stream ciphers, admits preserving secure sessions upon silently discarding invalid
incoming messages, and includes an explicit fresh sequence number in every protected
message. This allows to correctly distinguish and process incoming DTLS messages,
also in case of out-of-sequence delivery due to the unreliable transport service.

Finally, DTLS introduces an optional additional exchange of a stateless Cookie be-
tween the Client and Server, as a first step of the Handshake. Upon receiving a first
ClientHello message, the Server can reply with a HelloVerifyRequest message, includ-
ing a locally generated value as Cookie. The Client must then reply by sending a sec-
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ond ClientHello, which includes the same Cookie. The Handshake further continues
only if the Server successfully verifies the Cookie received in this second ClientHello.
This forces the Client to prove its alleged source IP address, and, possibly in combina-
tion with additional means such as [33], complicates possible Denial of Service attacks
against the Server performed by an active adversary able to spoof IP addresses.

TLS 1.3 was released to improve both performance and security assurances [18].
While fundamentally providing the same security guarantees as TLS 1.2, TLS 1.3:
i) reduces the handshake by one round trip, while having more handshake messages
also encrypted; ii) provides new functions for key material derivation, with improved
key separation and facilitating cryptographic analysis; iii) always provides perfect for-
ward secrecy if peers run the handshake through public-key based key establishment;
iv) supports the latest key establishment, cipher, and signature algorithms, deprecating
insecure or obsolete ones; and v) enables the exchange of early secure data at the be-
ginning of the handshake, at the cost of sacrificing a subset of security properties for
such data. While TLS 1.3 has been increasingly adopted since its release, TLS 1.2 is ex-
pected to continue being used for a long time, as (a dominant) protocol suite for secure
communication.

5.2 Flowrider with (D)TLS 1.2

Assume the Client and Server intend to securely communicate using the TLS 1.2 [12] or
DTLS 1.2 [40] protocol suite. With reference to the steps in Section 4 shown in Figure
2, Flowrider can be embedded in the (D)TLS Handshake protocol as follows.

At Step (1), the first packet P from C addressed to S is either a TCP SYN (for a TLS
handshake) or a ClientHello Handshake message (for a DTLS handshake). In either
case, C performs the (D)TLS Handshake with S in pre-shared key mode [19].

Later on during the Handshake execution, i.e. at Step (9) of the Flowrider execution
(see Section 4), C points S to key K to be used as a pre-shared key for mutual authen-
tication and as input for deriving the (D)TLS session key material. C specifies the key
identifier of the key K in the PSK identity field of the ClientKeyExchange Handshake
message sent to S.

5.3 Flowrider with (D)TLS 1.3

Assume that the Client and Server intend to securely communicate using the TLS 1.3
[18] or DTLS 1.3 [17] protocol suite. Flowrider can be embedded in the (D)TLS Hand-
shake protocol as follows (see Section 4, Figure 2).

At Step (1), the first packet P from C addressed to S is either a TCP SYN (for a TLS
handshake) or a ClientHello Handshake message (for a DTLS handshake). In either
case, C performs the (D)TLS Handshake with S in pre-shared key mode. That is, as per
(D)TLS 1.3 [17][18], C has to include in the ClientHello Handshake message:

1. A psk key exchange modes ClientHello extension, which specifies the psk ke or
psk dhe ke key exchange mode.
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2. A pre shared key ClientHello extension, present as the last extension and including
a collection of offered pre-shared keys. This collection is structured as follows: (1)
a list of key identifiers; (2) a list of key binders, one for each pre-shared key and
in the same order as the key identifier list. Each key binder is an HMAC computed
with a binder key derived from the corresponding pre-shared key. The key binder is
computed over the ClientHello message up to and including the key identifier list
of the pre shared key ClientHello extension.

S expects a valid hint of the pre-shared key already at the first (D)TLS ClientHello
message. However, if DTLS is used, C does not have the key K and its key identifier
from the network controller already at Step (1) of the Flowrider execution, where the
first packet P addressed to S is already the ClientHello message. Thus, when starting
a new communication flow in the DTLS case, the Client cannot produce a ClientHello
message, as the per-flow symmetric key is not available yet. Intuitively, this is overcome
by the network controller finalizing the original and incomplete ClientHello message,
before the Switch eventually forwards it to the Server as per the newly established
traffic flow. In particular, C stores a dummy pre-shared symmetric key and a related key
identifier, which is not associated with any corresponding server. Then, the following
adaptation of the Flowrider execution is performed, as also shown in Figure 3.

ClientHello to S with dummy
pre shared key extension

Request for information
Forward ClientHello

Provide K

Provide K

Flow setup information
Update ClientHello

Forward the updated ClientHello

Secure DTLS session establishment

Secure data exchange

Client/C: Switch: Network controller: Server/S:

No matching flow

Create new flow F
[The network controller generates a symmetric key K and updates the pre shared key extension in the ClientHello message]

Install K for flow FInstall K for flow FInstall K for flow FInstall K for flow F

Fig. 3: Step-by-step execution for implementing Flowrider in DTLS 1.3

1. C sends the ClientHello message in the first packet P addressed to S. In particular,
the pre shared key ClientHello extension offers only the dummy pre-shared key
used by C for this purpose. Then, the packet reaches the Switch.

2. The Switch fails to find in its flow table a flow rule matching with packet P.
3. The Switch sends a control message to the network controller, asking for infor-

mation about setting up a new flow between C and S and also forwards the entire
packet P, including ClientHello, to the network controller.
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4. The network controller:
(a) generates a new flow rule F to handle traffic between C and S akin to packet P;
(b) generates a cryptographic symmetric key K associated to flow F, together with

a related key identifier;
(c) builds a new pre shared key ClientHello extension for the ClientHello message

in the packet P. The new extension offers only the key K associated to flow
F, and includes one consistently recomputed key binder. The recomputed ex-
tension replaces the one originally included in the ClientHello message in the
packet P.

5. The network controller provisions the key K and the related key identifier to both
C and S, through the respective pre-established secure channel.

6. Both C and S install key K and related key identifier.
7. The network controller replies to the Switch with:

(a) information on handling packets in the new flow F;
(b) packet P including the updated ClientHello message.

8. The Switch forwards the packet P to S, as per the newly installed flow F.
9. C and S establish a secure session/channel, by using the key K, as per the DTLS

1.3 Handhshake protocol.
10. C and S use the flow F to exchange packets over the established DTLS 1.3 channel.

5.4 Optimization through key derivation
As an optimization, the network controller may not explicitly provide S with the key K.
Instead, S can derive the key K from its key identifier, provided by C as a hint during
the (D)TLS Handshake, allowing to further reduce the communication overhead. The
optimization requires that:

– The network controller and S share a pairwise symmetric key-derivation key K∗.
– The network controller maintains a counter NS , which is uniquely associated with

S and incremented upon generating a new per-flow key K associated to S.
– The network controller generates the key K by means of a secure key derivation

function PRF (·) that takes as input the key-derivation key K∗ and a nonce N set
as the current value of the counter NS . PRF (·) can be based on a HMAC function
[30] and rely on the same data expansion scheme described in [12].

– Nonce N used to generate the key K is also used as the key identifier of that key.

In (D)TLS 1.2, the Client C simply specifies the nonce N as a key identifier for the
key K in the PSK identity field of the ClientKeyExchange Handshake message. Upon
receiving the ClientKeyExchange Handshake message, S derives the key K by means
of PRF (·), using the retrieved nonce N and the key-derivation key K∗. This approach
was discussed in [21].

In (D)TLS 1.3, the nonce N is used as the key identifier for the key K in the
pre shared key ClientHello extension for the ClientHello message. In TLS 1.3, this
is directly specified by C, after having received the key K from the network con-
troller. In DTLS 1.3, this is specified by the network controller, when building the
new pre shared key ClientHello extension for the ClientHello message in the packet
P (see step (4c) in Section 5.3). In either case, upon receiving the ClientHello mes-
sage, S derives the key K by means of PRF (·), using the retrieved nonce N and the
key-derivation key K∗.
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5.5 On Preventing the Selfie Attack

Flowrider prevents the reflection attack (“Selfie” [13]) against (D)TLS, which tricks a
session peer into processing messages generated by itself, assuming they come from
the other peer. This exploits the use of the same pre-shared key in two secure sessions,
as (D)TLS client and (D)TLS server.

In an SDN deployment, a peer A (B) acting as (D)TLS client (server) results in
one flow, as an exact combination of source address/port and destination address/port.
Instead, peer A (B) acting as (D)TLS server (client) results in a different flow, with a
flipped combination of source and destination address/port.

In Flowrider, the SDN Controller generates and provides two different pre-shared
keys to peers A and B, one for each of the flows. A and B never use the same pre-
shared key for both combinations of roles, as they always result in different flows, and
distributed pre-shared keys are per-flow. Thus, a given peer gets one different pre-shared
key for each role that such peer has with the other peer sharing the same key, and the
Selfie attack is prevented by construction.

6 Formal Security Verification

We verified the security properties of Flowrider, using ProVerif [3]. ProVerif is based
on the applied pi calculus modeling language and can represent processes, their inter-
actions, and available security channels. ProVerif considers an active adversary (Dolev-
Yao model [9]) that cannot decrypt encrypted messages without accessing the secret
keys.

6.1 ProVerif Modeling

To model Flowrider with ProVerif, we started by declaring types, cryptographic func-
tions, security assumptions, queries, and processes. Throughout the model, we maintain
the assumption of a pre-established secure channel between the network controller and
the endpoints (Client and Server), consistently with the network scenario presented in
Section 3). The channels were securely established using key material assumed to be in-
accessible and infeasible to derive for the adversary. The Client, the Server, the Switch,
and the network controller are each modeled as independent, top-level processes.

We verified6 the following security properties of Flowrider: i) the secure provision-
ing and resulting secrecy of key K, i.e. the key associated with the flow between the
Client and Server (see Section 6.2); and ii) the mutual secure possession of key K by
Client, Server, and controller (see Section 6.3). Note that we do not verify security
properties that are assumed to be already satisfied, such as the security of the (pre-
)established secure sessions and the security of session establishments themselves. In
particular, the security of the TLS session establishment has been formally verified in
[4].

6ProVerif scripts available at https://anonymous.4open.science/r/
8e9da3de-6ccd-4f49-b925-389fbcc9bca6/
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6.2 Key secrecy

In the protocol model we assume that, upon receiving from the controller the key K
associated with the flow, C and S use it to derive the key material for the secure session.
While this consists of executing a session establishment protocol, the model assumes
that a cryptographically secure Key Derivation Function (KDF) is used to derive a single
session key KS as key material. The KDF takes as input the flow key K and context
information related to the secure session. Once the Client-Server session is established,
the Client sends a message M to the Server, encrypted using the session key KS . We
verified that the adversary cannot access the secret message, with the following query:

query(attacker(M)) (1)

The model successfully verified the secrecy of message M. Since K was used as
input to securely derive the session key KS , in turn used to protect the message M, we
conclude that the secrecy of key K is also preserved.

6.3 Mutual secure key possession

In Flowrider, only the Client and Server with access to the flow key K can successfully
establish a secure session with each other in a symmetric mode, over that flow. We verify
that the parties that possess K can establish a secure session over the flow associated
with K.

To this end, we verified that, if the Server receives an encrypted message M from
the Client over a flow, then i) the Client has previously established a secure session
with the Server over that flow; and ii) the Client has sent the message M to the Server,
encrypted with the session key KS derived from the flow key K associated to that flow.

ProVerif allows specifying send and receive operations, as well as to initiate and
terminate communications between the Client and Server, by means of events such as
Initclient(KS), Termserver(KS), Initserver(KS ,Ack) and Termclient(KS ,Ack), where
KS is the session key KS derived from the flow key K. The session establishment is
successfully completed by both parties when each of them received an acknowledgment
from the other party, over that session. The formalized queries for the above events are:

inj − event(termclient(Ks, Ack))

==> inj − event(initserver(Ks, Ack))
(2)

inj − event(termserver(Ks))

==> inj − event(initclient(Ks))
(3)

Queries 2 and 3 verify that for all Initserver(KS ,Ack) and Initclient(KS), events
Termclient(KS ,Ack) and Termserver(KS) were previously executed. ProVerif success-
fully verified both correspondence properties in queries 2 and 3. This implies that only
the Client possessing the flow key K can connect to the Server over that flow, protecting
messages with the session key KS derived from K. This also implies that the Server
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accepts communications over that flow only from the Client corresponding to the flow
key K, i.e. exchanging messages encrypted with the session key KS derived from K.

The injective correspondence in query 2 and 3 verifies that the relation between
correspondence events is one to one, implying that the Client with access to flow key K
can successfully open a dedicated session with the Server. Injectivity holds and ProVerif
verified the injective correspondence since the Server should complete the session es-
tablishment using the flow key only once for the session initiated by the Client.

6.4 Verifying the optimization through key derivation

Flowrider can be further optimized for certain (D)TLS protocol use cases (see Section
5.4). In this optimization, the controller does not send the flow key K to the Server.
Instead, the Server locally derives the flow key K using a nonce generated by the con-
troller and a long-term symmetric key shared with the controller. The nonce is used as
a key identifier for the flow key K and is specified in the session establishment message
addressed to the Server. We verified the optimized version of Flowrider and included
the nonce in the first message sent out by the Client to the Switch.

event(termclient(Ks, Ack))

==> event(initserver(Ks, Ack))
(4)

We verified the security properties discussed in Sections 6.2 and 6.3. In this case,
we verified only the correspondence, since we considered also multiple flows between
the Client and the Server. For non-injective correspondence, the one to one relation
between events is not required, but only the event after the arrow is executed prior to
the event before the arrow. The formalized queries are:

event(termserver(Ks)) ==> event(initclient(Ks)) (5)

ProVerif verified the security properties of the optimized Flowrider version.

7 Experimental Evaluation

In order to understand the practical implementation aspects, trade-offs and performance
of Flowrider, we implemented7 it in a distributed virtualized environment. We ran the
experiments on Google Compute Platform [44] in a g1-small virtual machine (VM)
instance (1 vCPU, 1.7 GB memory).

The test bed is distributed between four Docker containers with the following roles
(see Figure 4): (a) Client, (b) Server, (c) Controller, (d) Open vSwitch (OvS). The end-
points (Client and Server) use TLS 1.3 [18] implemented with the GnuTLS library [34],
version 3.6.5. Two distinct but closely related Client and Server implementations were
created for using symmetric keys and certificates respectively. The controller container
runs Ryu 3.12 and a custom Python application, that defines packets to be matched and

7Implementation code available at https://anonymous.4open.science/r/
8e9da3de-6ccd-4f49-b925-389fbcc9bca6/
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Fig. 4: System test bed

Table 1: Overview of the performance measurements data set
Type PSK PKI

Task clock, msec CPU utilized Time elapsed, msec Task clock, msec CPU utilized Time elapsed, msec
Minimum 3.17 0.034 0.087 13.71 0.183 0.056
Maximum 4.43 0.049 0.097 16.06 0.269 0.080

Mean 3.37 0.037 0.089 14.31 0.24 0.058
Median 3.34 0.037 0.089 14.23 0.24 0.057
Stddev 0.096 0.001 0.0006 0.32 0.005 0.001

Variance 0.00923 0.000001 0.0000004 0.1081 0.00002 0.000002

subsequently generates and delivers keys to the endpoints. The OvS container runs an
instance of Open vSwitch that routes packets between endpoints and forwards prede-
fined packet types to the controller.

We measured the performance of establishing a TLS session in two scenarios. We
ran the TLS handshake in asymmetric mode using PKI certificates (vanilla scenario) and
in pre-shared key (PSK) mode using symmetric keys (Flowrider scenario) consistently
with the Flowrider embodiment for TLS 1.3 (see Section 5.3). The Client established
a TLS session with the Server in the considered mode and terminated the session im-
mediately afterward. We ran the experiment 10,000 times. In both cases, the OvS flow
table did not contain any flows between the Client and the Server; as a result, the first
Client message (TCP SYN) was forwarded to the controller in each scenario run.

We illustrate the results of our experimental evaluation in Figure 5 and Table 1.
Figure 5 shows that the ‘PSK’ scenario (representing Flowrider) performs better in
terms of time spent on the task and CPU utilization. Time elapsed is longer for the
‘PSK’ scenario, partly due to the overhead introduced by the communication between
the switch and the controller. However, the overhead is mostly offset by distributing the
pre-shared keys after the first TCP packet, before the TLS session negotiation starts.

Table 1 presents a more detailed view. The mean task clock is lower in the Flowrider
(‘PSK’) scenario (3.37 msec compared to 14.31 msec). The CPU utilization is signifi-
cantly lower in the Flowrider (‘PSK’) scenario, with a mean of 0.037 versus 0.24 CPU.

Fig. 5: Task Clock, CPU utilisation and Time elapsed for PSK/PKI scenarios
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The time elapsed is about 30% higher in the case of the Flowrider (‘PSK’) scenario.
However, considering that this delay occurs once at setup time and is not recurrent, we
consider that this is an acceptable overhead.

The Flowrider scenario highlights an order of magnitude lower CPU consumption,
due to the use of symmetric key material when establishing the TLS session. Note
that the overall time to establish the secure channel does not change significantly. In
fact, the very first step of the TCP session establishment triggers the distribution of the
symmetric key, which is used to establish the TLS session in PSK mode.

8 Related Work

Protocols such as Kerberos [35] are widely used for symmetric key distribution. This
involves a Key Distribution Center - a Trusted Third Party generating and distributing
ephemeral keys to clients, without disclosing the secret shared key of the server. Inter-
net applications often rely on an Authorization Server providing trusted assertions to
servers about requesting clients [23].

Flowrider key distribution can be viewed as a three-party setting, with the switch
acting as a relay and middleman. Three-party authenticated key exchange has received
much attention. Its security was formalized by Bellare and Rogaway in [31] and much
research has focused on the password-based variant, introduced in [41] and given for the
three-party case in [32]. In the three-party password-based authenticated key exchange
(3PAKE), low entropy secrets shared with the server are used to negotiate a session key
between two parties. This protocol in [32] was shown to have weaknesses [52,6] and
many variants have been proposed since then, some using a server public key [22,47],
and some that do not [5,48]. More recent work on PAKE protocols include making them
post-quantum secure, both in the two-party setting [26] and for three parties [7]. While
authenticated key exchange protocols assume an unprotected channel and pre-shared
keys, Flowrider uses TLS as the underlying protocol for distributing the key from the
cluster manager to the involved parties. This can be accomplished either through sym-
metric pre-shared keys or public keys and is not predetermined by the Flowrider pro-
tocol. Flowrider adapts the problem of three-party key distribution to the SDN setting.
The cluster manager is a natural part of the network, and not an otherwise added trusted
third party (Key Distribution Center) as in the case with e.g, Kerberos. Since TLS is al-
ready used e.g., for deploying jobs to the endpoints and configuring the switch, there is
no need to implement additional key exchange protocols. Moreover, new cryptographic
primitives incorporated into TLS can be used by Flowrider to take advantage of im-
proved ECC [2] and post-quantum resistant algorithms [15].

Key distribution for SDN deployments was explored in several contexts. Li et al.
proposed a symmetric key generation and distribution for content delivery network in-
terconnections using SDN and application-layer traffic optimization [45]. The mech-
anism relies on key generation on the endpoints and a central entity for matching and
distributing key pairs. Similar to Flowrider, this relies on a central authority. However, it
neither reduces the computational load on the endpoints nor improves the performance
of the key exchange. Cloud frameworks commonly rely on a central authority to provi-
sion authentication material to virtual instances (either virtual machines or containers)
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before deployment [10,43]. Provisioning authentication credentials before instantiation
reduces the computational load on the endpoints and reduces the entropy requirements.
However, the use of public keys certificates for key establishment requires more round
trips compared to protocols using symmetric keys.

Provisioning cryptographic material to network endpoints by storing it in trusted ex-
ecution environments (TEEs) was explored in both academia and industry [27].While
this approach leverages hardware security guarantees to store the provisioned crypto-
graphic material, it also introduces additional overhead on accessing the cryptographic
material. This includes both provisioning the material to TEEs and retrieving it from
TEEs. Finally, other less common approaches rely on information that may be public
or not unique, such as the serial number of the device [16], or require manual steps that
do not scale in production settings [37].

Flowrider builds on earlier work and leverages the OpenFlow protocol to enable
symmetric key provisioning. In contrast to existing approaches, Flowrider drastically
reduces the computational requirements for supporting end-to-end encryption; it re-
duces the number of steps for providing symmetric key material to two endpoints and
hence for them to set up secure communication; finally, it allows granular cryptographic
isolation of network flows. While Flowrider does not require TEE support on network
endpoints, it is complementary to approaches provisioning credentials to TEEs.

9 Conclusion

We have presented Flowrider, a novel approach to distribute cryptographic symmetric
keys to endpoints in software networks, contextually with network flow establishment.
Flowrider efficiently provisions symmetric key material and significantly reduces the
number of CPU cycles needed to establish a secure communication channel between
two endpoints. Flowrider leverages the logical centralization of software-defined net-
works to enable efficient use of symmetric keys.

Furthermore, Flowrider makes key distribution agnostic of the network topology
and communication patterns in the system, of which it does not require any early knowl-
edge. Finally, Flowrider is compatible with the (D)TLS 1.2 and 1.3 security protocol
suites, with only minor modifications to endpoint implementations. Our experimental
performance evaluation shows that Flowrider requires up to an order of magnitude less
CPU for a TLS session establishment. Future work will focus on the embodiment and
evaluation of Flowrider in alternative protocols for secure channel establishment.
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25. I. Damgård and T. P. Jakobsen and J.B. Nielsen and J. I. Pagter: Secure Key Management
in the Cloud. In: Stam, M. (ed.) Cryptography and Coding. pp. 270–289. Springer Berlin
Heidelberg, Berlin, Heidelberg (2013)

26. J. Ding and S. Alsayigh and J. Lancrenon and RV Saraswathy and M. Snook: Provably
secure password authenticated key exchange based on RLWE for the post-quantum world.
In: Cryptographers’ Track at the RSA Conf. pp. 183–204. Springer, Cham (2017)

27. K. Sood and J. B. Shaw and J. R. Fastabend: Technologies for secure inter-virtual network
function communication (Aug 2 2016), US Patent 9,407,612

28. K. Tamas and P. Kacsuk and J. Kovacs and B. Rakoczi and A. Hajnal and A. Farkas
and G. Gesmier and G. Terstyanszky: Micado, a microservice-based cloud application-
level dynamic orchestrator. Future Generation Computer Systems 94, 937 – 946 (2019).
https://doi.org/https://doi.org/10.1016/j.future.2017.09.050

29. K. Thimmaraju and S. Schmid: Towards Fine-Grained Billing For Cloud Networking (2020)
30. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Authentica-

tion. RFC 2104 (Informational) (Feb 1997). https://doi.org/10.17487/RFC2104, https:
//www.rfc-editor.org/rfc/rfc2104.txt, updated by RFC 6151

31. M. Bellare and P. Rogaway: Provably Secure Session Key Distribution: The Three Party
Case. In: Proc. of the Twenty-Seventh Annual ACM Symposium on Theory of Computing.
p. 57–66. STOC ’95, Association for Computing Machinery, New York, NY, USA (1995)

32. M. Steiner and G. Tsudik and M. Waidner: Refinement and extension of encrypted key ex-
change. ACM SIGOPS Operating Systems Review 29(3), 22–30 (1995)

33. M. Tiloca and C. Gehrmann and L. Seitz: On Improving Resistance to Denial of Service and
Key Provisioning Scalability of the DTLS Handshake. International Journal of Information
Security 16(2), 173–193 (April 2017)

34. N. Mavrogiannopoulos and S. Josefsson and D. Ueno and C. Latze and A. Pironti and T. Zla-
tanov and A. McDonald: GnuTLS Reference Manual. Samurai Media Ltd., London (2015)

35. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authentication Ser-
vice (V5). RFC 4120 (Proposed Standard) (Jul 2005). https://doi.org/10.17487/RFC4120,
https://www.rfc-editor.org/rfc/rfc4120.txt, updated by RFCs 4537,
5021, 5896, 6111, 6112, 6113, 6649, 6806, 7751, 8062, 8129

36. Open Networking Foundation: OpenFlow Switch Specification. Tech. Rep. ONF TS-025,
Open Networking Foundation (March 2015), v.1.5.1

37. Open vSwitch: Open vSwitch with SSL (2019), http://docs.openvswitch.org/
en/latest/howto/ssl/

38. Paladi, N., Tiloca, M., Bideh, P.N., Hell, M.: On-demand key distribution for cloud networks.
In: 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN). pp. 80–82 (2021). https://doi.org/10.1109/ICIN51074.2021.9385528



20 Nicolae Paladi, Marco Tiloca, Pegah Nikbakht Bideh, and Martin Hell

39. R. Bifulco and J. Boite and M. Bouet and F. Schneider: Improving SDN with InSPired
Switches. In: Proc. of the Symposium on SDN Research. pp. 11:1–11:12. SOSR ’16, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2890955.2890962

40. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Version 1.2. RFC
6347 (Proposed Standard) (Jan 2012). https://doi.org/10.17487/RFC6347, https://www.
rfc-editor.org/rfc/rfc6347.txt, updated by RFCs 7507, 7905

41. S. Bellovin and M. Merritt: Encrypted Key Exchange: Password-Based Protocols Secure
Against Dictionary Attacks. Security and Privacy, IEEE Symposium on 0, 72 (04 1992).
https://doi.org/10.1109/RISP.1992.213269

42. S. Jain, and A. Kumar and S. Mandal and J. Ong and L. Poutievski and A. Singh and S.
Venkata and J. Wanderer and J. Zhou and M. Zhu and J. Zolla and U. Hölzle and S. Stuart
and A. Vahdat: B4: Experience with a Globally-deployed Software Defined WAN. In: Proc.
of the ACM SIGCOMM 2013 Conf. on SIGCOMM. pp. 3–14. SIGCOMM ’13, ACM, New
York, NY, USA (2013). https://doi.org/10.1145/2486001.2486019

43. S. Martinelli and H. Nash and B. Topol: Identity, Authentication, and Access Management in
OpenStack: Implementing and Deploying Keystone. O’Reilly Media, Inc., Sebastopol, CA,
USA (2015)

44. S. P. T. Krishnan and J. L. U. Gonzalez: Google Compute Engine, pp. 53–81. Apress, Berke-
ley, CA (2015). https://doi.org/10.1007/978-1-4842-1004-8

45. Seedorf, J., Burger, E.: Application-Layer Traffic Optimization (ALTO) Problem State-
ment. RFC 5693 (Informational) (Oct 2009). https://doi.org/10.17487/RFC5693, https:
//www.rfc-editor.org/rfc/rfc5693.txt

46. Selander, G., Paladi, N., Tiloca, M.: Security for distributed networking. World Intellectual
Property Organization - PCT/EP2019/051456 (July 2020)

47. T.-F. Lee and J.-L. Liu and M.-J. Sung and S.-B. Yang and C.-M. Chen: Communication-
efficient three-party protocols for authentication and key agreement. Computers & Mathe-
matics with Applications 58(4), 641–648 (2009)

48. T.-Y. Chang and M.S. Hwang and W.-P. Yang: A communication-efficient three-party pass-
word authenticated key exchange protocol. Information Sciences 181(1), 217–226 (2011)
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