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Abstract

Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and
animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other
phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either
positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less
attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and
pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic
incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated
microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly,
this expands the options available to exploit microbes for vector control by also targeting parameters that affect
vectorial capacity. However, there are still many knowledge gaps regarding mosquito–microbe interactions that
need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the
microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control
strategies and areas where further studies are required.
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Background
The 'microbiome' is a collection of microorganisms
within or on an organism. In mosquitoes, the micro-
biome, which consists of bacteria, viruses, protozoans
and fungi, profoundly alters host phenotypes. Acquisi-
tion and the composition of the microbiome are influ-
enced by several abiotic and biotic factors, including
host and microbial genetics [1–4] and the environment
[5–7]. Therefore, microbiomes of mosquitoes can vary

substantially between individuals, life stages, species and
over geographical space [8, 9], and this variation likely
contributes to differences in host phenotypes [10]. Simi-
larly, the horizontal and vertical transmission routes that
microbes exploit to colonise their host mean that mos-
quitoes reared in a laboratory setting have a vastly differ-
ent microbiome compared to their field counterparts
[11–13]. As such, undertaking studies with a field rele-
vant microbiome has been challenging. Within the mos-
quito, microbes can invade and colonise different
tissues, perhaps by intracellular routes [14], and the re-
productive organs [15, 16] and salivary glands [17] ap-
pear to have the greatest diversity of microbes.
Microbiota in the midgut or salivary glands have the po-
tential to interact directly with pathogens whereas
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microbes residing in other tissues may indirectly affect
vector competence. Microbes that reside in the gut or
other tissues [18, 19] may also have relevance for other
life history traits which influence vectorial capacity.
Vectorial capacity describes the ability of a population

of vectors to transmit pathogens to a host and is repre-
sented by the vectorial capacity equation (Fig. 1). This
was created by Garret-Jones in 1964 and represents the
number of secondary cases of vector infection per unit
of time given the introduction of an infectious individual
into a naïve population [20, 21]. Pathogen transmission
is modelled by the vectorial capacity equation, which is a
vector-centric adaptation of the basic reproductive num-
ber (R0) equation [22]. The components of the vectorial
capacity equation are the following: vector biting rate
(a), vector density (m), probability of vector daily sur-
vival (p), vector competence (b) and pathogen extrinsic
incubation period (N). An infected person gets bitten by

ma vectors each day. Of these ma bites, only a propor-
tion b is infectious to the vector, giving a total of mab
vectors infected by the primary case. The proportion of
vectors surviving the extrinsic incubation period is pN,
so mabpN vectors become infectious. Each of these in-
fectious vectors then survives for an average time of 1/
−ln(p), and during this time, it bites people at the rate of
a bites per day, making a total of a/−ln(p) bites. Thus,
there are mabpN infectious vectors arising from the pri-
mary case making a/−ln(p) infectious bites on suscep-
tible hosts, resulting in the following vectorial capacity:
ma2bpN/−ln(p). Therefore, each component of the equa-
tion will have a certain impact on the ability of mosqui-
toes to transmit pathogens. As such, targeting any of
these components could result in a reduction of patho-
gen transmission.
Some components of the vectorial capacity equation

have traditionally received more attention than others

Fig. 1 Vectorial capacity (VC) equation and the effects of the microbiome on mosquito vectorial capacity. The mosquito microbiome can
modulate the five components of vectorial capacity. These components are vector density (m), vector biting rate (a), vector competence (b),
pathogen extrinsic incubation period (N) and probability of vector daily survival (p). The microbiome can impact the probability of vector daily
survival by modulating mosquito fitness, interacting with other microbes and affecting insecticide resistance. It can also affect vector density
through effects on host growth, development and reproductive output and by modulating their resistance to abiotic stress
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by mosquito control efforts. Probability of daily sur-
vival and density have been targeted by adulticides
and larvicides respectively, achieving significant reduc-
tion of vector-borne diseases, but the emergence of
insecticide resistance and diverse non-target effects
are compromising these strategies [23]. Vector com-
petence has been the main focus of the design of
novel vector control methods, such as release of Wol-
bachia-infected mosquitoes for population replace-
ment, which has showed unprecedented success in
dengue control [24]. However, little attention has
been paid to other aspects of mosquito biology which
can have equal or potentially greater effect on patho-
gen transmission [25–28]. In this sense, the great di-
versity of mosquito gut-associated microbes could
offer new tools to target different components of vec-
torial capacity [29, 30]. However, in order to leverage
the microbiome for vector control, it is imperative to
understand how such microbes modulate vector biol-
ogy. In this review, we compile and consider the evi-
dence of the impact that the mosquito gut-associated
microbiome has on particular components of the vec-
torial capacity equation. We also discuss other vector
systems and are guided by what we can infer from
other insect models. Finally, we draw from the sub-
stantial Wolbachia knowledge base when there is a
lack of evidence on how gut-associated microbes in-
fluence traits relevant for vectorial capacity in
mosquitoes.

Influence of microbiota on vector competence (b)
All microbes that associate with vectors, including
bacteria [31], viruses [32], fungi [33] or microsporidia
[34] can modulate vector competence. Vector compe-
tence is fundamental to vectorial capacity since it de-
termines the susceptibility of the mosquito to become
infected by a pathogen, and the higher the vector
competence, the higher the vectorial capacity. Gut-
associated microbiota can interfere directly with path-
ogens through mechanisms such as lysis and biofilm
formation [31] or indirectly by affecting intrinsic as-
pects of the vector that determine its vector compe-
tence, like midgut and salivary gland barriers [35–37]
and the immune system [1, 38]. In addition, micro-
biota can potentially have other functions in pathogen
transmission, since it may be transmitted to the
mammalian host during feeding on the host [39]. The
role of the gut microbiome in modulating vector
competence for several pathogens has been well stud-
ied and reviewed extensively in mosquitoes [40–47]
and other arthropod vectors [48–54], so we have fo-
cused our attention on the other components of the
vectorial capacity equation.

Influence of microbiota on pathogen extrinsic
incubation period (N)
Little is known regarding how microbes influence the
extrinsic incubation period (EIP), the time that it takes
for pathogens to develop in the vector. This is distinct
from vector competence, which concerns the ability of a
vector to transmit a pathogen. The EIP affects vectorial
capacity since it influences the number of infected mos-
quitoes that live long enough to become infectious and
can vary depending on host and pathogen genetic factors
and environmental conditions. There is evidence that
Wolbachia infection can extend the EIP for DENV in
Aedes aegypti [55, 56] and the authors argue that this
may be due to the antiviral properties of Wolbachia,
which delay the time that the virus titres reach an infec-
tious threshold. Given that gut-associated microbiota
modulate pathogens, it would be interesting to explore
how the microbiota could be exploited to delay the EIP.
Alternatively, microbiota that enhance the EIP could be
potentially targeted to prevent a positive effect on patho-
gen transmission.

Influence of microbiota on vector density (m)
Vector density is the number of vectors per host, and
there is increasing evidence suggesting that the mosquito
gut microbiota can modulate this facet of vectorial cap-
acity. A sustained reduction in vector density leads to
progressive population reduction in successive genera-
tions, resulting in reduced vectorial capacity. This
principle was the cornerstone of many of the earliest
vector control strategies, where breeding sites were elim-
inated or diminished, or treated with larvicides to reduce
the number of vectors in a population. It is also the ra-
tionale behind more contemporary strategies such as the
dissemination of insect growth regulators like pyriproxy-
fen [57] or the release of Wolbachia-infected male mos-
quitoes [58, 59]. Gut-associated microbes can influence
vector density through the modulation of development,
reproductive outputs, and resistance to abiotic stress.

Growth and development
Recent work has elucidated the importance of microbes
as a factor influencing growth and moulting of mosquito
larvae into adults by regulating growth signalling and
serving as a food source. Axenic (microbe-free) larvae
fail to moult under normal environmental conditions
[60], and exhibit differential expression of genes relating
to amino acid transport, hormone signalling, and metab-
olism compared to normal larvae [61]. Although some
studies have produced larvae that developed without
bacteria [62–64], the addition of living microbes appear
to induce gut hypoxia and activation of growth-related
signalling pathways that larvae require to achieve the
critical size necessary for moulting [65–67]. In addition,

Cansado-Utrilla et al. Microbiome           (2021) 9:111 Page 3 of 11



gut hypoxia depends on bacterial density, as shown by
Ae. aegypti larvae showing higher growth rates [67] and
Aedes albopictus exhibiting enhanced adult emergence
[68]. This indicates that the mechanisms responsible for
regulation of host development under most conditions
occur via microbial metabolism. In the absence of gut
hypoxia [66], the larva fails to make adequate nutrient
stores, so the mosquito is under microbial influence for
accumulation of nutrient reserves that will take it into
adulthood. Most mosquito species are detritivorous as
larvae, using bacteria and other microorganisms as a
food source [69], but predaceous species also consume
microorganisms as food when prey are not available, so
microbes can contribute to nutritional supply when food
availability is a limiting factor [70, 71]. Reliance on gut
hypoxia for signalling appears to be conserved across
mosquito lineages, including detritivorous larvae from
the Culicinae and Anophelinae subfamilies, and preda-
ceous larvae of Toxorhynchites amboinensis [72], indicat-
ing that the role of larval gut microbiota in mosquito
development is not limited to detritivory. Another con-
dition that relies on the nutrients acquired during larval
development is autogeny, which is the ability of some
mosquito species to produce eggs without blood . Al-
though both anautogenous and autogenous mosquito
species rely on the larval microbiota for development,
the autogenous Aedes atropalpus display limited rescue
of development by some bacterial taxa when reared in
monoculture, in contrast to its anautogenous relative Ae.
aegypti [73]. This suggests that autogenous species may
have more specific requirements for microbiota compos-
ition due to their reliance on larval nutrition and the ab-
sence of additional nutrient input from a blood meal.
Gut microbes simultaneously regulate signalling and
serve as a food source, and further study is required to
identify any potential interactions of these dual functions
and their impacts on vector life history.
Characterisation of microbiota effects on vector devel-

opment begins with tracing impacts of individual micro-
bial taxa and continues with the study of bacterial
communities and their diversity. Although multiple mi-
crobial taxa individually support mosquito development
[60], outcomes may differ according to nutrient condi-
tions: Ae. aegypti larvae reared on E. coli, Saccharomyces
cerevisiae, or Chlamydomonas reinhardtii, vary in their
survival depending on their diet during rearing [67],
while Culex pipiens reared on the human pathogen
Cryptococcus gattii exhibit reduced larval survival and
pupation compared to individuals reared on S. cerevisiae
or yeasts isolated from wild Cx. pipiens and Cx. theileri
[74]. Naturally occurring bacterial strains in the genera
Klebsiella and Aeromonas are further able to support
Cx. pipiens larval development from the first to second
instar and are the most attractive to ovipositing females,

but fail to produce surviving adults [75]. Particularly im-
pactful microbes may also alter development even when
they are not the sole occupant of the larval gut. For ex-
ample, supplementation of conventionally reared larvae
with a culture of Asaia accelerates Anopheles gambiae
development; however, it is unknown whether this effect
results from Asaia metabolism specifically, or merely
from the increased bacterial density [76]. Diversity and
community composition of the microbiota also impact
development. Larvae reared in the presence of a combin-
ation of microbial isolates have higher pupation and sur-
vival rates than those reared in monoculture, indicating
that a combination of cells of differing nutrient composi-
tions and/or metabolic processes may have additive ef-
fects for larval nutrition [77]. In addition, antibiotic
treatment, which decreases diversity and abundance of
the gut microbiota, delays larval development by 2-4
days in An. stephensi [78]. However, supplementation of
the disturbed microbiota with antibiotic-resistant Asaia
restores development, suggesting that the roles of dens-
ity and diversity in the gut microbiota’s modulation of
host phenotype is complex and requires further testing.

Reproductive output
The microbiome can also impact mosquito reproductive
output, which is the culmination of several physiological
processes and population dynamics. It is influenced by
sex ratio and mating behaviour, and results in egg pro-
duction and hatching. Sex ratio is the number of males
or females relative to the total number of emerged
adults. The sex ratio of Ae. aegypti was shifted towards a
male-biassed sex ratio when larvae were fed with bac-
teria or yeast [79], although the authors recognised that
this could have been due to underfeeding. This may be
the result of differences in larval metabolism and devel-
opment between males and females, so further investiga-
tion is needed to understand the mechanisms
underpinning this phenotype.
Mating starts with an encounter between individuals,

the likelihood of which requires a certain threshold
density of a population whose males and females can
complete a full coordinated mating behaviour sequence
successfully. There is evidence that these traits can be
influenced by the gut microbiome. For example, studies
in Drosophila indicate that larvae congregate in response
to acetoin produced by the gut microbiome [80], leading
to an increase in adult density over time. The absence
of a gut microbiota in contrast leads to hyperactive adult
behaviour [81] that is normalized by the addition of
Lactobacillus, which produces enzymes that influence
neuronal pathways involved in locomotion [81]. Some
mosquitoes mate in swarms, and variation in microbiota
between swarms has also been observed [82], although
further work is required to determine the cause and
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functional implications of these differences. After mak-
ing an initial encounter a potential mate must have its
identity and suitability as a fit mate confirmed before
mating begins. In Drosophila, a greater number of mat-
ings were observed when males and females were reared
on diets containing the same microbial consortia as op-
posed to diets with different microbial communities [83,
84]. Microbe-mediated changes in the levels or compos-
ition of sex pheromones and other mating cues could be
responsible for this phenotype [85]. First, the production
of hydrocarbons is regulated by the insulin signalling
pathway, which is enhanced by Wolbachia in Drosophila
[86]. Second, changes in the ratios of cuticular hydrocar-
bons affect mating recognition and sexual attractiveness
of these and other flies [87–89]. Further investigation is
required in order to disentangle the effects of the micro-
biota on host mating behaviour since this could affect
genetic control strategies in vectors. For example, trans-
genic mosquitoes with enhanced immunity also have a
modified microbiome and a mating fitness advantage
compared to their wild type counterparts [90], poten-
tially by microbiome-induced alterations of cuticular hy-
drocarbons. This resulted in wild-type male mosquitoes
preferentially mating with genetically modified females
and genetically modified males having a preference for
wild-type females, thereby spreading the genetic modifi-
cation into the population [90].
In addition to effects on sex ratio and mating behavior,

egg production, oviposition, and hatching in insects are
all affected by microbiota, and this impact on fecundity
translates to changes in vector density. In general, fe-
cundity in mosquitoes is governed by nutrients acquired
during blood feeding, so blood digestion by adult fe-
males is necessary for egg production. A significant in-
crease of microbe levels occurs after mosquitoes take a
bloodmeal [91–93], and treatment of Ae. aegypti with
antibiotics impedes digestion of blood proteins and con-
sequently reduces egg production [94], suggesting that
the microbiome contributes to blood digestion. Recently,
it has been shown that sequential bloodmeals promote
pathogen infection [95, 96], and it would be intriguing
to determine the role of the microbiome in this pheno-
type. Recent studies also indicate that Ae. aegypti eggs
laid in water containing bacteria hatch at a higher rate
than those laid in sterile water [97] and female mosqui-
toes from many species preferentially oviposit in
microbe-rich water [98]. Allelochemicals associated with
bacteria have been identified [99], but the mosquito re-
sponse can vary dramatically depending on its previous
exposure to a particular chemical [100, 101]. Taking to-
gether, it is evident that gut microbes enhance mosquito
fecundity and therefore the mechanisms that facilitate
these phenotypes could be targeted to reduce vector
density. As opposed to gut microbes, some Wolbachia

strains seem to reduce female fecundity, egg hatch, and
quiescent egg viability [102, 103], which results in a re-
duction of vector density and therefore vectorial
capacity.

Resistance to abiotic stress
Some vector species can survive (or are adapted to live)
under adverse conditions, such as low humidity, brackish
water or competitive environments, which permits col-
onisation of a broader range of environments. Resistance
of mosquito eggs to desiccation is variable among spe-
cies, and three main factors drive this variability: chitin
content, egg volume and shell density [104]. Evidence
that gut-associated microbiota regulate two enzymes in-
volved in chitin synthesis (GFAT and CHS2) in An.
gambiae [37] suggests the potential for the microbiome
to influence resistance to desiccation. Once eggs have
hatched, larvae have to persist in their aquatic environ-
ment. Whilst most mosquito species breed in fresh
water, Culex sitiens and An. sundaicus survive in brack-
ish water [105]. In general, the microbiome can confer
resistance to salinity in plants and animals [106, 107],
suggesting similar advantages could be conferred by gut-
associated microbes to their mosquito hosts. Mosquito
larvae in natural environments also occur within food
webs that include both interspecific and intraspecific
competitors and predators. The influence of the micro-
biome on larval competition is still to be determined,
but Wolbachia infection has been shown to cause a
density-dependent effect on larval survival [108]. Mi-
crobes that protect mosquitoes against abiotic stresses
would be good candidates for paratransgenesis as this
trait would likely facilitate their spread and persistence
in the mosquito population.

Influence of microbiota on probability of vector
daily survival (p)
The probability of daily survival is the chance that a vec-
tor survives each day, and pathogens with longer EIPs
may be particularly sensitive to this parameter. The
microbiome has the potential to affect survival by alter-
ing adult nutrition and fitness, interacting with other
microbes, and modulating insecticide resistance.

Adult nutrition and fitness
The microbiome can impact insect survival by affecting
host fitness, nutrition, homeostasis, and metabolism of
their host. One indicator of mosquito fitness (among
many others) is body size, and in general microbiota en-
hance development and size of mosquitoes. For example,
An. gambiae and An. stephensi supplemented with Asaia
have shown increased growth rates [76]. Similarly, when
An. coluzzi mosquitoes were reared on three distinct di-
ets, larger mosquitoes where seen to harbour a greater
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bacterial load [109]. Mosquito larvae fed solely with ei-
ther bacteria or yeast still developed, although were
smaller than their counterparts fed on food sources [79],
suggesting that microbes alone provide some sustenance
for the insect. Smaller mosquitoes are more susceptible
to environmental stressors and thus have a reduced
chance of survival [110]; therefore, microbe stimulation
of nutrition can influence vector population dynamics.
Adult mosquitoes obtain their nutrients from two food

sources, sugar and blood, and the microbiome plays an
important role in food digestion and nutrient provision.
Enterobacteriaceae is the most active family of the gut
microbiota of Ae. albopictus at assimilating fructose, a
major sugar component of nectar [111] and this sugar is
used by bacteria as an energy source to produce other
nutrients for the mosquito host. The impact of gut-
associated microbiota on nutrition has also been studied
in model insects, and results in these systems could shed
insights into mechanisms occurring in mosquitoes. Ex-
amples include complementation of vitamins missing
from the diet in other hematophagous insects [112] and
Drosophila [113], and alteration of expression of genes
involved in energy storage in Riptortus pedestris [114].
In Ae. aegypti [115] and An. arabiensis [116], disturb-

ance of gut homeostasis resulted in a shortened lifespan,
so inducing microbiome dysbiosis in vectors may be ex-
plored as a novel control strategy. There is precedent for
microbial-based life-shortening approaches, with model-
ling and empirical evidence suggesting some strains of
Wolbachia can reduce pathogen transmission due to
their effects on longevity [117–119] and density [120].
However, this strategy was not pursued after it became
apparent that Wolbachia interfered with pathogen devel-
opment in the vector, and hence, population replace-
ment could be undertaken by that route instead.
Microbiome-mediated alterations in metabolites in the
host can also lead to different survival outcomes. A re-
cent study demonstrated that bacteria which lowered
methionine content of food extended Drosophila host
lifespan [121]. Although this was tested in flies, methio-
nine has been shown to act as a larvicide against several
mosquito species such as An. quadrimaculatus, Ae. albo-
pictus and Cx. tarsalis [122], suggesting that similar pro-
cesses could occur in mosquitoes. Another study in
Drosophila showed that the production of lithocholic
acid by the adult gut microbiota elongated host survival
through upregulation of genes involved in glucose
homeostasis [123], offering a potential target in the host
to shorten lifespan. The insulin growth factor signalling
pathway is central to regulation of lifespan [124–126],
and can be impacted by bacterial metabolism in mosqui-
toes [66], although the mechanisms are unknown.
Host-microbe symbioses are complex and are influ-

enced by host physiology, microbial composition and the

timing of infection. The lifespan of An. coluzzii is ex-
tended with exposure to doxycycline but shortened with
azithromycin [127], suggesting that changes in micro-
biome composition are driving this phenotype, although
direct effects from the antibiotic need to be considered.
Similarly, axenically reared or antibiotic-treated Dros-
ophila had reduced lifespans, but if flies were exposed to
bacteria in their first week as adults, their lifespan was
similar to their conventionally reared counterparts [128].
In contrast, a study that compared axenic D. melanoga-
ster with gnotobiotic flies infected with Acetobacter
pomorum found no differences in survival. However,
axenic flies had greater glucose levels and lower oxygen
consumption, suggesting a potential overall slowing of
respiration [129]. These findings indicate that host
changes associated with microbiota may manifest as
intermediate phenotypes rather than detectable changes
in lifespan and thus studies that measure overall fitness
outcomes may miss subtle effects of the microbiota. Fur-
ther work is needed to identify which affected host func-
tions impact longevity, and whether similar longevity
phenotypes may obscure other trait differences. Host-
microbe interactions become even more complex when
some members of the microbiome shift from a com-
mensal to a pathogen status and vice versa [130]. This
can happen due to temperature, presence of pathogens,
and other unknown factors [131, 132]. Such transitions
of status and the broad range of possible complexities of
host-microbe interactions should not be ignored when
considering basic research questions and ultimately
when considering microbiome control strategies.

Microbe–microbe interactions
The diverse microbes that reside within insects may
interact with pathogens that are detrimental to the host,
making the vector either more resistant, tolerant, or sus-
ceptible to infection and thus impacting lifespan. For ex-
ample, Rickettsia, an endosymbiont of whiteflies, reduces
the density of pathogenic Pseudomonas resulting in an
extended lifespan for its host [133]. In contrast, the in-
fection of mosquitoes with the pathogenic fungus
Beauveria bassiana causes microbiome dysbiosis and
over-proliferation and translocation of Serratia marces-
cens from the gut to the hemocoel, eventually killing the
insect [134]. Microbes can benefit from each other, like
symbiotic bacteria and yeast in Drosophila [135], but
they can also exclude one another, like Enterobacteria-
ceae and Serratia [136] or Asaia and Wolbachia [137] in
mosquitoes. In flies and mosquitoes, microbiota interac-
tions with Wolbachia occur but these do not influence
the ability of Wolbachia to block pathogens [138, 139].
However in general, these complex microbial interac-
tions determine microbiome composition and colonisa-
tion of the host [11, 140], influencing host physiology
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and lifespan [141] and therefore the effectiveness of mi-
crobial control of mosquitoes [142].

Insecticide resistance
Gut-associated microbiota may also indirectly affect
mosquito lifespan by mediating resistance to insecticides.
Evidence is emerging that mosquitoes with differing re-
sistance status have distinct microbiomes [143, 144], but
further work is required to investigate the causality and
the mechanisms underpinning these associations.
Streptococcus, Pseudomonas, Klebsiella, and Pantoea
correlated with insecticide resistance in An. arabiensis
[145], An. albimanus [146, 147] and An. stephensi [148].
Wolbachia has also been associated with insecticide re-
sistance in Culex pipiens [149]. Detoxifying symbionts in
the gut microbiome have been shown to confer insecti-
cide resistance in other insects like wasps [150], honey-
bees [151] and insect pests [152]. Although the
mechanisms have not been described in mosquitoes, the
ability of some of these bacteria to degrade insecticides
[146] provides a possible explanation. Additionally, bac-
teria present in the soil may become resistant to insecti-
cides due to chronic exposure [153] and these bacteria
may colonise insects, either transiently or stably. A more
complete understanding of the role of the microbiome
on insecticide resistance will enable the development of
strategies to mitigate the emergence of resistance and
extend the longevity of currently used formulations.

Influence of microbiota on vector biting rate (a)
Vector biting rate is the average number of times that a
vector bites per unit of time and can be modulated by
the microbiome by impacting feeding behaviour and
host preference. An increased biting rate leads to a
higher vectorial capacity, since the vector has more op-
portunities to acquire and transmit pathogens. Feeding
behaviour is disrupted in Ae. aegypti by Serratia [136]
and in Anopheles mosquitoes when exposed to heat-
killed E. coli [154] or Chromobacterium [155]. Micro-
biota also have the potential to affect host-seeking be-
haviour through modulation of their chemosensory
system. In D. melanogaster, symbionts determine larval
pheromone preference [80] and affect the adult olfactory
system, influencing food choice [156–158]. Additionally,
gut bacteria are known to modulate expression levels of
vitellogenin genes in the true bug, Riptortus pedestris
[114], and in Ae. albopictus, vitellogenin expression reg-
ulates host-seeking behaviour [159]. Therefore, the abil-
ity of the microbiome to impact host seeking behaviour,
possibly through modulation of vitellogenesis, should be
further investigated.

Conclusions
There is emerging evidence that the microbiome of vec-
tors can influence many traits important for vectorial
capacity. At the same time, many studies highlight the
complexities of microbial communities and variability of
the microbiome in mosquitoes. Attempts to disentangle
this complexity often examine the effect of a specific mi-
crobe on the host, such as those that exploit mono-
axenic gnotobiotic infections; however, it is unclear if
these findings translate to mosquitoes with a complete
microbiome consisting of many microbes. Additionally,
applied strategies need to be effective in hosts with di-
vergent microbiomes which mosquitoes possess in the
field so understanding microbial interactions is integral.
Other challenges for the scientific community to solve
include moving beyond simple descriptions of the
microbiome of distinct mosquito cohorts or mosquitoes
with differing treatments to validating the microbes or
microbial consortia that are the causal agents of host
phenotypes, and the eventual elucidation of the mecha-
nisms responsible for those interactions. Much can be
learned from other research areas where the complexity
of microbial community composition is also a challenge
[160–164]. Advances in omics technologies can be used
to disentangle this complexity, but this can also be ad-
dressed by grouping microorganisms with common life
history and interspecific relationships [165], which can
then be linked to effects on the host and then vectorial
capacity. Ultimately, the development of sustainable
strategies to modulate vectorial capacity by introducing
microbes into wild mosquito populations will require a
thorough understanding of microbiome acquisition and
the factors controlling its composition and abundance.
Only then can the full potential of the microbiome for
vector control be realised.
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