
RESEARCH PAPER

Repairing Alignments of Process Models

Sebastiaan J. van Zelst • Joos C. A. M. Buijs • Borja Vázquez-Barreiros • Manuel Lama • Manuel Mucientes

Received: 22 January 2018 / Accepted: 7 May 2019 / Published online: 28 May 2019

� The Author(s) 2019

Abstract Process mining represents a collection of data

driven techniques that support the analysis, understanding

and improvement of business processes. A core branch of

process mining is conformance checking, i.e., assessing to

what extent a business process model conforms to observed

business process execution data. Alignments are the de

facto standard instrument to compute such conformance

statistics. However, computing alignments is a combina-

torial problem and hence extremely costly. At the same

time, many process models share a similar structure and/or

a great deal of behavior. For collections of such models,

computing alignments from scratch is inefficient, since

large parts of the alignments are likely to be the same. This

paper presents a technique that exploits process model

similarity and repairs existing alignments by updating

those parts that do not fit a given process model. The

technique effectively reduces the size of the combinatorial

alignment problem, and hence decreases computation time

significantly. Moreover, the potential loss of optimality is

limited and stays within acceptable bounds.

Keywords Process mining � Conformance checking �
Alignments � Process trees � Workflow nets

1 Introduction

Process mining (van der Aalst 2016) has emerged as a

means to analyse, understand and improve the behavior of

an organization, based on the analysis of event data, i.e.,

known as event logs, stored during the execution of the

process. We identify three main process mining areas:

process discovery, conformance checking and process

enhancement. In process discovery, the goal is to discover

a process model that accurately describes the behavior

recorded in an event log, i.e., a model describing the real

process followed during process execution. In conformance

checking, a process model is compared with the recorded

behavior of the process to check whether there exist

deviations between the model and the observed behavior.

In process enhancement, a process model is dynamically

enriched, with new information about the process based on

new analysis of the process model and/or event log, e.g.,

detecting critical paths, predicting process performance

indicators, repairing/simplifying of process models, etc.

Both in conformance checking and process enhance-

ment techniques, alignments (van der Aalst et al. 2012;

Adriansyah et al. 2015; van Zelst et al. 2018a) have

rapidly developed to a cornerstone technique and are often

used heavily. Alignments quantify to what extent a process

Accepted after two revisions by Jörg Becker.

S. J. van Zelst (&)

Fraunhofer Institute for Applied Information Technology,

Fraunhofer Gesellschaft, Sankt Augustin, Germany

e-mail: sebastiaan.van.zelst@fit.fraunhofer.de

J. C. A. M. Buijs

Department of Mathematics and Computer Science, Eindhoven

University of Technology, Eindhoven, The Netherlands

e-mail: j.c.a.m.buijs@tue.nl

B. Vázquez-Barreiros � M. Lama � M. Mucientes

Centro Singular de Investigación en Tecnoloxı́as da Informacı́on

(CiTIUS), Universidade de Santiago de Compostela,

Santiago de Compostela, Spain

e-mail: borja.vazquez@usc.es

M. Lama

e-mail: manuel.lama@usc.es

M. Mucientes

e-mail: manuel.mucientes@usc.es

123

Bus Inf Syst Eng 62(4):289–304 (2020)

https://doi.org/10.1007/s12599-019-00601-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/429742351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-019-00601-7&domain=pdf
https://doi.org/10.1007/s12599-019-00601-7

model and event data conform to each other. In order to do

so, an alignment maps the behavior captured in an event

log to a process model, relating each observed sequence of

events, i.e., each trace, to a corresponding execution path

of the process model. As an example of their use, consider

the development of process mining algorithms such as

evolutionary process discovery algorithms (Buijs 2014;

Vázquez-Barreiros et al. 2016a), where replay-fitness and

precision (calculated on the basis of alignments) are used to

evaluate the quality of a newly generated process model;

model repair techniques (Polyvyanyy et al. 2017; Fahland

and van der Aalst 2015), where alignments are used for

detecting the points in which a process model must be

repaired such that it is accurately adapted to the observed

behavior; or the Inductive Visual Miner (Leemans et al.

2014b), which uses alignments to visualize the flow of

cases through a given process model.

Computing an alignment is an NP-hard problem. Several

techniques have been proposed for alignment computation

based on shortest-path search or optimization algorithms

that look for optimal alignments, i.e., alignments with a

minimal deviation cost (Adriansyah et al. 2011, 2013;

Alizadeh et al. 2014; de Leoni et al. 2012; de Leoni and

van der Aalst 2013; van Dongen 2018; de Leoni and

Marrella 2017; van Zelst et al. 2018a; Carmona et al.

2018). However, using these techniques in combination

with realistically sized event logs and process models

typically results in poor runtime performance. As a solu-

tion, some authors propose to decompose the process

model into sub-models before applying search-based or

optimization algorithms (Song et al. 2017; van der Aalst

2013; Munoz-Gama et al. 2014). However, these decom-

position techniques provide solutions for sub-problems,

which in aggregated form provide lower bounds, i.e.,

underestimations of the true alignment costs.

The previously mentioned process mining techniques

compute alignments from scratch for new process models.

However, in a variety of cases, these models are similar to

one another. Relevant examples of such situation are:

• Evolutionary process discovery. This kind of algo-

rithms lead to good results, discovering high quality

process models, even in the presence of noise (van Eck

et al. 2014; Vázquez-Barreiros et al. 2016a). In evolu-

tionary process discovery there exists an initial popu-

lation of process models that evolves over a number of

iterations in which a new generation of process models

is created by introducing slight modifications (cross-

over and mutation of the current generation of process

models). In order to decide which process models are

ruled out between two iterations, each one of them

needs to be evaluated based on replay-fitness and/or

precision, and therefore in each iteration there are a

high number of evaluations. It is clear that this

evaluation should be as efficient as possible to make

evolutionary process discovery applicable to medium-

large size event logs.

• Visualizing trace executions. The Inductive Visual

Miner has a graphical interface that allows users to

visualize a simulation of the execution of the traces

(Leemans et al. 2014b). This simulation is based on

alignments, as it highlights model paths related to trace

executions. Furthermore, the graphical interface allows

users to interactively filter noise. Such filtering often

results in a similar process model compared to the

current model. Consider Fig. 1, which shows the result

of the Inductive Visual Miner twice, using a slightly

different filtering setting. The only difference between

the models is the absence of two activities highlighted

by circles. Therefore, increasing the efficiency of

alignment computation is a critical point for this

algorithm in order to improve the user experience by

changing thresholds and simulating trace runs. Observe

that, a technique that allows us to repair alignments,

can in principle be exploited in all interactive visual-

izations of alignments on process models.

• Scenario Based Prediction. Observe that, using align-

ments as a basis, i.e., explaining the event data in terms

of a model, we are able to compute performance

metrics on top of a given process model as well. In case

a business owner aims to assess the expected impact of

a certain change in his/her process, he/she usually

changes small parts of the model, e.g., changing a

parallel operator to a sequence operator, etc. Again in

such a case, the models being compared are very

similar to one-another.

Hence, the question arises whether we can use previously

computed alignments as a basis for computing new align-

ments of similar process models, and thus potentially

reduce alignment computation time.

Therefore, in this paper, we propose an alignment repair

method that computes alignments by repairing parts of

existing alignments. The technique identifies fragments of

the existing alignment that do not correspond to the process

model and replaces them with new alignment fragments that

do correspond. Because the method only focuses on those

alignment fragments that do not fit, computation time

decreases significantly. Moreover, we show that the loss of

optimality is limited and stayswithin acceptable bounds. The

proposedmethod is only applicable to sound processmodels,

since the internal representation of the process models con-

sidered in this paper is based on process trees. We do so,

since process trees allow us to represent sound models

through a hierarchical structure in blocks, enabling a more

efficient comparison between different models and,

123

290 S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020)

therefore, the location of those parts that have effectively

change in relation to a similar model. Observe that, this

feature prevents the application of our algorithm in

unstructured processes, which are usually represented

through non-sound models.

The main contributions of this paper are:

• The development of a novel and efficient method that

computes alignments by reusing existing alignments

for different, though similar, process models. The

proposed method consists of three phases: scope of

change detection, where the alignment part correspond-

ing to the sub-model of the process model that has

changed is identified; realignment, where the align-

ments related to the changes of the process model are

computed; and alignment reassembly, where the align-

ments computed in the previous step are assembled as

part of the original alignment. This method is specially

interesting for complex, but similar, process models

and when the size of traces is large.

• A validation of the method which shows that it retrieves

alignments in a significantly lower, worst-case equal,

time when compared to computing optimal alignments

from scratch.

The remainder of this paper is structured as follows. Sec-

tion 2 discusses related work. In Sect. 3, we present

background concepts such as process trees, event data and

alignments. In Sect. 4, we present our proposed alignment

repair technique. In Sect. 5, we prove the correctness of our

approach. In Sect. 6, we present an evaluation of the

approach, whereas Sect. 7 concludes the paper.

2 Related Work

A broad overview of work in the field of process mining is

outside the scope of this paper, hence we refer to van der

Aalst (2016). Here, we primarily focus on related work in

conformance checking.

Early work in conformance checking focuses on token-

based replay techniques (Rozinat and van der Aalst 2008).

In token-based replay, markings and firing sequences of

Petri nets (Murata 1989) are used to computing confor-

mance statistics. The techniques simulate traces through

the model and produce, and keep track of, missing tokens

in order to be able to fire transitions that are not enabled.

The main disadvantage of token-based replay techniques is

the fact that produced tokens are potentially used to enable

future transitions, allowing for behavior that originally

could not be performed within the model.

Alignments were introduced in van der Aalst et al.

(2012). The main challenge of alignments is their

Fig. 1 Application of filtering in the inductive visual miner (Leemans et al. 2014a, b)

123

S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020) 291

computation, which is an NP-hard problem. To deal with

this issue two kind of approaches have been proposed:

search-based techniques, which look for the alignment with

minimum cost, and decomposition-based techniques,

which decompose models into sub-models before applying

search-based algorithms. We briefly review these

approaches.

In Adriansyah et al. (2011) the authors convert the

alignment computation problem to a shortest path problem,

based on the marking-based reachability graph of the

Workflow net. Moreover, the authors propose the use of the

A�-algorithm (Hart et al. 1968), i.e., an algorithm that

exploits a heuristic distance function to find a path with

minimum cost in a weighted graph. In Adriansyah et al.

(2013) the authors improve the efficiency of the A�

approach of Adriansyah et al. (2011) by defining a

heuristic function based on the solution of the marking

equation of the Workflow net through Integer Linear Pro-

gramming (ILP). In van Zelst et al. (2018a), a large scale

experimental evaluation of the different parameters of the

aforementioned A� approach is presented. In van Dongen

(2018) an alternative, A�-inspired, search strategy is pre-

sented that exploits an extended version of the aforemen-

tioned marking equation. In Alizadeh et al. (2014) the

authors propose an alternative cost function based on

information extracted from past process executions. The

cost of an alignment depends on the move type and the

activity involved in the move though, differently from

Adriansyah et al. (2013), it also depends on the position in

which the move is inserted.

In Song et al. (2017), the authors propose to analyse the

structural and behavioral features of process models to

reduce the search space by (1) decomposing the process

model in a set of independent sub-models where a trace

follows only one of the sub-models and (2) by simulating

the execution of each trace in the sub-model to which it

belongs to. Taking this into account, the authors present an

algorithm based on effective heuristics relying on the trace

to reduce the search space for computing the optimal

alignment. Simple heuristics are considered for models

with both iterative and alternative routing.

All the previous approaches calculate alignments solely

based on the control-flow perspective. In de Leoni and

van der Aalst (2013) the authors present a method for

alignment calculation taking all perspectives into account:

control-flow, data, time and resources. The first step of the

proposal finds the control-flow alignment through A� based
on Adriansyah et al. (2011). Then, an ILP problem is

constructed to obtain an optimal alignment which also

considers other perspectives of the process.

A different problem is conformance checking in

declarative models. A declarative model lists constraints

that specify the forbidden behavior, as opposed to

imperative models, such as Workflow nets, which only

describe allowed behavior. In de Leoni et al. (2012) the

authors propose calculation of alignments using A� for

declarative models. As the authors point out, the applica-

tion of A� for declarative models is more challenging than

for procedural models, as the set of admissible behavior is

far larger. Thus, the method implements a search space

reduction based on the equivalence of partial alignments.

Moreover, the approach provides metrics to measure the

degree of conformance of single activities and constraints.

Decomposition techniques allow to approach confor-

mance checking from another perspective (van der Aalst

2013; Munoz-Gama et al. 2014). For instance, in van der

Aalst (2012), the authors present an approach to decom-

pose a model into net fragments which correspond to

minimal passages. A passage is formed by two sets of

nodes of a process model where the outputs of the first set

are all inputs of the nodes in the second set, and the inputs

of the nodes of the second set are all outputs of the nodes in

the first set. Given this decomposition, it is possible to

calculate the conformance in a distributed way. In Fahland

and van der Aalst (2012, 2015), the authors propose a

methodology to repair a process model through alignments.

Based on alignment information, they decompose the log

into several sub-logs that do not fit the original model.

Finally, for each sub-log, a sub-process is derived and

added to the original model in the appropriate location. In

de Leoni et al. (2014), the authors present a proposal for

decomposing large data-aware conformance checking

problems into smaller problems that can be solved more

efficiently. The approach uses the Single-Entry Single Exit

(SESE) decomposition (Munoz-Gama et al. 2014) to split

the data-aware process model into smaller model frag-

ments. These fragments are created by selecting a partic-

ular set of SESEs in the Refined Process Structure Tree

(RPST) Vanhatalo et al. (2009). To check the conformance

of each fragment, the authors used the technique presented

in de Leoni and van der Aalst (2013).

The main difference of this work compared to related

work is the fact that the technique presented in this paper

results in an alignment for the whole trace and the whole

process model reusing previously computed alignments.

3 Background

In this section, we present background material used

throughout the remainder of this paper. We focus on pro-

cess trees as a modeling formalism as well as the notion of

alignments.

123

292 S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020)

3.1 Process Trees

In this paper, we focus on hierarchical process models, i.e.,

process trees (Buijs 2014; Leemans et al. 2013), which are

known to be sound by design. A process tree is a compact

tree-like representation of a Workflow net (van der Aalst

1998). Process trees allow us to represent sound process

models through a hierarchical structure in structured

blocks, which makes the comparison between two different

models relatively efficient. Consider Fig. 2, in which we

present a simple process model in both BPMN notation and

its corresponding process tree visualization.

The models describe that activities a and b need to be

executed in sequence, i.e., first activity a, then activity b.

Moreover, either activity c or activity d is executed. This

can be done concurrently with executing the sequence of

activities a and b. The leafs of a process tree always rep-

resent (possibly unobservable by means of s-labels) ac-

tivities, whereas internal vertices always represent

operators used to specify the relation between their chil-

dren. Each vertex within a process tree defines a process

tree itself.

In this paper we consider five standard operator types,

similar to the work of Buijs (2014), defined for process

trees: the sequential operator (!), the parallel execution

operator (^), the exclusive choice operator (�), the non-

exclusive choice operator (_) and the repeated execution

(loop) operator (�). Operators have an arbitrary number of

children in arbitrary order, except for the sequence and

loop operators. The sequence operator has an arbitrary

number of children, though the order of the children

specifies the order in which they must be evaluated, i.e.,

from left to right. Loop operators always have three chil-

dren. The left child is the do-child of the loop and is always

executed, the middle child is the redo-child and is optional,

the right child is the exit-child and is also always executed.

Whenever the redo-child is executed, it has to be followed

by the do-child. Whenever the exit-child is executed the

operator terminates. For example given a simple process

tree �ða; b; cÞ, example behavioral sequences described by

the tree are ha; ci, ha; b; a; ci, ha; b; a; b; a; ci, etc. Further-
more, example behavioral sequences described by the

process tree depicted in Fig. 2, are: ha; b; ci, ha; b; di,
hc; a; bi, ha; d; bi, etc.

3.2 Event Data and Alignments

Modern information systems track the execution of busi-

ness processes within a company. These systems store the

execution of business activities in context of a case, i.e., an

instance of the underlying process. Such data is often

stored in the form of an event log. An event log records the

actual execution of activities within a business process.

Consider Table 1 depicting a snapshot of an event log of a

loan application process.

The actual execution of a business process activity is

referred to as an event, which is unique. A sequence of

events is referred to as a trace. In the context of this paper

we are merely interested in the sequential ordering of the

business process activities recorded in traces, i.e., the

control-flow perspective.

Observe that, when adopting the control-flow perspec-

tive, we obtain the trace of activities hCheck application

form;Check credit history; :::; Reject applicationi for the

process instance identified by case-id 3554.

Alignments (van der Aalst et al. 2012; Adriansyah 2014)

allow us to explain observed behavior, during the execution

of a process, in terms of a given process model. Alignments

map the observed business process events to the activities

in a process model. Such an individual mapping is referred

to as a move. We observe three types of moves, i.e., syn-

chronous moves, mapping observed behavior onto activi-

ties described by a process tree, model moves, referring to

behavior in the process tree that is not observed in the data,

and log moves, indicating that we are not able to map

observed behavior onto an element of the process tree.

As an example, consider Fig. 3, in which we depict

three possible alignments of the trace ha; b; c; d; ei and the

process tree depicted in Fig. 2b. The first move of Fig. 3a,

i.e., ð�; vs1Þ, refers to enabling/starting the root vertex of

the tree, i.e., vertex v1.
1 Since v1 is an internal vertex, we

(a) The process model in BPMN notation.

∧

×

dc

→

ba

v1

v2

v3

v4

v5

v6

v7

(b) The process model visualized as a process tree (which we
refer to in the remainder as PT1).

Fig. 2 Two process models describing the parallel execution of a sequence of activities a and b, together with a choice between activities c and d

1 We use vs and ve to represent the start, respectively end of an

internal vertex of a process tree.

123

S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020) 293

are not able to observe it, hence, ð�; vs1Þ always represents
a model move. We use the - symbol to indicate that we are

not able to construct a mapping. Similarly, the second

move of the alignment, i.e., ð�; vs2Þ, is a model move,

referring to enabling/starting internal vertex v2. The third

move represents a synchronous move on activity a, which

is mapped to the execution of vertex v3, which indeed has

label a. Similarly, the fourth move represents a syn-

chronous move on activity b. After this, we observe move

ð�; ve2Þ, indicating that the execution of the subtree formed

by vertex v2 has ended. The last two moves of Fig. 3a are

log moves, i.e., we are not able to map d onto the execution

of vertex v7, because it is in a choice construct with vertex

v6 of which we chose to map observed activity c on. Fur-

thermore, since label e is not present in the model, it is

guaranteed to always show up as a log move.

A sequence of moves, i.e., such as presented in Fig. 3a,

is an alignment, if the ‘‘top part’’, when excluding the -

symbols, equals the input trace. Secondly, the ‘‘bottom

part’’, again when excluding the - symbols, needs to

correspond to a feasible execution of the process tree.

Observe that, indeed, the sequence of moves depicted in

Fig. 3a, is an alignment. Note that, for a given trace, sev-

eral different alignments exist. Consider Fig. 3b, in which

we show an alternative alignment of trace ha; b; c; d; ei and
process tree PT1. W.r.t. Fig. 3a, vertex v5 is started prior to

vertex v2. Observe that this is allowed due to the fact that

vertex v1 describes a parallel operator. Moreover, the

alignment synchronises on activity d, rather than activity c.

Observe the alignment in Fig. 3c, in which we describe

a model move on vertex v3 and a log move on activity a.

Furthermore, observe that this is again a proper alignment

of trace ha; b; c; d; ei and process tree PT1. However, this is

a less desirable alignment compared to the alignments

presented in Figs. 3a, b, i.e., since it is possible to syn-

chronize on a. For alignments c1 and c2 it is less obvious

which one is favoured over the other one or if both

alignments are equally favourable. Thus, we need a means

to grade/score alignments in terms of their quality.

Therefore, we typically use a cost-function, defined on top

of the different types of possible moves, which allows us to

find the most desirable alignment (also referred to as op-

timal alignment). Usually we adopt the following cost

function (known as the standard cost function):

• synchronous moves/internal model moves/invisible leaf

model moves: cost 0.2

• log moves/visible leaf model moves: cost 1.

Observe that, using the cost function as presented, the cost

of the alignments in Fig. 3a, b is 2 (two log moves),

whereas the cost for the alignment in Fig. 3c is 4 (three log

− − a b − − c − − d e
vs
1 vs

2 v3 v4 ve
2 vs

5 v6 ve
5 ve

1 − −
(a) Alignment γ1

− − − a b − c d − − e
vs
1 vs

5 vs
2 v3 v4 ve

2 − v7 ve
5 ve

1 −
(b) Alignment γ2

− − − − a b − c d − − e
vs
1 vs

5 vs
2 v3 − v4 ve

2 − v7 ve
5 ve

1 −
(c) Alignment γ3

Fig. 3 Three possible ways to align r1 ¼ ha; b; c; d; ei to PT1

Table 1 Event log fragment

based on a simple fictional loan

application process (Dumas

et al. 2018)

Case-id Activity Resource Time-stamp

..

. ..
. ..

. ..
.

3554 Check application form John 2015-10-08T09:45:37

3555 Check application form Lucy 2015-10-08T10:12:37

3554 Check credit history Harold 2015-10-08T10:14:25

3555 Check credit history Harold 2015-10-08T10:31:02

3554 Appraise property Pete 2015-10-08T10:45:22

3554 Assess loan risk Harold 2015-10-08T10:49:52

3555 Assess loan risk Harold 2015-10-08T11:01:51

3556 Check application form Lucy 2015-10-08T11:05:10

3555 Assess eligibility Harry 2015-10-08T11:06:22

3554 Assess eligibility Harry 2015-10-08T11:33:42

3554 Reject application Harry 2015-10-08T11:45:42

3557 Check application form Lucy 2015-10-08T13:48:12

3555 Prepare acceptance pack Sue 2015-10-08T14:02:22

..

. ..
. ..

. ..
.

2 If a leaf vertex v has label s, it is unobservable by definition, which

always leads to model move ð�; vÞ.

123

294 S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020)

moves and one leaf-based model move). The problem of

computing an optimal alignment can be translated to a

shortest path problem. In Adriansyah (2014) a solution to

this shortest path problem, for the purpose of arbitrary Petri

nets, is presented by applying the A� algorithm (Hart et al.

1968), i.e., an algorithm that exploits a heuristic distance

function to find a path with minimum cost in a weighted

graph. As this solution method trivially applies to process

trees, in the context of this paper, we assume that we are

able to compute an optimal alignment for arbitrarily given

trace and process tree.

4 Repairing Alignments

Several process discovery techniques build on top of

alignments and use process trees as a process modeling

formalism. These techniques compute alignments for a

given (set of) process model(s) and subsequently (re)-

compute alignments for very similar process models.

Moreover, the fact that these techniques use process trees

as a process model formalism, as opposed to arbitrary

Workflow nets, allows us to efficiently pinpoint the simi-

larity between two given process models. We therefore

propose a method that allows us to repair readily available

alignments of a given trace and process model, for newly

obtained, preferably similar, process trees.

In the remainder of this section, we describe the pro-

posed repair algorithm. In this context, we assume that we

are given a trace r, a process tree PT and an alignment c of
the trace and the process tree. Moreover, we assume that

we are given an alternative process tree PT 0 which is the

result of changing a sub-tree of PT with some alternative

sub-tree. The proposed alignment repair technique exploits

the process models’ similarity and produces an alignment

c0 for trace r and process tree PT 0. A global overview of

the approach is presented in Fig. 4.

The approach consists of three main stages:

1. Scope of change detection. In this step we identify

moves in the existing alignment that correspond to

behavior of the changed sub-tree. In particular, we

identify what label-based-moves, i.e., log and/or

synchronous moves, are likely to become/stay syn-

chronous moves based on the new sub-tree.

2. Realignment. In this step we compute new alignment

fragments based on the labelled moves identified in the

previous step and the new sub-tree.

3. Alignment reassembly. In this step we replace the

moves related to the changed sub-tree in the original

alignment by their corresponding new alignment

fragments obtained in the previous step to form the

new, repaired, alignment.

In the upcoming subsections we describe each step in more

detail. Prior to this, we present a running example that we

use throughout this section to clarify each step.

Running Example We use the modification of process

tree PT1 into PT2, shown in Fig. 5, as a running example.

We change vertex v5, which is a � operator, into vertex v05,

which is a ^ operator. The new nodes generated by the

change are v05, v
0
6 and v07. Note that vertices v06 and v07 have

the same label as vertices v6 and v7. The change enforces us

to always fire both branches corresponding to leaf nodes v06
and v07 concurrently. Reconsider trace r ¼ ha; b; c; d; ei.
We reuse the optimal alignment c1 for the sequence and

process tree PT1 presented in Fig. 3a, to compute a new

alignment of ha; b; c; d; ei and PT2.

4.1 Scope of Change Detection

The first step in reusing c1, involves detecting what moves

in c1 refer to the changed sub-tree, i.e., the sub-tree defined

by v5. We refer to the collection of these moves as the

scope of change of v5. We do so by collecting all moves in

the alignment that directly relate to the changed subtree,

combined with adjacent log moves. In particular, for these

adjacent log moves, only model moves are allowed to be

in-between the moves related to the changed subtree and

the log moves themselves.

Consider that a naive way to construct the scope of

change is to only include moves of the form ðx; vÞ within c1
s.t. v 2 fvs5; ve5; v6; v7g, i.e., both synchronous and model

moves, as part of the scope of change. In Fig. 6, these type

of moves are highlighted in terms of c1. However, if we
only use such trivial moves, we obtain sub-optimal results.

The second step of the approach concerns computing a new

∧

×

dc

→

ba

v1

v2

v3

v4

v5

v6

v7

v5 → v5

∧

∧

dc

→

ba

v1

v2

v3

v4

v5

v6

v7

Fig. 5 Modification of sub-tree PT1 into PT2 by replacing v5

1 Scope detection γ:
...

2 Realignment

⏐
⏐
⏐
⏐

↓ ⏐
⏐
⏐
⏐

↓ ⏐
⏐
⏐
⏐realign realign

3 Reassembly γ :
...

Fig. 4 Schematic overview of the repair approach

123

S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020) 295

alignment based on the activities present in the scope of

change. Since in this case the only activity present in the

scope of change is c, we compute an alignment of sequence

hci and the new sub-tree defined by v05. Observe that such

an alignment contains a synchronous move ðc; v06Þ and a

model move ð�; v07Þ, i.e., a model move on the vertex

labelled with activity d. However, in alignment c1, the

move next to ð�; ve5Þ is a log move on d, i.e., ðd;�Þ. If we
assign the log move to the scope as well, we end up with

sequence hc; di. In such case both vertices v06 and v07, after

aligning hc; di with the sub-tree defined by v05, relate to

synchronous moves, i.e., ðc; v06Þ and ðd; v07Þ. Thus, it is

beneficial to include adjacent log moves within the scope

of change.

Let ms and me denote the moves related to the unique

start- and end transition of the changed sub-tree, i.e.,

ð�; vs5Þ and ð�; ve5Þ in case of the running example. Con-

sider log moves in-between ms and me. We know that

within that position of the alignment, behavior of the

subtree is allowed. If we assign log moves in-between ms

and me to the scope of change and in step 2 use their labels

to compute a new alignment based on the new sub-tree,

these moves either stay log moves or become synchronous.

Thus, the overall contribution of these log moves to the

alignment cost can only decrease, which is desirable. We

therefore deduce that any log move in-between ms and me

is eligible to be part of the scope.

However, our previous example shows that log moves

that are not in-between ms and me are also interesting to use

within the scope, i.e., ðd;�Þ in case of alignment c1.
Observe that when swapping a log- and a model move

within an alignment, none of the two requirements as

presented in Sect. 3.2 is violated, i.e., the activity sequence

(top part) still describes the trace, and the behavioral

sequence (bottom part) is still a feasible execution of the

process tree. Hence, trivially, we deduce that we are able to

swap log-moves and model moves in any alignment. Thus,

in the context of alignment c1, if we swap the moves

ð�; ve5Þ and ðd;�Þ (cf. Fig. 7), the newly obtained sequence
of moves is still an (optimal) alignment.

By applying such a swap, move ðd;�Þ is positioned in-

between the moves related to the unique start- and end

transition and thus eligible for inclusion in the scope.

Obviously, we are able to apply the same trick for move

ðe;�Þ. However, in general, we are not able to swap all

possible moves, i.e., we are not able to swap:

1. Log moves with log moves, as we have to respect the

order of the events in the trace.

2. Model moves with model moves, as the process model

demands a specific execution ordering.3

3. Synchronous moves with any other type of move, i.e.,

synchronous moves, log moves or model moves.

For example, we are not allowed to swap ðc; v6Þ with

ð�; ve5Þ. Based on the previous observation, we observe that
any log move ml that occurs after move me s.t. there are

only model moves in-between me and ml can be swapped

such that it precedes me. Moreover, an other log move m0
l

that occurs after ml, and, due to swapping of ml now only

has model moves in-between me and itself can subse-

quently be swapped such that it precedes me. As an

example consider moves ðd;�Þ and ðe;�Þ, i.e., after

swapping ðd;�Þ with ð�; ve5Þ we are subsequently able to

swap ðe;�Þ and ð�; ve5Þ. Symmetrically, this also holds for

moves ml that precede move ms, i.e., we are also able to

swap these move in-between ms and me.

Thus, given aforementioned move ms and corresponding

move me at position i, respectively j in some alignment c,
the following moves belong to the scope of change:

1. Model/synchronous moves at position i0 s.t. i\i0\j

that relate to the changed sub-tree.

2. Any log move at position i\i0\j.

3. Any log move at position i0\i s.t. there is no

synchronous move at position i00 with i0\i00\i.

4. Any log move at position i0 [j s.t. there is no

synchronous move at position i00 with j\i00\i0.

In Fig. 8, we illustrate the final result of scope identifica-

tion for c1.

4.2 Alignment Recalculation

In this section, we describe step 2 of the approach, i.e.,

alignment recalculation, which is trivial. We obtain the log

moves and the synchronous moves part of the scope of

... − d − e ...

... t15 − ve
5 − ...

Fig. 7 In any alignment, we are able to swap log and model moves,

without jeopardizing the alignment, e.g., swapping ð�; ve5Þ and ðd;�Þ
in the context of Fig. 3a

− − a b − − c − d e −
vs
1 vs

2 v3 v4 ve
2 vs

5 v6 ve
5 − − ve

1

Fig. 6 Identification of the moves that trivially belong to the scope of

v5

3 Due to parallelism, in some cases we are allowed to swap model

moves with other model moves or synchronous moves, as the process

model allows several execution orderings. This does however not

hold in the general case.

123

296 S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020)

change and we project these moves onto their label values.

Subsequently we simply compute a new alignment for the

generated subsequence of behavior. In case of our running

example, this results in the alignment depicted in Fig. 9.

Subsequently, the main challenge concerns placing the

moves of the new alignment back into the old alignment at

adequate positions.

4.3 Alignment Reassembly

In this section, we describe the final step of the approach, in

which we replace the scope of change by parts of the newly

obtained alignment. When the scope of change is not

within a parallel construct, such reassembly is trivial, i.e.,

we simply paste the new fragment starting at the same

position as the scope of change. However, in case the scope

of change resides in a parallel block, i.e., one of its

ancestors in the tree is an ^- or an _-operator, it is likely
that the moves of the scope of change are interleaving with

moves outside of the scope. Hence, when replacing the

scope of change with the newly obtained alignment frag-

ment, we need to ensure that each move of the new

alignment fragment is placed on the right position, i.e., in

order not to break the overall alignment.

We replace the scope of change by the newly computed

alignment fragment, on the basis of pointers. We store a

pointer for each move m in the scope of change that relates

to an activity observed in the trace, and, the first move in

the scope of change that relates to behavior in the subtree,

e.g., vs5 in case of our running example. We do so, as we are

able to relate moves in the newly obtained alignment

fragment back to these moves in the scope of change. For

each move in the scope of change, the pointer structure is

constructed as follows:

1. If it is the first model/synchronous move related to the

changed subtree, e.g., ð�; vs5Þ in the context of the

running example, we store a pointer to the closest

preceding move, i.e., ð�; ve2Þ in the context of our

example.

2. If it is a log/synchronous move, e.g., ðc; v6Þ and ðd;�Þ
in the context of the running example, we store a

pointer to the closest preceding log/synchronous move.

For example, for ðc; v6Þ, we store a pointer to ðb; v4Þ.
Consider the upper alignments of Figs. 10 and 11 respec-

tively, in which we visualize the aforementioned pointer

structure in the context of the running example. We use

double-headed arrows to represent such pointers.

When replacing the scope of change by the new align-

ment fragment, we walk through the new alignment frag-

ment step-by-step. For each move we encounter, we check

whether there exists a pointer stored in the corresponding

move in the scope of change. For example, in Fig. 10, the

first move of the new alignment fragment is ð�; v0s5 Þ.
Clearly, this move relates to the first model/synchronous

move in the scope of change, i.e., ð�; vs5Þ. Based on the

pointer stored for ð�; vs5Þ, i.e., pointing to ð�; ve2Þ, we start

inserting the newly obtained alignment fragment in the

original alignment. We subsequently inspect the next move

in the newly obtained alignment fragment. In case this is a

model move, it does not have a corresponding counter part

in the scope of change, and we append it to the previously

inserted move. However, if this either a synchronous or a

log move, there exits a corresponding pointer in the scope

of change. For example, in Fig. 10, the second move in the

new alignment fragment is ðc; v06Þ, for which its corre-

sponding move in the scope of change has a pointer to

− − a b − − c − d e −
vs
1 vs

2 v3 v4 ve
2 vs

5 v6 ve
5 − − ve

1

− − a b − − c d − e −
vs
1 vs

2 v3 v4 ve
2 v s

5 v6 v7 v e
5 − ve

1

Fig. 10 Repositioning of the new alignment fragment in the existing

alignment, in case there is no interference with parallel behavior.

Since there is no interleaving between the scope of change and other

parts of the model, we are able insert the new alignment fragment as a

consecutive block

− − a − b c − d − e −
vs
1 vs

2 v3 vs
5 v4 v6 ve

5 − ve
2 − ve

1

− − a − b c d − e − −
vs
1 vs

2 v3 v s
5 v4 v6 v7 v e

5 − ve
2 ve

1

Fig. 11 Repositioning of the new alignment fragment in the existing

alignment, in case there is interference with parallel behavior. After

pasting the first move of the new alignment fragment, we need to skip

move ðb; v4Þ and paste ðc; v05Þ directly after it

− c d − e
v s
5 v6 v7 v e

5 −

Fig. 9 Alignment of hc; d; ei on the new sub-tree formed by v05

− − a b − − c − d e −
vs
1 vs

2 v3 v4 ve
2 vs

5 v6 ve
5 − − ve

1

Fig. 8 Final result of scope of change detection

123

S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020) 297

move ðb; v4Þ. Hence, we need to make sure that when

placing ðc; v06Þ into the alignment, it is the next syn-

chronous/log move after ðb; v4Þ. Observe that, in Fig. 10,

this is indeed the case, i.e., ðc; v06Þ is the first log/syn-

chronous move occurring after ðb; v4Þ, hence, we do not

need to shift the insertion point and can proceed to the next

move. For the next move in the newly obtained alignment

fragment, we repeat the procedure.

In Fig. 10, the scope of change is a consecutive block of

moves. As a result, we are able to insert the newly obtained

alignment fragment as a consecutive block as well. How-

ever, as indicated, this is not always the case. Consider

Fig. 11, in which we present an alternative alignment of

trace ha; b; c; d; ei and PT1. In this case, move ð�; vs5Þ
occurs prior to move ðb; v4Þ. Furthermore, move ð�; ve2Þ
occurs in-between moves ðd;�Þ and ðe;�Þ. When insert-

ing the new alignment fragment, we start with its first

move, i.e., ð�; v0s5 Þ, which we, on the basis of the stored

corresponding pointer, position directly after ða; v3Þ. The
next move in the fragment is ðc; v06Þ. As the corresponding

move ðc; v6Þ occurs after move ðb; v4Þ, we start inserting

from there, rather than directly after ð�; v0s5 Þ. All subse-
quent moves are in the right position and are therefore

inserted in a consecutive manner.

Note that, the procedure described, i.e., consisting of

scope detection, realignment and reassembly, works for

every described execution of the changed subtree. In case

the changed subtree is in a loop structure, i.e., on the path

from the root of the process tree to the root of the changed

subtree there occurs an � operator, it is potentially exe-

cuted multiple times. Hence, we executed the aforemen-

tioned procedure for each individual execution of the

subtree.

5 Correctness and Optimality

In the examples used in Sect. 4, the repaired alignments are

in fact alignments, i.e., they respect the requirements laid

out for alignments in Sect. 3.2. Moreover, they are optimal.

In this section we show the correctness of the general

approach, i.e., that a repaired alignment is always an

alignment. Moreover we show, by means of a counter

example, that we are not able to guarantee optimality.

5.1 Correctness

The basic correctness requirement of the presented

approach is that, after reusing an existing (optimal) align-

ment, the repaired alignment itself is an alignment. To

prove that a repaired sequence of moves c0 is an alignment,

we need to prove that the two basic requirements presented

in Sect. 3.2 hold for c0. In this section, we show that his

indeed holds.

Consider the first requirement, i.e., projection of the

moves onto activities yields the trace. Observe that the

repair method inserts alignment fragments back into the

original alignment based on pointers. Observe that, due to

the use of the pointers, a move is never placed at a relative

earlier position, i.e., if the insertion index is too small, we

use the pointers to shift it to the correct position, e.g., as

exemplified in Fig. 11. Thus, the only problem that

potentially jeopardizes the property, is a label-based move

ml that is placed relatively too far back, i.e., there appears

(at least) one label-based move m0
l in-between ml and ml’s

actual preceding event in the trace. However, this only

happens if we shift the pointer too far, which in turn only

happens if two label-based moves are swapped by the

underlying alignment algorithm. This contradicts that the

underlying alignment algorithm guarantees to return

alignments. Thus, the moves are always placed back in

correct order.

For the second requirement, we need to show that pro-

jection on the model-part of the alignment is in the newly

created process tree’s language. Let ms denote the first

move of the scope of change, that relates to starting

behavior of the changed subtree, e.g., ð�; vs5Þ in Figs. 10

and 11, i.e., the first non-log move of the scope of change.

Furthermore, let m0 be the closest non-log move preceding

ms, i.e., relating to execution of some other behavior in the

tree, e.g., ð�; ve2Þ in Fig. 10 and ða; v3Þ in Fig. 11 respec-

tively. Symmetrically we define me as the final move of the

scope of change relating to the behavior in the changed

subtree, and we let m00 denote the first non-log move suc-

ceeding me, e.g., ð�; ve5Þ and ð�; ve1Þ in Fig. 10.

Since move m0 and m00 do not relate to the scope of

change, they remain present in the resulting alignment.

Furthermore, all the moves within the scope of change that

relate to behavior in the changed subtree, occur in-between

moves m0 and m00. Due to using the explicit pointer related

to the start of the changed subtree, the first move in the new

alignment related to behavior of the newly inserted subtree,

occurs directly after m0. Furthermore, it is impossible to

insert some moves of the new alignment, related to

behavior of the new subtree, after m00. Observe that this is

the case, because we only shift the insertion of the align-

ment fragment due to the existence of a pointer on the basis

of a log/synchronous move. Assume that such a pointer

exists to a move mp that occurs after m
00. Move mp can only

be a log move, if there is no synchronous move in-between

m00 and mp. However, in that case, mp itself is part of the

scope of change, which contradicts the possibility of the

existence of a pointer to mp. If mp is a synchronous move,

we have assigned log moves occurring after the

123

298 S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020)

synchronous move to the scope of change, which is not

allowed, i.e., the scope of change stops when we observe

the first synchronous move occurring after me. Hence, we

are guaranteed that the newly generated alignment frag-

ment is reinserted in-between m0 and m00.
Since the original alignment is a proper alignment, we

know that the behavior of the changed subtree is allowed to

occur in-between the moves m0 and m00. Hence, by con-

struction of process trees, the behavior of the newly gen-

erated subtree is also allowed to occur at that position. In

case there exists, due to parallelism, interleaving of moves

outside of the changed subtree in-between m0 and m00, we
are allowed to arbitrary shuffle that interleaving behavior

(subject to not shuffling label-based moves). Hence, any

interleaving occurring after inserting the newly generate

alignment fragment relates to the existence of parallelism

and is allowed as well.

5.2 Optimality

In this section, we show that we are not able to guarantee

optimality of the proposed approach. We show this by

means of a simple counter example, which also shows that

optimality is partially depending on the form of the original

alignment.

Consider the simple process tree in Fig. 12. Assume we

align the trace ha; b; a; d; b; a; bi on the left process tree in

Fig. 12. Observe that a possible optimal alignment of

ha; b; a; d; b; a; bi and the left process tree of Fig. 12, is

constructed by making the first three events log moves,

making the d event the first synchronous move, the sub-

sequent b event a log move again, and the final two events,

i.e., ha; bi synchronous. Additionally we require that, in the

underlying alignment, the start of sub-tree ^ða; bÞ occurs

after the synchronous move on the d event.

We now change the process tree and obtain the process

tree depicted in the right-hand side of Fig. 12. When we

apply the proposed repair algorithm, the log moves prior to

the d-event, i.e., the first three events ha; b; ai are not

incorporated in the scope of change. These moves therefore

stay log moves. However, the given trace perfectly fits the

new process model in Fig. 12. This shows that the

proposed technique is not able to guarantee optimality of

the resulting alignments.

6 Evaluation

To evaluate the proposed technique, we answer two main

questions: (1) What is the time needed to align a model and

a log with the presented technique? and (2) How close/far

is the repaired alignment from the optimal alignment? In

this section we answer these questions by comparing the

time needed for alignment repair with the time expended to

compute a new, optimal alignment and by measuring the

quality of the repaired alignments w.r.t. the new, optimal

alignment. Finally, we investigate the actual impact of the

proposed approach on evolutionary process discovery

using a real event log.

Implementation Part of the experimental results shown

in this section are based on experiments performed for

Vázquez-Barreiros et al. (2016b). Moreover, the newly

added experiments for the purpose of this paper are based

on the code-base of Vázquez-Barreiros et al. (2016b)4. In

the code-base, the number of log moves that are adopted in

the scope are only those log moves that directly border a

synchronous/model move that belongs to the changed sub-

tree. Moreover, also pointers are stored if there are model

moves in-between two scope moves. Thus, as opposed to

the more generic approach presented in this paper, within

the code some log moves may be left out of the scope. This

has an expected negative impact on the alignment opti-

mality of the implementation, i.e., we expect it to be equal

or slightly worse w.r.t. the general approach.

6.1 Experimental Set-Up

In Fig. 13 we depict a schematic overview of the experi-

mental setup. We generate an initial random process tree of

random size. Based on this model, we simulate a non-

fitting event log, i.e., the event log contains noise, con-

sisting of 2000 traces. We then calculate the optimal

alignments of all traces in the event log w.r.t. the initial

model. As a second step, we perform a set of random

changes on the base model (step a in Fig. 13), generating a

total of 150 different mutated process trees. We enforce

that every mutated model is unique. The possible changes

applied over the base model are: randomly adding a new

node, randomly removing a node and randomly changing a

node of the tree. Then, we calculate two different types of

alignments for each mutated tree: optimal alignments based

on the simulated log (step b in Fig. 13) and repaired

∧

d∧

ba

∧

d

τba

Fig. 12 Example change of a process tree from a concurrent operator

to a loop operator

4 https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMi

ner/Branches/BorjaImp/experiments/.

123

S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020) 299

https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/
https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/

alignments reusing the optimal alignments previously cal-

culated on the base model (step c in Fig. 13). Finally, we

compare both outputs (step d in Fig. 13).

Following this process, we created a set of 50 initial

random trees with arbitrary sizes between 21 and 47 ver-

tices. Thus, we applied the presented technique over 50�
150� 2000 � 1:5 � 106 alignments5.

6.2 Running Time

As the time needed to compute alignments varies signifi-

cantly between runs, we grouped the results of the exper-

iments based on the size of the initial random process

trees. We created a bucket with initial trees of sizes

between 21 and 28 vertices (12 trees in total), a bucket with

sizes between 29 and 31 vertices (12 trees in total), a

bucket with sizes between 32 and 34 vertices (13 trees in

total) and a bucket with sizes greater than 35 vertices (13

trees in total).

Figure 14 shows the time comparison, using box plots,

for each bucket of experiments. Due to the high dispersion

of the data, on the right-hand side of Fig. 14 we also show

the box plots zoomed into the domain 0–100 s.

Consider results shown in Fig. 14a. When inspecting the

time needed for computing optimal alignments, i.e., Time

Optimal, we observe that in the middle 50% of the runs

(Q2,Q3) it roughly took between 25 and 145 s to align an

event log and a model. The fastest 25% of the experiments

(Q1, left whisker) took less than 30 s, whereas the slowest

25% of the experiments (Q4, right whisker) took more than

150 s. Thus, in the 75% of the experiments it took more

than 30 s to align a log and a model and only in the

remaining 25% less than 30 s. On the other hand, for

alignment repair, i.e., Time Repair, the middle 50% of the

experiments (Q2, Q3) roughly took between 1 and 7 s to

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Repair

Time Op�mal

Seconds
0 10 20 30 40 50 60 70 80 90 100

Time Repair

Time Op�mal

Seconds

(a) Trees of size with less than 28 vertices.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Repair

Time Op�mal

Seconds
0 10 20 30 40 50 60 70 80 90 100

Time Repair

Time Op�mal

Seconds

(b) Trees of size between 29 and 31.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Repair

Time Op�mal

Seconds
0 10 20 30 40 50 60 70 80 90 100

Time Repair

Time Op�mal

Seconds

(c) Trees of size between 32 and 34.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Repair

Time Op�mal

Seconds
0 10 20 30 40 50 60 70 80 90 100

Time Repair

Time Op�mal

Seconds

(d) Trees with more than 35 vertices.

Fig. 14 Box plots showing the time needed to repair an alignment versus computing the optimal alignments for each bucket of experiments. The

right-hand side shows the results zoomed into the domain 0–100 s

Simulated LogRandom Tree

Mutated Tree

(Base) Optimal Alignments

(Mutated) Optimal Alignments

(b)

Repaired Alignments

(a) (c)

(d)

Fig. 13 Process followed

during the experimentation

5 All results can be found at https://svn.win.tue.nl/repos/prom/

Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/

bpmds2016/.

123

300 S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020)

https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/bpmds2016/
https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/bpmds2016/
https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/Branches/BorjaImp/experiments/bpmds2016/

align an event log and a model. In the fastest 25% of the

experiments it took less than a second whereas in then the

slowest 25% of the experiments computation time took

more than 7 s. If we compare both techniques, aligning a

log and a tree with the presented technique took less than

7 s in the 75% of the cases, whereas for computing the

optimal alignments, only in the 25% of the experiments

this took less than 30 s. The same pattern is visible in the

other results presented in Fig. 14.

In general we observe that there is no overlap in the sec-

ond and third quartiles of computing alignments based on the

repair method versus computing an optimal alignment from

scratch. This implies that in nearly all cases, the time needed

to align a model and an event log by applying alignment

repair outperforms computing a new optimal alignment.

The time needed for alignment repair seems directly

related to the size of the changed sub-tree, which explains

the rather high range of the right whiskers in the box plots

for alignment repair. Clearly, if the change is performed in

the root node of a process tree, the time needed to apply the

presented approach will be roughly equal to the time nee-

ded to compute the optimal alignment as there is no room

to repair the old alignment. Thus, we conclude that using

the presented technique, guarantees a lower, or, in worst

case equal, running time compared with computing the

optimal alignments between an event log and a process tree

from scratch.

6.3 Alignment Quality

As explained in Sect. 5.2, alignment repair does not

guarantee optimality. It is not straightforward to assess how

well the repaired alignment scores in terms of optimality.

To judge the rank of the repaired alignment, i.e., how many

other alignments are closer to the optimal alignment, we

need to traverse all possible alignments of a trace and a

process tree. This is rather involved from a run-time

complexity point and hence hard to incorporate within the

experiments.

We propose a grade measure, that grades the repaired

alignment, based on the relative distance of the alignment

w.r.t. the optimal alignment. To compute the distance, we

first compute the cost of the optimal alignment c�. Addi-
tionally, we create an alignment cw, consisting of only

ða;�Þ-moves and ð�; vÞ-moves, such that the log moves

form the trace and the model moves form a shortest pos-

sible firing sequence of the process tree. Alignment cw

represents the best of the worst alignments, i.e., a longer

firing sequence is potentially possible though yields a

worse alignment score. Finally, we calculate the cost of the

repaired alignment cr. Based on the difference between the

cost of c� and cw we compute the relative cost of cr. Let c�,
cw and cr denote the costs for c�, cw and cr. We grade the

cost of cr as follows: gradeðcrÞ ¼ 1� cr�c�

cw�c�. Clearly,

0� gradeðcrÞ� 1. We used the following cost for move m:

zðmÞ ¼ 5 if m is a log move, zðmÞ ¼ 2 if m is a model move

and zðmÞ ¼ 0 if m is synchronous. With these costs the

movements in the model are more probable than the

movements in the log, which is a reasonable assumption for

alignments computation for models generated by process

discovery algorithms. Consider Fig. 15 which schemati-

cally depicts the concept of alignment grading.

Figure 16 shows box plots for the computed average

grades of the repaired alignments. As the figure shows, we

always have a grade above 0.84, and in the top 75% of all

experiments is above 0.98. Thus, when the repaired

alignments are not optimal, the difference with the optimal

alignments is minimal. Hence, the loss of optimality is

limited and stays within acceptable bounds.

Again, there is a close relation between the size the

changed sub-tree and the potential loss of optimality. If the

change is performed close to the root node, more log

moves will belong to the scope of change. Consequently,

the probability of retrieving an optimal alignment is higher.

If the root of the point of change is the root node, we

obviously do guarantee optimality.

6.4 Incorporation in the Evolutionary Tree Miner

In the previous sections we evaluated both runtime and the

alignment quality. In this section the practical effects of the

application of alignment repair are evaluated by running

the Evolutionary Tree Miner (ETM) process discovery

algorithm (Buijs 2014). The ETM is applied on the real-life

Fig. 15 Conceptual example of alignment grading

123

S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020) 301

2015 BPI Challenge (van Dongen 2015) event log, which

is filtered to contain those 30 activities that cover 50% of

all events. This results in an event log with 1, 199 cases

and 26, 208 events, implying that a trace contains 22

events on average.

Since the ETM can produce variable results, e.g., when

it starts off with a particularly good or bad set of process

trees, we ran the ETM 30 times. During each run the ETM

created 200 generations of 20 process trees, of which 2

where kept in the elite, i.e., transferred between genera-

tions. This means that in each run of the ETM 3, 602

process trees were generated and evaluated.

Analyzing the results show that the repaired alignment

was calculated for 16:45%ð�2:16%) of the process trees,

i.e., one out of six process trees is repaired. Further analysis

into the fraction of process trees repaired over the gener-

ations results in the graph of Fig. 17. The graph shows that

the fraction of repaired trees per generation fluctuates (even

after averaging over the 30 runs). The fluctuation is also

partly caused by the population size of 20 trees per gen-

eration. The graph also clearly shows that in the first

generations few trees are repaired. Overall there seems to

be a slight trend towards a higher fraction of trees being

repaired in later generations.

For the process trees where a repaired alignment was

calculated, also a new optimal alignment was calculated for

comparison. The results are shown in Table 2 where the

average values of each run are averaged again. The results

0 20 40 60 80 100 120 140 160 180 200
0.000

0.050

0.100

0.150

0.200

0.250

Generation

Fr
ac

ti
on

of
tr
ee
s
re
pa

ir
ed

Fig. 17 Fraction of repaired trees per generation (averaged over 30 runs)

0

0,2

0,4

0,6

0,8

1

nodes < 28 29 < nodes < 31 32 < nodes < 34 35 < nodes

0,8
0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96
0,98

1

nodes < 28 29 < nodes < 31 32 < nodes < 34 35 < nodes

Fig. 16 Normalized grade of the repaired alignments

Table 2 Experimental results

of ETM
Cost Replay-fitness States

Repair Optimal Repair Optimal Repair Optimal

Average 121,578.060 120,993.249 0.11938 0.12359 5.760 10,846.832

SD 1913.806 1909.323 0.02084 0.02121 1.243 1,880.271

123

302 S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020)

show that both the calculated cost and the resulting replay-

fitness are not significantly different between the repaired

and full alignment variants. The repaired alignments on

average reports only a slightly worse replay-fitness com-

pared to the a new optimal calculation. The average replay-

fitness values are rather low, but this is typical for the

behavior of the ETM in early runs. The complexity of

alignment computation is measurable in the number of

states, i.e., vertices in the marking-based reachability

graph, it visits. When we consider the number of states

visited by the alignment algorithm however, we see that the

repaired version requires significantly less states (roughly a

factor 2000) to compute the final result.

These results confirm that the performance gains, as

demonstrated by the significant drop in number of states

required by the alignment algorithm, outweigh the decrease

in accuracy, which is insignificant.

7 Conclusion

We presented a novel approach to compute alignments

based on an existing alignment, instead of (re)computing

the alignment from scratch. The approach needs a process

model and an existing alignment in order to compute a new

alignment for a similar process model. The technique

extends and generalizes the technique presented in earlier

work (Vázquez-Barreiros et al. 2016b).

We have shown that the technique guarantees to return

sequences of moves which are in fact proper alignments.

The evaluation shows that our approach always retrieves an

alignment in a significantly lower, or worst-case equal,

time than computing optimal alignments. Furthermore, we

show that the potential loss of optimality is limited and

stays within acceptable bounds. The approach has been

validated with a set of random trees and event logs,

resulting in more than 106 alignments. Furthermore, we

show that the potential loss of optimality is limited and

stays within acceptable bounds. Additionally we have

integrated the approach within the Evolutionary Tree

Miner (Buijs 2014). Using the integration together with a

real event log, we have shown the applicability of the

approach in practice. Moreover the ETM-based experi-

ments confirm that applying alignment repair reduces the

complexity of computing alignments significantly.

Future Work The current approach only focuses on the

changed sub-tree and not on its surroundings and/or the

nature of the root of the changed sub-tree. Depending on

the type of operators in the tree, it might be possible to

extend or shrink the scope of change, allowing to reduce

the loss of optimality. Hence, we plan to more explicitly

the process model into account when computing the scope.

Moreover, we plan to develop means to predict optimality,

allowing us to decide at which point it is necessary to

compute an optimal alignment instead of reusing an

existing one.

The speedup obtained by using alignment repair is

crucial for certain areas, e.g., stream-based process mining

(Burattin et al. 2014, 2015; Hassani et al. 2015; van Zelst

et al. 2017, 2018b), where it is necessary to keep the model

up to date based on a real-time stream of events. New

streams might lead to modifications of the discovered

process model [concept drift (Ostovar et al. 2016)],

resulting in new process models which are not so different

from the previous model. This typically happens for

gradual and incremental concept drifts that are related to

changes in the structure of the process model. Reusing the

previous alignments potentially allows us to update con-

formance checking statistics in significantly less time

compared to recomputing all the optimal alignments.

Therefore, we plan to assess challenges and the effective-

ness of the presented technique in stream-based process

mining.

Acknowledgements This research was supported by the Spanish

Ministry of Economy and Competitiveness (Grant TIN2014-56633-

C3-1-R, co-funded by the European Regional Development Fund-

FEDER program), the Galician Ministry of Education under the

projects EM2014/012, CN2012/151, GRC2014/030, and the DELI-

BIDA research program supported by NWO. The authors would like

to thank Wil M.P. van der Aalst, Boudewijn F. van Dongen and XiXi

Lu for their valuable feedback and suggestions.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Adriansyah A (2014) Aligning observed and modeled behavior. Ph.D.

thesis, Eindhoven University of Technology, Department of

Mathematics and Computer Science

Adriansyah A, van Dongen BF, van der Aalst WMP (2011) Confor-

mance checking using cost-based fitness analysis. In: Proceed-

ings of the 2011 IEEE 15th international enterprise distributed

object computing conference, EDOC ’11. IEEE Computer

Society, Washington, DC, pp 55–64

Adriansyah A, van Dongen BF, van der Aalst WMP (2013) Memory-

efficient alignment of observed and modeled behavior. Technical

report, BPM Center Report

Adriansyah A, Munoz-Gama J, Carmona J, van Dongen BF, van der

Aalst WMP (2015) Measuring precision of modeled behavior.

Inf Syst E Bus Manag 13(1):37–67

Alizadeh M, de Leoni M, Zannone N (2014) History-based construc-

tion of log-process alignments for conformance checking:

discovering what really went wrong. In: Accorsi, R, Paolo C,

Barbara R (eds) Proceedings of the 4th international symposium

123

S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020) 303

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

on data-driven process discovery and analysis (SIMPDA 2014),

Milan, Italy, November 19–21, 2014, volume 1293 of CEUR

workshop proceedings. CEUR-WS.org, pp 1–15

Buijs Joos CAM (2014) Flexible evolutionary algorithms for mining

structured process models. Ph.D. thesis, Eindhoven University of

Technology

Burattin A, Sperduti A, van der Aalst WMP (2014) Control-flow

discovery from event streams. In: Proceedings of the IEEE

congress on evolutionary computation, CEC 2014, Beijing,

China, July 6–11, 2014. IEEE, pp 2420–2427

Burattin A, Cimitile M, Maggi FM, Sperduti A (2015) Online

discovery of declarative process models from event streams.

IEEE Trans Serv Comput 8(6):833–846

Carmona J, van Dongen BF, Solti A, Weidlich M (2018) Confor-

mance checking–relating processes and models. Springer, Berlin

de Leoni M, Marrella A (2017) Aligning real process executions and

prescriptive process models through automated planning. Expert

Syst Appl 82:162–183

de Leoni M, Maggi Fabrizio M, van der Aalst WMP (2012) Aligning

event logs and declarative process models for conformance

checking. In: Business process management—10th international

conference, BPM 2012, Tallinn, Estonia, September 3–6, 2012.

Proceedings, pp 82–97

de Leoni M, van der Aalst WMP (2013) Aligning event logs and process

models for multi-perspective conformance checking: an approach

based on integer linear programming. In: Business process

management—11th international conference, BPM 2013, Beijing,

China, August 26–30, 2013. Proceedings, pp 113–129

de Leoni M, Munoz-Gama J, Carmona J, van der Aalst WMP (2014)

Decomposing alignment-based conformance checking of data-

aware process models. In: On the move to meaningful internet

systems: otm 2014 conferences—confederated international

conferences: CoopIS, and ODBASE 2014, Amantea, Italy,

October 27–31, 2014, Proceedings, pp 3–20

Dumas M, La Rosa M, Mendling J, Reijers HA (2018) Fundamentals

of business process management, 2nd edn. Springer, Berlin

Fahland D, van der Aalst WMP (2012) Repairing process models to

reflect reality. In: Business process management—10th interna-

tional conference, BPM 2012, Tallinn, Estonia, September 3–6,

2012. Proceedings, pp 229–245

Fahland D, van der Aalst WMP (2015) Model repair-aligning process

models to reality. Inf Syst 47:220–243

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the

heuristic determination of minimum cost paths. IEEE Trans Syst

Sci Cybern 4(2):100–107

Hassani M, Siccha S, Richter F, Seidl T (2015) Efficient process

discovery from event streams using sequential pattern mining.

In: IEEE symposium series on computational intelligence, SSCI

2015, Cape Town, South Africa, December 7–10, 2015. IEEE,

pp 1366–1373

Leemans SJJ, Fahland D, van der Aalst WMP (2013) Discovering

block-structured process models from event logs—a constructive

approach. In: Colom JM, Desel J (eds) Application and theory of

Petri nets and concurrency—34th international conference,

PETRI NETS 2013, Milan, Italy, June 24–28, 2013. Proceed-

ings, volume 7927 of Lecture Notes in Computer Science.

Springer, pp 311–329

Leemans SJJ, Fahland D, van der Aalst WMP (2014a) Exploring

processes and deviations. In: Business process management

workshops-BPM 2014 international workshops, Eindhoven, The

Netherlands, September 7–8, 2014. Revised Papers, pp 304–316

Leemans SJJ, Fahland D, van der Aalst WMP (2014b) Process and

deviation exploration with inductive visual miner. In: Proceed-

ings of the BPM Demo Sessions 2014 Co-located with the 12th

international conference on business process management (BPM

2014), Eindhoven, The Netherlands, September 10, 2014. pp 46

Munoz-Gama J, Carmona J, van der Aalst WMP (2014) Single-entry

single-exit decomposed conformance checking. Inf Syst

46:102–122

Murata T (1989) Petri nets: properties, analysis and applications. Proc

IEEE 77(4):541–580

Ostovar A, Maaradji A, La Rosa M, ter Hofstede AHM, van Dongen

BF (2016) Detecting drift from event streams of unpre-

dictable business processes. In: Proceedings of the 35th inter-

national conference on conceptual modeling ER’16, volume

9974 of Lecture Notes in Computer Science., Springer,

pp 330–346

Polyvyanyy A, van der Aalst WMP, ter Hofstede AHM, Wynn MT

(2017) Impact-driven process model repair. ACM Trans Softw

Eng Methodol 25(4):28:1–28:60

Rozinat A, van der Aalst WMP (2008) Conformance checking of

processes based on monitoring real behavior. Inf Syst

33(1):64–95

Song W, Xia X, Jacobsen H-A, Zhang P, Hao H (2017) Efficient

alignment between event logs and process models. IEEE Trans

Serv Comput 10(1):136–149

van der Aalst WMP (1998) The application of Petri nets to workflow

management. J Circuits Syst Comput 8(1):21–66

van der Aalst WMP (2012) Decomposing process mining problems

using passages. In: Application and theory of Petri Nets-33rd

international conference, PETRI NETS 2012, Hamburg, June

25–29, 2012. Proceedings, pp 72–91

van der Aalst WMP (2013) Decomposing Petri nets for process

mining: a generic approach. Distrib Parallel Databases

31(4):471–507

van der Aalst WMP (2016) Process mining-data science in action, 2nd

edn. Springer, Berlin

van der Aalst WMP, Adriansyah A, van Dongen BF (2012) Replay-

ing history on process models for conformance checking and

performance analysis. Wiley Interdiscip Rew Data Min Knowl

Discov 2(2):182–192

van Dongen BF (2015) BPI challenge 2015. 4TU.Centre for Research

Data. Dataset

van Dongen BF (2018) Efficiently computing alignments-using the

extended marking equation. In: Business process management-

16th international conference, BPM 2018, Sydney, NSW,

Australia, September 9–14, 2018, Proceedings, pp 197–214

van Eck ML, Buijs JCAM, van Dongen BF (2014) Genetic process

mining: alignment-based process model mutation. In: Business

process management workshops-BPM 2014 international work-

shops, Eindhoven, The Netherlands, September 7–8, 2014,

Revised Papers, pp 291–303

van Zelst SJ, Bolt A, Hassani M, van Dongen BF, van der Aalst

WMP (2017) Online conformance checking: relating event

streams to process models using prefix-alignments. Int J Data Sci

Anal. https://doi.org/10.1007/s41060-017-0078-6

van Zelst SJ, Bolt A, van Dongen BF (2018a) Computing alignments

of event data and process models. In: Transactions on Petri nets

and other models of concurrency, vol 13. pp 1–26

van Zelst SJ, van Dongen BF, van der Aalst WMP (2018b) Event

stream-based process discovery using abstract representations.

Knowl Inf Syst 54(2):407–435

Vanhatalo J, Völzer H, Koehler J (2009) The refined process structure

tree. Data Knowl Eng 68(9):793–818

Vázquez-Barreiros B, Mucientes M, Lama M (2016a) Enhancing

discovered processes with duplicate tasks. Inf Sci 373:369–387

Vázquez-Barreiros B, van Zelst SJ, Buijs JCAM, Lama M, Mucientes

M (2016b) Repairing alignments: striking the right nerve. In:

Enterprise, business-process and information systems model-

ing—17th international conference, BPMDS 2016, 21st interna-

tional conference, EMMSAD 2016, Held at CAiSE 2016,

Ljubljana, Slovenia, June 13–14, 2016, Proceedings, pp 266–281

123

304 S. J. van Zelst et al.: Repairing Alignments of Process Models, Bus Inf Syst Eng 62(4):289–304 (2020)

https://doi.org/10.1007/s41060-017-0078-6

	Repairing Alignments of Process Models
	Abstract
	Introduction
	Related Work
	Background
	Process Trees
	Event Data and Alignments

	Repairing Alignments
	Scope of Change Detection
	Alignment Recalculation
	Alignment Reassembly

	Correctness and Optimality
	Correctness
	Optimality

	Evaluation
	Experimental Set-Up
	Running Time
	Alignment Quality
	Incorporation in the Evolutionary Tree Miner

	Conclusion
	Acknowledgements
	References

