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Load Reduction for Timely Applications in the
Cloud

Antonio Franco, Björn Landfeldt, Ulf Körner, Christian Nyberg

Abstract—In many IoT applications, sensor data is sent re-
motely to be processed, but only the freshest result is of interest.
In this paper we investigate a feedback mechanism that aborts the
processing of stale data at the remote end to reduce the load and
save costs. The process is approximated by an M/M/∞ queueing
system with a feedback loop. We find the exact expression of
the average computational time saved and show that with the
feedback loop in place the computation time per CPU can be cut
up to 25%, making the technique very promising.

Index Terms—Age of Information; Queuing theory; Timely
computation; Cloud computing.

I. INTRODUCTION

A current trend in the telecommunication industry is to
shift the computation of tasks from the user devices, to data
centers in the edge/cloud, especially in the field of the Internet
of Things (IoT). While this gives a series of advantages to
developers and content providers (platform independence, no
need to distribute patches to all the users etc.), it also poses
several challenges, especially for time sensitive applications;
an application of the latter type may want to have many
replicas of the same task being computed in a parallel fashion,
and then just retrieve the replica that was computed first,
discarding the others.

While the aforementioned scheme is of advantage for the
user, if no mechanism is put in place to prevent stale replicas
to continue being computed, this may result in wasted clock
time at the data center side. By reducing the computational
time per task, fewer servers can handle the same tasks, hence
the total load of the data center is reduced. In general, we
consider timely applications, where the time between the user
interaction and the relative feedback should not exceed a cer-
tain threshold (e.g. Industrial IoT [1], digital twins [2], cloud
gaming [3], haptic applications for the tactile internet [4]).

Timeliness in such systems is often analyzed through the
Age of Information (AoI) metric, that is, a measure of how
old is the information stored at a receiver end [5]. Specifically,
we want to explore possible ways to reduce the load at the
server/data center side. Particularly, the time a job spends
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Fig. 1. A user device offloading timely computations to a remote data
center (a); the latter is approximated with an M/M/∞ queuing system with
a feedback loop (b). The user device sends the updates at times ti, while
receiving the corresponding results at times τi.

in service, translates to clock time spent, e.g. at the edge.
Since clock time is usually sold at a cost (by e.g. a cloud
provider), the less service time is used, the better for the
content provider/developer and the less the data center is
loaded. Also, reducing the load at the cloud/edge side has
an environmental benefit [6].

We then consider a system in which updates to be computed
are sent by e.g. a device to a data center, which is loaded
with a series of independent tasks, and therefore exhibit
independent and exponentially distributed computation times.
We also assume the interarrival times between updates to
be independent and therefore exponentially distributed. The
source can either be a user device, or it can be replicas of user
tasks that are generated and distributed over several servers to
decrease the expected finishing time for a computation. Any
parallel computations that would finish after the first server,
are aborted to save on computation time using the feedback
loop (Fig. 1a). In accordance with previous work listed below,
we approximate this system as an M/M/∞ queuing system
(Fig. 1b). We want to find the average computational time
used by tasks. The aforementioned metric, if compared to the
scenario without feedback loop, will give us a measure of the
advantage of using this mechanism.

Timeliness in an M/M/∞ queuing system was studied
in [7], [8]. The first work found the exact expression of the
average AoI, while the latter found its entire distribution.
Timely applications in the edge/cloud were studied in [9]–[12].
Particularly, in the latter, a feedback loop is inserted as a means
of reducing the load at the server side, but only the percentage
of aborted tasks is considered as a metric of the advantage of
having feedback. As far as the authors are aware this paper
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Fig. 2. A typical time period for an M/M/∞ queueing system, where ∆(t)
is the AoI at the sink side. Generation times are marked as ti, while the
corresponding departure times are marked as τi.

is the first addressing the percentage of computational time
per task saved by aborting staler tasks in a massively parallel
environment, thus quantifying the savings that can be achieved.

The remainder of this paper is organized as follows. In
Section II the scenario is described in detail. In Section III the
expression of the expected value for the service times per task
is found. In Section IV the previous expression is compared
with simulations and results analyzed. Finally in Section V
conclusions and future work are discussed.

II. MODEL DESCRIPTION

The source generates pieces of information (i.e. tasks) with
an average rate of λ jobs per second. Each piece of information
is timestamped with its generation time. The servers all serve
jobs with an average rate of µ tasks per second, modeling
a pool of independent jobs computed in a massively parallel
environment. The sink acknowledges each received piece of
information by broadcasting the latest information generation
time-stamp to all the servers involved. Upon receiving the
broadcast, each server checks whether it has a piece of
information in service of the same age or older than the
broadcasted generation time-stamp. If there is such a job in
service, it is aborted to save computation time. The broadcast
is assumed instantaneous; the latter assumption is based on
the fact that a message passed between computational units in
a data center takes a negligible amount of time with respect
to the average computation time.We will call a task that is not
discarded an informative task, while a task that is discarded,
an obsolete task.

Both the inter generation times – described by the r.v. X
– and the service times – described by the r.v. S – follow
an exponential distribution with an average rate of λ and µ
tasks per second respectively. The source sends updates about

Fig. 3. Timeline for obsolete tasks between informative tasks.

a single information stream i.e. there is only one class of tasks.
Each server in the model serves tasks by drawing service times
from the same exponential distribution with rate µ tasks per
second.

It is also worth mentioning that for the remainder of the
paper the Probability Density Function (PDF) of a random
variable X will be expressed as fX(x), and its Cumulative
Distribution Function (CDF) as FX(x) = Pr {X ≤ x}. For
clarity, we will sometimes abuse the probability notation and
write, e.g. Pr {X = x} , fX(x), even if X is a continuous
random variable. Also, we will indicate a multivariate random
variable of dimension b − a as Xb

a, where one or both the
extremes could be infinite, and its outcome as xba. Finally,
unless stated otherwise, all the random variables have non
negative support.

In Fig. 2 a typical time period is shown, along with the
AoI ∆(t), i.e. the difference between the current time, and
the time of generation of the last informative task received.
Generation times are marked as ti, while the corresponding
departure times (i.e. the times when the sink receives the task)
are marked as τi. Task 1 is generated at t1, and arrives at
the sink after a time S1, at the instant τ1. The AoI will then
jump to the service time experienced by task 1. Then it will
continue to grow with slope 1, until task 2 arrives at the sink,
where it again jumps to its service time S2. Notice that, since
task 3 is generated before task 4, but arrives after the latter,
it is discarded, i.e., is an obsolete task. The time between
the arrival of two informative tasks to the M/M/∞ queueing
system we call the effective inter-generation time, described
by the random variable B. Also, the service time experienced
by an informative task we call the effective service time, and
the random variable that describes it is Z.

III. AVERAGE COMPUTATIONAL TIME PER TASK

First, we note that the joint PDF of n inter-arrivals fXn
1
(t)

is the product of the PDFs of n independent and identically
distributed (i.i.d.) exponential random variables, i.e.:

fXn
1
(xn1 ) =

n∏

k=1

fX(xk) = λne−λ
∑n
k=1 xk .

The random variable describing the inter-arrival times after
task i, is a vector, with non negative support, indicated as
X∞i+1 = {Xi+1, Xi+2, . . .}.

We refer to Fig. 3. We suppose that the i-th generated task
is informative and renders n tasks obsolete. It is the k-th
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informative task, and the i-th task from the start of our system.
The spacing between informative task k − 1 and informative
task k (i.e. task i) is described by the random variable Bk.
We concentrate on task i− l− 1, with l < n. Its service time
si−l−1 ends after the service time of the next informative task
si. Being si the realization of the random variable describing
the service time for informative tasks Z, we will refer to its
underlying random variable as Zk. When, after l arrivals plus
si, the next informative task arrives, task i− l− 1 is aborted.
This means that the computation time between its arrival and
the arrival at the sink of the next informative task, is the
computational time effectively used by the task. We describe
this quantity with the random variable Yl. Yl is the sum of
the r.v. describing the next l arrivals Rl, and the service time
of the next informative task Zk. Our goal is to calculate the
average server occupancy per task in our scheme, described
by the random variable Y ; in order to calculate the expected
value of Y , we first need to calculate:

E [Yl] = E [Rl] + E [Zl] , (1)

where we renamed Zk to Zl, being it the r.v. describing the
service time for an informative task i that has rendered at
least l previous tasks obsolete, so, under our steady state
assumptions, is independent of the task number.

In order to calculate E [Rl], we define the event E1(i) that
the task i is informative and the event E2(l), meaning that
a task i has rendered at least l previous tasks obsolete. Note
that, as found in [7, Appendix A], E1(i) is independent of
the task number i, so is E2(l). Additionally, we define E(l) =
E1(i) ∩E2(l), that is, the event where informative task i has
rendered at least l previous tasks obsolete. We first write the
joint distribution of the l inter-arrivals before task i given that
the next informative task is task i as:

fXi
i−l+1|E(l)

(
xii−l+1

)

=
fXi

i−l+1

(
xii−l+1

)

Pr {E(l)} Pr
{
E(l)|Xi

i−l+1 = xii−l+1

}
, (2)

where:

Pr
{
E2(l)|Si = si,X

i
i−l+1 = xii−l+1

}

= Pr

{
l−1⋂

l1=0

(
Si−l1−1 > si +

l1∑

k=0

xi−k

)}

= e−µlsi−µ
∑l
k=1 kxi−l+k . (3)

From [7, Eq. (5)] we know:

Pr
{
E1(i)|Si = t,X∞i+1 = x∞i+1

}

= 1 {t < xi+1}+

∞∑

r=1

(
e−µ(rt−

∑r
k=1(r−k+1)xi+k)

× 1
{

r∑

k=1

xi+k < t <

r+1∑

k=1

xi+k

})
. (4)

where 1{E} is the indicator function, defined as:

1{E} =

{
1 , E is true
0 , E is false

.

Noticing that (3) and (4) are conditionally independent given
Si, Xi

i−l+1 ∩X∞i+1 ≡ ∅ and that all the interarrival times are
i.i.d. we can write:

Pr
{
E(l)|Xi

i−l+1 = xii−l+1

}

=

+∞∫

0

+∞∫

0

· · ·
+∞∫

0︸ ︷︷ ︸
|x∞i+1| times

Pr
{
E2(l)|Si = si,X

i
i−l+1 = xii−l+1

}

× Pr
{
E1(i)|Si = si,X

∞
i+1 = x∞i+1

}
fX∞i+1

(
x∞i+1

)
fS(si)

dx∞i+1dsi = ρ−(ρ+l+1)eρ−µ
∑l
k=1 kxi−l+kγ (ρ+ l + 1, ρ) .

(5)

where |x| represents the cardinality of the (possibly infinite)
set x, ρ = λ/µ is the server load, and γ(s, x) is the lower
incomplete gamma function:

γ(s, x) =

∫ x

0

ts−1 e−t dt.

By averaging the previous over the l inter-arrivals:

Pr {E(l)} =

+∞∫

0

· · ·
+∞∫

0︸ ︷︷ ︸
l times

Pr
{
E(l)|Xi

i−l+1 = xii−l+1

}

× fXi
i−l+1

(
xii−l+1

)
dxii−l+1

=
ρ−(ρ+1)eργ (ρ+ l + 1, ρ) Γ(ρ+ 1)

Γ (ρ+ l + 1)
. (6)

By substituting the previous and (5) in (2) we obtain:

fXi
i−l+1|E(l)

(
xii−l+1

)
=
µlΓ (ρ+ l + 1)

Γ(ρ+ 1)
e−

∑l
k=1(λ+kµ)xi−l+k

=

l∏

k=1

[
1

λ+ kµ
e−(λ+kµ)xi−l+k

]
.

We notice that the previous joint distribution is the product
of all the marginals, thus all the involved random variables
are independent. Then, the expected value of the sum will
be the sum of the expected value of each marginal, that is, an
exponential with rate λ+kµ; if we call Al the r.v. representing
the sum of the next l inter-arrivals, we have:

E [Rl] = E [Al|E(l)] = E

[
l∑

k=1

Xi−l+k

∣∣∣∣∣ E(l)

]

=

l∑

k=1

E [Xi−l+k| E(l)] =

l∑

k=1

1

λ+ kµ

=
1

µ
[ψ(ρ+ l + 1)− ψ(ρ+ 1)] , (7)

where we took advantage of the recurrence relation of the
digamma function ψ(x) defined as the derivative of the loga-
rithm of the gamma function. Notice how in (7) E [Al|E(0)] =
0, as expected, being it the aborted service time for an
informative task.

In order to find E [Zl], we use a reasoning similar to (5),
but we instead average over all the arrivals; i.e.:

Pr {E(l)|Si = si}
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=

+∞∫

0

· · ·
+∞∫

0︸ ︷︷ ︸
|x∞i−l+1| times

Pr
{
E2(l)|Si = si,X

i
i−l+1 = xii−l+1

}

× Pr
{
E1(i)|Si = si,X

∞
i+1 = x∞i+1

}
fX∞i−l+1

(
x∞i−l+1

)

dx∞i−l+1 =
ρlΓ(ρ+ 1)

Γ(ρ+ l + 1)
eρ−[λ+lµ]si−ρe

−µsi
.

We then use Bayes along with (6), in order to find the PDF
of Zl, i.e.:

fZl(si) =
µρρ+l+1

γ(ρ+ l + 1, ρ)
e−[λ+(l+1)µ]si−ρe−µsi .

Finally, we can directly calculate the expected value of Zl
from the previous, i.e.:

E[Zl] =
µρρ+l+1

γ(ρ+ l + 1, ρ)

∫ ∞

0

sie
−(λ+µ)si−ρe−µsidsi

= − ρρ+l+1

µ(ρ+ l + 1)2γ(ρ+ l + 1, ρ)

∫ 1

0

ln(y)yρ+le−ρydy

=
ρρ+l+1

µ(ρ+ l + 1)2γ(ρ+ l + 1, ρ)

× 2F2 (ρ+ l + 1, ρ+ l + 1; ρ+ l + 2, ρ+ l + 2;−ρ) , (8)

where, in order to solve the last integral, we used the re-
currence integral relation of the generalized hyper-geometric
function [13, Theorem 38].

In order to de-condition E [Yl], we need to find the proba-
bility of being exactly l tasks from the next informative task
i, represented by the event E3(l). We notice that the event
E3(l > 0) ≡ E(l). So, simply, by using (6) for l > 0:

Pr {E3(l > 0)} =
ρ−(ρ+1)eργ (ρ+ l + 1, ρ) Γ(ρ+ 1)

Γ (ρ+ l + 1)
. (9)

For l = 0 we proceed similarly as in (5):

Pr {E3(0)} =

+∞∫

0

+∞∫

0

+∞∫

0

· · ·
+∞∫

0︸ ︷︷ ︸
|x∞i+1| times

Pr {Si−1 < xi + si}

× Pr
{
E1(i)|Si = si,X

∞
i+1 = x∞i+1

}
fX∞i+1

(
x∞i+1

)

× fX(xi)fS(si)dx
∞
i+1dsidxi

= ρ−(ρ+1)eργ (ρ+ 1, ρ)

(
1− 1

λ+ µ

)
.

By combining the previous with (9):

Pr {E3(l)}

=
ρ−(ρ+1)eργ (ρ+ l + 1, ρ) Γ(ρ+ 1)

Γ (ρ+ l + 1)

(
1− δl,0

λ+ µ

)
,

(10)

where δi,j is the Kronecker delta defined as:

δi,j =

{
0 if i 6= j,

1 if i = j.
.
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Fig. 4. Average computational time per task with and without feedback
loop (11); Simulation vs analytical.

Finally, the average service time per task E [Y ] in our
system, by using (7) and (8) in (1), and (10) to average over
all ls, will be:

E[Y ] =

∞∑

l=0

E [Yl] Pr {E3(l)}

=

∞∑

l=0

[
ρρ+l+1

µ(ρ+ l + 1)2γ(ρ+ l + 1, ρ)

× 2F2 (ρ+ l + 1, ρ+ l + 1; ρ+ l + 2, ρ+ l + 2;−ρ)

+
1

µ
[ψ(ρ+ l + 1)− ψ(ρ+ 1)]

]

× ρ−(ρ+1)eργ (ρ+ l + 1, ρ) Γ(ρ+ 1)

Γ (ρ+ l + 1)

(
1− δl,0

λ+ µ

)
.

(11)

IV. NUMERICAL RESULTS

TABLE I
PARAMETERS USED IN THE NUMERICAL STUDY.

Symbol Description

µ
Tasks processed by a computational unit in the remote data
center per second without a feedback loop in place (average)

λ
Tasks sent by the device to the remote data center per second
(average)

E [Y ]
Average time (in seconds) a task spends in computation with
the feedback in place

We conducted simulation studies using OMNeT++ [14]. All
plots involving simulations are allowed for a sufficient warm-
up period before taking measurements. Confidence intervals
are too tight to show at 95% confidence. All the plots make
use of a black and white printer-friendly and accessible color
scheme [15]. The parameters used in the numerical study are
described in Table I.

In Fig. 4 we plotted (11) – i.e. the average service time per
task E [Y ] – along with the expected service time for tasks
without a feedback loop – i.e. µ−1 seconds – for a broad
range of average service rates; we fixed the interarrival rate λ
= 100 tasks per second and let the service rate vary between
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Fig. 5. Contour plot, where the isolevel lines are the percentage of compu-
tational time per task saved with the feedback loop in place (12).
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Fig. 6. Percentage of computational time per task saved with the feedback
loop in place (12), isometric view.

50 and 200 tasks per second. We find that (11) agrees with
the simulations.

In order to highlight the benefit of the feedback loop we also
did a contour plot of the percentage of computational time per
task saved with the feedback loop in place (Fig. 5) i.e.:

% saved = (1− µE [Y ]) · 100 . (12)

The rates λ and µ both span between 50 and 200 tasks
per second. The corresponding isometric view is presented in
Fig. 6. As we can see from the figures, substantial advantages
in terms of saved computational time can be reached when the
service rate per server is low in comparison to the interarrival
rate. By combining the results in [8] and Fig. 5, it is possible
to lower the requirements on the speed of the computational
units (i.e. purchase cheaper CPUs), while mantaining the same
specifications on timeliness; particularly, at high loads, it is
possible to scale down the data center significantly (a saving
of at least 25% per CPU).

V. CONCLUSION AND FUTURE WORK

In this paper we studied a mechanism to reduce the load
when timely updates have to be processed in a remote location.
We examined a situation in which a user is sending updates

to be processed by a server/data center, where computation
of parallel tasks can be assumed independent. Specifically, we
assumed that only the freshest update is of interest to the user,
thus rendering the computation of staler tasks only a burden
to the data center.

We investigated the properties of such a system by studying
an M/M/∞ system in which the sink has a feedback loop to
the infinite servers, and immediately broadcast the timestamp
of generation of the update that triggered the computation that
was just completed, thus causing the immediate stop of jobs
relative to staler updates.

We found the exact expression of the percentage of compu-
tational time per task saved with the feedback loop in place, as
opposed to the average service time in an M/M/∞ system, and
shown its advantages. Future work will involve studying the
effect of an eventual delay in the feedback loop, and extend
the analysis to a G/G/∞ system.
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