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ABSTRACT 
Identification of Mycobacterium tuberculosis (Mtb) increasingly involves characterising large sections of 

genetic material, such as through whole genome sequencing. While some mutations identified through 

these techniques are well-characterised and strongly associated with anti-tuberculous drug resistance, 

such molecular methods frequently identify mutations with unknown significance or limited 

understanding of associated functional biological pathways. In this PhD, I have developed computational 

protein structural tools and mathematical models of TB transmission, that use genomic data to understand 

the impact of genomic changes and predict the consequences with regards to transmissibility and drug 

susceptibility of Mtb. 

Drug resistant mutations often carry both a selective advantage and a fitness cost, which can be reflected 

by the changes in protein structure and function. I developed a pipeline that captured the molecular 

consequences of coding mutations on protein stability, dynamics and interactions. Using my pipeline to 

evaluate the mechanistic consequences of mutations, I applied it to the real-time genomic analysis of a 

Victorian tuberculosis patient. The analysis led to identification of a novel resistant strain and altered 

patient treatment – the first reported use of structural information to guide clinical resistance detection. 

The information was then used to inform a compartmental epidemiological model of Mtb transmission in 

order to understand the rise of drug resistance in two high TB-incidence setting. Using a adaptive 

metropolis algorithm, I estimated drug resistance amplification proportions for two first-line anti-

tuberculosis drugs, and explored how structural changes may alter the fitness landscape and transmission 

dynamics. 

The work highlighted the power of combining genomic, epidemiological and structural information in the 

fight against tuberculosis, and presents examples of application across the spectrum from laboratory, 

clinical and programmatic contexts. This work has further laid the foundation to rapidly apply and 

translate this approach to other infectious and non-infectious diseases. 
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CHAPTER 1: LITERATURE REVIEW 
 

1.1 Introduction 

Tuberculosis (TB) is an ancient deadly airborne disease caused by organisms of the “Mycobacterium 

tuberculosis complex”, which includes M. bovis, M. africanum, and most commonly M. tuberculosis. 

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen, primarily infects the lungs, but can 

also cause disease in almost any tissue of the body. Infection with Mtb can progress from containment in 

the host, in which the bacteria are isolated within granulomas (latent TB infection), to an active and 

potentially contagious state, in which the patient may show symptoms that can include cough, fever, night 

sweats and weight loss [1]. 

Mtb has been an irrepressible pathogen since its discovery by Robert Koch in 1882 [2]. The global 

statistics for TB are substantial, with over 10 million new cases and 1.4 million deaths in 2019 [3]. Even 

though TB is a serious life-threatening illness, it is curable as long as it is diagnosed early and effective 

chemotherapy applied, since one of the greatest risks of mortality in TB is delayed treatment. Principle 

objective to chemotherapy in TB patients is the eradication of the whole bacillary load [4]. Treatment 

involves usage of anti-tuberculous (anti-TB) drugs for a prolonged period to avoid bacterial resistance and 

persistence. The anti-TB drugs available to treat TB [5] are isoniazid (INH) [6], rifampicin (RIF) [7], 

ethambutol (EMB) [8], pyrazinamide (PZA), fluoroquinolones (Levofloxacin, Moxifloxacin, 

Gatifloxacin) [9, 10], streptomycin [11], amikacin [12], kanamycin [12, 13], capreomycin [14], 

bedaquiline (BDQ) [15], delamanid [16], pretomanid [17] and linezolid [18]. 

Effective TB therapy should ideally include early bactericidal action against rapidly growing organisms 

and subsequent sterilization of dormant populations of bacilli. The current therapy for drug-sensitive 

tuberculosis recommended by (WHO), is a combination of four first-line drugs, viz., rifampin (RIF), 

isoniazid (INH), pyrazinamide (PZA), and ethambutol (EMB) [19]. The first-line drugs, INH, RIF and 
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EMB, help in wiping out the actively metabolizing bacilli, while the non-replicating persisters bacilli are 

taken care by PZA [20], a unique drug which acts at an acidic pH. Second-line drugs are reserved to 

strengthen treatment when resistance arises in the first-line drugs. Second-line drugs include levofloxacin, 

moxifloxacin, bedaquiline, delamanid, linezolid along with pretomanid which was recommended in 2019 

for the treatment of DR-TB [21]. 

According to World Health Organization (WHO) definition, the five main categories of drug resistance in 

TB are - mono-resistance TB, poly-resistance TB, rifampicin resistance TB (RR-TB), multi-drug resistant 

TB (MDR-TB) and extremely drug resistance (XDR-TB). To elaborate further, resistance to one first-line 

anti-TB drug only is referred to as mono-resistance TB, whereas, resistance to more than one first-line 

anti-TB drug, other than both INH and RIF is referred to as poly-resistance TB. MDR-TB is TB that is 

resistant to RIF and INH, the two most powerful anti-TB drugs. RR-TB refers to resistance to RIF 

detected using phenotypic or genotypic methods, with or without resistance to other anti-TB drugs. It 

includes any resistance to RIF, in the form of mono-resistance, poly-resistance, MDR or XDR. XDR 

strains of Mtb are MDR strains with additional resistance to fluoroquinolones and to at least one of the 

three injectable second-line tuberculosis drugs --- amikacin, capreomycin or kanamycin [22]. In 2019, 

there were an estimated 465,000 new cases of MDR-TB/RR-TB [3]. As mentioned above, both MDR-TB 

and RR-TB require treatment with a second-line drug regimen. MDR-TB is associated with lengthy, 

expensive and toxic therapy and high rates of mortality [3]. In 2019, 12,350 cases of XDR-TB were 

reported globally. Till now, 123 countries have reported at least one case of XDR-TB. On average, an 

estimated 6.2% of people diagnosed with MDR-TB have XDR-TB [22]. Drug-resistant TB (DR-TB) 

threatens global TB care and prevention, hence remains a major public health concern in many countries. 

1.2 Drug Resistance: An increasing global public health problem 

The first vaccine for TB, Bacille Calmette Guerin (BCG) was introduced in 1921 [23] and the discovery 

of the “magic bullet” (antibiotics) in the 1940’s revolutionized the treatment of infectious diseases 
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including TB. The last 70 years has seen the emergence of resistant strains to almost every anti-TB drug 

which was introduced for mainstream use to treat the disease [24]. Evidence shows that drug resistance in 

TB emanated at the same time when the first anti-TB drugs were introduced [4]. 

Drug resistance is a derivate of bacterial evolution which can occur either via the modification of 

vertically inherited genes (duplication of genes or neo-functionalization) or acquisition of new genes 

(transformation, transduction and conjugation). The process of acquiring new genes is also referred to as 

horizontal gene transfer and enables the micro-organism to exploit new conditions such as a pathogenic 

lifestyle [25, 26]. Mtb is an exception with no evidence for horizontal gene transfer, as this pathogen is 

devoid of plasmids, as well as transfer of genomic DNA [27]. In Mtb, genetically encoded drug resistance 

arises exclusively through spontaneous de novo chromosomal mutations [28], which comprises of single 

nucleotide polymorphisms (SNP’s) or nucleotide insertions and deletions (indels) [4].  

Mtb has a clonal mode of reproduction and a very low mutation rate, which make it an a priori unlikely 

resistance threat [29]. Despite this, it has been a challenge to understand the dynamics and survival of this 

pathogen and there have been more questions than answers with the emergence of MDR and XDR strains 

in recent years. Comparative genomic analysis [30] reveals that high-level of drug resistance in TB is 

most exclusively through chromosomal mutations in genes required for antibiotic action i.e. the drug 

binding site (target protein) or the enzyme required for pro-drug activation. Additional intrinsic 

mechanisms that contribute to drug resistance in mycobacteria include the production of drug-modifying 

and drug-inactivating enzymes [31], low cell wall permeability [32], and efflux-related mechanisms [33]. 

This suggests that drug resistance in Mtb may be more complex and drug resistance can be attributed to 

spontaneous mutations in drug targets genes and /or upregulation of efflux pumps. 

For most bacterial species, resistance-conferring mutation often confer a biological cost that presents a 

selective growth disadvantage relative to the growth capability of drug susceptible isogenic strains in the 

absence of the drug [34]. Anti-TB drugs target essential genes of Mycobacterium which are functionally 
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and physiologically important for the growth of the organism and therefore imposes a strong selective 

pressure associated with antibiotic resistance and is referred to as “fitness cost” [34].  There are multiple 

parameters that are involved with fitness and influence the short-term competitiveness of specific 

mutants/lineages and, in turn, long term evolution within different host and host population. “Success” of 

a strain/lineage is considered as the longevity of the pathogen within a specific environment or host 

population. Therefore, for an obligate pathogen the success of a specific lineage is defined as the ability to 

establish an infection, to replicate and persist within a host, and capacity to transmit [35]. Furthermore, 

compensatory mutations can reduce the initial fitness defects caused by a specific drug resistance-

conferring mutation [36]. Gagnuex et al. measured the growth rates of RIF resistant Mtb mutants relative 

to drug-susceptible parental strains and showed that competitive fitness was dependent on both the nature 

of the mutation and the strain genotype. Therefore, presence or absence of compensatory mutations is 

directly correlated to the strain fitness [37]. 

Although, the number of cases of DR-TB is relatively small compared to drug susceptible TB, drug 

resistant TB poses a greater threat and a disproportionate burden on the public health systems. The 

emergence is significantly higher in endemic regions because of chaotic treatment models. Physicians in 

these settings are often forced to choose among the available anti-tubercular agents depending on the 

patient’s disease and financial status, the cost of drugs, and the tolerability profile [38]. Since most of 

these alternatives have poor tolerability and are moderately effective at best, the treatment outcomes are 

hardly encouraging. Moreover, test to determine the effectivity of the drug are too expensive and time-

consuming. All these factors are responsible for the rapid spread of drug resistance. Therefore, we need 

multiple interventions to control the global spread of drug resistance, one of which will plausibly include 

individualized therapy based on rapid comprehensive drug susceptibility testing (DST) [39]. 
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1.3 Experimental methods to quantify drug resistance  

DST for Mtb is usually determined by either observing growth or metabolic inhibition in a medium 

containing anti-TB drugs or it could be detected at the molecular level by looking into the mutations in 

the genes responsible for drug action. From a technical standpoint DST involves a) macroscopic 

observation of Mtb growth in a drug-free or/and drug- containing media b) lysing with a 

mycobacteriophage c) measuring metabolic activity or generation of products and d) using molecular 

techniques to detect genetic mutation [40]. 

Culture-based phenotypic DSTs are currently the gold standards for determining drug resistance in TB. 

Traditionally, DST relies on a single critical concentration which is used to differentiate between a 

susceptible and resistant Mtb isolate and is specific for each anti-TB drug and test method. Laboratory 

testing to determine the susceptibility profile of Mtb serves three main purposes: 1) they help determine 

the chemotherapeutic regimen to be given to the patient; 2) helps to confirm emergence of drug resistance 

when a patient fails treatment or fails to show satisfactory recovery; 3) useful to conduct surveys to study  

emergence of drug resistance [41]. In clinical practice, confirmation of DR-TB is primarily by phenotypic 

drug-susceptibility testing on slowly-growing Mtb cultures. It’s a time-consuming process, and the delay 

results in improper treatment leading to higher mortality and transmission rates of drug-resistant strains 

[42].  

Current molecular genetic based tests, such as the Gene® Xpert MTB/RIF [43] and GenoType® 

MTBDRplus [44], have accelerated the clinical detection of known mutations causing RIF and/or INH 

resistance. But these genotypic susceptibility testing techniques for Mtb can only elucidate resistance 

profiles based on known mutations [45]. Therefore, using high-throughput sequencing to diagnose 

patients and identify drug resistance mutations is gathering more interest in recent times as it is fast, 

accurate, sensitive and economic. This helps with correct treatment strategies for patients and even with  

public health policy guidance by following the spread of resistance [46]. Direct sequencing involves drug-
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resistant loci amplification and sequencing to detect mutations from smear-positive samples [47]. The 

entire process, from extracting DNA from the sputum samples to reporting of results, can be 

accomplished in 3 days. Comparing this to standard culture-based DST testing which takes around one to 

three months. Therefore, this method has many advantages, especially in determining novel mutations.  

The rapid developments in high-throughput sequencing have created vast opportunities to understand the 

link between our genomes and phenotypes especially with the dramatic drops in the cost of these 

screening processes. This helped in the expansion of multiple avenues such as targeted therapies, 

personalized medicines and public health policies. To fully exploit the potential of these recent 

developments and to bridge the gap between the genotype and the corresponding phenotype, we need 

further understanding of the molecular consequences of novel mutation [46] and how do they impact 

strain fitness. 

1.4 Understanding drug resistance mutations using protein 

structures 

Although several new diagnostics or diagnosis methods have been introduced by WHO since 2007, there 

is still a need for simpler, rapid and readily applicable tools. The advent of high-throughput techniques 

like whole genome sequencing and saturation mutagenesis comes as a relief as it provides wealth of 

information related to phenotype and mutations, but the susceptibility associated with the novel mutations 

is generally unknown and therefore, cannot guide clinical therapeutic decisions. While experimental and 

clinical knowledge on new mutations and the cost they exert on the reproductive fitness of the organism 

will always provide the gold standard for predicting and identifying drug resistance; robust, accurate and 

scalable computational structure-based approaches can be used to complement this limited available 

information by providing the power to look at novel mutations [46]. Mtb is an ideal pathogen to apply 

structural and sequence-based mutational analysis approaches as it has a clonal population structure. It 

has been recently seen experimental approaches like saturation mutagenesis being integrated to a 
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biological assay output tool to predict high-resolution, functional dissection of mutations [48]. Although 

complete understanding of the functional consequence of these mutation is still a challenge because the 

effects are multifactorial and complex [49]. 

Significant progress has been made in the past few years with respect to innovative tools to understand 

and quantify the various ways in which a mutation or a series of mutation would give rise to a phenotype 

and though we can relate few mutations identified through these techniques are strongly associated with 

anti-TB drug resistance, frequently mutations with unknown significance or limited understanding of 

associated functional biological pathways are identified. To overcome this challenge, we need an 

effective computational approach where protein structural information can be used to decipher the 

complex genomic background patterns to shed light on the molecular mechanism of resistance and 

emergence of a phenotype. We have seen initial efforts in building predictors and databases for certain 

proteins and diseases, but they can be too cumbersome to be used by a geneticist to complement 

experimental evidence.  

To address the current issues, I developed a novel methodological pipeline (Figure 1) to build a robust 

and user-friendly empirical classifier that can be used to determine novel drug resistance in TB. It is a 

computational tool which could be used to rapidly translate sequencing data into clinical application. The 

three main steps involved in developing the classifier are:  

1) Data set collection and curation - collection and curation of experimental and clinical data on 

mutational effects linked to phenotype in comprehensive databases. This information forms the evidence 

set necessary for the proposal of novel computational methods as well as the improvement of current 

approaches.  

2) Feature generation – multiple in-silico approaches based on evolutionary and physiochemical 

evidence have been used to build tools to predict the effect of mutation on protein stability and function. 

These methods include sequence and structure-based tools to understand the effect of amino acid 
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substitution in a specific protein, which is usually the drug target. The different sequence-based 

approaches which are well established amongst others are SIFT [50], PROVEAN [51] and SNAP2 [52]. 

These sequence-based tools can be applied to naturally occurring non-synonymous (nsSNP) 

polymorphisms and laboratory-induced missense mutations. Pioneering structure-based approaches, SDM 

[53], uses environment-specific substitution tables of protein families to derive a statistical potential 

energy function. mCSM-Stability [54], which uses graph-based signatures to represent the three-

dimensional environment of the wild-type residue can be used to quantitatively predict the changes upon 

mutation in the Gibbs free energy (ΔΔG) of folding. A newer method to predict changes in protein 

stability is DUET [55], which takes advantage of the relative strengths of the two different approaches 

(SDM and mCSM-Stability) mentioned above. Other methods based on graph signatures that consider 

properties to understand the effects of mutations on the recognition of binding partners, including 

proteins, nucleic acid and other ligands are: protein-protein (mCSM-PPI) [54], protein-nucleic acid 

(mCSM-NA) affinities [54], and protein-ligand affinity (mCSM-Lig) [56]. ENCoM [57] is a tool which 

helps predict the effect of mutations on the thermos-stability and dynamics as well as to generate 

geometrically realistic conformational ensembles. DynaMut, integrates graph-based signatures along with 

normal mode dynamics to generate a consensus prediction of the impact of a mutation on protein stability 

and flexibility [58]. Thus, the information generated from these features helps us understand the 

underlying molecular consequences of drug resistant mutations. The scores generated from these methods 

help in distinguishing between susceptible and resistant TB mutations. 

3) Supervised machine learning and webserver development – In the final step the best performing 

features (features which can differentiate susceptible from resistant mutations) are chosen and the data set 

is trained, tested and validated using a supervised machine learning algorithm to accurately predict the 

susceptibility profile of the variant.  The predictor is deployed as a user-friendly freely available 

webserver referred to as SUSPECT (Structural Susceptibility Prediction). 
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Figure 1: Methodological pipeline to develop the empirical classifier. The first step is data collection from 

different TB databases and experimental evidence available from high-precision laboratory studies. The 

mutations are mapped on a high-resolution protein structure which is generally available from protein 

data bank or can be homology modelled. Curated mutations are mapped on to the protein structure to 

observe the spread of resistance and susceptible mutations. Second step involves generating the score for 

the various in-silico tools. These features help us understand the functional and molecular consequences 

of the resistant mutations. The third step is to evaluate these features and identify underlying patterns 

which can distinguish resistant from a susceptible variant using supervised machine learning algorithm. 

The algorithm is tested and validated using clinical datasets to assess its robustness. Finally, it is deployed 

as a user friendly freely available webserver called SUSPECT (Structural Susceptibility Prediction). 

 

I used the above novel pipeline to understand and develop the predictive tool for two anti-TB drugs -  

1. Pyrazinamide: PZA is an important first-line sterilizing drug [59] for TB treatment as it can kill 

dormant Mtb bacilli at an acidic pH and shorten treatment duration for patients diagnosed with drug-

susceptible TB (DS-TB), MDR-TB and XDR-TB and reduces TB relapse rates [60, 61]. PZA usage is 

reported to have higher success rates in treating MDR-TB patients [62]. PZA is probably the only drug 
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which could be part of new regimens for shortening treatment courses for all forms of TB. Being such a 

crucial first-line drug, culture-based methods to perform PZA susceptibility testing is difficult and 

produces unreliable results. It requires an acidic pH to inhibit bacterial growth and a larger inoculum 

volume which interferes with PZA activity [63]. The current method recommended by the WHO is the 

automated Bactec MGIT 960 liquid culture system (Sparks, MD) for phenotypic-PZA susceptibility 

testing. This method needs a proper laboratory set up, which is difficult in high TB burden countries, and 

produces a high rate of false-positive resistance results.  

PZA is a pro-drug which is converted into its active form pyrazinoic acid with the help of the enzyme 

pyrazinamidase (PncA). Resistance in PZA is mostly associated with mutations in PncA, which lead to a 

reduction or loss of PncA’s activity. However, several other mechanisms of actions has been reported 

[64-67], among which many resistance mutations mapped to the panD gene [68, 69]. PanD, part of the 

pantothenate biosynthetic pathway, is an aspartate decarboxylase responsible for the formation of β-

alanine from L-aspartate, which essential for vitamin B5 and coenzyme A biosynthesis in Mtb [70]. 

Mapping clinical resistance mutations on to the structure of PncA revealed the mutations were spread 

throughout the protein structure (Figure 2). This explains the high rate of false positive resistance 

associated with the drug susceptibility testing (DST) for PZA. 
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Figure 2: Protein Structure of PncA (pyrazinamidase). A) After data curation, the resistant (red) and 

susceptible (blue) variants are mapped on the protein structure. Cyan represents the amino acid positions 

which were reported to have both resistant and susceptible variation. B) Clinical resistant (red) mutations 

were mapped on to the protein structure. This highlights the complexity associated with determining 

resistance and the higher rates of false resistance detection. 

To overcome issue of unreliable DST for PZA, structural information was used to guide the genetic 

detection of resistance.  The supervised machine learning model was implemented as a web-server 

SUSPECT-PZA [71] (http://biosig.unimelb.edu.au/suspect_pza/), which would enable the rapid structural 

evaluation of the functional and phenotypic consequences of any pncA nsSNP mutation to support 

informed clinical decisions. The pipeline was further used to evaluate the mechanistic consequences of a 

frameshift mutations of a Victorian tuberculosis patient in real-time. The analysis led to identification of a 

novel resistant strain, and altered patient treatment – which was the first reported use of structural 

information to guide clinical resistance detection [72]. This work has been published as two papers and 

forms Chapter 3 of my thesis. 

http://biosig.unimelb.edu.au/suspect_pza/


24 
 

Bedaquiline: BDQ is a diarylquinoline with a new mechanism of action. It binds to the c-subunit (AtpE) 

of ATP-synthase, an essential enzyme involved with the energy production in Mtb and inhibits its activity 

[73]. ATP hydrolysis by ATP synthase with truncated α-subunit is inhibited by BDQ in a concentration 

dependent manner [74]. Micromolar concentration of BDQ is required for bactericidal activity, although 

nanomolar concentration inhibits mycobacterial growth [75, 76]. It was observed, at these concentrations, 

BDQ appears to dissipate the proton motive force, causing proton leak by disrupting the interface between 

α- and c-subunits [74, 76]. 

Due to its high selectivity towards mycobacterial ATP synthase, it less likely to produce target-based 

toxicity compared to homologous eukaryotic enzyme (Selectivity Index >20 000) [77]. BDQ has activity 

against actively replicating and dormant bacilli, hence, its usage in the recent years has expanded 

considerably especially for MDR-TB where it has shown higher cure rates [78]. However, clinical failure 

was observed [79] which rings the bell for a better understanding of how resistant variants arise to aid in 

the early detection of resistance [80]. 
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Figure 3: The crystal structure of Bedaquiline bound to AtpE. The c-subunit of ATP synthase (AtpE) 

assembles as a homo-nonamer and is a transmembrane protein. BDQ binds to the cleft between two 

adjacent monomers and interferes with the proton –binding residue Glu 61.  

Being a new drug, the WHO strongly urges the development of an accurate and reproducible DST for 

BDQ.  In the absence of specific DST, WHO recommends BDQ resistance should be monitored through 

MIC assessment  with resistance development evaluated in patients with treatment failure or relapse [81]. 

Characterizing resistance mutations early would assist TB patient management and avoid treating 

individuals with ineffective toxic regimens [82, 83]. With few known resistance variants being identified 

[84], rapid genotypic prediction of BDQ resistance is limited. 

Structural information was considered to support rapid identification of potential BDQ resistance 

mutations which could help guide clinical inference on genomic variants. Using the above novel 

methodology, in which comprehensive combination of structure and sequence-based tools were used to 

train a supervised machine learning algorithm to predict novel drug resistance mutations in BDQ. The 

model is deployed as free available user-friendly webserver - SUSPECT-BDQ 

(http://biosig.unimelb.edu.au/suspect_bdq/) [80]. This work has been published and forms chapter 4 of 

my thesis. 

1.5 Epidemiological modeling and fitness cost  

Epidemiology is the science of public health. The study relates to distribution and determinants of events 

or disease in a population with an overall aim to control public health problems. Epidemiological studies 

ranges from cluster examination at the individual level to building mathematical models to simulate 

disease dynamics at the population level [85]. With respect to the thesis, the molecular data generated 

from structural studies can be further deployed to study lineage specific transmission in TB using 

clustering data and understand drug amplification using mathematical models of tuberculosis 

transmission.  

http://biosig.unimelb.edu.au/suspect_bdq/
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The ongoing debate on the extent to which MDR-TB is a global pandemic or a local problem which can 

be managed by the proper implementation of currently recommended strategies, centers on relative 

“fitness” of drug-resistant strains [86]. There are various approaches to estimate the fitness of TB strains. 

The concept of “fitness” is derived from the disciplines of ecology and evolutionary biology and implies 

the existence of heritable variation among individual members of a species [87]. For infectious pathogens, 

fitness is a composite measure of an organism’s ability to survive, reproduce, and be transmitted. It 

indicates growth characteristics of an individual within the host, ability to withstand environmental stress 

within and between-host, and ability to disseminate and establish itself in a new host. Few of these traits 

can be quantified in the laboratory setting, which includes growth rate measurement, adaptations to 

withstand certain challenges and infectivity in animal models, but their empiric success in the real world 

is not very well translated. Epidemiological fitness could be an alternative approach to assess “fitness” of 

an organism. Epidemic potential is calculated by looking into the average number of secondary cases or 

secondary infections caused by a specific genotype after being introduced to a completely susceptible 

population. The information on estimates can be obtained from clustering studies, model-based studies 

and traditional epidemiological investigation studies. As these epidemic estimates are based on human 

population, they serve to be more reliable and realistic compared to microbial behavior from laboratory 

experiments [88]. 

1.5.1 Population-based studies 

The underlying principle for epidemiological studies dealing with relative fitness is to compare the basic 

reproductive number (R0) of resistant and sensitive organisms and thereby establish whether a person who 

harbored a resistant strain would cause the same number of secondary cases as a person with a sensitive 

strain. Thus, R0 is a hypothetical construct representing the cases caused by a single infectious host in an 

entirely susceptible population. An alternative strategy to measure fitness / transmission involves looking 

for number of people who were either infected or developed a disease with sensitive and resistant strains; 

an approach where the frequency and size of “clusters” are compared. A cluster is defined as a group of 
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cases in a community whose isolates share similar or identical DNA fingerprints and are therefore 

presumably “epidemiologically” related—i.e., a cluster includes members of a transmission chain or 

network [88]. Molecular epidemiology is a field of study which helps in understanding Mtb transmission 

and outbreaks using clustering investigation. Polymorphisms present in the mycobacterial genome are 

exploited and are used as genetic markers. DNA typing methods utilizes these genetic markers to 

differentiate between strains and obtain evolutionary relationships. Commonly used molecular genotyping 

methods (Figure 4) are: 

IS6110 – RFLP Analysis: The mycobacterial genome contains a large amount of repetitive DNA 

elements, which vary in location, length and structure [89]. The two main groups are tandem repeats, 

which are, short monomeric sequences (up to 100 bps) organized as head-to-tail arrays, and interspersed 

repeats, which are, scattered as individual copies throughout the entire genome. The interspersed repeats 

could be mobile genetic elements and referred as insertion sequence (IS). Thierry et al. [90] in the early 

1990’s investigated the IS6110 which is the best known IS. IS6110 is 1355 bp long and belongs to the IS3 

family with a unique 28 bp terminal inverted repeats.  Two overlapping reading frames, orfA and orfB, 

encoding a transposase is located between the repeats. The transposase enzyme is responsible for the 

transposition of the insertion sequence [91]. The copy number of IS6110 varies in between 0 to 25 and is 

dependent on the frequency of the transposition. IS6110 can integrate anywhere in the chromosome, but 

the coding regions of the DNA have a higher frequency for transposition and are referred to as hot-spots 

[92]. Thus, difference in copy number and locations within the genome responsible for higher 

polymorphisms of IS6110, makes it a suitable candidate as a molecular marker for genotyping of 

mycobacterial strains [93]. 

The main advantages of IS6110 are its high discriminatory power and reproducibility. Although IS6110 is 

highly unstable, its transposition events are very rare [94], making it a reliable method to discriminate 

epidemiologically related from non-related strains. With the usage of the method from 1990’s it has been 

standardized over time and fingerprint generated at different experimental labs can be compared and 
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catalogued [95]. A major limitation of the method is its applicability in strains with low copy number for 

IS6110. Another technical limitation of the tool includes need for 2-3 μg of high-quality DNA sample, 

which requires prior culture of the bacterial isolates. The method needs skilled personal and sophisticated 

computer soft wares. Despite these limitations, IS6110 has been thoroughly used for genotyping 

mycobacterial strains. 

Spoligotyping: Spacer oligonucleotide typing is a polymerase chain reaction (PCR) based approach to 

differentiate mycobacterial strains. It is based on the polymorphism of the direct repeat (DR) locus which 

belongs to clustered regularly interspersed short palindromic repeats (CRISPRs) family of repetitive DNA 

[96]. DR regions are composed of multiple direct variant repeat sequences, each comprising a series of 

well-conserved 36 bp DRs interspersed with unique, non-repetitive spacer sequences of 34–41 bp [97]. 43 

types of spacer are revealed that separate DRs in a specific locus of the Mtb genome, of which 37 are 

typical to Mtb (spacers 1–19, 22–32, and 37–43) and the rest (spacers 20-21 and 33–36) is used to analyse 

M. bovis strains [98]. In practice, the DR locus is first amplified using PCR and then hybridized to a 

membrane with 43 covalently bound synthetic oligonucleotides representing the polymorphic spacers. 

The hybridization signals are detected by chemiluminescence and depending on the number of spacers 

that are missing from the complete 43-spacer set, individual strains are differentiated [99]. This presence 

or absence of spacer is read in a binary format and can be easily interpreted, computerized, and compared 

between different laboratories [100]. SpolDB4, an international spoligotyping database, released in 2006, 

describes 1,939 STs (shared types, i.e., spoligotype patterns shared by two or more isolates) and 3,370 

orphan types (i.e., spoligotype patterns reported for only single isolates) from a total of 39,295 M. 

tuberculosis complex isolates, from 122 countries [101]. Recently, SITVIT, a publicly available multi-

marker database was published. It consists of 7105 spoligotype patterns (corresponding to 58,180 clinical 

isolates) - grouped into 2740 shared types containing 53,816 clinical isolates and 4364 orphan patterns 

[102].  
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Spoligotyping is an accurate, cost-effective, simple, reproducible and high-throughput method where 

results are obtained in 2 days. Because it targets only a single genetic locus, covering less than 0.1% of 

the M. tuberculosis complex genome, this method has limited discriminatory powers. Spoligotyping is 

used to discriminate strains with low IS6110 copy number. 

MIRU-VNTR: stands for Mycobacterial interspersed repetitive units - variable number tandem repeat. 

Mtb was among the first bacterial species where tandem repeats resembling mini-satellites of eukaryotic 

genome was found. VNTR can be used a genetic marker which provides data in a format based structure 

on the number of repetitive polymorphic regions in the mini and micro- satellite regions [103]. The first 

described VNTRs were exact tandem repeat and major polymorphic tandem repeat [104]. Supply et. al. 

described a new VNTR element called MIRU which was as 46– 101 bp tandem repeats scattered at 41 

loci throughout the mycobacterial genome [105]. Of these 41 MIRU loci, 12 are identified as 

hypervariable repetitive units. MIRU-VNTR analysis involves PCR amplification of certain MIRU loci 

followed by determination of amplicon size by gel electrophoresis. Alternatively, multiplex PCRs are run 

on an automated fluorescence-based sequencer. As the size of the repeat units is already known, 

calculated sizes reflect the number of MIRU-VNTR copies amplified. The result is a multi-digit 

numerical code also referred to as MIRU-VNTR code. The advantage of being of the result being in a 

digital format is that it can be shared across labs around the world and a global database has been 

established, (http://www.miru-vntrplus.org/), which can be used for for large-scale epidemiological and 

population genetic studies [106, 107]. 

MIRU-VNTR is a simple and efficient method whose discriminatory power is dependent on the number 

of loci being assessed. When 12 loci are being used for evaluation, the discriminatory power is higher for 

strains with a low copy number of IS6110; the power reduces with high copy number of IS6110 [100]. 12 

MIRU-VNTR cannot be used as a sole typing method for large population-based studies, as it may 

overestimate the number of true epidemiological links [108]. MIRU is generally combined with 

spoligotyping, when more than 12 loci are used, and the discriminatory power is equivalent to IS6110. 

http://www.miru-vntrplus.org/
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Current recommendation for molecular phylogenetic epidemiologic studies are 15 and 24 MIRU loci 

[109]. 

24 MIRU-VNTR, considered the gold standard of genotyping, is specifically recommended for typing 

Beijing strains [110]. Though this is further challenged by Allix-Béguec et al and he showed an additional 

seven hypervariable MIRU-VNTR loci are required to produce a higher resolution and lower clustering 

rate for the Beijing strain [111]. Overall, for large epidemiologic investigation, genotyping using mini-

satellites is a fast, reliable and highly discriminatory approach [112].  

Whole Genome Sequencing (WGS): WGS and next-generation sequencing (NGS) are the two new 

methods in molecular epidemiology, where the entire genome is sequenced, to enable identification of 

mycobacterial lineages and facilitate phylogenetic and evolutionary traits studies. WGS is a relatively fast 

and affordable method where the DNA is sheared into several sizes and sub-cloned into plasmids. Sub-

clones are then oversampled to generate sequencing reads which provide the necessary information for 

performing whole genome assembly algorithms [113]. The classical genotyping techniques provide 

information on part of the transmission chain, whereas WGS helps in determining the chain of 

transmission events [114]. Frederick Sanger and his co-workers developed the Sanger sequencing method 

which is the most commonly used method for sequencing [115].  

Upon molecular genotyping, clinical isolates of Beijing family had identical IS6110 RFLP pattern, 

spoligotyping pattern and MIRU-VNTR profile. Niemann et al used WGS to discriminate between the 

two isolates and found differences in 130 SNPs and a large deletion, suggesting epidemiological link 

between the isolates may have been remote [116]. This proves WGS will be the gold standard for typing 

strains in the near future with higher power of resolution.  

The method does have certain limitations like the need of specialized software to analyse sequences and 

incomplete understanding associated with the various polymorphisms. Moreover, an important 

requirement are culture-positive samples to have sufficient material to perform WGS [117]. An 
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alternative is NGS which generates millions of short read of the entire genome to identify SNPs, perform 

comparative genomics and explore various aspects about transmission dynamics [118]. NGS does not 

require cloning of the DNA template into the bacterial vector and are optimally suited for re-sequencing. 

To name a few platforms available to perform NGS are: Roche/454 FLX pyrosequencer [118], 

Illumina/Solexa Genome Analyzer [113], Pacific Biosciences Single Molecule Real Time (SMRT)[118]. 
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Figure 4: Molecular Genotyping Methods. The green circular band represents the MtB genome. A) 

IS6110-RFLP – the restriction enzyme cuts the genome (at places shown by the blue arrow) and the 

resulting fragments are visualized and separated using gel electrophoresis. The orange dots represent the 

probe specific to IS6110 insertion element, and vary by position and count between isolates, resulting in 

distinct banding patterns. B) Spoligotyping – hybridization assay used to detect the presence or absence of 

the 43-spacer oligonucleotide present in the direct repeat region (hashed lines). The pattern is converted 

into a binary followed by an octal code. C) MIRU-VNTR – the 12 and 24 loci (blue ovals) are amplified 

using PCR and the product separated using gel electrophoresis. Repeats are calculated and converted to 

digital code to facilitate comparison against database. D) Whole genome sequencing (WGS) – The whole 

genome is analysed; SNPs helps in understanding relationship between isolates. 

(The above figure is adapted from Guthrie JL, Gardy JL. A brief primer on genomic epidemiology: 

lessons learned from Mycobacterium tuberculosis. Ann N Y Acad Sci. 2017 Jan;1388(1):59-77. doi: 

10.1111/nyas.13273. Epub 2016 Dec 23. PMID: 28009051 [119]) 

1.5.2 Secondary attack rates 

A second way to estimate relative transmissibility of drug-resistant and drug-sensitive strains is to 

compare the secondary attack - rates of resistant and sensitive strains. This method requires the researcher 

to compare the number of secondary infections resulting from a single drug-resistant case with those 

resulting from a single drug-sensitive case [88] i.e., the number of people with a positive TST 

(presumably infected with tuberculosis) and/or cases of clinical tuberculosis among the household 

contacts of source cases. 

 

1.5.3 Strain-specific differences in fitness and transmissibility 

Prevalence of drug-resistant tuberculosis is dependent on the rate of acquisition of resistance-conferring 

mutations (acquired resistance) and the rate of transmission of drug-resistant strains (primary resistance).  
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Lower growth rate and transmissibility is observed initially in strains of mycobacteria that have acquired 

mutations conferring antibiotic resistance compared to their susceptible counterparts [120]. However, 

secondary site mutations help in ameliorated fitness costs of resistance mutations. These mutations are 

referred to as “compensatory mutations” and help in restoring fitness of the organism in the presence 

and/or absence of anti-TB drugs. 

In addition to these direct effects like drug resistance-conferring mutation, strain’s genetic background 

can significantly influence the fitness effects and transmissibility [121]. A specific mutation may hamper 

the relative fitness in one strain but when transferred to another strain background would be involved in 

increased fitness. Genomic analyses of strain collections from global sources have revealed that M. 

tuberculosis has a phylogeographic population structure (Figure 5), in which different strain lineages are 

associated with specific geographic regions [122].  Genotyping methods along with WGS analyses helped 

in reconstructing the evolutionary pathway of Mtb from a pool of recombinogenic Mycobacterium 

canettii-like strains [123] towards the clonal M. tuberculosis complex (MTBC) [124]. Seven main 

lineages were identified which causes TB in humans in different parts of the world – lineage 1 (Indo 

Oceanic), lineage 2 (East Asian), lineage 3 (East African Indian), lineage 4 (Euro American), lineage 5 

(West African 1), lineage 6 (West African 2) and lineage 7 (Ethiopian).  Lineage 1, lineage 2, lineage 3, 

lineage 4 and lineage 7 belong to Mtb and lineage 5 and lineage 6 belong to M. africanum. Additionally, 

animal adapted strains were identified which causes infection in different mammalian species and shares a 

common ancestor with M. africanum [125]. TbD1, defined as the Mtb specific deletion 1 region, 

represents the loss of 2153 bp genomic segment. It is seen that lineage 2, lineage 3 and lineage 4 diverged 

after a shared evolutionary bottleneck and have the TbD1 deleted [123, 126]. These lineages are referred 

to as the “modern” Mtb lineages and are widely spread. The lineages with an intact TbD1, also known as 

“ancient / ancestral” lineages are more often endemic and restricted to a given geographical region [127]. 

Modern Mtb sub-lineages include Beijing (lineage 2), CAS/Delhi (lineage 3) and the LAM and Haarlem 

(lineage 4) strains and are associated with global TB epidemics [128, 129].  
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Figure 5: Mycobacterium tuberculosis lineage classification. An evolutionary scheme of MTBC, depicts 

adaptation of different human and animal species.  

In the past few years, the Beijing lineage, a sub-lineage of lineage 2 has received much attention due to 

increased association with antibiotic resistance, hyper-virulence and fast progression to disease [130].  

The precipitous rise of Beijing lineage in certain populations around the world has led researchers to 

speculate that Beijing may be more transmissible than other less widely distributed Mtb lineages. Using 

clustering information from genotyping studies, I explored the transmission dynamics of Beijing lineage 

compared to the non-Beijing lineages. A thorough systematic review along with meta-analysis was 

conducted to study the hyper-transmissibility of Beijing lineage. The work has been published and is 

included as Chapter 5 in the thesis. 
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1.5.4 Mathematical models of Mtb transmission 

Mathematical models have used the fitness cost of resistance as the primary parameter that determines 

both the frequency of resistance at any given level of antibiotic use and the rate at which that frequency 

will change with alterations in antibiotic use patterns [131]. These models have been developed to predict 

tuberculosis dynamics and to examine how key parameters may affect the success or failure of current 

policy decisions. Acquired drug resistance patterns can be used to infer selection processes during 

treatment and mathematical models can help in generating information on the relative impacts of 

treatment parameters involved in the evolution of resistance which could lead to improved treatment 

protocols [132]. 

Ideally, robust models of Mtb transmission dynamics should be able to accurately predict future trends in 

drug resistance across a variety of scenarios. However, current modelling capacity is limited by several 

factors, including ongoing controversy regarding the extent to which transmission risk varies between 

drug susceptible and drug resistant strains of TB [133]. Partial explanations for this uncertainty are that 

Mtb is more genetically diverse than is often appreciated and drug-resistant strains can exhibit 

heterogeneous fitness compared to drug-susceptible strains [121]. Incorporation of comprehensive strain 

data, including information on specific drug resistance mutations and genetic background of the strain 

into epidemiological studies of transmission of DR-TB is urgently required, as the transmission success of 

certain drug resistance mutations are dependent on the interactions of these variables. Recent studies have 

also suggested that many MDR TB cases result from patient-to-patient transmission rather than from the 

de novo acquisition of resistance during treatment [134]. 

Molecular epidemiological data that allow classification of isolates into genotypic classes (clusters) has 

been used to measure relative fitness of resistant strains. The relative fitness of resistant strains compared 

with that of sensitive strains has thereby been quantified from a comparison of their genetic clustering 

[135]. But these are indirect methods as they do not consider the dynamics of tuberculosis transmission, 

evolution of resistance, and mutation of molecular markers. By mathematically modeling these stochastic 
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processes simultaneously and applying modern computational Bayesian methods of inference [136], 

estimates of the relative fitness can be improved. Additionally, the cost to transmission incurred by 

resistance, the rate of acquisition of drug resistance due to treatment failure can also be successfully 

estimated. Even the relative contributions of resistance evolution (acquired) versus transmission of 

resistant strains (primary) can be quantified [137]. Important epidemiological parameters such as 

detection rates and treatment success rates have been identified using these mathematical models [132, 

138, 139]. Thus, accurate estimates of underlying parameters are of critical importance to predict the 

spread of drug resistance [140]. 

MDR-TB as explained above is defined as resistance towards rifampicin and isoniazid, two important 

first-line drugs involved in treating TB. Isoniazid is a prodrug, which enters the Mtb cytoplasm via 

passive diffusion and kills actively replicating bacteria [141]. INH requires cellular activation by the 

enzyme katG, a catalase and peroxidase, which produces the radical form of INH [142, 143]. This entity 

reacts with NAD+ to yield an INH-NAD adduct, which binds to the active site of the NADH-dependent 

enoyl-ACP reductase InhA. InhA is part of the mycobacterial fatty acid elongation system, fatty acid 

synthase type II (FASII) [144] and is involved in the reduction of monounsaturated acyl-ACP to acyl-

ACP [145]. The INH-NAD adduct binds to and inhibits InhA [146] leading to disruption of mycolic acid 

biosynthesis and cell death [147, 148]. KatG mutations are the major cause of INH resistance in clinical 

isolates [149]. The other genes responsible for resistance to INH are inhA, kasA, ndh and oxyR – ahpC 

[150, 151].  

RIF inhibits bacterial RNA polymerase, an enzyme involved in DNA transcription. This enzyme is 

responsible for ribonucleoside triphosphates polymerization on a DNA template and aids in catalyzing the 

transcription of DNA to RNA [152]. RNA polymerase consists of five subunits α2ββ’ω and RIF binds to 

the β subunit (rpoB gene) [153]. Mutations in RIF are exclusively observed in the β subunit. 95% of the 

RIF resistance is located within an 81-bp region (located between codons 507 - 533) of the rpoB gene, 

referred to as the rifampicin resistance determining region (RRDR) [154]. GeneXpert MTB/RIF, a rapid 
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molecular biology technique has been recommended by WHO, to be included in national programs. This 

diagnostic tool which is a cartridge-based rapid automated can determine RIF resistance in the RRDR 

region in clinical samples in less than 2 hours [155].  

Jenkins et al [156, 157] in 2011 showed that the number of new TB cases with INH resistance is 

increasing in several disparate geographical settings. For example, the data was consistent in low burden 

settings like British Columbia and Canada [158], parts of western Europe like France [159], and United 

States of America [160]. Similar observation was made in high-burden TB settings like Tanzania [161], 

India [162], Georgia [163], Viet Nam [164, 165] and former Soviet Union [156]. Moreover, only a tiny 

proportion of TB patients in the world have access to INH drug susceptibility testing [166]. Therefore, 

RIF’s resistance is used as a surrogate marker for MDR-TB, as more than 90% of RIF-resistant isolates 

are also resistant to INH [167]. As the process to test susceptibility for INH typically relies on culture-

based methods which may not be routinely performed in many global settings, patients with INH mono-

resistance not identified at baseline are put on a standard regimen which results in effective rifampicin 

monotherapy for the latter four months of the six month treatment course. This exposure to a single drug 

to the remaining MTB strains increases its risk of development of multi drug-resistant TB [166]. 

To predict the future behavior of DR-TB within a community, it is important to construct mathematical 

models which can distinguish the relative contribution of primary resistance (transmission) versus  

secondary resistance (amplification) to the occurrence of new cases of resistance [168]. Currently, 

majority of mathematical models constructed provide information on MDR transmission [169], few on 

MDR amplification [170] rates. One study highlights the emergence of MDR-TB is likely due to 

transmission rather than acquisition of these strains [134]. Knowledge on the transmission and 

amplification rates for RIF and INH mono-resistance is still rare. This intrigued me to construct a 

compartmental epidemiological model which would help estimate mono-drug resistant amplification rates 

for INH and RIF. It is important to understand whether the rates of transmission and amplification are 

same for both the first-line drugs. This would provide us with information regarding gaps in the current 
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diagnostic assays and whether we need different methods and approaches to control the MDR-TB 

epidemic. This work has been written up as Chapter 6 in the thesis. 
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 CHAPTER 2: METHODOLOGY 

In this thesis I have used two major approaches, structural bioinformatics and mathematical modeling to 

understand and develop novel methods to tackle the rise of DR-TB. In this section I will be elaborating on 

both the methodological approaches. 

Structural Bio-informatics 

The study of functional consequences associated with mutations can be broadly classified into those that 

exploit the extensive structural information which are currently available for many proteins, and those 

that seek to understand the effects of mutations from the amino acid sequence of a protein alone [54]. The 

amino acid sequence, coded by three consecutive bases, forms the primary structure of the protein. The 

primary structure first folds into the secondary structures namely alpha-sheets and beta-helix, which is 

further folded into its tertiary structure for it to be functional. Tertiary structure is an overall three-

dimensional shape created by interactions between polar, nonpolar, acidic, and basic R group within the 

polypeptide chain. Sometimes, these tertiary structures form the subunit and need to come together to 

form the quaternary structure. Hence, “protein folding” is crucial for the optimal functionality of the 

protein and changes in the amino acid level could lead to disruption. 

Figure 6 represents a thermodynamic cycle of protein folding of a wild-type and mutant protein. The 

nascent wild-type mRNA is translated into an amino acid sequence and folds into a functional protein. 

This can be thermodynamically shown as: 

                                                                                 Δ𝐺 =  −RT lnK                              --------------- (Equation 1)                 

                                                                      Δ𝐺 =  −RT ln
𝐹𝑜𝑙𝑑𝑒𝑑 𝑊𝑖𝑙𝑑𝑡𝑦𝑝𝑒

𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑 𝑊𝑖𝑙𝑑𝑡𝑦𝑝𝑒
               --------------- (Equation 2)                 
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Where, R = 1.985× 10−3 kcal K−1mol−1, is the ideal gas constant, T is the temperature (in Kelvin) and K is 

the equilibrium dissociation constant of the reaction. 𝛥G is the Gibbs free energy of the protein folding 

reaction and is the sum of the entropy (𝛥S) and enthalpy (𝛥H). 

                                                                                     Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆                          --------------- (Equation 3)                 

Every protein molecule represents a highly ordered macroscopic structure and this unique native 

conformation is disrupted when variations appear in the amino acid sequence. The thermodynamic 

difference (𝛥𝛥G) can be calculated using the following equation: 

                                        ΔΔ𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔 = Δ𝐺𝑓𝑜𝑙𝑑𝑒𝑑 𝑤𝑖𝑙𝑑−𝑡𝑦𝑝𝑒 −    Δ𝐺𝑓𝑜𝑙𝑑𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡      --------------- (Equation 4) 

This equation can be used to deduce information on protein-protein interaction changes, ligand binding 

affinities and stability upon mutation. 
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Figure 6: Thermodynamic cycle of protein folding. A schematic representation of the different states of 

protein (unfolded to folded) and Gibbs free equations to calculate structural variations upon mutation. 

 

2.1 Structure based Analysis 

Structure-based approaches, which may be categorized as machine learning methods and potential energy 

functions, typically attempt to predict either the direction of change in protein stability on mutation (as a 

classification task) or the actual free energy value (ΔΔG) (as a regression task). Support vector machines 

have been extensively used to predict protein stability changes from both protein sequences and structures 

[171] [172] and more recently to predict disease-related mutations [173]. There have also been recent 

attempts to predict the stability changes on multisite mutations [174]. Machine learning methods have 

proven to be powerful predictive tools, even when data on which to train the methods have not been 

extensively available. 

Environment-specific substitution tables, which describe the propensities of residues to mutate in a certain 

protein-structural environment during evolutionary time, have been used to derive a statistical potential 

energy function used by the method SDM [53, 175]. Empirical energy functions have also been used in a 

method that performed Monte Carlo optimization [176], which has also been used to study the role of 

conformational sampling as a way to assess the impact of single point mutations in protein structures 

[177]. The method Bongo [178] attempts to predict structural effects of nsSNPs by evaluating graph 

theoretic metrics and identifying key residues using a vertex cover algorithm. Therefore, an alternative 

approach to study mutations is to represent residue environments as graphs where nodes are the atoms and 

the edges are the physicochemical interactions established among them. From these graphs, distance 

patterns can also be extracted and summarized in a structural signature, which may then be used as 

evidence to train predictive models. The Cutoff Scanning Matrix (CSM) [179] is a protein structural 

signature successfully used in large-scale protein function prediction and structural classification tasks. 

The concept of graph-based structural signatures has been used by our group to study and predict the 
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impact of single-point mutations on protein stability, protein–protein interaction and protein–nucleic acid 

affinity. The approach, called mutation Cutoff Scanning Matrix (henceforth called mCSM), encodes 

distance patterns between atoms to represent protein residue environments. The suites of tools used to 

study nsSNPs are: 

• mCSM-Stability: the concept of graph-based signatures is used to predict the effects of a 

mutation on the overall protein stability. The tool is available at  

http://biosig.unimelb.edu.au/mcsm/stability. To calculate the mCSM signatures for a given 

mutation, the wild-type environment by the atoms within a distance “r” from its geometric center 

is defined first. An atom distance matrix is generated by calculating the pairwise distance 

between the atoms of the environment and accounts for both short to long ranges of distance. 

From this matrix, distance patterns are then extracted and summarized as a “feature vector”. This 

can be modelled as a contact graph, where the atoms are the nodes and the edges are defined by a 

cutoff distance. To consider the changes in the atom due to the mutation, “pharmacophore count 

vector” is introduced. The eight possible categories for the atom are - positive, negative, 

hydrophobic, hydrogen acceptor, aromatic, hydrogen donor, sulphur and neutral. Each one of the 

20 amino acid residues are represented by a different vector, where each position denotes the 

frequency of a certain pharmacophore in that residue. The difference vector between the wild-

type and mutant pharmacophore vectors is then appended to the signature. The ProTherm [180] 

data set was used assess the applicability of mCSM signatures in predicting the impact of 

mutations in protein stability.  

                                                    ∆∆𝐺𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∆∆𝐺𝑊𝑖𝑙𝑑−𝑡𝑦𝑝𝑒 −   ∆∆𝐺𝑀𝑢𝑡𝑎𝑛𝑡         --------------- (Equation 5) 

Mutation was considered highly destabilizing if the ΔΔG value was ≥ 2 kcal/mol, destabilizing if 

ΔΔG value was between -2 kcal/mol and 0 kcal/mol, stabilizing if ΔΔG value was between 0 

kcal/mol and +2 Kcal/mol and highly stabilizing if ΔΔG is ≥ +2 kcal/mol). 

http://biosig.unimelb.edu.au/mcsm/stability
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• SDM: a computational tool to predict changes in protein stability due to a single mutation using 

conformationally constrained environment-dependent amino acid substitution tables, available at 

http://marid.bioc.cam.ac.uk/sdm2. It analyses the variation in the amino acid replacements 

occurring at specific structural environment which are tolerated within the protein and converts 

them into substitution probability tables which are further used as quantitative measures for 

predicting the protein stability upon mutation. 

• DUET: Uses two complementary approaches mCSM-Stability and SDM in order to create a 

consensus prediction to calculate the effects of a mutation on protein stability, 

http://biosig.unimelb.edu.au/duet/. The results of both the methods are consolidated using Support 

Vector Machines (SVMs) trained with Sequential Minimal Optimization.  

 

• mCSM-PPI: Predicts the effects of a mutation within a specified protein on its impact with 

overall protein–protein interactions. The webserver is available at 

http://biosig.unimelb.edu.au/mcsm/protein_protein. mCSM-PPI2, creates a similar prediction to 

PPI but incorporates the effects of mutations on inter-residue noncovalent interaction network 

using graph kernels, evolutionary information, complex network metrics, and energetic terms., 

available at http://biosig.unimelb.edu.au/mcsm_ppi2/. PPI and PPI2 use graph-based structural 

signatures to represent the environment of the wild-type residue. This approach models both the 

geometry and physicochemical properties of the interactions and architecture of wild-type 

structure. The change in binding affinity upon mutation can be written as: 

                                                           ∆∆𝐺𝑃𝑃𝐼 = ∆∆𝐺𝑊𝑖𝑙𝑑−𝑡𝑦𝑝𝑒 −   ∆∆𝐺𝑀𝑢𝑡𝑎𝑛𝑡           --------------- (Equation 6)                 

• mCSM-Ligand: a structure guided computational approach to predict the effects of single-point 

mutations on the stability of a protein–ligand complex, available at 

http://biosig.unimelb.edu.au/mcsm_lig/. Wild type environment and small molecule chemical 

http://marid.bioc.cam.ac.uk/sdm2
http://biosig.unimelb.edu.au/duet/
http://biosig.unimelb.edu.au/mcsm/protein_protein
http://biosig.unimelb.edu.au/mcsm_ppi2/
http://biosig.unimelb.edu.au/mcsm_lig/
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features are represented using graph-based signatures and changes in protein stability as evidence 

to train an algorithm using representative set of protein-ligand complexes from the Platinum 

database [56].  

 

• DynaMut: is a novel method that considers molecular motions and combines graph-based 

signatures with coarse-grained normal mode analysis, to generates a consensus prediction of 

effects of mutations on the protein conformational repertoire. It is available at 

http://biosig.unimelb.edu.au/dynamut/. Normal Mode Analysis (NMA) is implemented in 

DynaMut using two different approaches Bio3D [181] and ENCoM, providing rapid and 

simplified access to powerful and insightful analysis of protein motions. 

• ENCoM: is a coarse-grained normal mode analysis method to predict the effect of single point 

mutations on protein dynamics and thermostability resulting from vibrational entropy changes. 

The webserver is available at:  http://bcb.med.usherbrooke.ca/encom.  

 

• Arpeggio: this is webserver for calculating interactions within and between DNA, proteins and 

protein or small-molecule ligands. The 13 different types of interaction calculated between atoms 

include hydrogen bonds, carbonyl, specific atom–aromatic ring (cation–π, donor–π, halogen–π, 

and carbon–π), aromatic ring–aromatic ring (π–π), ionic, hydrophobic, van der Waal, halogen 

bonds, and metal. It is accessible at: http://biosig.unimelb.edu.au/arpeggioweb/. The server 

accepts user-submitted structures in addition to PDB accession codes and therefore can be used to 

calculate interactions for non-PDB structures such as homology models or docking poses. 

 

2.2 Sequence-based Analysis 

nsSNPs are the major contributor for development of drug resistance in TB. The sequence-based tools 

available to determine the how an amino acid substitution would alter protein functionality are: 

http://biosig.unimelb.edu.au/dynamut/
http://bcb.med.usherbrooke.ca/encom
http://biosig.unimelb.edu.au/arpeggioweb/
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• SIFT: Sorting Intolerant From Tolerant, is a sequence-based tool and uses sequence homology to 

predict whether an amino acid substitution will affect protein function and hence, potentially alter 

phenotype [50, 182]. The main methodology for SIFT is that it presumes important amino acids 

will be conserved in the protein and therefore any changes in the well-conserved regions can be 

predicted to be deleterious. For example, if a position in an alignment of a protein family only 

contains the amino acid isoleucine, it is presumed that substitution to any other amino acid is 

selected against and that isoleucine is necessary for protein function. Therefore, a change to any 

other amino acid will be predicted to be deleterious to protein function. If a position in an 

alignment contains the hydrophobic amino acids isoleucine, valine and leucine, then SIFT 

assumes, in effect, that this position can only contain amino acids with hydrophobic character. At 

this position, changes to other hydrophobic amino acids are usually predicted to be tolerated but 

changes to other residues (such as charged or polar) will be predicted to affect protein function. 

To predict whether an amino acid substitution in a protein will affect protein function, SIFT 

considers the position at which the change occurred and the type of amino acid change. Given a 

protein sequence, SIFT chooses related proteins and obtains an alignment of these proteins with 

the query. Based on the amino acids appearing at each position in the alignment, SIFT calculates 

the probability that an amino acid at a position is tolerated conditional on the most frequent amino 

acid being tolerated. If this normalized value is less than a cutoff, the substitution is predicted to 

be deleterious [182]. The webserver is available at: https://sift.bii.a-star.edu.sg/. 

 

• SNAP2: Screening for Non-Acceptable Polymorphisms, is a method that combines many 

sequence analysis tools in a battery of neural networks [52]. SNAP could potentially classify all 

nsSNPs in all proteins into non-neutral (effect on function) and neutral (no effect) using 

sequence-based computationally acquired information alone. For each instance SNAP provides a 

reliability index, i.e. a well-calibrated measure reflecting the level of confidence of a specific 

https://sift.bii.a-star.edu.sg/
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prediction. Information needed as input was obtained from protein sequence. The webserver is 

available at: https://rostlab.org/services/snap/. 

 

• PROVEAN: Protein Variation Effect Analyzer, is a software tool which predicts whether an 

amino acid substitution or indel has an impact on the biological function of a protein [51]. It uses 

an alignment-based score approach. It is useful tool which can help filter sequence variants that 

are functionally important. It can predict for single nucleotide substitutions, multiple amino acid 

substitutions, insertions, and deletions using the same underlying scoring scheme. The webserver 

is available at: http://provean.jcvi.org/index.php. 

 

• ConSurf: is a tool which analyses evolutionary patterns of amino acids of the protein in interest 

to reveal regions which are important for structure and function. The input is either a query 

sequence or structure; it automatically collects homologues, performs a multiple sequence 

alignment and constructs a phylogenetic tree which represents the evolutionary relationship. Next 

a probabilistic framework is used to determine evolutionary rates of each sequence position. The 

webserver is available at: http://consurf.tau.ac.il. 

 

2.3 Homology modeling  
 

The main goal of protein modeling is to predict a structure from its sequence with the accuracy that is 

comparable to the best results achieved experimentally. This allows users to safely use quickly generated 

in silico models in all the contexts like structure-based drug design, analysis of protein function, 

interactions, antigenic behavior, and rational design of proteins with increased stability or novel functions. 

One of the most widely used three-dimensional (3D) structure prediction approaches is homology 

modeling. It builds an atomic model based on experimentally determined known structures that have 

sequence homology of more than 40%. It is also known as comparative modeling. 

https://rostlab.org/services/snap/
http://provean.jcvi.org/index.php
http://consurf.tau.ac.il/
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The principle behind it is that if two proteins share a high sequence similarity, they are likely to have very 

similar three-dimensional structures. If one of the protein sequences has a known structure, then the 

structure can be copied to the unknown protein with a high degree of confidence. 

Homology Modeling is moderately accurate for the positions of alpha carbons and inaccurate for side 

chain positions and loops. The other approaches are threading for <40% similarity and ab initio 

prediction for no homolog [183]. Homology modeling is a multi-step process that can be summarized into 

seven main steps. 

1. Template recognition: The template selection involves searching the Protein Data Bank (PDB) 

for homologous proteins with determined structures. The search can be performed using a 

heuristic pairwise alignment search program like BLAST or FASTA. As a rule of thumb, a 

database protein should have at least 40% sequence identity, highest resolution and the most 

appropriate cofactors for it to be a template sequence. The protein sequence for whose 3D 

structure is to be predicted is the "target sequence". 

 

2. Sequence Alignment: Once the template is identified, the full-length sequences of the template 

and target proteins need to be realigned using refined alignment algorithms to obtain optimal 

alignment. CLUSTALW is a very powerful multiple sequence alignment tool. 

 

 

3.  Backbone Generation: Once optimal alignment is achieved, the corresponding coordinates 

residues of the template proteins selected can be simply copied onto the target protein. If the two 

aligned residues are identical, coordinates of the side chain atoms are copied along with the main 

chain atoms. If multiple templates selected, then average coordinate values of the templates are 

used. 
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4. Loop Modeling: After the sequence alignment, there are often regions caused by insertions and 

deletions leads to gaps in sequence alignment. The gaps are modeled by loop modeling, which is 

a very problem and is also a major source of error. Currently, there are two main techniques used 

to approach the problem: 

• The database searching method - this involves finding loops from known protein structures and 

aligning onto the two stem regions (main chains mostly) of the target protein. Some specialized 

programs like FREAD and CODA can be used. 

• The ab initio method - this generates many random loops and searches for the one that has 

reasonably low energy and φ and ψ angles in the allowable regions in the Ramachandran plot. 

 

5.  Side Chain Modeling: After the main chain atoms are built, the positions of side chains should 

be determined. This is important in evaluating protein–ligand interactions at active sites and 

protein–protein interactions at the contact interface. A side chain can be built by searching every 

possible conformation by every torsion angle of the side chain to select the one that has the 

lowest interaction energy with neighboring atoms. A Rotamer library can also be used, which all 

the favorable side chain torsion angles extracted from has known protein crystal structures. 

 

6. Model Optimization: This step includes the energy minimization procedure on the entire model, 

which moves the atoms in such a way that the overall conformation has the lowest energy 

potential. The goal of energy minimization is to relieve steric collisions without altering the 

overall structure. In these loop modeling and side chain modeling steps, potential energy 

calculations are applied to improve the model. Model refinement can also be done by Molecular 

Dynamic simulation which moves atoms toward a global minimum by applying various 

stimulation conditions (heating, cooling, considering water molecules) and has a better chance at 

finding the true structure. 
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7. Model Validation: There are two principally different ways to estimate errors in a structure: 

• Calculating the model’s energy based on a force field 

• Determination of normality indices that describe how well a given characteristic of the 

model resembles the same characteristic in real structures. 

2.2 Molecular Docking 

Molecular docking is the process that involves placing molecules in appropriate configurations to interact 

with a receptor. Molecular docking is a natural process which occurs within seconds in a cell. In 

molecular modeling the term “molecular docking” refers to the study of how two or more molecular 

structures fit together. The information obtained from the docking technique can be used to suggest the 

binding energy, free energy and stability of complexes. 

The main objective of molecular docking is to attain ligand-receptor complex with optimized 

conformation and with the intention of possessing less binding free energy. The net predicted binding free 

energy (ΔGbind) is revealed in terms of various parameters, hydrogen bond (ΔGhbond), electrostatic (ΔGelec), 

torsional free energy (ΔGtor), dispersion and repulsion (ΔGvdw), desolvation (ΔGdesolv), total internal energy 

(ΔGtotal) and unbound system’s energy (ΔGunb). Therefore, good understanding of the general ethics that 

govern predicted binding free energy (ΔGbind) provides additional clues about the nature of various kinds 

of interactions leading to the molecular docking [184]. 

Approaches for Molecular Docking 

For performing molecular docking, primarily two types of approaches are used. 

1. Simulation approach 

Here the ligand and target are being separated by physical distance and then ligand is allowed to 

bind into groove of target after “definite times of moves” in its conformational space. The moves 

involve variations to the structure of ligand either internally (torsional angle rotations) or 
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externally (rotations and translations). The ligand in every move in the conformational limit 

releases energy, as “Total Energy”. This approach is more advantageous in the sense that it is 

more compatible to accept ligand flexibility. Additionally, it is more real to assess the molecular 

recognition between ligand and target. However, this approach takes longer duration to estimate 

optimal docked conformer due to the large energy dissipating for each conformation. Recently, 

fast optimization method and grid-based tools have dominantly revolutionized this drawback to 

make simulation approach more user-friendly [185]. 

 

2. Shape complementarity approach 

This approach employs ligand and target as surface structural feature that provides their 

molecular interaction. Here, the surface of target is shown with respect to its solvent-accessible 

surface area and ligand’s molecular surface is showed in terms of matching surface illustration. 

The complementarity between two surfaces based on shape matching illustration helps in 

searching the complementary groove for ligand on target surface. For example, in protein target 

molecules, hydrophobicity is estimated by employing number of turns in the main-chain atoms. 

This approach is rather quick and involves the rapid scanning of numerous thousands of ligands 

in a few seconds to find out the possible binding properties of ligand on target molecular surface 

[185, 186]. 

 

2.4 Novel methodological pipeline to build the empirical classifier 

A crucial step towards establishing a genotype-phenotype correlation is the initial understanding of the 

molecular and functional mechanisms of the drug resistance mutations obtained from the scores of the 

biophysical and evolutionary tools. But looking into individual results manually can often miss 

underlying relationships among different mutational measurements, which can help relate them to the 

phenotype [187]. Supervised machine learning helps address this issue by providing a rigorous set of 
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algorithms, used to analyse the labelled train data set to obtain a binary classifier which is further applied 

to make predictions for unseen data. The identification of patterns and associations within the data helps 

the predictive model establish a distinction between mutations within the same gene leading to different 

phenotypes, and hence the development of an effective predictive tool that can be used to interpret novel 

clinical variants. My aim was to build a binary machine learning classifier to distinguish between 

susceptible and resistance mutations for pncA, a gene responsible for activation of the drug Pyrzinamide 

and atpE, the drug binding site for Bedaquiline. The steps involved in building a non-biased accurate 

classifier are: 

1. Data Preparation: The first step is collecting good quality experimental data. The quality of a 

classifier is a direct reflection of the quality of the data used to build it. Therefore, accurate clinical 

sources are required to label mutations as susceptible or resistance. The clinical databases available for 

Mtb are: 

• GMTV: Genome-wide Mycobacterium tuberculosis Variation database [188], a database which 

list genomic variations for Russian isolates. The database is available at 

(http://mtb.dobzhanskycenter.org). 

• TBDReaMDB: Tuberculosis Drug Resistance Mutation Database [189], comprehensive and 

interactive database cataloguing  mutations associated with TB drug resistance and the frequency 

of the most common mutations associated with resistance to specific drugs. The database is 

available at (http://www.tbdreamdb.com/). 

• tbvar: database annotating potential functional and drug resistance variants of Mtb. Using a 

systematic computational pipeline they have created a comprehensive variome map of Mtb 

comprising >29,000 single nucleotide variations  [190]. The database is available at 

(http://genome.igib.res.in/tbvar). 

• MUBII-TB-DB: a highly structure text-based database of resistance mutations for first-line and 

second-line antibiotics [191]. It can detect mutations in seven 

http://mtb.dobzhanskycenter.org/
http://www.tbdreamdb.com/
http://genome.igib.res.in/tbvar
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genes: rpoB, pncA, katG, gyrA, gyrB, mabA (fabG1)-inhA and rrs. The database is available 

at (http://umr5558-bibiserv.univ-lyon1.fr/mubii/mubii-select.cgi). 

Not all mutations for all drugs used to treat TB are listed in these databases. Especially for newer drugs 

like Bedaquiline and Delamanid, one needs to manually look for information on resistance and 

susceptible mutations from the literature. Sometimes biologically relevant information like lineage or 

fitness cost is available for few mutations. But they need to be available for all the variants listed in the 

dataset to train and test the algorithms because supervised algorithms do not handle missing data labels. 

While curating and building the dataset we should opt for equal representation of all class labels 

whenever feasible. 

2. Protein structure and homology modeling: Uniprot (https://www.uniprot.org/) [192] was used to 

obtain the sequence and functional information for the protein of interest (PncA and AtpE). The 

information on sequence can also be obtained from NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/). To 

run the biophysical tools such as mCSM, a high resolution protein crystallographic structure is required 

which can be downloaded from Protein Data Bank (PDB: http://www.rcsb.org/) [193]. When a protein 

structure is not available, it is generated via homology modeling that builds an atomic model based on 

experimentally determined known structures that have sequence homology of more than 40%. The 

principle behind it is that if two proteins share a high sequence similarity, they are likely to have very 

similar three-dimensional structures. If one of the protein sequences has a known structure, then the 

structure can be copied to the unknown protein with a high degree of confidence. For tools like mCSM-

PPI, mCSM-PPI2, mCSM-Lig and mCSM-NA, we might further require molecular docking. Molecular 

docking is the process that involves placing molecules in appropriate configurations to interact with a 

receptor. Molecular docking is a natural process which occurs within seconds in a cell. To mimic the 

process in-silico we need time and computational power. The main objective of molecular docking is to 

attain ligand-receptor complex with optimized conformation and with the intention of possessing less 

binding free energy. 

http://umr5558-bibiserv.univ-lyon1.fr/mubii/mubii-select.cgi
https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/gene/
http://www.rcsb.org/


53 
 

Once we have both the curated dataset and the protein structure, we map the variants on to the protein 

structure to identify potential hotspots and can be done by using the visualizing software such as PyMol 

and Chimera. 

3. Feature Generation: The structural and sequence-based features encompass a diverse range of 

mutational information as they provide descriptive knowledge for each mutation. The information can be 

categorized into: 

• Stability features: Protein stability and conformational dynamics and flexibility (mCSM-

Stability, DUET, SDM, DynaMut) 

• Functional features: Changes in protein – protein interaction (mCSM-PPI, mCSM-PPI2), 

changes in affinity towards ligand binding (mCSM-Lig) and changes in nucleic acid association 

(mCSM-NA) 

• Wild-type residue environment: Structural information of the wild-type residue, including 

relative solvent accessibility (RSA), residue depth, secondary structure and dihedral angles of the 

protein side chain φ (phi) and ψ (psi). Inter-residue contacts on wild-type and mutant structures 

were calculated using Arpeggio to model the effects of mutations on intra-molecular interactions. 

• Evolutionary features: Sequence-level predictors (SIFT, Polyphen, SNAP2) and evolutionary-

based predictors (ConSurf). 

• Distance features: distance of the mutation from the drug / ligand binding site and distance of the 

mutation from the adjoining protein/ monomer interface. 

4. Machine Learning: Once the data is generated using the different features, it is time for the data set to 

be trained to build the empirical classifier using supervised machine learning. Supervised machine 

learning is the search for algorithms using information from the supplied instances to produce a general 

hypothesis which is then used to make prediction for future instances [194]. The data is divided into non-

redundant train and test datasets with respect to amino acid position. This is important to avoid over-
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biasing the model as certain features used to build the classifier have similar values. Machine learning can 

be carried out using Weka [195] (https://www.cs.waikato.ac.nz/ml/weka/) or the python package Scikit-

Learn [196] which are inclusive of the classification algorithms: Decision Tree, Nearest Neighbors 

(KNN), Support Vector Machines (SVM) and Ensemble Classifiers (Random Forest, Extra Trees, 

AdaBoost and GradientBoosting), Linear Classifiers (Gaussian, Multinomial and Complement Naïve 

Bayes, Stochastic Gradient Descent). Preliminary testing is performed on all algorithms with the train and 

test dataset to assess the generalization power of each classifier, that is, its ability to correctly predict on 

new data, and to ensure that it has not been over or under-trained [187]. Depending on the size of the 

dataset, it is split into 70:30, 80:20 or 90:10, train to test proportions. Cross-validation is used to 

determine the classifier’s accuracy. It is a technique where the training set is divided into mutually 

exclusive and equal-sized subsets and for each subset the classifier is trained on the union of all the other 

subsets. The average of the error rate of each subset is a representation of an estimate of the error rate of 

the classifier [194]. In case of smaller dataset, a large proportion of the data is retained to provide 

sufficient data to accurately measure performance of the trained model. Leave-one-out validation, a 

special case of cross validation is when the test subsets consist of a single instance. This type of validation 

is, of course, more expensive computationally, but useful when the most accurate estimate of a classifier’s 

error rate is required [194] (Figure 7). 

https://www.cs.waikato.ac.nz/ml/weka/
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Figure 7: Example of leave-one-out cross-validation where the number of instances is 5. The number of 

instances equals the number of folds/ iterations. The blue boxes represent instances for train data set and 

the red box represents the instance for the test set.  

 

Evaluation Metrics: For model evaluation, four metrics are used as each metric presents its own 

limitations and a broader analysis of all of them together is better suited for evaluating the models 

described in this work. The metrics are precision, recall, f-measure (also known as f-score), area under the 

ROC curve (AUC) and Matthew’s Correlation Coefficient (MCC). These are well established and broadly 

used metrics for assessing the results of binary classification algorithms. Such measurements are 

expressed based on the values of a binary contingency table, also known as confusion matrix (Figure 8), 

where the classes are represented by convention with + (positive) and - (negative) signs. This 2x2 matrix 

(actual versus predicted class) uses the raw counts of the number of times each predicted label is 

associated with each real class.  
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Figure 8: Confusion Matrix. True and False Positives (TP and FP) indicate the number of predicted 

positives that were correct and incorrect, respectively. Similarly, True and False Negatives (TN and FN) 

refer to correct and wrong predictions for negative class. The sum TP+FP+TN+FN is equal to the total 

amount number of instances in the data set being used. 

Precision denotes the proportion of Predicted Positive cases that are Actual Positives. It is defined by   

TP/(TP+FP). On the other hand, Recall is defined as the proportion of Predicted Positives cases that are 

Actual Positives over all Predicted Positives. Using the convention described in Figure 3, it is defined as 

TP/(TP+FN). F1-score is a combination of Precision and Recall in a harmonic mean between them. This 

measure is defined by the square of the geometric mean divided by the arithmetic mean. All these metrics 

present biases towards the predictions of positive class and ignore the performance in correctly predicting 
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the negative class. This is particularly true for data with classes that are not balanced, such as the ones 

presented in this work [197]. For a different perspective of analysis, given the bias problem with 

precision, recall and f-measure, use of the measure of Area under the ROC Curve (AUC or AUROC) is 

preferred. AUC considers the True Positive Rate (TPR), also known as sensitivity, which corresponds to 

the proportion of positive data points that are correctly considered as positive; and, the False Positive Rate 

(FPR) that corresponds to the proportion of negative data that are wrongly considered as positive, 

regarding all negative data points. A Receiver Operating Curve (ROC) is then plotted using TPR versus 

FPR and the AUC is the area under such curve [198]. Like precision, recall and f-measure, AUC has its 

best result is 1 and the worse is 0. A random binary classifier would generate an AUC of 0.5. An 

additional metric for rescue when we have classes of different sizes is MCC. It is regarded as a balanced 

measure as it takes into account true and false positives and negatives. The MCC is a correlation 

coefficient between the observed and predicted binary classifications and it returns a value between −1 

and +1. A value of +1 represents a perfect correlation; value of 0 no better than random prediction and  a 

value of −1 indicates total disagreement between prediction and observation [199]. 

                                                                  𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                         --------------- (Equation 7) 

                                                                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     ---------------- (Equation 8) 

                                                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                       ---------------- (Equation 9) 

                                                 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃+1/2(𝐹𝑃+𝐹𝑁)
                                   --------------- (Equation 10) 

                                          𝑀𝐶𝐶 =
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                        --------------- (Equation 11) 

The metrics described above should be used in a combination to compare model performance for train 

dataset and even during cross-validation for better optimization. When the data set is imbalanced, MCC 

should be prioritized as other measures could possibly bias for an over-trained model.  
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5. Feature engineering: This is a crucial step in developing a good performing classifier as features 

selected for training strongly influences classifier accuracy. Therefore, it is important to choose 

informative features and discard non-informative / discriminative and irrelevant ones as they could only 

increase noise in the system. Choosing the right features prevents a model to be over-fit and 

computationally economic, as it aims to generate simpler, more concise models [187]. Greedy feature 

selection can be used where features are included iteratively, one at a time, based on their individual 

performance. The features can be ranked according to their performance for a chosen metrics. MCC and 

accuracy are the two main choices of metrics when we run the greedy algorithm.  Feature selection 

methods provided by Scikit-Learn include feature importance, univariate selection, correlation matrix, 

and recursive feature elimination or addition. 

6. Webserver development: Materialize CSS framework version 1.0.0 has been used to build the server 

front-end for SUSPECT-PZA AND SUSPECT-BDQ. The back end was built in Python via the Flask 

framework (version 0.12.2). Both the webservers is hosted on a Linux server running Apache. 

 

2.5 Mathematical Modeling  

Mathematical models have become important tools in analyzing the spread and control of infectious 

diseases. Modeling Mtb dynamics have improved our understanding of the natural history of TB infection 

and transmission, helped in projecting future disease burden and therefore revise policies [138, 200]. 

Models which study the evolution of infectious disease over time are therefore often described as 

dynamic epidemiological models. 

2.5.1 Epidemiological elements of a mathematical model 

TB progresses within the body of a susceptible individual (with no history of previous TB infection) starts 

with infection with Mtb. Individuals with latent TB can remain asymptomatic or can progress to active 
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disease by either exogenous reinfection or endogenous reactivation. Risk of progression to active disease 

can be affected by a range of factors, including age, duration since infection and co-morbid conditions 

such as HIV [201] or diabetes [202, 203]. TB is a treatable and curable disease and non-compliance to 

treatment leads to DR-TB. The different components TB epidemiology are: 

• Active and latent TB infection: Once a susceptible individual is infected with Mtb, symptoms 

might not be immediately observed. The individual is said to have latent TB, but it is not 

infectious. People with latent TB infection do not show clinical symptoms, microbiological 

evidence or radiological abnormality [204]. The risk of progression to active TB is highest in the 

first few years after exposure to the pathogen, but it can persist lifelong. Sometimes, the bacteria 

remain inactive for a lifetime without causing any disease. Infectious period starts when latent TB 

progresses to active TB, and the individual can spread the disease. 

• Endogenous reactivation and exogenous reinfection: Susceptible individuals often can mount 

an effective immune response upon infection which limits the spread of Mtb and helps in 

producing a long-term partial immunity. Reactivation of the latent TB bacilli which was acquired 

more than five years ago is referred to as endogenous reactivation. A secondary external infection 

which makes the individual infectious thereby causing active disease if referred to as exogenous 

re-infection [205, 206]. Infection with different strains of Mtb is referred to as mixed infection. 

• Treatment: Treatment of active TB is called “chemotherapeutics” and treatment of latent TB is 

called “chemoprophylaxis”. TB therapy typically consists of 3-4 medications for a period of 6 

months, which may be longer depending on site of disease and drug resistance. In some contexts, 

treatment may be supervised (“Directly Observed Therapy”) to enhance treatment adherence and 

monitoring. National programs may combine and deploy different control strategies to treat all 

types of TB infection. 

• Drug Resistance: Due to ineffective treatment or intermittent compliance of the patient to the 

treatment, susceptible strains of Mtb may have a higher chance to gain resistance to 
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chemotherapeutics. Resistance can either be acquired during treatment or transmitted from 

individual with DR-TB strains. Acquired resistance initiates an epidemic of DR-TB whereas if 

the strain is more transmissible, risk of primary drug resistance increases over time. 

2.5.2 Epidemiological models 

The various types of mathematical models used to study transmission dynamics of TB are: compartmental 

models [207], agent-based models [208] and network models [209]. A compartmental model describes a 

population divided into mutually exclusive health states (compartments) and uses differential equations to 

represent the mechanisms of transition between these health states. Waaler et al [210], Ferebee et al [211] 

and ReVelle et al [212] were the first to develop mathematical models of tuberculosis transmission. 

Agent-based modelling and network models are less frequently used to study Mtb transmission, as we 

intend to model airborne transmission for a chronic infectious disease compared to other infectious 

diseases [213].  

A prototypical “SIR” model divides the population into three compartments, each representing a mutually 

exclusive health states: susceptible (S), infected (I), and recovered (R). Transmission dynamics are 

described by defining rates of flow between compartments. TB pathology is complex given its potentially 

long latency period and hence, “SEIR” models are usually chosen to represent dynamics of TB 

transmission, where, S is susceptible, E is exposed, I is infected and R is recovered. The threshold for 

many epidemiology models is the basic reproduction number R0, which is defined as the average number 

of secondary infections produced when one infected individual is introduced into a host population where 

everyone is susceptible [214]. For many deterministic epidemiology models, an infection can get started 

in a fully susceptible population if and only if R0 > 1. Thus, the basic reproduction number R0 is often 

considered as the threshold quantity that determines when an infection can invade and persist in a new 

host population. 



61 
 

Ragonnet et al [215] identified six different models structures and only those incorporating two latency 

compartments were capable to reproduce empirically observed dynamics of TB activation. The two 

compartments representing early and late latency could be either placed in series or in parallel. To 

develop my own mathematical model, I used a compartmental model (SEIR model), which includes five 

compartments with respect to the different states of an individual’s disease status Figure 9.  

 

Figure 9: A prototypical TB transmission model. The different compartments represent different health 

states: Susceptible (S), Early latent (LA), Late latent (LB), Infection (I) and Recovered (R). By 

incorporating two latent compartments, this structure replicates the dynamics of TB latency accurately. 

The parameters described in the SEIR model are: β = transmission rate (year-1), κ = transition to early 

latent compartment after being exposed to Mtb (year-1), ε = progression rate (year-1), ν = reactivation rate 

(year-1), γ = self-recovery (year-1), τ = treatment success rate, δ = risk of reinfection once recovered. 

Compartmental models may be articulated either deterministically using systems of ordinary differential 

equations or stochastically via continuous-time Markov chains and stochastic differential equations [216]. 

Epidemic processes are stochastic in nature especially at an individual level and therefore stochastic 

models help in understanding these fluctuations involved in spread of the disease; though the consequence 

might not be due to difference in virulence or infectiousness [217]. Nevertheless, small populations are 

better suited for application of stochastic approach and for elucidating infection dynamics at initial stages 

[218]. Deterministic models on the other hand are suitable for an infinite population limit [219]. In a 

deterministic model, a heterogeneous population is subdivided into finite homogenous subpopulation 

representing the different disease states. Ordinary differential equations are used to model the epidemic 
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dynamics, capturing movement between subpopulations. The output provided is generally theoretical 

such reproductive number as described above. These models are commonly used to design proper 

strategies to reduce the spread of DR-TB. Hence, for our model construction a deterministic 

compartmental model was used to estimate mono drug resistant amplification rates. 
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CHAPTER 3.1: STRUCTURE GUIDED 

PREDICTION OF PYRAZINAMIDE 

RESISTANCE IN TUBERCULOSIS 
Summary 

Background: Pyrazinamide, a first-line drug with remarkable sterilizing activity, plays an important role 

in the treatment of tuberculosis, especially in multi-drug resistant strains. Pyrazinamide use, however, is 

complicated by its side-effects and challenges with reliable drug susceptibility testing. Resistance to 

pyrazinamide is largely driven by mutations in pyrazinamidase (pncA), responsible for drug activation, 

but large genetic diversity and heterogeneity has hindered the development of a comprehensive molecular 

diagnostic test. 

Objective: Our objective was to use information from the proteins 3D structure to accurately identify 

resistance mutations in pncA. 

Methods: To achieve this, we curated 610 pncA non-synonymous single nucleotide mutations with 

associated high confidence experimental and clinical information on pyrazinamide susceptibility. The 

molecular consequences of these mutations were assessed using the mCSM platform, which provided 

insights into changes in protein stability, conformation, and interactions for each mutation.  

Findings: Using these structural and biophysical effects, we could correctly classify mutations as either 

susceptible or resistant with an accuracy of 78%. Our model was validated against a previously 

documented set of non-redundant clinically resistance mutations achieving 77% accuracy and 81% 

accuracy across all pncA missense mutations recently reported in the CRyPTIC dataset. Applying this 

structural analysis to a novel set of previously unreported Victorian clinical mutations with experimental 

drug susceptibility testing, our model showed clinical resistance in pyrazinamide could be predicted with 

71% accuracy.  
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Web-server: We have made this model freely available through a user friendly web interface called 

SUSPECT-PZA, StrUctural Susceptibility PrEdiCTion for pyrazinamide, at: 

http://biosig.unimelb.edu.au/suspect_pza/. This will be a valuable resource to analyse any pncA missense 

mutation, providing structural insight to help guide patient treatment decisions and screening programs. 

 

This chapter has been published in the Scientific Reports as a first author publication. “Structure guided 

prediction of Pyrazinamide resistance mutations in pncA”, Karmakar, M., Rodrigues, C.H.M., Horan, 

K., Denholm, J.T., Ascher, D.B. (2020). (doi: 10.1038/s41598-020-58635-x) 

  

http://biosig.unimelb.edu.au/suspect_pza/
https://www.ncbi.nlm.nih.gov/pubmed/32024884
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Structure guided prediction of 
pyrazinamide resistance mutations 
in pncA
Malancha Karmakar1,2,3, Carlos H. M. Rodrigues  1,2, Kristy Horan4, Justin T. Denholm3 & 
David B. Ascher  1,2,5*

Pyrazinamide plays an important role in tuberculosis treatment; however, its use is complicated by 
side-effects and challenges with reliable drug susceptibility testing. Resistance to pyrazinamide is 
largely driven by mutations in pyrazinamidase (pncA), responsible for drug activation, but genetic 
heterogeneity has hindered development of a molecular diagnostic test. We proposed to use 
information on how variants were likely to affect the 3D structure of pncA to identify variants likely to 
lead to pyrazinamide resistance. We curated 610 pncA mutations with high confidence experimental 
and clinical information on pyrazinamide susceptibility. The molecular consequences of each 
mutation on protein stability, conformation, and interactions were computationally assessed using 
our comprehensive suite of graph-based signature methods, mCSM. The molecular consequences 
of the variants were used to train a classifier with an accuracy of 80%. Our model was tested against 
internationally curated clinical datasets, achieving up to 85% accuracy. Screening of 600 Victorian 
clinical isolates identified a set of previously unreported variants, which our model had a 71% 
agreement with drug susceptibility testing. Here, we have shown the 3D structure of pncA can be used 
to accurately identify pyrazinamide resistance mutations. SUSPECT-PZA is freely available at: http://
biosig.unimelb.edu.au/suspect_pza/.

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of infectious disease death world-
wide. In 2017, 10 million people fell ill, and 1.6 million died, from tuberculosis1. While a range of antibiotics 
are available to treat TB, treatment is prolonged, and the increasing emergence of drug-resistant bacteria is a 
considerable threat to global health. In 2017 alone, an estimated 558,000 people developed multi-drug-resistant 
tuberculosis (MDR-TB), resistant to the two first-line drugs rifampicin and isoniazid1.

Pyrazinamide (PZA) is a first-line drug that exhibits unique sterilizing activity towards both drug-susceptible 
and MDR-TB2. It is responsible for the killing of the persistent tubercle bacilli during the initial intensive phase 
of chemotherapy, allowing treatment to be shortened from 9 months to 6 months for drug susceptible cases3. 
PZA therapy has been linked to improved outcomes for both non-MDR and MDR-TB, and is being considered 
as part of the future regimens in combinations with bedaquiline, delamanid, PA-824 and moxifloxacin, which are 
currently in phase three trials4,5.

Despite the highly important role of PZA in clinical outcomes, resistance has largely been underestimated, 
with up to 20% of non-MDR-TB patients PZA resistant6. Being a central drug in current and future regimens, it 
is important to be able to rapidly and accurately identify resistant isolates and track the emergence and spread of 
drug resistant strains. In vitro drug susceptibility testing (DST) is challenging, expensive and time-consuming as 
PZA is effective against M. tuberculosis only at acidic pH, leading to false resistance rates of up to 70%7–13. This has 
led to the WHO recommending the development of molecular genetics tests.

PZA is a structural analog of nicotinamide and is a pro-drug that needs to be converted into its active form, 
pyrazinoic acid (POA), by the non-essential enzyme pyrazinamidase, encoded by the pncA gene14,15. It has been 
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postulated that the mechanism of action of PZA is through POA, which disrupts the bacterial membrane energet-
ics and inhibits the membrane transport function which is necessary for the survival of the bacterium, at an acidic 
site of infection16. PZA resistance has been linked to mutations in a number of genes, including pncA, rpsA17, 
panD18, clpC119, and the putative efflux pumps Rv0191, Rv3756c, Rv3008, and Rv1667c20, but mutations in pncA 
are the major mechanism for PZA resistance (70–97%)21. While sequencing the pncA gene can be a more reliable 
method to determine resistance than DST, which is prone to missing low-level pyrazinamide resistance caused by 
non-synonymous mutations in pncA22, the development of a genetics based resistance screen is complicated as 
resistant and non-resistant mutations are found across the entire protein.

To solve the problem of a reliable DST for PZA, we previously showed that protein structural information can 
be used in a clinical setting to rapidly, accurately and pre-emptively predict drug resistant mutations in pncA23. 
This showed that mutations that affected protein folding, flexibility, stability and activity were strongly associated 
with resistance. Here we have used a comprehensive combination of structure and sequence-based features to 
develop a predictive tool to characterize novel PncA mutations, which we tested on novel mutations from the 
Victorian Tuberculosis Program, CRyPTIC24 and Miotto et al. dataset25. This highlights the potential of using 
structural information to guide the genetic detection of resistance. We have implemented our model through the 
webserver SUSPECT-PZA (http://biosig.unimelb.edu.au/suspect_pza/), which will enable the rapid structural 
evaluation of the molecular and phenotypic consequences of any pncA nonsynonymous mutation to support 
informed clinical decisions.

Results
We used a structure-guided approach to understand the structural and functional consequences of variants in 
the drug target PncA, and machine learning to build an empirical tool that could identify likely resistant muta-
tions. The workflow used to analyze the mutations and train a Random Forest algorithm is shown in Fig. 1 and it 
comprises three major steps: (1) data curation, which can be subdivided into mutational data set acquisition and 
protein structure curation; (2) feature analysis, which involves the generation and evaluation of features selected 
to develop the predictive model to determine novel drug resistance mutations in PncA; (3) machine learning and 
webserver development, which aims to train, test and validate a supervised machine learning algorithm to accu-
rately predict the susceptibility of the variant followed by a database (SUSPECT-PZA) which has information for 
all possible variants of PncA.

Distribution of the mutations on the structure. We curated a dataset of 1322 nonsynonymous substi-
tutions with high quality experimentally measured PZA susceptibility (71 susceptible mutations from GMTV26, 
12 resistant mutations from GMTV26, 178 resistant mutations from TBdreamDB27, Fig. 2A, 547 resistant and 514 
susceptible mutations from experimental saturation mutagenesis28). After removal of duplicate mutations, we 
were left with a dataset of 610 mutations, which included 305 susceptible and 305 resistant mutations. Mapping 
the complete set of curated 610 nsSNVs (Fig. 1) and just the clinical variants only (Fig. 2B) onto the crystal struc-
ture of PncA revealed that variants were distributed throughout the entire protein structure, complicating resist-
ance inference from sequence analysis. We also observed that the resistance mutations were not solely localized 
at the drug binding site but distributed throughout the protein (Fig. 2C).

Figure 1. Methodology workflow. The methodology can be divided into three steps. In step 1, data is collected 
and curated from various tuberculosis databases and articles with experimental evidence like availability of DST 
results or high-precision laboratory screening study. The curated mutations are shown across both the protein 
sequence and 3D structure, respectively. The protein sequence and structure of PncA is colored by whether 
resistant (red) or susceptible (blue) mutations have been observed at that location. Highlighting the difficulty 
of genomic analysis of pncA, both resistant and susceptible mutations have been observed across many residue 
positions (cyan). In step 2, effects of mutations on protein stability, dynamics, complementary information 
regarding the environment characteristics of the wild-type residue (e.g. relative solvent accessibility, residue 
depth and secondary structure), PZA binding affinity are calculated using different in-silico tools. Step 3, all 
the features are used as evidence to train a supervised machine learning algorithm and after evaluating the 
performance of the predictive model, the consensus predictions are integrated into a server and can be used to 
guide clinical resistance detection.
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PncA is a small protein molecule which constitutes of 186 amino acids. The experimental crystal structure 
of the drug (PZA) bound to the enzyme (PncA) was unavailable. Therefore, PZA was ab initio docked into the 
experimental crystal structure of the holo-wild-type PncA protein (PDB ID: 3PL129). The docked structure 
revealed that PZA formed key interactions within the proteins active site, which includes the catalytic triad (Asp8, 
Lys96, and Cys138), substrate-binding residues (Trp68 and Phe13), and the iron center (Asp49, His51, His57, and 
Fe 21). Analysis of the molecular interactions with Arpeggio30 highlighted a strong network of polar and π- inter-
actions between PZA and PncA (Fig. 2D).

Structural, biophysical and evolutionary consequences of PncA mutations. Looking at the 
SNAP231 and PROVEAN32 scores, which consider evolutionary information to predict functionally important 
nonsynonymous mutations, we observed that resistant mutations were always associated with deleterious scores, 
while susceptible mutations were scored neutral (Table S1; Fig. 3). This suggest that although mutations were 
spread throughout the protein, mutations associated with resistance were having a stronger effect on the structure 
and function of the protein.

The wild-type environment also provided information to differentiate between resistant and susceptible muta-
tions, which included relative solvent accessibility (RSA), residue depth and secondary structure of the wild-type 
residue (Table S1; Fig. 3). This showed that resistant mutations tended to be found at buried residues that were 
less solvent exposed (average RSA of 0.18 for resistant mutations compared to 0.39 for susceptible; average residue 
depth of 1.09 Å for resistant mutations compared to 0.75 Å for susceptible; Table S1). These values were consist-
ent with susceptible mutations being in regions that have milder effects on protein stability and activity than the 
resistance mutations.

The impact of the resistant and susceptible mutations on protein folding, stability and conformation were 
assessed using biophysical tools which relies on graph-based signatures to calculate the change in Gibb’s free 
energy, like mCSM-Stability33, DUET34 and DynaMut35. The effect of the mutations on the binding affinity for 
PZA were assessed using mCSM-Lig36. We observed that resistant mutations led to large decreases in PncA sta-
bility and conformational flexibility, while susceptible mutations were associated with milder changes (Table S1; 
Fig. 3). This is consistent with what we have observed previously for non-essential and drug activating proteins37. 
While resistant mutations, however, tended to be located closer to the PZA binding site (average < 10 Å from the 
PZA; Fig. 3), we did not see a significant difference in the distribution of the effects of resistant and susceptible 
mutations on PZA binding affinity (Table S1, Fig. S2), likely due to the importance of other molecular effects 
leading to resistance.

Machine learning to predict PZA resistance. Building on this structural and sequence-based analysis, 
we tested whether the information generated from these features could be used to train a supervised machine 
learning algorithm capable of accurately predicting resistant mutations in PncA. We grouped our features into 
five distinct categories: stability, dynamics, evolutionary conservation, ligand interactions and backbone geome-
try (structural environment). The performance of predictive models trained on each class of feature was evaluated 

Figure 2. Distribution of clinical resistant and susceptible mutations in PncA. (A) Venn diagram representing 
the distribution of clinical mutations in the different datasets used to build the predictive model. (B) Clinical 
resistant and susceptible mutations mapped on the crystal structure. Amino acid positions where both 
susceptible and resistant mutations were seen are colored in cyan and emphasizes the need for a better and 
improved tool to classify them accurately. (C) Surface view of PncA with the docked PZA (yellow, ball and stick 
representation). Clinical resistant mutations, shown in red, are not just located at the PZA binding site, but are 
spread equally throughout the whole protein. (D) Molecular interactions between PZA (yellow sticks) and the 
surrounding amino acids which are part of the catalytic triad (Asp8) and substrate binding site (Trp68, Phe13). 
Hydrogen bonds are shown as blue dashes, and π-interactions as green dashes.
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4Scientific RepoRtS |         (2020) 10:1875  | https://doi.org/10.1038/s41598-020-58635-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

separately to explore the contribution of each class to the predictive model (Table S2; Fig. S2). We were able to 
confirm that the individual categories of features did not yield a good metric for a reliable predictive model, but 
in combination using 10-fold cross-validation, models trained using Random Forest algorithm yielded a more 
balanced and accurate performance, highlighting the synergistic effect of these features. The final model correctly 
classified 80.1% and 72.3% of mutations in the training and blind datasets, respectively (Fig. 4; Table 1). The com-
parative performance across iterative non-redundant blind datasets suggested that the model was not overfitted.

Analysis of our model revealed that PncA-resistant mutations were associated with large changes in pro-
tein folding and stability (mCSM-Stability scores < −0.9 Kcal/mol; p < 0.0001, Welch Two Sample t-test) and 
conformational flexibility (DynaMut score < 0.78 Kcal/mol; p < 0.0001, Welch Two Sample t-test) or located in 
close proximity to the catalytic triad and substrate-binding site (<10.8 Å; p < 0.0001, Welch Two Sample t-test). 
Alternatively, susceptible mutations had a relative b-factor value of ≥3.19 (p < 0.0001, Welch Two Sample t-test), 
residue depth of ≥0.9 (p < 0.0001, Welch Two Sample t-test), distance from PZA greater than 11.9 Å and mild 
effects on protein stability (SDM scores ≥ 2.68 Kcal/mol; p < 0.0001, Welch Two Sample t-test).

Validation using Clinical Datasets. We next validated our model using variants reported in the recently 
published CRyPTIC dataset24. 355 pncA nsSNVs associated with PZA resistance were reported, of which 75 were 
not present in our training dataset. Our model correctly classified 79.2% of the mutations across the whole dataset 

Figure 3. PCA analysis of key molecular features distinguishing resistant and susceptible mutations. Features 
used for model building are represented as boxplots for explanatory data analysis. The resistant associated 
mutations (R) are represented as red and the susceptible mutations (S) as blue. (***p < 0.0001, Welch two 
sample t-test).

Figure 4. Evaluation Metric for machine learning. Receiver Operating Characteristic (ROC) curves of PZA 
classifier obtained using the structural and functional consequences of the mutations to accurately identify 
resistant (red) and susceptible (blue) mutations. (AUC = area under the curve).

https://doi.org/10.1038/s41598-020-58635-x
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(355 mutations), and 72.0% of those non-redundant in amino acid position with the training data (75 mutations). 
The positive predictive value was 94.7% (95% CI [92.5% to 96.2%]).

We also validated our empirical classifier using the dataset reported by Miotto et al.25, which contained 98 
nsSNVs graded by the confidence of their association with phenotypic drug resistance. 44 out of the 98 nsSNVs 
reported in the paper were not present in our training dataset. We accurately predicted the drug susceptibility of 
84.8% of the polymorphism across the whole dataset (98 mutations), with an accuracy of 79.5% for those muta-
tions not included in the training data (44 mutations). The positive predictive value was 95.4% (95% CI [92.1% 
to 97.3%]). We observed mutations such as Q10P (21 cases reported), W68G (16 cases reported) and I133T (17 
cases reported) with 0.98 probability associated with resistant phenotype22 and categorized as high confidence 
for association with resistance, moderate confidence for association with resistance and minimal confidence for 
association with resistance respectively25 were all classified as resistant by our predictive model, highlighting the 
sensitivity of the prediction.

Mutations reported by Miotto et al.25 under the “no association with resistance” category, including I31T, L35R 
and T47A were predicted as resistant, and I6L as susceptible. This is consistent with the available experimental 
data24,28, highlighting the advantage, accuracy and versatility of our approach. A closer look into the different bio-
physical scores for the resistant associated mutations revealed that they had large predicted destabilizing values 
for protein conformational flexibility (I31T, −2.49 Kcal/mol) and stability (I31T, −3.46 Kcal/mol) and one was 
located very close to the catalytic triad (T47A, <6 Å).

Our predictive model was further validated on PZA DST screening at 100 μg/ml of clinical isolates from 
culture collections at Stellenbosch University, South Africa (865 isolates) and the Centers for Disease Control 
and Prevention (CDC), Atlanta, USA (185 isolates)38. They identified 49 isolates with a susceptible phenotype 
containing 8 nsSNVs. All nsSNVs with an MIC < 50 μg/ml were correctly classified by our model as susceptible 
(E37V, D110G, T114M). Whitfield and colleagues suggest that those isolates with an MIC > 50 μg/ml should be 
considered clinically resistant, of which our model classified three as resistant (A170V, V130A and L35R) and two 
as susceptible (V163A and V180I). Overall, our model had a 75% agreement with the DST results and a positive 
predictive value of 100%

Application within a Clinical Setting. In a prospective genomic sequencing and DST analysis of over 600 
Victorian clinical TB isolates, 7 pncA variants were detected in 11 variants phenotypically resistant to PZA, none 
of which were present in our training dataset. Our model correctly classified five out of seven variants as resistant 
(71.4% accuracy). The remaining two mutations, G108V and Q10H, which were susceptible according to the DST 
results were predicted to confer resistance and consistent with other experimental findings24,25,28. Both variants, 
had a SNV frequency of <0.5, which is known to impact upon the reliability of the DST results. This highlights 
the potential clinical power of our model.

Expanding our analysis, four additional pncA mutations (S104R, V128G, Y95R and E15A) were identified 
in Victorian clinical TB isolates lacking DST results. Both S104R and V128G were predicted as resistant by our 
model, consistent with previously reported DST results24–28. The remaining two mutations, Y95R and E15A, have 
not been reported previously. Our model suggests both mutations to confer susceptibility to PZA.

SUSPECT-PZA webserver. We have developed a user-friendly, freely available web server SUSPECT-PZA 
(StrUctural Susceptibility PrEdiCTion on PZA), http://biosig.unimelb.edu.au/suspect_pza/, which is a data-
base for all possible variants of PncA. There are two different input options (Fig. S2): the first one is the “Single 
Mutation” option which allows the users to input one mutation for analysis. The basic format required by the 
server for this input option is that the mutation must be specified as a text string containing the wild-type res-
idue one-letter amino acid code, its corresponding position on the structure and the mutant one-letter amino 
acid code. The second option is the “Mutation List”, which allows the user to upload a list of mutations, in the 
same specified format as above but in a file for batch processing (Fig. S3). Sample submission entries are available 
to assist users to submit their mutations for analysis and an additional help page via the top navigation bar.

Total 
nsSNVs

Resistant 
nsSNVs

correctly classified variants 
SUSPECT-PZA (%)

Susceptible 
nsSNVs

correctly classified variants 
SUSPECT-PZA (%)

PPV (%) (95% 
CI)

Accuracy 
(%)

Training dataset (70%) 426 213 159 (74.5) 213 182 (85.5) 83.7 (78.6–87.8) 80.1

Blind test dataset (30%) 184 92 56 (60.8) 92 77 (83.7) 78.9 (69.5–85.9) 72.3

CRyPTIC dataset24 355 325 266 (81.8) 30 15 (50.0) 94.7 (92.5–96.2) 79.2

CRyPTIC novel nsSNVs 75 67 67 (74.6) 8 4 (50.0) 92.6 (86.0–96.2) 72.0

Miotto et al. dataset25 98 92 82 (89.1) 6 2 (33.3) 95.4 (92.1–97.3) 84.8

Miotto novel nsSNVs 44 43 35 (81.4) 1 0 97.2 (96.8–97.6) 79.5

Stellenbosch University 
and CDC, USA nsSNVs38 8 5 3 (60.0) 3 3 (100) 100 75.0

Victorian TB novel 
nsSNVs 7 4 4 (100) 3 1 (33.3) 66. 7 (47.3–81.7) 71.4

Table 1. Evaluation metrics across the train and blind test datasets. Accuracy = (TP + TN)/(TP + TN + FP + FN); 
TP: True positives, TN: True Negatives, FP: False Positives, FN: False Negatives PPV: Positive predictive value, 
predicting PZA resistance (nsSNVs - non-synonymous single nucleotide variant).
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Figure 5 shows a snapshot of the output page for the “Single Mutation” option. The web server displays the 
prediction outcome (Resistant / Susceptible) along with details of the user input data, information on the wildtype 
residue environment and features used for prediction. In addition, there is an interactive 3D viewer, built using 
NGL39, which allows analysis of non-covalent inter-residue interactions for the position specified in the input 
calculated using Arpeggio30 for both wild-type and mutant structures. The results for the “Mutation List” option 
is summarized in a downloadable table. The users can access details of individual mutation as shown in Fig. S4. 
There is a 3D viewer at the bottom of the page in which the residues in the input list is colored according to the 
predicted effect (Fig. S5).

Discussion
PZA was discovered in 1948 in an in vivo screen of nicotinamide derivatives in a structure-activity relationship 
study40 and used as anti-tuberculosis drug in 1952 for the first time. Till the 1970’s PZA was used as a second-line 
drug to treat TB, until they discovered the sterilizing activity and reduction in treatment duration in combination 
with isoniazid and rifampicin. There has been a lot of studies conducted since then and with the continued usage 
of the drug to treat TB, there has been an increased incidence of resistance associated with it. Being an impor-
tant first-line drug, accurate and rapid evaluation of PZA susceptibility is crucial for successful management of 
patients with either susceptible or drug-resistant TB. The existing molecular phenotypic tests are considered 
poorly reliable, expensive, and has a long turnaround time. To account for this situation there is an urgent require-
ment to develop a rapid, reliable and affordable molecular PZA DST. As resistance mutations are spread all over 
the length of the PncA protein, it is quite challenging to develop a new method. In this study, we establish a novel 
computational methodology to better understand the structural and functional consequences of drug resistance 
mutations by exploiting the protein’s 3D structure. Using supervised machine learning algorithm, we developed 
an empirical tool to determine novel drug resistance in PncA followed by a database which has information on 
all possible variants of PncA.

The primary focus of our work is on missense non-synonymous mutations as these typically have more subtle 
molecular effects that can be harder to predict, than in-frame and frameshift indel mutations that have a much 
larger deleterious effect on PncA structure and function and are all classed as high-confidence resistant muta-
tions. The structure-based tools implement the concept of graph-based signatures to predict the effect on single 
point mutations for protein stability. To assess changes in conformational flexibility, graph-based signatures were 
integrated with normal mode analysis to predict the impact on the protein structure. Scores for these features 
which were calculated as change in Gibb’s free energy (ΔΔG) provided important molecular information on 
resistant mutations, signifying larger effects on protein folding and dynamics and minimal effect on PZA bind-
ing affinity. Interpreting the results, we observed, resistance mutations were seen to affect protein activity and 
function through destabilization of the protein structure and conformation. It even helped in correlating earlier 
findings where resistant isolates were not associated with a loss of bacterial fitness41 due to the fact that PncA was 
involved in nicotinamide recycling pathway rather than in its synthesis. These structural insights have been used 
to guide clinical decisions for novel PZA mutations23.

Phenotypic DST which is the current “gold standard”, which encompasses methods like Wayne and Bactec 
MGIT 960, suffers from poor reproducibility. Discrepancies among the results lead to considerable doubt over the 
clinical significance of the method. Next-generation sequencing based diagnostics can be an alternative for inno-
vative tools to reduce false detection of PZA resistance cases and fast and accurate detection of drug resistance by 
molecular DST42. In the past couple of years researchers have used different techniques to come up with a better 
and consistent methodology to detect and determine resistance in PZA. Stoffels et al.41 conducted an elaborate 
study on 14-year complete capture of clinical isolates, where he found frequency of spontaneous acquired resist-
ance to be 10−5 bacilli in vitro. Miotto et al. 2014 work generated the minimum dataset of mutations that should 
be included in any molecular test for PZA, paving the way for predicting PZA resistance using new genome-based 
technologies22. This was followed by Farhat et al. 2016 comprehensive web-based dataset43. Though all these 
approaches were a step up from the existing phenotypic DST, they do not provide information on novel variants. 
The advantage with our database is it provides information on all possible variants for PncA. This data provides 
a basis for use as part of any molecular DST, needed for the valid interpretation of data generated by massive 
sequencing approaches.

Interestingly, comparing performance of SUSPECT-PZA across datasets used to train earlier methods, we 
observed that the weakest performance was across variants classified as susceptible. However, many of these 
mutations have been observed in clinically resistant isolates. Our biophysical analysis and SUSPECT-PZA predic-
tions would be consistent with these mutations potentially being misclassified previously.

We also compared our empirical models output to the “revised DST” of Miotto et al.22, where they accounted 
for enzymatic activity and structural analysis to adjust for possible errors in phenotypic DST. There were 178 
missense mutations listed, of which 162 were labelled resistant (R) and 17 were labelled susceptible (S). Our 
model predicted 88.9% (144/162) of the resistant mutations and 58.8% (10/17) of the susceptible mutations accu-
rately. The positive predictive value was 95.4% (95% CI [92.1% to 97.3%]). The primary divergence from the 
Miotto classifications was in predicting susceptible mutations. This is likely due to discrepancies in phenotypic 
and molecular DST results from different laboratory setups16. For example, mutations reported as susceptible in 
the “revised DST” like L159V, F81S, A102V, T135S, T168I and A46V were unanimously reported as resistant in 
other studies24,26–28. Our predictive tool also predicts them to be resistant and hence, proves to be more reliable, 
reproducible, free to use and a fast alternative to the existing gold standard methods.

This study highlights the power of using computational prediction of the structural consequences of variants 
in PncA to identify likely pyrazinamide resistance mutations, a critically important first-line drug in the treat-
ment of tuberculosis. This approach, however, is not limited to pncA and has been developed for application to 
other antimicrobial agents like bedaquiline44, a last line resort to treat multi-drug and extremely drug resistant 
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TB. A major advantage of our tool is that it was built using a very well-balanced dataset. In case of mutations 
reported as both susceptible and resistant in the same or different datasets, we looked for frequency of occurrence 
and clinical information. We have extensively evaluated the method through both cross-validation and inde-
pendent non-redundant blind tests, which provide a measure of a methods applicability and robustness. Across 
all test sets the method performed equally well, providing strong confidence in the approach. As with all machine 

Figure 5. SUSPECT-PZA webserver Single point mutation prediction result page. The predicted outcome 
of the submitted mutation is displayed along with complimentary information on features used to aid in the 
development of the tool. The interactive 3D viewer allows user to further analyze non-covalent interactions for 
both wild type and mutant residues on the protein. A variety of controllers are provided to customize molecule 
representation.
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learning approaches, the availability of more phenotypic and clinical data will enable the development and vali-
dation of stronger approaches. This will be an iterative approach moving forward. The other aspect to improving 
our predictive model is through the inclusion of new features or parameters. We have shown previously that this 
approach can even capture strain dependent variations in resistant patterns23. While we did not have the data 
available to build into our current model, we next aim to integrate lineage specific information, which will enable 
more refined and personalized predictions. This comprehensive web server can be used in clinical settings as an 
improved diagnostic tool to help realize the power of whole genome sequencing diagnostic approaches.

Methods
Data set. A list of 610 nonsynonymous single-nucleotide mutations (nsSNVs) of pncA was obtained from the 
GMTV (Genome-wide Mycobacterium tuberculosis Variation) Database Project26, Tuberculosis Drug Resistance 
Mutation Database27, and saturation mutagenesis28. The clinical validation datasets used in the paper were from 
CRyPTIC24 and Miotto et al.25.

Modelling the biophysical consequences of missense mutations. We have developed a compre-
hensive in silico mutational analysis platform that uses graph-based signatures to represent the 3D structure of a 
protein and quantitatively predict the molecular consequences of point mutations on protein structure, function 
and interactions30,33–36,45. This has been used to characterize and preemptively identify likely resistance mutations 
in drug targets23,37,46–54. Using these tools, we assessed the molecular consequences of each mutation on the struc-
ture of PncA and drug activation.

The experimental crystal structure of holo-wild-type PncA (PDB ID: 3PL1)29 was minimized in Prime, and 
PZA docked into the active site using Glide (Schrödinger Suite). The effects of mutations on PncA folding and sta-
bility were assessed using SDM55, mCSM-Stability33 and DUET34, and their effects on protein flexibility and con-
formational was predicted using normal mode analysis by DynaMut35. The effect of the changes on the binding 
affinity of PZA towards PncA were predicted using mCSM-Lig36,56. These approaches are novel machine-learning 
algorithms. We also included structural information of the wild-type residue, including relative solvent accessi-
bility, residue depth, secondary structure and dihedral angles of the PncA chain ϕ (phi) and ψ (psi). Additionally, 
SNAP231 and PROVEAN32 were used to provide additional evolutionary information. Moreover, the scores calcu-
lated for the various structural and sequence-based features are independent of pH and temperature.

Machine learning. Here we used the Random Forest binary classifier using the Weka toolkit57 to train our 
predictive models. Random Forest is an ensemble-learning robust classification algorithm, in which multiple 
decision trees are included over a random subset of features and decide the output via majority voting. The model 
was trained using 10-fold cross-validation and performance evaluated by area under the Receiver Operating 
Characteristic (AUROC) curve, precision and accuracy. Further validation of the models was performed using 
a blind-test set of 184 mutations, which were non-redundant at the position-level with mutations in the training 
set. Analysis of the final model revealed a set of structural features that distinguished between susceptible and 
resistant pncA point mutations.

Webserver development. The server front-end was built using materialize CSS framework version 1.0.0, 
while the backend was built in Python via the Flask framework (version 0.12.2). It is hosted on a Linux server 
running Apache.

Sequencing and DST of clinical isolates. Genomic DNA was extracted according to the mechanical cell 
disruption and ethanol precipitation method outlined in Votintseva 201558 with slight modifications. Briefly, no 
pre-treatment was used and approximately 3 × 1 µL loops of culture were dispersed in 700 µL TE buffer (Sigma 
Aldrich) as the starting material. The precipitated DNA pellet was only washed once and resuspended into 50 µL EB 
Buffer (Qiagen) at 55 °C for 10 minutes with regular vortexing. Finally, samples were centrifuged 3 min at 13,000 rpm 
and 45 µL of DNA extract was transferred into a clean tube for downstream processing. Each extract was interrogated 
for Mycobacterium tuberculosis viability by inoculating 15 µL of DNA extract into MGIT tube (Becton Dickinson, 
UK) and incubated in the Bactec MGIT 960 system (Becton Dickinson, UK). Unique dual indexed libraries were 
prepared using the Nextera XT DNA sample preparation kit (Illumina). Libraries were sequenced on the Illumina 
NextSeq. 500 with 150-cycle paired end chemistry as described by the manufacturer’s protocols.

Sequences were aligned to H37Rv (NC_0009623.3) and small nucleotide variations (SNV) mutations in pncA 
were identified using LoFreq (http://csb5.github.io/lofreq/). SNVs with a frequency > 0.6 were used to compare the 
genotype of isolates to the phenotype observed using standard laboratory methods for PZA susceptibility testing.
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Table S1: The list of different features used to analyze and build the empirical model for predicting 

novel resistance mutations in PZA. 

Parameters Effect 

measured 

Technique Mean of R 

mutations 

Mean of S 

mutations 

Mean p-

value* 

95% CI 

DUET 

(Kcal/mol) 

Protein 

Stability  

Graph-

based 

signatures 

-1.13 -0.57 -0.85 5.28 e-14 [-0.77 to -0.92] 

Distance from 

Ligand (Å) 

Distance of the 

mutation from 

the drug 

(PZA) binding 

site 

Perl script 

(in-house) 

9.48 13.03 11.25 1.41 e-15 [10.81 to 11.65] 

DynaMut 

(Kcal/mol) 

Conformation

al flexibility 

Normal 

mode 

analysis 

-0.24 0.06 -0.08 6.55 e-06 [-0.02 to -0.16] 

mCSM-

Stability 

(Kcal/mol) 

Protein 

Stability 

Graph-

based 

signatures 

-1.10 -0.64 -0.87 3.83 e-12 [-0.80 to -0.93] 

RSA (Å) Environmental 

characteristics 

Python 

script (in-

house) 

0.18 0.39 0.28 < 2.2 e-16 [0.27 to 0.31] 

SNAP Functional 

effect of single 

nucleotide 

substitution 

Neural 

Networks 

49.83 4.81 27.73 < 2.2 e-16 [23.25 to 31.39] 

Ligand 

binding 

affinity 

(mCSM-Lig) 

Ligand 

binding 

affinity 

Graph-

based 

signatures 

-0.98 -0.84 -0.90 0.14 [-0.82 to -0.99] 

PROVEAN Functional 

effect of single 

nucleotide 

substitution 

alignment-

based score 

approach 

-5.42 -3.04 -4.23 < 2.2 e-16 [-4.01 to -4.45] 

SDM 

(Kcal/mol) 

Protein 

Stability 

Graph-

based 

signatures 

-1.15 -0.30 -0.72 1.14 e-07 [-0.57 to -0.88] 

Dihedral angle 

(Phi) 

Environmental 

characteristics 

Python 

script (in-

house) 

-73.18 -71.36 -71.71 0.58 [-67.30 to -77.22] 

Dihedral angle 

(Psi) 

Environmental 

characteristics 

Python 

script (in-

house) 

50.65 36.98 44.35 0.11 [36.23 to 51.41] 
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Residue Depth Environmental 

characteristics 

Python 

script (in-

house) 

1.09 0.74 0.92 < 2.2 e-16 [0.89 to 0.95] 

ENCoM Conformation

al flexibility 

Normal 

mode 

analysis 

0.09 0.09 0.09 0.87 [0.06 to 0.13] 

Relative  

b-factor 

Environmental 

characteristics 

Python 

script (in-

house) 

3.03 3.18 3.10 2.57 e-10 [3.09 to 3.13] 

*p-value calculated using Welch two-sample t-test 

  



4 
 

Table S2: List of performances for predictive models trained on individual classes of attributes and 

all attributes combined using 10-fold cross validation. 

Attributes Class label  Accuracy MCC  Precision Recall F-measure ROC 

AUC 

Stability R 0.57 0.21 0.61 0.57 0.59 0.62 

S 0.64 0.21 0.59 0.64 0.62 0.62 

Weighted Avg. 0.61 0.21 0.60 0.60 0.60 0.62 

Dynamics R 0.55 0.14 0.57 0.55 0.56 0.62 

S 0.58 0.14 0.57 0.58 0.57 0.62 

Weighted Avg. 0.56 0.14 0.57 0.57 0.57 0.62 

Evolutionary 

Conservation 

R 0.66 0.32 0.66 0.66 0.66 0.70 

S 0.65 0.32 0.66 0.65 0.66 0.70 

Weighted Avg. 0.65 0.32 0.66 0.66 0.66 0.70 

Ligand 

interactions 

R 0.62 0.26 0.63 0.62 0.62 0.68 

S 0.64 0.26 0.62 0.64 0.63 0.68 

Weighted Avg. 0.63 0.26 0.63 0.63 0.63 0.68 

Backbone 

geometry 

(Structural 

environment) 

R 0.61 0.27 0.64 0.62 0.63 0.70 

S 0.64 0.27 0.63 0.64 0.64 0.70 

Weighted Avg. 0.63 0.27 0.63 0.63 0.63 0.70 

Predictive 

Model  

R 0.75 0.60 0.84 0.75 0.79 0.83 

S 0.85 0.60 0.77 0.85 0.81 0.83 

Weighted Avg. 0.80 0.60 0.80 0.80 0.80 0.83 
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Figure S2: Boxplots comparing features calculated for resistant and susceptible variants. The resistant 

associated mutations (R) are represented as red and the susceptible mutations (S) as blue. NS- non-

significant; *** p < 0.0001 by Welch two sample t-test. 
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Figure S1: Performance of predictive model trained on single class of features. The Random Forest 

algorithm was trained using 10-fold cross validations using each single class of features (first five bars from 

left to right; blue bars) and with the combination of all features (green bar). We observe the predicted MCC 

score is low when we use only a single class of feature for training. However, a significant increase is 

observed when different features are combined for the predictive model. 
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Figure S3: SUSPECT-PZA submission page. The submission page for single point mutation or to upload 

a list of single point mutations. This can be accessed via the menu item Run on the top bar. 

  



8 
 

 

Figure S4: SUSPECT-PZA results page for a list of single point mutations. The predictions for every 

single point mutation will be displayed as a table in the order of input as in the mutation list. The results 

can be downloaded as a .csv file by clicking on the Download button on the top right corner. All the analysis 

discussed for the single mutation option can be analysed for each single mutation on the table through the 

Details button of each row. 
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Figure S5: SUSPECT-PZA interactive viewer showing the mutations on the secondary structure. 

Result page displaying the location of the susceptible (blue, ball and stick representation) and resistant (red, 

ball and stick representation) mutations. For the amino acid position which harbors both susceptible and 

resistant mutation is shown in cyan (ball and stick representation). 
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CHAPTER 3.2: ANALYSIS OF A NOVEL 

PNCA MUTATION FOR SUSCEPTIBILITY TO 

PYRAZINAMIDE THERAPY 
 

Summary: In early 2017, a 42-year-old woman, originally from Vietnam, presented with right upper lobe 

pneumonia; she was diagnosed with pulmonary tuberculosis. Phenotypic drug susceptibility testing 

identified resistance to isoniazid, rifampicin, pyrazinamide, and ethambutol. Although drug susceptibility 

testing suggested the patient was phenotypically resistant to PZA, consistent with World Health 

Organization recommendations, PZA treatment was continued as part of a multidrug-resistant 

tuberculosis regimen. Amplicon sequencing identified a novel frameshift mutation in the pncA gene of M. 

tuberculosis (c.85_86insG). Given the uncertain impact of this mutation, we went on to consider whether 

computational analysis of protein structure could provide insight into the potential efficacy of PZA. The 

structure of the mutant was generated using homology and ab initio modeling using the experimental 

crystal structure of the wild type. Structural insights revealed the frameshift mutation resulted in the 

generation of a truncated and incomplete protein that lacked the active site pocket, including most of the 

catalytic residues and iron coordination residues necessary for activity. This strongly suggests that the 

pncA c.85_86insG frameshift mutation would lead to a total loss of catalytic activity of the protein, and 

hence PZA treatment would be completely ineffective in this case, as the mutant PncA could not activate 

the prodrug. This is reflected in the structure of the mutant protein, which is incomplete and would lack 

any activity. This result was consistent with phenotypic testing, and accordingly, pyrazinamide treatment 

was ceased. 

 

This work was published in the journal American Journal of Respiratory and Critical Care Medicine as a 

first author publication.  “Analysis of a Novel pncA Mutation for Susceptibility to Pyrazinamide 
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Therapy”, Karmakar, M., Globan, M., Fyfe, J.A.M., Stinear, T.P., Johnson, P.D.R., Holmes, N.E., 

Denholm, J.T., Ascher, D.B. (2018) (doi: 10.1164/rccm.201712-2572LE) 

 

doi:%2010.1164/rccm.201712-2572LE


of general control nonderepressible 2 (GCN2) in pulmonary
veno-occlusive disease. J Heart Lung Transplant 2018;37:
647-655.

Copyright © 2018 by the American Thoracic Society

Analysis of a Novel pncA Mutation for Susceptibility to
Pyrazinamide Therapy

To the Editor:

Pyrazinamide (PZA), which is an analog of nicotinamide, is
an important first-line drug used in the short-course treatment
of tuberculosis. PZA is a prodrug devoid of significant antibacterial
activity. It is metabolized into its active form, pyrazinoic acid,
by the amidase activity of the Mycobacterium tuberculosis
nicotinamidase/pyrazinamidase, encoded by the pncA gene.
Mutations in pncA that prevent activation of the prodrug represent
the major mechanism of PZA resistance in M. tuberculosis (1).
This antibiotic plays a key role in shortening the duration of
antituberculous treatment because of its activity against the
persisting tubercle bacilli at acidic pH.

Current phenotypic testing for PZA drug susceptibility is
problematic. Culture-based methods such asWayne’s method are used
as screening assays with confirmation of resistant strains via the BD
BACTEC MGIT 960 system (Becton Dickinson) (2). Results obtained
from phenotypic laboratory testing have poor reproducibility.
Sequencing of the pncA gene to determine the presence of mutations
may be a more reliable method for confirmation of phenotypic PZA
resistance (3). International recommendations suggest continued
usage of PZA irrespective of susceptibility results, particularly in the
treatment of multidrug-resistant disease (4). This is despite the adverse
effects associated with PZA treatment.

Case Report
In early 2017, a 42-year-old woman, originally from Vietnam,
presented with right upper lobe pneumonia; she was
diagnosed with pulmonary tuberculosis. Phenotypic drug
susceptibility testing identified resistance to isoniazid, rifampicin,
pyrazinamide, and ethambutol. Although drug susceptibility
testing suggested the patient was phenotypically resistant to PZA,
consistent with World Health Organization recommendations,
PZA treatment was continued as part of a multidrug-resistant
tuberculosis regimen. Amplicon sequencing identified a novel

frameshift mutation in the pncA gene of M. tuberculosis
(c.85_86insG). Given the uncertain impact of this mutation, we went
on to consider whether computational analysis of protein structure
(5) could provide insight into the potential efficacy of PZA.

Methods
We have developed an in silico mutational analysis platform that is
able to characterize the molecular consequences of mutations on
protein structure and function (5). This has been used to preemptively
identify likely resistance mutations in drug targets (6, 7). Using these
tools, we assessed the biophysical changes on mutation on the
structure of PncA and drug activation.

A list of 617 nonsynonymous single-nucleotide variants
(nsSNVs) of pncA was obtained from the GMTV (Genome-wide
Mycobacterium tuberculosis Variation) Database Project,
Tuberculosis Drug Resistance Mutation Database, and saturation
mutagenesis (8). Mapping nsSNVs associated with resistance onto
the crystal structure of PncA revealed that they were distributed
throughout the entire protein structure (Figure 1A), complicating
resistance inference from sequence analysis. The structural and
functional effects of these mutations were assessed using our graph-
based signature pipeline (5). This provided insight into how the
curated nsSNVs altered protein folding, stability, conformation, and
PZA-binding affinity. This information was used to train a Random
Forest (machine-learning algorithm) binary classifier, using the
Weka toolkit. Random Forest is an ensemble-learning robust
classification algorithm, in which multiple decision trees are included
over a random subset of features and decide the output via majority
voting. The model was trained by 10-fold cross-validation and
performance evaluated by area under the receiver operating
characteristic curve, precision, and accuracy. Further validation of the
models was performed using two subsets of 93 mutations, which were
nonredundant at the position-level mutations in the training set.
Analysis of the final model revealed a set of structural features that
distinguished between susceptible and resistant pncA point mutations.

Building on this structural analysis, the functional
consequence of the novel clinical frameshift mutation was analyzed
in the context of the protein structure. The experimental crystal
structure of holo-wild-type PncA (PDB ID: 3PL1) (9) was minimized
in Prime, and PZA docked into the active site using Glide, two
exclusive packages of the comprehensive homology modeling
software Schrödinger Suites. The docking revealed that PZA formed
key interactions within the pocket, including with the catalytic triad
(Asp8, Lys96, and Cys138), substrate-binding residues (Trp68 and
Phe13), and the iron center (Asp49, His51, His57, and Fe21) (10).
The wild-type and mutant protein sequences were manually aligned
and displayed with ESPript 3.0 (Figure 2A), and the structure of
the mutant (Figure 2C) was generated by homology and ab initio
modeling, using the experimental structure of the wild type (Figure
2B) (Schrödinger Suites).

Results
Using the structural and biophysical effects of the mutations
on the protein structure, we were able to classify mutations as
either susceptible or resistant with an accuracy of 77% (Figure 1C).
This approach performed equally well in the identification
of either class, correctly classifying all mutations previously
associated with conferring PZA resistance at high confidence, and
mutations not involved in PZA resistance (100% accuracy) (11).
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Strain-specific differences in variants with conflicting
experimental data (12) could be detected by our tool, using
homology models of the corresponding strain’s PncA protein.

Analysis of our model revealed that PncA-resistant mutations
were associated with large changes in protein folding and stability
(mCSM-Stability scores>21.72 kcal/mol) (P, 0.0001) or located
in close proximity to the catalytic triad and substrate-binding site
(,8.54 Å) (P, 0.0001). Therefore, these freely available biophysical
measurements could provide useful information to help guide
genomic analysis of novel pncA variants.

We next considered the patient’s frameshift mutation in
light of these structural insights. As shown in Figure 2, the
frameshift mutation resulted in the generation of a truncated
and incomplete protein that lacked the active site pocket,
including most of the catalytic residues and iron coordination
residues necessary for activity. This strongly suggests that
the pncA c.85_86insG frameshift mutation would lead to a
total loss of catalytic activity of the protein, and hence PZA
treatment would be completely ineffective in this case, as the
mutant PncA could not activate the prodrug. This is reflected in
the structure of the mutant protein, which is incomplete and
would lack any activity (Figure 2). This result was consistent
with phenotypic testing, and accordingly, pyrazinamide treatment
was ceased.

Discussion
This case study demonstrates the power of using structural
information to quantitatively evaluate novel variants in real time,
providing invaluable insight to help guide therapy. Although existing
recommendations may suggest continuing treatment of multidrug-
resistant tuberculosis with pyrazinamide irrespective of phenotype
testing, our approach suggests that using structural information to
guide analysis of genomic sequencing may offer useful tools for
clinicians to consider. These structural insights also assist in informing

the mechanisms for drug activity and the development of resistance.
Our approach is not limited only to analysis of variants in pncA but
could be applied to any protein associated with resistance for
infectious and noninfectious disease treatment. n
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Figure 1. Identification of resistant and susceptible missense mutations in pncA. (A) The protein sequence and structure of PncA is colored by whether
resistant (red) or susceptible (blue) variants have been observed at that location. Highlighting the difficulty of genomic analysis of pncA, both resistant
and susceptible variants have been observed across many residue positions (cyan). The catalytic site in which pyrazinamide (PZA) was docked is located
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and iron center (purple). Hydrogen bonds are shown as red dashes, and p interactions as green dashes. (C) The ROC curve shows that, using the
structural and functional consequences of the variants, we were able to accurately identify resistant (red) and susceptible (blue) variants. AUC = area under
the curve; ROC = receiver operating characteristic.
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Overfitting and Use of Mismatched Cohorts in Deep
Learning Models: Preventable Design Limitations

To the Editor:

We read with great interest the study by González and colleagues (1)
in which they used deep learning models to learn from the
computed tomography (CT) scans of 7,983 participants in the
COPDGene (Genetic Epidemiology of COPD) study (2). Their
objective was to learn from visual data present in these CT scans
and subsequently study the model’s ability to diagnose chronic
obstructive pulmonary disease (COPD) and predict respiratory
events and mortality in a validation cohort (1,000 COPDGene
scans) and a test cohort (1,672 ECLIPSE [Evaluation of COPD
Longitudinally to Identify Predictive Surrogate End-points] [3]
scans). The validation and test cohorts differed significantly in
terms of their COPD severity (lower FEV1% predicted and higher
Global Initiative for Chronic Obstructive Lung Disease [GOLD]
stage in ECLIPSE [3]).

The model performed very well in terms of COPD detection as
well as prediction of acute respiratory events in the validation cohort
of 1,000 COPDGene participants (i.e., it correctly identified COPD
in 773/1,000 scans, and there was a strong correlation between the
actual FEV1 and the predicted FEV1 [1]). However, the model’s
performance in the test cohort was inferior in both detection of
COPD and prediction of acute respiratory events (only 29% of

individuals were correctly staged, and the model was unable to
identify patients at higher risk of respiratory events [1, 4]).

We believe that there are two significant design limitations
in the authors’ approach toward execution of the deep learning
process and selection of the cohorts.

A significant proportion of the CT scan data (7,983 out of a
total of 8,983 COPDGene scans, 88.9%) were used for training the
deep learning model (1). This leads to a potential overfitting of the
learning model. Overfitting is the consequence of the model
learning from a high volume of details that incorporate both noise
and signal existing in the training datasets. This leads to a superior
performance in the internal validation cohort and inferior
performance in an external test dataset (5). In other words, such
models do not explain test cohorts, but they explain the training
data very well (5). This suspicion is supported by the study’s superior
results in the smaller internal validation cohort and inferior
performance in the external test cohort. This is particularly relevant
because the validation cohort (n = 1,000 scans, 10% of the COPDGene
cohort) likely does not represent most of the variance existing in the
COPDGene cohort (a cohort of smokers with and without COPD [2]).

The second limitation arises as an indirect consequence of
inherent differences between the COPDGene and ECLIPSE cohorts.
The authors do acknowledge in their discussion that there are
significant differences between the validation and test cohorts (1). In
this study, a predominantly GOLD stage 0–1 cohort (1, 2) served
as the training set for a model that was tested in a GOLD stage
>2 cohort (3). In our opinion, selecting COPDGene scans with
established GOLD stages of >2 (representing 36% of the COPDGene
cohort [1], n = 3,600 scans) for teaching and internal validation
purposes would have improved the external performance. An ideal
deep learning strategy would have allocated 50–70% (n = 1,800–2,500)
of these scans to the learning model and the remaining 30–50% scans
(n = 1,080–1,800) to the internal validation effort. This would have
resulted in a true enumeration of the model’s performance in the
internal validation phase.

In conclusion, the findings could simply represent the
performance of a potentially overfitted model (5) and likely do
not reflect the suggested superior performance of the tool in the
COPDGene validation dataset. The lack of use of appropriate
cohorts for training and validation is another significant limitation
and can explain the inferior performance in the test cohort
(ECLIPSE). n
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CHAPTER 4: EMPIRICAL WAYS TO 

IDENTIFY NOVEL BEDAQUILINE 

RESISTANCE MUTATIONS 
Summary 

Background: Clinical resistance against Bedaquiline, the first new anti-tuberculosis compound with a 

novel mechanism of action in over 40 years, has already been detected in Mycobacterium tuberculosis. As 

a new drug, however, there is currently insufficient clinical data to facilitate reliable and timely 

identification of genomic determinants of resistance.  

Objective: Here we investigate the structural basis for M. tuberculosis associated bedaquiline resistance 

in the drug target, AtpE.  

Methods: Together with the 9 previously identified resistance-associated variants in AtpE, 54 non-

resistance-associated mutations were identified through comparisons of bedaquiline susceptibility across 

23 different mycobacterial species.  

Results: Computational analysis of the structural and functional consequences of these variants revealed 

that resistance associated variants were mainly localized at the drug binding site, disrupting key 

interactions with bedaquiline leading to reduced binding affinity. This was used to train a supervised 

predictive algorithm, which accurately identified likely resistance mutations (98.7% accuracy).  

Interpretation: Application of this model to circulating variants present in the Asia-Pacific region 

suggests that current circulating variants are likely to be susceptible to bedaquiline. This tool could be 

useful for the rapid characterization of novel clinical variants, to help guide the effective use of 

bedaquiline, and to minimize the spread of clinical resistance. 
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This chapter has been published in the Plos one as a first author publication. “Empirical ways to identify 

novel Bedaquiline resistance mutations in AtpE”, Karmakar, M., Rodrigues, C.H.M., Holt, K.E., 

Dunstan, S.J., Denholm, J.T., Ascher, D.B. (2019) (doi: 10.1371/journal.pone.0217169) 
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Abstract

Clinical resistance against Bedaquiline, the first new anti-tuberculosis compound with a

novel mechanism of action in over 40 years, has already been detected in Mycobacterium

tuberculosis. As a new drug, however, there is currently insufficient clinical data to facilitate

reliable and timely identification of genomic determinants of resistance. Here we investigate

the structural basis for M. tuberculosis associated bedaquiline resistance in the drug target,

AtpE. Together with the 9 previously identified resistance-associated variants in AtpE, 54

non-resistance-associated mutations were identified through comparisons of bedaquiline

susceptibility across 23 different mycobacterial species. Computational analysis of the

structural and functional consequences of these variants revealed that resistance associ-

ated variants were mainly localized at the drug binding site, disrupting key interactions with

bedaquiline leading to reduced binding affinity. This was used to train a supervised predic-

tive algorithm, which accurately identified likely resistance mutations (93.3% accuracy).

Application of this model to circulating variants present in the Asia-Pacific region suggests

that current circulating variants are likely to be susceptible to bedaquiline. We have made

this model freely available through a user-friendly web interface called SUSPECT-BDQ,

StrUctural Susceptibility PrEdiCTion for bedaquiline (http://biosig.unimelb.edu.au/suspect_

bdq/). This tool could be useful for the rapid characterization of novel clinical variants, to

help guide the effective use of bedaquiline, and to minimize the spread of clinical resistance.

Introduction

Tuberculosis (TB) is the leading cause of infectious disease death worldwide, with over 10 mil-

lion new cases and 1.6 million deaths in 2017 [1]. A disproportionate burden arises from the

estimated 558,000 annual cases of rifampicin resistant TB (RR-TB) with 82% being multi-drug

resistant (MDR), which is associated with lengthy, toxic therapy and high rates of mortality

[1]. With limited therapeutic options available, especially for MDR-TB and extensively drug-
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resistant (XDR) TB, the introduction of new treatment options is urgently required. Bedaqui-

line, a new anti-TB drug with a novel mechanism of action, targeting the c-ring of ATP

synthase (AtpE) [2], was approved for treatment for MDR-TB in 2012 [3, 4]. This innovative

drug is potent against both actively replicating and dormant bacilli and has been shown to

increase culture conversion in patients with MDR-TB [5]. The use of bedaquiline has

expanded considerably in recent years, and has been recommended for more routine use in

MDR-TB regimens [6], however clinical failures have already been observed [7, 8]. This neces-

sitates a better understanding of how variants result in resistance to aid in the early detection

of resistance.

Phenotypic, and increasingly genotypic, drug susceptibility testing (DST) is recognized as

essential for effective individualization of TB therapy. However, while progress has been made

in strengthening laboratory diagnostics, the TB community is still struggling to build up labo-

ratory networks with the needed capacity for routine culture and DST [7, 9]. The World

Health Organization (WHO) has strongly urged the development of accurate and reproducible

DST for bedaquiline and recommended that in the absence of specific DST, bedaquiline resis-

tance should be monitored through MIC assessment [10] with resistance development evalu-

ated in patients with treatment failure or relapse. Early characterization of drug resistance

mutations would assist TB patient management and avoid treating individuals with ineffective

toxic regimens [11, 12], but capacity for rapid genotypic prediction of bedaquiline resistance is

limited by the identification of few known resistance associated variants [13].

In an era of rapidly expanding use of molecular technologies, including whole genome

sequencing, tools for evaluating the impact of novel mutations are increasingly vital, particu-

larly for drug resistance to novel and emerging medications such as bedaquiline. Though cul-

ture-based detection of resistance will remain the gold standard, in silico analyses can support

informed decision-making. We have previously shown that the analysis of how variants can

affect protein structure and function can be used to reliably characterize how variants lead to

drug resistance [14–18]. Using this approach, we have shown that drug resistant mutations

can be rapidly, accurately and pre-emptively predicted, guiding drug development [19–22]

and clinical diagnosis [23].

In-vitro selection [24] and clinical studies [25] have shown that variants in the atpE gene

can lead to bedaquiline resistance. To support rapid identification of potential bedaquiline

resistance mutations, we considered whether structural information of the drug target could

help guide clinical inference on genomic variants. Using a suite of well-established computa-

tional tools for characterizing the molecular consequences of mutations on protein structure

and function, we have assessed the effects of mutations on the biophysical changes of AtpE

folding, stability and on drug binding affinity. This was used to characterize how mutations in

AtpE lead to resistance, and to train a predictive multilayer perceptron (feedforward artificial

neural network) algorithm to characterize novel AtpE variants.

Methods

Data sets

Resistant variants from in-vitro selection studies were curated [13, 24, 26] along with a natural

variant [4, 27] and used for model development. Susceptible variants were identified using a

novel homology approach, where the genomes of all mycobacteria species sensitive to the drug

[28] were aligned, therefore inferring that any present variants were likely to be susceptible.

Clinically observed bedaquiline resistant atpE variants were curated from published reports

[25]. The Vietnam dataset consists of whole genome sequences of 1635 Mycobacterium tuber-
culosis (Mtb) strains isolated from patients with pulmonary TB in Ho Chi Minh City, Vietnam.

Empirical ways to identify novel Bedaquiline resistance mutations in AtpE
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The Mtb genome data is available in NCBI BioProject [ID: PRJNA355614; http://www.ncbi.

nlm.nih.gov/bioproject/355614]. Details of the clinical study and the whole genome dataset are

found in Thai et al [29] and Holt et al [15].

Homology modeling of AtpE

The structure of Mtb AtpE was modelled with MODELLER [30] using the experimental crystal

structure of Mycobacterium phlei (M. phlei) AtpE (PDB ID: 4V1F). The model was then mini-

mized in Prime and bedaquiline docked into the apo structure using Glide (Schrödinger

Suite).

Modelling the biophysical consequences of missense variants

The structural consequences of the AtpE polymorphisms were assessed to account for all the

potential effects of the mutations. The effects of mutations on protein folding and stability

were assessed using SDM [31], mCSM-Stability [32] and DUET [33], and their effects on pro-

tein flexibility and conformation was predicted using normal mode analysis by DynaMut [34].

The effect of the difference on the protein-protein interactions between the protomers of AtpE

were predicted using mCSM-PPI [32]. The effect of the changes on the binding affinity of

bedaquiline towards AtpE were predicted using mCSM-Lig [35–37]. These approaches are

novel machine-learning algorithms that use graph-based signatures to represent the structural

and chemical environment of the wild-type 3D structure of a protein to quantitatively predict

the effects of point mutations. Additionally, SNAP2 [38] was used to provide additional evolu-

tionary based information.

Machine learning

To build the binary classifier, a multilayer perceptron neural network algorithm was trained,

based on the implementation available through the Weka toolkit [39]. The resistant variants

were up-sampled to create a more balanced model [40]. The training dataset constituted of 50

non-resistant associated variants and 5 resistant associated variants, while the blind test dataset

constituted of 4 non-resistant associated variants and 4 resistant associated variants. To avoid

over-biasing, the train and blind test dataset were non-redundant with respect to residue posi-

tion. The model was trained and evaluated using jackknife [41] and leave-one-residue-posi-

tion-out validation. The classification model was evaluated based on metrics, including the

Area Under the ROC curve (AUC), precision and accuracy. Statistical analysis was performed

using RStudio (version 3.1.1).

Webserver development

The server front-end was built using materialize CSS framework version 1.0.0, while the back-

end was built in Python via the Flask framework (version 0.12.2). It is hosted on a Linux server

running Apache.

Results

We used a structure-guided approach to understand the protein structure of the drug target

AtpE and machine learning to build an empirical tool that could identify likely resistant muta-

tions. The pipeline used to analyze the variants and train a multilayer perceptron neural net-

work algorithm is shown in Fig 1.
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Structural information: The drug binding domain

A homology model of Mtb H37Rv AtpE was built using the existing experimental crystal struc-

ture of AtpE from Mycobacterium phlei (PDB ID: 4V1F) [42], which shares a high sequence

identity with the Mtb protein (84.9%). The protomer model was an alpha helical hairpin struc-

ture comprising two membrane-spanning helices connected by a hydrophilic loop. The homo-

oligomeric construct was built using the M. phlei structure as a guide, as the Mtb protein has

been previously shown to assemble as a homo-nonamer [43] (Fig 2A and 2B). The cylindrical

palisade model contained an internal hydrophobic cavity where phospholipid had been pro-

posed to bind. The conserved proton binding residue (E61) was located sandwiched between

adjacent protomers and equidistantly distributed along the center of the hydrophobic mem-

brane bilayer.

The top docking poses of bedaquiline with the nonamer homology model identified a pose

consistent with that observed in the M. phlei structure. The drug binding cleft was located at

the interface of two protomers, with amino acid residues E61, A62, Y64, F65 from one proto-

mer and I66 from the adjacent protomer defining the drug binding cleft. Analysis of the

molecular interactions with Arpeggio [44] highlighted a strong network of polar interactions

between the drug and AtpE (Fig 2C). Of particular interest, the diethylaminomethyl group of

bedaquiline specifically interacted with the conserved proton binding residue E61, making

Fig 1. Methodology. This workflow highlights important steps in the methodology and how the main components of

the algorithms are computed. In our analysis we used 54 non-resistant associated mutations and 9 resistant mutations

for the biophysical analysis, followed by training and validation of our empirical model using a supervised machine

learning algorithm.

https://doi.org/10.1371/journal.pone.0217169.g001

Fig 2. Structure and sequence information. (A) ConSurf analysis of AtpE (M. tuberculosis) where the evolutionary

rates of conservation are color-coded on to the structure. (B) The experimental crystal structure of AtpE bound to

Bedaquiline (purple). (C) The key molecular interaction between Bedaquiline (ball and stick representation; purple)

and AtpE: ionic bond (yellow), π-interactions (green), proximal hydrogen bond (red) and weak polar van der Waal

clashes (orange). The known resistance mutations are shown as salmon red (sticks) on the cartoon representation of

the AtpE structure.

https://doi.org/10.1371/journal.pone.0217169.g002
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tight ionic and hydrogen bonds with the carboxyl group of E61 (S1 Fig). In the docked model,

bedaquiline also made strong π-interactions with residues Y64 and I66, and a hydrogen bond

to A62.

Variant calling

We identified 9 previously published bedaquiline resistant non-synonymous single nucleotide

variants (nsSNVs) from in-vitro selection experiments [4, 13, 24, 26]. To identify AtpE muta-

tions not associated with drug resistance, we examined sequence variation amongst AtpE

sequences from 23 mycobacterial species that have been shown to be phenotypically sensitive

to the drug [27, 45–49] (Fig 3). Due to the high degree of sequence conservation across myco-

bacterial AtpE sequences (~ 66% sequence homology; Clustal Omega), variations between

strains shown to be susceptible to bedaquiline were inferred to not be associated with drug

resistance. Through comparison against the Mtb sequence (highlighted in yellow in Fig 3), 54

non-resistance-associated variants were identified (shown in teal in Fig 3).

Understanding the structural basis of resistance is important to facilitate the rapid identifi-

cation of novel resistance variants, aiding efforts to minimize the rapid development of resis-

tance [23]. The 54 non-resistance-associated variants (“S”) and 9 resistant variants (“R”) were

mapped on the protein structure of AtpE (Fig 1). Most of the non-resistance-associated muta-

tions were located on the N-terminal surface exposed inner loop of AtpE. Conserved regions

(highlighted red in Fig 3) were evident, mainly on the C-terminal or the outer loop and

embedded in the lipid bilayer of the membrane. All resistance-associated mutations were local-

ized within 5 Å of the known drug binding site, which we refer to as the “resistance hotspot”.

Structural and biophysical consequences of AtpE variants

The resistant associated variants were all predicted by SNAP2 [38] to be more functionally del-

eterious than the non-resistance associated variants, reflecting the resistant associated variants

are in a more conserved region of the protein. In order to better understand the molecular

consequences of the mutations on AtpE structure and function, the mutations were analyzed

in the context of both the apo and complexed protomeric structures. The impact of resistant

and non-resistant associated mutations on protein folding, stability and conformation were

assessed using SDM [31], mCSM-Stability [32], DUET [33] and DynaMut [34]. The effect of

the variants on the affinity of the protomers to form the cylindrical palisade homo-oligomer

were examined using mCSM-PPI [32], and the effect of the variants on the binding affinity for

bedaquiline were assessed using mCSM-Lig [37].

Fig 3. Non-resistant associated variant assignment. This image highlights the sequence alignment of 23

mycobacterial species sensitive to Bedaquiline. Residues that were different to the reference M.tuberculosis sequence

(in yellow) are highlighted in teal, and were chosen as non-resistant associated variants for building the empirical

model. The conserved residues are shown in red. The secondary structure of the AtpE protein is shown above the

sequences in blue (α = alpha helix, η = loop). This image was created using ESPript 3 [56].

https://doi.org/10.1371/journal.pone.0217169.g003
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Analysis of the variant effects on protomer stability and the formation of the cylindrical pal-

isade did not reveal statistically significant differences between resistant and non-resistance-

associated variants (Fig 4). This is consistent with recent work that showed in order to mini-

mize fitness costs, resistant associated variants in drug targets tended to have mild effects on

protein stability [50]. The largest destabilizing effect observed amongst the resistance-associ-

ated variants using mCSM-Stability and DUET was for the conservative mutation E61D

(ΔΔG = -1.1 Kcal/mol), however normal mode analysis by DynaMut suggested that the E61D

mutation would not destabilize the structure and was only associated with mild conforma-

tional changes (S1 Fig). Examination of residue conservation across 150 homologous

sequences using ConSurf [51] showed the equivalent residue position in many species was an

Asp, suggesting its introduction is unlikely to have a large structural or functional effect.

While all nine resistant variants were within 5Å of the ligands, five in particular, A63M,

A63P, E61D, L59V and I66M, were within 2.5Å and making direct interactions with bedaqui-

line. Modelling of these mutations revealed that most of them would result in complete loss of

these intermolecular interactions (S2 Fig). For example, E61 upon mutation to Asp would

result in loss of these strong ionic and hydrogen bonds with bedaquiline. Interestingly, the

mutation of I66 to Met and L59 to Val mutation revealed the formation of new interactions,

although the overall binding affinity was predicted to be lower by CSM-lig. Most of the non-

resistant associated variants were located distal to the bedaquiline binding site.

Analysis of predicted changes in bedaquiline binding affinity upon mutation using mCSM-

Lig revealed a significant difference between variants associated with resistance or not associ-

ated with resistance (Fig 4). The non-resistance associated variants were associated with mild

mCSM-Lig predicted changes in bedaquiline binding affinity (average of -0.25 log affinity fold

change). This would be consistent with the mutations leading to minimal change in, or even

increasing, drug binding affinity. The average predicted log fold change in binding affinity

obtained for the 9 resistant mutations, by contrast, was -1.29 log affinity fold change, indicating

that they would likely disrupt bedaquiline binding. Among them, all four D28 resistant variants

were predicted to the largest destabilising effect on bedaquiline binding (-2.5 log affinity fold

change on average). D28 is positioned on the inner helix of the protomer and is 4.7Å from the

drug binding site. When D28 was substituted with either Ala or Gly, a loss in inter-helical inter-

actions and a gain in flexibility was observed, and when substituted to Pro and Val it led to a

gain in intra-molecular interactions and rigidification of the AtpE structures (S2 Fig).

Fig 4. PCA analysis. Boxplot representation of all the features used to build the predictive model. The resistant

associated mutations (R) are represented as red and the non-resistant associated mutations (S) as teal. (� p<0.05, ��

p<0.005, ��� p<0.0001, NS p>0.5 by Welch two sample t-test).

https://doi.org/10.1371/journal.pone.0217169.g004
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Machine learning algorithm: Multilayer perceptron network

Building on this structural analysis, we tested whether these structural features could be used

to train a supervised machine learning algorithm capable of accurately predicting resistant

associated variants. To avoid over-training, the 54 non-resistant and 9 resistant variants were

split into a training and blind test dataset. Our training dataset constituted of 50 non-resistant

associated variants and 5 resistant associated variants (A63V, A63P, I66M, L59V, E61D). Due

to the small sample size, to balance the dataset, the resistant variants in the training dataset

were oversampled (duplicated). The remaining 4 resistant (all D28 mutations) and 4 non-resis-

tant associated (I11L, L15T, A34Q and A45S) variants in the blind test were positioned non-

redundant with those in the training.

A list of features tested in method development is described in S1 Table. As discussed

above, the features that best distinguished between the classes include distance from ligand

binding site (“Distance from Ligand”, p< 0.0001), mCSM-Lig (p = 0.026) and SNAP2

(p< 0.0001) (Fig 4). Using jackknife and leave-one-residue-position-out validation, models

trained using multilayer perceptron neural networks yielded the strongest balanced perfor-

mance. The final model correctly classified 93.33% and 100% of variants in the training and

blind test datasets respectively (Fig 5, Table 1). The comparative performance across iterative

non-redundant blind datasets suggested that the model was not over-fitted.

The classifier revealed that variants with mild effects on protein stability and conformation

(DynaMut < 0.28 Kcal/mol and DUET < -1.65 Kcal/mol), located close to the docked beda-

quiline (distance from ligand < 6.36 Å) were likely to be associated with resistance. A closer

examination of the four incorrectly classified non-resistant associated variant in the train data-

set revealed that three of them, G58S, A63T and L68V, were positioned very close to the beda-

quiline binding site (< 2.5 Å) and N33A had a large predicted change in binding affinity (-1.4

log affinity fold change); indicating that these mutations might have direct consequences on

bedaquiline binding.

Fig 5. Evaluation metric. The ROC curve shows that using the structural and functional consequences of the variants,

we were able to accurately identify resistant (red) and non-resistant associated (teal) variants.

https://doi.org/10.1371/journal.pone.0217169.g005

Table 1. Evaluation metrics of the train and blind test dataset.

Multilayer Perceptron (MLP) Precision score Recall F-measure ROC area PRC area

Train Dataset 0.952 0.933 0.938 0.970 0.967

Blind test Dataset 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0217169.t001
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Clinically identified resistance associated variants

Using a model trained without the D28 variants, we analyzed the recently reported clinical

atpE bedaquiline resistant variants [25]. Both D28N and A63V were both predicted by the

model to lead to bedaquiline resistance, consistent with the clinical data. Looking at these

mutations within the structure, the mutation at D28 would disrupt interactions made by the

wild-type residue to bedaquiline, consistent with the mCSM-Lig predictions that it would lead

to a significant reduction in ligand binding affinity (S3 Fig; -1.87 log affinity fold change).

Interestingly, while A63 did not make interactions directly with bedaquiline, the mutation to

Val would lead to steric clashes with the bound ligand and prevent bedaquiline binding (S3

Fig).

Vietnam data analysis

We also used this approach to predict the sensitivity of two atpE nsSNVs, I16V and P52L,

identified through whole genomic sequencing of Mtb strains isolated from 1635 TB patients in

Vietnam [15]. The predictive tool classified the reported nsSNPs to be non-resistant associated

variants. These variants were located approximately 10 Å away from the bedaquiline binding

site, and mutations at these residues were not predicted to disrupt any interactions with beda-

quiline (S4 Fig). As these samples had been collected from patients that had not been adminis-

tered bedaquiline, it provided confidence that in our large analysis of patients in Vietnam

there were no circulating strains likely to be resistant to bedaquiline.

SUSPECT-BDQ webserver

We have implemented SUSPECT-BDQ as a user-friendly, freely available web server http://

biosig.unimelb.edu.au/suspect_bdq/. SUSPECT-BDQ provides two different input options.

The “Single Mutation” option allows users to predict whether a mutation will be characterized

as either Resistant or Susceptible. For this option, the server requires the point mutation to be

specified as a text string containing the wild-type residue one-letter code, its corresponding

position on the structure and the mutant one-letter code. The “Mutation List” option allows

the user to upload a file with a list of mutations in a file for batch processing. In order to assist

users to submit their mutations for analysis, sample submission entries are available for both

input options and a help page is also available via the top navigation bar.

For the “Single Mutation” option, the web server displays the prediction outcome of SUS-

PECT-BDQ alongside with details of the user input data, information on the residue environ-

ment and parameters used on the prediction (S5 Fig). In addition, an interactive 3D viewer,

built using NGL [52] allows for analysis of non-covalent inter-residue interactions for the posi-

tion specified in the input calculated with Arpeggio [44] for wild-type and mutant structures.

For the “Mutation List” option, the results are summarized in a downloadable table from

which users can access details for each single mutation. A 3D viewer is also shown and each

wild-type residue from the input list is colored according to the predicted effect.

Discussion

Early genomic detection of resistance is crucial for tailoring individual therapy and preventing

the onward transmission of resistant infection. This is especially of importance to limit the

spread of resistance to bedaquiline, one of the few treatment options for XDR-TB. While sig-

nificant progress has been made in terms of innovative tools to understand and quantify the

different range of effects in which a mutation or a set of mutations can give rise to a drug-resis-

tant phenotype, a gap still exists when integrating these predictions and drawing conclusions
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regarding causality and the strength of associations observed. This is compounded by the need

for detailed information regarding the system/protein. The availability of scalable, effective

computational methods to assess mutational effects creates new opportunities for developing

integrated approaches and deciphering complex genomic background patterns, shedding light

on their role in the emergence of a given phenotype and molecular mechanisms of action [19].

Here we have used a computational approach to better understand the molecular mecha-

nism of drug resistance within the context of the protein’s 3D structure. A machine learning

algorithm was used to build a predictive tool which could pre-emptively determine novel beda-

quiline resistant mutations within atpE. We began our investigation by studying the interac-

tion dynamics between the c-ring of ATP synthase bound to bedaquiline. The correlations of

conformational changes and Gibb’s free energy provided novel molecular insights into how

resistance variants affected bedaquiline binding but led to minimal disruption of protein fold-

ing and dynamics. Mapping of all the mutations on the crystal structure helped us identify the

“mutational hotspot” for AtpE, which was in proximity to the drug binding site. We saw that

resistance associated variants were more likely to be located within this resistance hotspot, and

lead to a significant disruption in bedaquiline binding. Interestingly, the characterized resis-

tant variants did not lead to large changes in protein folding, stability or oligomeric state,

which would impose a larger fitness penalty [50].

This in silico biophysical information was used to build a predictive algorithm that accu-

rately identified resistant mutations. We then prepared a comprehensive mutational dataset

that contained the predictions of all possible mutations in AtpE, which we have made available

through a web-based interface: SUSPECT_BDQ (http://biosig.unimelb.edu.au/suspect_bdq/).

These analyses highlight the power of considering the structural environment of a mutation to

understand the molecular and biological consequences [53]. As a relatively novel drug, there is

still a paucity of reliable information regarding resistance mutations. While limited by the rela-

tively small available datasets, repeated stratified non-redundant blind testing revealed the

model was very robust. This associative approach thus helped us establish a set of guidelines

which adds to the missing information in the database for new TB drugs like bedaquiline. It

also provides a molecular understanding of how variants in AtpE affect ligand binding, leading

to resistance, providing insight to guide development of second-generation inhibitors.

We intend further development of this tool through expanded genomic targets, and evalua-

tion using additional clinical isolates. In particular we intend to extend SUSPECT_BDQ to

include non-target based resistance to bedaquiline, which has been linked to mutations in

Rv0678 [54], a transcriptional repressor of the gene encoding the MmpS5-MmpL5 efflux

pump, and pepQ (Rv2535c) [55], a putative Xaa-Pro aminopeptidase. Both are associated with

low-level of resistance and therefore we did not include them in the study. However, low level

resistance may have clinical significance in some settings, and future work will further evaluate

other potentially important loci. Additionally, testing this tool on further clinical isolates will

enhance the efficiency of the tool to predict the consequences of novel mutations.

Conclusion

This novel computational approach can enhance the impact of genome sequencing in identify-

ing and characterizing variants more accurately and may therefore assist in guiding optimal

usage of bedaquiline. The results obtained from our empirical tool is promising and should

help facilitate routine genotypic drug susceptibility testing for bedaquiline and stimulate fur-

ther research to help avoid the emergence of resistance to this new treatment through early

detection.
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Supporting information

S1 Table. The list of different features used to build the empirical model for predicting

novel resistance associated mutations in bedaquiline.

(PDF)

S1 Fig. Detailed molecular interactions between the key proton binding residue E61, and

upon its mutation to Asp, with bedaquiline. The wild-type residue is shown in cyan and

mutant in salmon red in ball and stick representation. Bedaquiline is shown in purple (ball

and stick representation). Hydrogen bonds are shown as orange dashes and ionic bond in yel-

low.

(TIF)

S2 Fig. Images of intermolecular interactions made by the wild-type residue (shown as

cyan) and the mutant amino acid (shown as salmon red). Hydrogen bonds are shown in

red, halogen bonds in blue, ionic bonds in yellow, hydrophobic bonds in green, π bonds in

grey.

(TIF)

S3 Fig. Detailed molecular interactions between two clinically observed bedaquiline resis-

tant variants, with the drug. The wild type residue is shown in cyan and mutant in salmon

red in ball and stick representation. Bedaquiline is shown in purple (ball and stick representa-

tion). Halogen bonds are represented in blue dashes (amide-amide interaction) and π-bond as

grey dashes.

(TIF)

S4 Fig. The localization of two circulating atpE variants relative to the bedaquiline binding

pocket. The wild type residues are shown in cyan and mutant in salmon red in ball and stick

representation. Bedaquiline is shown in purple (ball and stick representation).

(TIF)

S5 Fig. SUSPECT-BDQ webserver. Web-server results page for a single point mutation pre-

diction. The predicted outcome is shown alongside with complementary information on the

submitted mutation. An interactive 3D viewer allows for analysis of non-covalent interactions

for both the wild type and mutant residue. In both cases controllers are provided in order to

hide or show specific interactions and customize molecule representation.

(TIF)
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Table S1: The list of different features used to build the empirical model for predicting novel 

resistance associated mutations in bedaquiline. 

Feature Effect measured Technique p-value*  

mCSM_Stability Protein stability Graph based signatures  0.31 

SDM Protein stability Graph based signatures  0.90 

DUET Protein stability Graph based signatures  0.65 

mCSM_PPI Protein-protein 

interaction 

Graph based signatures  0.68 

DynaMut Conformational 

flexibility 

Normal mode analysis 0.60 

ΔΔG ENCoM Conformational 

flexibility 

Normal mode analysis 0.66 

ΔΔS ENCoM Changes in Entropy Normal mode analysis 0.66 

mCSM_Lig Ligand binding affinity Graph based signatures  0.03 

Distance from 

ligand binding 

site 

Distance of the mutation 

from the drug 

(bedaquiline) binding site 

Perl script (in-house) < 2.2e-16 

SNAP2 Effect of single 

nucleotide substitution 

Neural Network 0.0002 

 

*(Welch two sample t-test) 
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Figure S1. Images of intermolecular interactions made by the wild-type residue (shown as cyan) 

and the mutant amino acid (shown as salmon red). Hydrogen bonds are shown in red, halogen 

bonds in blue, ionic bonds in yellow, hydrophobic bonds in green, π bonds in grey. 

 

1) D28A mutation 

 

Wild-type D28 interactions                                                         Mutant A28 interactions                                           

 

 

2) D28G mutation 

 

 Wild-type D28 interactions                                                Mutant G28 interactions                                           
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3) D28P mutation 

 

 Wild-type D28 interactions                                              Mutant P28 interactions              

 

 

 

5) D28V mutation 

                              

Wild-type D28 interactions                                                Mutant V28 interactions                   
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5) L59V mutation 

    
Wild-type L59 interactions                                            Mutant V59 interactions                                           

 

 

 

 

6) A63P mutation 

 

Wild-type A63 interactions                                            Mutant P63 interactions                                            
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7) A63M mutation 

 

Wild-type A63 interactions                                             Mutant M63 interactions                

 

 

 

8) I66M mutation 

 

Wild-type I66 interactions                                            Mutant M66 interactions                                            
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Figure S2. Detailed molecular interactions between the key proton binding residue E61, and upon 

its mutation to Asp, with bedaquiline. The wild-type residue is shown in cyan and mutant in salmon 

red in ball and stick representation. Bedaquiline is shown in purple (ball and stick representation). 

Hydrogen bonds are shown as orange dashes and ionic bond in yellow 
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Figure S3. Detailed molecular interactions between two clinically observed bedaquiline resistant 

variants, with the drug. The wild type residue is shown in cyan and mutant in salmon red in ball 

and stick representation. Bedaquiline is shown in purple (ball and stick representation). Halogen 

bonds are represented in blue dashes (amide-amide interaction) and π-bond as grey dashes. 
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Figure S4. The localization of two circulating atpE variants relative to the bedaquiline binding 

pocket. The wild type residues are shown in cyan and mutant in salmon red in ball and stick 

representation. Bedaquiline is shown in purple (ball and stick representation). 
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CHAPTER 5: HYPER TRANSMISSION OF 

BEIJING LINEAGE MYCOBACTERIUM 

TUBERCULOSIS: SYSTEMATIC REVIEW AND 

META-ANALYSIS 
Summary 

Background: The globally distributed “Beijing” lineage of Mycobacterium tuberculosis has been 

associated with outbreaks worldwide. Laboratory based studies have suggested that Beijing lineage may 

have increased fitness; however, it has not been established whether these differences are of 

epidemiological significance with regards to transmission.  

Objective: Therefore, we undertook a systematic review of epidemiological studies of tuberculosis 

transmission to compare the transmission dynamics and fitness cost of Beijing lineages versus the non-

Beijing lineages. 

Methods: We systematically searched Embase and MEDLINE before 31st December 2018, for studies 

which provided information on the transmission dynamics of the different M. tuberculosis lineages. We 

included articles that conducted population-based cross-sectional or longitudinal molecular 

epidemiological studies providing information about extent of transmission of different lineages. We then 

used a random effects model for meta-analysis to produce pooled estimates of transmission ratios for 

Beijing versus non-Beijing lineage. 

Findings: Of 2855 records identified by the search, 42 were included in the review (39,044 patients from 

25 countries). Beijing was the most prevalent and highly clustered strain in 76% of the studies. Twenty 

eligible studies were included in the final meta-analysis. Beijing lineage had a higher likelihood of 

transmission than non-Beijing lineages (OR 1.51 [0.99; 2.32], I2 = 95.0%, τ2 = 0.72). 
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Interpretation: Beijing lineage M. tuberculosis is significantly more likely to be linked to transmission 

than other lineages.  

 

This chapter has been published in the Journal of Infection as a first author publication. “Hyper 

transmission of Beijing lineage Mycobacterium tuberculosis: Systematic review and Meta-analysis”, 

Karmakar, M., Ascher, D.B., Trauer, M.J., Denholm, J.T. (2019) (doi: 10.1016/j.jinf.2019.09.016) 

 

I thank the external reviewer of the thesis for critically assessing the systematic review and highlighting 

issues relating to the content of the paper. I have added text in the discussion below which should answer 

all the questions raised by the reviewer. 

Discussion:  

In this systematic review I wanted to compare the transmission dynamics of Beijing versus the rest of the 

lineages. Pooling of lineage 1, 3, 4, 5 and 6 as non-Beijing lineages can be contested because they are not 

genetically homogenous [220]. The MTBC strains differ in their content of synonymous and non-

synonymous SNPs, deletions/ insertions and large duplications. Comas et al [122] conducted a WGS on 

217 globally distributed clinical strains to calculate the number of pairwise SNPs between strains. They 

found a difference of 1200 SNPs between two human adapted strains on an average, which corresponds to 

0.03% of the genome. Looking into the SNP distance within a lineage, it was seen, Lineage 1 had the 

highest genetic diversity and with an average of 730 SNPs between any two strains belonging to this 

lineage; whereas lineage 7 had the lowest corresponding distance with only 230 SNPs. The diversity 

between lineages for lineage 2, 3 and 4 or the “modern” lineages differed by 970 SNPs on average. 

Though increasing the number of genomes could influence distances, but it was the first study to indicate 

genomic distances between and with human adapted lineages [122, 220].  Grouping lineages with 

https://www.sciencedirect.com/science/article/abs/pii/S0163445319302877
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differences in SNPs distances is a limitation in the study and might explain the heterogeneity observed in 

the study analysis. 

Another limitation of the study (as discussed briefly in the published paper) is the issue of artefactual 

clustering when using molecular genotyping techniques like Spoligotyping, IS6110-RFLP and MIRU-

VNTR. Ideal molecular typing methods should have desired performance parameters like technical 

simplicity, robustness, time-efficient, reproducibility and cost effectiveness. They should even 

accommodate analytical parameters like level of discrimination and stability of the molecular maker 

being used. A general rule which guides most of the molecular epidemiological investigations is the 

“discriminatory power” of the different typing methods. MIRU-VNTR has the highest discriminatory 

power (of the three typing methods mentioned), but when we combine it with Spoligotyping the 

discriminatory power significantly improves and makes the analysis more reliable [221]. But this is not 

enough, we even need to factor in other parameters such as the study setting, duration of the study and 

completeness of sampling [112]. The evolutionary rate is reflected by the stability of the genetic markers 

over time, often referred to as the molecular clock. MIRU-VNTR is considered to have a slower 

molecular clock than IS6110-RFLP which helps in detecting epidemiologically related cases [222]. Then 

comes the definition of a “cluster”, which has a direct impact on generating diversified genetic patterns. 

While few studies stick to the strict rule of including isolates with identical genotype [223-225], other 

studies are lenient on the cluster definition and tolerate a single- or double-band difference in the RFLP 

profiles or double locus variations in the MIRU-VNTR profiles [226, 227]. Since we do not have an ideal 

definition of a cluster, therefore the decision to include or exclude an isolate is a matter of arbitrariness. 

We might have a higher chance of detecting a cluster when we slightly relax the cluster definition, but the 

consequence is lowering the likelihood of them being epidemiologically related [112]. Therefore, the 

current solution to all the issues raised above is whole genome sequencing, because currently the existing 

genotyping methods would not work in diverse settings or populations or be equally good in answering 
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specific epidemiological questions. Though we cannot deny the fact that molecular typing methods has 

significantly advanced our knowledge of the transmission and pathogenesis of mycobacteria. 

This work helped me understand the genetic diversity in MTBC, which can be attributed to the fact that 

about two thirds of SNPs in coding regions are non-synonymous (i.e. amino acid changing) [228-230], 

and hence has an impact on the pathobiological phenotype [231, 232]. In future, if I do get an opportunity, 

I would like to explore the transmission dynamics of modern lineages (lineage 2, 3 and 4). I would 

compare Beijing lineage (sub-lineage of lineage 2) with LAM (L4.2) or Haarlem (L4.1.2) lineage (sub-

lineages of lineage 4) to see if they are equally widespread globally and what factors determine such 

observations. 
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Objectives: The globally distributed “Beijing” lineage of Mycobacterium tuberculosis has been associated 

with outbreaks worldwide. Laboratory based studies have suggested that Beijing lineage may have in- 

creased fitness; however, it has not been established whether these differences are of epidemiological 

significance with regards to transmission. Therefore, we undertook a systematic review of epidemiologi- 

cal studies of tuberculosis clustering to compare the transmission dynamics of Beijing lineages versus the 

non-Beijing lineages. 

Methods: We systematically searched Embase and MEDLINE before 31st December 2018, for studies 

which provided information on the transmission dynamics of the different M. tuberculosis lineages. We 

included articles that conducted population-based cross-sectional or longitudinal molecular epidemiolog- 

ical studies reporting information about extent of transmission of different lineages. The protocol for this 

systematic review was prospectively registered with PROSPERO (CDR42018088579). 

Results: Of 2855 records identified by the search, 46 were included in the review, containing 42,700 

patients from 27 countries. Beijing lineage was the most prevalent and highly clustered strain in 72.4% 

of the studies and had a higher likelihood of transmission than non-Beijing lineages (OR 1 ·81 [95% 1 ·28–

2 ·57], I 2 = 94 ·0%, τ 2 = 0 ·59, p < 0 ·01). 

Conclusions: Despite considerable heterogeneity across epidemiological contexts, Beijing lineage appears 

to be more transmissible than other lineages. 

© 2019 The British Infection Association. Published by Elsevier Ltd. All rights reserved. 
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Introduction 

Mycobacterium tuberculosis (Mtb) has a strictly clonal and hier-

archical population structure, due to a near complete absence of

horizontal gene transfer. The only apparent modes of evolution of

modern strains are through single nucleotide substitution, deletion

and duplication events. 1 Because of the clonal structure of Mtb,

comparative genotypic analyses from diverse geographic popula-

tions can provide unique insights into dissemination dynamics and

evolutionary genetics of the pathogen. 2 

Genotypic evaluation of strain relatedness is frequently used to

complement epidemiological evidence of transmission. Genotyping

can be performed using a variety of techniques that interrogate dif-
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erent classes of genetic markers and generate either strain-specific

anding patterns (IS 6110 DNA fingerprint), bar code-like signals

spoligotyping), or numerical patterns (24 locus-MIRU-VNTR typ-

ng) 3 and most recently next generation whole genome sequencing

WGS) for genome-based epidemiology. 4 Increasing molecular

dentification in recent decades has raised questions regarding

otential strain-specific differences in the clinical outcomes and

pidemiological characteristics of Mtb infection. 1 Currently, seven

ineages have been defined by unique event polymorphism (single

ucleotide polymorphism or deletion). Most of these lineages are

ighly prevalent in specific geographic areas and are named ac-

ording to their predominant geographical distribution: Lineage 1

Indo-Oceanic lineage), Lineage 2 (East Asian; includes sub-lineage

‘Beijing’’), Lineage 3 (CAS/ Delhi), Lineage 4 (Euro-American), Lin-

age 5 (West African 1) and Lineage 6 (West African 2), Lineage 7

Ethiopia). 5 , 6 These phylogeographic distributions of Mtb lineages

uggest local adaptation of the pathogen to sympatric human

opulations. 
eserved. 
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Of particular interest has been a sub-lineage of Lineage 2

“Beijing” strain), which is globally distributed 

7 and has been

ssociated with outbreaks. 8 , 9 In 2006, The European Concerted

ction on New Generation Genetic Marker and Techniques for

he Epidemiology and Control of Tuberculosis combined available

atasets from all over the world ( > 29,0 0 0 patients from 49 studies

n 35 countries) to assess the Beijing genotype’s prevalence world-

ide, trends over time and with age and its association with drug

esistance. 10 Beijing lineage has been reported to be associated

ith an increased risk of acquired drug resistance, increased

linical severity and lesser protection from BCG vaccination. 7 , 11 

Laboratory based studies have also suggested that Beijing

trains may have increased fitness, 12 although it has not been

stablished whether these differences are of epidemiological sig-

ificance with regards to transmission. Fitness of a transmissible

rganism can also be assessed by considering its effectiveness in

erms of epidemic potential. Epidemic potential may be quantified

y estimating the average number of secondary cases caused by a

pecific genotype after its introduction into an entirely susceptible

opulation. These estimates rely on epidemiological evidence such

s cluster studies, epidemiological investigation and model-based

tudies in human population rather than microbial behaviour in

he laboratory because their precise contribution to the empiric

uccess of an individual in the real world is not clear. 13 Therefore,

e conducted a systematic review of epidemiological studies of

tb transmission to quantify the extent of hyper-transmission of

eijing lineages. 

ethods 

earch strategy and selection criteria 

We conducted a systematic review and meta-analysis of Mtb

ransmission to compare the epidemiological risk of transmission

f Beijing versus non-Beijing lineage. Our search strategy was

rospectively developed, recorded with the PROSPERO database

CDR42018088579) and conforms to the Preferred Reporting Items

or Systematic reviews and Meta-analysis (PRISMA) guidelines. 14 

We searched two electronic databases for primary studies:

EDLINE and EMBASE until 31st of December 2018. Search terms

ncluded “tuberculosis”, “Mycobacterium tuberculosis ”, “secondary

ases”, “secondary infection”, “Beijing”, “East-African Indian”,

Euro-American”, “West African 1”, “West African 2”, “Indo-

ceanic”. The search was supplemented with additional search

erms such as “fitness”, “fitness cost”, “strain”/“lineage” com-

ined with terms for each lineage listed above, “transmission”

nd “transmission dynamics” to find relevant articles potentially

issed during primary searching. We also incorporated a snowball

ampling approach and hand searched articles identified from

ross-references of identified articles and from suggestions of ex-

erts in the field. The study design involved observational studies

cross-sectional and longitudinal). 

The titles and abstract for each of these citations were screened

o capture relevant articles, with the following studies excluded:

1) studies not in English; (2) posters and reviews; (3) studies

hat lacked genotyping data; (4) studies related to M. bovis or

. africanum or non-tuberculous mycobacteria (5) studies focus-

ng on immunological comparisons of plasma cytokine levels in

eripheral blood mononuclear cells (6) proteomic approaches to

nderstand the hypervirulence of Beijing isolates (7) studies which

nly involved multidrug resistant (MDR)-TB or extensively drug

esistant (XDR)-TB patients (8) studies which focused on the single

atient transmission chain and (9) studies limited to a single

ineage only. Full text of the remaining citations was obtained

nd reviewed thoroughly against inclusion criteria. Disagreements

etween reviewers were resolved by consensus. 
For an article to be included in the review, we required that

he following information was reported: genotyping information

or the patients with TB (pulmonary and/or extrapulmonary)

elevant to the study irrespective of smear status, HIV status and

ge group. To account for recent transmission, a two-year cutoff

eriod was considered ideal because it broadly coincides with the

pidemiologically-observed high-risk period for the development

f active TB after recent infection. 15–18 Using the 2-year cutoff

eriod, an index case was defined as a pulmonary TB episode

ith a DNA fingerprint pattern that had not been assigned to

nother case within the preceding two years. 19 A secondary case

as any case with an identical fingerprint pattern to the index

ase that was diagnosed no more than two years after the index

ase. We also investigated clustering information as it provides

n indication of overall transmission leading to disease during the

tudy period mentioned in each article. Included articles were re-

uired to provide information on either the number of secondary

ases and index cases or the number of clustered cases, unique

solates and clusters for both Beijing and non-Beijing lineages. In

ll included studies, “cluster” was defined as ≥2 patients whose

ase isolates had identical DNA fingerprints. The percentage of

ecent transmission, which was our primary outcome measure,

as calculated by the formula: ( n c – c )/ n , where n is the total

umber of isolates, c is the number of clusters, and n c is the

otal number of clustered isolates. 20–24 The clustering index was

alculated by the total number of clustered isolates in each group

ivided by the total number of isolates for the group. 25 

ata analysis 

The results of the electronic searches were compiled in

icrosoft Excel and duplicate citations were removed. A data

xtraction form was used to extract the following information:

uthors, title, country of study, DOI, year of study, smear status of

atients, number of secondary cases, number of index cases, trans-

ission indices, number of index and secondary cases or number

f clustered and non-clustered/unique isolates, HIV co-infection,

esistance information for first-line drugs: isoniazid, rifampicin,

thambutol and pyrazinamide, age groups and conclusions. 

Data were analysed using the meta-package 26 for the R pro-

ramming language for statistical computing (version 3.2.3). We

alculated pooled estimates of recent transmission, with their

ssociated odds ratio (OR), standard error (95% CI), standard

eviation ( z ) and p values for both fixed and random-effects mod-

ls. Meta-analysis was done using the Mantel–Haenszel method;

artung–Knapp adjustment for random effects model and Paule–

andel estimator for τ 2 . Continuity correction of 0.5 in studies

ith zero cell frequencies was used. Heterogeneity was assessed

nalytically by I 2 and Cochrane Q test. 

esults 

ystematic review 

2843 articles were identified by the preliminary search strategy,

ith a further 12 articles identified from snowball sampling and

anual review. After duplicate removal, 776 unique citations were

dentified, of which 504 publications were eligible for full text

eview and 46 met all eligibility criteria ( Fig. 1 ). 

The 46 included articles reported information on 42,700 pa-

ients diagnosed with tuberculosis from 27 countries. Various

olecular genotyping methods were used, providing information

n clustering by genotype. Table 1 presents an overview of the

ifferent molecular typing techniques used. We included twelve

tudies that used IS 6110 -RFLP for typing, twenty-eight studies

hat used spoligotyping, thirty-two studies that used MIRU-VNTR
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Fig. 1. Flow diagram of the study selection. 

Table 1 

Characteristics of included studies. 

Study Country Region Sample 

size 

Year Molecular 

typing 

Findings 

Anh et al. 27 Vietnam Ho Chi Minh City 563 2000 Spoligotyping Beijing lineage constituted 53.5% of 

total isolates 

Caminero et al. 28 Spain Gran Canaria Island 651 2001 IS 6110 -RFLP 

Spoligotyping 

Beijing lineage constituted of the 

largest cluster (75 cases) 

Banu et al. 29 Bangladesh Dhaka City 48 2004 Spoligotyping 

MIRU-VNTR 

Beijing lineage constituted 31.3% of 

total isolates, of which 73.3% were 

clustered 

Cox et al. 30 Uzbekistan and 

Turkmenistan 

Karakalpakstan, Dashoguz 

Velayat 

382 2005 IS 6110 -RFLP 

Spoligotyping 

Beijing constituted of 50.0% of the 

total isolates, of which 55.0% were 

clustered 

Drobneiwski et al. 31 Russia Samara Region 880 2005 Spoligotyping 12 

MIRU-VNTR 

Beijing constituted of 63.4% of the 

total isolates 

Hasan et al. 32 Pakistan Karachi, Punjab Province, 

Sindh Province, Northwest 

Frontier Province and 

Balouchistan Province 

314 2006 Spoligotyping Beijing constituted of 6.0% of total 

isolates of which 9.0% were 

clustered; Lineage 3 constituted of 

39.0 of isolates 

Dou et al. 33 Taiwan 208 2008 Spoligotyping, 19 

MIRU-VNTR, NTF 

loci typing and 

RD deletion 

number 

determination 

Beijing lineage was the most 

prevalent, and was present in 40.0% 

of specimens from the aboriginal 

population, 72.4% of veterans, and 

56.0 of the general population 

Cowley et al. 34 South Africa Cape Town 291 2008 Spoligotyping Beijing constituted 23.4% of total 

isolates 

Mokrousov et al. 35 Russia Kaliningrad 90 2008 12 MIRU-VNTR Beijing constituted of 41 of 90 

isolates, representing the largest 

cluster (45.6%) 

Van der Spuy et al. 36 South Africa Cape Town, Western Cape 1920 2009 IS 6110 -RFLP Beijing constituted 39.2% of the total 

isolates of which 81.8% were 

clustered cases 

( continued on next page ) 
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Table 1 ( continued ) 

Study Country Region Sample 

size 

Year Molecular 

typing 

Findings 

Pardini et al. 37 Georgia Abkhazia 311 2009 IS 6110 -RFLP 

Spoligotyping 

Beijing constituted 25.1% of total 

isolates and was significantly 

associated with clustering (OR 2.7) 

Parwati et al. 38 Indonesia Jarkata and Bandung 844 2010 Spoligotyping Beijing constituted 33.4% of isolates 

Hu et al. 39 China Deqing County in Zhejiang 

Province and Guanyun 

County in Jiangsu 

Province (eastern China) 

399 2010 IS 6110 -RFLP Beijing constituted 80.1% of all 

isoniazid-resistant isolates, of 

which 56.2% were clustered 

Shamputa et al. 40 South Korea 208 2010 24 MIRU-VNTR 

Spoligotyping 

Beijing constituted 97.1% of total 

isolates, but the clustering rate was 

low (22.3%) 

Gallego et al. 41 Australia New South Wales 855 2010 12 MIRU-VNTR 

Spoligotyping 

Beijing constituted 24.0% of total 

isolates along with the cluster 

having the highest number of 

isolates (49) 

Wang et al. 42 China Heilongjiang Province 200 2011 Spoligotyping, 

Beijing family 

specific PCR, 19 

MIRU-VNTR 

Beijing lineage represented 89.5% of 

all isolates, of which 16.8% were 

clustered 

Weisenberg et al. 25 USA New York City 3911 2012 IS 6110 -RFLP Beijing constituted 15.1% of total 

isolates, of which 23.9% were 

clustered 

Buu et al. 43 Vietnam Tien Giang Province 

(Southern Vietnam) 

2207 2012 IS6110-RFLP Beijing constituted 35.6% of total 

isolates, of which 37.0% were 

clustered; Lineage 1 constituted of 

67.0 of clustered isolates 

Aleksic et al. 44 Kiribati South Tarawa 74 2013 24 MIRU-VNTR 

IS 6110 -RFLP 

Spoligotyping 

Beijing constituted 49.0% of total 

isolates of which 62.8% were 

clustered 

Al-Hajoj et al. 45 Saudi Arabia 902 2013 Spoligotyping 24 

MIRU-VNTR 

Beijing constituted 5.8% of all isolates, 

of which 55.8% were clustered 

Langlois-Klassen et 

al. 46 

Canada Alberta 1397 2013 IS 6110 -RFLP 

Spoligotyping 

Beijing constituted 19.0% of all 

isolates, of which 21.0% were 

clustered 

Lu et al. 47 China Jiangsu Province 497 2014 Spoligotyping 15 

MIRU-VNTR 

Beijing constituted 81.1% of all 

isolates, of which 32.5% were 

clustered 

Liu et al. 48 China Gansu Province 426 2014 Spoligotyping 15 

MIRU-VNTR 

Beijing constituted 87.6% of all 

isolates and the largest cluster 

Liu et al. 20 China Jiangsu Province 441 2014 Seven loci 

MIRU-VNTR 

(3820, Qub11a, 

Qub11b, Qub18, 

Qub26, MIRU26 

and Mtub21) 

Beijing constituted 89.3% of all 

isolates, but the clustering rate was 

low (4.4%) 

Chen et al. 47 Taiwan 177 2014 Spoligotyping and 

24 MIRU-VNTR 

Beijing constituted 35.2% of all 

isolates, of which 42.9% were 

clustered 

Gurjav et al. 23 Australia Sydney, New South Wales 1128 2014 24 MIRU-VNTR Beijing constituted 27.6% of all 

isolates, of which 40.5% were 

clustered 

Zmak et al. 49 Croatia 1587 2014 15 MIRU-VNTR Lineage 4 constituted 66.7% and 

Beijing constituted 0.1% of the total 

isolates 

Yang et al. 50 China Five sites 2274 2015 Different sets of 

MIRU-VNTR, 

hypervariable 

VNTR loci (3820, 

1982, 3232 and 

4120) 

Beijing strain were more likely to be 

clustered (OR 1.67) 

Yuan et al. 51 China Xinjiang Province 381 2015 24 MIRU-VNTR Beijing constituted 57.5% of all 

isolates, of which 11.9% were 

clustered 

Mathema et al. 52 South Africa 15 mines (Gauteng, North 

West, and Free State) 

1240 2015 IS 6110 -RFLP Beijing constituted 13.6% of all 

isolates and most of the large 

clusters 

Barletta et al. 53 Peru Lima 844 2015 Spoligotyping 15 

MIRU-VNTR 

Beijing constituted 16.4% of total 

isolates of which 59.2% were 

clustered (Lineage 4 was 

predominant) 

Nebenzahl-Guimaraes 

et al. 54 

Netherlands 4436 2015 Spoligotyping 24 

MIRU-VNTR 

Beijing constituted 12.8% of total 

isolates of which 29.7% were 

clustered (Lineage 4 was 

predominant) 

( continued on next page ) 
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Table 1 ( continued ) 

Study Country Region Sample 

size 

Year Molecular 

typing 

Findings 

Globan et al. 55 Australia Victoria 2377 2015 15 MIRU-VNTR 24 

MIRU-VNTR 

Beijing constituted 20.7% of total 

isolates of which 80.9% were 

clustered 

Hu et al. 56 China six rural counties 1222 2016 24 MIRU-VNTR 

Spoligotyping 

Beijing constituted 79.1% of all 

isolates, of which 22.6% was 

clustered 

Gurjav et al 24 Australia New South Wales 1692 2016 24 MIRU-VNTR 

WGS 

Beijing constituted 27.8% of total 

isolates of which 35.7% were 

clustered 

Liu et al. 57 China Beijing 679 2017 Spoligotyping 12 

MIRU-VNTR 

Beijing constituted 81.7% of total 

isolates of which 45.2% were 

clustered 

Murase et al. 58 Japan 37 prefectures 981 2017 28 MIRU-VNTR Beijing constituted 70.6% of isolates of 

which 77.0% were clustered 

Lalor et al. 59 England 1646 2017 24 MIRU-VNTR No increased clustering in the Beijing 

lineage compared to non-Beijing 

(increased transmission in Lineage 

4 and CAS observed) 

Liu et al. 60 China Xinjiang 311 2017 15 MIRU-VNTR 

Spoligotyping 

Beijing constituted 72.0% of all 

isolates, of which 60.3% were 

clustered 

Sharma et al. 61 India Ghatampur, Agra 355 2017 Spoligotyping 12 

MIRU-VNTR 

Beijing constituted 3.9% of all isolates, 

of which 3.0% were clustered; 

Lineage 3 was predominant 

Riyahi Zaniani et al. 62 Iran Isfahan 49 2017 15 MIRU-VNTR Beijing constituted 24.4% of all 

isolates, while Lineage 4 

constituted 44.9% of isolates; 

overall low clustering rates 

Yamamoto et al. 63 Japan Airin area, Osaka City 596 2018 24 MIRU-VNTR Beijing constituted 80.3% of all 

isolates, of which 41.8% were 

clustered 

Liu et al. 64 China Beijing 1189 2018 Spoligotyping 

VNTR typing 

Beijing constituted 83.3% of isolates 

and was significantly associated 

with clustering (22.7%) 

Holt et al. 65 Vietnam Districts 1, 4, 5, 6 and 8, Tan 

Binh, Binh Thanh and Phu 

Nhuan 

1635 2018 WGS Beijing constituted 59.0% of isolates of 

which 31.5% were clustered 

Uddin et al. 66 Bangladesh Mymensingh, Netrokona, 

Kishoreganj, Jamalpur and 

Tangail districts 

(northeast part of 

Bangladesh) 

244 2018 Spoligotyping 12 

MIRU-VNTR 

Beijing constituted of 7.4% of all 

isolates and Lineage 1 constituted 

of 27.0% 

Bainomugisa et al. 67 Papua New 

Guinea 

100 2018 WGS 95 out of 100 clinical isolates typed 

belonged to Beijing stain 

Notes: IS 6110 -RFLP – Restriction Fragment length polymorphism targeting the insertion sequence IS 6110 . 

MIRU-VNTR – Mycobacterial Interspersed Repetitive Units (MIRU) specific multiple locus Variable Number of Tandem Repeats (VNTR) analysis. 

WGS – Whole Genome Sequencing. 

PCR – Polymerase Chain Reaction. 

NTF – 556 bp of intervening sequence. 

RD – Regions of differences. 
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typing and three studies that used WGS. Twenty-five studies used

multiple methods of molecular typing to investigate the genotypic

diversity of Mtb isolates. Studies included in the review were from

a wide range of geographical settings, including nineteen high and

eight low incidence settings. 

Beijing lineage constituted the greatest proportion of total

isolates in thirty-three of the forty-six studies (71.7%) included in

the review ( Table 1 ). Nineteen out of twenty-six studies (73.1%)

had a higher clustering index for Beijing than non-Beijing strains

( Table 2 ). Eleven studies had recent transmission rates that were

higher for Beijing and three out of four studies which reported the

mean number of secondary cases (transmission index) observed

higher numbers in Beijing clusters; therefore 77.8% of the studies

had a higher primary outcome measure for Beijing ( Table 3 ). 

Longitudinal reporting from several countries has found that

Beijing strains constituted a growing proportion of total cases
43 , 53 , 68 . High rates of ongoing transmission of Beijing were seen

in high-incidence settings, including Kiribati, 44 Saudi Arabia, 45 

Vietnam, 27 , 43 , 65 India, 61 , 69 Spain, 28 Bangladesh, 29 Taiwan, 33 , 70 

u  
zbekistan and Turkmenistan, 30 Russia, 31 , 35 China, 39 , 47 , 50 , 56 , 57 , 64 

apan, 58 , 63 Georgia, 37 Estonia, 68 Indonesia, 38 South Africa 36 and

ne low-incidence setting, the Netherlands. 54 Low level transmis-

ion was observed in Australia, with clustering analysis revealing

hat the largest clusters comprised of Beijing lineage. 24 , 41 , 55 

owever, Beijing lineage did not show increased transmissibility

ompared to non-Beijing lineage in other settings with compre-

ensive and effective TB prevention and care practices, including

he United Kingdom 

59 and Canada. 46 In Pakistan it was observed

hat Beijing was well established in the region and was not a

esult of recent transmission. 32 Low levels of transmission were

lso observed in South Korea 40 and in certain rural areas of

hina. 20 , 42 , 51 In South African pediatric 71 and goldmining 52 pop-

lations no significant association was found between Beijing

ineage and recent transmission. 

eijing and its association with age 

Clustering of Beijing lineage in younger age groups is partic-

larly likely to reflect recent transmission. 60.0% of the studies
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Table 2 

Clustering percentages reported or calculated in different studies for Beijing and non-Beijing strains ( ∗ reported in the study). 

Study Year of study Beijing proportion 

clustered (%) 

Non-Beijing proportion 

clustered (%) 

Anh et al. 27 2000 53.46 46.53 

Cox et al. 30 ∗ 2005 54.73 25.00 

Duo et al. 33 2008 75.63 41.37 

Van der Spuy et al. 36 2009 81.81 59.89 

Hu et al. 39 2010 56.19 15.38 

Wang et al. 42 ∗ 2011 16.80 0.00 

Buu et al. 43 2012 37.15 45.32 

Weisenberg et al. 25 ∗ 2013 34.80 31.30 

Langlois-Klassen et al. 46 2013 21.31 37.28 

Al-Hajoj et al. 45 ∗ 2013 55.76 34.65 

Aleksic et al. 44 ∗ 2013 62.79 37.20 

Liu et al. 20 2014 8.07 7.27 

Chen et al. 47 2014 57.14 32.09 

Barletta et al. 53 ∗ 2015 59.23 71.71 

Nebenzahl-Guimaraes et al. 54 ∗ 2015 32.00 27.50 

Globan et al. 55 2015 17.20 27.63 

Yuan et al. 51 ∗ 2015 11.87 24.69 

Yang et al. 50 2015 80.85 71.63 

Hu et al. 56 ∗ 2016 22.60 7.80 

Liu et al. 57 ∗ 2017 45.21 28.57 

Murase et al. 58 2017 22.68 77.31 

Liu et al. 60 ∗ 2017 60.27 25.29 

Sharma et al. 61 2017 2.99 10.96 

Yamamato et al. 63 ∗ 2018 41.33 36.75 

Liu et al. 64 ∗ 2018 22.70 9.00 

Holt et al. 65 ∗ 2018 31.50 14.00 

Table 3 

Recent transmission proportions reported or calculated in different studies for Bei- 

jing and non-Beijing strains ( ∗ reported in the study). 

Recent transmission 

Study Year of study Beijing (%) Non-Beijing (%) 

Duo et al. 33 2008 52.81 36.60 

Van der Spuy et al. 36 ∗ 2009 73.00 45.20 

Wang et al. 42 ∗ 2011 10.00 0.00 

Weisenberg et al. 25 ∗ 2013 23.90 25.68 

Gurjav et al. 23 ∗ 2014 26.90 6.20 

Liu et al. 20 ∗ 2014 4.43 3.99 

Chen et al. 47 2014 88.88 32.11 

Barletta et al. 53 2015 53.80 57.33 

Yuan et al. 51 2015 5.47 11.11 

Gurjav et al. 24 ∗ 2016 24.30 8.60 

Liu et al. 57 ∗ 2017 45.21 28.57 

Liu et al. 60 ∗ 2017 45.53 16.09 

Liu et al. 64 2018 20.52 5.52 

Yamamato et al. 63 2018 18.42 30.72 

Transmission index (mean number of secondary cases) 

Study Year of study Beijing Non-Beijing 

Langlois-Klassen et al. 46 ∗ 2013 0.06 0.14 

Globan et al. 55 2015 7.29 2.96 

Nebenzahl-Guimaraes et al. 54 ∗ 2015 1.18 1.02 

Lalor et al. 59 ∗ 2017 2.17 1.76 
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ncluded in the review observed a strong association between

lustering and younger age among the Beijing strains. For example,

 greater degree of clustering was observed in the 25–44 year age

roup for studies undertaken in China, 20 , 50 , 64 Japan 

58 and Indone-

ia 38 ; the cross-sectional study from South Africa done in 15 gold

ines across three provinces showed highest clustering among the

5–54 year age group 

52 ; and in Estonia the majority of clustered

ases occurred in individuals aged 30–39 years. 68 A study from

audi Arabia 45 found that Beijing was distributed equally among

ll age groups. In Australia 55 and other low incidence countries

ike Netherlands, 54 Beijing was the most common genotype among

oung adults (15–29 years old) and in the elderly ( < 60 years

ld). 23 , 24 
eijing and its association with drug resistance 

While the focus of this review is on transmissibility, the pres-

nce of drug resistance in isolates may be relevant to risk of sec-

ndary infection. We therefore summarise data on drug resistance

n the studies identified by our systematic review. Thirty-three out

f forty-six included studies reported associations between spe-

ific lineages and drug resistance, of which twenty studies (60.6%)

howed significantly higher proportion of drug resistance among

eijing lineage. In studies conducted in China, some found higher

ates of drug resistance among Beijing strains, 39 , 50 , 72 while others

ound no difference. 42 , 47 In the Taiwanese aboriginal population,

 strong association was found between Beijing and MDR-TB. 47 

9.0% of the Beijing isolates (97.1% of the total isolates) found

n South Korea were from MDR-TB or XDR-TB patients. 40 The

ssociation between MDR-TB and Beijing genotype in Vietnam was

trongly associated with resistance to streptomycin. 43 , 65 Consider-

ble ongoing transmission of MDR-TB strains of the Beijing lineage

as observed in India, 61 , 69 Bangladesh, 66 Pakistan, 32 Papua New

uinea, 67 Russia, 31 , 35 Georgia, 37 Uzbekistan and Turkmenistan. 30 

n Australia, the number of cases of MDR-TB was small and rates

f drug resistance were unchanged since the 2006; however, the

eijing strain was found to be associated with a higher incidence

f drug resistance. 23 We also found studies which reported no

ignificant difference in drug resistance distribution between

eijing and non-Beijing lineages. 42 , 43 , 47 , 51 , 53 , 56 , 57 , 64 In the South

frican gold miner population, the AH strain (X family) was found

o be associated with drug resistance and outbreaks. 52 

eta-analysis 

Following assessment of clustering and transmission indices of

he different studies included in the review, we proceeded to our

re-planned meta-analysis. Twenty-five articles had information

o conduct the meta-analysis. The odds ratio for the fixed effects

odel was 1.48 (95% CI 1.38 to 1.58, z = 11.78 p < 0.0 0 01), while

he odds ratio for the random effects model was 1.81 (95% CI 1.28

o 2.57, z = 3.53, p 0.0017) ( Fig. 2 ). There was an even contribution
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Fig. 2. Forest plot displaying the pooled estimates of transmission for Beijing and non-Beijing strains: The studies have been arranged in chronological order according to 

their date of publication. The first five studies are from low-incidence setting and the remaining 20 studies are from high-incidence setting. 
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from each included study (approximately 4% weight for each), but

statistical heterogeneity was high. 

Discussion 

We found that Beijing lineage of Mtb was more likely to

be associated with transmission than non-Beijing lineages. The

strength of the observed relationship between Beijing lineage and

transmission (OR 1.81) was notable and reflects a finding likely to

be of epidemiological significance. 

While our report has identified a statistically significant associ-

ation between Beijing lineage TB and transmission, the mechanism

for such an effect is inadequately understood. This finding may re-

flect either the selection of defined sub-lineages in different ge-

ographical settings, or the adaptation of strains in a defined Mtb

sub-lineage capable of spreading more readily in certain human

populations. It seems plausible that evolutionarily modern lineages

like Beijing induce weaker immune response than ancient lin-

eages, and this response potentially provides modern lineages with

a selective advantage in terms of more rapid disease progression

and/or transmission in human populations. 73 However, influence

on transmission from microbiological fitness, differential immune

response, or other mechanisms also remain plausible explanations.

As observed in several studies East-African Indian (EAI) lineage was
ssociated with notably low clustering rates, suggesting they are

ess likely to be transmitted, raising the possibility of future strain

eplacement. 54 , 74 Also, the frequency of transfer between diverse

opulation groups like Vietnam 

65 and Eastern Europe 37 supports

revious assumptions that the Beijing lineage is a host generalist,

apable of moving between ethnically diverse host populations. 9 , 48 

Our study’s strengths include its systematic nature and empha-

is on epidemiologic transmissibility, and our findings are limited

y the heterogeneity of outcomes and variation in epidemiological

nd genomic definitions adopted. Classical molecular genotyping

as been nearly used for thirty years to define transmission chains

 clusters, but it comes with an inherent limitation: overestima-

ion of recent transmission events. 24 , 42 Spoligotyping has lower

iscriminatory power compared to MIRU-VNTR; however, a com-

ination of both shows better discriminatory power. 75 Majority of

he studies included in the review used both Spoligotyping and

IRU-VNTR as genotyping methods to determine clusters. Studies

hat only used Spoligotyping were not included in the meta-

nalysis to avoid overestimation of recent transmission. If these

tudies were further paired with whole genome sequencing-based

pproaches the extent of overestimation could be refined fur-

her. 76 With the ever-decreasing cost of whole genome sequencing

nd easier implementation in a variety of settings (especially

igh-incidence, low-resource settings), it is likely to become



Hyper transmission of Beijing lineage in tuberculosis / Journal of Infection 79 (2019) 572–581 579 

a  

s

 

l  

w  

s  

t  

f  

S  

c  

r  

a  

f  

t  

w  

t  

a  

h  

t  

t  

i  

s  

w  

c  

s

 

s  

t  

m  

o  

n  

o  

t

A  

o  

i  

a  

h  

p  

s

 

M  

m  

i  

t  

e  

i  

r  

r  

p  

n  

f  

t  

t  

i  

i  

i  

s  

t  

h  

e  

g  

m  

m  

p  

fi

 

o  

i  

t  

O  

t  

i  

m  

e

D

C

 

g  

d  

v  

e

v

s

A

 

s  

r  

N

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n integral part of the epidemiological approach to track and

top TB. 

The high genotypic diversity seen in a low-incidence setting

ike Australia reflect the large number of overseas-born patients

ho migrate from all over the world rather than local transmis-

ion. 24 , 41 , 55 By contrast, studies from Asia and Russia highlighted

he high levels of genome homoplasy within the Beijing strain

amily. 23 , 40 , 58 In high endemic settings like India, 61 Taiwan 

33 and

outh Africa, 52 the high genetic diversity of the bacillary load

ould be explained by a mobile population in combination with

eactivation, appearance and disappearance of individual clones

nd the long incubation period of the disease. Socio-demographic

actors like lack of permanent housing, which leads to congrega-

ion of people in specific locations and spreading the infection,

as observed as a correlate of clustering in Estonia. 68 We also

hink that it is unlikely a founder effect has a significant role in

pparent clustering of Beijing lineage for several reasons. First,

istorically substantial shifts have been seen in lineage distribu-

ion in recent decades, suggesting a dynamic environment where

ransmission between regions remains relevant. Second, we have

ncluded studies where Beijing is both a majority and minority

train, minimising the potential impact of a founder effect. Finally,

e have also included a two-year cut off period for defining

lustering, which should also be helpful in concentrating the effect

een towards recent transmission. 

The definition of fitness includes a microorganism’s ability to

urvive, reproduce and to be transmitted. 13 Mutations leading

o drug resistance development may influence the fitness of the

icroorganism. It has been speculated that low physiological cost

f rifampicin resistance and compensatory mutations restoring fit-

ess of Mtb maybe responsible for the widespread dissemination

f the Beijing strain. 12 It was also observed that Beijing strains

hat were MDR were universally resistant to streptomycin. 43 , 58 , 65 

n association between Beijing lineage and the development

f drug resistance could influence clustering of isolates. This

s expected to result in a selective advantage for Beijing strain

nd therefore would lead to higher prevalence of Beijing. 30 The

ypervirulence of Beijing strains can be attributed to deletions in

pe38 , which is responsible for the secretion of a subset of ESX-5

ubstrates. 77 

This review reinforces the epidemiological significance of

tb lineages and highlights the importance of combining optimal

olecular strain typing with epidemiological data. Further research

nto the mechanisms of increased transmissibility is required and

ranslating genotypic data into programmatic algorithms. Math-

matical models of TB transmission incorporate the process of

nfection; interventions leading to faster diagnosis and therefore

educed transmission. 78 Effective reproductive number ( R e ), which

epresents the average number of secondary cases arising from a

rimary case of active TB is commonly used to describe infectious-

ess. In our current review, we are unable to estimate fully the Re

rom the available data, because our analysis only considers clus-

ered events separated by less than two years and its well-known

hat late reactivation episodes after this time period are important

n sustaining transmission of Mtb. Although a value of one is an

mportant Re threshold for disease persistence in a population

n general, the relative magnitude of Re for two co-circulating

trains is of greater relevance to which Mtb strain will be sus-

ained within a population. For outbreaks of a single pathogen,

eterogeneous transmission has been shown to favour stochastic

xtinction as well as explosive outbreaks. 79 Given the high hetero-

eneity of TB transmission, 80 , 81 similar principles may apply to a

ulti-strain competition, in which one strain may replace another

ore rapidly than predicted by models that assume well-mixed

opulations. This may explain some of the heterogeneity in our

ndings. 
Expansion of genotyping techniques holds great promise for

ptimizing public health management of TB. Inclusion of clustering

nformation in routine public health responses is already used for

ailoring strategies to reduce Mtb transmission and reactivation.

ur results suggest that strategies enhancing contact tracing

owards Beijing lineages could be evaluated further, particularly

n high incidence settings where they are likely to contribute

ost to onward transmission and perpetuating the global TB

pidemic. 
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CHAPTER 6: ESTIMATING THE RISK OF 

TUBERCULOSIS DRUG RESISTANCE 

AMPLIFICATION IN HIGH-BURDEN 

SETTINGS 
 

In this Chapter I wanted to use the knowledge I had gathered from the structural studies to investigate the 

likelihood of resistance spreading in a population. I built a compartmental epidemiological model and 

used an adaptive metropolis algorithm to estimate the risk of resistance amplification for isoniazid and 

rifampicin due to treatment failure.  The model provided additional estimates for the relative fitness and 

transmission rate associated with each drug resistant strain and the case detection rate. We observed 

rifampicin resistant strains were more likely to be transmitted than acquired through amplification, while 

both mechanisms of acquisition were important contributors in the case of isoniazid resistance. This 

finding emphasizes the important of prioritizing testing algorithms for the early detection of isoniazid 

resistance.  

 

This Chapter has been submitted to International Journal of Epidemiology as a first author publication, 

titled “Estimating the risk of tuberculosis drug resistance amplification in high-burden settings” (2021), 

Malancha Karmakar, Romain Ragonnet, David B. Ascher, James M. Trauer and Justin T. Denholm.  
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Abstract 

Background: Antimicrobial resistance develops following the accrual of mutations in the bacterial 

genome, and may variably impact organism fitness and hence, transmission risk. Classical 

representation of tuberculosis (TB) dynamics using a single or two strain (DS/MDR-TB) model 

typically does not capture elements of this important aspect of TB epidemiology. To understand 

and estimate the likelihood of resistance spreading in high drug-resistant TB incidence settings, 

we used epidemiological data to develop a mathematical model of Mycobacterium tuberculosis 

(Mtb) transmission. 

Methods: A four-strain (drug-susceptible (DS), isoniazid mono-resistant (INH-R), rifampicin 

mono-resistant (RIF-R) and multidrug-resistant (MDR)) compartmental deterministic Mtb 

transmission model was developed to explore the progression from DS- to MDR-TB in The 

Philippines and Viet Nam. The models were calibrated using data from national tuberculosis 

prevalence surveys and drug resistance surveys. We used an adaptive Metropolis algorithm to 

estimate the risks of drug resistance amplification among unsuccessfully treated individuals and 

the fitness costs associated with different types of drug resistance. 

Results: The estimated proportion of INH-R acquisition among failing treatments was 0.84 (95% 

CI 0.79 – 0.89) for The Philippines and 0.77 (95% CI 0.71 – 0.84) for Viet Nam. The proportion of 

RIF-R acquisition among failing treatments was 0.05 (95% CI 0.04 – 0.07) for The Philippines and 

0.011 (95% CI 0.010 – 0.012) for Viet Nam. In the Philippines, the estimated proportion of drug 

resistance resulting from transmission was 50% (95% CI 43 – 70) for INH-R, 52% (95% CI 43 – 70) 

for RIF-R and 40% (95% CI 28 – 52) for MDR-TB. For Viet Nam, the estimated proportion of drug 

resistance due to transmission was 67% (95% CI 54 – 73) for INH-R, 63% (95% CI 55 – 71) for RIF-

R and 43% (95% CI 34 – 51) for MDR-TB.   

Discussion: The risk of resistance amplification due to treatment failure for INH was dramatically 

higher than RIF. We observed RIF-R strains were more likely to be transmitted than acquired 

through amplification, while both mechanisms of acquisition were important contributors in the 

case of INH-R. These findings highlight the complexity of drug resistance dynamics in high-

incidence settings, and emphasize the importance of prioritizing testing algorithms which allow 

for early detection of INH-R. 

 

  



Introduction 

Despite being both a preventable and curable disease, more than 10 million people develop 

tuberculosis (TB) each year, with 1.4 million deaths in 2019 [1]. Although 63 million lives have 

been saved through improvements in programmatic TB management this century, the increase 

in drug-resistant (DR-TB) cases is increasingly concerning [1]. Multidrug-resistant TB (MDR-TB; 

defined as resistance to both first-line drugs isoniazid (INH) and rifampicin (RIF)) is a particular 

barrier to TB control efforts [2]. In 2019, 465,000 people were diagnosed with MDR-TB [1]. MDR-

TB can be acquired by transmission (primary resistance) or develop in vivo through inadequate 

or incomplete treatment (secondary resistance), and the relative contribution of these 

mechanisms is likely to vary by context [3]. In all settings, though, careful optimization of both 

clinical and public health management of MDR-TB is required to ensure good outcomes.  

Mathematical modeling is increasingly used to support programmatic optimization for TB [4-6]. 

Accounting appropriately for DR-TB in mathematical models of disease is critical, as it differs 

considerably from drug-sensitive TB (DS-TB) in both epidemiological parameters and relevant 

outcomes. Some variation in disease characteristics is relatively well-understood, including the 

prolonged treatment duration [7], adverse event rates [8] and diagnostic pathway performance 

[9, 10]. However, considerable uncertainties persist regarding important characteristics of MDR-

TB, including pathogen’s fitness, transmissibility and risk of resistance amplification related to 

treatment [11, 12]. Attempts to better characterize these features of MDR-TB have been 

challenging, in part due to the diversity of gene mutations which may confer resistance, many of 

which have limited clinical and epidemiological outcome data to inform model parameterization. 

Computational biological approaches have recently been used to bridge this gap, providing tools 

to estimate the fitness and resistance impact of even novel TB mutations [13-15]. 

Modeling also offers an opportunity to quantify amplification and transmission of drug-resistant 

TB, by fitting dynamic models to observed data. We therefore aimed to incorporate 

epidemiological data into an empirically calibrated model, in order to explore parameter 

estimation for drug resistance amplification and transmission associated with both INH and RIF.  

 

Methods  

2.1 Constructing the mathematical model and defining epidemiological parameters 

We designed a deterministic compartmental model of Mtb transmission to capture five mutually 

exclusive health states with regards to TB infection and disease - susceptible (S), early latent (LA), 

late latent (LB), infectious (I) and recovered (R). The model included four TB strains: drug-



susceptible (DS-TB, compartment subscript S), isoniazid mono-resistant (INH-R, compartment 

subscript H), rifampicin mono-resistant (RIF-R, compartment subscript R) and MDR-TB 

(compartment subscript M). It is to be noted that the strains are not phylogenetically related. 

We assumed homogenous mixing in a closed population: 

𝑁 = 𝑆 +  𝐿AS +  𝐿AH +  𝐿AR +  𝐿AM +  𝐿BS +  𝐿BH +  𝐿BR +  𝐿BM +  𝐼S +  𝐼H +  𝐼R +  𝐼M +  𝑅 
 
All deaths are replaced as new births (rate π) entering the susceptible compartment. This includes 

both deaths due to TB disease (μi), as well as a universal population-wide death rate (μ). 

 
When individuals in a population are infected with Mtb, they transition from the susceptible 

compartment (S) to the early latent compartment (LA). The force of infection (λ) associated with 

each strain is defined as: 

𝜆𝑋 = 𝑟𝑋 × 𝛽 × 𝐼𝑋 

where “x” indexes the drug resistance pattern – S, H, R or M. 𝛽 is the “effective contact rate” for 

DS-TB, defined as the product of the average number of contacts between two individuals per 

unit time and the probability of DS-TB transmission per contact. The relative transmissibility of 

the different strains is denoted 𝑟𝑋 and uses the DS-TB strain’s transmissibility as reference (𝑟𝑆 =

1). In other words, 𝑟𝑋 represents the TB strains’ relative fitness. 

People entering the early latent compartment (LA) can either progress directly to the active 

disease compartment (I) at rate ε, or transition to the late latent compartment (LB) at rate κ. 

Progression from LB to the active disease state occurs at a much slower rate (ν), and is referred 

to as reactivation. Once individuals have entered the infectious compartment, one of the 

following six processes can occur: 1) the person may be correctly identified as having active TB 

and commenced on treatment (rate τ), thence progressing towards cure and transitioning to the 

recovered (R) compartment; 2) person may be correctly identified to have DS-TB or DR-TB and 

commenced on treatment but experiences treatment failure without experiencing resistance 

amplification to other drugs and stay in the same infectious compartment;  3) spontaneous 

recovery (rate γ) with transition to the recovered compartment (R); 4) TB-related death (μi) 5) 

dying of natural causes or 6) the infecting strain could acquire resistance (αH and/or αR) to 

isoniazid (INH-R), rifampicin (RIF-R) or MDR-TB and move to IH, IR and ultimately to IM 

compartments. To capture the progressive accrual of resistance with each transition, only one 

level of additional resistance not already present can be obtained during a disease episode. 

People who have spontaneously recovered from past TB or successfully completed treatment are 

both represented as a single compartment (R) on the assumption that prognosis is equivalent 

regardless of the infecting strain from which each person recovers. Once treatment is complete, 



the recovered person can transition back to LA through reinfection, represented as δ. We define 

δ as: 

𝛿𝑋 =  𝑅𝑅𝑟 ∗  𝜆𝑋 

where, RRr is the “relative risk of re-infection once recovered” 

Latently infected people also have a risk of re-infection with the same or other strains 

represented as θ in the model; and the re-infecting strain would “override” the existing strain. 

We define θx similarly to δx as: 

𝜃𝑋 =  𝑅𝑅𝑖 ∗  𝜆𝑋 

where, RRi is the “relative risk of re-infection once latently infected” 

 



 

 



Figure 1: Structure of four strain Mtb transmission model. The symbols S, LA, LB, I and R represent 

uninfected/susceptible, early latent, late latent, infected and recovered health states, 

respectively. The subscript “X” used in LA and LB compartments, indexes the drug resistance 

patterns, with S, H, R and M representing susceptible, isoniazid mono-resistance, rifampicin 

mono-resistance and multidrug resistance respectively. The infectious compartment is elaborated 

in the figure to show the amplification flows, parameterized with αH and αR (red arrows). The 

green arrows represent infection/transmission flows, black arrows represent constant 

progression flows. Compartments stratified according to resistance profiles are shown in blue.  

It is to be noted that the figure does not show individuals who are latently infected with a given 

strain will have the same strain if they develop active disease. An elaborated diagram in presented 

in the supplementary sheets where all the compartments modelled have been shown (S1). 

Ordinary differential equations used to define the four-strain model 

𝑑𝑆

𝑑𝑡
 = 𝜋 −  (𝜆𝑆 + 𝜆𝐻 + 𝜆𝑅 + 𝜆𝑀 + 𝜇) 𝑆 

 
𝑑𝐿𝐴𝑆

𝑑𝑡
 = 𝜆𝑆𝑆 − (𝜖 +  𝜅 +  𝜇)𝐿𝐴𝑆 + 𝜃𝑆(𝐿𝐵𝑆 + 𝐿𝐵𝐻 + 𝐿𝐵𝑅 + 𝐿𝐵𝑀) +  𝛿𝑆𝑅 

 
𝑑𝐿𝐴𝐻

𝑑𝑡
 = 𝜆𝐻𝑆 −  (𝜖 +  𝜅 +  𝜇)𝐿𝐴𝐻 +  𝜃𝐻(𝐿𝐵𝑆 + 𝐿𝐵𝐻 + 𝐿𝐵𝑅 + 𝐿𝐵𝑀) +  𝛿𝐻𝑅 

 
𝑑𝐿𝐴𝑅

𝑑𝑡
 =  𝜆𝑅𝑆 − (𝜖 +  𝜅 +  𝜇)𝐿𝐴𝑅 + 𝜃𝑅(𝐿𝐵𝑆 + 𝐿𝐵𝐻 + 𝐿𝐵𝑅 + 𝐿𝐵𝑀) +  𝛿𝑅𝑅 

 
𝑑𝐿𝐴𝑀

𝑑𝑡
 =  𝜆𝑀𝑆 −  (𝜖 +  𝜅 +  𝜇)𝐿𝐴𝑀 + 𝜃𝑀(𝐿𝐵𝑆 + 𝐿𝐵𝐻 + 𝐿𝐵𝑅 + 𝐿𝐵𝑀) + 𝛿𝑀𝑅 

 
𝑑𝐿𝐵𝑆

𝑑𝑡
 =  𝜅𝐿𝐴𝑆  − (𝜈 + 𝜃𝑆 + 𝜃𝐻 + 𝜃𝑅 + 𝜃𝑀 +  𝜇)𝐿𝐵𝑆 

 
𝑑𝐿𝐵𝐻

𝑑𝑡
 =  𝜅𝐿𝐴𝐻  − (𝜈 + 𝜃𝑆 + 𝜃𝐻 + 𝜃𝑅 + 𝜃𝑀 +  𝜇)𝐿𝐵𝐻 

 
𝑑𝐿𝐵𝑅

𝑑𝑡
 =  𝜅𝐿𝐴𝑅  − (𝜈 + 𝜃𝑆 + 𝜃𝐻 + 𝜃𝑅 + 𝜃𝑀 +  𝜇)𝐿𝐵𝑅 

 
𝑑𝐿𝐵𝑀

𝑑𝑡
 =  𝜅𝐿𝐴𝑀  − (𝜈 + 𝜃𝑆 + 𝜃𝐻 + 𝜃𝑅 + 𝜃𝑀 +  𝜇)𝐿𝐵𝑀 

 
𝑑𝐼𝑆

𝑑𝑡
 =  𝜖𝐿𝐴𝑆  +  𝜈𝐿𝐵𝑆 − 𝛼𝐻𝐼𝑆 − 𝛼𝑅𝐼𝑆  − (𝛾 + 𝜏𝑆 + 𝜇𝑖 +  𝜇)𝐼𝑆 

 
𝑑𝐼𝐻

𝑑𝑡
 =  𝜖𝐿𝐴𝐻  +  𝜈𝐿𝐵𝐻 + 𝛼𝐻𝐼𝑆  − 𝛼𝑅𝐼𝐻  − (𝛾 + 𝜏𝐻 + 𝜇𝑖 + 𝜇 )𝐼𝐻 



 
𝑑𝐼𝑅

𝑑𝑡
 =  𝜖𝐿𝐴𝑅  +  𝜈𝐿𝐵𝑅 − 𝛼𝐻𝐼𝑅  + 𝛼𝑅𝐼𝑆 − (𝛾 + 𝜏𝑅 + 𝜇𝑖 + 𝜇)𝐼𝑅 

 
𝑑𝐼𝑀

𝑑𝑡
 =  𝜖𝐿𝐴𝑀  +  𝜈𝐿𝐵𝑀 + 𝛼𝐻𝐼𝑅 + 𝛼𝑅𝐼𝐻 − (𝛾 + 𝜏𝑀 + 𝜇𝑖 + 𝜇)𝐼𝑀 

 
𝑑𝑅

𝑑𝑡 
= (𝜏𝑆 + 𝛾)𝐼𝑆 + (𝜏𝐻 + 𝛾)𝐼𝐻 + (𝜏𝑅 + 𝛾)𝐼𝑅 + (𝜏𝑀 + 𝛾)𝐼𝑀 − (𝛿𝑆 +  𝛿𝐻 + 𝛿𝑅 + 𝛿𝑀 +  𝜇)𝑅 

 
 

2.2 Parameter Estimation  
An adaptive Metropolis algorithm was used to estimate model parameters [16], including drug 

resistance amplification rates. Parameters can be categorized as universal, country-specific and 

time-variant parameters, as presented in Table 1.  

 

Universal parameters: 

From the literature we gathered information on disease-specific and epidemiological parameters 

to calibrate the Mtb transmission model. We considered these parameters to be universal to all 

TB settings and so assigned the same values for all strains and settings (Table 1A). 

 

Table 1:  Epidemiological parameters used for calibrating the model and their prior 
distribution ranges. 
 
A) Universal parameters 

 

 
 
 
 
 
 

Parameter Value  Prior distribution Source 

Early progression (ε) (year-1) 0.401775 Uniform [ 0.1 – 0.8] [17] 

Transition to late latency (κ) (year-1) 3.6525 Uniform [1.0 – 7.0] [17] 

Reactivation (ν) (year-1) 0.002008875 Uniform [0.0009, 
0.006] 

[17] 

Spontaneous recovery (γ) (year-1) 0.2 Gamma [0.16, 0.29], 
mode = 0.20 

[18] 

Natural mortality (μ) (year-1) 0.0142   

TB-specific mortality (μi) (year-1) 0.2 Gamma [0.06, 1.06], 
mode = 0.08 

[18] 

Relative risk of reinfection once infected 0.21 - [19] 



B) Country-specific and time-variant parameters (used for model calibration) 
 

 
(*CDR – Case detection rate) 
 
Defining time-variant model processes 
To capture the rise of drug resistance over time, we allowed the case detection rate (CDR, a 

proportion) and the treatment success rate (TSR) to vary over time. People diagnosed with active 

TB are commenced on treatment upon identification and move from the infectious 

compartments (I, IH, IR and IM) to the recovered compartment (R). The transition from the 

infectious to the recovered compartment is represented using the parameter “τ”. τ is dependent 

on the TB detection rate “d” and the treatment success rate (TSR) and is mathematically 

expressed as - 

 

τ (𝑡) = 𝑑(𝑡) ∗ TSR (𝑡) 

 

 

where, “d” is calculated by solving the following CDR equation: 

 

𝐶𝐷𝑅(𝑡) =
𝑑(𝑡)

𝑑(𝑡) + γ +  𝜇𝑖 + 𝜇
 

 

which results in:   

                                                                𝑑(𝑡) =
𝐶𝐷𝑅(𝑡)

(1−𝐶𝐷𝑅(𝑡)) ∗ (𝛾+ 𝜇𝑖+𝜇)
 

Parameter 
 

Country  Prior 
Distribution 

Source 

 The Philippines Viet Nam   

Transmission rate (β) [1 - 35] [1 - 30] Uniform Fitted 

Fitness cost of INH-R TB 
strain 

[0.50 – 1.20] Uniform [20], 
[21] 

Fitness cost of RIF-R TB 
strain 

[0.50 – 1.20] Uniform [22], 
[12] 

Fitness cost of MDR-TB 
strain 

[0.50 – 0.99] Uniform [23] 

Proportion of failures 
developing RIF-R TB (ρR) 

[0.01 – 0.99] Uniform Fitted 

Proportion of failures 
developing INH-R TB (ρH) 

[0.01 – 0.99] Uniform Fitted 

Relative risk of reinfection 
once recovered  

[0.50 – 1.50] Uniform Fitted 

CDR start time [1950 -1970] Uniform Fitted 

CDR final value [0.30 – 0.80] Uniform Fitted 



 
TSR is the probability of a person being first tested and ultimately put on treatment to be cured, 

or simply put the probability of treatment success at presentation. This parameter was varied by 

strain. We used sigmoidal functions to model progressive increases for both the CDR and the TSR 

between 1950 and 2020. The final value of the TSR was set to the most recent TSR estimate 

reported by the WHO. In contrast, the final value of the CDR was varied during calibration. This 

allowed flexibility in simulating the historical dynamics of TB control in the countries considered. 

 

 

 
 

Figure 2: Example of time-variant case detection rate (CDR) (final value=50%). 
 

Defining the amplification rate 

Treatment for tuberculosis begins once individuals are detected with TB and the TB strain is 

correctly identified.  Treatment then proceeds and may result in three possible outcomes: death, 

successful treatment or treatment failure. Treatment failure can further be associated with new 

acquisition of resistance to one additional drug that was not previously present in the infecting 

organism. INH and RIF are part of the standard regimen for the treatment of drug-susceptible 

strains. Gain in resistance to either INH or RIF is represented using amplification rates αH or αR 

respectively in the model. Mathematical representation of INH and RIF mono-resistant 

amplification is shown as -  

 

Rate of amplification (𝛼𝐻) =  𝑑 (𝑡) ∗ (1 −  TSR (𝑡)) ∗ 𝜌𝐻  

Rate of amplification (𝛼𝑅) =  𝑑 (𝑡) ∗ (1 −  TSR (𝑡)) ∗ 𝜌𝑅 



 

where, 
ρH = Proportion of previously INH-susceptible individuals that acquire resistance on treatment 
failure, and 
ρR = Proportion of previously RIF-susceptible individuals that acquire resistance on treatment 
failure 
 

2.3 Model calibration to prevalence and notification data 

Prevalence data 

The model presented above was calibrated to country-specific data. We fitted the models using 

TB prevalence estimates from national TB prevalence surveys (Viet Nam: 2006-2007 and 2017-

2018; The Philippines: 2007 and 2016) and drug-resistance prevalence from national DR-TB 

surveys (Viet Nam: 2011; The Philippines: 2009, 2016). The detailed estimates are presented in 

Table 2:  

Table 2: Summaries of prevalence survey results and drug resistance survey data for Philippines 

and Viet Nam. 

A) TB Prevalence data 

Country Year TB prevalence 
(per 100, 000) 

95% CI Source 

 
Viet Nam 

 

2006-2007 307.2 248.8 – 365.6 [24] 

2017-2018 322 260 – 399 [25] 

 
The Philippines 

2007 660 510-810 [26] 

2016 1159 1016-1301 [27] 

 

B) Drug resistance data 

Country Drug resistance Year Drug resistance 
(%) 

95% CI Source 

 
 

Viet Nam 

Isoniazid mono 
resistance 

2011 14.86 12.15 – 17.56 [28] 

Rifampicin mono 
resistance 

2011 0.23 0.1 – 0.35 [28] 

MDR-TB 2011 6.93 4.22 – 9.63 [28] 

 
 

Isoniazid mono 
resistance 

2009 9.44 7.95 - 10.92 [29] 



The 
Philippines 

Rifampicin mono 
resistance 

2009 1.008 0.71 - 1.304 [29] 

MDR-TB 2009 5.8 4.3 – 7.5 [29] 

 
 

The 
Philippines 

Isoniazid mono 
resistance 

2016 12.43 11.1 - 13.75 [27] 

Rifampicin mono 
resistance 

2016 0.82 0.44 - 1.19 [27] 

MDR-TB 2016 3.35 2.53 - 4.41 [27] 

 

Notification data: We used WHO-reported TB notifications as a calibration target for both 

models. For Viet Nam, in 2018, 102,171 cases were notified and for The Philippines 382,543 cases 

were notified and we calibrated to the per capita notification rates corresponding to these 

values. 

Uncertainty analysis 

Once we defined the parameters in our model, we next reviewed literature for information on 

the prior distributions of uncertain parameters (Table 1B). 

 

The adaptive Metropolis algorithm [16] was used to generate samples from the posterior 

distribution of the parameters from 25,000 iterations for each country. The primary estimates 

are reported as the posterior median value for all parameters of interest such as amplification 

proportions, CDR, relative fitness of each modelled strain and the relative risk of infection once 

recovered (δ). The intervals reported are obtained by calculating the 25th and 75th percentile of 

each parameter’s posterior distribution. Programming was done in Python 3.7.3 and all code and 

associated data are publicly available on GitHub (github.com/malanchak/AuTuMN). 

 

 

Results  

Calibration of the model 

Figure 3A, 3B and 3C show the model fits to reported INH-R, RIF-R and MDR levels for the high 

DR-TB settings, The Philippines and Viet Nam respectively. 

https://github.com/malanchak/AuTuMN


 

 

 



Figure 3: Model calibration: A) Isoniazid mono resistance B) Rifampicin mono resistance and C) 

MDR-TB. The red dots with the line represent the empiric data (including intervals) obtained from 

the drug resistance surveys of the Philippines and Viet Nam. The model predictions are 

represented in blue solid line as median, interquartile range (dark blue shade) and central 95% 

credible interval (light blue shade). 

Table 3 shows the posterior distributions of all calibrated parameters.  

Table 3: Posterior distribution of parameters obtained using the Bayesian analysis 

DR- TB related parameter Estimate (median, 50 % CI) 

 The Philippines Viet Nam 

Proportion of previously INH-susceptible 
individuals that acquire resistance on treatment 
failure 

0.84 (0.79-0.89) 0.77 (0.71 – 0.84) 

Proportion of previously RIF-susceptible 
individuals that acquire resistance on treatment 
failure 

0.05 (0.04 - 0.07) 0.011 (0.010 – 0.012) 

Relative fitness of INH-R TB strains 0.87 (0.83 – 0.92) 0.98 (0.95 – 1.00) 

Relative fitness of RIF-R TB strains 0.78 (0.74 – 0.84) 0.77 (0.73 – 0.81) 

Relative fitness of MDR-TB strains 0.67 (0.58 – 0.71) 0.64 (0.56 – 0.75) 

CDR final/maximum value  0.49 (0.47 – 0.51) 0.66 (0.63 – 0.69) 

 

Universal parameters Estimate (median, 50 % CI) 

 The Philippines Viet Nam 

Rate of rapid progression (ε) (year-1) 0.33 (0.28 – 0.37) 0.22 (0.19 – 0.29) 

Rate of transition towards late latency (κ) (year-1) 5.49 (4.78 – 5.95) 3.62 (3.13 – 4.92) 

Rate of re-activation (ν) (year-1) 0.003 (0.002 – 0.004) 0.0017 (0.0016 –0.0018) 

Relative risk of re-infection after recovery (δ) 0.74 (0.64 – 0.86) 0.64 (0.56 – 0.81) 

 

Table 4: Estimates obtained for proportions of incident DR-TB due to direct transmission rather than 

DR amplification 

DR-TB  Estimate (median, 50 % CI) 

 The Philippines Viet Nam 

INH-R TB 50 (43 – 70) 67 (54 – 73) 

RIF-R TB  52 (43 – 70)  63 (55 – 71) 

MDR TB  40 (28 – 52) 43 (34 – 51) 

 

 

 



Drug resistance amplification and transmission 

We observed higher proportions of drug resistance amplification for INH compared to RIF for 

both the high DR-TB incidence settings we simulated (Figure 4). The estimated risk of INH-R 

amplification when treatment fails was 0.84 (95% CI 0.79 – 0.89) for The Philippines and 0.77 

(95% CI 0.71 – 0.84) for Viet Nam. The estimated risk of RIF-R acquisition when treatment fails 

was 0.05 (95% CI 0.04 – 0.07) for The Philippines and 0.011 (95% CI 0.010 – 0.012) for Viet Nam. 

This meant approximately 84% and 77% of the people who failed treatment in The Philippines 

and Viet Nam respectively would end up with resistance to INH.  

In the Philippines, the proportions of incident INH-R TB due to transmission was 50% (43 – 70), 

RIF-R TB was 52% (43 – 70) and MDR-TB was 40% (28 – 52). For Viet Nam, the proportions of 

incident INH-R TB due to transmission was 67% (54 – 73), RIF-R TB was 63% (55 – 71) and MDR-

TB was 43% (34 – 51). 

In The Philippines, the model estimates for amplification from DS to INH-R was 26 per 100,000 

(95% CI 15 – 33) people, followed by 10 per 100,000 (95% CI 6 – 14) people then gain resistance 

to RIF and moving to the MDR compartment. Comparing this to acquiring RIF resistance first, we 

see 2 per 100,000 (95% CI 1 – 3) moving from DS to RIF-R, followed by only 0.05 (95% CI 0.02 – 

0.08) people gaining resistance to INH to move to the MDR compartment. A similar observation 

was seen for Viet Nam, the model estimates for amplification from DS to INH-R shows 6 per 

100,000 (95% CI 4 – 8) people followed by people 4 per 100,000 (95% CI 3 – 5) gaining resistance 

to RIF and moving to the MDR compartment. In case of DS to RIF-R transition the estimates were 

0.08 per 100,000 (0.06 – 0.11) people, followed by 0.0007 per 100,000 (0.0004 – 0.001) people 

gaining resistance to INH to move to the MDR compartment.  

 



 

Figure 4: The estimated risk of INH-R and RIF-R amplification when treatment fails. The probability 

density function (red line) represents the posterior distribution of the estimates of amplification 

and the white background represents the prior ranges. The dashed blue line is the median of the 

estimates. A) Proportion of previously INH-susceptible strains that acquire resistance on 

treatment failure and B) Proportion of previously RIF-susceptible strains that acquire resistance 

on treatment failure. 

 

 

Estimates for relative strain fitness and CDR  

The posterior estimates of relative fitness associated with INH-R strains for The Philippines was 

0.87 (95% CI 0.83 – 0.92) and 0.98 (95% CI 0.95 – 1.00) for Viet Nam. The relative fitness 

associated with RIF-R strains for The Philippines was 0.78 (95% CI 0.74 – 0.84) and 0.77 (95% CI 

0.73 – 0.81) for Viet Nam. The relative fitness associated with MDR-TB strains in The Philippines 

was 0.67 (95% CI 0.58 – 0.71) compared to 0.64 (95% CI 0.56 – 0.75) for Viet Nam. 

Our study also provided information on estimates of CDR with high precision for both the 

settings, as inclusion of notification and prevalence of infection data for the analysis helped in 

constraining the parameter. The estimates obtained for The Philippines was 0.49 (95% CI 0.47 – 

0.51) and for Viet Nam was 0.66 (95% CI 0.63 – 0.69).  

Discussion 



From this modeling study we were able to construct a model which successfully replicated 

epidemiological dynamics in two higher burden TB settings, incorporating parameters drawn 

from microbiological fitness data. Using this model to explore the development of drug resistance 

in these contexts, we found that a much higher proportion of treatment failure resulted in 

amplification for INH-R rather than for RIF-R. This finding is consistent with observed higher rates 

of INH-R globally and allows consideration of factors which might be mechanistically important 

for understanding and planning a programmatic response. 

One factor likely to play a significant role in preferential INH-R amplification is current methods 

of DR-TB detection which prioritize RIF’s resistance identification. According to WHO and many 

country guidelines, TB patients with strains found to be resistant to RIF need to start on a 

recommended MDR-TB treatment regimen. Longer MDR-TB regimens, and historical second-line 

therapy regimens, frequently have INH included in them, irrespective of resistance to INH being 

either undetermined or confirmed. Re-treatment regimens in particular have often incorporated 

prolonged durations of INH therapy – for example the category II regimen used in the Philippines 

comprised of 8 months of INH, RIF and ethambutol supplemented by streptomycin for the initial 

2 months, and pyrazinamide for the initial 3 months (2SHRZE/HRZE/ 5HRE)[30], and older 

treatment regimens used in Viet Nam comprised of 8 months of INH and ethambutol 

supplemented by initial two months of streptomycin, pyrazinamide and rifampicin (2SHRZ/6HE) 

[28]. These factors may be further amplified by use of isoniazid in the private sector and/or 

through community pharmacy settings, where worse guideline adherence and increased risk 

resistance development has been shown[31, 32] but with poorer treatment outcomes compared 

to NTPs [33, 34].  

 

In addition to programmatic insights, our model provides novel information on parametrizing 

CDR. This is important, as this parameter cannot be measured directly yet plays a significant role 

in informing robust mathematical model of TB transmission. As with any mathematical 

representation our model has certain limitations. Our model was calibrated to TB prevalence and 

DR surveys to estimate the risk of resistance amplification. But the definition of a TB case may 

change between surveys, even within the same country. We have adopted a simplified model 

structure that does not capture factors such as age, comorbidities and other heterogeneity 

associated with TB epidemics. These factors may affect the risk of resistance amplification. Our 

model is primarily built for pulmonary tuberculosis and does not include extra-pulmonary TB 

data, as our primary focus was on transmission. For the same reason, this model has been 

parametrized from adult TB data given the limited TB transmission from young children to others. 

In our model we assumed the risk of INH-R amplification is the same starting from IS, as compared 

to starting from IR; the same applies for RIF-R amplification. We even assumed the fitness cost of 



MDR-TB is independent of that of INH-R of RIF-R. Therefore, these limitations can potentially 

influence the estimated risk of resistance amplification.  

Historically, diagnosis of MDR-TB has been reliant on culture-based phenotypic testing, which in 

high-burden settings may be applied selectively, such as after treatment failure. As part of the 

global policy to control DR-TB, many high burden settings have pledged to deploy the molecular 

diagnostic assay Xpert MTB/RIF (detects resistance only in RIF), which is a nucleic acid 

amplification test that can be directly applied to sputum samples [35] [36]. As the presence of 

RIF resistance is highly predictive of MDR-TB, these policies have led to significant improvements 

in the appropriate initiation of second-line therapy [37]. However, as our work highlights, these 

algorithms may also be associated with selecting for and further amplifying INH resistance. 

Alternative molecular tools, such as the line probe assay MTBDRplus [38] or Xpert MTB/RIF Ultra 

[39] can identify both RIF and INH resistance, and may offer the programmatic advantages of 

rapid MDR-TB diagnosis while avoiding this secondary effect [40]. Further research into the 

association between specific INH resistance mutations and differential risk of transmission will 

be helpful in better defining the public health impact of this effect [41]. 

While rapid molecular diagnostics will continue to be important for programmatic adoption, it is 

also important to recognize that the principle of unrecognized resistance amplification 

demonstrated here can be repeated for any resistance not routinely addressed in diagnostic 

algorithms. It is therefore essential to incorporate genome sequencing into surveillance 

programs, to maximize the clinical and public health benefits [42]. With recent developments in 

next generation sequencing techniques, we have now have high-throughput diagnostic tools for 

the detection of DR-TB which are both fast and efficient [43]. While such tools are currently in 

routine use only in high resource settings, the benefits associated with these tools should be 

prioritized for high burden contexts to support optimal individual and program outcomes [44, 

45].  
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CHAPTER 7: CONCLUSION  

The spread of anti-microbial resistance in TB is a major challenge for clinical care and global public 

health, and so optimal understanding and control of TB epidemics is of international interest. Current 

strategies to control TB are primarily aimed at reducing transmission through rapid identification of 

infectious patients by deploying fast and accurate diagnostic measures, followed by treatment with 

effective drugs according to resistance detected through these tools [233]. During my doctoral thesis I 

have demonstrated computational protein structural tools can be useful for predicting drug resistance, 

optimizing treatment regimens, and informing models of drug resistance emergence. These tools have an 

important role in strengthening the translational value of TB genomics, allowing better directed and more 

effective programmatic responses in the face of expanding drug resistance.   

Isoniazid, rifampicin, ethambutol and pyrazinamide are the four main first-line drugs used to treat DS-TB 

While the first three drugs are mainly responsible for killing the activating replicating bacterium, 

pyrazinamide kills the dormant bacilli. PZA being a sterilizing drug, is generally part of majority of the 

regimens to treat TB but is associated with dangerous side-effects. PZA is a pro-drug and is converted 

into its active form pyrazinoic acid with the help of the enzyme PncA (pyrazinamidase). Between 70 – 

90% of mutations responsible for resistance in pyrazinamide are harbored in the pncA gene. The WHO 

recommended phenotypic DST to determine resistance associated with pyrazinamide is the Wayne and 

Bactec MGIT 960 methods.  These methods, however, have poor reproducibility, are labor intensive and 

need specialised laboratory set up to conduct the tests. Looking closely into the protein structure of PncA 

and mapping the mutations on to it helped in understanding the discrepancies associated with the DST 

results. Scores were generated from biophysical and evolutionary analyses to observe differential patterns 

between susceptible and resistant non-synonymous missense mutations. This information was used to 

train a supervised machine learning algorithm to develop an empirical classifier that could identify novel 
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drug resistance mutations with 80% accuracy in pncA. The classifier has been deployed as a freely 

available user-friendly webserver SUSPECT-PZA. This could be readily implemented in genomic 

sequencing pipelines as a potential tool to determine resistance associated with pncA in resource limited 

settings that have higher TB burden. Our tool can be used as an alternative to help in faster and accurate 

determination of resistance thereby helping in reducing the spread of drug resistance.    

As progress was being made developing the novel pipeline to determine novel resistance mutations in 

pncA, a case was presented from the Royal Melbourne Hospital, Melbourne, Australia. A 42-year old 

Vietnamese woman was diagnosed with MDR-TB and she was receiving a cocktail of medication which 

included PZA. Whole genome sequencing identified a novel frameshift mutation in the pncA gene. To 

determine effectiveness of the drug PZA a real time analysis was carried out to validate whether the novel 

frameshift mutation lead to loss of function of the protein. The analysis revealed the frameshift mutation 

lead to a stop codon at the 29th amino acid position of the protein structure. Due to incomplete synthesis, 

the mutant protein lacked the catalytic binding site which is required to bind the pro-drug and convert it 

into its active form. Thus, it led to altered patient treatment and was the first reported use of structural 

information to guide clinical resistance detection.  

MDR and XDR-TB involves long, expensive and difficult to manage treatment regimens with 

unfortunately sub-optimal outcomes in most cohorts [234]. An effective treatment regimen for MDR-TB 

involves stepwise selection of second line drugs depending on the DST results. It is often seen at 

programmatic levels that either the second line drugs or the facility to perform the DST is unavailable 

[235]. Moreover, adherence to treatment due to severe adverse effects of second-line drugs is another 

other major issue [236]. New drugs have been developed and approved in the past few years to treat 

MDR/XDR-TB like Bedaquiline and Delamanid. Bedaquiline binds to the c-subunit of ATP synthase 

(atpE). Clinical and in vitro resistance has been detected in atpE and Rv0678, a transcriptional repressor 

of the MmpS5-MmpL5 efflux pump [237]. Despite this, a standard protocol to determine in vitro 

susceptibility of bedaquiline has not been developed and agreed upon [79]. Being an important drug, 
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which is effective against both DS and DR-TB, which in future could replace both INH and RIF, it is 

necessary to urgently develop a protocol to determine its susceptibility. The same structural pipeline was 

used to develop a predictive tool for the drug target atpE for bedaquiline. Recognising the lack of 

published data correlating bedaquiline testing with clinical outcomes, an alternative approach was 

developed for determine the susceptible variants (explained in chapter 5). This work led to establishing 

the first computational tool which could determine novel drug resistance in bedaquiline and can in 

slowing down the rise of drug resistance towards bedaquiline 

While building these predictive models an important observation was made with respect to lineages and 

its impact on the susceptibility of a variant. Some mutations had different effects on susceptibility 

depending on underlying lineage. Beijing lineage, which is a sub-lineage of Lineage 2 (East Asian) has 

been under intense scrutiny in recent years, as it has been reported to be found globally and associated 

with higher rates of drug resistance. A thorough systematic review followed by meta-analysis was 

conducted and Beijing was found to be hyper-transmissible compared to non-Beijing strains. The finding 

was epidemiologically significant as clustering data from molecular genotyping methods was used to 

carry out the investigation. The study established the fact that Beijing lineage had a higher propensity to 

cause disease and transmit within different geographical settings. It further helped in supporting the idea 

of incorporation of lineage specific information in the empirical tools I build to make them more powerful 

and accurate. In future, further exploration will help in understanding the underlying causes which helps 

Beijing to be more transmissible than the other lineages and how this information can be used to stop its 

spread.  

Mathematical models used to study emergence and control of DR-TB at population level are important 

tools to understand the natural history of the disease, helps in choosing the correct available intervention 

and highlights areas where additional research is required [168]. The molecular data gathered during the 

protein structural studies provided information for developing a four-strain epidemiological 

compartmental model to estimate proportion of drug resistance amplification for two high drug resistant 
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TB-incidence settings. The model provided posterior estimates of mono drug resistant amplifications and 

transmission rates for INH and RIF. RIF resistant strains had a higher propensity to be transmitted 

compared to acquiring resistance through amplification. In contrast, INH resistant strains had similar rates 

for transmission and amplification. These findings highlight complexity involved with drug resistance 

dynamics in high TB burden settings. This leads to the next question whether deploying GeneXpert plus 

or line probe assay (which can detect resistance in both INH and RIF) over GeneXpert MTB/RIF (detects 

resistance only in RIF) worldwide could help in bringing down the higher rates of drug resistance 

amplification in INH and better control the MDR-TB epidemics. 

In this work, I have explored how computational tools can improve our clinical care, public health 

response, and understanding of tuberculosis. With the reduction in the cost to perform WGS, 

individualized therapy could become available to all TB patients including those diagnosed with DR-TB. 

Though bringing such therapy to resource limited high burden settings is still a challenge; SUSPECT-

PZA and SUSPECT-BDQ could aid in preliminary identification and accurate determination of the 

susceptibility of drugs in these settings and can be included in their national programs. A further 

improvement which can be introduced to the updated version of the classifiers in the future is inclusion of 

lineage specific information for each missense mutation. Chapter 5 helped me understand that 

susceptibility pattern changes with lineages, therefore including this information in our tools will make it 

more robust and powerful. Another addition that would make the tool more comprehensive and useful is 

addition of the other genes responsible for resistance. For bedaquiline, majority of resistance observed in 

the clinical cases is due to mutations in the efflux pump Rv0678. In case of PZA, it is more complicated 

as various genes contribute to resistance towards the drug. Addition of classifiers for panD, rpsA and 

clpC1 might make the tool all-inclusive in a clinical setting. Moreover, the structural studies provides us 

with information which can be used to design better resistance-resistant antibiotic [238]. Similarly, the 

mathematical model can be further used to study and understand the rise of INH amplification rates.   
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This work has established and validated a platform for using protein structural information and 

computational models to identify drug resistance mutations. Using these insights, I have developed 

empirical tools to predict phenotypic outcomes of mutations in p53 – a cancer causing gene and for a 

recessive genetic disorder – alkaptonuria. The work on alkaptonuria has been developed into a user-

friendly webserver HGDiscovery (http://biosig.unimelb.edu.au/hgdiscovery/). Therefore, I have 

demonstrated the translational power of the pipeline I developed during my PhD.  

This works provides a foundation for more effective drug resistance screening, public health policy 

decisions, and provide valuable insights for drug development. It highlights the power of combining 

different scientific approaches to achieve a common goal – tackle the issue to drug resistance in TB. 

  

http://biosig.unimelb.edu.au/hgdiscovery/
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Abstract

Background: Tuberculosis (TB) transmission often occurs within a household or community, leading to heterogeneous
spatial patterns. However, apparent spatial clustering of TB could reflect ongoing transmission or co-location of risk factors
and can vary considerably depending on the type of data available, the analysis methods employed and the dynamics of
the underlying population. Thus, we aimed to review methodological approaches used in the spatial analysis
of TB burden.

Methods: We conducted a systematic literature search of spatial studies of TB published in English using Medline,
Embase, PsycInfo, Scopus and Web of Science databases with no date restriction from inception to 15 February 2017.
The protocol for this systematic review was prospectively registered with PROSPERO (CRD42016036655).

Results: We identified 168 eligible studies with spatial methods used to describe the spatial distribution (n = 154),
spatial clusters (n = 73), predictors of spatial patterns (n = 64), the role of congregate settings (n = 3) and the household
(n = 2) on TB transmission. Molecular techniques combined with geospatial methods were used by 25 studies to
compare the role of transmission to reactivation as a driver of TB spatial distribution, finding that geospatial hotspots
are not necessarily areas of recent transmission. Almost all studies used notification data for spatial analysis (161 of 168),
although none accounted for undetected cases. The most common data visualisation technique was notification rate
mapping, and the use of smoothing techniques was uncommon. Spatial clusters were identified using a range of
methods, with the most commonly employed being Kulldorff’s spatial scan statistic followed by local Moran’s I and
Getis and Ord’s local Gi(d) tests. In the 11 papers that compared two such methods using a single dataset,
the clustering patterns identified were often inconsistent. Classical regression models that did not account for
spatial dependence were commonly used to predict spatial TB risk. In all included studies, TB showed a heterogeneous
spatial pattern at each geographic resolution level examined.

Conclusions: A range of spatial analysis methodologies has been employed in divergent contexts, with all
studies demonstrating significant heterogeneity in spatial TB distribution. Future studies are needed to define
the optimal method for each context and should account for unreported cases when using notification data
where possible. Future studies combining genotypic and geospatial techniques with epidemiologically linked
cases have the potential to provide further insights and improve TB control.
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Background
Mycobacterium tuberculosis (Mtb) transmission often
occurs within a household or small community because
prolonged duration of contact is typically required for
infection to occur, creating the potential for localised
clusters to develop [1]. However, geospatial TB clusters
are not always due to ongoing person-to-person trans-
mission but may also result from reactivation of latent
infection in a group of people with shared risk factors
[1, 2]. Spatial analysis and identification of areas with
high TB rates (clusters), followed by characterisation of
the drivers of the dynamics in these clusters, have been
promoted for targeted TB control and intensified use of
existing TB control tools [3, 4].
TB differs from other infectious diseases in several

ways that are likely to influence apparent spatial cluster-
ing. For example, its long latency and prolonged infec-
tious period allow for significant population mobility
between serial cases [5]. Thus, Mtb infection acquired in
a given location may progress to TB disease in an en-
tirely different region, such that clustering of cases may
not necessarily indicate intense transmission but could
rather reflect aggregation of population groups at higher
risk of disease, such as migrants [6]. Similarly, Mtb in-
fection acquired from workplaces and other congregate
settings can be wrongly attributed to residential expos-
ure, as only an individual’s residence information is typ-
ically recorded on TB surveillance documents in many
settings [7, 8].
Identifying heterogeneity in the spatial distribution of

TB cases and characterising its drivers can help to in-
form targeted public health responses, making it an at-
tractive approach [9]. However, there are practical
challenges in appropriate interpretation of spatial clus-
ters of TB. Of particular importance is that the observed
spatial pattern of TB may be affected by factors other
than genuine TB transmission or reactivation, including
the type and resolution of data and the spatial analysis
methods used [10]. For instance, use of incidence data
versus notification data could give considerably different
spatial pattern [11], as the latter misses a large number
of TB cases and could be skewed towards areas with bet-
ter access to health care in high-burden settings [12, 13].
Thus, spatial analysis using notification data alone in
such settings could result in misleading conclusions.
Similarly, the type of model used and the spatial unit of

data analysis are important determinants of the patterns
identified and their associations [14–16]. That is, different
spatial resolutions could lead to markedly different results
for the same dataset regardless of the true extent of spatial
correlation [15, 17, 18] and the effect observed at a re-
gional level may not hold at the individual level (an effect
known as the ecological fallacy) [19]. Therefore, we aimed
to review methodological approaches used in the spatial

analysis of TB burden. We also considered how common
issues in data interpretation were managed, including
sparse data, false-positive identification of clustering and
undetected cases.

Methods
Data source and search strategy
Our search strategy aimed to identify peer-reviewed
studies of the distribution and determinants of TB that
employed spatial analysis methods. In this review, stud-
ies were considered spatial if they incorporated any
spatial approaches (e.g. geocoding, spatial analysis units,
cluster detection methods, spatial risk modelling) into
the design and analysis of the distribution, determinants
and outcomes of TB [20]. We searched Medline,
Embase, Web of Science, Scopus and PsycInfo databases
from their inception to 15 February 2017 using a com-
bination of keywords and medical subject headings
(MeSH) pertaining to our two central concepts: tubercu-
losis and space. We refined search terms related to the
latter concept after reviewing key studies, including a
previous systematic review not limited to TB [21]. The
full search strategy was adapted to the syntax of the in-
dividual database from the following conceptual struc-
ture: (tuberculosis OR multidrug-resistant tuberculosis)
AND (spatial analysis OR geographic mapping OR
spatial regression OR spatiotemporal analysis OR spatial
autocorrelation analysis OR geography OR geographic
distribution OR geographic information system OR geo-
graphically weighted regression OR space-time cluster-
ing OR ‘spati*’ OR ‘hotspots’ OR cluster analysis) and is
provided in the Appendix. Studies targeted to special
populations (e.g. homeless, migrants, HIV-infected per-
sons) and that considered the entire population of a re-
gion were permitted. Additional papers were also
identified through hand searching the bibliographies of
retrieved articles and from suggestions from experts in
the field.

Eligibility, and inclusion and exclusion criteria
We included peer-reviewed papers that incorporated the
spatial analysis approaches described above in the study
of TB. After exclusion of duplicates, titles and abstracts
were screened by two researchers (DS and MK) to iden-
tify potentially eligible studies. Of these papers, articles
were excluded hierarchically on the basis of article type,
whether the method used could be considered spatial or
not and the outcomes assessed. No exclusions were
made on the basis of the outcome reported, with studies
that considered incidence, prevalence or any TB-related
health outcome included. Studies were excluded if the
language of the publication was not English, the report
was a letter, conference abstract or a review or only re-
ported the temporal (trend) of TB. Spatial studies of
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non-tuberculous mycobacteria, non-human diseases and
population immunological profiles were also excluded.
Full-text articles were excluded if they did not provide
sufficient information on the spatial analysis techniques
employed. There were no exclusions based on study set-
ting or anatomical site of disease.

Data extraction and synthesis
Three independent reviewers (DS, MK, KAA) performed
data extraction using pretested data extraction forms
and stored these in a Microsoft Excel 2016 spreadsheet
(Microsoft Corporation, Redmond, Washington, USA).
Disagreements were resolved by consensus. The follow-
ing information was extracted from each paper: country,
publication year, study aim, data type (notifications or
survey), type of TB disease (smear-positive pulmonary,
smear-negative pulmonary and extrapulmonary), geo-
graphic level, spatial methods (map types, cluster detec-
tion methods, statistical regression methods, spatial lag,
spatial error, spatial smoothing techniques), time scale
and outcomes reported (whether quantification of TB
cases or TB-related health outcomes, such as mortality,
default from care, disability-adjusted life years (DALYs)
and key conclusions). In studies which combined geo-
spatial methods with genotypic clustering methods, we
also extracted the genotypic cluster identification
methods. Spatial analysis techniques were categorised as
either visualisation (mapping), exploration (using statis-
tical tests to identify spatial clusters) or statistical model-
ling [19, 22]. Counts and proportions were primarily
used to summarise study findings. The protocol for this
systematic review was prospectively registered with
PROSPERO (CRD42016036655). Although we adhered
to our original published protocol, here we additionally
describe the importance of genotypic methods and the
application of spatial methods in informing public health
interventions in response to requests during peer review.

Results
Study characteristics
A total of 2350 records were identified from the elec-
tronic searches, of which 252 full-text articles were
assessed. Of these, 168 articles met all inclusion criteria
and were included in the final narrative synthesis (Fig. 1).
Using a cutoff of 100 TB cases per 100,000 population
in reported incidence in 2016, 111 (66%) of the studies
were from low-incidence settings.
All references returned by the search strategy were

from the period 1982 to 2017, with 71% published from
2010 onwards (Additional file 1: Figure S1). Earlier
studies (predominantly in the 1980s and 1990s) tended
to be descriptive visualisations, while studies in the last
two decades frequently incorporated cluster detection
and risk prediction. More recently, a range of statistical

techniques including Bayesian statistical approaches
and geographically weighted regression have become
increasingly popular.

Key objectives of included studies
Spatial analysis was applied to address a range of objec-
tives (Table 1), with the commonest ones including de-
scription of the distribution (n = 135), statistical analysis of
spatial clustering (n = 73) and analysis of risk factors and
risk prediction (n = 64). Spatial methods were also used to
determine the relative importance of transmission by
comparison to reactivation as a driver of TB incidence (n
= 25), the effect of TB interventions (n = 2), barriers to TB
service uptake (n = 2), spatial distribution of TB-related
health outcomes (mortality, default, hospitalisation) (n =
5), spatial pattern of TB incidence among people living
with HIV (PLHIV) (n = 4), HIV-related TB mortality (n =
4), multidrug-resistant TB (MDR-TB) drivers (n = 1), TB
outbreak detection (n = 3) and drivers of spatial clustering
(including the role of congregate settings, such as social
drinking venues and schools) (n = 30).

Types of TB disease analysed
Spatial analysis was most commonly conducted on data
for all types of TB (i.e. without distinction between pul-
monary or extrapulmonary; n = 121), followed by pul-
monary TB only (n = 28) and smear-positive pulmonary
TB only (n = 13). Spatial analysis of multidrug-resistant
TB (MDR-TB) and extensively drug-resistant TB
(XDR-TB) was reported in 15 studies and one study
respectively.

Data used and scale of analysis
Nearly all studies used retrospective TB program data
(notifications), with the exception of five studies that
used prevalence surveys and two prospectively collected
data. None of the studies using notification data
accounted for undetected/unreported cases. In all in-
cluded studies, spatial analysis of TB was based on the
individual’s residence, except for three studies that ex-
plored the effect of exposure from social gathering sites.
Spatial analysis was generally done using data aggre-

gated over administrative spatial units (n = 131), but the
scale of aggregation differed markedly. Common spatial
scales included census tract (n = 20), district (n = 15),
postal code (n = 15), county (n = 15), neighbourhood (n
= 10), health area (n = 7), municipality (n = 11), state (n
= 7), province (n = 6), local government area (LGA) (n =
4) and ward (n = 4). Data were analysed at the individual
level in 37 studies, while three studies were reported at a
continent and country scale.
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Fig. 1 Study inclusion flow chart

Table 1 Application areas of spatial methods in TB studies

Spatial method application areas Methods used References

Spatial TB distribution or spatial
clustering

Dot maps, rate maps, thematic maps,
Moran’s I, GetisOrd statistic, NNI Besag
and Newel statistic, k-functions, spatial
scan statistic

[1, 2, 7, 8, 12, 16, 23–41, 44–49, 51–54, 57–72, 75, 93–95, 99, 100,
102–176]

Risk factors Bayesian CAR models, regression models
(with or without including spatial terms),
GWR, PCA, mixture models, spatial lag
models

[8, 12, 33, 36, 38, 40, 42–44, 46–52,
58, 59, 62, 70, 71, 93, 94, 99–102, 104,
111, 112, 116, 117, 120, 123, 125, 127–129,
131, 136, 137, 141–143, 145, 148, 149, 156, 161, 164, 176–189]

Monitoring spatiotemporal TB trends Temporal trend maps [27, 36–39]

Intervention evaluation Distance map, kernel density map [73, 74]

Barriers to TB care Rate map, dot map, travel time map,
distance map

[12, 187]

TB program performance Map (time to detection) [184]

HIV-related TB incidence Rate map, dot map, spatial scan statistic [40, 166, 186, 190]

TB treatment outcomes Spatial empirical Bayes smoothing,
kernel density maps, spatial scan statistic,
spatial regression

[152, 155, 179, 183, 191]

Mortality related to TB/HIV
coinfection

Rate map, thematic maps, Moran’s I and
spatial regression

[42, 43, 174, 192]

Transmission Dot maps (congregate settings) [54, 55, 193]

Dot maps (cases) [7, 8]

Geospatial and genotypic clustering
methods

[1, 2, 25, 28, 47, 57, 59–72, 93–95, 169, 194]

Methodological Spatial scan statistic [25]

TB outbreak detection Spatial scan statistic [1, 25, 28]

Prevalence estimation Model-based geostatistics [80]

Drivers of MDR-TB k-function [35]

NNI nearest neighbourhood index, CAR models conditional autoregressive models, GWR geographically weighted regression, PCA principal component analysis, HIV
human immunodeficiency virus, MDR-TB multidrug-resistant TB
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Methods in the spatial analysis of TB
Table 2 shows the range of spatial methods used. Spatial
analysis was used to visualise patterns (n = 154), explore
spatial clusters (n = 73) and identify risk factors for clus-
tering (n = 64), with risk prediction undertaken by 11
studies. Of the included studies, six did not explicitly re-
port any of these methods but reported statistical results
that implied the use of these methods.

Data visualisation
Data visualisation was the most consistently applied
technique, with 154 of the studies using at least one data
visualisation method to present TB distribution and/or
risk factor patterns across space (Table 1). The TB inci-
dence rate was the commonest indicator mapped (n =
63), followed by event maps (n = 37), which were
smoothed using kernel density in seven studies. Data
visualisation was based on standardised morbidity ratios

(SMR) in 12 studies. Five studies reported maps of
trends in TB incidence over time, and thematic maps
were used in nine to consider the impact of risk factors
on TB incidence by displaying the spatial distribution of
other variables. Variables plotted included climate (n =
1), socioeconomic factors (n = 5), diabetes (n = 1) and
obesity (n = 1).

Approaches used to account for data sparseness
TB is a relatively rare disease at the population level,
and burden is typically expressed in terms of cases per
100,000 population. Various approaches were used to ac-
count for this sparseness in the number of cases, such as
aggregating cases over administrative geographic levels
and over time periods (ranging from 1 to 25 years).
An alternative approach was rate smoothing, although

this practice was rare, despite the fact that TB rates were
the commonest indicators mapped. In the included

Table 2 Spatial methods used in spatial analysis of tuberculosis (n = 168)

Method category Method Number References

Visualisation Rate map 63 [12, 16, 23, 26, 27, 29–34, 37, 41, 44–46, 48, 51, 52, 57, 58, 60, 61,
70, 100, 102, 103, 105, 106, 120, 123–146, 164, 165, 170, 173–176, 195, 196]

Dot map 37 [2, 7, 8, 35, 40, 47, 53, 54, 59, 66, 67, 72, 73, 75, 95, 107–122, 158, 166, 169, 178,
191, 197]

SMR map 12 [38, 49, 99, 100, 124, 126, 127, 129, 138, 142, 148, 149]

Kernel density map 7 [35, 37, 62, 93, 120, 147, 171]

Case counts maps 3 [108, 167, 172]

Others* 17 [16, 24, 50, 60, 62, 63, 68, 71, 99, 100, 103, 104, 116, 148, 166, 168, 185, 198]

Spatial cluster
analysis

Global Moran’s I 28 [16, 26, 34, 37, 39, 44, 48, 49, 51, 58, 65, 93, 100, 102, 123, 126, 128, 131, 133,
135, 138, 139, 145, 150, 161, 180, 188, 199]

Local Moran’s I 14 [16, 41, 44, 49, 51, 93, 100, 123, 126, 131, 135, 138, 145, 192]

Kulldorff’s spatial scan statistic 43 [1, 2, 23–32, 40, 57, 63, 64, 70, 71, 94, 109–111, 119, 120, 130, 135, 138, 139, 141,
151–160, 163, 164, 166, 191]

GetisOrd statistic 12 [2, 16, 26, 39, 49, 54, 65, 93, 104, 131, 139, 161]

k-NN 8 [35, 53, 69, 72, 93, 114, 122, 163]

k-function 6 [35, 62, 93, 116, 117, 147]

Besag and Newell statistic 2 [125, 145]

Statistical modelling Bayesian CAR models 7 [38, 44, 49, 99, 101, 127, 148]

Geographically weighted
regression

6 [16, 50, 93, 102–104]

Mixture modelling 2 [142, 149]

Conventional logistic 15 [8, 40, 70, 71, 94, 95, 111, 112, 120, 141, 161, 177, 178, 187, 189]

Conventional Poisson 5 [46, 125, 136, 145, 156]

Conventional linear 5 [12, 47, 129, 137, 176]

Negative binomial 1 [164]

Factor analysis 6 [50, 103, 117, 143, 146, 170]

Regression models with spatial
terms

9 [42, 48, 51, 58, 100, 116, 128, 131, 188]

Spatial prediction 11 [38, 42, 43, 62, 80, 99, 101, 127, 131, 148, 181]

SMR standardised morbidity ratio, k-NN k-nearest neighbourhood test, CAR conditional autoregressive
*Includes maps of disability-adjusted life years (DALYs), survival time, factor scores, probability maps, proportion of cases and regression coefficients

Shaweno et al. BMC Medicine  (2018) 16:193 Page 5 of 18



studies, smoothed rates were used in six (4%) studies.
Similarly, of 12 studies that analysed SMRs, smoothed
SMRs were presented in seven. In the included studies,
several different data smoothing techniques were used,
including fully Bayesian (n = 8), empirical Bayes (n = 4)
and spatial empirical Bayes (n = 5). A significant number
of visualisation reports (n = 30) were not complemented
by hypothesis testing, either by exploration methods or
modelling approaches. In 12 studies (7%), maps were
not presented, but a narrative description of TB burden
or a tabular presentation of TB distribution by adminis-
trative unit was described.

Spatial cluster (hotspot) identification
Use of at least one spatial cluster identification method
was reported in 73 (43%) studies, with Kulldorff ’s spatial
scan statistic used most frequently (n = 43), followed by
Local Moran test (n = 14) and Getis and Ord’s local
Gi(d) statistic (n = 12). Nearest neighbour index (NNI),
k-function and Besag and Newell methods were reported
in eight, six and two studies respectively (Table 1). The
presence of overall area-wide heterogeneity was assessed
most often using global Moran I (n = 28). In three stud-
ies, no globally significant spatial autocorrelation was
seen, although there was spatial clustering locally. Al-
though studies used data aggregated over various spatial
scales, only one evaluated the impact of spatial scale on
the hotspot detection performance of the spatial scan
statistic. Use of individual address-level data improved

the sensitivity of the spatial scan statistic compared to
data aggregated at the administrative level.
Simultaneous use of two spatial cluster detection

methods was reported in 11 studies and showed dif-
ferences in hotspot identification that ranged from
complete disagreement to some degree of similarity
(Table 3).

False-positive clustering
Not all spatial clusters are true clusters. False-positive
clusters can arise from various sources, including data
and methods used, and unmeasured confounding. Given
that notification data were by far the most commonly
used data source in the spatial analyses reviewed here, it
could not be determined if these clusters represented
true clusters of tuberculosis incidence or if they were
caused by factors such as pockets of improved case de-
tection. The role of differential TB detection has been
documented in some studies from low-income settings,
where increased spatial TB burden was linked to im-
proved health care access [12].
In addition, rate was the commonest disease indicator

used for disease mapping, as well as cluster detection in
this study. As described earlier, rates are liable to sto-
chasticity and can lead to false-positive clustering. How-
ever, rate smoothing and stability (sensitivity) analysis of
clusters identified using rates was done in only a few
studies [23, 24]. This remains an important area of con-
sideration in the future spatial analysis of TB.

Table 3 Comparisons of spatial clusters from multiple cluster identification methods

Author, year Methods Outcome Conclusion

Alene, K, 2017 [49] Local Moran’s I
Getis and Ord

Clustered
Clustered

50% similarity (two non-significant clusters
identified by LISA)

Álvarez-Hernández, G., et al. 2010 [145] Local Moran’s I
Besag and Newell

No significant Clustered Widely conflicting

Dangisso M, et al. 2015 [26] Getis and Ord
Spatial scan statistic

Clustered
Clustered

Similar overall pattern, but marked differences
by years

Feske, M., et al. 2011 [93, 178] Getis and Ord
GWR residuals

Clustered
Heterogeneous

Similar overall pattern, but some local
differences

Ge E, et al. 2016 [139] Getis and Ord
Spatial scan statistic

Clustered
Clustered

Similar overall pattern, but differences in some
locations and across time

Haase I, et al. 2007 [2] Hotspot analysis
SaTScan

Clustered
Clustered

Similar overall pattern, but some local
differences

Hassarangsee S, et al. 2015 [138] LISA
Spatial scan statistic

Clustered
Clustered

Very similar, but not identical

Li L, et al. 2016 [135] LISA
Spatial scan statistic

No significant cluster, Clustered Widely conflicting

Maceiel ELN, et al. 2010 [131] LISA, Getis and Ord
Model prediction

Clustered
Heterogeneous

Widely conflicting

Wubuli A, et al. 2015 [16] LISA
Getis and Ord

Clustered
Clustered

Similar overall pattern, but some local
differences

Wang T, et al 2016 [102] Spatial scan statistic
Getis and Ord

Clustered
Clustered

Similar overall pattern, but some local
differences

GWR geographically weighted regression; LISA local indicators of spatial association
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Spatiotemporal analysis
Temporal scale
In the spatial analysis of TB, the time window is an im-
portant dimension that influences the spatial pattern of
TB [25]. As TB is relatively a rare disease at the popula-
tion level and has a long incubation period, detection of
apparent spatial clusters requires a longer time scale
than for acute infectious diseases that may form spatial
clusters within days of the start of outbreak. Because of
this, the included studies were based on cases that accu-
mulated over considerable time periods, ranging from 1
to 25 years, with use of data aggregated over 5 years
being the most frequent practice (20%).

Approaches
Generally, two approaches were used in the space-time
cluster analysis of TB. The first uses classical space-time
clustering using algorithms which scan space over a
changing time window, such as Kulldorff ’s spatial scan
statistic [23, 25–29]. The second approach is to account
for the temporal dimension by repeating the spatial ana-
lysis for each time unit [26, 30–35]. In some studies,
spatial patterns in temporal trends of TB incidence were
determined as increasing or decreasing [27, 36–39].

Spatial statistical modelling
Different statistical modelling approaches were used to
describe the relationship between TB and ecological fac-
tors in 65 (39%) studies, including nine spatially explicit
models using Bayesian approaches. Conditional autore-
gressive (CAR) models were used in nine models to ac-
count for spatial correlation. Classical regression models
were used in 33, while non-Bayesian spatial regression
models were reported in 12.
Of the regression models that evaluated the effect on

model fit of including spatial structure (spatial error or
spatial lag), the inclusion of spatial structure improved
the performance of the model in seven studies and failed
to do so in two (based on deviance information criteria).
Spatial lag was explicitly modelled in seven studies and
highlighted the significant influence of neighbouring lo-
cations on TB distribution.
Traditional models including a Bayesian approach as-

sumed a stationary relationship between TB and its
spatial covariates and hence imposed a single (global) re-
gression model on the entire study area. Only six studies
used a geographically weighted regression (a local re-
gression model) to accommodate variation in the associ-
ation between TB and its risk factors from place to place
and showed spatially varying (non-stationary) effects (n
= 6). Other models used included mixture modelling (n
= 2) and factor analysis using principal component ana-
lysis (PCA) (n = 4).

Results from spatial analysis
Geographic distribution of TB
The geographic distribution of TB was heterogeneous in
all included studies both from low- and high-incidence
settings, although no formal hypothesis testing was pre-
sented in 55 (33%). An exception was one study from
South Africa that reported no significant clustering of
cases among HIV patients on ART [40]. Spatial analysis
was also used to describe the drivers of drug-resistant
tuberculosis, with tighter spatial aggregation of MDR-TB
cases compared with non-MDR cases taken as evidence
of transmission of MDR-TB [41].
Spatial analyses into both HIV and TB investigated

outcomes including HIV-associated TB incidence (n = 4)
and spatial patterns of TB/HIV-related mortality (n = 4).
All such studies revealed significant spatial heterogen-
eity. TB/HIV-related mortality in children was linked to
areas with low socio-economic status and maternal
deaths [42, 43].
Spatial methods used to study the impact of

community-based TB treatment showed marked im-
provement in access compared to health facility-based
treatment approaches (n = 1), and similar studies dem-
onstrated travel time and distance to be important
barriers to TB control (n = 2).

Correlations with social and environmental factors
The observed spatial patterns of TB were consistently
linked to areas with poverty (n = 14), overcrowding and
non-standard housing (n = 9), ethnic minority popula-
tions (n = 3), population density (n = 2), low education
status (n = 2), health care access (n = 3) and immigrant
populations (n = 5). However, a minority of studies have
also found conflicting or non-significant associations
between TB and poverty [44–46], population density
[47–49] and unemployment [45, 47].
Four studies (including three from China) examined

the correlation of climatic factors with TB incidence,
with conflicting results. Two province-level studies in
China using data from different time periods found TB
burden to be associated with increasing annual average
temperature [33, 50], although correlation with humidity
was conflicting. Positive associations were observed with
average precipitation [33, 50] and with air pressure [33]
in these studies, while inverse associations were ob-
served with sun exposure [50] and with wind speed [33].
In contrast, a county-level study which used average
monthly climate data within a single province of China
found the reverse, with temperature, precipitation, wind
speed and sunshine exposure showing associations in
the opposite direction [51]. A study that compared TB
incidence between regions with different climatic condi-
tions showed higher incidence at dry regions and low in-
cidence in humid regions [52].
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Space-time analysis to detect TB outbreaks
Studies reporting the application of the spatial
methods in the early identification of TB outbreak
were uncommon. Space-time TB studies using retro-
spective surveillance data in the USA found that the
spatial scan statistic and other methods could effect-
ively detect outbreaks months before local public au-
thorities became aware of the problem [25, 28].
However, as space-time clusters of TB can be due to
either ongoing transmission or reactivation, character-
ising the drivers that resulted in the spatial clustering
is essential. Findings from studies which compared
the timeliness and accuracy of space-time clusters in
identifying TB outbreaks varied with spatial resolution
and the background population, with two studies
from the USA detecting ongoing outbreaks [25, 28],
in contrast to false alarms due to reactivation TB
among immigrants in a study from Canada [1].

Spatial analysis of the source of TB infection
Spatial methods were also used to determine the role of
households and congregate settings (e.g. social gathering
venues, schools) on TB transmission risk (Table 1). The
role of the household was determined by cross-referencing
child and adolescent TB infection or disease with adult
TB in two studies [7, 8]. In these studies, the importance
of household exposure declined with the age of the child,
such that TB disease or infection was related to residential
exposure to adult TB in younger children but not
adolescents.
Congregate settings, which pose increased transmis-

sion risk, were identified using multiple techniques that
included linking TB cases to social gathering places
[53] and mapping the distribution of rebreathed air vol-
ume (RAV) [54] (including grading these settings based
on TB transmission principles [55]). These approaches
identified schools and social gathering sites as high-risk
areas.

Identifying local drivers
Recent transmission is a critical mechanism driving local
TB epidemiology in high-burden settings, while reactiva-
tion of remotely acquired infection is thought to
predominate in most low-endemic settings [4, 56]. Geo-
spatial clusters may reflect increased disease risk due to
geographic proximity, which may correspond to recent
transmission‚ or reactivation of latent TB infection in an
aggregate of individuals infected elsewhere or both [57].
In the reviewed studies, spatial methods coupled with
other methods were used to identify which of these two
mechanisms drives local TB epidemiology in the follow-
ing three ways.

Combining spatial clusters with cohort clustering: TB
clustering can occur from ongoing transmission or
from reactivation of latent infection among high-risk
subgroups due to shared characteristics such as simi-
lar country of birth rather than a shared transmission
network, a phenomenon known as cohort clustering.
Cohort cluster analysis is used to identify selected
high-risk population subgroups for targeted interven-
tions based on the relative TB incidence they bear.
The Lorenz curve is a simple visualisation tool that
compares the clustering (inequality) in the subgroup
of interest across regions and over time. One study,
which combined such cohort (birth country) cluster
analysis using the Lorenz curve of inequality with
spatial cluster analysis [31] revealed colocation of
these cluster types, suggesting the presence of both
transmission and reactivation. Spatial clusters among
foreign-born persons covered too large an area com-
pared to clusters among the locally born to be con-
sistent with direct person-to-person transmission. In
addition, spatial modelling was also applied to differ-
entiate the role of transmission from reactivation by
assessing spatial dependence. The presence of spatial
dependence (autocorrelation) was taken to indicate
transmission, while its absence was considered to in-
dicate reactivation [58].

Combining spatial and genotype clustering: Geno-
typic clustering of TB may be used as a proxy for recent
transmission, such that geospatial clusters in which cases
are genotypically clustered may be taken as stronger evi-
dence for locations where recent transmission has oc-
curred. These approaches were combined to quantify
the role of recent transmission and determine geograph-
ical locations of such transmission in 25 studies. This
was done either by determining the spatial distribution
of genotypic clusters [25, 28, 59–69] or by assessing the
genotypic similarity of cases contained within geospatial
clusters [2, 57, 65, 70, 71].
The findings from these studies varied considerably

by the country and sub-population studied (locally
born versus immigrants) (Table 4). Genotypic clusters
were spatially clustered in many studies, providing
evidence of recent local transmission. In some studies,
cases in geospatial clusters were less likely to be
dominated by genotypically similar cases (i.e. were
dominated by unique strains) than cases outside the
geospatial clusters, implying spatial aggregation of re-
activation TB [57]. This finding highlights that geo-
spatial hotspots in low TB incidence settings are not
necessarily areas of recent transmission and spatial
clustering may be primarily mediated by social deter-
minants, such as migration, HIV and drug abuse [57].

Shaweno et al. BMC Medicine  (2018) 16:193 Page 8 of 18



Combinations of multiple methods were typically used for
genotyping, with the commonest being IS6110 restriction
fragment length polymorphism (IS6110-RFLP) and spoligo-
typing (n = 9), followed by mycobacterial interspersed repeti-
tive unit variable number tandem repeat (MIRU-VNTR)
and spoligotyping (n = 5), although use of a single method
was reported in six studies (Table 4). No identified studies
reported use of whole genome sequencing.

Temporal distribution of genotypically clustered cases
The temporal pattern of genotypic clustering could
provide insights to distinguish between transmission
and reactivation. In some studies, the temporal distri-
bution of genotypically clustered cases indicated pe-
riods of 1 to more than 8 years between the
genotypically clustered cases [1, 72], implying reacti-
vation TB could also show genotypic similarity.

Table 4 Overlap between spatial and molecular clustering

Authors Country Genotyping methods Findings

Bishai WR, et al. 1998 [95] USA IS6110-RFLP and PGRS Genotypic clusters with epidemiologic links were
spatially clustered but 76% of DNA clustered cases
lack epidemiologic links.

Mathema B, et al. 2002 [169] USA IS6110-RFLP and spoligotyping Genotypic clusters showed spatial aggregation

Richardson M, et al. 2002 [72] South Africa IS6110-RFLP and spoligotyping Spatial aggregation of genotypic clusters was limited

Nguyen D, et al. 2003 [69] Canada IS6110-RFLP and spoligotyping Genotypically similar cases were not more spatially
clustered than genotypically unique cases

Moonan P, et al. 2004 [61] USA IS6110-RFLP and spoligotyping Genotypic clusters were spatially heterogeneous

Jacobson L, et al. 2005 [59] Mexico IS6110-RFLP and spoligotyping Spatial patterns were similar for both cases categorised
as reactivation or recent transmission

Haase I, et al. 2007 [2] Canada IS6110-RFLP and spoligotyping In spatial TB clusters of immigrants, there was significant
genotype similarity

Higgs B, et al. 2007 [25] USA IS6110-RFLP and PGRS Space-time clusters contained genotypic clusters

Feske ML, et al. 2011 [93, 178] USA IS6110-RFLP and spoligotyping Genotypically clustered cases were randomly distributed
across space

Evans JT, et al. 2011 [66] UK Spoligotyping and MIRU-VNTR Genotypic clusters showed spatial aggregation

Nava-Aguilera E, et al. 2011 [67] Mexico Spoligotyping Genotypic clusters were not spatially aggregated

Prussing C, et al. 2013 [57] USA Spoligotyping and 12- MIRU-VNTR Cases in geospatial clusters were equally or less likely to
share similar genotypes than cases outside geospatial
clusters

Tuite AR, et al. 2013 [94] Canada Spoligotyping and 24-MIRU-VNTR The proportion of cases in genotypic clusters was five
times that seen in spatial clusters (23% vs 5%)

Kammerer JS, et al. 2013 [28] USA Spoligotyping and 12-MIRU-VNTR Genotypically similar cases were spatially clustered

Verma A, et al. 2014 [1] Canada IS6110-RFLP and Spoligotyping Space-time clusters contained few or no genotypically
similar cases

Izumi K, et al. 2015 [65] Japan IS6110-RFLP Both genotypically similar and unique strains formed
spatial hotspots

Chamie G, et al. 2015 [194] Uganda Spoligotyping Genotypic clusters shared social gathering sites (clinic,
place of worship, market or bar)

Chan-Yeung M, et al. 2005 [47] Hong Kong IS6110-RFLP Spatial locations of genotypic clusters and unique cases
did not differ by their sociodemographic characteristics

Gurjav U, et al. 2016 [70] Australia 24-MIRU-VNTR Spatial hotspots were characterised by a high proportion
of unique strains; less than 4% of cases in spatial clusters
were genotypically similar

Ribeiro FK, et al. 2016 [62] Brazil IS6110-RFLP and Spoligotyping Genotypic clusters were spatially clustered

Saavedra-Campos M, et al. 2016 [71] England 24-MIRU-VNTR 10% of cases clustered spatially and genotypically

Seraphin MN, et al. 2016 [64] USA Spoligotyping and 24-MIRU-VNTR 22% of cases among USA-born and 5% among foreign-born
clustered spatially and genotypically

Yuen CM, et al. 2016 [68] USA Spoligotyping and 24-MIRU-VNTR Genotype clustered cases were spatially heterogeneous

Yeboah-Manu D, et al. 2016 [63] Ghana IS6110 and rpoB PCR Genotypic clusters showed spatial aggregation

Zelner J, et al. 2016 [60] Peru 24-MIRU-VNTR Genotypic clusters showed spatial aggregation

PGRS polymorphic GC-rich repetitive sequence
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Use of spatial methods to inform public health
interventions
In addition to their use in characterising the spatial dis-
tribution and determinants of TB, spatial methods have
been used to inform TB-related public health interven-
tions. In these studies, spatial analysis methods have
proved to be attractive in guiding public health interven-
tions, although their application to TB care beyond re-
search is not well documented. For instance, spatial
analysis techniques have been used to identify locations
with a high density of TB cases (termed hotspots, al-
though this definition was not based on spatial statistical
tests). Community screening was then conducted in
these areas, and its yield was compared to that from
routine service provision. This GIS-guided screening
was found to considerably improve the detection of
individuals with latent TB infection and other infectious
diseases [73]. Similarly, a study from South Africa
highlighted the potential for using GIS to promote
community-based DOTS by locating and geographically
linking TB patients to their nearest supervision sites, al-
though programmatic implementation of this approach
was not reported [74].
The potential for spatial methods to be used for the

early detection of TB outbreaks has also been described,
although the findings widely varied based on the back-
ground population [1, 28]. Spatial cluster analysis using
data at higher geographic resolutions improves the
method’s performance in cluster detection [25].

Discussion
While a range of methodologies has been employed in di-
vergent contexts, we found that essentially all geospatial
studies of TB have demonstrated significant heterogeneity
in spatial distribution. Spatial analysis was applied to im-
prove understanding of a range of TB-related issues, in-
cluding the distribution and determinants of TB, the
mechanisms driving the local TB epidemiology, the effect
of interventions and the barriers to TB service uptake. Re-
cently, geospatial methods have been combined with
genotypic clustering techniques to understand the drivers
of local TB epidemiology, although most such studies re-
main limited to low-endemic settings.
In almost all reviewed studies, retrospective program

data (notifications) were used. Notification data, espe-
cially from resource-scarce settings, suffer from the
often large proportion of undetected cases and are heav-
ily dependent on the availability of diagnostic facilities
[12]. None of the spatial studies of TB that used notifica-
tion data accounted for undetected cases, such that the
patterns in the spatial distribution and clustering could
be heavily influenced by case detection performance
[11]. Hence, distinguishing the true incidence pattern

from the detection pattern has rarely been undertaken,
despite its importance in interpretation.
The problems of undetected cases could be com-

pounded in the spatial analysis of drug-resistant forms
of TB, especially in resource-scarce settings where test-
ing for drug-resistant TB is often additionally condi-
tional on the individual’s risk factors for drug resistance
[75]. However, recently, there have been some attempts
to account for under-detection in the spatial analysis of
TB. A Bayesian geospatial modelling approach presented
a framework to estimate TB incidence and case detec-
tion rate for any spatial unit and identified previously
unreported spatial areas of high burden [11]. Another
approach is to estimate incidence using methods such as
capture-recapture [76, 77] and mathematical modelling
[78]. If case detection rate is truly known for a defined
region, incidence can be calculated as notifications di-
vided by case detection rate, although this is rarely if
ever the case. Spatial analysis using prevalence data
could also be considered in areas where such data are
available.
In relation to the data problems outlined above, spatial

analysis of TB could benefit from the use of model-
based geostatistics, which is commonly used in other in-
fectious diseases [79], although there are few studies that
consider Mtb [80]. In particular, measurement of TB
prevalence is impractical to perform at multiple loca-
tions due to logistic reasons. Therefore, model-based
geostatistics can be used to predict disease prevalence in
areas that have not been sampled from prevalence values
at nearby locations at low or no cost, producing smooth
continuous surface estimates.
Mapping of notification rates was the most com-

monly used data visualisation technique, in which TB
cases were categorised at a particular administrative
spatial level. This approach has the advantage of easy
interpretability, although it can introduce bias because
the size of the regions and the locations of their
boundaries typically reflect administrative require-
ments, which may not reflect the spatial distribution
of epidemiological factors [19, 22]. In addition, pat-
terns observed across regions may depend on the
spatial scale chosen, an effect known as the modifi-
able areal unit problem (MAUP) [17]. Because the
choice of spatial scale mainly depends on the limita-
tions of available data [81], only one study was able
to provide a systematic evaluation of the effect of
scale on spatial patterns, demonstrating improved per-
formance of Kulldorff ’s spatial scan statistic method
at a high geographic resolution [25]. Different spatial
resolutions could lead to markedly different results
for the same dataset regardless of the true extent of
correlation, due to averaging (aggregation effect) or
other spatial processes operating at different scales
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[15, 17, 18]. Assessing the presence of this effect
should be a priority for future studies using aggre-
gated data in spatial TB studies.
Bayesian smoothing techniques can mitigate the prob-

lems of stochastically unstable rates from areas with
small population [81], although such techniques were
not widely used in the included studies and so false
spatial clustering remains an important consideration.
The less frequent use of rate smoothing techniques in
the spatial analysis of TB could have various explana-
tions, including lack of software packages that are easily
accessible to the wider user (although GeoDa spatial
software currently provides an accessible platform to
people with limited statistical or mathematical back-
grounds [82]). It may also be that most spatial analyses
of TB are based on data aggregated over larger geo-
graphic areas from several years, such that the problem
of statistical stochasticity may not be a major problem,
although this was not explicitly discussed in the included
studies.
In all studies that applied spatial cluster identification

tools, TB cases were clustered irrespective of whether
the setting was low or high endemic. However, in studies
that incorporated more than one cluster identification
method, areas identified as hotspots were not identical,
with the extent of agreement between the alternative
methods highly variable. This could be partly attribut-
able to different methods testing separate hypotheses,
such that these results may correctly support one hy-
pothesis while refuting another. However, there is no
consensus on how to interpret these findings appropri-
ately and consistently [82, 83], and method selection did
not typically appear to be based on such considerations
[84, 85]. Thus, caution is required when considering in-
terventions assessing clusters with one method only, as
is frequently undertaken in TB spatial analysis [22].
Use of multiple cluster detection methods and requir-

ing their overlap to represent a truly high-risk area is in-
creasingly recommended [82, 84, 86]. However, this
approach could also increase the risk of false-positive
spatial clustering when different methods are used seri-
ally until significant clusters are observed [85]. Sensitiv-
ity analysis of spatial clustering [87, 88] and cluster
validation using geostatistical simulations [23, 89, 90]
can help identify robust clusters. While methods that ad-
just for confounding are generally preferred [91], further
investigative strategies including data collection and
cluster surveillance are required to validate an observed
spatial cluster before introducing interventions [84, 85].
Although the focus of this study is TB, several methodo-
logical considerations outlined here would remain true
for many infectious diseases.
In several studies, presence of spatial clustering or

spatial autocorrelation in TB distribution was considered

to reflect ongoing TB transmission, while its absence
was taken to indicate reactivation [58]. Recently, mo-
lecular techniques have been combined with geospatial
methods to understand the drivers of local TB epidemi-
ology, although findings from these studies vary by
country and the subset of the population studied. While
spatial clustering of genotypically related cases was re-
ported in several studies and likely reflected intense local
TB transmission [61, 65], spatial clusters were domi-
nated by genotypically unique strains in some studies,
implying that reactivation was the dominant process [47,
72]. Hence, the combination of genotypic and geospatial
techniques can improve understanding of the relative
contribution of reactivation and transmission and other
local contributors to burden.
Notwithstanding the general principles outlined above,

not all spatial clusters of genotypically related cases will
necessarily result from recent transmission, as simultan-
eous reactivation of remotely acquired infection and lim-
ited genetic variation in the pathogen population can also
lead to genotypic similarity of spatially clustered cases [2,
92]. In some studies, the time between the first and last
diagnosis of the cases in the genetic cluster ranged from 1
to more than 8 years [1, 72], suggesting that genotypic
clustering could occur from spatially clustered reactiva-
tion. Similarly, limited spatial aggregation of genotypically
clustered cases [72, 93, 94] and lack of epidemiological
links between genotypically clustered cases in some stud-
ies may reflect migration of the human population over
the extended time scale over which TB clusters occur [95],
although casual transmission creating spatially diffuse
clusters is an alternative explanation.
The extent of genotypic similarity between cases also

depends on the discriminatory power of the genotyping
method and the diversity of the pathogen population.
Compared to whole genome sequencing, standard mo-
lecular genotyping (spoligotyping, MIRU-VNTR and
IS6110) methods generally overestimate TB transmission
with a false-positive clustering rate of 25 to 75% based
on strain prevalence in the background population [92,
96]. The accuracy of these tests in distinguishing on-
going transmission from genetically closely related
strains is very low among immigrants from high TB inci-
dence settings with limited pathogen diversity [92, 97].
Thus, care should be taken when interpreting the geno-
typic similarity of cases among immigrant groups, as
independent importation of closely related strains is
possible. The frequent finding of more extensive
genotypic than spatial clusters [71, 94] may reflect
overestimation by the genotypic methods [98]. On the
other hand, TB transmission might not result in ap-
parent spatial clustering due to reasons that include
population movement, poor surveillance and unmeas-
ured confounding.
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Regression models used for spatial analysis of TB were
either conventional regression models or models that in-
corporated spatial effects. Although the former was
more commonly employed, the majority of models in-
corporating spatial effects confirmed that accounting for
spatial correlation improved model fit [11, 33, 44, 58,
99–101]. Conventional regression models assume spatial
independence of model residuals and so ignore the po-
tential presence of spatial autocorrelation, such that
non-spatial models may lead to false conclusions regard-
ing covariate effects.
The use of the conventional regression models de-

scribed above may be appropriate for spatial analysis and
spatial prediction, in the case that spatial dependence in
residuals has been ruled out. Under this approach, the
standard procedure is to start with classical ordinary
least squares (OLS) regression models and then look for
spatial dependence in the residuals, which implies the
need for a spatially explicit regression model [82]. Sev-
eral of the models reviewed here did not appear to adopt
this approach, and so, caution is required when inter-
preting the findings from such analyses.
Most regression models treat the association between

TB rates and ecological factors as global and are unable to
capture local variation in the estimates of the association.
However, geographically weighted regression (GWR) esti-
mates coefficients for all spatial units included [22] and
has often found the effect of risk factors on TB incidence
to be spatially variable [16, 102–104], implying that global
models may be inadequate to consider locally appropriate
interventions. Few studies were able to perform explicit
Bayesian spatial modelling incorporating information from
nearby locations, thereby producing stable and robust esti-
mates for areas with small populations and robust esti-
mates of the effects of covariates [91].
While our review focused on methodological issues, sev-

eral consistent observations were noted. Most import-
antly, all studies included in this review demonstrated that
TB displayed a heterogeneous spatial pattern across vari-
ous geographic resolutions. This reflects the underlying
tendency for spatial dependence that can be caused by
person-to-person transmission, socio-economic aggrega-
tion [49] and environmental effects [58, 93]. However, in
nearly all included studies, spatial analyses of TB were
based on the individual’s residence, although considerable
TB infection is acquired from workplaces and other social
gathering sites [8, 54]. Such studies could wrongly attri-
bute TB acquired from such sites to residential exposure,
leading to resource misallocation.
Several models have shown significant associations be-

tween TB rates and demographic, socioeconomic and
risk-factor variables, although it is difficult to rule out
publication bias favouring studies with positive findings.
However, associations observed between TB rates and

different factors such as population density, unemploy-
ment and poverty at the population level varied across
studies. These were recognised as important
individual-level risk factors, highlighting the potential
for ecological fallacy.
We did not perform individual study level analysis of

bias in this review. Analyses in the reviewed studies in-
volved counts and proportions across different spatial
distributions, rather than comparisons across different
treatment/exposure groups. Standard tools of bias ana-
lysis predominantly focus on different treatment groups
within cohorts (absent from our included studies) and
hence are not applicable to this review. We have how-
ever discussed many potential sources of bias in the
studies included in our review.
Most of the reviewed studies were from high-income

settings, which may either reflect publication bias or a
focus of research efforts on such settings. In high-inci-
dence settings, the more limited use of spatial analysis
methods could reflect a lack of access to resources (e.g.
georeferenced data and spatial software packages) or in-
sufficient expertise in these settings. However, it is these
high-transmission settings which stand to gain the most
from an improved understanding of TB spatial patterns
and also these settings in which geospatial clustering may
be most important epidemiologically.

Conclusions
A range of spatial analysis methodologies have been
employed in divergent contexts, with virtually all studies
demonstrating significant heterogeneity in spatial TB
distribution regardless of geographic resolution. Various
spatial cluster detection methods are available, although
there is no consensus on how to interpret the consider-
able inconsistencies in the outputs of these methods ap-
plied to the same dataset. Further studies are needed to
determine the optimal method for each context and re-
search question and should also account for unreported
cases when using notifications as input data where pos-
sible. Combining genotypic and geospatial techniques
with epidemiologically linkage of cases has the potential
to improve understanding of TB transmission.

Appendix
Search strings
Search terms used in Embase, Medline, PsycInfo, Scopus
and Web of Science
The exp refers to explode which means include all sub-
headings underneath spatial analysis. When exploded, it
contains geographic mapping, spatial regression and spa-
tiotemporal analysis.
Brackets () denote subject headings (MeSH in Med-

line and Emtree in Embase) terms highlighted by the
database.
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Medline and PsycInfo

1. (exp spatial analysis) OR (Geographic information
systems) OR (Space-time clustering) OR
geographic* analys*.mp OR spati*regres*.mp OR
spat*temp*.mp OR spat* analys*.mp OR spat* temp*
analys*.mp OR spat* temp* pattern*.mp OR
geography* distribut*.mp OR spat* temp*
distribut*.mp OR heterogen* distribut.mp OR
spacetime cluster*mp OR space-time cluster*mp
OR hotspot.mp Or hot spots. mp OR GIS OR spati*

2. (tuberculosis) OR (tuberculosis, multidrug resistant)
OR TB.mp

3. 1 AND 2

Embase

1. (spatial analysis) OR (geographic mapping) OR
(spatial regression) OR (Spatiotemporal analysis OR
(spatial autocorrelation analysis) OR (geography)
OR (geographic distribution) OR (geographically
weighted regression) OR (geographic information
systems) OR (cluster analysis) OR geographic*
analys*.mp OR spati*regres*.mp OR spat*temp*.mp
OR spat* analys*.mp OR spat* temp* analys*.mp OR
spat* temp* pattern*.mp OR geography*
distribut*.mp OR spat* temp* distribut*.mp OR
heterogen* distribut.mp OR spacetime cluster*mp
OR space-time cluster*mp OR hotspot.mp Or hot
spots. mp OR GIS OR spati*

2. (tuberculosis) OR (multidrug resistant tuberculosis)
OR TB.mp

3. 1 AND 2

Scopus
(“Spatial analysis” OR
“Spatio-temporal analysis” OR
“Geographic Information System” OR
“Geographic Mapping” OR
“geographic distribution” OR
“spatial regression” OR
“spatial autocorrelation analysis” OR
“Spatiotemporal analysis” OR
hotspot OR
“hot spot” AND tuberculosis/TB

Web of science
[(Spatial analysis) OR
(Spatio-temporal analysis) OR
(Geographic Information System) OR
(Geographic Mapping) OR
(geographic distribution) OR
(spatial regression) OR

(spatial autocorrelation analysis) OR
(Spatiotemporal analysis) OR
(hotspot) OR
(hot spot)] AND (Tuberculosis)

Additional file

Additional file 1: Figure S1. Trends in the spatial analysis of TB
(note—the study included publications up to February 15, 2017).
(DOCX 17 kb)
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Exploring Protein Supersecondary Structure Through
Changes in Protein Folding, Stability, and Flexibility

Douglas E. V. Pires, Carlos H. M. Rodrigues, Amanda T. S. Albanaz,
Malancha Karmakar, Yoochan Myung, Joicymara Xavier,
Eleni-Maria Michanetzi, Stephanie Portelli, and David B. Ascher

Abstract

The ability to predict how mutations affect protein structure, folding, and flexibility can elucidate the
molecular mechanisms leading to disruption of supersecondary structures, the emergence of phenotypes, as
well guiding rational protein engineering. The advent of fast and accurate computational tools has enabled
us to comprehensively explore the landscape of mutation effects on protein structures, prioritizing muta-
tions for rational experimental validation.
Here we describe the use of two complementary web-based in silico methods, DUET and DynaMut,

developed to infer the effects of mutations on folding, stability, and flexibility and how they can be used to
explore and interpret these effects on protein supersecondary structures.

Key words Missense mutations, Protein stability and folding, Machine learning, Normal mode
analysis, Graph-based signatures, DUET, DynaMut

1 Introduction

Proteins are marginally stable, versatile macromolecules involved in
a large variety of biochemical processes which are strictly linked and
regulated by their native conformation. Mutations leading to
changes in protein folding, stability, and conformation can have
large phenotypic consequences, responsible for the development of
many genetic disorders [1–14], including cancers, and even respon-
sible for changes in drug susceptibility [15–27]. While these effects
are commonly thought about in terms of reduced protein stability,
mutations leading to increased stability and rigidification of the
molecule can be equally deleterious. Maintaining, or enhancing,
protein stability, and the identification of mutations that do not
negatively affect protein stability, also remains one of the most
difficult and important challenges in protein engineering.
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While experimental validation of protein thermodynamic para-
meters remains a laborious task, the development of novel robust
and scalable computational methods (Table 1) has allowed for the
evaluation of the complete landscape of structural effects of muta-
tions in a protein system and their effects on protein stability and
flexibility within minutes, enabling rapid mutation prioritization.

Using the concept of graph-based signatures, we have devel-
oped robust methods for quantitatively analyzing effects of single
missense mutations on protein stability, flexibility, and interactions
[9, 28–37]. DUET [37] (http://biosig.unimelb.edu.au/duet) is a
machine learning-based approach that integrates and optimizes two
complementary methods in an optimized predictor (mCSM-
Stability [36] and SDM [38]) using support vector machines.
This method enables the accurate assessment of the effects of
mutations on protein folding and stability. DynaMut [28]
(http://biosig.unimelb.edu.au/dynamut) is a novel method that
takes into account molecular motions and, by combining the
graph-based signatures with coarse-grained normal mode analysis,
generates a consensus prediction of effects of mutations on the
protein conformational repertoire. These methods together com-
pose a powerful platform that allows users to navigate the landscape
of mutations effects on folding, stability, and flexibility.

2 Materials

DUET and DynaMut are structure-based methods for assessing
effects of single-point missense mutations on protein stability/
folding and protein flexibility/conformation, respectively. For
both methods, users are required to provide:

1. Wild-type protein structure in PDB format: For both methods,
a wild-type structure of the protein of interest in the Protein
Data Bank [39] format (.pdb) must be provided to perform the
predictions. This can be either (a) an experimentally solved
structure, with previously solved structures available in the
Protein Data Bank, or (b) a model, for instance, obtained via
comparative homology modeling (see Note 1 on how to deal
with oligomeric structures). We have previously shown that
using homology models built using templates down to 25%
sequence identity does not significantly reduce predictive per-
formance of either method (seeNote 2). Users have the option
to either upload the structure file or provide the PDB accession
code when they wish to use an experimental structure previ-
ously deposited into the PDB (http://www.rcsb.org or http://
www.ebi.ac.uk/pdbe/) (see Note 3).

2. Mutation information: The user also needs to supply informa-
tion on the mutation or mutations they wish to analyze,
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Table 1
List of freely available webservers and software for predicting effects of single-point mutations on
protein folding, thermostability, and flexibility

Method Technique Data set Correlation DOI
Publication
year

Folding mCSM-
Stability

Structural
signatures

ProTherm—
351
mutations

0.73 https://doi.org/
10.1093/
bioinformatics/
btt691

2014

SDM2 Environment-
specific
substitution
tables

ProTherm—
351
mutations

0.61 https://doi.org/
10.1093/nar/
gkx439

2017

DUET Integrated
approach

ProTherm—
351
mutations

0.71 https://doi.org/
10.1093/nar/
gku411

2014

Eris Physical force
field with
atomic
modeling

ProTherm—
351
mutations

0.35 https://doi.org/
10.1038/
nmeth0607-
466

2007

I-Mutant
2.0

Neighboring
residue
composition

ProTherm—
351
mutations

0.29 https://doi.org/
10.1093/nar/
gki375

2005

Auto-Mute Delaunay
tessellation

ProTherm—
351
mutations

0.46 https://doi.org/
10.1155/
2014/278385

2014

CUPSAT Atom
potentials
and torsion
angle
potentials

ProTherm—
351
mutations

0.37 https://doi.org/
10.1093/nar/
gkl190

2006

MAESTRO Statistical
scoring
functions

ProTherm—
351
mutations

0.70 https://doi.org/
10.1186/
s12859-015-
0548-6

2015

FoldX Empirical full-
atom force
field

ProTherm—
351
mutations

0.35 https://doi.org/
10.1093/nar/
gki387

2005

PoPMuSiC Statistical
potentials
and neural
networks

ProTherm—
351
mutations

0.67 https://doi.org/
10.1186/1471-
2105-12-151

2011

NeEMO Residue
interaction
networks

ProTherm—
351
mutations

0.67 https://doi.org/
10.1186/1471-
2164-15-S4-S7

2014

Thermal
stability

HoTMuSiC Statistical
potentials

ProTherm—
1626
mutations

0.59 https://doi.org/
10.1038/
srep23257

2015

FireProt Structural and
evolutionary
information

ProTherm—
1152
mutations

87%
precision

https://doi.org/
10.1093/nar/
gkx285

2017

Flexibility DynaMut Structural
signatures
and NMA

ProTherm
(2004)—
351
mutations

0.69 https://doi.org/
10.1093/nar/
gky300

2018
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including (1) the chain identifier (one-letter code of the chain,
which corresponds to the 22nd column of the coordinate
section in the PDB file where the mutation occurs) (see Note
1) and (2) the mutation code, which consists of the one-letter
amino acid residue code of the wild-type residue, the residue
number position as in the PDB file (columns 23–26 of the
coordinate section), and the one-letter code of the mutated
residue (e.g., R282W denotes a mutation from arginine to
tryptophan at residue position 282).

3 Methods

3.1 Predicting

and Analyzing Effects

of Mutation on Protein

Stability and Folding

with DUET

1. DUET is freely available as a user-friendly web interface and is
compatible with most operating systems and browsers. Open
up the prediction server, http://biosig.unimelb.edu.au/duet/
stability, on a web browser of your preference.

2. Provide the wild-type protein structure of interest by either
uploading a PDB file or supplying a valid four-letter PDB
accession code (Fig. 1a).

3. DUET offers users the option of two prediction modes,
(a) assessing stability effects of a single mutation or
(b) systematically evaluating all possible mutations at a given
residue position. For a single mutation, users need to provide
the mutation information and the mutation chain. For system-
atic evaluation, the one-letter code of the mutated residue is
omitted.

3.2 DUET Prediction

Output

1. If a single mutation is provided, after processing, the results
page is shown (Fig. 1b), which includes information about the
mutation and the predicted effects on stability for DUET and
for the individual methods (mCSM-Stability and SDM). An
interactive molecular visualization is also shown, allowing users
to inspect the wild-type residue environment.

2. For systematic evaluation of a given residue, the predicted
effects on protein stability for all 19 possible mutations are
shown in tabular format (Fig. 1c).

3. Predicted effects are given as the change in Gibbs Free Energy,
ΔΔG (kcal/mol), with negative values denoting destabilizing
mutations and positive values, stabilizing ones. While users
should interpret the values in the context of the protein system
being studied, previous studies have used a rule of thumb that
highly destabilizing/stabilizing mutations are those with a pre-
dicted |ΔΔG| > 1.0 kcal/mol; and moderately destabilizing/
stabilizing mutations are those with a predicted |ΔΔG| between
0.5 and 1.0. SeeNotes 4 and 5 for further information on how
to interpret results.
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Fig. 1 DUET submission and results web interface. (a) The submission page allows users to either provide its
own PDB file or inform an accession code of a protein of interest (1). Users have the option to analyze a
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3.3 Predicting

and Analyzing Effects

of Mutations

on Protein Flexibility

and Conformation

with DynaMut

1. As with DUET, DynaMut predicted changes upon mutation in
protein stability are presented as a change in the Gibbs Free
Energy of folding and stability (ΔΔG in kcal/mol), calculated
as the difference between the wild-type and mutant proteins:
ΔΔG ¼ ΔGwt � ΔGmt. A positive value denotes a stabilizing
mutation, while a negative value denotes a destabilizing one.
The DynaMut consensus prediction uses both normal mode
analysis and graph-based signatures to more accurately identify
stabilizing mutations, a limitation of other published
approaches (Fig. 2b).

2. DynaMut is also freely available for use freely as a user-friendly
web interface. In order to run a prediction, open up the Dyna-
Mut prediction page at http://biosig.unimelb.edu.au/
dynamut/prediction on a web browser of your preference
(the web server is compatible with the most common operating
systems and browsers).

3. Users have the option to either evaluate a single mutation or
provide a text file with a list of mutations to be evaluated in the
same format discussed above to run DUET (Fig. 2a). There are
no limits on the number of mutations that can be analyzed.

4. For both predictions modes, users are required to provide the
wild-type protein structure of interest by either uploading a
PDB file or supplying a valid four-letter code PDB accession
code of a deposited experimental structure (Fig. 2a).

3.4 DynaMut

Prediction Output

1. Prediction results: DynaMut will present the results under
three main separate tabulated headings: (1) variation of Gibbs
Free Energy predictions, (2) interatomic interactions, and
(3) deformation/fluctuation analysis. See Notes 4 and 5 for
further information on how to interpret results.

2. DynaMut also graphically displays the resulting change in
vibrational energy between the wild-type and mutant struc-
tures (Fig. 2b). This highlights regions predicted to be more
flexible (red) or less flexible (blue) upon mutation. All calcula-
tions and representations can be downloaded through links
located at the bottom of the results page.

�

Fig. 1 (continued) specific mutation or perform a systematic analysis of all mutations for a given residue (2).
(b) For single-mutation prediction, the mutation identification (3) and the predicted effects on stability are
shown (4), as well as an interactive molecular visualization (5). (c) For systematic evaluation of mutation on a
given residue, the results are shown in tabular format
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3. When multiple mutations are analyzed, these results are pre-
sented in a tabulated format, where users are able to open up
and analyze each mutation within the single-mutation analysis
result interface.

Fig. 2 DynaMut submission and results web interface. (a) The submission page allows for the analysis of a
single-point mutation (1) or a list of mutations (2). The main results page (b) depicts the predicted effect of
mutation by DynaMut (3) as well as predicted effects by its individual components (4). A depiction of the
calculated different in vibration entropy (5) is also shown
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3.5 Visualizing

Effects of Mutations

on Protein Structure

1. DynaMut also enables visualization of the effects of a mutation
within the wild-type and mutant protein structure (Fig. 3).

2. The interatomic interactions made by the wild-type andmutant
residues, calculated using Arpeggio [30] (http://biosig.
unimelb.edu.au/arpeggioweb/), are visually shown. This
enables the user to identify how the mutation will affect the
local interaction network—important for maintaining protein
stability (Fig. 3a).

3. The normal mode analysis predictions are also shown, high-
lighting changes in vibrational energy between the wild-type
and mutant structures (Fig. 3b).

4. All these representations are downloadable as Pymol session
files from links at the bottom of the results page.

4 Notes

1. It is important to notice that both methods, DUET and Dyna-
Mut, were conceived to analyze monomer structures. In case of
analysis of oligomers, users are advised to filter their PDB files
prior to submission, filtering chains of interest (for instance,
using the PDBest software [40]). The servers will consider all
chains submitted; however, a warning message is exhibited.
When considering the effects of mutations on oligomeric struc-
tures, it is also important to consider the effects of the muta-
tions on the affinity of the monomers to form the oligomer.
This can be assessed using mCSM-PPI (http://biosig.unimelb.
edu.au/mcsm/protein_protein).

2. The chain ID for the provided PDB file is a mandatory field,
and blank characters are not allowed. Some homology model-
ing tools do not automatically add a chain ID. If this is the case,
the user will need to modify the PDB file prior to submission to
the servers. There are several tools available to perform this
task.1

3. Another source of error comes from structures with multiple
models. It is an important practice to filter NMR structures,
selecting a single model.

4. Special cases: Mutations to and from prolines. Prolines are the
only amino acid whose amino group is connected to the side
chain, which in the context of the peptide bond greatly limits
torsional angles. The nature of this residue, therefore, needs to
be taken into account while analyzing mutation effects. For
instance, (1) mutations to prolines in the middle of alpha-
helices can introduce kinks, affecting local structure, and

1 http://www.canoz.com/sdh/renamepdbchain.pl
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Fig. 3 DynaMut secondary results web interface. (a) A depiction of the calculated interatomic interactions (1)
for wild-type and mutant proteins is shown, with interactions identified by color (2). (b) Depicts visualizations
of the deformation and fluctuation analysis as fluctuation plot per residue (3) and atomic fluctuation in the
context of the structures (4). Figure and individual files (pymol files for molecular visualization) are available for
download



(2) since prolines are commonly found in turns and loops, their
substitution might interfere with the formation of superse-
condary structures such as hairpin loops.

5. Special cases: mutations of positive-phi glycines. Similarly to
prolines, positive-phi glycines, while rare in experimental struc-
tures, should also be given special consideration due to its
torsional angles. Glycines are the only residues capable of
adopting positive-phi angles. These glycines are usually con-
served across evolution, meaning that mutations of positive-phi
glycines tend to be destabilizing.
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ABSTRACT

Proteins are intricate, dynamic structures, and small
changes in their amino acid sequences can lead to
large effects on their folding, stability and dynamics.
To facilitate the further development and evaluation
of methods to predict these changes, we have de-
veloped ThermoMutDB, a manually curated database
containing >14,669 experimental data of thermody-
namic parameters for wild type and mutant proteins.
This represents an increase of 83% in unique mu-
tations over previous databases and includes ther-
modynamic information on 204 new proteins. Dur-
ing manual curation we have also corrected anno-
tation errors in previously curated entries. Associ-
ated with each entry, we have included information
on the unfolding Gibbs free energy and melting tem-
perature change, and have associated entries with
available experimental structural information. Ther-
moMutDB supports users to contribute to new data
points and programmatic access to the database via
a RESTful API. ThermoMutDB is freely available at:
http://biosig.unimelb.edu.au/thermomutdb.

GRAPHICAL ABSTRACT

INTRODUCTION

Protein thermodynamic stability is a fundamental property
of proteins that significantly influences their structure, func-
tion, expression, and solubility. Changes in protein stability
have been shown to be a main driving molecular mecha-
nism of genetic diseases (1–8) and even drug resistance (9–
18). Small changes in the protein sequence can have signifi-
cant consequences on their intricate structures, reflected in
changes in their stability and ability to correctly fold (19).
This is often a significant consideration whenever consider-
ing a new mutation, whether in the context of protein engi-
neering or variant characterisation (20,21).

The accurate prediction of the effects of mutations on
protein stability remains a complex and challenging prob-
lem. The development of computational approaches to
tackle this have required large mutational datasets, however
in turn have been limited by the quantity and quality of data
available.
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One of the first databases to collect information on the
effects of mutations on protein stability, ProTherm (22), led
to the exploration and rapid development of new computa-
tional approaches (23–28). However, this database has not
been updated for 7 years and many errors have been identi-
fied previously (29,30), limiting both previous methods and
future developments.

To overcome this, we have developed a new compre-
hensive and user-friendly resource for thermodynamic data
from protein mutations, ThemoMutDB. Figure 1 depicts
the database development workflow, which is divided into
three main stages: (i) data acquisition and curation, (ii) mu-
tation annotation and (iii) web-server development. By us-
ing a rigorous and careful data curation approach, Themo-
MutDB represents a significant improvement in both the
quantity and quality of data. This will not only enable the
development of a new generation of methods but also an
unbiased assessment of previously proposed ones.

MATERIALS AND METHODS

Data acquisition and curation

Data acquisition for ThermoMutDB was divided into two
steps: manual checking of previously mined data avail-
able in other resources (Figure 1A) and manual litera-
ture curation of new thermodynamic data (Figure 1B).
Within ThermoMutDB we captured thermodynamic infor-
mation, experimental conditions, and literature citations.
We also standardized measurements and calculations across
the data entries, including temperature in Kelvin, energy in
kcal/mol, and Gibbs free energy (��G) as in the formula:

��G = �G (wild-type) − �G (mutant)

where negative ��G values indicate that the mutation has
destabilized the protein and positive ��G values that the
mutant protein is more stable.

On the first data acquisition stage, all 1,902 references
in ProTherm were manually checked and validated. Refer-
ences that did not contain data about missense mutations
were removed, leaving 829 papers. During this process, er-
rors in data fields were corrected, duplicate entries were re-
moved, and 329 new data-points not previously captured,
but present in the original papers, were included.

New data were identified through manual literature cu-
ration. Optimized search terms (Supplementary Figure
S1) were used to identify an initial pool of over 34,000
manuscripts available on PubMed. These were further nar-
rowed down to those that contained experimental thermo-
dynamic results for missense mutations. In total, 393 papers
were analyzed and 5,654 new data points obtained, which
were confirmed by at least two independent curators. Sup-
plementary Figure S2 shows the distribution of unique mu-
tations collected per year.

Mutation annotation

Collected mutations were mapped to protein structures
available at the Protein Data Bank using (31). Different
characteristics of the wild-type residue environment were
calculated, including secondary structure, torsional angles,

relative solvent accessibility (32) and residue depth (33). Ad-
ditional residue-level information used to annotate the mu-
tations included different substitution matrix scores. Mu-
tation annotations were calculated using the Biopython
(34). Mutation effects are also depicted via pharmacophore
modeling (23). Pharmacophore modeling has been intro-
duced in the context of mutation analysis in a previous work
(23) to characterise the effect of mutations based on the dif-
ferences in atom counts per pharmacophore type. Muta-
tions that do not map to any available experimental struc-
tures are still listed but without any structure-based features
calculated.

Database and web interface implementation

The database architecture was developed using
SQLAlchemy, a database toolkit for Python (version 2.7).
All data is stored in an SQLite database and available to
download at http://biosig.unimelb.edu.au/thermomutdb/
downloads. The backend system was developed using the
Flask Python module (version 1.0.2) and the REStful API
uses RestX extension for Flask (version 0.2.0). The web
interface was implemented using the Bootstrap (version
4) framework. It also uses HTML5, CSS, JavaScript, and
JQuery. JINJA2 templating language for Python was used
to dynamically generate HTML templates.

RESULTS

Web interface and usage

ThermoMutDB contains information of the protein, muta-
tional information, experimental methods and conditions,
thermodynamic parameters, derived data, and literature in-
formation (details are available in Supplementary Table S1
and Figure S2). The database provides a user-friendly web
interface that contains five modules: Explore and Browse,
Contribute, Downloads, API and a detailed tutorial.

Explore and browse. In order to access the data, a search
can be performed. This can be done either by selecting the
‘Browse’ page from the navigation bar or by writing the de-
sired words on search input available on the ‘Home’ page. In
both cases, users can use different filter combinations (Fig-
ure 2A), include or exclude columns, and download selected
results in several formats (JSON, XML, CSV, TXT, SQL,
MS-Excel and PDF).

The search results are shown in an interactive table,
with columns providing experimental information recov-
ered from literature and also derived properties (Figure 2B).
Aiming to improve user experience, it is possible to visual-
ize a summary for each entry by clicking on the ‘+’ icon.
This option can lead to a ‘Details’ page that shows all in-
formation about the mutation and provides related files to
download (Supplementary Figure S3).

User contributions. To facilitate a continuous database up-
date, we have implemented a user’s contribution section
(Supplementary Figure S4), which allows the scientific com-
munity to share new data or identify potential errors that
will be manually checked by our team. To submit contribu-
tions it is just required to fill the form with mutation and
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Figure 1. ThermoMutDB workflow for data acquisition and processing. The development workflow is divided into three steps: (A) verification of previously
available mutation thermodynamics information (B) collection and manual curation of new data and (C) data aggregation and mutation annotation.

thermodynamics data, to inform a contact email and a ref-
erence (paper published, accepted, or pre-print). Although
significant effort has been devoted to ensure high quality
data curation, users have the option to report any issues
with the data to our team. These are important efforts to
further expand and improve the database.

Downloads. All data in the database can be downloaded
from the ‘Download’ page in CSV or JSON formats. It is
also possible to download the protein structure files related
to data available.

Programmatic access via an API. ThermoMutDB sup-
ports programmatic access via a RESTful API to allow
other services to harness our data easily. The ‘API’ page pro-
vides documentation of all endpoints available and allows
users to execute queries using provided fields. Other queries
can be performed by passing parameters through the URL
(Supplementary Figure S5).

Data statistics

Examining the distribution of mutations in the Thermo-
MutDB reveals a number of natural biases that need to be
taken into consideration when developing, or evaluating,
new predictive tools. ThermoMutDB contains thermody-
namic information on 14,669 mutations across 588 proteins.

This represents a significant increase over ProTherm, with
a 83% increase in unique mutations and over 300 new pro-
teins. Supplementary Figure S6 shows the distribution of
unique mutations collected per year. The majority of these
are single-point mutations (82.8%), with mutations to ala-
nine being over-represented (Figure 3D). This becomes evi-
dent when we look at the distribution of wild-type and mu-
tant amino acid residues within the database (Supplemen-
tary Figure S7). The most frequent mutations were from
Leucine and Valine to Alanine, while 10 mutations were
not present in the dataset, including W→G, W→P and
C→K among others, which seem to denote large changes
in residue physicochemical properties.

As would be expected by chance, two thirds of muta-
tions within the database are destabilising (Supplementary
Figure S8). This natural bias creates an extra challenge for
computational methods built using this information, in par-
ticular those based on machine learning approaches, re-
garding the prediction of stabilising mutations, which are
less well represented. It is important to note, however, that
the data on ThermoMutDB represents an increase of over
100% in stabilising mutations in comparison with previous
resources. No apparent correlation was identified between
the mutation effects and their location within protein struc-
tures, with mutations leading to increased and decreased
stability similarly distributed across protein structures when
looking at residue depth (Supplementary Figure S9). Muta-
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Figure 2. ThermoMutDB web interface search and results pages. (A) Ther-
moMutDB offers 12 query modes, with detailed information available
about each query type through the ‘Help’ page at the top navigation bar
and through on-page help in the form of question mark tooltips. (B) The
general layout of the result page, showing a summary of information for
each entry as well as detailed view.

tions in ThermoMutDB are spread across different protein
classes (Supplementary Figure S10) and diverse in terms of
secondary structure (Supplementary Figure S11).

Within ThermoMutDB, we identified mutations that had
been experimentally measured at least twice and, by com-
paring the variance between these replicate results (Figure
3C), we identified a Pearson’s correlation of 0.9. This pro-
vides a measure of the intrinsic noise in the data, and sug-
gests a theoretical maximum performance that should be
expected for predictive stability tools built using this data.

DISCUSSION

ThermoMutDB represents a significant increase in avail-
ability, reliability and diversity of thermodynamics data
linking effects of mutations to protein stability. We believe
this resource will have a significant impact on understand-
ing the effects of mutations on protein structure and sta-
bility. It will enable experimental scientists to identify pre-
viously characterised mutations in proteins of interest, and
provide computational scientists with a comprehensive and
refined set of experimental data to query the relationship
between changes in protein sequence and stability, facilitat-

Figure 3. Composition of ThermoMutDB entries. (A) depicts the distribu-
tion of phylogenetic kingdoms of proteins in the database. (B) highlights
the distribution of thermodynamic effects of mutation in the database,
given as the variation in Gibbs Free Energy (��G). (C) Experimental vari-
ability of mutation assessed under different conditions and groups. (D)
Distribution of mutations in ThermoMutDB based on type (mutation to
alanine/non-alanine), their location and residue environment.

ing the development of new computational tools to analyse
these relationships and develop prediction algorithms.

New mutation thermodynamics data collected and com-
piled in ThermoMutDB will also allow for more robust,
comprehensive and independent validation of currently
available computational predictors. The database will be
continuously maintained and updated, enabling submis-
sion of user contributions and data access through an in-
tuitive web-based interface (http://biosig.unimelb.edu.au/
thermomutdb) as well as programmatic access through an
API.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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A Comprehensive Computational Platform to Guide Drug
Development Using Graph-Based Signature Methods
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Abstract

High-throughput computational techniques have become invaluable tools to help increase the overall
success, process efficiency, and associated costs of drug development. By designing ligands tailored to
specific protein structures in a disease of interest, an understanding of molecular interactions and ways to
optimize them can be achieved prior to chemical synthesis. This understanding can help direct crucial
chemical and biological experiments by maximizing available resources on higher quality leads. Moreover,
predicting molecular binding affinity within specific biological contexts, as well as ligand pharmacokinetics
and toxicities, can aid in filtering out redundant leads early on within the process. We describe a set of
computational tools which can aid in drug discovery at different stages, from hit identification (EasyVS) to
lead optimization and candidate selection (CSM-lig, mCSM-lig, Arpeggio, pkCSM). Incorporating these
tools along the drug development process can help ensure that candidate leads are chemically and biologi-
cally feasible to become successful and tractable drugs.

Key words Graph-based signatures, mCSM, Mutation, Protein-ligand, Interatomic interactions,
Docking, Drug development

1 Introduction

Structure-guided drug development uses knowledge of the three-
dimensional structure of the biological target to more efficiently
guide the design of small molecule binders. While it has become an
integral strategy for both lead generation and optimization, the
application of computational tools to take advantage of the explo-
sion in structural information has often required specialist knowl-
edge and resources and in some cases has been limited to
commercial software.
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Using the concept of graph-based signatures, we have devel-
oped a robust, user-friendly, and freely accessible platform to ana-
lyze protein structures and interactions [1–12] and guide disease
characterization [13–28] and drug development [29–32]. These
include methods to perform virtual screening (EasyVS), score
protein-small molecule docking solutions (CSM-lig [3]), look at
all the molecular interactions being made (Arpeggio [7]), identify
mutations that are likely to affect compound binding (mCSM-lig
[5]), and characterize the pharmacokinetic and toxicity properties
of the proposed molecules (pkCSM [33, 34]). These have been
successfully employed in a number of drug development projects
[30–32, 35–37] and together comprise a powerful platform that
allows users to enhance their structure-guided drug development
efforts (Fig. 1). Here we discuss how this platform can be leveraged
to guide drug development.

2 Materials

Here we present four structure-based tools to help guide drug
development. For each method, users are required to provide:

1. Wild-type protein structure in PDB format: For all methods,
a wild-type structure in the Protein Data Bank [38] format
must be provided to perform the analysis. This can be an
experimentally solved structure previously deposited into the
Protein Data Bank (www.rcsb.org or http://www.ebi.ac.uk/
pdbe/) or a model, for instance, obtained by comparative
homology modeling. We have previously shown that homol-
ogy models built using templates down to 25% sequence iden-
tity do not significantly affect the accuracy of the methods
[9, 10]. For Arpeggio, CSM-lig, and mCSM-lig, the protein
structure file needs to include the ligand of interest, either
already present in the experimental structure or computation-
ally docked into the binding site. PDB structures are required
to have a valid chain identifier (see Note 1), a single conforma-
tion (multiple occupancies need to be filtered out; seeNote 2),
and a single model, in case of NMR structures (see Note 3).

2. Three-letter code of the ligand of interest: When a structure
of a protein-ligand complex is provided to the predictive web
servers (CSM-lig and mCSM-lig), users will be asked to pro-
vide a three-letter code that identifies the residue ID for that
ligand within the PDB file, according to the PDB format
standards. In addition to the three-letter code, CSM-lig also
requires the canonical SMILES of the compound of interest for
additional property calculations. Several tools are available to
aid users to convert between small molecule formats. These
include stand-alone packages such as OpenBabel [39] and
Avogadro [40].
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Fig. 1 A structure-based computational platform to guide drug development. To complement and support
traditional experimental approaches, including high-throughput screening (HTS) and fragment-based drug
discovery, this in silico platform supports hit identification via virtual screening, methods to better understand
protein–small molecule interactions, affinity and effects of mutations, as well as the optimization of
pharmacokinetic properties



3 Methods

3.1 Performing

Automated Docking

with EasyVS

1. Virtual screening is a powerful, high-throughput technique for
computationally screening large libraries of small molecules
(often in the order of millions) in order to identify those
ligands which are most likely to bind to a drug target protein.
When compared to traditional screening methods, this leads to
significantly higher hit rates that can proceed to lead optimiza-
tion [41, 42]. It can, however, be computationally intensive
and usually requires specialist knowledge. EasyVS provides an
easy-to-use web interface at http://biosig.unimelb.edu.au/
easyvs/, allowing users to rapidly set up and analyze their
virtual screening results.

2. Users can upload the structure of the protein target of interest
as either a PDB file or by providing the PDB ID of a previously
solved experimental structure. Any ligands, ions, or water
molecules already bound to the provided structure will be
disregarded.

3. On the following step, the provided PDB file or identifier will
be processed, and pockets will be automatically detected using
Ghecom [43] (Fig. 2a-1). Users can either select one of the
identified pockets to determine the docking grid (the three-
dimensional space where the ligands will be docked into) or
provide specific grid coordinates and size (Fig. 2a-2).

4. Users then need to select the ligand library they want to screen,
which includes libraries of purchasable compounds, natural
products, or FDA-approved drugs (Fig. 2b). These can be
further filtered based upon their molecular properties (e.g.,
Lipinski’s rule of five [44] or the rule of three) or grouped by
similarity.

5. The selected molecules will then be docked into the selected
docking grid (Fig. 2c-1), and the top 20 poses per ligand can be
downloaded. The server also provides an interactive visualiza-
tion tool to compare ligand docking poses (Fig. 2c-2). The
example on this figure shows the docking poses for ligands
docked to the Ribosome-Inactivating Protein Ricin A (PDB
ID: 1BR5). While poses are sorted by predicted affinity (kcal/
mol) using autodock’s scoring function, users can evaluate
docking poses with alternative approaches, such as
CSM-lig [3].

3.2 Predicting

Protein-Small

Molecule Affinity

with CSM-lig

1. Following virtual screening or docking, the affinity of the top
docked ligand poses can be quantified using CSM-lig. This is a
machine learning-based tool which acts as a scoring function
and enables the numerical affinity comparison between poses.
It is implemented via an easy-to-use web interface at http://
biosig.unimelb.edu.au/csm_lig, which is compatible with
most operating systems and browsers.
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Fig. 2 Automated docking with EasyVS. After choosing a target of interest, EasyVS will automatically identify
pockets (a-1) and allow user to further customize the docking protocol (a-2). A range of ligand libraries can be
selected for docking (b), including FDA-approved drugs, purchasable compounds, and natural products, which
can be further filtered based on physicochemical properties. Docking results are shown in tabular format (c-1),
depicting ligands, their properties, and docking scores. An interactive viewer allows users to inspect the best
poses for each ligand (c-2)
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2. By selecting the “Predict” tab, users are presented with two job
options, “Single Structure” and “Multiple Structures.”

3. For “Single Structure” prediction, provide (Fig. 3a-1) the
protein-small molecule complex you would like to evaluate
the pose of in PDB format (Fig. 3a-2), the three-letter code
for the small molecule (as in the provided PDB file) and
(Fig. 3a-3) and the SMILES string of the small molecule.

4. Alternatively, for “Multiple Structures,” provide two files. The
first file (Fig. 3a-4) is a compressed zip file with all protein-small
molecule PDB files you would like to evaluate. These could be,
for instance, different poses or conformations for a given
protein-ligand complex or multiple different complexes. The
second (Fig. 3a-5) is a tab-separated file with the following
information for each uploaded complex in the .zip file:
(a) structure file name (file in PDB format), (b) three-letter
code for the small molecule (as in the structure file), and
(c) canonical SMILES for the small molecule.

5. The output prediction page for the “Single Structure” jobs
depicted in Fig. 1b presents (Fig. 3b-1) the predicted affinity
(as �log10(affinity) in molar, meaning a compound with an
affinity predicted as 1 nM would have a predicted value of 9).
The example presented in the figure and the web server shows
the affinity prediction for the ligand Zanamivir bound to
human sialidase-2 (PDB ID: 2F0Z). For this complex,
CSM-lig generates a score of 12.6, denoting very high affinity
(larger numbers denote higher affinity). A depiction figure of
the small molecule is shown, together with calculated proper-
ties, including molecular weight (in Da) and partition coeffi-
cient (log P), among others (Fig. 3b-2). An interactive
visualization of the protein-small molecule complex is also
exhibited (Fig. 3b-3). The interatomic non-covalent interac-
tions between protein and small molecule are also calculated
and are available as a downloadable Pymol [45] session
(Fig. 3b-4). Pharmacokinetics and toxicity predictions by
pkCSM for the provided small molecule are also available by
clicking on the red button at the bottom-left corner of the
results page.

6. The output for “Multiple Structures” jobs are shown in tabular
format (Fig. 3c-1), depicting predicted affinity values, SMILES
identifying the molecules and their calculated molecular prop-
erties. These results are available as a tabular file and can be
downloaded (Fig. 3c-2).
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Fig. 3 CSM-lig submission and results web interface. The submission page (a) allows users to provide either
single or multiple protein-ligand complexes for evaluation. The results page for single complex/pose
assessment (b) provides the calculated affinity, ligand properties and depiction, as well as an interactive
visualization of the complex. For multiple poses, CSM-lig provides the predicted affinities in a downloadable
tabular format, together with ligand properties (c)
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3.3 Depicting

and Analyzing Protein-

Small Molecule

Interactions

with Arpeggio

1. Once a structure of the target protein with the candidate
molecule is available, either through experimental determina-
tion or docking or other alternative approach (for instance,
those combining blind docking with molecular dynamics like
the Wrap ‘n’ Shake method [46]), Arpeggio enables the visual-
ization of intermolecular interactions occurring between the
lead and its target. During lead optimization, Arpeggio can
therefore be used to understand the mechanism of binding
and guide medicinal chemistry efforts.

2. Arpeggio is freely available as a user-friendly web interface and
is compatible with multiple operating systems and browsers.
Open up the prediction server, http://biosig.unimelb.edu.au/
arpeggioweb/, on a web browser of your preference.

3. Provide the complexed protein structure of interest by either
uploading it as a PDB file or providing the PDB ID of the
experimentally solved structure in complex with the ligand of
interest (Fig. 4a-1).

4. Select the ligand or ligands of interest under the “Heteroatom”
selection heading to calculate all molecular interactions being
made by that ligand (Fig. 4b-1; see Note 4).

5. The results page will show an interactive image of all the
molecular interactions made by the ligand(s) selected
(Fig. 5a) and a table with a count of the total number of specific
molecular interactions being made, including hydrophobic
interactions, hydrogen bonds, pi-interactions, and ionic inter-
actions (Fig. 4c).

6. A Pymol session file (PSE file) containing the submitted PDB
file and all of the calculated interactions can be downloaded and
opened in Pymol to enable visualization of the interaction
network in 3D and to facilitate high-quality image generation
for manuscripts (Fig. 5b).

3.4 Predicting

the Effects

of Mutations on Small

Molecule Affinity

with mCSM-lig

1. During lead optimization, it is important to consider how
genetic diversity might affect the binding of candidate mole-
cules and, in particular, if resistance is likely to arise. mCSM-lig
uses graph-based signatures to calculate the change upon
mutation in small molecule binding affinity. In order to run a
prediction, open up the mCSM-lig server at http://biosig.
unimelb.edu.au/mcsm_lig/ on a web browser of your prefer-
ence (the web server is compatible with the most common
operating systems and browsers).

2. Users are required to provide the protein structure in complex
with the ligand of interest by either uploading a PDB file or
supplying a valid four-letter code PDB accession code of a
deposited experimental structure (Fig. 6a-1). Users also need
to provide the mutation information, the mutation chain, the
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Fig. 4 Arpeggio submission and results web interface. (a) The submission page allows users to either provide
their own PDB file or an accession code of a deposited experimental structure of the protein of interest. By
selecting the molecule of interest (b), all molecular interactions will be calculated and displayed (c)
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three-letter code of the ligand of interest in the PDB file, and
the approximate binding affinity (in nM) (Fig. 6a-2). If the
binding affinity is not available, this can be approximated using
CSM-lig. The mCSM-lig values do not vary significantly across
most biologically relevant binding affinities.

3. After processing, the results page is shown (Fig. 6b-1), which
includes information about the mutation and the predicted
effects on the ligand binding affinity. An interactive molecular
visualization is shown, allowing users to inspect the wild-type
residue environment (Fig. 6b-2).

4. Predicted effects are outputted as the log fold change in bind-
ing affinity, in which negative values denote destabilizing muta-
tions and positive values, stabilizing ones. The example shown
in Fig. 6 and the web server depicts the prediction for a muta-
tion on the HIV-1 protease bound to an inhibitor. Mutation
from Aspartic Acid to Asparagine on residue position 30 is
predicted to considerably reduce protein-ligand affinity. While
users should interpret the values in the context of the protein
system being studied, for competitive binding inhibitors, it is
often important to consider the relative effect of a mutation on
not only inhibitor binding but also the competitive ligand. This

Fig. 5 Molecular interaction visualization using Arpeggio. The molecular interactions calculated by Arpeggio
can be visualized either online (a) or by downloading the PSE file for visualization in Pymol (b)
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can be done by submitting a structure of the protein containing
the ligand. Resistance mutations are more likely to affect, or
have a larger effect, on inhibitor binding affinity than the
natural ligand. This has been used to successfully preemptively
guide detection of likely resistance variants [29–31, 47–53].

Fig. 6 mCSM-lig submission and results web interface. To predict the effects of a mutation on protein-ligand
affinity, users need to provide a protein-ligand structure of interest (a-1) as well as mutation and ligand
information (a-2). Once the calculations have finished, the results page will show the predicted change in
ligand binding affinity (b-1) as well as an interactive visualization of the mutated residue within its molecular
environment (b-2)
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4 Notes

1. The chain ID for the provided PDB file is a mandatory field for
CSM-Lig and mCSM-Lig, and blank characters are not
allowed. It is possible that homology modeling tools might
not automatically add a chain ID. If this is the case, the user will
need to modify the PDB file prior to submission to the servers.
There are several tools available to perform this task.

2. Another source of error comes from multiple occupancies,
common in high-resolution experimental X-ray crystal struc-
tures. Multiple occupancies should first be filtered out, with the
highest occupancy conformation normally selected.

3. NMR experimental structures often contain multiple models.
It is an important practice to filter NMR structures, selecting a
single model. The predictive tool will show a warning message
in case multiple models are identified.

4. Arpeggio will sometimes fail if the PDB file contains an element
with upper and lower case letters (e.g., Fe as opposed to FE).
These can be altered using a text editor.
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Chapter 1

Identifying Genotype–Phenotype Correlations
via Integrative Mutation Analysis
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Michael Silk, Malancha Karmakar, João P. L. Velloso,
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Abstract

Mutations in protein-coding regions can lead to large biological changes and are associated with genetic
conditions, including cancers and Mendelian diseases, as well as drug resistance. Although whole genome
and exome sequencing help to elucidate potential genotype–phenotype correlations, there is a large gap
between the identification of new variants and deciphering their molecular consequences. A comprehensive
understanding of these mechanistic consequences is crucial to better understand and treat diseases in a more
personalized and effective way. This is particularly relevant considering estimates that over 80% of mutations
associated with a disease are incorrectly assumed to be causative. A thorough analysis of potential effects of
mutations is required to correctly identify the molecular mechanisms of disease and enable the distinction
between disease-causing and non–disease-causing variation within a gene. Here we present an overview of
our integrative mutation analysis platform, which focuses on refining the current genotype–phenotype
correlation methods by using the wealth of protein structural information.

Key words Genotype–phenotype correlations, Graph-based signatures, mCSM, Mutation, Protein
structure, Protein interactions

1 Introduction

Proteins are versatile molecules, responsible for orchestrating a
wide range of biological processes. They comprise a single polypep-
tide chain of amino acids, which folds in 3D space into dynamic
structures. How a protein folds is important for determining its
functions, including activities and interactions with other mole-
cules. These structures are highly coordinated and conserved across
evolution, and small perturbations in the amino acid sequence can
disrupt these shapes, functions, and interactions [1, 2]. While
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missense mutations, causing a change to a single amino acid, are
generally less structurally disruptive than nonsense mutations, their
effects are highly variable and can be wide-ranging, making their
molecular consequences harder to determine. Despite their subtle
effects, missense substitutions are related with many different
genetic conditions, including cancer, Mendelian diseases, and the
emergence of drug resistance.

The introduction of a missense mutation can have many molec-
ular effects, including altering how the protein folds, its dynamics,
posttranslational modifications, half-life, localization, activity, and
molecular interactions [3]. When analyzing a new mutation, an
integrative approach is therefore important to consider the effects
it might have on all of these aspects. This enables the identification
of specific functional, and structural changes imparted by the muta-
tions, which is essential for a molecular understanding. It can also
explain why mutations in the same protein might lead to different
diseases, why mutations might cluster in 3D space and how those
genetic changes present phenotypically.

Although many assume that an unfavorable phenotype (e.g.,
pathogenic, drug-resistant) is the result of large, overall destabiliz-
ing mutations, mutations with milder effects are often more preva-
lent in a population, as they are generally under less selective
pressure [4, 5]. For example, by assessing mutations in three differ-
ent tuberculosis proteins that lead to resistance, we have shown that
the most frequent resistant mutations were more likely to be asso-
ciated with overall mild functional effects, and associated reduced
fitness cost, allowing for increased prevalence within the bacterial
population [4].

Experimentally elucidating the biophysical effects of mutations
is an expensive and time-consuming task, usually limited to a few
variants in proteins with amenable assays. Over the years, the accu-
mulation of information of experimentally characterized mutations
has enabled the development and improvement of computational
mutational analysis tools [6]. These computational platforms have
shown to be invaluable assets to decipher genotype–phenotype
correlations in cancer [7–19], Mendelian diseases [20–26], and
detection of antimicrobial resistance [4, 15, 27–35], guiding clini-
cal decisions and driving further research. Here, we introduce a
general computational pipeline that uses in silico biophysical pre-
dictions and machine learning approaches to harness the wealth of
available biological and protein structural information and give
insights into genotype–phenotype correlation for clinical use [10].

The mutation cutoff scanning matrix (mCSM) platform is the
only comprehensive collection of in silico tools for quantitatively
predicting the effects of missense mutations on protein folding,
structure, dynamics, and interactions. It includes tools which cal-
culate all possible molecular interactions (Arpeggio [36]), account
for changes in protein stability (mCSM-Stability [37], SDM [38],
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DUET [39], mCSM-membrane [40], dynamics (DynaMut [41]),
protein interactions with other proteins (mCSM-PPI [37], mCSM-
PPI2 [42], mCSM-AB [43], mCSM-AB2 [44], mmCSM-AB [45],
nucleic acids (mCSM-DNA [37], mCSM-NA [46]), and small
molecule ligands (mCSM-lig [47], CSM-lig [48]).

These tools were built using the concept of graph-based sig-
natures [49, 50], which represent the geometry and physicochemi-
cal properties of the wild-type protein structure environment as a
network or graph, composed of a series of nodes, describing the
local mutation environment, and edges, describing the distances
between interacting “layers” of surrounding residues. Information
on the mutation is captured using the pharmacophore change
between the wild-type and the mutant residue, including whether
charges or hydrogen donors/acceptors have been gained or
lost [37].

This platform allows for accurate biophysical predictions,
which, when complemented with other protein analytical tools,
can provide a detailed landscape on the specific mutational effects
on a protein. We have implemented these within an analytical and
supervised machine learning predictive pipeline (Fig. 1), to enable
easy and fast characterization of novel mutations and their likely

Fig. 1 An overview of the mechanistic characterization of mutations and their biological consequences, to
guide the development of tools to predict phenotypic outcomes
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clinical phenotypes. This approach has been shown to have big
implications in diagnostic and personalized medicine in the post-
genomic era.

2 Materials

2.1 Data Curation

2.1.1 Mutation Curation

The foremost requirement for training a machine learning model is
appropriate high-quality experimental/clinical data, with suitable
representation of the classes under comparison. For human disease,
a wealth of freely accessible collections of curated data exist. Previ-
ously reported mutations through publications and functional
studies are available from dbSNP [51], the largest freely available
repository of genetic variation. Variants with evidence of pathoge-
nicity can be viewed from the Human Gene Mutation Database
(HGMD) [52] and ClinVar [53], and from disease-specific datasets
such as the Catalogue of Somatic Mutations in Cancer (COSMIC).
Standing variation is available from genomic sequencing efforts of
healthy populations, including over 140,000 healthy humans in
gnomAD [54] and 50,000 whole exomes currently available in
UK Biobank [55].

When combining data from multiple sources, it is important
that all datapoints are comparable. If using genetic coordinates,
they should be found on the same assembly of the genome (e.g.,
GRCh38 vs GRCh37). The mutations themselves (whether
reported as genetic or amino acid changes) must be reported on
the same transcript, as most genes have multiple reported coding
sequences.

2.1.2 Protein Structure

Curation

The sequence and functional information for a specific protein can
be obtained from Uniprot (https://www.uniprot.org/) [56]. To
run the mCSM tools we need crystallographic structures, which can
be downloaded from the Protein Data Bank (PDB;http://www.
rcsb.org/) [57] or generated via homology modeling or molecular
docking (to run mCSM-PPI, mCSM-Lig, or mCSM-NA). Once
we have the variant information collected from the resources in
Subheading 2.1.1, we map these variants on to the identified
protein structures to help visualize the spread and identify potential
hotspots, which is easily done using visualization software such as
PyMol, as it enables selection of residues being mutated in a 3D
manner.

2.2 An Overview

of Computational Tools

to Analyze Missense

Mutations

Over the past two decades there has been an unprecedented growth
in both computational power and the amount of biological data
available. This has facilitated the development of numerous
sequence (Table 1) and structural (Table 2) based computational
tools to guide mutation characterization.
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The mCSM platform is the only available approach to consider
all possible molecular effects and has therefore formed the central
component of our mutational analysis pipeline. All mCSM

Table 1
Available sequence-based predictive tools for mutation analysis

Protein stability and dynamics

Method Corr.a

I-Mutant 2.0 0.62

Auto-Mute 0.64a

MUpro 0.75

DynaMine 0.63

DDGun 0.49

INPS-MD/3D 0.58

iStable 0.56b

iPTREEE - STAB 0.70

ProMaya 0.79

aPearson’s correlation
bMCC

Table 2
Available structure-based predictive tools for mutation analysis

Protein stability and
dynamics

Protein–protein
affinity

Protein–nucleic acid
affinity

Protein–small molecule
affinity

Method Corr.a Method Corr.b Method Corr.c Method Corr.d

mCSM-Stability 0.69 mCSM-PPI 0.16 mCSM-NA 0.70 mCSM-lig 0.63

DUET 0.68 mCSM-PPI2 0.42

DynaMut 0.70 BeAtMuSiC 0.28

SDM2 0.61 MutaBind 0.41

STRUM 0.79 FoldX 0.12

PopMuSiC 2.1 0.63 MMPBSA 0.19

CUPSAT 0.78

Eris 0.75

INPS-MD/3D 0.72

aPearson’s correlation when evaluated on blind-test sets derived from the ProTherm database
bKendall rank correlation coefficient on 1007 single-point mutations from CAPRI (T55)
cPearson’s correlation on 331 single-point mutations from 38 protein–nucleic acid complexes
dPearson’s correlation on 763 single-point mutations from 200 protein–ligand complexes
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Platform tools are available freely as websites compatible with most
web-browsers, but Google Chrome is recommended. A summary
of these methods and links to access them is described in Table 3.

Table 3
Computational tools available in the mCSM platform

mCSM tool Type Function

Arpeggioa Protein
interaction

Calculates 13 different types of interactions between atoms including
hydrogen bonds, halogen bonds, carbonyl interactions, and others.

MTR-
Viewerb

Missense
tolerance

A measure of a gene’s regional tolerance to missense variation.

mCSM-
Stabilityc

Stability Predict the effects of a mutation on the overall protein stability

SDM2d Stability Predicts the change in protein stability due to a single mutation using
conformationally constrained environment-dependent amino acid
substitution tables.

DUETe Stability Uses mCSM-Stability and SDM2 in order to create a consensus prediction
the effects of a mutation on protein stability

DynaMutf Flexibility Looks to predict the effects of a mutation on protein stability, flexibility, and
dynamics

mCSM-
PPIg

Protein
interaction

Predicts the effects of a mutation within a specified protein on its impact
with overall protein–protein interactions.

mCSM-
PPI2h

Protein
interaction

Creates a similar prediction to PPI but incorporates the effects of mutations
on interresidue noncovalent interaction network using graph kernels,
evolutionary information, complex network metrics, and energetic terms.

mCSM-
DNAi

Protein
interaction

Predicts the impact of mutations on the protein interaction with DNA.

mCSM-
NAj

Protein
interaction

Predicts the impact of mutations on the protein interaction with nucleic
acids, and uses pharmacophore and information about nucleic acid
properties.

mCSM-
Ligk

Protein
interaction

Predicts the effects of single-point mutations on the stability of a
protein–ligand complex.

ahttp://biosig.unimelb.edu.au/arpeggioweb/
bhttp://biosig.unimelb.edu.au/mtr-viewer/
chttp://biosig.unimelb.edu.au/mcsm/stability
dhttp://marid.bioc.cam.ac.uk/sdm2
ehttp://biosig.unimelb.edu.au/duet/
fhttp://biosig.unimelb.edu.au/dynamut/
ghttp://biosig.unimelb.edu.au/mcsm/protein_protein
hhttp://biosig.unimelb.edu.au/mcsm_ppi2/
ihttp://biosig.unimelb.edu.au/mcsm/protein_dna
jhttp://biosig.unimelb.edu.au/mcsm_na/
khttp://biosig.unimelb.edu.au/mcsm_lig/
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3 Methods

3.1 Predicting

and Analyzing

Structural

and Biophysical

Effects of Mutations

Using the mCSM

Platform

The mCSM methods can be categorized by purpose. As shown in
Fig. 1, methods are chosen depending on interactions made, and
what structural information is available. Below we discuss how each
type of predictor can be used and interpreted.

l The user should choose the appropriate tools based on what
information is available on their protein of interest (Fig. 1).

l In general, each mCSM tool requires a wild-type protein file, in
the PDB format, and the single-point mutation or a list of
mutations. Some tools may require additional specific informa-
tion; Table 4 shows the inputs required for each tool. Notes 1
and 2 highlight some common issues with the submission
inputs.

3.2 mCSM Platform

Output

3.2.1 Arpeggio

The results of Arpeggio are shown in Fig. 2.

l After submitting a job, an overview of the type and number of
atomic interactions within the protein is shown (Fig. 2a). Arpeg-
gio calculates all types of molecular interactions (Table 5), which
are displayed and downloadable along with a visual representa-
tion of the atomic contacts overlaid on the protein structure
(Fig. 2b).

l The number of each interaction/contact and PyMOL session
files can be downloaded for a more detailed analysis.

3.2.2 MTR-Viewer

Gene Viewer

l The MTR gene viewer [5] results page (Fig. 3) shows predicted
MTR scores in an interactive line graph with a control panel
which allows users to adjust the window size and the ethnicity
for MTR estimates. A line graph (Fig. 3a) displays regions that
have high variation, low-MTR scored; those in red are most
likely to be pathogenic. Any ethnicity-specific MTR scores are
shown in blue on the line graph.

l The first lollipop plot (Fig. 3b) shows observed missense (yel-
low) and synonymous (green) variations based on gnomeAD.

l If the gene of interest is a ClinVar pathogenic gene, their patho-
genic (red) and benign (blue) missense variants are displayed
under the gnomeAD lollipop plot (Fig. 3c).

l Users can browse results of alternative-transcript (Fig. 3d) of the
given query if available.

Variant Query l The variant query result page (Fig. 4) shows MTR scores for
each user-supplied missense variant, providing the estimated
regional intolerance. Low MTR scores indicate stronger purify-
ing selection within the population. Users can also press “view”
next to a variant to show its position within its gene transcript.
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Table 4
Information required to run each mCSM program

mCSM tool Task

Inputs

Step 1 Step 2

Arpeggio Calculate Molecule in PDB format or PDB
accession code.

Select desired interaction
calculation. You can select any
(including multiple) part of the
PDB file using the syntax:

/1/2/3
Where: 1. Chain ID. 2. Residue
number. 3. Atom name.

MTR-Viewer Gene
Viewer

Gene, ensembl ID, or Refseq ID Select window size and overlay
sub-population

Variant
Queries

Variants as GrCh37 genomic
coordinates.

mCSM-
Stability,
mCSM-
PPI,
mCSM-
DNA

Prediction Wild-type protein file in PDB format.
For mCSM-PPI and mCSM-DNA,
the structure of the complex in
PDB format is required.

Single mutation (code and mutation
chain), file with a list of mutations
and its respective chains or code
of residue and the mutation chain.

SDM2 Prediction Wild-type protein structure in a PDB
format or PDB accession code.

Single mutation (code and mutation
chain) or residue/position code
and the mutation chain.

DUET Prediction Wild-type protein structure in a PDB
format or PDB accession code.

Single mutation (code and mutation
chain)

DynaMut Analysis Wild-type protein structure in a PDB
format or PDB accession code.

The selection of a Force Field and
email (optional field).

Prediction Wild-type protein structure in a PDB
format or PDB accession code.

Single mutation (code and mutation
chain) or file with a list of
mutations and its respective
chains, and email (optional field).

mCSM-PPI2 Prediction The structure of the complex in PDB
format or corresponding PDB
accession code.

Single mutation (code and mutation
chain) or file with a list of
mutations and its respective
chains, and email (optional field).

Analysis The structure of the complex in PDB
format or corresponding PDB
accession code.

Mutation details (alanine scanning
or saturation mutagenesis) and
email (optional field).

mCSM-NA Prediction The structure of the complex in PDB
format or corresponding PDB
accession code.

Single mutation (code and mutation
chain) or file with a list of
mutations and its respective
chains, and the selection of the
Nucleic Acid Type.

mCSM-Lig Prediction The structure of the complex in PDB
format or corresponding PDB
accession code.

Single mutation (code and mutation
chain) and ligand information
(three-letter ligand ID and
estimated wild-type affinity).
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Fig. 2 Output of the Arpeggio tool. (a) Overview of the output for the inputted protein including the different
types of interactions. (b) Visualization of the interactions shown on a protein structure
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3.2.3 mCSM-Stability/

PPI/DNA

The impact of mutations on protein stability, protein–protein bind-
ing affinity, and protein–DNA affinity can be predicted by mCSM-
Stability, mCSM-PPI, mCSM-DNA with three types of prediction;
single, multiple and systematic mutation.

Single Mutation l If the single mutation option is selected in one of the tools
within the mCSM platform, it will be shown on a results page
after processing. This information includes the predicted value
changes (protein stability, protein–protein interaction, protein–
DNA interaction) as measured by the change in Gibbs Free
Energy ΔΔG kcal/mol (Fig. 5), which is classified as highly
destabilizing (ΔΔG � �2 kcal/mol), destabilizing (�2 kcal/
mol < ΔΔG < 0 kcal/mol), stabilizing (0 kcal/
mol � ΔΔG < 2 kcal/mol), or highly stabilizing
(ΔΔG � 2 kcal/mol).

l If the structure of a complex is submitted to mCSM-Stability, it
will calculate the predicted change in stability of the entire
complex. It is therefore often advisable to also run predictions
on a PDB file containing the protomer chain alone.

l For mCSM-PPI and mCSM-DNA, for mutations further than
12 Å from the interaction, the mCSM predictions are not con-
sidered, and are set to 0, as the graph-based signatures capture a
smaller radius of environmental data, and there are fewer muta-
tions located further away than 12 Å in the datasets used to train
the methods.

l Also shown is an interactive 3D visual representation of the
uploaded PDB file (Fig. 5a, right).

Table 5
Atomic interactions calculated by Arpeggio

Atomic
interaction Description Arpeggio class

Bond
energy
(kJ/mol)

Van der Waals
(dipole)

Permanent, induced and
instantaneous dipoles

VWD 1–9

Hydrophobic Between aliphatic and aromatic
atoms

Hydrophobic 4–12

Hydrogen bond Between carboxyl, amide,
imidazole, guanidine, amino,
hydroxyl and phenolic groups

Hydrogen bonds, weak hydrogen
bond, polar contacts, halogen
bonds, carbonyl interactions

8–40

Pi interactions From/to rings Aromatic contacts 6–70

Electrostatic Between carboxyl and amino
groups

Ionic interactions, metal complex 42–84
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Fig. 3 The MTR Gene Viewer result page. (a) The line graph shows MTR scores in red for variations distant
from neutrality across the transcript according to selected window size (codons) and subpopulation option. (b)
The lollipop plot shows observed gnomeAD variation in yellow and green for missense and synonymous
variation. (c) The second lollipop plot displays pathogenic (red) and benign (blue) missense variants based on
ClinVar annotation. (d) The alternate transcripts can be shown in a table with RefSeq ID



Multiple or Systematic l If the option for inputting a list of mutations or systematic was
used to analyze the PDB file, then after processing, results will be
shown in tabulated form (Fig. 5b), including mutation specific
information such as the residue solvent accessibility (RSA), as
well as the predicted ΔΔG.

l Each result is also classified, using the predicted ΔΔG value, as
highly destabilizing, destabilizing, stabilizing, or highly
stabilizing.

l Users can search the result table or download results into a
tab-separated text file.

3.2.4 SDM SDM uses environment-specific amino acid substitution tables [38]
and structural features including residue depth [15] and packing
density to predict the impact of mutations on protein stability. The
result page of single and list mutation is as follows.

Single Mutation l The single mutation result page (Fig. 6a) provides predicted
protein stability changes (ΔΔG), in addition to structural infor-
mation implemented in SDM including secondary structure,
RSA, residue depth and residue occluded packing density
(OSP), sidechain–sidechain hydrogen bond (HBOND_SS),
sidechain–main chain amide hydrogen bond (HBOND_SN),
and sidechain–main chain carbonyl hydrogen bond
(HBOND_SO). The integrated 3D viewer also shows the

Fig. 4 MTR Variant Queries result page. Calculated results and information for the given input variants (or a
CSV). User can check the details through MTR Gene Viewer by clicking on the view button
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Fig. 5 Result pages for mCSM-Stability, mCSM-PPI and mCSM-DNA. (a) mCSM-Stability (single mutation) and
(b) mCSM-PPI (multiple/systematic mutation). (a) The single prediction for example mCSM-Stability page
supports 3D interactive viewer for structural analysis. (b) The results and information from multiple/systematic
prediction for example mCSM-PPI are shown in a table
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structure and its wild-type amino acids in ribbon and stick
representation.

l Stability changes (ΔΔG) are shown in red with a negative sign if
the mutation is predicted to be destabilizing, and in blue with a
positive sign if the mutation is predicted to be stabilizing.

Fig. 6 SDM prediction results for single and list prediction. (a) The single prediction displays the predicted
ΔΔG with information used on the left panel and 3D structure in a ribbon (protein) and a stick (wild-type amino
acid) representation. (b) The list prediction gives detailed structural information and predicted ΔΔG in a
tabulated form highlighted according to stabilizing (blue) and destabilizing (red) mutation
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Multiple Mutations l The predicted SDMΔΔG for a given mutation list is displayed in
a tabulated format (Fig. 6b) with their structural features. Users
can download all mutant PDB structures and their predicted
values in individual files.

3.2.5 DUET

Single Mutation

l The DUET result page (Fig. 7a) provides the predicted stability
changes (ΔΔG) with integrated features such as secondary struc-
ture and stability changes from mCSM and SDM. While DUET
refers to both mCSM and SDM scores, the prediction result can
vary between the two methods.

l In the structure viewer (Fig. 7a right), the wild-type amino acid
is shown in stick form and users can download the
corresponding mutant structure file in PDB format.

Systematic Mutations l With the systematic prediction (Fig. 7b), users can examine the
predicted changes in protein stability using DUET, mCSM, and
SDM for all nineteen possible mutations at a given residue
position.

l The predictions and the structural information used to calculate
the DUET scores are displayed in a downloadable table.

3.2.6 DynaMut Users can use DynaMut to assess the impact of mutations on
protein dynamics and stability with single and list mutation
prediction.

Single Mutation l The results of mutational effects on protein dynamics and stabil-
ity are shown in Fig. 8a: ΔΔG predictions, interatomic interac-
tions, deformation and fluctuation analysis.

l The ΔΔG prediction page provides predicted values from nor-
mal mode analysis (NMA)-based prediction (ΔΔG ENCoM),
vibrational entropy energy changes (ΔΔSVib ENCoM), and
other structure-based stability predictions (ΔΔG mCSM, ΔΔG
SDM, ΔΔG DUET). Users can visually assess mutational effects
on protein flexibility which is colored on the protein structure by
vibrational entropy (Fig. 8b) for the region gaining (red) or
losing (blue) flexibility. This 3D representation can be down-
loaded into a Pymol session, high resolution image and CSV file.

l Through the interatomic interactions tab, users can compare
molecular interactions between wild-type and mutant struc-
tures. The PDB structure with interatomic interactions can be
retrieved as a Pymol session file.

l The mutational effects on protein dynamics are shown in the
deformation and fluctuation tab. Users can evaluate changes in
the amount of local flexibility and atomic fluctuation upon
mutation in 3D visual representation; results are downloadable
as a CSV file and a Pymol session file.
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Fig. 7 DUET result pages for single and systematic prediction. (a) The single prediction result of DUET shows
predicted ΔΔG across SDM and mCSM-Stability with mutation details. (b) Systematic prediction results
including ΔΔG from DUET, SDM and mCSM-Stability and relative solvent accessible area of wild-type
structure
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Fig. 8 DynaMut result pages. The single prediction shows predicted DynaMut ΔΔG (a, left) and predicted
protein stability (ΔΔG) from mCSM-Stability, SDM and DUET and flexibility changes (ΔΔG ENCoM). Users can
check vibrational energy changes upon mutation in the panel B. For a multiple mutation, (b) list prediction
result page shows predicted DynaMut ΔΔG and links to access the corresponding single prediction in table



Multiple Mutations l For a given mutation list, DynaMut gives all predicted values,
including ΔΔGStabilityENCoM, ΔΔSVib ENCoM, and
ΔΔGStability DynaMut, in table format (Fig. 8c). A more detailed
analysis is available through the single prediction page of each
mutation by clicking on the “Detail” button.

3.2.7 mCSM-PPI2 mCSM-PPI2 supports two types of protein–protein affinity predic-
tion: mutation prediction and binding analysis. Mutation predic-
tion gives predicted protein–protein affinity changes based on a
given protein–protein complex and the mutation information.
Binding analysis considers interface residues within 5 Å from differ-
ent chains in the complex structure for alanine scanning and satu-
ration mutagenesis.

Single Mutation l mCSM-PPI2 displays predicted binding affinity changes (ΔΔG)
upon mutation in two classes, destabilizing and stabilizing.
Mutation details such as the distance to the interface from the
given mutation position are also shown (Fig. 9).

l For mutations further than 12 Å from the interaction, the
mCSM predictions are not considered, and are set to 0, as the
graph-based signatures capture a smaller radius of environmen-
tal data, and there were fewer mutations located further away
than 12 Å in the datasets used to train the methods.

l Users can assess the mutational impact in atomic/residue level
through a 3D interactive viewer and a 2D graph. The molecular
viewer provides Arpeggio inter/intra interactions for wild-type
and mutant structures and the interaction changes between
wild-type and mutant allows for investigation of the relationship
between nonbonded interaction and protein–protein affinity.
For residue-level analysis, the 2D graph can be used to study
interresidue interactions of wild-type and mutant in a simple and
user-friendly representation.

List Mutation l For multiple mutation analysis, the result page tabulates pre-
dicted ΔΔG with mutation details. Users can access detailed
results of each mutation through the single mutation result
page and download all entries as a CSV file.

Alanine Scanning l To identify residues with a greater contribution to the energy of
binding (hot-spot) at the interface of interaction, alanine scan-
ning can be used by predicting protein–protein binding affinity
changes upon mutations to alanine across all identified interface
residues. The predicted ΔΔG values are displayed in table, bar
chart, and 3D viewer (Fig. 10a).

l Users can assess the effects of alanine mutation on the interface
residues through a bar graph and 3D viewer colored in red and
blue for destabilizing and stabilizing mutations, respectively.
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Fig. 9 mCSM-PPI2 single prediction result page. The predicted ΔΔG is shown along with two interaction
viewers: 3D interactive molecule viewer for atomic interaction analysis and 2D diagram for residue-level
interaction analysis
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Fig. 10 mCSM-PPI2 interface scanning result pages. The result pages of (a) alanine scanning and (b)
saturation mutagenesis provide a bar chart and a heatmap colored by predicted ΔΔG and average predicted
ΔΔG from the nineteen possible mutations, respectively
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Saturation Mutagenesis l The saturation mutagenesis provides the most exhaustive pre-
diction, showing predicted ΔΔG for all identified interface resi-
dues when they are changed into nineteen different amino acids.
The results are shown in table, heatmap, and 3D molecule
viewer, and the interface residues of the 3D viewer are colored
by the average ΔΔG of all mutations for each residue.

3.2.8 mCSM-NA

Single Prediction

l The predicted protein–nucleic acid affinity changes on a given
structure are shown (Fig. 11a) with other properties such as the
type of nucleic acid, solvent accessibility of wild-type protein,
and predicted mutational effects from mCSM-Stability.

l For mutations further than 12 Å from the interaction, the
mCSM predictions are not considered, and are set to 0, as the
graph-based signatures capture a smaller radius of environmen-
tal data, and there were fewer mutations located further away
than 12 Å in the datasets used to train the methods.

l The molecule visualization panel shows the protein–nucleic acid
complex with the wild-type amino acid, and the mutation as a
stick representation. mCSM-NA allows users to further investi-
gate inter/intraresidue interactions by downloading Pymol
session file.

List Mutation l mCSN-NA provides predicted protein–nucleic acid affinity
changes, wild-type RSA, and mutation information for a given
list of mutations in a table which is also downloadable in TSV
format.

3.2.9 mCSM-lig l mCSM-lig predicts affinity changes (log affinity fold) between a
protein and its ligand upon mutation (Fig. 12a) using additional
information such as the closest distance between wild-type resi-
due and ligand and the protein stability change (Kcal/mol) from
DUET. The stabilizing and destabilizing mutations are shown in
positive and negative values respectively.

l For mutations further than 12 Å from the interaction, the
mCSM predictions are not considered, and are set to 0, as the
graph-based signatures capture a smaller radius of environmen-
tal data, and there were fewer mutations located further away
than 12 Å in the datasets used to train the methods.

l The wild-type amino acid and ligand are shown in stick and
sphere representations in 3D molecule viewer, respectively.

3.3 Identification

of Driving Molecular

Consequences

The outputs of the predictive tools described above provide the
basis for an initial heuristic examination. When trying to interpret
the molecular consequences of a specific variant, it is important to
remember that phenotypic outcomes are often the result of the
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Fig. 11 mCSM-NA result pages for single and list mutation prediction. In the single prediction result page,
predicted protein–DNA affinity changes and mutation information are displayed in the prediction details (a) and
the 3D viewer shows protein–DNA complex and wild-type amino acid in a ribbon and stick representation (b).
The results of list prediction are shown in a tabulated form (c) and users can save the results in a TSV format
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combination of multiple molecular changes. For coding mutations,
we initially ask ourselves three questions:

1. Is the mutation within 5 Å of an interface? If so, is the mutation
more likely to disrupt the interaction (ΔΔG < �0.5 kcal/mol)
based on the corresponding mCSM output (e.g., mCSM-PPI,
mCSM-DNA, mCSM-NA, mCSM-Lig)? If the mutation is
further than 12 Å away, it is less likely to disrupt the interaction
directly, so the mCSM predictions are less reliable.

2. Is the mutation likely to disrupt protein folding and stability?
mCSM-Stability, SDM, DUET, and DynaMut provide insight
into this, with mutations leading to ΔΔG < �0.5 kcal/mol
more likely to have a significant biological effect. Mutations at
buried residues are more likely to have a larger effect on protein
stability.

3. Is the mutation a special case that is more likely to lead to
disruption of the protein due to unique geometry restraints
of the residues (see Notes 3 and 4)?

To more exhaustively explore how mutations in a protein lead
to a phenotype, and to identify those molecular features that best

Fig. 12 mCSM-lig result page. (a) The predicted affinity change between protein and ligand upon mutation is
shown in logarithm scale. (b) The protein and ligand are displayed in 3D viewer with a ribbon (for protein), a
stick (for wild-type amino acid), and a sphere (for ligand) representation
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capture the driving of the molecular mechanisms, an investigation
into the performance of each inputted feature should be conducted
in order to construct the highest performing predictive model.

A more robust method for selecting which features are most
informative can be performed using feature selection in R, a statis-
tical programming language. While R is powerful enough itself to
create classification models, we can also use it to measure which
features from our predictive tools’ output are most effective in
stratifying mutations. Two effective approaches are:

1. A random forest classification algorithm to measure feature
importance using a set of mutations with known class labels
(e.g., pathogenic/nonpathogenic, deleterious/nondeleterious).

2. The Boruta Algorithm performs permutations of the data to
statistically compare each feature’s importance with that attain-
able at random, and uses this to eliminate uninformative fea-
tures. The package in R provides a graphical output using
boxplots.

Features that score highly provide evidence that the molecular
consequence that they measure is relevant to howmutations lead to
the phenotype of interest. The algorithm can also highlight corre-
lation between features. When two or more features are highly
correlated and are likely measuring the same information, only
one should be used in subsequent predictive model development
to remove redundancy, minimize noise and avoid bias from weight-
ing a model in favor of a particular attribute. The model should also
have the fewest possible features that perform best. Using too many
features may generate a model that performs accurately on training
data but cannot be generalized to real-world data.

3.4 Machine

Learning Phenotypes:

Building a Predictive

Classifier

An initial understanding of molecular mechanisms imparted by
disease-causing mutations is a crucial step toward establishing a
genotype–phenotype correlation. However, manual analysis of dif-
ferent results can often miss underlying, statistically significant
relationships among different mutational measurements, which
can help relate them to the phenotype. Machine learning, and in
particular supervised learning, addresses this issue by providing a
set of tools for the efficient analysis of labeled data (e.g., experi-
mentally characterized mutations) in order to derive a model that
describes a phenomenon, aiming for generalization (applying it to
unseen data). The identification of patterns and associations within
the data will further help the predictive model establish a distinc-
tion between mutations within the same gene leading to different
phenotypes, and hence the development of an effective predictive
tool that can be used to interpret novel clinical variants.

Here, our goal is to build a machine learning classifier to
distinguish between pathogenic vs. nonpathogenic mutations in a
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given gene. Multiple steps are required to obtain a nonbiased,
accurate predictor:

1. Dataset curation: Machine learning algorithms require a well-
curated dataset. In a supervised machine learning approach, all
data labels (here, pathogenic or nonpathogenic for each muta-
tion) must be known in order to enable correlations to be
assessed between labels (e.g., phenotypes) and features/prop-
erties used as evidence to represent each data point (e.g.,
mutations). The quality of a classifier directly depends on the
quality of the data used to build it, so accurate clinical sources
are required to justify labeling mutations as pathogenic or
nonpathogenic. In this case, generally, nonpathogenic variants
can be curated from population variant databases such as Gno-
mAD, usually taking into account frequent mutations. Even
common variants, however, may still be linked to a disease,
especially if it is a weakly penetrative mutation or recessive
condition, which would add noise to the data set and thus
complicate the task of building a general predictive model. In
situations where other biologically relevant information is pres-
ent, such as cellular fitness cost, it is essential that this type of
information is present for every mutation in a dataset, as a
supervised algorithm cannot handle missing data labels. The
initial dataset should contain a representative set of mutations
within all phenotype classes (pathogenic and nonpathogenic),
and ideally, present a balanced number of instances between
classes, to minimize biases toward overrepresented classes in
the resultant model. More details on metrics used to evaluate
the performance of predictive models on an imbalanced dataset
are discussed below.

2. Feature generation: The feature generation stage is crucial as it
provides descriptive information about each mutation, to be
used by the learning algorithm to finally classify the phenotype
of a mutation. As described above, features can encompass a
diverse range of mutational information:

(a) Protein stability and dynamics (mCSM-Stability, DUET,
SDM, Dynamut).

(b) Protein functional changes such as changes in affinity for
other proteins (mCSM-PPI2), nucleic acids (mCSM-
NA), and ligands (mCSM-lig).

(c) At the residue level, changes in protein pharmacophore
and local residue environment such as changes in inter-
atomic interactions (Arpeggio) are also important, as
some mutations at the same locus can have different
phenotypes.

(d) Sequence-level predictors (SIFT, Polyphen, SNAP2).
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(e) Evolutionary-based predictors (ConSurf), population
based mutational tolerance (MTR-Viewer), as well as
amino acid substitution matrices (e.g., PAM30, BLO-
SUM62, PSSM) offer added information on the likeli-
hood of one mutation to change into another.

Feature generation is directly dependent on the wild-type
biological functions of the protein, which is why an under-
standing of the biological relevance is important at the very
beginning of this process.

3. Training and Testing sets: The data collected must be divided
into training and testing sets to assess the generalization power
of a classifier, that is, its ability to correctly predict on new data,
and to ensure that it has not been over- or undertrained. Data
used to train the model should be different, nonredundant,
from the data used to test the model. It is common practice to
divide the original dataset into Training and Test sets at the
start of learning. For small datasets, a large proportion of the
data may need to be segregated into the Test set to provide
sufficient data to accurately measure performance of the trained
model. This can be done in a bootstrapping procedure or
through cross-validation, when the original data set is divided
into k-folds and each is taken iteratively as the test set while
remaining data are used in training (k-fold cross-validation).

4. Feature selection: The features selected for training can
strongly influence accuracy, so it is important to select only
informative features, and eliminate irrelevant or nondiscrimi-
native ones, which are a common source of noise. Feature
selection can also help reduce overfitting and reduce training
time, as it aims to generate simpler, more concise models.
Feature selection methods provided in the Python machine
learning library, Scikit-Learn [58], include univariate selection,
feature importance, correlation matrix, and recursive feature
elimination or addition. Alternatively, forward stepwise selec-
tion can be performed as a greedy heuristic in which features
are included iteratively, one at a time, based on their individual
performance contributions.

5. Machine learning platforms: Different tools have been devel-
oped for implementing machine learning. Some offer a graphi-
cal user interface (GUI), such as Weka [59], while some run as
python packages through the command line, such as Scikit-
Learn. Different packages for different programming lan-
guages offer similar algorithms and options to adjust the algo-
rithm parameters according to specific tasks. The major
classification algorithms we test are Naive Bayes, Decision
Trees, K-Nearest Neighbor, Support Vector Machines, and
Ensemble Classifiers. It is good practice to compare
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representative algorithms of each class, provided that the algo-
rithm is compatible with the dataset type. Within weka, this can
be done automatically using the auto-weka function. In cases
where the training set is unbalanced, oversampling or under-
sampling of the training data can be used to achieve a better
representation of classes within the classification model-
building stage, preventing model bias in always detecting the
predominant class and achieving a false high performance.

6. Model validation: The primary tool in the validation of a model
is the use of a nonredundant independent test set, also called
blind test.

Validation can be furthered using internal data testing such
as k-fold cross validation, in which the dataset is divided into
k subsets. One subset is used as a test set, while the remaining
(k � 1) subsets are used to train a model. The process is
repeated k times, until all the data have been used in both
training and test sets. The final model performance is calculated
as the average of the performances of all k iterations. We will
often vary k based on the size of the dataset. When the training
set is small (e.g., ~200 data points), we may use leave-one-out
validation, where k is equal to the size of the dataset. An
important aspect when selecting predictive models is consis-
tency in performance between the training and test sets. This
usually indicates a robust model, within which discrepancies
(e.g., a much higher performance on training than with the test
set) might indicate overfitting.

7. Model evaluation: Several different evaluation metrics may be
used for classification tasks. These are generally calculated on
values obtained from a confusion matrix, which is a summary of
the data points, and their actual and predicted phenotypes
(Table 6).

8. From the distributions of data points within the matrix,
descriptive metrics can be calculated:

(a) accuracy (number of correct predictions: [(TP + TN)/
TOTAL]),

(b) precision (rate of correctly predicted positive instances
from all assigned as positives: [TP/(TP + FP)],

Table 6
Description of a confusion matrix

Predicted value Actual value
Positive Negative

Positive True positive False positive

Negative False negative True negative

Genotype-Phenotype Correlations via Integrative Mutation Analysis 27



(c) recall (rate of correctly predicted positive instances from
all real positive instances: [TP/(TP + FN)],

(d) f-score (a weighted average of recall and precision), and,

(e) Matthews correlation coefficient (MCC) a balanced mea-
sure between true positives and true negatives

TP� TNð Þ � FP� FNð Þ=√ TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ� �

where TP ¼ True positive; TN ¼ True negative; FP ¼ False posi-
tive; and FN ¼ False negative.

Classifier performance can also be described graphically using a
Receiver Operating Characteristic curve, which compares the TP
Rate and TN Rate. The closer the area under the curve is to 1, the
better the classifier performance.

These metrics should be used in a combinatorial fashion across
all elements of training, test, and cross-validation stages to compare
model performance during different stages of classifier optimiza-
tion. When the dataset is imbalanced, balanced measures such as
MCC should be prioritized, as other measures might bias for an
overtrained model on the dominant dataset.

4 Notes

1. Often following curation, the distribution of number of path-
ogenic and benign mutations is unbalanced, which can affect
efforts to build predictive tools using machine learning. Two
approaches that can help include oversampling of the under-
represented class, or undersampling of the overrepresented
class. Evaluation metrics that are less biased toward unbalanced
classes, such as theMatthew’s correlation coefficient, precision-
recall curves, and Kendall correlations, should also be
preferentially used.

2. The chain ID for the provided PDB file is a mandatory field for
all the structure-based methods; blank characters are not
allowed. It is possible that homology modeling tools might
not automatically add a chain ID. If this is the case, the user will
need to modify the PDB file prior to submission to the servers.
Several tools exist to perform this task (e.g., http://www.
canoz.com/sdh/renamepdbchain.pl).

3. Special cases: Mutations to and from prolines. Prolines are the
only amino acid whose amino group is connected to the side-
chain, which in the context of the peptide bond greatly limits
torsional angles. The nature of this residue therefore needs to
be taken into account while analyzing mutation effects. For
instance, (1) mutations to prolines in the middle of alpha-
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helices can introduce kinks, affecting local structure and
(2) since prolines are commonly found in turns and loops,
their substitution might interfere with the formation of sec-
ondary structures such as hairpins.

4. Special cases: mutations of positive-phi glycines. Similarly to
prolines, positive phi glycines, while rare in experimental struc-
tures, deserve special consideration due to their torsional
angles. Glycines are the only residues capable of adopting
positive-phi angles. These glycines are usually conserved across
evolution, meaning that mutations on positive-phi glycines,
especially on loops and hairpins, tend to be destabilizing.
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Quantifying the rates of late reactivation tuberculosis: 
a systematic review
Katie D Dale, Malancha Karmakar, Kathryn J Snow, Dick Menzies, James M Trauer*, Justin T Denholm*

The risk of tuberculosis is greatest soon after infection, but Mycobacterium tuberculosis can remain in the body latently, 
and individuals can develop disease in the future, sometimes years later. However, there is uncertainty about how often 
reactivation of latent tuberculosis infection (LTBI) occurs. We searched eight databases (inception to June 25, 2019) to 
identify studies that quantified tuberculosis reactivation rates occurring more than 2 years after infection (late 
reactivation), with a focus on identifying untreated study cohorts with defined timing of LTBI acquisition (PROSPERO 
registered: CRD42017070594). We included 110 studies, divided into four methodological groups. Group 1 included 
studies that documented late reactivation rates from conversion (n=14) and group 2 documented late reactivation rates 
in LTBI cohorts from exposure (n=11). Group 3 included 86 studies in LTBI cohorts with an unknown exposure history, 
and group 4 included seven ecological studies. Since antibiotics have been used to treat tuberculosis, only 11 studies 
have documented late reactivation rates in infected, untreated cohorts from either conversion (group 1) or exposure 
(group 2); six of these studies lasted at least 4 years and none lasted longer than 10 years. These studies found that 
tuberculosis rates declined over time, reaching approximately 200 cases per 100 000 person-years or less by the fifth year, 
and possibly declining further after 5 years but interpretation was limited by decreasing or unspecified cohort sizes. In 
cohorts with latent tuberculosis and an unknown exposure history (group 3), tuberculosis rates were generally lower 
than those seen in groups 1 and 2, and beyond 10 years after screening, rates had declined to less than 100 per 
100 000 person-years. Reinfection risks limit interpretation in all studies and the effect of age is unclear. Late reactivation 
rates are commonly estimated or modelled to prioritise tuberculosis control strategies towards tubuculosis elimination, 
but significant gaps remain in our understanding that must be acknowledged; the relative importance of late reactivation 
versus early progression to the global burden of tuberculosis remains unknown.

Introduction
Tuberculosis is a major global health problem,1 and yet 
the natural history of tuberculosis remains poorly 
understood.2 The risk of developing tuberculosis is 
known to be greatest in the first few months following 
infection with Mycobacterium tuberculosis,3 and many 
studies have presented empirical data to quantify the 
high rates of disease in this period.4–6 However, 
M tuberculosis can persist in a latent state, referred to as 
latent tuber culosis infection (LTBI), with individuals 
remaining at risk of developing tuberculosis more than 
2 years after infection (late reactivation).7 Quantifying 
late reactivation risk is difficult for a variety of reasons, 
including the need for extended follow-up periods, 
imperfect diagnostic tools, uncertainty in attributing 
tuber culosis disease episodes to a specific exposure, 
and deliberate modification of natural re activation 
rates through preventive therapy. Thus, although the 
phenomenon of late reactivation is well established,7,8 
and groups at increased risk have been identified,9 
uncertainty regarding the absolute magnitude of late 
reactivation risk persists.

In the past decade, increased emphasis has been placed 
on the detection and treatment of LTBI to prevent future 
active tuberculosis disease, particularly given the global 
efforts being made towards tuberculosis elimination.10 

Uncertainty regarding the magnitude of late reactivation 
risk is problematic because accurate estimates are crucial 
for predicting the benefits of preventive therapy at both 
the individual and population level.11 The evaluation of 
programmatic strategies frequently adopt modelling 

approaches to estimate public health impact and 
cost-effectiveness, and the parameter values that are used 
to simulate late reactivation can have a significant effect 
on outputs.11–14

A narrative review argued that tuberculosis reactivation 
more than 2 years after infection was rare,15 but no 
systematic review of late reactivation has yet been done. 
We did a systematic review of the evidence quantifying 
the rate of late reactivation from LTBI to tuberculosis 
disease in the general population.

Methods
Definitions
We defined late reactivation conceptually as any form of 
tuberculosis disease occurring at least 2 years from 
new infection, in the absence of reinfection. We considered 
a positive LTBI test to indicate infection, although we 
recognise that LTBI diagnostic tools are imperfect and 
provide a correlate of infection rather than definitive 
proof.2 We defined a LTBI diagnosis as an “immune 
response to prior acquired M tuberculosis antigens 
without evidence of clinically manifest tuberculosis”,16 as 
determined by any tuberculin skin test (TST; Mantoux, von 
Pirquet, or Heaf) or interferon-γ release assay (IGRA). 
Conversion was defined as when an individual is found to 
have a positive LTBI test following a negative one. We use 
the term reactivation to refer to progression from LTBI to 
active tuberculosis, rather than the occasional historical 
use of the term for what is now termed recurrent 
tuberculosis.17 The terms primary and endogenous refer to 
disease occurring before or after 5 years from infection, 
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respectively (Holm in 196918 appears to have first used this 
cutoff, although the terms were in use much earlier17,19). 
We use tuberculosis to refer to all manifestations of active 
tuberculosis, unless otherwise specified (eg, pulmonary 
tuberculosis).

Data extraction and analysis
We grouped studies by methodology and arranged these 
hierarchically into four groups according to the clarity of 
evidence provided on infection and its timing, and hence 
late reactivation rates.

Cohort studies documenting late reactivation in popu-
lations with TST conversion were discussed first (group 
1), because they provide the clearest evidence of both 
infection and its timing. Group 2 included studies in 
LTBI cohorts with known M tuberculosis exposure, for 
which an uncertain number of parti cipants might have 
been infected from a previous exposure. Group 3 were 
studies that documented tuberculosis progression in 
LTBI cohorts with an unknown timing of infection. 
Finally, group 4 included ecological studies that estimated 
population LTBI pre valence to determine reactivation 
rates. In group 4, the prevalence of LTBI is uncertain and 
the timing of infection is unknown, although some 
studies attempted to exclude cases attri butable to recent 
infection.

Two reviewers (KDD and MK) independently did data 
extraction and quality assessment using a selection 
of questions from the Cochrane Risk Of Bias In 
Non-randomized Studies—of Interventions (ROBINS-I) 
assess ment tool in the first two methodological groups 
(appendix p 31). Disagreements were resolved through 
discussion and consensus. KDD extracted data and 
assessed quality in the other methodological groups. 
Extracted information included study setting, participant 
selection, charac teristics and exclusions, screening 
method(s), length and nature of follow-up (active with or 
without repeated assessments, or passive), follow-up 
and disease definitions, missing data, outcomes, and 
estimated tuber culosis incidence in study settings, 
extracted into a standardised form.

Numerical data were extracted by KDD into Microsoft 
Excel 2010, and analyses were done in R (version 3.5.2). 
WebPlotDigitizer was used to extract data from published 
figures in which numerical data was not presented.

Annual reactivation rates were calculated as the annual 
number of tuberculosis cases in each cohort divided by 
the number of LTBI cases. Where studies provided only 
the initial sample size and follow-up period without 
numbers observed over time, each annual denominator 
was estimated by subtracting the number of tuberculosis 
cases in the previous year. Where possible, 95% CIs were 
calculated using the exact Poisson test.

Results
We identified 11 946 unique studies and excluded 
10 908 following title and abstract review. Following full-
text review, we identified 26 additional studies through 
citation references and excluded a further 954, leaving 
110 studies in the final review (figure 1). Studies are 
discussed below under their methodological grouping, 
with several appearing more than once because they 
met criteria for more than one group. A description of 

Figure 1: Systematic review article selection
LTBI=latent tuberculosis infection. TB=tuberculosis. TST=tuberculin skin test

1038 full-text articles assessed for eligibility

26 additional references found
      from citations

11 946 records screened

110 articles in final review
  8 reported TB cases in cohorts following TST conversion
  2 reported TB in cohorts following TST conversion and in LTBI cohorts
     with known exposure
  2 reported TB cases in cohorts following TST conversion, in 
     LTBI cohorts with known exposure, and in LTBI cohorts with an
     unknown timing of infection
 5 reported TB cases in cohorts following TST conversion and in
     LTBI cohorts with an unknown timing of infection
  7 reported TB cases in LTBI cohorts with known exposure
  2 reported TB cases in LTBI cohorts with known exposure and cohorts
      with an unknown timing of infection
77 reported TB cases in LTBI cohorts with an unknown timing
      of infection 
  7 ecological studies: estimated the LTBI prevalence in a population
     to determine reactivation rates

10 908 excluded on review of title and abstract

21 777 records identified from MEDLINE, Scopus, EMBASE, CINAHL,
               Evidence Based Medicine, Gobal Health, Web of Science, and
               ProQuest database

9831 duplicates removed

954 full-text articles excluded
   10 no full text
   21 not in English or French
   30 duplicate
187 review, letter, or editorial
   17 modelling, animal, or microbiological study
   13 LTBI or TB control, policy or treatment
   60 epidemiology of active or recurrent tuberculosis
314 contact tracing, screening, or transmission studies with no,
         short, or unstated follow-up periods.
  50 studies examined tuberculosis progression exclusively in
         those with specific risk factors (eg, people who were
         immunosuppressed, living with HIV, or with chest x-ray
         abnormalities) or in those who had all received LTBI prophylaxis
136 no late reactivation rate calculation possible:
         no denominators given
   85 no late reactivation rate calculation possible:
          insufficient rate information after the second year
   29 earlier or different pape about included study
      2 ecological studies that did not specifically mention reactivation 
         rates, but from which rates can be calculated

See Online for appendix

For more on WebPlotDigitizer 
see https://automeris.io/

WebPlotDigitizer/

https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
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key strengths and limitations of each methodological 
approach is provided in table 1, and the factors that 
influence the interpretation of reactivation rates in all 

studies are in the panel. Individual studies and their risk 
of bias score, are described in the appendix (pp 5–10) and 
summarised in table 2.

Strengths Limitations

Strongest design: cohorts followed for incidence of tuberculosis after possible new infection (groups 1 and 2)

Cohort studies of populations 
following TST conversion

TST conversion provides the clearest evidence of infection 
and its timing, which is strengthened by the requirement 
for known tuberculosis exposure. Genotyping information 
can be used to provide evidence of transmission.5

Documenting conversion in study populations is laborious, typically requiring repeated 
assessments of at-risk populations and so limiting cohort size. Varying definitions of 
conversion and inversion might be used with varying accepted times between negative and 
positive LTBI tests. Varying definitions of the timing of infection might be used (eg, time of 
first positive test,20,21 midpoint between first positive and last negative test,22,23 2 months 
before erythema nodosum,24 or 3 months before hilus adenitis24). Varying definitions of 
disease reactivation can be used (eg, date of first abnormal chest x-ray,25 diagnosis,20,26 
treatment initiation,27 or midpoint between last normal chest x-ray and first abnormal chest 
x-ray22,23). Varying follow-up intervals and methods might be used (eg, passive versus active, 
with or without TST, with or without chest x-ray monitoring). Radiological monitoring might 
identify more tuberculosis cases than passive case detection methods.28,29 Loss to 
follow-up (through migration or death) is seldom quantified.

Cohort studies in populations 
with LTBI identified following 
Mtb exposure

Mtb infection and its timing are more clearly defined in 
individuals with a known exposure and LTBI diagnosis than 
in populations with LTBI without known exposure. However, 
an uncertain number might have been infected at a previous 
exposure. Genotyping information can be used to provide 
evidence of transmission.5

Because participants must have a known exposure, a long period of recruitment is required to 
obtain a sufficiently large cohort size. Varying definitions of Mtb exposure (eg, household20,30 
or close circle contact status,31 and index patient might have any active32,33 or only infectious26 
tuberculosis), timing of infection (LTBI diagnosis,26 index diagnosis or notification,5 index 
treatment initiation27), and timing of reactivation. Varying follow-up intervals and methods.

Weaker design: cohorts followed for incidence of tuberculosis after cross-sectional study to determine prevalent tuberculosis infection (group 3)

Cohort studies in other 
populations with LTBI and 
unknown timing of Mtb 
exposure

Without the need for a known exposure, large cohorts can 
be opportunistically screened. Efforts to exclude recent 
infection can be made; eg, asking about recent contact34 
or excluding genotypically clustered cases.35–37 It can be 
assumed that recent infection is unlikely in certain cohorts 
in low-incidence settings; eg, for migrants from high-
incidence settings, time of migration provides a point 
beyond which infection is much less likely.

The timing of infection is unknown, such that the proportion of recently infected individuals is 
unknown (except possibly for some cohorts in low-incidence settings). Varying definitions of 
disease reactivation. Varying follow-up intervals and methods. Because TST or IGRA reversion 
can occur, limiting cohorts to individuals with positive test results might overestimate 
reactivation rates in all who have been infected.

Weakest design: ecological studies (group 4)

Using LTBI survey data to infer 
LTBI prevalence in a population 
and tuberculosis notifications to 
quantify reactivation episodes 
arising from the inferred pool

Without the need for known exposure or follow-up, the LTBI 
and case cohorts can be larger, allowing subgroup 
comparison. Efforts to exclude recent infection can be made.

Timing of infection is unknown, such that the proportion recently infected is also unknown, 
and how reactivation rates change in cohorts over time cannot be observed. Accuracy depends 
on how well the LTBI cohort represents the case cohort (eg, uncertainty will be increased if the 
base cohort is small,37 or only includes those that attended mass screening,38 or only includes 
those who were tested at a different time to the case cohort36). Because TST and IGRA reversion 
can occur, limiting reference cohorts to individuals with positive test results might 
overestimate late reactivation rates in all who have been infected.

TST=tuberculin skin test. LTBI=latent tuberculosis infection. Mtb=Mycobacterium tuberculosis. IGRA=interferon-γ release assay

Table 1: Classification and rating of the major strengths and limitations of the included studies

Panel: Factors that influence the interpretation of reactivation rates in all studies

• Varying LTBI diagnosis methods, which have differing validity 
(sensitivity and specificity), and NTM exposure in the study 
population. For example, a Danish study found reactivation 
rates in participants aged 15–24 years to be 3 times higher in 
those who lived in an area with a low prevalence of bovine 
tuberculosis versus a high-prevalence area.39

• Whether chest x-ray was done in conjunction with screening for 
LTBI or not, to exclude active disease, and whether those with 
chest x-ray abnormalities were included in the study cohort.

• Varying definitions of disease; eg, pulmonary, respiratory, 
or all forms. The definition of disease is particularly variable 
and difficult to interpret in pre-antibiotic era 
(early 20th century) studies.40

• Ongoing infection or reinfection risks, which might inflate 
reactivation rates. Ongoing cases in some studies, 

particularly pre-antibiotic era studies, might be relapse 
episodes rather than reactivations.21,41

• In study settings where preventive treatment is routinely 
used, sample sizes might be limited, which could introduce 
bias if groups at highest risk are most likely to receive 
preventive treatment.

• There are recognised limitations with using genotyping to 
classify transmission.42,43

• Whether and how reactivation rates are disaggregated by 
age, time since study entry, sex, and screening method, 
preventive treatment, and risk factors.

• The prevalence of individual and population risk 
factors; eg, BCG vaccination status, chest x-ray status, 
HIV, diabetes, or smoking.

LTBI=latent tuberculosis infection. NTM= non-tuberculous mycobacteria.
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Cohort studies of populations following TST conversion
Group 1 included 14 studies that reported tuberculosis 
progression in cohorts more than 2 years after TST 
conversion,3,21,24,25,28,41,44–47,49–52 with four additionally indicating 
that all participants were known to have been recently 
exposed (table 2).3,41,44,50 Most of these studies were 
done in moderate-incidence to high-incidence settings 
from the early to mid-20th century (ie, during the pre-
antibiotic era).

In the nine studies that began during the pre-antibiotic 
era (pre-1945), the studies by Myers and colleagues in 
1964 and 1965 had the longest follow-up duration.44,45 
Numbers observed over time were not reported in these 
studies, but the follow-up probably ranged from 19 years 
to 39 years given the study recruitment and end dates.44,45 
In most pre-antibiotic era studies, rates of tuberculosis 
disease decreased substantially over the first 2 years from 
conversion, with annual rates after 2 years varying 
from 0 cases per 100 000 person-years to more than 
1000 cases per 100 000 person-years (appendix p 25). In 
studies that considered reactivation by age at conversion, 
Meyer 1949 and Hertzberg 1948 found late reactivation to 
be more common in those infected after the age of 
12 years than before,20,24 although this difference was not 
seen in the studies by Myers and colleagues.44,45 Meyer 
noted that this difference was chiefly due to the high 
rates in those infected after the age of 12 in the first 
3–5 observation years (appendix p 25).24 Meyer also 
reported that “all cases of pulmonary tuber culosis with a 
latent period of more than 3 years (as well as several with 
a shorter latent period) broke out after the age of 14”.25 
Reactivation occurred more frequently in females than in 
male patients in the studies by Myers and colleagues,44,45 
but not in those by Meyer or Hertzberg.20,24

Since the advent of antibiotics for tuberculosis 
from the mid-1940s, four studies have documented 
tuberculosis progression in the control arms of trials of 
preventive interventions (table 2, figure 2). In a British 
Medical Research Council (MRC) tuberculosis vaccine trial, 
beginning in 1951, 14·0–15·5 year-olds were followed-up for 
15 years, receiving TST and chest radiographs approxi-
mately every 14 months until 1960 (approximately 8–9 years 
after study commencement) and postal enquiries there-
after.56 Sutherland (1968) reported reactivation rates among 
participants who were found to have converted during the 
trial for up to 10 years post-conversion.23,47 In isoniazid 
chemoprophylaxis trials run by the US Public Health 
Service (USPHS), from 1957, household contacts of active 
cases received TST and chest radiographs at study entry and 
12 months later, and tuberculosis cases among those 
individuals found to have converted at 12 months were 
documented by Ferebee (1970) for 10 years after exposure.3,30 
Neither of these two studies reported the size of the cohorts 
that remained under observation beyond the first year, and 
the ages of the USPHS converters were not given.3,30 In a 
smaller study by Debre and colleagues (1973), yearly chest 
radiographs were recorded from French residents with 
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recent conversion for up to 10 years. The numbers of cases 
and reactors observed over time was also documented.49 
Finally, a study by Veening (1968) documented tuberculosis 
cases among 128 recruits in the Royal Netherlands Navy at 
1 year, 4 years, and 7 years after exposure to a marine with 
open tuberculosis.50

Late reactivation rates varied between studies. In all 
studies except Debre and colleagues (1973; which had a 
high proportion of young children,49 unlike the others), 
late reactivation rates generally decreased as time went 
on following conversion (figure 2). In the studies by 
Sutherland (1968) and Veening (1968), both of which 
exclusively included youths, reactivation rates remained 
relatively high in the second to fourth year after 
conversion, compared with other studies (figure 2).49–50 
During the fifth follow-up year, late reactivation rates in 
all studies dropped to below 200 case per 100 000 person-
years. Sutherland reported no cases among converters in 

the MRC trial after more than 7 years from conversion, 
despite observation extending to at least 10 years.23 
Similarly, Ferebee (1970) documented no progression in 
the USPHS trial after the eighth year, although 
observation was noted to have been incomplete beyond 
the seventh year.3

In no study since the advent of antibiotics for tuberculosis 
has it been possible to calculate late reactivation rates over 
time from conversion by either age group or TST status. 
However, Sutherland reported that the 10-year reactivation 
rates were higher in individuals who were younger 
(14 years old) at the time of conversion than those who 
were older (20 years old; appendix p 26).47 This study also 
noted that reactivation rates increased slightly in those 
individuals showing a greater TST response, noting that 
this difference was only observable in the first 5 years.23,47 
Debre and colleagues also reported that an increased 
proportion of 15–24-year olds (3·9%) progressed over the 
10 years from conversion, as compared with 10–14-year 
olds (1·9%) and 5–9-year olds (2·6%).49

The most recent study in this category followed a 
cohort of 965 converters in nursing home residents in 
Arkansas (USA) aged more than 50 years for an 
unspecified period (possibly up to 8 years).51,52 This study 
found an average reactivation rate of 339 cases per 
100 000 person-years in years 2 to 4, and no episodes 
thereafter.51,52

LTBI cohorts followed from known exposure
Late reactivation rates in populations with LTBI following 
a known exposure (group 2) can be observed in 11 studies: 
four from the mid-20th century that have already been 
introduced,3,20,30,41,53 and seven others published after 2011 
(table 2, appendix pp 8–10).5,26,27,31–33,55,57

In three of the studies already introduced, no clear 
difference in late reactivation rates can be seen when 
comparing cohorts with demonstrated conversion to those 
with LTBI following a known exposure (appendix p 27).3,20,41 
In a pre-antibiotic era study of female high-school students 
by Hyge in 1956, late reactivation rates can be compared 
between recent converters and those known to be TST 
positive before their so-called massive exposure, with no 
clear differences observed (appendix p 27).41

Considering late reactivation rates by age, a pre-
antibiotic era study by Myers (1963) reported on 599 child 
contacts in Minnesota, USA, presenting before the age of 
6 years.53 In these children, all but three of 41 TB 
reactivations occurred either before 8 years of age or at 
ages 15–21 years, despite follow-up to an average age of 
32 years (appendix p 28).53 Hyge (1956) also noted that no 
case of post-primary pulmonary tuberculosis occurred 
before the age of 15.41 Ferebee (1970) presented the number 
of tuberculosis cases by age group over time in all 
participants in the USPHS trial who were TST-positive on 
entry or had converted by 12 months.3 The highest 
reactivation rates between 2 and 5 years post-exposure 
were seen in 15–54-year olds compared with younger or 

Figure 2: Tuberculosis reactivation rates over time, in cohorts with TST conversion
MRC=British Medical Research Council. USPHS=US Public Health Service. TST=tuberculin-skin test. Shaded areas 
represent 95% CIs. In the USPHS trial, observation was reported as incomplete beyond the seventh year, so these 
results have been excluded.3 All studies reported active follow-up, but only the study in the Royal Netherlands 
Navy50 and the French study49 provided numbers observed over time. Different definitions of conversion were used, 
and results in the USPHS trial are shown from exposure, rather than conversion. The reactivation rate plotted at 
2·5 years for Veening (1968) is the average rate 1–4 years after conversion.
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older groups, but rates were similar thereafter (appendix 
p 28).3 In addition to the USPHS trial, five more recent 
studies of untreated contacts were identified, with results 
summarised in figure 3.26,27,31–33,57 Across studies, screening 
methods and cutoffs varied, but rates ranged from 0 cases 
per 100 000 person-years to 500 cases per 100 000 person-
years from 2 to 5 years after exposure, reaching approxi-
mately 200 cases per 100 000 person-years or lower by the 
fifth year, and appearing to decline further beyond this 
point. However, the decreasing or unspecified number of 
participants under observation in several studies makes 
interpretation difficult. Three included studies reported 
on genotypic concordance of reactivation episodes, 
although none reported concordance of the cases of late 
reactivation specifically.5,31,58

LTBI cohorts with unknown timing of infection
86 studies (group 3) have documented tuberculosis 
progression in popu lations with LTBI for whom the 
timing of infection was not established (appendix 
pp 12–23). The largest of these studies were done in the 
mid-20th century as part of vaccine trials,56,59–66 military 
screening,67–70 or mass screening or vaccination 
campaigns.39,71,72

These studies typically presented the average reactivation 
rate across all observation years. High average annual 
reactivation rates (>400 cases per 100 000 person-years) 
were reported in numerous studies done in settings 
known to have a high incidence of tuberculosis,34,63–65,73–80 
but several studies in low-incidence settings among recent 
migrants from high-incidence settings also found high 
reactivation rates.81–83 The lowest reactivation rates were 
seen in studies that followed untreated residents of 
low-incidence countries on LTBI registries.84,85

Several studies presented average reactivation rates 
across all observation years stratified by TST response, 
predominantly finding increasing rates with greater TST 
diameter (appendix p 28).39,61,64,66,67,86,87 Studies that presented 
rates by TST status over time typically showed declining 
rates, with the most rapid declines occurring in those with 
the greatest TST responses, such that rates gradually 
converged (figure 4A).39,56,59,88

Horwtiz and colleagues (1969) also observed this 
pattern across multiple age groups in a study of adult 
residents of Denmark, with the highest rates occurring 
among the youngest, 15–24-year-old, group (figure 4B).39

In most studies that observed reactivation rates in 
cohorts for more than 10 years (up to 20 years), rates 
beyond 10 years were lower than 50–100 cases per 
100 000 person-years.39,56,59,81 Higher rates more than ten 
years after screening were observed in one study by 
Gernez-Rierux and Gervois (1973), with distinguishing 
features of this study including that high rates were 
observed in initial non-reactors, follow-up was active 
and included annual chest radiographs, and 
participants were the youngest compared with others 
in this group.66

Two studies of child reactors have observed differing 
reactivation rates by age. In a large study of Puerto Rican 
children from 1949 with 19 years of follow-up, results 
were presented by age at tuberculosis diagnosis rather 
than time from screening, with the explanation that the 
“changes that occurred with the passage of time…[were] 
small and inconstant compared with the effect associated 
with age.”60 The greatest disease risk was observed in the 
very young, with a second high-risk period in youth 

Figure 3: Tuberculosis reactivation rates over time in untreated cohorts with known Mycobacterium 
tuberculosis exposure and LTBI diagnosis
LTBI=latent tuberculosis infection. USPHS=US Public Health Service. TST=tuberculin skin test. QFT-GIT=QuantiFERON-
TB Gold In-Tube. IGRA=interferon-ƴ release assay. QFT-G=QuantiFERON-TB Gold. The arrows indicate that the 
reactivation rates given in these studies beyond the previous year label were not right-censored. Shaded areas 
represent 95% CIs. Reactivation rates were provided by Erkens and colleagues26 in the first, second, third to fifth, and 
5 or more years. All but two studies had passive follow-up beyond 2 years: the study in Spanish close contacts31 
followed up participants for 4 years, and the USPHS trials reported active follow up, but did not provide observed 
cohort sizes over time.3,30
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(appendix p 29).60 In a more recent study among those 
with a positive TST aged 6–10 years in Hong Kong, 
reactivation rates were also observed to increase after the 
age of 15 years (from 38 cases per 100 000 person-years 
to 608 cases per 100 000 person-years).92 Neither study 
reported whether participants received chest x-ray 
screening at study commencement.60,92

Studies that reported tuberculosis progression in 
cohorts with LTBI who were exclusively diagnosed by 
IGRA are listed in the appendix (pp 21–22) and the four 
largest studies (n>39) that presented rates over time are 
illustrated in figure 4C.32,82,83 In a UK cohort, reactivation 
rates were found to be similarly high when participants 
were screened with T-SPOT.TB or TST of 15 mm or more 
(>300 cases per 100 000 person years in the fourth and 
fifth year after screening), but lower when QuantiFERON-
TB Gold In-Tube (QFT-GIT) or lower TST cutoffs were 
used.93,94

Ecological studies
In group 4, seven studies have estimated reactivation 
rates in the years after infection indirectly by using 
TST/IGRA survey data to infer the prevalence of 
infection, and tuberculosis notifications to quantify 
reactivation episodes. Three studies performed in low-
incidence settings additionally used various approaches 
to exclude cases suspected of being due to recent 
infection (eg, by excluding genotypically clustered 
cases).35–37 It was possible to calculate reactivation rates 
from the available data in a further two ecological 
studies,95,96 but they did not discuss rates and so were 
excluded from the main analysis, and are described in 
the appendix (p 30).

Grzybowski and Allen (1964) used industrial and 
community TST-survey data in Ontario, Canada, to 
estimate the population LTBI prevalence, and categorised 
TB cases as either reactivation (meaning recurrent TB), 
recent or remote on the basis of chest radiograph result, 
age and clinical manifestation (citing the work of 
Wallgren [1948]97 and stating that certain manifestations 
generally occur within 2 years of infection).35 They 
estimated a remote reactivation rate of 57 cases per 

100 000 person-years in those with a TST response of 
more than 5 mm without radiographical evidence of 
inactive disease.35 They also estimated reactivation rates 
of all pulmonary tuberculosis in Ontario in 1960, finding 
different rates by age and sex (figure 5A).35 Stead (1983) 
found similar age-specific reactivation rates in Arkansas, 
USA, in 1961, 1971, and 198198 when using the age-specific 
TST prevalence found in Ontario in 1958–60,35 together 
with the assumption of a 5% reversion rate over time 
(figure 5A).35

Barnett and colleagues (1971) used rates of TST 
positivity (≥6 mm) found during mass tuberculin 
screening, and tuberculosis notifications from 1960–69 
in Saskatchewan, Canada, to estimate reactivation rates.38 
Rates were lower than in the Ontario study, ranging from 
14 cases per 100 000 person-years in 50–59-year-olds to 
46 cases per 100 000 person-years in 0–14-year olds 
(figure 5A).38

More recently, Horsburgh and colleagues (2010)37 and 
Shea and colleagues (2014)36 presented reactivation rate 
estimates in the USA from Palm Beach (Florida) and 
nationwide, respectively, by using TST surveys to provide 
denominator estimates and non-genotypically clustered 
tuberculosis notifications to determine numerators.36,37 
Rates of 70 cases per 100 000 person-years (95% CI 
48–100) were found for Palm Beach and 84 cases per 
100 000 person-years (83–85) for national estimates, with 
results varying by age (figure 5B).

Finally, in two studies by Mulder and colleagues, 
screening results, using the IGRA, QFT-GIT,99 and TST100 
from a sample of recent immigrants to the Netherlands, 
were projected onto the entire immigrant cohort, who 
were monitored for 2 years after arrival. A Bayesian 
analysis of published data was used to provide sensitivity 
estimates for their methods.99,100 Reactivation rates were 
found to be 193–247 cases per 100 000 person-years in 
those screened with QFT-GIT, 114–212 in those with TST 
of 15 mm or greater, and 97–173 in those with TST of 
10 mm or greater, depending on the age, sex, and 
tuberculosis incidence in the country of birth, with no 
marked differences by these strata.99,100

Discussion
This systematic review presents the evidence for rates of 
LTBI reactivation beyond 2 years from infection (late 
reactivation). The evidence is diverse and must be 
interpreted in the context of each study’s methodological 
approach rather than meta-analysed, but there are some 
consistent trends, with time from infection and age 
appearing to be key influences. Decreasing reactivation 
rates were seen in almost all studies that observed 
cohorts over several years, and in antibiotic-era studies in 
untreated populations rates reached approximately 
200 cases per 100 000 person-years or below by the 
fifth year from exposure or conversion, and appeared 
to decline further beyond this point, although the 
decreasing or unspecified number of participants under 

Figure 4: Tuberculosis reactivation rates over time in populations screened 
for latent tuberculosis by TST result (A), by age and TST result (respiratory 
and pleural tuberculosis; B),39 and in studies that included IGRA (C)
TST=tuberculin skin test. IGRA=interferon-γ release assay. MRC=British Medical 
Research Council. QFT-GIT=QuantiFERON-TB Gold In-Tube. 
QFT-G=QuantiFERON-TB Gold. X-axis labels indicate the years over which the 
results were averaged. Shaded areas represent 95% CIs. The arrows
indicate that the reactivation rates given in these studies beyond the previous 
year label are not right-censored. In the study of French school children, 
participants were recruited from 1949–51 and rates were calculated for each year 
in relation to the number of participants followed over 3 consecutive years.66 
Research on Muscogee County, GA, USA, residents reported adjustment for 
losses using a modified life-table method.88 *Terms have been updated. 
†Populations were known to include close contacts. ‡Populations known to 
include those with chest x-ray abnormalities.
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Figure 5: Annual tuberculosis 
reactivation rates from 
ecological studies that 

estimated LTBI prevalence in 
a population and then 

used tuberculosis 
notifications to quantify 

reactivation episodes
Studies that included all 

tuberculosis cases in their 
estimates–ie, they made no 

adjustments to exclude cases of 
recent infection (A) and studies 

that excluded cases of recent 
infection (B). LTBI=latent 

tuberculosis infection. 
TST=tuberculin skin test. 

The first panel of figure 5A is 
adapted from Grzybowski and 

Allen,101 by permission of the 
American Thoracic Society.
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observation in most studies limits interpretation. 
Consistently, rates were lower in studies of those 
participants with unknown timing of exposure, and 
studies that followed these cohorts beyond 10 years 
typically reported rates below 50–100 cases per 
100 000 person-years.56,59

In addition to time from infection, there is evidence of 
a possible association between age and late reactivation 
rates, although the contribution of each is difficult to 
discern. Most studies did not publish age-disaggregated 
data and of those that did, quantification of reactivation 
rates could have been influenced by differences in the 
background prevalence of reactivity (which commonly 
increases with age30,35,52,102) and age-related differences in 
reinfection risk, which can vary with time and social 
mixing patterns.21,35 For example, in the few studies that 
estimated late reactivation rates over time in cohorts 
aged under approximately 13 years, late reactivation rates 
remained relatively low from 6 to 14 years of age,24,45,53,92 
and several studies observed a subsequent increase in 
risk during youth,45,53,60,92,103 perhaps indicating that late 
reactivation might not continuously decline with time 
from infection. Consistent with this theory, the study of 
TST converters by Debre (1973) had the youngest cohort 
(77% 5–14 years of age), and was also the only study for 
which reactivation rates did not continuously decrease 
over time. However, these studies were all done in high-
incidence settings and so the degree to which the 
increase during youth (or the absence of a decrease) 
was due to increasing reinfection as social contacts 
changed,21,35 rather than late reactivation, is impossible to 
determine.

Distinct patterns of reactivation by age can also be 
observed in several of the ecological studies in low-
incidence settings, with high rates in youth, relatively low 
rates for most of adult life, and then an increase again into 
old age (figure 5).35–37,98 However, the relative contribution 
of time from infection and age cannot be discerned in 
these studies. Although the pattern was observable in the 
foreign-born group of one study in a low-incidence setting 
that excluded genotypically clustered tuberculosis cases,36 
tuberculosis due to recent infection acquired overseas 
(before migration or during travel) would not have 
been identified as part of a cluster and hence recent 
infection, rather than late reactivation, might still have 
contributed to the observable peaks.36

Although reactivation can occur decades after infection,7 
we found no cohort studies with sufficient follow-up time 
and large enough samples to quantify this risk adequately 
beyond 10 years. Styblo suggested that the endogenous 
reactivation rate in Dutch residents aged 65–74 years and 
75 years or older in 1973–76 would simply be their 
incidence of bacillary pulmonary tuberculosis 
(10 cases per 100 000 person-years for individuals aged 
years 65–74 years and 20 cases per 100 000 person-years 
for those aged 75 years or older), on the assumption that 
they had all been infected earlier in life when tuberculosis 

incidence was very high.48 It is also commonly quoted that 
the lifetime risk of tuberculosis infection is 10%, with half 
that risk occurring in the first 5 years after infection, 
which would imply, for example, an annual endogenous 
rate of 93 cases per 100 000 person-years if infected at 
20 years of age with a life expectancy of 80 years. However, 
although this assertion is commonly referenced to one of 
several sources,3,48,60,104,105 we found no data in these or other 
sources to support it. Although Comstock and colleagues 
suggested that “The lifetime risk for a young child who is 
a strongly positive reactor may run as high as 10 per cent,” 
and might have reached this conclusion by extrapolating 
the annual rate of tuberculosis found among Puerto-
Rican 7–12 year olds (123 cases per 100 000 person-years) 
or 13–18 year-olds (149 cases per 100 000 person-years) 
with TST indurations of 16 mm or more by 71–86 years, 
the authors stated that this was an upper estimate among 
strong reactors.60 Furthermore, the mean follow-up in 
their cohort was only 19 years and the reinfection risk in 
Puerto Rico was likely to be high during the study period 
(tuberculosis mortality was 179 per 100 000 person-years 
in 1948).106 By contrast, Vynnycky and Fine’s age-structured 
deterministic tuberculosis transmission models used to 
explore the dynamics of infection and pulmonary disease 
in White male patients in England and Wales in the 
second half of the 20th century107–111 suggested that most 
risk occurs within 5 years from infection, with a constant 
low rate of endogenous pulmonary tuberculosis 
thereafter.107 They estimated the endogenous rate to be 
negligible in males infected as children and 30 cases per 
100 000 person-years in males infected as adults, 
acknowledging that, although there might have been an 
increase into old age, the “magnitude and pattern of the 
increases is unknown”.107

Our review also highlighted the strengths and limi-
tations of LTBI diagnosis. Included studies demonstrated 
that the relative size of the TST response reliably stratified 
reactivation risk in the first few years after diagnosis,39,56,59,88 
and one study also showed this stratification was possible 
with differing interferon-γ concentrations.112 However, in 
those studies that followed up populations from the 
point of LTBI diagnosis with a TST, the relative size of 
the TST response became less meaningful with the 
passing of time.39,56,59,88 Furthermore, many included studies 
demonstrated TST reversion (a change in an individual’s 
LTBI test result from positive to negative),3,21,25,28,35 and 
some found it to be more common among younger 
age groups,3,112,113 in those without radiographical abnor-
malities,3 in those with smaller indurations, and where 
infection rates are low.25,28 For example, in the USPHS trial, 
it was reported that 6·5% of the initial reactors in the 
placebo group and 7·9% in the isoniazid group had 
reverted at 12 months,3 and their 10-year reactivation rates 
were lower than in those who remained positive (64·0% 
lower in the placebo group and 45·2% lower in the 
isoniazid group).3 Therefore, the likelihood of LTBI 
resolution in a population over time and the factors that 



12 www.thelancet.com/infection   Published online April 20, 2021   https://doi.org/10.1016/S1473-3099(20)30728-3

Review

influence it are likely to affect ongoing reactivation rates, 
and although the late reactivation rate in an entire cohort 
might be low many years after infection, the risk in those 
that retain reactivity could be higher. Correspondingly, 
ecological and other studies that inevitably limit their 
reference cohorts to contemporary reactors might 
overestimate the risk of reactivation many years from 
exposure, since they effectively exclude those who have 
reverted from their denominators.

Quantifying late reactivation rates is methodologically 
challenging and the available evidence reflects this 
difficulty. Our review provides an opportunity to 
summarise the limitations of the existing evidence and to 
highlight key aspects requiring further study. All included 
studies were limited by the possibility that reinfection 
might have contributed to observed reactivation rates, a 
contribution that could have varied with time given the 
declining tuberculosis incidence in many study settings. 
Future studies, such as reanalyses of existing datasets or 
studies of contacts who do not receive preventive 

treatment, have the opportunity to use both genomic and 
epide miological data to better distinguish late reactivation 
from disease due to reinfection. Other key limitations 
included the frequent omission of details regarding the 
size of cohorts remaining under observation over time, 
the ages of participants, screening methods, chest x-ray 
status, and the disaggregation of results by these factors 
and over time. Given the wide use of IGRAs it should 
also be highlighted that few studies have specifically 
documented late reactivation rates in populations 
following an IGRA assessment. Future studies should 
ideally be disaggregated by screening method, immune 
status, receipt of preventive therapy, chest x-ray status, 
age, and time since infection. Disaggregation of results 
by sex would also be valuable, particularly as there is 
evidence to suggest that rates might differ by sex35 and yet 
two of the studies that are most commonly used to 
estimate late reactivation exclusively considered males.67,109

We endeavoured to make this review systematic, 
transparent, and thorough, although the historical nature 
of many potentially relevant studies made compre-
hensiveness challenging. The review is also limited by 
the language restriction, which might have meant that 
important studies in languages other than English or 
French were missed. Furthermore, the paucity of the 
literature made it necessary to compare studies with 
heterogeneous demographics, screening and follow-up 
methods, and disease definitions, despite recognising 
that these all could affect reactivation rates. The varying 
use of chest x-ray screening is one example. Most 
studies excluded active disease using such screening at 
study commencement, but several additionally included 
screening during follow-up.23,30,47,49 Chest x-ray screening 
can identify disease in asymptomatic patients,28,115 and if 
radiological abnormalities cyclically wax and wane,2 it is 
impossible to know whether and when such cases 
would have otherwise presented to health care. Therefore, 
the inclusion and frequency of active chest x-ray 
follow-up, versus passive follow-up, might affect observed 
reactivation rates.

The relative and potentially interacting contribution of 
age and time remain unclear and results must be viewed 
with caution, but existing evidence shows late reactivation 
rates to decline to approximately 200 cases per 
100 000 person-years or below by the fifth year from 
exposure or conversion in untreated cohorts, they may be 
lower between 5 years and 10 years, and are unknown 
beyond this. In light of the debate surrounding the time-
line of tuberculosis,14 and with global efforts towards 
tuberculosis elimination, acknowledging the significant 
gaps that remain in our understanding of late reactivation 
is important, and attempts should be made to redress 
them. The importance of late reactivation, relative to early 
progression, remains unknown.
Contributors
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Search Strategy 

On the 25th of June 2019 we searched Medline, Scopus, CINAHL, EMBASE, Evidence Based Medicine Reviews, Global Health, 

Web of Science and PROQUEST Dissertation and Thesis for studies that estimated TB case rates in human cohorts identified as 

having LTBI. We applied no date restrictions and only included articles in English or French. We combined the following three 

groups of terms with the Boolean operator “AND”: 1) tuberculosis; 2) incidence or (inciden* or  rate or  rates) adjacent (within 

three words) to (tuberculosis or tb)); 3) the following terms combined with “OR”: endogenous, reactivat*, latency, time lag, late 

progression, late disease, lifetime risk, incubation period, post primary, postmigration, post migration, post immigration, 

postimmigration, post arrival, postarrival, unclustered, non clustered, latent period, cohort effect, ongoing risk, persistent risk, 

infectious disease incubation period, latent tuberculosis, tuberculin test, Interferon-gamma Release Tests, tuberculin skin test, t 

spot, igra, mantoux, quantiferon, qft ((years or time) adjacent (within three words) (arrival or migration)), (progress*) adjacent 

(within three words) (tuberculosis or tb or disease or active). Additional studies were identified from the reference lists of 

identified studies. 

Specific search strategies for each database: 

Medline, EMBASE and Evidence-based medicine (OVID) 

tuberculosis.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, 

protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] 

AND 

incidence/ or ((inciden* or rate or rates) adj3 (tuberculosis or tb)).ab,ti. 

AND 

endogenous.ab.ti or (reactivat* or latency or time lag or late progression or late disease or lifetime risk or incubation period or 

post primary or postmigration or post migration or post immigration or postimmigration or post arrival or postarrival or 

unclustered or non clustered or latent period or cohort effect or ongoing risk or persistent risk).mp. or Infectious Disease 

Incubation Period/ or ((years or time) adj3 (arrival or migration)).mp. or (progress* adj3 (tuberculosis or tb or disease or 

active)).mp. OR (develop* adj3 (tuberculosis or tb or disease or active)).mp. or latent tuberculosis.mp. or tuberculin test.mp. or 

Interferon-gamma Release Tests.mp. or tuberculin skin test.mp. or t spot.mp or igra.mp or mantoux.mp or quantiferon.mp or 

qft.mp 

limited to English and French 

SCOPUS 

TITLE-ABS-KEY ( tuberculosis )  AND  ( KEY ( incidence )  OR  TITLE-ABS-

KEY ( ( inciden*  OR  rate  OR  rates )  W/3  ( tuberculosis  OR  tb ) ) )  AND  TITLE-ABS-

KEY ( endogenous  OR  reactivat*  OR  latency  OR  "time lag"  OR  "late progression"  OR  "late disease"  OR  "lifetime 

risk"  OR  "incubation period"  OR  "post primary"  OR  postmigration  OR  "post migration"  OR  "post 

immigration"  OR  postimmigration  OR  "post arrival"  OR  postarrival  OR  unclustered  OR  "non clustered"  OR  "latent 

period"  OR  "cohort effect"  OR  "ongoing risk"  OR  "persistent risk"  OR  "infectious disease incubation period"  OR  “latent 

tuberculosis” OR “tuberculin test” OR “Interferon-gamma Release Tests” or  “tuberculin skin test” or “t spot” or “t-spot” OR  

“igra” OR  “mantoux” OR  “quantiferon” OR  “qft” OR 

( ( years  OR  time )  W/3  ( arrival  OR  migration ) )  OR   

( ( progress* )  W/3  ( tuberculosis  OR  tb  OR  disease  OR  active ) )  OR   

( ( develop* )  W/3  ( tuberculosis  OR  tb  OR  disease  OR  active ) ) )  AND ( LIMIT-

TO ( LANGUAGE ,  "English" ) )  OR  LIMIT-TO ( LANGUAGE ,  "French" ) )  
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CINAHL  

tuberculosis 

 AND 

(MH "incidence" or ((inciden* or rate or rates) N3 (tuberculosis or tb)))  

AND 

endogenous OR reactivat* OR latency OR "time lag" OR "late progression" OR "late disease" OR "lifetime risk" OR "incubation 

period" OR "post primary" OR postmigration OR "post migration" OR "post immigration" OR postimmigration OR "post arrival" 

OR postarrival OR unclustered OR "non clustered" OR "latent period" OR "cohort effect" OR "ongoing risk" OR "persistent risk" 

OR  "infectious disease incubation period"  OR “latent tuberculosis” OR “tuberculin test” or “Interferon-gamma Release Tests” or  

“tuberculin skin test” or “t spot” or “igra” or “mantoux” or “quantiferon” or “qft” OR ((years OR time) N3 (arrival OR 

migration)) ( ( progress* )  N3 ( tuberculosis  OR  tb  OR  disease  OR  active ) )  OR  ( ( develop* )  N3 

( tuberculosis  OR  tb  OR  disease  OR  active ) )  

limited to English and French 

Global Health  

(((tuberculosis) AND (inciden* or rate or rates) AND (((title:(endogenous) OR ab:(endogenous)) OR reactivat*  OR  latency  OR  

"time lag"  OR  "late progression"  OR  "late disease"  OR  "lifetime risk"  OR  "incubation period"  OR  "post primary"  OR  

postmigration  OR  "post migration"  OR  "post immigration"  OR  postimmigration  OR  "post arrival"  OR  postarrival  OR  

unclustered  OR  "non clustered"  OR  "latent period"  OR  "cohort effect"  OR  "ongoing risk"  OR  "persistent risk"   OR "years 

after migration" OR "years after arrival" OR "time after migration" or "time after arrival"  OR “progression to tuberculosis” OR 

“progression to active” OR “progression to disease”  OR “progressing to tuberculosis” OR “progressing to active” OR 

“progressing to disease”  OR “progressed to tuberculosis” OR “progressed to active” OR “progressed to disease” OR “developed 

tuberculosis” OR “developed active” OR “developed disease” OR “developing tuberculosis” OR “developing active” OR 

“developing disease” OR “developed tuberculosis” OR “developed active” OR “developed disease” OR “development of 

tuberculosis” OR “development of active” OR “development of disease” OR “latent tuberculosis” OR “tuberculin test” OR 

“Interferon-gamma Release Tests” OR  “tuberculin skin test” OR “t spot” OR “t-spot” OR “igra” OR “mantoux” OR 

“quantiferon” OR “qft” )))   

I forgot to limit the Global Health search to English and French language articles and so did this during title, abstract and full-text 

review. 

Web of Science  

TS=(tuberculosis) 

AND  

TS= (inciden* OR  rate OR  rates) 

AND 

(TS= (endogenous OR reactivat* OR latency OR "time lag" OR "late progression" OR "late disease" OR "lifetime risk" OR 

"incubation period" OR "post primary" OR postmigration OR "post migration" OR "post immigration" OR postimmigration OR 

"post arrival" OR postarrival OR unclustered OR "non clustered" OR "latent period" OR "cohort effect" OR "ongoing risk" OR 

"persistent risk" OR “latent tuberculosis” OR “tuberculin test” OR “Interferon-gamma Release Tests” OR  “tuberculin skin test” 

OR “t spot” OR “t-spot” OR “igra” OR “mantoux” OR “quantiferon” OR “qft” ) OR  

TS= (( years OR time ) NEAR/3 ( arrival OR migration )) OR 

TS=(( progress*) NEAR/3 ( tuberculosis  OR  tb  OR  disease  OR  active )) OR 

TS= (( develop* ) NEAR/3 ( tuberculosis  OR  tb  OR  disease  OR  active ))) 

limited to English and French 
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PROQUEST  

all(tuberculosis) AND (su(incidence) OR ((inciden* OR rate OR rates) NEAR/3 (tuberculosis OR tb))) AND ((ab(endogenous) 

OR ti(endogenous)) OR all(reactivat* OR latency OR "time lag" OR "late progression" OR "late disease" OR "lifetime risk" OR 

"incubation period" OR "post primary" OR postmigration OR "post migration" OR "post immigration" OR postimmigration OR 

"post arrival" OR postarrival OR unclustered OR "non clustered" OR "latent period" OR "cohort effect" OR "ongoing risk" OR 

"persistent risk" OR "latent tuberculosis" OR "tuberculin test" OR "Interferon-gamma Release Tests" OR "tuberculin skin test" 

OR "t spot" OR "igra" OR "mantoux" OR "quantiferon" OR "qft" OR ((years OR time) NEAR/3 (arrival OR migration)) OR 

((progress*) NEAR/3 (tuberculosis OR tb OR disease OR active)) OR ((develop*) NEAR/3 (tuberculosis OR tb OR disease OR 

active)))) 

limited to English and French  
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Table S1 Description of cohort studies included in the review that documented late reactivation following TST conversion or Mycobacterium tuberculosis exposure (This is a more 

detailed version of Table 2 in the manuscript). 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-

group 

when 

recruited 

(years) 

Follow

-up                    

(years) 

LTBI screening method 

(method: cut-off) 

Active or 

passive follow 

up; numbers 

observed over 

time given 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: 

Number of TB 

cases/number 

with conversion 

at study entry 

Number 

of cases 

beyond 

two years 

Approximate 

TB incidence 

per 100,000 

per annum 

(setting and 

years) 

Risk of bias 

assessment 

(low, 

moderate, 

serious, 

critical) 

Prospective cohort studies documenting TB progression following TST conversion (some populations had a known exposure) 

PMyers et al. 

19641 

1921-1941; 

1960 

Minneapolis, 
Minnesota, 

USA 

Child contacts 6-12 
NS, 

~16-39 

Pirquet initially and then 
Mantoux in 1928, 0·1mg then 

1·0mg; edema or induration 

≥5-10mm at least one year 
after negative test (up to 12 

yrs) 

Active, some 

appeared to be 

radiologically 
monitored; N, 

only total 

numbers lost 
given 

Y`` N N 

11/154, four 

demonstrated 

primary 
infiltrates, but 

they resolved 

initially without 
symptoms 

6 
~250-62 (New 
York, 1921-

1960)2 

Serious/Criti

cal: 

screening; 
reinfection;  

PMyers et al. 

19653 

1921-1941; 

1960 

Minneapolis, 
Minnesota, 

USA 

Lymanhurst 

School and 
Health Center, 

exposure not 

stated 

13-17 
NS, 

~19-39 

OT scarification method from 

1921, puncture method in 

1927, intracutaneous in 1928, 
0·1mg then 1·0mg; edema or 

induration ≥5-10mm at least 

one year after negative test (up 
to 8yrs) 

Active, some 

appeared to be 

radiologically 
monitored; N, 

only total 

numbers lost 
given 

Y` N N 11/129 6 
~250-62 (New 
York, 1921-

1960)2 

Critical: 
screening; 

reinfection;  

PMeyer 19494 
1929-

1944;1947 

Oslo, 

Norway 

Residents, some 

with a known 
exposure 

4-20+ <17 

Most Pirquet, Norwegian 

tuberculin· Where quantified: 
≥3mm infiltration or ≥4mm 

rubor· < 5 yrs between 

negative and positive but 
<25% >2 yrs· 

Active; Y Y`` N N 

Progressive 

pulmonary, 
extrathoracic and 

exudative 

pleuritic TB - 
98/889 

32 

Pulmonary TB: 
~280-125 

(Norway, 1929-

1944)5 

Serious/Criti
cal: 

screening; 

reinfection;  

Madsen et al. 
19426 

1934 and 
1936; 1940 

Copenhagen, 
Denmark 

Medical 

students, 
Denmark 

University. High 

school students 
at technical 

college 

NS <5 

Mantoux 1TU and 100TU 

PPD from 1935: 10mm at 

48hrs or 8mm at 72hrs 

Active, some 

had repeated 
roentgenogra

m; Y 

Y` N N 
11 with X-ray 
changes/167 

0 

New cases: 

163-70 (1921-

1940)7 cited by8 

Critical: 

screening; 
reinfection; 

outcome 

PBadger & 
Ayvazian 

19489 

1932-1943; 

1948 
Boston, USA 

Nurses, 
presumably 

exposed 

NS 5-15 Saranac OT: NS 

Active, TST 

and 
roentgenogra

m every six 

months; N 

Y` NS N 40/285 7 
~130-170 (New 
York, 1932-

1948)2 

Critical: 

reinfection; 

missing 
outcome 

PDaniels et al. 

194810 

1934-1943; 

1944 
England Nurses, exposed 18-25 5 

Mantoux reaction <1·0mg: 

5mm 

Active, annual 

CXR; Y 
Y` N N 44/347 3 

~130-145 

(London, 1935-

1944)2 

Critical: 

reinfection 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; TST=tuberculin skin test; USA=United States of America; NS=not stated; N=No; Y=Yes; OT=Old Tuberculin; 
TU=tuberculin units; PPD=purified protein derivative. 
P Results are plotted and appear either in the figures below or in the main manuscript. 

`` Cohort known to include those with certain CXR abnormalities. 
` Unclear whether cohort included those with CXR abnormalities, in the case of several of the pre-chemotherapy studies the development of primary foci/calcifications was discussed in detail. 
n Only those with normal/negative/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or the study presented progression rates separately in those with and without abnormalities. 
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Table S1 Continued. Description of cohort studies included in the review that documented late reactivation following TST conversion or Mtb exposure (This is a more detailed version 

of Table 2 in the manuscript). 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population  

Age-

group 

when 

recruite

d (years, 

unless 

stated) 

Follow-

up                       

(years) 

LTBI screening method 

(method: cut-off) 

Active or 

passive 

follow up; 

numbers 

observed 

over time 

given 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: 

Number of 

TB 

cases/number 

with 

conversion at 

study entry 

Number 

of cases 

beyond 

two 

years 

Approximate TB 

incidence per 

100,000 per 

annum (setting 

and years) 

Risk of 

bias 

assessment 

(low, 

moderate, 

serious, 

critical) 

Prospective cohort studies documenting TB progression following TST conversion (some populations had a known exposure) 

PHertzberg 

194811 

1936-1946; 

NS 
Oslo, Norway 

Residents with 

varying 
exposure 

all 

<10, 
small 

number 

“over 10” 

Pirquet to 1944, then 

Mantoux 1mg OT: 
conversion to ≥10mm 

“We are in 
touch with 

practically all 

persons” 

Y` N N 727/1,829 

Males:1
4 

Females:

16 

  Pulmonary TB: 

~120 (Norway, 
1948)5 

Critical: 
screening; 

reinfection; 

missing 

PGedde-Dahl 

195212 

1937-1944; 

1945 
Kinn, Norway 

Residents, 
some with 

household 

exposure 

all 

mean: 

3·8, from 

TST 
negative 

test 

Pirquet: Danish 

tuberculin 3mm; 

Norwegian plus 
adrenalin 4mm; Danish 

plus adrenalin 4mm 

Active; Y Y` NS N 

32 
“progressive 

pulmonary”/2

14  

3 

TB morbidity from 

pulmonary TB: 

300 & 201 (Kinn, 
1937-40 &-1941-

44) 

Critical: 

screening; 
reinfection 

PHyge et al. 

195613 
1942; 1954 Denmark 

Female school 

children with 

“massive 
exposure to 

infection” 

12-18 12 Mantoux <100TU: NS Active; N Y`` N  N 

Evidence of 
primary TB: 

41/70 

Post primary 
progressive 

pulmonary 

TB: 14/70 

5 

Respiratory TB: 
146-66 

(Copenhagen, 

1947-1954)14 

Critical: 

reinfection; 
missing 

PSutherland 

1967;15 

Sutherland 
1968;16Styblo 

19918 

1951-52; 

NS 
Great Britain School children 14-15·5 10 

TST: 0-4mm to 100TU 

to ≥5mm to 3 TU 

Active with 
CXR and 

TST for 8-10 

years 
following 

start of trial; 

N 

Yn N N 
243/2085* 

(≥6mm)  
NS, ~43* 

~145-~30 

(London, 1951-
1972)2 

Serious: 

screening; 

reinfection; 
missing; 

outcome 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; NS=Not stated; OT=Old Tuberculin; Y=Yes; N=No; TST=tuberculin skin test; TU=tuberculin units. 
P Results are plotted and appear either in the figures below or in the main manuscript. 
* We did not have information on the number of TB cases occurring over time. Figure 14 in Styblo 19918 shows the proportion of all cases (n=243) that reactivated over time, with an unspecified TST cut-off. We used this to estimate numbers of 
TB cases over time. To calculate reactivation rates we assumed a 6+mm cut-off and used denominators from Table 1 in Sutherland 1968,16 with 125 cases added to account for those participants that developed TB before conversion was observed 

(this figure was stated in the provisional analysis15), i.e. conversion was assumed for 125 participants. 

` Unclear whether cohort included those with CXR abnormalities, in the case of several of the pre-chemotherapy studies the development of primary foci/calcifications was discussed in detail. 
`` Cohort known to include those with certain CXR abnormalities. 
n Only those with normal/negative/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or the study presented progression rates separately in those with and without abnormalities. 
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Table S1 Continued. Description of cohort studies included in the review that documented late reactivation following TST conversion or Mtb exposure (This is a more detailed version 

of Table 2 in the manuscript). 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population  

Age-group 

when 

recruited 

(years, 

unless 

stated) 

Follow-up                        

(years) 

LTBI screening method 

(method: cut-off) 

Active or 

passive follow 

up; numbers 

observed over 

time given 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: 

Number of TB 

cases/number 

with 

conversion at 

study entry 

Number 

of cases 

beyond 

two 

years 

Approximate 

TB incidence 

per 100,000 per 

annum (setting 

and years) 

Risk of 

bias 

assessment 

(low, 

moderate, 

serious, 

critical) 

Prospective cohort studies documenting TB progression following TST conversion (some populations had a known exposure) 

PFerebee & 
Mount 

1962;17Ferebee 

197018 

1957-1960; 

NS 
USA 

Household 

contacts of 
active cases 

>2months 

10 

(incomplete 
after 7) 

TST 5TU: conversion to 

≥5mm at 12 months 

Active 

(incomplete 
after seven 

years), and 

repeated CXR 
at 12 months; N 

Y`` N N 32/867 13 
41-32 (USA, 

1956-1959)19 

Moderate: 

selection 

screening; 
reinfection; 

missing 

PDebre et al. 

197320 

1959-1966; 

1969 
France 

Residents of 

France, 
mostly 

young 

children 

77% 5-14; 
19% 15-19; 

4% 20-24 

 3-10 
"recent conversion of 

their tuberculin test" 

Active with 

annual CXR 
and 

bacteriological 

examination; Y 

Yn N N 24/1451 13 
60 

(France,1972)21 

Moderate/ 

Serious: 
screening; 

reinfection  

 

PVeening 196822 1960; 1967 Netherlands 

Male 
Netherlands 

Navy 

recruits 
exposed to 

open TB 

18-20 7 
Mantoux Danish PPD 
RT 23+ tween, 1 TU in 

0·1 mI; NS 

Active; Y Y` NS N 12/128 

3 from 

0-4 
years, 

0 

beyond 

New cases: 42 

(Netherlands, 

male 15-19 year 
olds, 1961)8 

Moderate: 

reinfection; 

outcome  
 

Stead 1987;23 

Stead & Dutt 

198924 

1979-1987; 
NS 

Arkansas, 
USA 

Nursing 

home 

residents 

 ≥50 

NS, 

presumably 

<8 

TST 5 units in 0·1ml: 

≥12mm from last 

negative to first positive 

“More than 
70% of all 

residents have 

been retested 

several times” 

Y`` NS N 89/965 

9 in 

second 
to fourth 

years 

234 (study 

setting)24 
12-9 (USA, 

1956-1959)19 

Critical: 

selection; 
reinfection; 

missing 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; USA=United States of America; TST=tuberculin skin test; TU=tuberculin units; Y=Yes; N=No; PPD=purified 

protein derivative; NS=not stated. 
P Results are plotted and appear either in the figures below or in the main manuscript. 
`` Cohort known to include those with certain CXR abnormalities. 
n Only those with normal/negative/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or the study presented progression rates separately in those with and without abnormalities. 

` Unclear whether cohort included those with CXR abnormalities. 
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Table S1 Continued. Description of cohort studies included in the review that documented late reactivation following TST conversion or Mycobacterium tuberculosis exposure (This is a 

more detailed version of Table 2 in the manuscript). 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years) 

Follow-

up                        

(years) 

LTBI screening 

method (method: 

cut-off) 

Active or 

passive 

follow up; 

numbers 

observed 

over time 

given 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: 

Number of 

TB 

cases/number 

with 

reactivity at 

study entry 

Number 

of cases 

beyond 

two 

years 

Approximate 

TB incidence 

per 100,000 

per annum 

(setting and 

years) 

Risk of bias 

assessment 

(low, 

moderate, 

serious, 

critical) 

Cohorts with LTBI followed from Mycobacterium tuberculosis exposure 

PMyers et al. 
196325 

1921-1941; 
1960 

Minneapolis, 

Minnesota, 

USA 

Child 
contacts 

<6, mean=3  

NS, mean 
age of 3 

to mean 

age of 32, 
~16-39 

Pirquet initially 

and then Mantoux 
in 1928, 0·1mg 

then 1·0mg; edema 

or induration of 5 
to 10mm or 

equivalent diameter 

Active; only 

total numbers 

lost given 

Y` N N 

41/599 with 

no pulmonary 

infiltration 

19 

~250-62 (New 

York, 1921-

1960)2 

Critical: 

screening; 
reinfection; 

outcome  

PHertzberg 

194811 

1936-

1946;1946 

Oslo, 

Norway 

Residents 
exposed to 

destructive 

or non-
destructive 

TB in family 

19·9% 0-2; 

50·1% 3-12; 
 9·5% 13-16; 

12·2% 17-25; 

8·4% 25+· 

>10, 

small 

number 
“over 10” 

Pirquet to 1944, 

then Mantoux 1mg 

old tuberculin: 
≥10mm 

“We are in 

touch with 

practically all 
persons” 

Y` N N 

272/498 

males; 

280/545 
females 

Males: 7 
Females: 

15 

Pulmonary 

TB: ~120 

(Norway, 
1948)5 

Critical: 

screening; 

reinfection; 
missing 

PHyge et al. 
195613 

1942; NS Denmark 

Female 

school 

children 

12-18 12 
Mantoux <100TU: 
NS 

Active; N Y`` N N 

Progressive 

pulmonary 

TB: 9/105 

5 

Respiratory 

TB: 146-66 
(Copenhagen, 

1947-1954)14 

Critical: 

reinfection; 

missing 

PFerebee & 
Mount 

1962;17Ferebee 

197018 

1956-1959; 

NS 
USA 

Household 

contacts of 

active cases 

3·2% <15; 
17·2% 15-34; 

 33·6% 35-54; 

46·0% 55+· 

10 
(incompl

ete after 

7) 

TST 5TU: ≥5mm 

Active 
(incomplete 

after seven 

years), and 

repeated CXR 

at 12 months; 

N 

Y`` N N 

472 (to eight 

years, 479 to 

ten)/7,744 

99 
41-32 (USA, 

1956-1959)19 

Low-Moderate: 

reinfection; 

missing 

PDobler & 
Marks 201326 

2000-
2009;2009 

Sydney West 

and South 
West, 

Australia 

Contacts of 

“TB 

patients” 

Mean: 33 

17·6% 0-14;  
39·7% 15-34; 

42·7% ≥35 

mean: 

4·6  
std dev: 

2·9 

TST: ≥10mm Passive NS NS N 

Time after 

screening: 3 

months to 2 
years, 

30/3,942; ≥2 

years, 8/3,912 

8 

5-6 (Australia, 

2000-

2009)27,28 

Moderate/Serio

us: 

selection; 
reinfection; 

missing; 

outcome 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; USA=United States of America; NS=not stated; Y=Yes; N=No; TU=tuberculin units; NS=not stated; 
TST=tuberculin skin test; std dev=standard deviation.  
P Results are plotted and appear either in the figures below or in the main manuscript. 

`` Cohort known to include those with certain CXR abnormalities. 
` Unclear whether cohort included those with CXR abnormalities. 

 

 

 



9 

 

Table S1 Continued. Description of cohort studies included in the review that documented late reactivation following TST conversion or Mycobacterium tuberculosis exposure (This is a 

more detailed version of Table 2 in the manuscript). 

 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years) 

Follow-up                        

(years, 

unless 

stated) 

LTBI screening 

method (method: 

cut-off) 

Active or 

passive 

follow up; 

numbers 

observed 

over time 

given 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: 

Number of TB 

cases/number 

with reactivity 

at study entry 

Number 

of cases 

beyond 

two years 

Approximate 

TB incidence 

per 100,000 per 

annum (setting 

and years) 

Risk of bias 

assessment (low, 

moderate, 

serious, critical) 

Cohorts with LTBI followed from Mycobacterium tuberculosis exposure 

PReichler et 

al. 201829 

2002-2006; 

2011 

Nine sites, 

USA and 

Canada 

Close 
contacts of 

culture-

positive 

pulmonary 

TB ≥15 

years old# 

NS 
some <2, 

some <8 
TST: ≥5mm Passive Y` NS N 89/499 3 

~5 (USA, 2002-
2006)19 

~5 (Canada, 

2002-2006)30 

Moderate/Serious: 
selection; 

reinfection; 

missing 

PSloot et al. 

201431 

2002-2011; 

2012 

Amsterdam, 

Netherlands 

Contacts of 

pulmonary 
cases 

16·3% 0-14; 
53·9% 15-44; 

25·9% 45-64; 

3·8% ≥65· 

<11 

(incomplete 
5-11) 

IGRA 

TST 2TU PPD 
RT23: ≥10mm  

Passive Y` VC 45% 
14/739 (+57 

coprevalent*) 
2 

~9-6 

(Netherlands, 
2002-2012)32 

Moderate/Serious: 

selection; 

screening; 
reinfection; 

missing 

PErkens et al. 
201633 

2005-2013; 
2014 

Netherlands 

Contacts of 

infectious 

cases 

2% <5;  

31% 5-24; 

38% 25-44 

≥5 (IQR 
3·0-7·4) 

TST and 

confirmatory 
IGRA (since 

2010): NS 

Passive Y` VC N 

45/2251 (+4 
cases developed 

TB <100 days 

after LTBI 
diagnosis) 

9 
5 (Netherlands, 
2015)33 

Serious: 
confounding; 

screening; 

reinfection; 
missing 

Abbreviations: LTBI=latent tuberculosis infection; Mtb=Mycobacterium tuberculosis; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; USA=United States of America; NS=not stated; TST=tuberculin skin test; 

Y=Yes; N=No; IGRA=interferon-gamma release assay; TU=tuberculin units; PPD=purified protein derivative; VC= variable, and considered in analysis; IQR=interquartile range. 
P Results are plotted and appear either in the figures below or in the main manuscript. 
# ”shared air space with an individual with pulmonary tuberculosis in the household or other indoor setting for >15 hours per week or >180 hours total during an infectious period, defined as the interval from 3 months before collection of the first 

culture-positive sputum specimen or the date of onset of cough (whichever was longer) through 2 weeks after the initiation of appropriate antituberculosis treatment”29 
* ≤ 180 days after index diagnosis.31 
` Unclear whether cohort included those with CXR abnormalities. 
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Table S1 Continued. Description of cohort studies included in the review that documented late reactivation following TST conversion or Mycobacterium tuberculosis exposure (This is a 

more detailed version of Table 2 in the manuscript). 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years) 

Follow-up                        

(years, 

unless 

stated) 

LTBI screening 

method 

(method: cut-

off) 

Active or 

passive 

follow up; 

numbers 

observed 

over time 

given 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: 

Number of TB 

cases/number 

with reactivity at 

study entry 

Number 

of cases 

beyond 

two 

years 

Approximate 

TB incidence 

per 100,000 per 

annum (setting 

and years) 

Risk of bias 

assessment 

(low, moderate, 

serious, critical) 

Cohorts with LTBI followed from Mycobacterium tuberculosis exposure 

PAltet et al. 

201534 

2007-2009; 

NS 

Barcelona, 

Spain 

Contacts 

(from first 
circle) of 

smear 

positive 
cases 

6·1% 0-4; 
28·2% 5-14; 

40·1% 15-35; 

25·8% ≥35 

4 

QuantiFERON 

TST 2TU PPD 

RT23: previously 
positive 

excluded, ≥5mm 

Active Yn VC N 

QuantiFERON 

positive: 14/81 
TST ≥5mm: 

14/340 (+~70-80 

identified during 
contact study) 

0 
~17-19 (Spain, 

2007-2009)32 

Low/Moderate 

selection; 
reinfection 

PAbubakar et 

al. 201835,36^ 
UK Predict 

study 

2010-2015; 
2016 

London, 
Birmingham 

and 

Leicester, 
UK 

Recent 

contacts of 

active TB 

58·6% 16-35; 
41·3% >35 

median for 
both 

contacts and 

migrants in 
study: 2·9 

(range 21 

mths to 5·9 
yrs) 

QFT-GIT, T-

SPOT·TB, 
Mantoux TST; 

multiple cut-offs 

Telephone 

contact at 
12 and 24 

months 

and 
passive 

beyond 

Y` VC N 

TSpot·TB: pos 

31/648, neg 
20/2,916 

QFT-GIT: pos, 

30/793, neg 
21/2,771 

TST: ≥5mm 

43/1,704; <5mm 
8/1860; ≥10mm 

38/1323; <10mm 

13/2,241; ≥15mm 
34/899; <15mm 

17/2,665 

5 
(positive 

to T-

SPOT·T
B QFT-

GIT or 

TST 
15mm) 

14-10 (United 

Kingdom, 2010-

2016)32 

Moderate: 
selection; 

screening; 

reinfection; 
missing 

Heiden et al. 
201737 

2013;2017 

3-hour flight 

Turkey to 

Germany 

Crew and 

passengers 

8·7% 0-14; 

69·1% 15-49; 

22·2% ≥50 

3 yrs, 8 

mths 

TST or IGRA; 

>10mm TST or 

conversion > 5 

mm 

Passive 
“supposed 

to” 
VC N 0/14 0 

20-17 (Turkey, 

2013-2017)38 

~6-8 (Germany, 

2013-2017)38 

Serious: 

screening; 

missing 

Abbreviations: LTBI=latent tuberculosis infection; Mtb=Mycobacterium tuberculosis; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; NS=Not stated; TST=tuberculin skin test; TU=tuberculin units; 
PPD=purified protein derivative; VC= variable, and considered in analysis; QFT-GIT=QuantiFERON-TB Gold In-Tube test; pos=positive; neg=negative; mths=months; yrs=years; IGRA=interferon-gamma release assay; 
P Results are plotted and appear either in the figures below or in the main manuscript. 

^ Additional data was obtained from the study’s corresponding author, so data included in the table and Figure 2 may not appear in the study manuscript. 
` Unclear whether cohort included those with CXR abnormalities. 
n Only those with normal/negative/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or the study presented progression rates separately in those with and without abnormalities. 
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Table S2 Probability of reactivation in cohorts of studies that documented late reactivation following conversion or Mycobacterium tuberculosis exposure, over specific time periods. 

 

  

Publication (first 

author and year 

of publication 

for clarity) 

Age 

(years) 

Sample size: 

Number of TB 

cases/number 

with conversion 

or reactivity at 

study entry 

LTBI screening 

method and cut-off 

Approximate 

annual TB 

incidence in 

study setting per 

100,000 persons. 

Number and 

percentage of all 

TB cases 

occurring beyond 

two years 

Probability of reactivation, as a percentage and number of TB cases, in brackets, over specific time periods from conversion/exposure. The number of participants 

under observation is used as the denominator where possible, but many studies did not actively observe participants for the whole follow-up period or, if they did, 

didn’t give the numbers followed up overtime, so the term “probability” is potentially, technically inappropriate: see those marked *.  

0-2 years 2-5 years 5-10 years 10-20 years 20-30 years 

0-1 years 1-4 years  5-8 years  10-12 years   

 3mths to 2 years  5-7 years  10-17 years  

   10-15 years  

Prospective cohort studies documenting TB progression following TST conversion (some populations had a known exposure) 

Myers 19641 6-12 10/195† TST ≥5-10mm 250-602 6 (54·5) 2·06 (4) 1·05 (2) 1·59 (3) 0.00 (0) 0.51 (1)‡ 

Myers 19653 13-17 11/129§ TST ≥5-10mm 250-602 6 (54·5) 3·12 (4) 1·61 (2) 1·63 (2) 0.83 (1) 0.83 (1)‡ 

Meyer4 0-3 7/~57 TST ≥3-4mm 280-125 (ptb)5 0 (0) 21·09 (7) 0·00 (0) ?? 

Meyer4 4-12 15/~339 TST ≥3-4mm 280-125 (ptb)5 3 (20·0) 3·55 (12) 0·36 (1) 1·72 (2) 0.00 (0)  

Meyer4 13-19 42/~236 TST ≥3-4mm 280-125 (ptb)5 16 (38·1) 11·22 (26) 6·58 (13) 2·69 (3) 0.00 (0)  

Meyer4 20+ 34/~240 TST ≥3-4mm 280-125 (ptb)5 32 (32·7) 8·92 (21) 5·98 (12) 1·54 (1) 0.00 (0)  

Madsen6 ~18 11 pulm/167 TST ≥8-10mm  163-707,8 0 (0) 6·62 (11) 0·00 (0)  

Badger9 NS 40/285 TST: NS 130-1702 7 (17·5) 11·84 (33) 1·18 (3) 1·24 (3) 1.44 (1)  

Daniels10 18-25 44/347 TST ≥5mm 130-1452 3 (6·8) 12·47 (41) 6·15 (3)  

Hertzberg11 0-2 102/172 TST ≥10mm 120 (ptb)5 2 (2·0) 61·53 (100) 8·16 (2) 0·00 (0) 0.00 (0) ?? 

Hertzberg11 3-12 288/726 TST ≥10mm 120 (ptb)5 10 (3·5) 40·15 (277) 4·68 (7)  11·54 (3) 50.00 (1) ?? 

Hertzberg11 13-16 114/325 TST ≥10mm 120 (ptb)5 7 (6·1) 34·96 (107) 12·32 (5) 21·98 (2) 0.00 (0) ?? 

Hertzberg11 17-24 154/350 TST ≥10mm 120 (ptb)5 8 (5·2) 48·36 (146) 20·34 (7) 11·11 (1) 0.00 (0) ?? 

Hertzberg11 25+ 69/256 TST ≥10mm 120 (ptb)5 2 (2·9) 28·55 (67) 6·90 (2) 0·00 (0)  

Gedde-Dahl12 0-14 4 pulm/62 TST ≥3 or 4mm 300-200 (ptb) 2 (50·0) 3·92 (2) 6·52 (2)  

Gedde-Dahl12 15-29 28 pulm/152 TST ≥3 or 4mm 300-200 (ptb) 3 (9·1) 20·53 (27) 3·00 (1)  

Hyge13 12-18 55 pulm TB/70 TST NS 145-65 (respTB)14 5 (9·1) 13·04 (9) 3·31 (2) 0·00 (0) 5.08 (3)  

Sutherland15,16  14-15·5 243/2,085¶ TST ≥6mm¶ 145-302 ~44 (~18·1)¶ 9·78 (~200)¶ 1·79 (~34)¶ 0·52 (~10)¶  

Ferebee 196217,18* All 32/867 TST ≥5mm 40-3019 13 (40·6) 2·20 (19) 0·83 (7) 0·71 (6)  

Debre20 5-24 24/1,451 TST NS 6021 13 (54·2) 0·76 (11) 0·44 (6) 1·04 (7)  

Veening22 18-20 12/128 TST NS 408 yrs 1-4: 3 (25·0) 7·03 (9) 2·52 (3) 0·00 (0)  

Stead23,24  ≥50 89/965 TST ≥12mm change 1019 yrs 1-4: 9 (?) 8·29 (80) 1·02 (9) 0 ?? 

Cohorts with LTBI followed from recent Mtb exposure 

Myers 196325 0-5 41/599|| TST ≥5-10mm 250-602 19 (46·3) 3·7 (22) 4·9 (7) 0·2 (1) 1.9 (11) 0.00 (0)‡ 

Hertzberg11 0-2 143/207 TST ≥10mm 120 (ptb)5 3 (2·1) 72·68 (140) 7·33 (3) 0·00 (0) 0.00 (0) ?? 

Hertzberg11 3-12 295/ 522 TST ≥10mm 120 (ptb)5 10 (3·4) 58·19 (285) 4·20 (6) 9·55 (4) 0.00 (0) ?? 

Hertzberg11 13-16 49/99 TST ≥10mm 120 (ptb)5 1 (2·0) 49·49 (44) 14·97 (4) 8·33 (1) 0.00 (0) ?? 

Hertzberg11 17-24 48/127 TST ≥10mm 120 (ptb)5 3 (6·3) 40·71 (45) 15·23 (3) 0·00 (0) 0.00 (0) ?? 

Hertzberg11 25+ 17/88 TST ≥10mm 120 (ptb)5 1 (5·9) 21·16 (16) 0·00 (0) 16·67 (1) 0.00 (0) ?? 

Hyge13 12-18 9 /105 TST NS 145-65 (respTB)14 5 (55·5) 3·85 (4) 1·98 (2) 3·06 (3) 0.00 (0)  

Ferebee 196217,18* all 472/7744 TST ≥5mm  40-3019 99 (46·0) 4·83 (373) 0·90 (66) 0·45 (33)  

Dobler26* all 38/3942 TST ≥10mm  5-627,28 8 (21·1)  0·87 (30) 0·20 (8) ?? 

Reichler29* NS 89/499 TST ≥5mm  519,30 3 (3·6) 17·78 (86)†† 0·77 (4) 0·00 (0)  

Sloot31* all 14**/739 IGRA, TST ≥10mm  9-632 2 (14·3) 9·44 (69)†† 0·16 (1) 0·26 (1)  

Erkens33* all 41**/2251   IGRA, TST NS 533 9 (20·0) 1·65 (36)†† 0·36 (6) 0·44 (3) ??  

Altet34 all 14**/81 IGRA 15-2032 0 (0) 18·06 (14)** 0·00 (0)  

Altet34 all 14**/340 TST ≥5mm 15-2032 0 (0) 4·16 (14)** 0·00 (0)  

Abbreviations: LTBI=latent tuberculosis infection; TST=tuberculin skin test; TB=tuberculosis; Mtb=Mycobacterium tuberculosis; USPHS=United States Public Health Service; MRC=Medical Research Council; mths=months; yrs=years; IGRA=interferon-gamma release assay; pulm=pulmonary TB; 

ptb=pulmonary TB; respTB=respiratory TB. 

Colour of cells: Purple=Results from studies performed in the pre-antibiotic era; Blue=Results from studies in first two years after conversion or exposure; Pink=Results from studies for which a certain proportion of participants received preventive therapy. 

† We excluded one TB case from this paper because Myers et al. 1964 reported that they had converted at the age of 19yrs. It was also reported that 6 died of causes other than TB, and 41 were lost to follow up before the study end, but it is unknown when these cases were lost, so these losses could not be 

incorporated into rate calculations. 

‡ The number of participants who were followed for different periods of time was not reported, but presumably the minimum length of follow-up was 19 years (given study recruitment ended in 1941 and the study end was 1960), with the exception of cases that died or were lost to follow-up. 

§ Myers et al. 1965 reported that 6 died of causes other than TB and 14 were lost to follow up before study end, but it is unknown when these cases were lost, so this loss could not be incorporated into rate calculations. 

¶ We did not have information on the number of TB cases occurring over time. Figure 14 in Styblo 19918 shows the proportion of all cases (n=243) that reactivated over time, with an unspecified TST cut-off. We used this to estimate numbers of TB cases over time. To calculate reactivation rates we assumed a 

6+mm cut-off and used denominators from Table 1 in Sutherland 1968,16 with 125 cases added to account for those participants that developed TB before conversion was observed (this figure was stated in the provisional analysis15), i.e. conversion was assumed for 125 participants. 

|| Myers et al. 1963 reported that 22 died of causes other than TB and 102 were lost to follow up before study end, but it is unknown when these cases were lost, so this loss could not be incorporated into rate calculations. 

** TB cases identified ≤ 180 days after index diagnosis;31 <100 days after screen;33 or during contact tracing34 were not included in the numerator. 

†† Includes cases identified during contact tracing,33 ≤180 days after index diagnosis;31 <100 days after screen;33 or during contact tracing.34 

Note: we were unable to present the results for Abubakar et al. 201835,36^ as we didn’t have sufficient data, and the study by Heiden et al. 201737 was not presented because no TB progression was documented at all. 

?? Upper cut-offs were not given. For example, results were only shown for 2+ years, 5+ years, 10+ years, etc. 
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Table S3 Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection.  

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-

group 

when 

recruited 

(years) 

Follow-up                        

(years) and 

method 

LTBI screening 

method and cut-off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average annual 

reactivation rates per 

100,000 

Approximate TB 

incidence per 

100,000 per annum 

(setting and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Myers et al. 

19641 

1921-1944; 

NS 

Minneapolis, 
Minnesota, 

USA 

Children 6-12 ~16-39, active 

Pirquet, then Mantoux 

in 1928, 0·1mg then 
1·0mg; edema or 

induration ≥5-10mm 

or equivalent 

Y`` N N 

4/108 with pulmonary 

infiltration (3,196 pyrs); 
62/1,583 with no 

pulmonary infiltration 

(42,233pyrs) 

With pulmonary 

infiltration: 125 

With no pulmonary 
infiltration: 147 

~250-65 (New 

York, 1921-1961)2 

PMyers et al. 

19653 

1921-1941; 

1960 

Minneapolis, 

Minnesota, 

USA 

Lymanhurst 

School and 

Health 
Center 

13-17 ~19<39, active 

OT scarification, 
puncture method in 

1927 intracutaneous in 

1928, 0·1mg then 
1·0mg; edema or 

induration ≥5-10mm 

Y` N N 55/715 ~263 
~250-62 (New 

York, 1921-1960)2 

Pope 193939 
1924-1934; 

1936 

Massachusetts, 

USA 

School 

children 

6-19 
mean : 

11·43 

<12 
mean : 3·4, 

active 

Pirquet Yn N N 241/99,769 242 
~200-138 (New 

York, 1924-1936)2 

Heimbeck 

193840 
1924; NS Oslo, Norway Residents 13-24 

mean : ~4, 
“follow them up 

methodically” 

Pirquet, tuberculin slit 
into epidermis, not 

drilled 

NS NS N 

13-24 yrs old: 14/467 

(2,111pyrs) females; 
10/447 (1,831pyrs) males; 

20-30 yrs old: 6/403 

(1,364pyrs) females. 

13-24 yr old females: 

660; 13-24 yr old 

males: 550; 20-30 yr 
old females: 440 

Pulmonary TB: 
~280 (Norway, 

1924)5 

Scheel 
193541 

1926; 1935 Oslo, Norway 
Medical 
students 

16-25 3 

von Pirquet tuberculin 

test, and a few 

Mantoux  

Y` N N 361 1,350 

Pulmonary TB: 

~280-190 (Norway, 

1926-1935)5 

Myers et al. 

194142 
1929-1936 

University of 
Minnesota, 

USA 

Medical 
school 

students 

NS 

4, retrospective, 

questionnaires 

sent to past 
students 

Tuberculin test; NS Y` N N 2/160 313 
~173-138 (New 

York, 1929-1936)2 

Myers et al. 

194043 
1929; 1938 

University of 
Minnesota (?) 

USA 

Nursing 

students 
NS 

3, retrospective, 

questionnaires 

sent to past 
students 

Tuberculin test; NS Y` N N 7/281 
yr 1: 356 yr 2: 714;  
yr 3: 1439;  

total 834 

~173-128 (New 

York, 1929-1938)2 

Hastings & 

Behn 194144 
1929-1935;  

Minneapolis, 

USA 

Student 

nurses 
NS 

3, unclear, but 

likely to be 
active 

TST; NS Y` N N 1/198 168 
~175-144 (New 

York, 1928-1935)2 

Geer 193445 1928; 1930 

Ancker 

Hospital, 

Mississippi, 
USA 

Student 

nurses 
NS 

2, unclear, but 
likely to be 

active 

0·1mgm and then 
1mgm OT 

intracutaneous 

Y` N N 1/33·6 (30% of 112) 1488 
~175-170 (New 

York, 1928-1930)2 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; USA=United States of America; Y=Yes; N=N; OT=Old tuberculin; NS=Not stated; yr=year; pyrs=person 

years; yrs=years; TST=tuberculin skin test; USA=United States of America. 
P Results are plotted and appear either in the figures below or in the main manuscript. 

`` Cohort known to include those with certain CXR abnormalities. 

` Unclear whether cohort included those with certain CXR abnormalities, in the case of pre-chemotherapy studies the development of primary foci/calcifications was sometimes discussed in detail. 
n Only those with normal/negative/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or progression rates in those with and without abnormalities were presented separately. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

 

 

  

Publication 

Years of study 

(recruited; 

end) 

Setting Population 

Age-

group 

when 

recruited 

(years) 

Follow-up                        

(years) and 

method 

LTBI screening 

method and cut-off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average annual 

reactivation rates per 

100,000 

Approximate 

TB incidence 

per 100,000 

per annum 

(setting and 

years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Myers et al. 

196846 
1930-1953; NS 

Minnesota, 

USA 

Nursing and 

medicine 
graduates 

NS 

NS, presumably 

<~30, active with 

periodic 
roentgenograms 

during training 

NS, tuberculin test Y` NS N 

Fairview Hospital: 4 
recrudescent pulmonary 

lesions /82 (2,175 pyrs); St 

Mary’s Nursing: 4 pleural 
or pulmonary lesions /150 

(4,307 pyrs); The Swedish 

School: 4 pleural or 

pulmonary lesions 1 

pulmonary lesion/151 

(4,015 pyrs). 

Fairview Hospital School 

184; 
St Mary’s School of 

Nursing 93; 

The Swedish School of 

Nursing 25;   

 ~170-65 

(New York, 
1930-1961)2 

Heimbeck 
1949;47  

Heimbeck 

195148 

1924-1936; 

1948 

Oslo, 

Norway 

Residents 

and nursing 

students 
exposed to 

“massive” 

infection 
during 

training 

20 

NS, presumably 
<24, unclear 

whether active or 

passive 

Tuberculin Pirquet NS N N 

Nurses: during training 0-3 

yrs 22/668 (1772 pyrs); 

after graduation 3-NS yrs 
18/504 (5,677 pyrs). 

Residents by sex and age:  

females 20-22 yrs 4/398 
(1126 pyrs); males 20-22 

yrs 5/436 (1,244 pyrs); 

females 22-NS yrs 5/318 
(2,698 pyrs); males 22-NS 

yrs 10/372 (3,346 pyrs) 

Nurses: during training 

0-3 yrs 1241; after 
graduation 3-NS yrs 317. 

Residents by sex and 

age:  
females 20-22 yrs 1,005;  

males 20-22 yrs 402;  

females 22-NS yrs 185;  
males 22-NS yrs 299; 

Pulmonary 
TB: ~280-120 

(Norway, 

1924-1948)5 

Badger & 

Ayvazian 

19489 

1932; 1948 Boston, USA Nurses 
NS, ~18-
19 

5-15, active, TST 

and 
roentgenogram 

every six months 

Saranac Old 
Tuberculin; NS 

Y` NS N 31/374 
0-2378 (only annual 
rates provided) 

~130-~170 

(New York, 

1932-1948)2  

Madsen et al. 
19426 

1934; 1935-
1936 

Nakshov and 

Ronne, 

Denmark 

Residents all 

<2, active, some 

had repeated 

roentgenography 

TST; NS Y` N N 

Ronne by age: 7-14 yrs, 4 
X-ray change at initial 

examination/165; 15-35 

yrs: 26 X-ray change at 
initial examination/1112 

Nakshov by age: 7-14 yrs, 

12 X-ray change at initial 
examination/441 

0 “X-ray changes” in 
children after initial 

examination 

Ronne 15-35 years of 
age: 92 

163-70 (1921-

1940)7 cited 

by8 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; NS=not stated; N=No; pyrs=person years; yrs=years; Y=Yes; USA=United States of America. 

` Unclear whether cohort included those with certain CXR abnormalities, in the case of pre-chemotherapy studies the development of primary foci/calcifications was sometimes discussed in detail. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

 

  

Publication 

Years of study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years) 

Follow-up                        

(years) and 

method 

LTBI screening 

method and cut-

off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average 

annual 

reactivation 

rates per 

100,000 

Approximate TB 

incidence per 

100,000 per 

annum (setting 

and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Madsen et al. 
19426 

1934, 1936; 
1940 

Copenhagen, 
Denmark 

University and 

High School 

students 

“about 18” 

<5, active, some 

had repeated 

roentgenography 

TST; NS Y` N N 

17 “X-ray changes” and 

10 with TB on gastric 
lavage or 

expectorate/2,071 

“X-ray 
changes”: 301 

163-70 (1921-
1940)7 cited by8 

Ferguson 

194649 
1934; 1943 

Saskatchewan 

and Winnipeg, 
Canada 

Female 

nursing 
students 

~20 
mean 2.43, 

unclear 
TST NS N N 5/478 (1,165·2 pyrs) 429 

~80-88 (Canada, 

1934-1943)30 

Ferguson 

194649 
1934; 1943 

Saskatchewan, 

Canada 

Saskatchewan 

Sanatoria 
employees 

mean: 23.3 
mean: 1.44, 

unclear 
TST NS N N 13/462 (665·69 pyrs) 1953 

~80-88 (Canada, 

1934-1943)30 

Israel and 
Hethrington 

194150 

1935; 1939 
Philadelphia, 

USA 

Nursing 

students in 
Philadelphia 

General 

Hospital 

17-21 

<3, active, 

fluoroscopy at 

four-month 
intervals 

0·00002mg. and 
0·005mg. PPD 

tuberculin 

Y`` NS N 

Pos to 0·006mg: 23/183 

Pos to 0·00002mg: 

11/177 
Total pos: 34/360 

Pos to 0·006mg: 

6,050; Pos to 
0·00002mg: 

2,700; Total 

pos: 4,320 

~150-125 (New 

York, 1935-1939)2 

Daniels et al. 
194810 

1935; 1944 England 

Nurses; 

Medical 
students; 

controls 

18-25 
5, active, annual 
CXR 

Mantoux reaction 
<1·0mg: ≥5mm 

Y` N N 

64/6946. Years of 
observation: 0-1 yrs: 

21/2934; 1-2 yrs 14/1955; 

3-4 yrs 15/1216; 4-5 yrs 
11/643; 5-6 yrs 3/198 

730 

~130-145 

(London, 1935-

1944)2 

Wright 194151 1936-1937; 

1939-1940 

Montreal, 

Canada 

Undergraduate 

nurses in 

Royal Victoria 

Hospital 

NS 
3, CXR and TST 

six monthly 

1/10mg and 1mg 

of old tuberculin 
Y` N N 0/36 0 

~80-86(Canada, 

1936-1940)30 

Olsen 195652 1936; 1945 
Bornholm, 
Denmark 

Residents all 

<9, unclear, 

isolated island 

community 

Mantoux 1,10 and 

100 units, then 
latterly 3 and 100 

units: ≥6mm 

NS N N 

15 pulmonary TB and 2 

TB deaths/3,994 

(28,264pyrs) 

Pulmonary TB: 
60 

~57 (Bornholm, 
1936-1940)52 

Hertzberg 
194811 

1936-1946; 
1946 

Oslo, Norway 

Residents 

without known 
TB in their 

families 

5·2% 0-2; 
38·2% 3-12; 

22·4% 13-16; 

20·1% 17-25; 
14·1% 25+. 

>10, “We are in 

touch with 
practically all 

persons” 

Pirquet to 1944, 
then Mantoux 

1mg old 

tuberculin: 
≥10mm 

Y` N N 
240/684 males; 245/666 
females 

Males: 16,173 
Females: 17,488 

Pulmonary TB: 

~120 (Norway, 

1948)5 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; TST=tuberculin skin test; NS=not stated; N=No; pyrs;person years; USA=United States of America; 

PPD=purified protein derivative; Pos=positive; yrs=years. 
`` Cohort known to include those with certain CXR abnormalities. 

` Unclear whether cohort included those with certain CXR abnormalities, in the case of pre-chemotherapy studies the development of primary foci/calcifications was sometimes discussed in detail. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

Publication 

Years of study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years) 

Follow-up                        

(years) and 

method 

LTBI 

screening 

method and 

cut-off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average annual 

reactivation rates 

per 100,000 

Approximate TB 

incidence per 

100,000 per annum 

(setting and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

PPalmer et al. 
195753 

1940-1951; 
1955 

San Diego, 
USA 

Male Navy 
recruits 

17-21 

3·43-5.16, active 

& annual 
roentgenograms 

whilst in service 

TST 5TU: 
≥10mm 

Yn NS N 37/5,910 157  

~120- 80 (New 

York, 1940-1955)2 
52.6-46.6 (USA, 

1953-1955)19 

PSjögren 197654 
1941-1946; 
1960 

Sweden 
Male military 
recruits 

mean: 20.9 
15, appears to be 
active 

Mantoux, 

0·1mg or 1mg 
of OT; ≥10mm 

NR N N 
10+ mm: 223/ 25,525 
<10mm: 39/7,013 

10+ mm: 64 
<10mm: 42 

Males: 140-56; 

Females: 140-51 
(Sweden, 1951-

1960)55 

Härö 197256 

1945-1949; 

follow up 
1957-1969 

Finland 

Males born 
1926-1941 

found to be 

natural 
reactors during 

BCG mass 

vaccination. 

~4-23 

10-20 (no 

follow-up <10 
yrs), passive 

Modified 

Trambusti 
tuberculin test 

NS N N 
1938 pulmonary TB/82,012 

(1,066,156 pyrs) 
182 

Respiratory TB: 

Males: 247-120, 

Females: 130-79 
(Finland, 1954-

1969)55 

Stephanopoulos 

& Costeletos 

195757 

1946; 1954 
Sotira, 
Greece 

Student nurses NS 
<3, active, 
regular radiology 

Mantoux Y` NS N 17/474 1,554 unknown 

Gernez-Rieux & 

Gervois 197358 

1949-1951; 

1971 
Lille, France 

School 

children 
6-14 

4-9, active, 
annual CXR & 

TST 

Mantoux 10 

TU; >5mm 
Y` N N 

6-12 mm: 1,447  

>12mm: 262 
306 60 (France,1972)21 

Comstock 197459 
1949-1951; 

1969 
Puerto Rico Children 1≤18 

mean: 18·87, 

passive 

TST 10TU: 

≥6mm 
NS N N 1,400/82,269 90 

Mortality: 179-33 

(Puerto Rico-1948-

1955)60 

Frimodt-Miller et 

al. 196461 
1950; 1958  

Villages 
surrounding 

Madanapalle, 

India 

Residents all 

<7, active, 

periodic CXR 
surveys 

1-10-100 TU 

and then 5 and 
100 TU 

Y` N N 

Pulmonary TB Round I to 

IV 52/22,403 pyrs; Round I 
to VI 132/45,846 pyrs; 

Males round I to IV 

37/10,719 pyrs; round I to 
VI 91/22,007 pyrs; Females 

round I to IV 15/11,684 

pyrs; round I to VI 
41/23,839 pyrs. 

Round I to IV 232; 

Round I to VI 288; 

Males, round I to IV 
345; Males, round I 

to VI 413; Females, 

round I to IV 129; 
Females, round I to 

VI 172. 

Pulmonary TB 

Round I-VI: 171 
(India, 1950-1958)61 

PHorwitz et al. 

196962 
1950-52; 1964 Denmark Residents 15-44 12, passive 

TST 5 or 10 

TU: ≥6mm 
Yn N N 

987 respiratory or pleural 

TB cases/286,250 
29 

Respiratory TB ~50-

10 (in study areas, 
1950-1964)62 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; USA=United States of America; TST=tuberculin skin test; TU=tuberculin units; Y=Yes; NS=not stated; 

N=No; OT=old tuberculin; pyrs=person years; AFT=awaiting further results.. 
P Results are plotted and appear either in the figures below or in the main manuscript. 

`` Cohort known to include those with certain CXR abnormalities. 

` Unclear whether cohort included those with certain CXR abnormalities. 
n Only those with normal/neg/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or progression rates in those with and without abnormalities were presented separately. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

  

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-

group 

when 

recruited 

(years) 

Follow-up                        

(years) and 

method 

LTBI screening 

method and cut-

off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average annual 

reactivation rates 

per 100,000 

Approximate TB 

incidence per 

100,000 per annum 

(setting and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 
PComstock 
197663; 

Comstock & 

Palmer 196664 

1950; 1970 

Muscogee 

county, 
USA 

Residents >5 20, passive TST 5 TU: ≥5mm Yn N N 207/22,027 47 
53-18 (USA, 1953-

1970)19 

Comstock 
196465 

1947; 1959 

Muscogee 

county, 

USA 

School children NS 12, passive 

TST 5 TU and 

then 100 TU: 

≥5mm 

NS N N 
5TU: 24/1,492 
100TU: 5/3,768 

5TU: 134 
100TU: 11 

~100 (New York, 

1947)2 

32.4 (USA, 1959)19 

Large 196566 1951-1961 
British 

Malaya 

Male recruits to 
British Army from 

Nepal (Gurkhas) 

15-17 
< 9, possibly 

active 
Heaf Grade1+ Y`` N N 89/6,280 (29,186pyrs) 304 unknown 

PMRC 1972 

trial,67 Hart & 
Sutherland 

197768 

1951-52; 
1971 

UK School children 14-15·5 20, active 
TST 3 TU and 
100 TU; ≥5mm 

Yn N N 

3 TU, 5-14mm 178/8,838; 
3 TU, ≥15mm 140/6,866; 

pos to 100 TU only 

56/6,253; neg, 
unvaccinated 248/12,867. 

3 TU, 5-14mm 44; 3 

TU, ≥15mm 102; pos 
to 100 TU only 45; 

neg, unvaccinated 96. 

~145-30 (London, 
1951-1972)2 

PRoss & 
Willison 1971 
69 

1955-1969; 

1968 

Edinburgh, 

Scotland 
School children 13 <13, passive Heaf test N N N 

Neg 27/328,250 pyrs; Heaf 

I 2/24,639 pyrs; Heaf II 

5/13,990 pyrs; Heaf III & 
IV 11/17,589 pyrs. 

Neg 8; Heaf I 8; Heaf 
II 36; Heaf III & IV 

63. 

~120-36 (London, 

1955-1968)2 

Mount & 

Ferebee 

1962^70 

1956; ~1962 USA 

Known close 

contacts of previous, 
predominantly, 

pulmonary TB cases 

All 4, active TST 5TU; ≥5mm Y N N 

8/609 in the first year and 

a possible 3 more cases in 

the next three years 

1,313 in first year 
after screening 

39-31 (USA, 1957-
1960)19 

PFerebee et al. 

1963;71 

Ferebee 

197018 

1957-1960; 
NS 

USA 
Mental institution 
patients 

All 

10, active, 

incomplete 

>7 

TST 5TU; ≥5mm Yn NS N ≥5mm: 49/7074 ≥5mm: 69 
39-31 (USA, 1957-
1960)19 

PComstock 

197472 

1958-1969; 

1972 
USA Male Navy recruits 

95% 17-

22 

4, active, 
annual 

examination 

TST 5 TU; 

≥10mm 
NS 

Only in 
some 

"Asians” 

N 
“Blacks”: 32/8,810 
“Asians”: 97/12,467 

“Whites”: 132/42,547 

“Blacks”: 93 
“Asians”: 196 

“Whites”: 79 

36-16 (USA, 1958-
1972)19 

Vietnam war? 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; USA=United States of America; TST=tuberculin skin test; TU=tuberculin units; Y=Yes;N=No; NS=not 
stated; pyrs=person years; UK=United Kingdom; pos=positive; neg=negative. 
P Results are plotted and appear either in the figures below or in the main manuscript. 

`` Cohort known to include those with certain CXR abnormalities. 
n Only those with normal/neg/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or progression rates in those with and without abnormalities were presented separately. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

  

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-

group 

when 

recruited 

(years) 

Follow-up                        

(years, unless 

stated) and 

method 

LTBI 

screening 

method and 

cut-off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average annual reactivation 

rates per 100,000 

Approximate TB 

incidence per 

100,000 per 

annum (setting 

and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Ross & 

Willison 

197173 

1959; 1970 
Edinburgh, 
Scotland 

School 
children 

13 <11, passive Heaf test N N N 

Heaf I 5/25,288 pyrs; Heaf II 
9/8,019 pyrs; Heaf III 

19/6,356 pyrs; Heaf IV 

12/2,911 pyrs; All 45/42,574 
pyrs. 

Heaf I 20; Heaf II 112; Heaf III 
299; Heaf IV 412; All 106. 

~90-30 (London, 
1959-1970)2 

Lotte et al. 

197174 
1961; 1966 

France, 

Poland, 

Switzerland 

(Geneva) 
and 

Yugoslavia 

School 

children 
6-14 

<4 in Geneva 

and France, 2 in 

Yugoslavia and 

1 in Poland; 
active, regular 

radiology 

2 TU of PPD 

RT23, with 

addition of 

Tween 80, an 

initial patch test 
in Geneva for 

<10 years; 

≥10mm 

Y` N N 

Yugoslavia: 117/58,123 

Poland: 55/34,532 

France: 67/127,307 
Geneva: 48/23,047 

(Denominators are the total 

populations tested, not the 
reactors) 

≥14mm: 320 
Recent increase of reactivation 

≥18mm: 1190 

60 (France,1972).21 

Quoted estimates in 

text of bacillary TB 

: 70 (Poland, 1967); 

55 (Yugoslavia, 
1967), but noted to 

be “certainly 

underestimated”74 

National 
Tuberculosis 

Institute, 

Bangalore 
197475 

1961; 1968 
Bangalore, 
India 

Villlagers all 

~18 months, 
active, between 

TST and 

radiological 
surveys I and II.  

1 TU RT 23 

with 0·05% 
Tween 80 in 

0·1ml; ≥10mm 

Yn N N 

Culture positive TB with no 
CXR abnormality: 0-9mm 

15/19,419; 10mm-19mm 

2/4,767; 20+mm 12/4,201; 
10+mm 14/8,968; 

0-9mm 50;  

10mm-19mm 27;  
20+mm 185;  

10+mm 101. 

Average annual 

incidence: 103 

(study cohort)75  

Gothi et al. 

197676 

1961-1963; 

1966-1968 

Bangalore, 

India 
Villlagers all 

5, active, with 
four TST and 

radiological 

surveys 

1 TU RT 23 

with Tween 80; 

≥10mm 

Y` N N 
197 culture pos and suspect 

disease/9,786 

By age ≥10mm to 1TU: 5-14 yrs 

205; 15-54 yrs 332; 55+ yrs 908; 
By age ≥8mm to 23TU: 5-14 yrs 

46; 15-54 yrs 115; 55+ yrs 472; 

By age 7mm to 20TU: 5-14 yrs 
118; 15-54 yrs 165; 55+ yrs 588. 

Culture pos TB: 

145 (study cohort, 

1961-1968)77 

Gothi et al. 
197877 

1961-1963; 
1966-1968 

Bangalore, 
India 

Villlagers all 

5, active, with 

four TST and 
radiological 

surveys 

1 TU RT 23 

with Tween 80; 

≥10mm 

Yn 

N, 

without 

scar 

N 

Culture pos TB: 29 

males/2,505;  

12 females/2,148. 

5-14 yrs: 52; 15-34 yrs: 158 

35-54 yrs: 227; 55+ yrs: 242 

male: 227; female: 110 

Culture pos TB: 

145 (study cohort, 

1961-1968)77 

Grzybowski 

et al. 197278; 

Grzybowski 
et al. 197679 

1964; 1969 
Northwest 
Territories, 

Canada 

Five 

Eskimo 

community 
settlements  

all 5, passive TST; NS Y` N NS 

Age: <20 yrs 21/152; ≥20 

yrs 20/267; 
all 39/NS; 0-14 yrs 12/NS; 

15-24 yrs 13/NS; 25-34 yrs 

6/NS; 35+ yrs 8/NS. 

Age: <20 yrs 2,780; ≥20 yrs 

1,490; all 1,814; 0-14 yrs 2,637; 

15-24 yrs 2,301; 25-34 yrs 1,348; 
35+ yrs 1,168. 

1,310 (Eskimos, 

North West 

Territories, 1967-
1969)78 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; N=No; pyrs=person years; Tu=tuberculin units; yrs=years; pos=positive; PPD=purified protein derivative. 
P Results are plotted and appear either in the figures below or in the main manuscript. 

` Unclear whether cohort included those with certain CXR abnormalities. 
n Only those with normal/neg/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or progression rates in those with and without abnormalities were presented separately. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

  

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years) 

Follow-up                        

(years) and 

method 

LTBI screening 

method and cut-off 

TB 

disease 

excluded 

with CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average annual 

reactivation rates per 

100,000 

Approximate TB 

incidence per 

100,000 per annum 

(setting and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Narmada et al. 

197780 
1968: 1972 

Madras 

City, India 
Children 

1month<1

2 yrs 

4, active, 12 

household 
visits 

5 IU 0·0001mg 

/0·1ml PPD-S 
N N N 

Age: 0-4 yrs 11/126; 5-9 yrs 

33/408; 10-12 yrs 15/409; 
0-5mm 24/3055; 6-11mm 

4/610; 12-17mm 3/190; 18-

23mm 34/541; 24+mm 
22/212. 

Age: 0-4 yrs 2183; 5-9 yrs 

2022; 10-12 yrs 917; 0-

5mm 196; 6-11mm 164; 
12-17mm 395; 18-23mm 

1571; 24+mm 2594. 

Culture pos TB: 352 

(rural Tamil Nadu 
survey, 1971-1973)81 

Radhakrishna 

et al. 2003 
(Tuberculosis 

Research 

Centre 
(ICMR)82 

1968; NS 
Chennai, 

India 

No BCR scar, 
without 

smear/culture 

positivity 

>1 mth 

<15, active, 

surveys 

every 2.5 

years with 

radiography 

TST 3 IU of PPD-S 

and 10 units of 

PPD-B: ≥12mm 

Yn, ≥10 yrs 
of age, & 

5-9 yrs at 

2.5 yrs in. 

VC N 
Culture pos TB: 

NS/111,224  

All: 332 

Males: 469 

Females: 170 

Culture pos TB: 191 

(study cohort, 1968-

1983)82 

Radhakrishna 

et al. 200783 
1968; NS 

Chennai, 

India 
Residents all 

<15, active, 

surveys 
every 2.5 

years with 

radiography 

Dual testing with 

PPD-S and PPD-B 

(Batty strain); PPD-
S = 8–11 mm; PPD-

S minus PPD-B ≥2 

mm or PPD-S 
≥12mm. 

Yn, ≥10 yrs 

of age, & 

5-9 yrs at 
2.5 yrs in. 

VC N 
Culture pos TB, no TB case 

at home: NS/114,445 

Culture pos TB, no TB 

case at home: 370 

Culture pos TB: 191 
(study cohort, 1968-

1983)82 

Grzybowski et 
al. 197679 

1969; 1975 

Northwest 

Territories, 

Canada 

Eskimo 
communities 

all 5, passive TST; NS Yn N 

800/230

0 from  
1967- 

1973 

All ages 83/2229; 0-14 yrs 

3/462; 15-24 yrs 18/494; 
25-34 yrs 24/448; 35+ yrs 

38/825. 

All ages 621; 0-14 yrs 

108; 15-24 yrs 607; 25-34 

yrs 893; 35+ yrs 768. 

960-240 (North West 

Territories, 1969-

1974)79 

Capewell et 

al. 198684 

1970-1983; 

1971-1983 

Edinburgh, 

Scotland 

School 

children 
13 <13, passive Heaf test N N N 

Neg 1/882; Heaf I 1/4363; 

Heaf II 1/555 

Heaf III 6/235; Heaf IV 

7/155 

Neg 19; Heaf pos 41; Heaf 

I 3; Heaf II 27 Heaf III 
305; Heaf IV 628 

~30 (London, 1970-

1983)85 

PEnarson 

199886 

1972 & 

1979; 1989 
Canada 

Alberta 

Aboriginals 
10-19 

<10, results 
come from 

“regular 

recording of 
routine 

testing” 

TST; ≥10mm NS N NS 
≥10mm: NS/25,972 pyrs 

<10mm: NS/37,369 pyrs 

See Figure 3 in manuscript 
for rates over time. Annual 

averages not stated. 

NS86 

Enarson 

199886 
1980; 1982 

Northwest 
Territories, 

Canada 

Eskimo 

communities 
all 

2, unclear, 
possibly 

passive 

TST; NS Y` N N 9/1,718 263 
68 (North West 
Territories, 1980-

1982)86 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; TST=tuberculin skin test; IU=International units; PPD=purified protein derivative; yrs=years; pos=positive; 

VC= variable, and considered in analysis; N=No; NS=not stated; Y=Yes, pyrs=person years. 
P Results are plotted and appear either in the figures below or in the main manuscript. 
n Only those with normal/neg/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or progression rates in those with and without abnormalities were presented separately. 

` Unclear whether cohort included those with certain CXR abnormalities. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years); 

Follow-up                        

(years, unless 

stated) and 

method 

LTBI screening 

method and cut-off 

TB 

disease 

exclud

ed 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average annual 

reactivation rates per 

100,000 

Approximate TB 

incidence per 

100,000 per annum 

(setting and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Nolan et al. 

198887 

1980-1981; 

1986 

Seattle-
King 

County, 

USA 

Recently arrived 

southeast Asian 
refugees 

all 5, passive 
TST 5 units PPD-T; 

>10mm 
Yn NS 

15/25 cases 

prescribed, 

10 
completed, 

5 did not 

22/3,300 PPD pos; 78 
cases found at initial 

screening are not included 

in the results 

<10mm 10; >10mm 

133; CXR normal 103; 
CXR abnormal 649; 

39 (Seattle-King 

County, 1981-
1986)87 

Fine et al. 

199488 

1980-1984; 

1989 

Karonga 

District, 

Malawi 

Residents NS 
5, active, two 

TST surveys 
TST 2IU PPD RT23 NS N N 

0mm 19/71,055 pyrs; 1–
5mm 2/5,442 pyrs; 6–

10mm 3/15,059 pyrs; 11–

15mm 14/21,561 pyrs; 16–
20mm 9/13,488 pyrs; 

>20mm 6/2,801 pyrs. 

0mm 27; 1–5mm 37; 

6–10mm 20; 11–15mm 

65; 16–20mm 67; 
>20mm 412. 

41 in BCG neg 

study cohort88 

MacIntyre & 
Plant 199989 

1989; 1994 
Victoria, 
Australia 

South-East 
Asian Refugees 

87·9% ≤35 
mean: 33 

5, passive 

TST: 15 mm post-

BCG or 10 
mm without past 

BCG, 

Y` VNC Y, 22% 

0-4mm 0/191; 5–9mm 

0/183; 10–14mm 2/283; 
15–19mm 1/181; >19mm 

2/97; >20mm 

0-4mm 0; 5–9mm 0; 

10–14mm 141; 15–
19mm 110; >19mm 

2/97; >20mm 

~6 (Australia, 1989-
1994)90 

PMarks et al. 
200091 and 

Marks et al. 

200192 

1984-1994; 

1998 

Sydney, 

Australia 

Recently arrived 

southeast Asian 
refugees 

>12 
mean: 10·3, 

passive 

TST: multiple cut-

offs 
Yn VC N ≥10mm: 98/NS91 

≥10mm: 122;  

≥15mm: 160  
≥20mm: 192   

6-5 (Australia, 

1984-1998)93 

Choudhury et 
al. 201494 

1989-2001; 

2008 

England & 

Wales 
Recent migrants 16-34 

mean: 10·16, 

GP 

registration 

records used 

No BCG: Heaf 

grade 2–4 (equiv. 

≥6 mm); BCG 

history: Heaf grade 

3–4 (equiv. ≥15 

mm) 

Y`` VC N 53/402 

0-5 yrs post-migration: 

1,800  

10-15 yrs post-

migration: 1,000  

7-9 (England and 

Wales excluding 

London, 1989-

2001)95 

Daley et al. 
199896 

1990-1994; 

San 

Francisco, 

USA 

Injecting drug 
users in 

methadone 

maintenance 
clinic 

NS 
median: 22 
months, active 

TST; ≥10mm Y` N N 1/259 HIV neg 390 
~11-10 (USA, 1990-
1994)97 

Moss et al. 

200098 

1990-1994; 

1996 

San 

Francisco, 
USA 

Homeless 

population 
median: 38 

median: 3·2, 

passive 
TST; ≥10mm NS NS N 12/695 (2,524pyrs) 475 

270 (in study 

population 1990-
1994)98 

Cook et al. 
200899 

1990-2002; 
2006 

British 

Columbia, 

Canada 

Residents 

without risk 

factors for TB 

All, mean: 
32 

<17, passive TST 5 TU: ≥10mm Y`` 35% 

DNC – did 

not 

complete 

7/25,035 

10-14mm: 0·7^^ 

15-19mm: 2·8^^ 

≥mm: 3·0^^ 

~7-5 (Canada, 1990-
2006)100 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; USA=United States of America; TST=tuberculin skin test; PPD=purified protein derivative; Y=Yes; 

NS=Not stated; GP=general practitioner; pos=positive; N=No; IU=International units; VNC=variable, not considered in analysis; VC= variable, and considered in analysis; neg=negative. 
P Results are plotted and appear either in the figures below or in the main manuscript. 
`` Cohort known to include those with certain CXR abnormalities. 

` Unclear whether cohort included those with certain CXR abnormalities. 

^^These rates were calculated by dividing the number of TB cases by the cohort initially tested, and then dividing this by 17 (monitoring years from 1990-2006). Participant years of observation weren’t given. 
n Only those with normal/neg/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or progression rates in those with and without abnormalities were presented separately. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-

group 

when 

recruited 

(years) 

Follow-up                        

(years, unless 

stated) and 

method 

LTBI screening 

method and cut-

off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: 

Number of TB 

cases/number with 

reactivity at study 

entry 

Average 

annual 

reactivation 

rates per 

100,000 

Approximate TB 

incidence per 

100,000 per annum 

(setting and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Scolari et al. 
1999101 

1991; 1995 
Brescia, Northern 
Italy 

Sengalese immigrants 

in residential 

compound 

mean: 32 
mean: 34 
months, passive 

Test-Tin 5IR 

tuberculin S; ≥2 
points showing 

infiltration 

Y NS N 4/115 1,230 

15 (study region, 

1993-1995) cited in 
101 

Sanchez 

/Martin et al. 
2001102 

1991- 1999 Spain Prison inmates ≥16 

mean: 3·4, 
active, twice-

yearly 

radiograph 

TST 2 TU PPD 

TST RT-23 with 
Tween 80: ≥15mm 

Y` VNC N 

18/632 (number who 

were HIV negative 
and untreated NS) 

HIV-neg: 488 639 (study setting)102 

Klein et al. 

2001103 
1995 

Bronx, New York 

City, USA 

Current and former 
Injecting drug users in 

methadone 

maintenance program 

median: 

40 

mean: 2·5, 

active 

Mantoux 5 TU of 

PPD; 
Tubersol 

NS NS 
“some 

subjects” 
HIV neg: 0/203 0 ~9 (USA, 1995)97 

Mojazi-Amiri 

et al. 2013104 

1995-2002; 

2008 
Texas, USA 

Patients entered in 

LTBI registry, “most 

referred for contact 
investigation” 

all 7-14, passive TST; NS Y` NS DNC NS/20,353 DNC 58 3·5 (USA, 2011)104 

Leung et al. 

2006105 
1999; 2003 Hong Kong School children mean: 10 

mean: 4·5, 

passive 

1 U PPD RT-23: 

≥20mm 
NS Y N 10/662 341 

104-100 (Hong 

Kong, 2000-2003)38 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; Y=yes; NS=Not stated; N=No; PPD=purified protein derivative; TU=tuberculin units; N=No; USA=United 
States of America; HIV=human immunodeficiency virus; neg=negative; VNC=variable, not considered in analysis; DNC=did not complete. 

` Unclear whether cohort included those with certain CXR abnormalities. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-

group 

when 

recruited 

(years) 

Follow-up                        

(years, unless 

stated) and method 

LTBI screening 

method and cut-

off 

TB 

disease 

excluded 

with CXR 

BCG 
LTBI 

therapy 

Sample size: Number 

of TB cases/number 

with reactivity at 

study entry 

Average annual 

reactivation rates 

per 100,000 

Approximate TB 

incidence per 

100,000 per 

annum (setting 

and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Leung et al. 
2012106 

1999-2000; 
2010 

Hong Kong School children 6-10 10-11, passive 

TST 1-unit PPD 

RT-23: multiple 

cut-offs 

NS Y N ≥15mm: 13/4637 pyrs 

≥15mm: 280.4 

<15 yrs of age: 1,000 

≥15 yrs of age: 608·1 

91 (Hong Kong, 
2004)107 

Chan-Yeung 

et al. 2007108 
2000: 2004 Hong Kong 

Old age home 

residents 

91·9% 

≥70 

mean: 2·5, homes 

contacted every six 
months to determine 

deaths, discharges or 

TB cases 

PPD-RT23; 

≥10mm 
Y NS N 

<5mm: 8/1.387;  
≥5mm: 19/2,218 

<10mm: 8/1,936; 

≥10mm: 19/1,669 
<15mm: 12/2,526; 

≥15mm: 15/1,079 

<5mm: 229; 
 ≥5mm: 323 

<10mm: 160; 

≥10mm: 432 
<15mm: 181; 

≥15mm: 542 

104-91 (Hong 
Kong, 2000-

2004)38,107 

Hemmati et 

al. 2011109 
2002; 2007 

Kermanshah, 

Iran 

Primary school 

children 
7-11 

5, active with 

periodic radiography 
“if necessary” 

TST 0·1ml 5TU 

PPD: 10-14 and 
≥15mm 

Y’ 
99.2

% 
N 

10-14mm 0/301; 

≥15mm 0/529 

10-14mm 0; ≥15mm 

0 

13-24 (Iran, 2004) 

www.cdc.hb.ir cited by 
authors 

Joshi et al. 

2011110 
2004; 

Sevagram, 

India 

Health care 

workers, 
Mahatma Gandhi 

Institute of 

Medical Sciences 

≥18 
~6, active, face to 
face, telephone or 

email at ~6 years 

QFT-GIT IFN-ϒ 

≥0·35IU/ml and 

TST (1 TU PPD 
RT23); ≥10mm 

NS NS 
Y, “a small 

proportion” 

TST or QFT-GIT pos, 

6/360 

TST pos 363;  

QFT-GIT pos 369; 

TST neg 342;  
QFT-GIT neg 338. 

282 (India, 2004)38 

Roth et al. 
2017111 

2004-14 

(excluding 
2009); 

2014 

British 

Columbia, 

Canada 

LTBI pos people 

assessed at British 

Columbia Centre 
for Disease 

Control clinics, 

including contacts 

All <53 months, passive 

TST, QFT-GIT 

and 
T-SPOT.TB; 

≥10mm 

NS V N 

TST pos 2004-2008 

18/25,244 pyrs; TST 

pos 2010-2014 
16/19,518 pyrs; TST 

and IGRA pos 2010-

2014 2/1,445 pyrs; 
TST pos and IGRA 

neg 2010-2014: 

0/6,015 pyrs. 

TST pos 2004-2008 
71;  

TST pos 2010-2014 

82;  
TST and IGRA pos 

2010-2014 138;  

TST pos and IGRA 

neg 2010-2014 0 

~5 (Canada, 2004-
2012)100 

Tsou et al. 

2015112 
2004; NS 

Central 

Taiwan 

Veteran nursing 

home residents 
≥65 

5, active, 

interviewed at six-
month intervals 

TST 2 TU PPD 
RT-23: 

conversion, <10 

then ≥10 mm 
increase at 2-yrs. 

QFT-G 

conversion: IFN-γ 
of <0·35 IU/mL & 

≥0·35 IU/mL≥ at 

2yrs 

Y’ N N 
TST pos: 3/100 

QFT-G pos: 1/39 

TST pos: 600 

QFT-G pos: 513 

659 (study 

setting)112 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; mth=month; TST=tuberculin skin test; PPD=purified protein derivative; NS=Not stated; Y=Yes; N=No; 

pyrs=person years; yrs=years; TU=tuberculin units; QFT-GIT=QuantiFERON-TB Gold In-Tube test; pos=positive; neg=negative. 

` Unclear whether cohort included those with certain CXR abnormalities. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years) 

Follow-up                        

(years, unless 

stated) and 

method 

LTBI 

screening 

method and 

cut-off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of 

TB cases/number with 

reactivity at study entry 

Average annual 

reactivation rates per 

100,000 

Approximate TB 

incidence per 

100,000 per 

annum (setting 

and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Grinsdale et 

al. 2016113 
2005-2008 

San 

Francisco, 
USA 

Foreign-born 

children, and child 
contacts 

<15 4-7·8, passive 

QFT-G and 

QFT-GIT; 
TST: 

≥10mm or 

≥5mm in 
contacts 

Y’ VC N 
QFT pos: 0/11 

TST pos: 0/153 
0 

16 (study setting, 

2005-2012)113 

Harstad et 
al. 2010114 

2005-2006; 
2008 

Norway Asylum seekers ≥18 
23-32 months, 
passive 

QFT-GIT 

and 
TST RT 23, 

2 TU: ≥6mm 

Y`` NS N 
QFT pos: 8/238 
TST pos: 8/415 

QFT pos: 1680 

TST pos: 964  
(assuming 24 mths 

follow up) 

~7-8 (Norway, 
2005-2008)32 

Andrews et 

al. 2015115 
2005-2007 

Worcester, 

South Africa 
School children 12-18 

<5, active until 

two years 

QFT & TST 

RT 23, 2 TU 
at baseline 

and after two 

yrs: ≥5mm 

N 
Not 

available 
N 

TST: pos 58/6,519·1 pyrs; 
neg 3/3,502·5 pyrs; 

conversion 7/654·3pyrs; 

reversion 0/235·7 pyrs; 
QFT: pos 46/4,371·1 pyrs; 

neg 7/3,994·6 pyrs; 

conversion 17/1,223·1 
pyrs; reversion 3/203·9 

pyrs. 

TST: pos 890; TST neg 
90; conversion 1,070; 

reversion 0; 

QFT: pos 970; neg 180; 
conversion 1,390; 

reversion 1,470. 

~900-1000 (South 
Africa, 2005-

2009)32 

Mahomed et 

al. 2011116 
2005-2009 

Worcester, 

South Africa 
School children 12-18 

median: 2.4, 

active follow-up 
at two years and 

have had three 

monthly visits  

QFT-GIT; 
TST RT 23, 

2 TU: ≥5mm 

CXR for 

smear pos 

Y 

(93.8%) 
N 

QFT-GIT pos 39/2,669; 

TST pos 40/2,894. 

QFT-GIT pos 640; 

TST pos 600. 

~900-1000 (South 
Africa, 2005-

2009)32 

Mahomed et 
al. 2013117 

2005-2009 
Worcester, 
South Africa 

School children 12-18 

22 months-

3·8yrs, active 

follow-up at 
two years and 

have had three 

monthly visits 

QFT-GIT; 

TST RT 23, 

2 TU: ≥5mm 

“screened 

for TB at 

baseline” 

40.3% 
with scar 

N 

QFT-GIT pos 48/3,233; 

QFT-GIT neg 17/2,804; 
TST pos 44/3,115; TST 

neg 12/2,456. 

QFT-GIT pos 650; 

QFT-GIT neg 270; TST 
pos 610; 

TST neg 200. 

~900-1000 (South 

Africa, 2005-

2009)32 

PHermansen 

et al. 
2016118 

2005-2012 Denmark 

Residents with 

QFT-GIT test (for 
various reasons)* 

All 
median 3·36, 

passive 
QFT-GIT NS NS 

Y, 
unknown 

proportion, 
estimated 

~35% 

20/1520 (>90 days from 

screening, 183 developed 
TB within 90 days) 

Age: <15 yrs 565; 15-24 

yrs 746; 25-34 yrs 654; 
35+ yrs 284; All 383 

~6-8 (Denmark, 

2005-2012)32 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; QFT-G=QuantiFERON-TB Gold; QFT-GIT=QuantiFERON-TB Gold In-Tube test; Y=Yes; VC=variable, 

and considered in analysis; N=No; pos=positive; neg=negative; TST=tuberculin skin test; TU=tuberculin units. 
P Results are plotted and appear either in the figures below or in the main manuscript. 

* These cohorts contained participants that had been identified as recent contacts of TB cases. 

`` Cohort known to include those with certain CXR abnormalities. 
` Unclear whether cohort included those with certain CXR abnormalities. 
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Table S3 Continued. Description of cohort studies included in the review that documented reactivation following latent tuberculosis screening and unknown timing of infection. 

Publication 

Years of 

study 

(recruited; 

end) 

Setting Population 

Age-group 

when 

recruited 

(years) 

Follow-up                        

(years, unless 

stated) and 

method 

LTBI 

screening 

method and 

cut-off 

TB 

disease 

excluded 

with 

CXR 

BCG 
LTBI 

therapy 

Sample size: Number of TB 

cases/number with 

reactivity at study entry 

Average annual 

reactivation rates per 

100,000 

Approximate TB 

incidence per 

100,000 per annum 

(setting and years) 

Cohorts defined by initial cross-sectional latent tuberculosis screening and unknown timing of infection 

Chigbu & 
Iroegbu 

2010119 

2006:2007 Nigeria Prison inmates mean: 33·8 1, active 

Mantoux -

0·1ml 5TU 
PPD: 

≥10mm for 

HIV neg 

NS NS N 8 sputum pos TB/58 HIV neg 13,793 
219 (Nigeria, 2006-

2007)38 

Nduba et al. 
2018120 

2008-2009; 
2010 

Siaya 

County, 

Kenya 

School children 12-18 

<2, mean: 1·2, 

active, repeat 

TSTs 

TST; 
≥10mm 

Y`  

85·5% 

had 

scar 

N 8/1777·8 pyrs 450 

400 (Nyanza 

province, Kenya, 

2013)121 

Azoulay et 

al. 2015122 
2008; 2011 Paris, France 

Health care 

workers 
mean:39 

2, active, repeat 

QFT and CXR 
QFT-GIT  Y` 87% N 

0/99 initially QFT positive 

followed to two years 
0 

11-9 (France, 2008-

2011)38 

Bunyasi et 
al. 2017123 

2009-2012: 
2014  

South Africa HIV-neg children ≤4 

median: 5, active, 

repeat LTBI 

assessments 

QFT-GIT or 

TST; 

≥10mm 

NS Y N 

Age: 0<1 yrs 10/111 pyrs; 

1<2 yrs 69/378 pyrs; 2<3 yrs 
30/183 pyrs; 3<4 yrs 1/37 

pyrs; All 110/708 pyrs. 

Age: 0<1 yrs 27,600; 

1<2 yrs 33,200;2<3 yrs 
36,900; 3<4 yrs 8,500; 

All: 32,700 

967-820 (South 
Africa, 2009-2014)38 

PWinje et al. 
2018124 

2009-2014; 
2016 

Norway 

Residents who had 

received a QFT-
GIT (for various 

reasons)* 

All 
NS; presumably 
<7, passive 

QFT-GIT NS NS N 

<2 yrs after QFT: low pos 
14/2166; medium pos 

38/2670; high pos 124/5042; 

neg 24/34,128 
≥2 yrs after QFT: low pos 

3/1,679; medium pos 

8/1,910; high pos 32/3,543; 
neg: 9/32,124# 

<2 yrs after QFT: low 

pos 390; med pos 890; 
high pos 1.560; neg 40; 

≥2 yrs after QFT: low 

pos 70; medium pos 
170; high pos 390; neg 

10# 

8-6 (Norway, 2009-
2016)38 

Du et al. 

2016125 
2010; 2013 

Changping 
District, 

Beijing, 

China 

College students 15-28 
3, active annual 

CXR 

ELISPOT 

assay & TST 

0·1ml of 5IU 
PPD: 

≥10mm 

Y’ 

78·7% 

had 
scar 

N 
ELISPOT pos and TST pos: 

0/171 
0 77 (China, 2010)38 

PAbubakar 

et al. 

201835,36^ 
UK Predict 

study 

2010-2015; 

2016 

London, 
Birmingham 

& Leicester, 

UK 

UK contacts and 

recent migrants* 
≥16 

median: 2.9, 

telephone contact 

at 12 and 24 
months and 

passive beyond 

T-SPOT.TB 

QFT-GIT 
Mantoux 

TST: 

multiple cut-
offs 

Y`  VC N 

Migrants (see Table 2 for 
contacts):  

TSpot.TB pos 21/587; QFT-

GIT pos 17/651; TST5mm 
21/1253 

TST10mm 20/828; 

TST15mm 18/586 

Migrants: TSpot.TB 

pos 1,150; QFT-GIT 

pos 830; TST5mm 540; 
TST10mm 790; 

TST15mm 990. 

~10-14 (UK, 2010-

2016)32 

Gao et al. 
2018126 

2015; NS, 
2017 

Zhongmu 

County, 

China 

Rural residents 50-69 2, active QFT-GIT Y` NS N 
10 pulmonary TB/1,127 
(2009pyrs) 

498  
66-63 (China, 2015-
2017)38 

Abbreviations: LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; PPD=purified protein derivative; HIV=human immunodeficiency virus; neg=negative; NS=not stated; N=No; 
pos=positive; Y=Yes; TST=tuberculin skin test; pyrs=person years; QFT-GIT=QuantiFERON-TB Gold In-Tube test; yrs=years; IU=international units; UK= United Kingdom; VC=variable, and considered in analysis. 

^ Additional data was obtained from the study’s corresponding author, so data included in the table may not appear in the available study manuscript. 
P Results are plotted and appear either in the figures below or in the main manuscript. 
* These cohorts contained participants that had been identified as recent contacts of TB cases. 

` Unclear whether cohort included those with certain CXR abnormalities. 
# Low pos, IFN-γ 0.35 to <1.0; medium pos, IFN-γ 1.0 to <4.0; and high pos, IFN-γ>4.0 IU/mL. 
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Table S4 Ecological studies that estimate TB reactivation by using all TB cases in a population, and an estimation of the latent tuberculosis prevalence. 

Publication Setting 
Population (TB case cohort; base 

cohort sample) 

Age-

groups 

(years) 

LTBI screening method and 

cut-off 

Active disease 

excluded with 

CXR in base 

cohort 

BCG 
LTBI 

therapy 

Sample size: TB 

cases/case source cohort; 

positive in base 

cohort/base cohort 

Approximate TB 

incidence per 100,000 per 

annum in setting (setting 

and years) 

PGryzbowski & 

Allen 1964127 
Ontario, Canada 

All notified TB cases in residents 1962; 

mass-screening 1958-1960 
all 

TST 1:2,000 dilution, with 
0·05mg of tuberculin in 0·1ml 

(equiv. 5 TU): ≥5mm 

Y` NS # 1,766/6,342,000; 

32,441/177,259 
28 (study setting, 1962)127 

PBarnett et al. 
1971128 

Sasktchewan, 
Canada 

All notified TB cases in residents 1960-

1969 (divided by 10) and population 

1964; mass-screening 1960-1969 

all 

No.2 dilution Old Tuberculin 

(1:1000 = 1/10mgm) to 1964, 5 
TU in first half of 1964, then 

1/20 mgm: ≥6mm 

Yn N N 

1,468 (1960-1969)/947,000 

(1964); 
250,704/1,420,056 (all, 

CXR status not stated) 

16 (study setting, 1960-

1969)128 
~55-25 (Canada, 1960-

1969)30 

PStead 1983129 Arkansas, USA 

TB cases in Arkansas 1961, 1971 and 
1981; TST survey in Ontario, Canada, 

1958-1960 with annual reversion of 5% 

assumed.127 

all 
As used in Grzybowski & Allen 

1964127 
NS NS N 

NS/NS. See Figure 5 for 

results. 

234 (study setting)24 

12.3-9.3 (USA, 1956-
1959)19 

PHorsburgh et al. 
2010130 

Palm Beach 

County, Florida, 
USA 

All non-genotypically clustered cases in 

residents 1997-2001; TST survey in rural, 
western Palm Beach County, Florida 

1998-2000 

≥1 TST 5 TU: ≥10mm NS NS  NS 

80 (16-23 

unclustered)/34,759; 

135/447 (15 had previously 
completed 6 months 

treatment) 

46 (study setting,1997-
2001)130 

Mulder et al. 

2012131 
Netherlands 

Immigrants Apr 2009-Mar 2011; 

screening results from a sample of the 
same cohort. They used “a Bayesian 

model to obtain a posterior distribution of 

the sensitivity for the QFT-GIT” 

≥18 QFT-GIT Y`` NS N 
30/26,317; 

296/1,468 

46 in immigrants and ~2 in 

native population in 2010132 

Mulder et al. 

2013132 
Netherlands 

Immigrants Apr 2009-Mar 2011; 

screening results from a sample of the 

same cohort. “The numerator…was 
modelled using the Poisson distribution 

…The denominator…took into account 

differences in sensitivity of the TST 
reported in the published data” 

≥18 
TST 0·1ml RT23: ≥10mm & 

≥15mm 

NS 

 

85% 

of 

base 
cohort 

N 
30/26,317;  
≥10mm: 273/643 

≥15mm: 145/643 

46 in immigrants and ~2 in 

native population in 2010132 

PShea et al. 2014133 USA 

CDC Non-genotypically clustered cases 

2006-2008; TST survey from 1999-2000 

NHANES survey  

all TST 0·1 mL PPD S-1: ≥10mm NS NS NS 
39,920/907,272,727; 
NS/7,386 

~4 (USA, 2006-2008)133 

Abbreviations: TB=tuberculosis; LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; TB=tuberculosis; equiv.=equivalent; TU=tuberculin units; Y=Yes; NS=not stated; N=No; USA=United 

States of America; NA=not applicable; QFT-GIT=QuantiFERON-TB Gold In-Tube test; TST=tuberculin skin test; TU=tuberculin units; NHANES=National Health and Nutrition Examination Survey; PPD=purified protein derivative; 

pop=population; IGRA=Interferon Gamma Release Assay. 
P Results are plotted and appear either in the figures below or in the main manuscript. 
# "…all persons known to have had tuberculosis in the past were recalled; and prophylatic chemotherapy was liberally used, in both recent tuberculin converters and persons with inactive tuberculosis"127 

`` Cohort known to include those with certain CXR abnormalities. 
` Unclear whether cohort included those with certain CXR abnormalities, in the case of pre-chemotherapy studies the development of primary foci/calcifications was often discussed in detail. 
n Only those with normal/negative/satisfactory radiograph, or those without radiologic manifestations/changes/lesions were included in the study, or progression rates in those with and without abnormalities were presented separately. 
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a)  

 

b)  

Figure S1 Pre-chemotherapy era studies of a) TB reactivation rates of pulmonary or pleural TB among converters (Gedde-

Dahl 1952
12

 and Hyge 1956
13

 reported on progressive pulmonary TB cases and Madsen 1948
6
 reported on “X-ray changes”), and 

b) TB reactivation rates among converters. Participant details, recruitment years, study lead author and publication year are 

given in the figure headings. Shaded areas represent 95% confidence intervals. The length of follow-up in Myers et al. 1964
1
 and 

1965
3
 may have ranged from 19-39 years given the study recruitment and end dates (1921-1941 and 1960), however numbers 

followed over time were not given. Not shown in the figures are one case in Myers et al. 1964
1
 that reactivated at 24 years from 

conversion, and one case from Myers 1965 that reactivated at 26 years from conversion. In the study by Meyer 1949, observation 

of the 0-3 year group continued into school-age for an unspecified period with no cases observed, and a small number from the 

other cohorts were observed up until the 17
th 

year, again, with no cases being observed.
4
  A very small number of study 

participants were followed in the study by Hertzberg for 11+ years, with an unspecified upper limit.
11
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Figure S2 Average annual reactivation rates in first ten years following TST conversion, by age and TST result in English 

school children in the from the MRC (Medical Research Council) study
67

, as described by Sutherland.
16

 Shaded areas 

represent 95% confidence intervals.  
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a)  

b)  

 

c)  

Figure S3 Comparing TB reactivation rates in cohorts that have shown conversion to those with LTBI following a known 

TB exposure in a) Norwegian residents (1936-1946),
64

 b) groups of female high school students, 12-18 years of age, 

following a “massive” exposure in a blacked out air-raid shelter in 1943 (progressive pulmonary TB only),
13

 and c) in the 

placebo cohort of the USPHS (United States Public Health Service) trial among household contacts (observation was 

incomplete beyond the seventh year and so these results have been excluded).
17

 Shaded areas represent 95% confidence intervals. 

A very small number of study participants were followed in the study by Hertzberg for 11+ years, with an unspecified upper limit. 

Participant characteristics, recruitment years and study lead author and publication year are given in the figure headings. 
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Figure S4 TB reactivation rates in child contacts identified with LTBI before the age of six in Minnesota, USA (recruited 

1921-1941).
25

 The left panel shows the TB reactivation rates over time from contact and LTBI diagnosis and the right 

panel shows TB reactivation rates by age of TB diagnosis. Myers et al. 1963 actively followed up the 0-5 year-olds to a mean 

age of 32 years, but did not give numbers observed overtime (given the years of study recruitment and study end, the follow-up 

period possibly varied from ~19-39 years
25

), and 124 of the cohort of 599 reportedly either died or were lost to follow-up over 

time, so the rate estimates in the above panels, particularly in the later years, will be inaccurate.
25

 Shaded areas represent 95% 

confidence intervals. 

 

 

 

Figure S5 TB reactivation rates in the placebo cohort of the USPHS (United States Public Health Service) trial among 

household contacts by age-group for all “reactors” (TST 5+ mm at study entry or after 12 months follow-up). Observation 

was incomplete beyond the seventh year so these results have been excluded.
17

 Shaded areas represent 95% confidence intervals. 
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Figure S6 Average annual TB reactivation rates per 100,000 by TST induration diameter. Note that the study among Danish 

residents only considers respiratory and pleural TB,
62

 and the study by Radhakrishna et al 2003 considers only culture-positive 

TB.
82

 Participant details, years of follow-up, lead author and publication year are given in the figure headings Shaded areas 

represent 95% confidence intervals. 

 

Figure S7 “Incidence of tuberculosis among initial reactors to tuberculin, by age when tuberculosis was first 

diagnosed”(adapted from figure 1 in Comstock et al. 1974).
63
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Table S5 Ecological studies excluded from the main analysis because they did not strictly meet our study criteria. Studies were not designed to estimate reactivation rates and nor 

were they discussed, but data provided in the studies can be used to calculate reactivation rates.  

Publication Setting 
Population (TB case cohort; base cohort 

sample) 

Age-groups 

(years) 

Active 

disease 

excluded 

with CXR in 

base cohort 

BCG 
LTBI 

therapy 

Sample size: TB 

cases/case source 

cohort; positive in base 

cohort/base cohort 

Estimated reactivation rates 

Approximate TB 

incidence per 100,000 

per annum in setting 

(setting and years) 

Borgdorff et 

al. 2010134 
Netherlands 

RFLP used to identify pulmonary TB cases 
among Netherlands-born residents in 1995 

and 2005 with unique strains (not seen in the 

previous two years); age-specific proportion 
with latent TB based on annual risks of 

infection, see Styblo 1990.135 

All NA NS NS 

1995: 170 pulmonary 

TB/1,702,000 

2005: 91 pulmonary 
TB/982,000 

See Figure S9 
(calculated from data provided in Table 3 of 

the manuscript) 

9 (Netherlands, 2000)38 

8 (Netherlands, 2005)38 

Winje et al. 

2019136 
Norway 

TB case data from Norwegian immigrants 

2008-2016, who arrived 2008-2011; 

estimated IGRA prevalence using age and 

country specific LTBI prevalence data from 

the published literature, and Norwegian data 
on asylum seekers137* 

All NS NS Unclear^ 948/14,852 

Calculated from data provided in Table 2#: 
1,527/100,000py in the first five years after 

arrival, varying widely (509-

2,771/100,000py) depending on country of 
origin. A high proportion of cases occurred 

in the first year after migration (33.3-83.3% 

depending on country of origin). 

7.2-6.1 (Norway, 2008-

2016)38 

Abbreviations: TB=tuberculosis; LTBI=latent tuberculosis infection; CXR=Chest X-ray; BCG=Bacillus Calmette–Guérin vaccinated; RFLP=Restriction-fragment-length-polymorphism; TB=tuberculosis; NA=not applicable; NS=not stated; 
Y=yes; py=person years. 

* IGRA positivity estimates ranged from 19.6%-28.4% depending on country of origin. 

^ “The monitoring and evaluation system of the long-standing TB and LTBI screening programme is weak”136 
# Assuming an IGRA sensitivity of 84%, as the study authors did, and assuming that the IGRA positivity estimated by the authors did not differ between immigrants remaining in Norway and those that emigrate. 

 

 

Figure S8 Annual pulmonary TB reactivation rates per 100,000 by age group. These values were calculated using data in Table 3 of Borgdorff et al. 2010.
134

 This study used 

restriction-fragment-length-polymorphism to identify pulmonary TB cases among Netherlands-born residents in 1995 and 2005 with unique strains (not seen in the previous two 

years) by age group, and estimated the age-specific proportion with latent TB based on methods used by Styblo 1990;
135

 these were used as the numerators and denominators for 

reactivation rate calculations, respectively. The missing value for 2005 in the <15 yrs age group 2005 was infinity: two cases in an estimated population of none with latent TB.  
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Table S6 The template used to assess data quality in our systematic review, based on the Cochrane Risk Of Bias In Non-

randomized Studies - of Interventions (ROBINS-I) assessment tool  

  

Study  

Bias due to 
confounding 

(confounding) 

1.1 Is there potential for confounding of the effect of 
intervention in this study?  

Did the study include participants on LTBI treatment? 

No:  Low: PN / N  
Yes:  Serious / Critical: Y/PY 

Confounding:   
 

 

Direction of bias:   

Low: PN / N 
Serious / Critical: Y/PY 

Selection bias 

(selection) 

2.1. Was selection of participants into the study (or into the 

analysis) based on participant characteristics observed after 

the start of intervention? 
Were cohort characteristics representative of the general 

“infected” population, or if the cohort did include those with 

abnormal CXR, BCG vaccinated, or different age groups, 
results were disaggregated by these characteristics?  

Yes: Y / PY   

No: PN / N… 
- The cohort characteristics were either 

unstated/unclear; or  

- The study population included those on latent TB 
treatment, latent TB treatment was not randomly 

assigned, and treated participants were excluded, 

meaning the considered cohort (untreated) may have 
differed from the excluded (treated) in some way; of 

- The cohort included varying characteristics likely to 

influence reactivation rates (those with abnormal 
CXR, BCG vaccinated, or different age groups) but 

results were not disaggregated by these characteristics. 

Bias in  

intervention classification: 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Direction of bias: 

Low: Y / PY  

Moderate:  PY/PN  

Serious / Critical:  PN / N 

Bias in 

classification 
of 

interventions 

(screening) 

3.1 Were intervention (infection) groups clearly defined?  

LTBI screening method:  

- One clearly described method: Y / PY  

- Several methods, results disaggregated: Y / PY 

- Several methods, results not disaggregated: PN / N  

- Time of infection/conversion/exposure may have 
preceded the beginning of follow-up by more than 6 

months (depending on the time between negative and 

positive screening results or the time of exposure and 
study commencement): PN / N 

Bias in  

intervention classification: 
 

 

 
 

 

 
Direction of bias:  

Low: Y / PY  

Moderate:  PY/PN  
Serious / Critical:  PN / N 

Bias due to 
deviations 

from intended 

interventions  

(reinfection) 

4.1. Were there deviations from the intended intervention 
beyond what would be expected in usual practice? 

TB incidence in the study setting: 

- low (<40/100,000 persons per year): PY 

- moderate (40-100/100,000 persons per year): PN 

- high (>100/100,000 persons per year): N 

Bias due to deviations in intended interventions: 
 

 

 

Direction of bias:  

Low: Y / PY  
Moderate:  PY/PN  

Serious / Critical:  PN / N 

Bias due to 

missing data 

(missing) 

5.1 Were outcome data available for all, or nearly all, 

participants? 

Follow-up and percentage loss to follow-up over time: 

- Active follow-up, numbers over time given, <25% 

loss to follow-up: Y; >25% loss to follow-up: PY/ PN 

- Active, numbers over time not given: PN 

- Passive follow-up: N  

- Not clearly described: NI 

Bias due to missing data: 

 

 
 

 

 
Direction of bias: 

Low: Y / PY  

Moderate:  PY/PN  

Serious / Critical:  PN / N 

Bias in 

measurement 
of outcomes 

(outcomes) 

- The method of TB disease diagnosis and considered 
manifestations was described and comparable across 

time in the follow-up period: Y / PY 

- The method of TB disease diagnosis and considered 
manifestations was unclear or the follow-up was active 

and included CXR screening, which may have 
affected the reactivation rate. PN / N 

Bias in measurement of outcomes: 

 
 

 

 
Direction of bias:   

Low: Y / PY  

Moderate:  PY/PN  
Serious / Critical:  PN / N 

RISK OF OVERALL BIAS 

Confounding:  Low Moderate Serious Critical 
Selection bias: Low Moderate Serious Critical 

Classification of interventions: Low Moderate Serious Critical 

Deviations from intended interventions: Low Moderate Serious Critical 
Missing data: Low Moderate Serious Critical 

Measurement of outcome: Low Moderate Serious Critical 

Overall: Low Moderate Serious Critical 

Low / Moderate / Serious / 
Critical  

DIRECTION OF OVERALL BIAS   
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Abstract 

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of 

homogentisic acid (HGA) in the body. Affected individuals lack enough functional levels of an 

enzyme required to breakdown HGA. Mutations in the HGD gene cause AKU and they are 

responsible for deficient levels of functional homogentisate 1,2-dioxygenase (HGD), which, in 

turn, leads to excess levels of HGA. Although HGA is rapidly cleared from the body by the 

kidneys, in the long term it starts accumulating in various tissues, especially cartilage. Over time 

(rarely before adulthood), it eventually changes the color of affected tissue to slate blue or 

black. Here we report a comprehensive mutation analysis of 111 pathogenic and 190 non-

pathogenic HGD missense mutations using protein structural information. Using our 

comprehensive suite of graph-based signature methods, mCSM complemented with sequence-

based tools, we studied the functional and molecular consequences of each mutation on 

protein stability, interaction and evolutionary conservation. The scores generated from the 

structure and sequence-based tools were used to train a supervised machine learning algorithm 

with 84% accuracy. The empirical classifier was used to generate the variant phenotype for 

novel HGD missense mutations. All this information is deployed as a user friendly freely 

available web server called HGDiscovery (http://biosig.unimelb.edu.au/hgdiscovery/). 

  

http://biosig.unimelb.edu.au/hgdiscovery/


   
 

   
 

Introduction 
Alkaptonuria (AKU) is a rare recessive metabolic disorder which was used by Sir Archibald 

Garrod in his Croonian lectures to describe inborn errors of metabolism [1]. It is a hereditary 

disorder, resulting from mutations in the enzyme homogentisate 1,2 dioxygenase (HGD) (EC 

1.13.11.5), responsible for the breakdown of  homogentisic acid (HGA) which is an intermediate 

metabolite in the tyrosine degradation pathway [2]. With blockage in tyrosine metabolism, 

elevated levels of HGA leads to deposition of its own polymers as an ochronotic pigment in the 

connective tissue including cartilage, heart valves, and sclera [3]. Manifestation of disease 

during early childhood is seen as “homogentisic aciduria”, which is darkening of the urine upon 

standing. Delayed symptoms can be seen after 30 years of age which involves “ochronosis” – 

pigmentation of collagenous tissues like cardiac valves, eyes, ears and skin [4]. Current 

estimates of the disease occurrence in the Unites States obtained from the National 

Organisation of Rare Disorders is 1 in 250,000 – 1,00,000 live births [5].  

 

HGD gene located on chromosome 3q21-q23 [6], is a single copy gene composed of 14 exons 

[7]. Due to compound heterozygosity or homozygosity of HGD gene variants, the enzymatic 

defect in HGD is autosomal recessive [6, 8]. Information on all variants identified till date 

globally have been documented in the HGD mutation database (http://hgddatabase.cvtisr.sk/).  

The experimental crystal structure of the HGD protein has been solved (PDB code 1EY2 and 

1EYB) in 2000. The HGD protein protomer (NP_000178.2), is composed of 445 amino acids, 

which includes a 280 residue N-terminal domain, a central β-sandwich  and a 140 residue C-

terminal domain [8]. It is a complex hexameric protein arranged as a dimer of trimers [9]. It is 

principally expressed in osteoarticular compartment cells (i.e. chondrocytes, synoviocytes and 

osteoblasts) [10] and in prostate, small intestine, colon, kidney and liver [7]. The spatial 

structure of the protomer, two-disc like trimers and the hexamer are maintained by an intricate 

network of non-covalent inter and intra-molecular interaction. This makes the protein structure 

extremely vulnerable to mutations [11].  

 

The major obstacle in studying an ultra-rare and complex disease like AKU is the lack of a 

standardized methodology to assess disease severity and response to treatment [12], which is 

complicated by the fact that AKU symptoms differ from one individual to another. Detailed 

evaluation and comparison of clinical and genomic data of AKU patient can play a key role to 

understand AKU variability. An in-depth molecular characterization of the disease is needed in 

pharmacogenomics prediction for suitable medical treatment. To address the issue we 

developed ApreciseKUre platform, which includes data on potential biomarkers, patients’ 

quality of life, biochemical outcomes and clinical information facilitating their integration and 

http://hgddatabase.cvtisr.sk/


   
 

   
 

analysis in order to shed light on pathological characterization of every AKU patient in a typical 

Precision Medicine perspective [13-16] .  

 

We wanted to further elaborate and build a new database which would complement the 

existing ApreciseKUre database. The new database would provide the necessary underlying 

molecular information for novel and known clinical HGD variants. We have tried to exploit 

structural and sequence based information to build a predictive tool using supervised machine 

learning algorithm. The model has been implemented through the webserver HGDiscovery, 

providing functional and phenotypic consequences of HGD non-synonymous variations to 

better guide clinical decisions. 

 

Methods 

Data curation 

After removal of duplicate mutations, we curated a dataset composed of 301 non-synonymous 

substitutions. It included 190 non-pathogenic non-synonymous variations retrieved from 

gnomAD v.3 (Genome build GRCh38/hg38, Ensembl gene ID: ENSG00000113924.11, Region 

3:120628173-120682571) [17] and 111 AKU-causing clinical mutations. The 111 variants were 

first described in the study of Ascher et al. 2019 [18] and included in HGD Mutation Database 

(http://hgddatabase.cvtisr.sk) [19], which summarizes results of mutation analysis from 

approximately 530 AKU patients reported so far.  

HGD protein structure 

The X-ray crystallographic 3D structure of Homo sapiens holo-HGD (holo-HGDHs, PDB ID: 1EY2) 

is incomplete; thus, it needed structural reconstruction of the missing residues of the monomer 

and then of the whole hexamer in order to be able to perform a complete evaluation of 

variants effect on protein stability and flexibility. The missing loop in the human protein 

structure (residues 348–355) was reconstructed by homology modeling using the Pseudomonas 

putida HGD (HGDPp) structure. By using protein BLAST [20] software we found three structures 

belonging to Pseudomonas putida with a sequence identity (the amount of characters which 

match exactly between two different sequences) larger than 49% and with root-mean-square 

deviation (RMSD) amounting to 1.8 Å for Cα [21]. We opted for HGDPp, with PDB ID 4AQ2 

since, similarly to 1EY2, as it had no substrate. The structures of holo-HGDHs (PDB ID: 1EY2) and 

its homologous HGDPp (PDB ID: 4AQ2) were retrieved from the Protein Data Bank (PDB) [22]. 

Thereafter at the 1EY2 and 4AQ2 sequences alignment on BLAST web server [20], we modelled 

the missing residues. The modelling of the loop 348-355 was carried out using a homology 

model approach in which an elucidated structure of HGDPp loop was employed as template to 

http://biosig.unimelb.edu.au/hgdiscovery/
http://hgddatabase.cvtisr.sk/


   
 

   
 

model the structure of the protein of interest. The completed monomer structure served as a 

starting point for the reconstruction of the whole HGDHs oligomeric protein on the template of 

the asymmetric units of PDB entry 1EY2. The structure reliability was validated using PROCHECK 

[23]. Additionally, the energy minimization of the hexameric protein was performed using 

GROMACS 5.0.2 [24] in order to obtain an optimized 3D structure, a relaxation of the highly 

energetic conformations and a correct geometry for the following simulations (for additional 

information see Supplementary Methods in [18]). 

Biophysical and evolutionary score generation 

A thorough structural and sequence based assessment was performed for all the HGD variants 

to account for the potential effects of AKU-causing mutations. Variations in protein-protein 

interactions between the different monomers of the hexamer HGD upon mutation was 

determined using mCSM-PPI2 [25]. Changes in protein stability and folding were determined 

using our in-house tools like mCSM-Stability [26], SDM [27] and DUET [28] and conformational 

flexibility changes using the normal mode analysis tool called DynaMut [29]. Effects of 

mutations on binding affinity of HGD to its substrate homogentisic acid were analyzed using 

mCSM-Lig [30]. All these are novel machine learning approaches that use graph-based 

signatures to represent the structural and biochemical environment of the wild-type 3D 

structure of a protein to quantitatively predict the effects of point mutation. To complement 

the above methods we used sequence based feature like SNAP2 (Screening for Non-Acceptable 

Polymorphisms) [31], ConSurf [32] and Provean (Protein Variation Effect Analyzer) [33] which 

provides valuable evolutionary information.  To enrich the analysis we included protein’s wild 

type structural information such as residue depth, dihedral angles of the HGD chain φ (phi) and 

ψ (psi), relative solvent accessibility and secondary structure information. We calculated 

changes in molecular interactions such as hydrophobic, ionic, van der Waals’, halogen and 

hydrogen bonds and π interactions (cation–π, donor–π, halogen–π, carbon–π, π–π) between 

the wild type and mutant structures using Arpeggio [34]. We also included population-based 

variability using the missense tolerance ratio (MTR) [35] scoring system. 

Supervised Machine learning for empirical model building 

We evaluated different supervised machine learning algorithms for classification which is 

available within the scikit-learn Python library. These include – K-Nearest Neighbors (KNN), 

Random Forest, Decision Trees, Extra Trees, AdaBoost, Gradient Boosting, SVM, Gaussian Naïve 

Bayes, and Stochastic Gradient Descent. The best performing model was chosen by assessing 

metrics like Matthews correlation co-efficient (MCC), Receiver Operating Characteristic 

(AUROC) curve, accuracy, F1-score and precision. The model was trained using stratified 10-fold 

cross validation. We carefully split the train and blind test dataset non-redundantly with respect 

to the amino acid residue position.  



   
 

   
 

To address the issue of imbalance between the pathogenic and non-pathogenic mutations in 

the data, we evaluated the model performance by both under-sampling the non-pathogenic 

mutations and oversampling pathogenic mutations in the train dataset [36]. The performance 

was compared for above mentioned scenario and the normal dataset and best results were 

obtained when the pathogenic mutations were oversampled using the Extra Tree algorithm. 

Extremely randomized tree classifier (or Extra Tree) is an ensemble machine learning algorithm 

and a variation of the random forest algorithm. The empirical binary classifier built using this 

algorithm highlights a set of structural and evolutionary features which can be used to 

discriminate between AKU-causing and non-pathogenic variations. 

Webserver development 

We have implemented HGDiscovery as a user-friendly and freely available webserver 

(http://biosig.unimelb.edu.au/hgdiscovery/). The front-end of the server was developed using 

Materializecss framework version 1.0.0, while the back-end was built in Python using the Flask 

framework version 1.0.2. The server is hosted on a Linux server running Apache 2. 

Results 

In this work we have used the 3D protein structure to understand the functional and molecular 

consequences of mutations in HGD leading to AKU disease and using the information generated 

from these analyses we have trained a supervised machine learning algorithm to develop a 

predictive tool to determine novel variants which could lead to AKU manifestation. Figure 1 

depicts the novel methodological pipeline we have developed. 

 

 

http://biosig.unimelb.edu.au/hgdiscovery/


   
 

   
 

 

Figure 1: HGDiscovery workflow. The first step involves scoping published literature and clinical 

databases to prepare a curated list of non-synonymous HGD mutations.  The second step 

involves generating various structure and sequence based features for the curated missense 

mutations. In the third step, we use these features in a supervised machine learning algorithm 

to build a binary classifier, which can distinguish between pathogenic and non-pathogenic 

missense mutations. Finally, we develop a free available user friendly webserver which contains 

phenotypic information on all HGD variants. 

Sequence-based analysis of HGD variants 

ConSurf, SNAP2 and PROVEAN are sequence-based predictors and consider evolutionary 

information to predict functionally important non-synonymous mutation. The prediction helps 

us understand the biological impact of a mutation on the protein structure. A consistent 

pattern was observed from all of the sequence based features. The pathogenic mutations were 

associated with deleterious scores and the non-pathogenic mutations scored neutral. All the 

features were statistically significant to be used to train the predictive algorithm to build the 

empirical tool (p-values SNAP2: 4.6 e-14, PROVEAN: 1.1 e-9, ConSurf: 2.4 e-10). Population-based 

variability was considered using the missense tolerance ratio (MTR) scoring system. Majority of 

the pathogenic mutations were in the bottom 25th percentile, reflecting intolerance and hence 

associated with altering protein function. 

 



   
 

   
 

Wild-type environment analysis 

The wild-type environment analysis includes data on relative solvent accessibility (RSA), residue 

depth, dihedral angles and secondary structure information for both pathogenic and non-

pathogenic variants. Looking into the relative solvent accessibility values for the pathogenic and 

non-pathogenic mutations (p-value: 2.2 e-8), we see pathogenic mutations tend to be more 

exposed than non-pathogenic variants. It has been previously described that the HGD protomer 

structure constitutes of a pore in which the side chains of large number of residues are exposed 

[21]. These residues are thought to play an important part in the complex HGD catalytic 

function and we see subtle changes in the side chains as non-synonymous substitution can 

affect the active site functionality [18]. The residue depth values reveal pathogenic mutations 

are more buried than non-pathogenic mutations. This observation is congruous with earlier 

observation where point mutations on the surface were better tolerated in the globular 

hexameric HGD protein structure. 

Structural and Biophysical analysis 

Our in-house biophysical tools mCSM-Stability [26], DUET [28] and DynaMut [29] were used to 

study and understand the impact of missense mutations on protein stability, folding and 

conformational flexibility. These tools are novel machine-learning algorithms which rely on 

graph-based signatures to calculate changes in Gibb’s free energy upon non-synonymous 

mutations. We observed pathogenic mutations to be associated with highly destabilizing scores 

affecting protein stability and dynamics. The effects of mutation on the substrate binding 

affinity to active site were determined using mCSM-Lig [30]. Pathogenic mutations altered the 

active / substrate binding pocket. mCSM-PPI2 [25] was used to assess changes in protein-

protein interaction and we observed pathogenic mutations hindered the formation of the 

symmetrical homohexamer. Therefore, pathogenic mutations either reduced or disrupted the 

HGD protein activity. 



   
 

   
 

 

Figure 2: Boxplot representation of features. A) Structural features. B) Sequence based 

features. C) Wild-type environment features. The non-pathogenic mutations (NP) are 

represented as sea green and pathogenic mutations (P) as dark orange. (*** p < 0.0001, ** p < 

0.001, Welch two sample t-test). 

Supervised machine learning algorithm: Extra Tree  

Our features could be grouped into eight distinct categories – protein stability, protein-protein 

interactions, ligand affinity, evolutionary conservation scores, distance parameters, MTR scores, 

molecular interaction and backbone geometry. Each category of features was initially used to 

build and evaluate the performance of the predictive model. After a thorough analysis of the 

individual features, we combined them together to see if there is a pattern which could be used 

to distinguish pathogenic from non-pathogenic HGD mutations. We observed that when 

different categories of features were combined together, in addition to using stratified 10-fold 

cross validation with Extra Tree algorithm, yielded a more robust and balanced performance. 

The Extra Tree algorithm  implements a meta estimator that fits randomized decision trees on 

various sub-samples of the dataset and uses averaging to improve the predictive accuracy and 

reduces over-fitting [37].  



   
 

   
 

 

Figure 3: Empirical model performance trained on individual class of features. The Extra Tree 

algorithm was trained using stratified 10-fold cross validation using eight distinct class of 

features (first eight bars from left to right; dark blue bars) and with a combination of all 

features (red bar). The AUC scores is low when a single class of feature is used for training the 

binary classifier, however, a significant improvement is noticed when all the eight different 

features are combined to build the model. 

 

190 non-pathogenic and 111 pathogenic mutations were split into non-redundant train and 

blind test datasets with respect to their amino acid position. Initially we observed poor 

performance on the model’s ability to predict pathogenic mutation. We concluded that the 

train data set was imbalanced as there were more non-pathogenic mutations than pathogenic 

mutations. We improved the metric scores by oversampling (duplicating) [36] the pathogenic 

mutations in the train dataset. The final model correctly classified 84% and 73% of mutations in 

the train and blind test datasets respectively. 



   
 

   
 

 

Figure 4: Receiver Operating Characteristic (ROC) curves of HGD classifier.  The evaluation 

metrics shown for train and test dataset where pathogenic mutations are represented in dark 

orange and non-pathogenic mutations in sea green. (AUC = area under the curve). 

 

HGDiscovery Webserver 

HGDiscovery allows for users to query for a single point mutation or submit a list of mutations 

to be analysed in batch. For the “Single Mutation” option users are asked to provide the point 

mutation as a string containing the wild-type reside one-letter code, its corresponding residue 

number and the mutant residue one-letter code. The “Mutation List” option requires that a text 

file is submitted with the list of mutations (one per line). 

 

The results page for the “Single Mutation” option displays the predicted outcome on the top 

alongside with details of the input mutation, wild-type residue environment, the variables and 

scores used by our predictive model and external links to experimental evidence (when 

available). An interactive 3D viewer using the NGL-viewer [38] shows the molecular contacts 

generated by Arpeggio [34] for wild-type and mutant structures. 

On the “Mutation List” option, the results are displayed as a downloadable table. Individual 

analysis for each variant on the table can be analysed similarly to “Single Mutation” option by 

clicking the “Details” button. An interactive viewer is also shown at the bottom of the page 

highlighting Pathogenic and Non-pathogenic mutations on the 3D structure. 

 



   
 

   
 

Discussion 
Here we present an empirical classifier HGDiscovery, which has phenotypic information on all 

variants of homogentisate 1,2 dioxygenase, (EC 1.13.11.5), an enzyme involved in the 

metabolism of tyrosine, whose deficiency leads to Alkaptonuria [OMIM 203500]. We combine 

structural, evolutionary and molecular information from known HGD variations and look to 

investigate a pattern to distinguish non-pathogenic from AKU-causing non-synonymous 

variants. So along with physiological information from ApreciseKUre platform, we have an 

additional AKU-dedicated database which provides new insight into functional and phenotypic 

consequences of novel HGD non-synonymous variations, crucial for a genetic disease like AKU 

to support clinical decisions. 

The 3D crystal structure of the HGD active form reveals a highly complex and dynamic 

hexameric organization comprising two disk-like trimers [9]. An intricate network of 

noncovalent interactions is needed to maintain the spatial structure firstly of the protomer, the 

trimer and then the hexamer. This delicate structure presents a very low tolerance to mutations 

and can be easily disrupted mainly by missense variants compromising enzyme function. In case 

of HGD, missense variants represent approximately 65% of all known AKU substitutions [4, 11, 

39] and 93 distinct amino acid residue positions within the structure are affected by the 111 

AKU-causing missense changes. Recent studies on evolutionary conservation revealed that AKU 

variants were mainly located at more conserved residue positions [18] and, consequently, 

HGD missense changes can influence protein folding and stability or interactions with other 

protomers or substrate. Specifically, they can decrease stability of individual protomers, disrupt 

protomer–protomer interactions, or modify residues in the active-site region. Thus, when a 

novel HGD missense mutation is identified, it is important to distinguish causal AKU variants 

from non-pathogenic ones.  

With sequence-based tools such as ConSurf, SNAP2 and PROVEAN we have evaluated 

evolutionary information in order to predict functionally important non-synonymous mutations 

and the biological impact of a mutation on HGD protein structure. The obtained results 

supported our hypothesis: the pathogenic mutations were associated with deleterious scores 

whereas the non-pathogenic mutations with neutral scores. Additionally, using MTR score 

system we have analyzed population-based variability and most of the pathogenic mutations 

resulted to be in the bottom 25th percentile, reflecting intolerance and alteration of protein 

function. With the help of biophysical tools (i.e. mCSM-Stability, DUET and DynaMut) we 

investigated the impact of missense mutations on protein stability, folding and conformational 

flexibility. AKU-causing mutations appear to reduce or disrupt the HGD protein activity by 

destabilizing its structure and altering the active site/substrate binding pocket. 



   
 

   
 

It is not uncommon that AKU patients carry compound heterozygotes for two HGD gene 

variants. In such cases, the estimation of the role of each missense variant is not trivial, since 

the hexamer could be assembled with monomers all affected by the same variant (homo-

oligomer) or by two different ones (heterooligomer) [40]. Variants affecting two different 

regions could have additive destructive effect, on the contrary, the effects could partially 

compensate for those that belong to the same region. However, we do not have any tools able 

to evaluate such events so far [12]. Compound heterozygosity could have even interfered with 

our analysis, where a variant labelled as non-pathogenic could actually be pathogenic. This was 

the limitation of our study. But with increasing availability of genomic and clinical data after 

patient analysis in future, we can always update our tool and re-label the mislabeled non-

synonymous variants. 

 

The information available from the above study can be used to develop new treatment 

strategies, for example, use of small molecules. We know that a pathogenic mutation with 

destabilizing scores for stability and flexibility leading to reduced enzyme activity can be 

rescued partially or totally with the help of a small molecule and hence might decrease the 

severity of the disease [18]. Moreover, understanding the protein structure and function would 

also help in designing tailored drugs and therapies.  

 

Therefore, this framework may represent an online tool that can be turned into a best practice 

model for Rare Diseases. We believe this is not limited to the study of AKU, but it represents a 

proof of principle study that could be applied to other rare diseases, allowing data 

management, analysis and interpretation. We applied this novel methodological pipeline to 

understand and determine novel drug resistant mutations in tuberculosis [41, 42] and even 

performed a real-time analysis [43] on tuberculosis patient. Hence, HGDiscovery is a user 

friendly freely available tool which could help with faster and more accurate diagnosis of AKU.  
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Abstract 

The transmembrane glycoprotein CD93 has been identified as a potential new target to inhibit tumour 

angiogenesis. Recently, Multimerin-2, a pan-endothelial extracellular matrix protein, has been identified as a 

specific ligand for CD93, but the interaction mechanism between these two proteins has still to be clarified. In 

this paper, we aim to computationally investigate the structural and functional effects of induced mutations on 

the binding domain of CD93. Starting from experimental data, we provide a workflow to analyse the “non-

canonical” disulphide bridge disruption in the C-type lectin-like domain (CTLD). In addition, we investigate 

how mutation of Phe238 in the CD93 sushi-like domain affects the overall mobility of the CTLD domain 

inducing changes in the residue interaction network. The pivotal role of these aminoacid residues was also 

confirmed by Protein-Protein Interaction (PPI) docking analyses, which was used to predict effects of variations 

on the inter-residue interaction network at the binding site. The comprehensive molecular insight obtained from 

this study might provide an useful tool to drug design in cancer therapy. 



Introduction  

CD93 (also known as C1qRP) is a single-pass transmembrane glycoprotein belonging to group XIV family of 

the C-type lectin-like domain (CTLD) superfamily (Zelensky and Gready 2005). This group also includes 

Thrombomodulin (TM), Endosialin (TEM1/CD248), and CLEC14A, which share similar molecular structures 

from N- to C-terminus, consisting of a CTLD (designated as D1), one to six Epidermal growth factor (EGF)-like 

repeats (designated as D2), a sushi-like domain (designated as DX), a highly glycosylated serine/threonine-rich 

mucin-like domain (designated as D3), a transmembrane domain (designated as D4) and a short cytoplasmic 

domain (designated as D5) (Orlandini et al. 2014).  

The CTLD canonical structure features a characteristic double-loop, which is stabilized by highly conserved 

disulphide bridges along with hydrophobic and polar interactions. CTLDs can bind different ligands 

simultaneously due to the flexible loop also referred to as the “long loop region” which is considered a key 

structure for carbohydrate binding. Thus, the CTLD is highly adaptable, conferring multiple functions to the 

protein and binding not only to sugars, but also to other structures, including proteins, lipids and inorganic 

molecules (Zelensky and Gready, 2005). 

CD93 is predominantly expressed in endothelial cells (ECs) with expression also observed in monocytes, natural 

killer cells, platelets, myeloid cells, hematopoietic stem cells, and several lymphocyte subtypes (Greenlee et al. 

2008; Khan et al. 2019). Notably, CD93 is highly expressed in blood vessels within tumours and has been 

identified as a key regulator of glioma angiogenesis (Galvagni et al. 2017; Tosi et al. 2017; Langenkamp et al. 

2015), making it suitable as a potential target for anti-angiogenic treatment. In addition, we have identified a new 

signalling pathway involved in regulating EC adhesion and migration (Galvagni et al. 2016) but much remains to 

be clarified about the role of CD93 in the control of EC physiology. Recently, the pan-endothelial extracellular 

matrix (ECM) protein Multimerin 2 was identified as the interacting partner of CD93 (Khan et al. 2017; 

Galvagni et al. 2017). EMILINs/Multimerins form a small protein family, which is part of the superfamily of 

collagenous and non-collagenous proteins containing the gC1q signature (Colombatti et al. 2012). They are 

characterized by an N-terminal EMI domain, a central part of the molecule formed by a long region with a high 

probability of a coiled-coil structure, and a region homologous to the gC1q domain (Braghetta et al., 2004). We 

observed the CD93/Multimerin-2 interaction to be highly specific, since no interaction was seen with other ECM 

molecules including EMILIN2, which shares similar molecular domains with Multimerin-2 (Galvagni et al. 

2017). 

CD93 and Multimerin-2 are both up-regulated in tumour vasculature during tumour progression suggesting that 

the CD93/Multimerin-2 interaction regulates tumour angiogenesis. Indeed, disruption of this interaction strongly 

impaired EC migration and in vitro angiogenesis (Galvagni et al. 2017). Recent work has suggested that 

inhibition of CD93/Multimerin-2 interaction may lead to disruption of vascular integrity in tumours, showing 



that the CD93/Multimerin-2 complex is required for activation of β1 integrin, phosphorylation of focal adhesion 

kinase, and fibronectin fibrillogenesis in ECs (Lugano et al. 2018). These observations strengthen the hypothesis 

that CD93 plays a key role in vascular maturation and organization of the ECM in tumours. 

Binding of CD93 to Multimerin-2 is dependent on a long-loop region in the CTLD of CD93 and this interaction 

is abrogated by point mutations in the CTLD and sushi-like domains (Galvagni et al. 2017; Khan et al. 2017). 

Here, the application of computational approaches, combined with experimental data, allowed us to gain more 

in-depth molecular insights into the CD93/Multimerin-2 interaction, offering a platform for developing 

innovative therapeutics able to target these molecules and block their interaction. 

 

Materials and Methods 

Experimental Data 

The chimeric constructs containing the extracellular domains of CD93 fused to Myc and the Multimerin-2 wild type fused 

to a His tag were generated as previously described (Orlandini et al 2014; Colladel et al 2016). The CD93 point mutants 

were obtained using the QuikChange II XL Site-Directed Mutagenesis kit (Agilent Technologies, Santa Clara, CA, USA) 

according to the manufacturer’s instructions. All constructs were confirmed by sequencing.  

To obtain conditioned media (CM) containing recombinant proteins, human Lenti-X 293T cells (Clontech Laboratories Inc., 

Mountain View, CA, USA) were transiently transfected using Lipofectamine 2000 Transfection Reagent (Thermo Fisher 

Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. After 48 h, cells were rinsed with PBS and 

grown in DMEM without supplements for 10 h. The media were collected and centrifuged to remove cellular debris and 

then aliquots were stored at -80° C. The protein concentration was determined by immunoblotting experiments, performed 

with mouse anti-Myc antibodies (9E10, Santa Cruz Biotechnology, Dallas, TX, USA) (Orlandini et al 2008).  ELISA-based 

solid-phase binding assays were performed to detect the interaction between recombinant proteins (Galvagni et al. 2017).  

Structural Biology procedure 

Homology Modeling 

The primary sequences of human CD93 and Multimerin-2 were retrieved from the UniProt database 

(www.uniprot.org), with accession number Q9NPY3 and Q9H8L6 respectively. Suitable template structures for 

homology modelling were initially acquired by online submission of the FASTA sequence to I-TASSER and 

PHYRE2 web servers (Yang et al. 2015; Kelley et al, 2015). Based on the percentage of identity and alignment 

coverage, we identified the crystal structure of the C-type mannose receptor 2 (PDB ID: 5AO6), (Paracuellos et 

al. 2015) as templates for the CTLD; EMILIN2 (accession number: Q9BXX0) was chosen as a template for 

Multimerin-2. Three-dimensional atomic coordinates were generated with MODELLER, implemented in 

PyMod2.0 (Webb and Sali, 2014; Janson et al. 2017), following the target-template alignment suggested by 



PHYRE2. For each domain, the best out of 5 models based on lowest value of DOPE (Discrete Optimized 

Protein Energy) was chosen as final model. Ultimately, individual constructed domains for each protein were 

connected by means of the Swiss PDB Viewer software (www.expasy.org/spdbv). The 3D molecular 

conformation of the two proteins was minimized using the Amber99SB (Lindorff-larsen et al. 2010) force field, 

until a final convergence of 0.01 kcal mol-1 Å-1 was achieved. Validation of the models was carried out using 

Ramachandran plot calculations computed with the PROCHECK program (Laskowski et al. 1993). The three-

dimensional structures of CD93 mutants were obtained submitting wild type CD93 structure to the DUET web 

server (biosig.unimelb.edu.au/duet/). The multiple sequence alignments were performed using ClustalO (Sievers 

et al. 2011) and colour figures were generated using PyMOL (Schrodinger 2015). The complex 

CD93/Multimerin-2 was constructed by assembling modelled structures of the interacting components through 

an exhaustive search using the GRAMM-X server (Tovchigrechko and Vakser 2006). The resulting complex 

structure was analysed using the PDBePISA tool for the exploration of macromolecular interfaces (Krissinel and 

Henrick 2007).  

MD simulations 

Molecular dynamics simulations of CD93 wild type and mutants were carried out in GROMACS 2016 

(Abraham et al. 2015). The protein structures were solvated in a triclinic box filled with TIP3P water molecules 

and Na+/Cl- ions were added to neutralize the system. The whole systems were then minimized with a maximal 

force tolerance of 1000 kJ mol-1 nm-1 using the steepest descendent algorithm.  

The optimized systems were gradually heated to 310 K in 1 ns in the NVT ensemble, followed by 10 ns 

equilibration in the NPT ensemble at 1 Atm and 310 K, using the V-Rescale thermostat and Berendsen barostat 

(Bussi et al. 2007; Berendsen et al. 1984). Subsequently, further 100 ns MD simulations were performed for data 

analysis. Newton's equations of atomic motion were integrated by the Verlet algorithm with 2 fs time step. 

LINCS algorithm (Hess et al. 1997) to constrain all the covalent bonds involving hydrogen atoms and the 

Particle Mesh Ewald (PME) algorithm was employed for long-range interactions computation (Darden et al. 

1993). 

The analysis tools implemented in GROMACS were applied in order to calculate Root-mean-square deviation 

(RMSD) and Root-mean-square fluctuation (RMSF). The graphs were plotted by the XMGrace software (Turner 

2005).  

The effects of mutations on the flexibility and global correlated motion of the CD93 CTLD domain were 

assessed by Principal component analysis (PCA) and Dynamic cross-correlation map (DCCM), using the Bio3D 

package in R (Grant et al. 2006). At first, we extracted 5000 conformations of each (native and mutants) MD 

production run trajectory and removed translational and rotational motions, in order to be able to construct a 

structure of 3x3 N positional covariance matrix of the Cα atoms of the CTLD domain. Diagonalization of the 



atomic displacement correlation matrix returned a set of eigenvectors, which provides the direction of motion of 

each component, and the correspondent eigenvalue, representing the magnitude of such motions. Eigenvectors 

were ranked by the highest eigenvalue. Dynamic cross-correlation analysis allowed the construction of a matrix, 

that is a graphical representation of all atom-wise cross-correlations, in which the correlation values varies from 

−1 to +1, with positive numbers showing correlated motions (i.e. residues that move in the same direction) and 

negative numbers showing anti-correlated 22 motion (i.e. residues that move in opposite direction) (Grant et al. 

2006).  

The Residue interaction network (RIN) for all residues of the CTLD domain was constructed by submitting the 

average structure extracted from the equilibrium phase of each MD simulation trajectory to the RING 2.0 web 

server (http://protein.bio.unipd.it/ring/). RING enables to analyse mutation effects, protein folding, domain–

domain communication and catalytic activity through the identification of covalent and non-covalent bonds in 

protein structures, including π–π stacking and π–cation interactions (Piovesan et al. 2016). 

Protein-protein Interface Docking 

We used the EVolutionary Couplings server (https://evcouplings.org/) to provide functional and structural 

information about proteins derived from the evolutionary sequence record, using methods from statistical 

physics (Hopf et al. 2014). By using FASTA sequence (UniProt code: Q9NPY3 and Q9H8L6 for CD93 and 

Multimerin-2 respectively), EVcomplex (https://evcouplings.org/complex) was used to determine co-evolved 

residues in our selected PPI complex poses and to provide the information if a protein interaction is conserved 

across enough sequenced genomes using a single pair per genome (Hopf et al. 2014).  

We performed an in silico validation of the effect of CD93 mutants (Galvagni et al. 2017) by mCSM-PPI2 

(Rodrigues et al. 2019).  Using the transcripts ENST00000246006.5 and ENST00000372027 for CD93 (Chr20) 

Multimerin-2 (Chr10) respectively, we then mapped the gnomAD missense variants to the structure (Karczewski 

et al. 2019). PPI interface of the complex was analysed using the PDBePISA tool (Krissinel and Henrick 2007).  

Finally, we calculated the measure of regional intolerance to missense variation for CD93 in both docked- poses 

by using MTR. (Traynelis et al. 2017; Silk et al. 2019)  

 

Results and Discussion 

Validation of Homology Model 

In order to identify the amino acid residues critical to the CD93/Multimerin-2 binding, homology modeling was 

performed to predict their three-dimensional (3D) structure. To model the CTLD domain of CD93 glycoprotein 

we started from structural information and FASTA sequence retrieved from UniProtKB Q9NPY3. The closest 

homologous structure suggested by PHYRE2 webserver was human C-type mannose receptor 2 (PDB ID: 



5AO6). Visual inspection of 5AO6 PDB structure in PyMOL exhibited the canonical fold of “long form” 

CTLDs consisting of the long loop region and six conserved cysteines (Figure 1).  

 

Figure 1. Cartoon representation of a typical CTLD structure (PDB 1K9I). In blue is shown the LLR, orange 

sticks represent cysteine bridges (C0‐C0′ being specific for long form CTLDs). (Source: Zelensky and Gready 

2005)  

On the other hand, the two unique cysteine residues distinctive of the group XIV family members were missing. 

Conflicting hypothesis have been devised whether these “non-canonical” cysteine residues are involved in 

disulphide bond formation. Previous studies on the members of group XIV family showed how the CTLD of 

these four proteins contains 8 conserved cysteine resisdues, which are likely involved in four disulphide bonds 

(Figure 2). Nativel et al. performed specific tests, which demonstrated that the CTLD domain of CD93 did not 

comprise any free thiol groups. In 2016, they evaluated the presence of reduced cysteines in the CD93 CTLD, by 

means of Ellman's assay for the quantification of thiol groups, and speculated that the CTLD of CD93 did not 

contain any free cysteines, all being engaged in disulphide bonds (Nativel et al. 2016). 



 

Figure 2. Amino acid sequence alignment of the CD93, TM, CD248, CLEC14A CTLD domain using ClustalO. 

Red-boxed amino acid represents the conserved cysteine residues, green-boxed amino acid represents highly 

conserved amino acid residues at the base of the long loop region, the latter being highlighted with a red 

bracket.  

 

To predict the structure of the interacting complex we integrated homology modeling and docking simulations 

with molecular binding information (Galvagni et al. 2017). At first, we performed a blind protein-protein 

docking simulation, obtaining a cluster of potential CD93/Multimerin-2 complexes, which showed for CD93 a 

potential interaction region between CTLD and sushi-like domains. Next, to narrow down the molecular surface 

of Multimerin-2 responsible for the interaction with CD93 we combined previous data (Galvagni et al. 2017) 

with Immunoprecipitation analysis using Multimerin-2 deletion mutants. By using the complete extracellular 

region of CD93 as a ligand, we were able to restrict the surface of Multimerin-2 interacting with CD93 to a 

region spanning from the amino acids 563 to 618 (Figure 3).  

 

Figure 3. A portion of the Multimerin-2 coiled-coil region is required for binding to CD93. Western blot 

analysis of the Immunoprecipitation experiment performed using Multimerin-2 deletion mutants: wild type 

Multimerin-2 (MMRN2); Multimerin-2 deleted from amino acids 531 to 539 (531 mut); Multimerin-2 deleted 

from amino acids 563 to 574 (563 mut); Multimerin-2 deleted from amino acids 608 to 618 (608 mut). CM 

containing Myc-tagged CD93 and Multimerin-2 mutants were incubated and immunoprecipitaed using anti-

CD93 antibodies. Bands were revealed with anti-Multimerin-2 and anti-Myc antibodies. CM from cells 

transfected with the empty vector (mock) was used as a control. The experiment was repeated three times. 



 

 

To verify whether the correct folding of CD93 was necessary for binding to Multimerin-2, amino acid residues, 

which were far from the putative binding site of CD93 and predicted to be pivotal to correct folding, were 

deleted. Even the deletion of few amino acids in the N-terminal of the CTLD-sushi-like deletion mutant highly 

reduced the binding strength of the mutant to Multimerin-2, indicating that the correct folding of CTLD is 

instrumental to proper CD93/Multimerin-2 binding (Galvagni et al. 2017). To test whether the non-canonical 

cysteines (C104 and C136) within the long loop region were important for MMRN2 binding, the single mutants 

CD93C104S and CD93C136S were generated. The relative migration of the two CD93 mutants, assessed by Western 

Blotting, showed the presence of two bands in SDS-PAGE, suggesting that they were correctly folded (Figure 

4). However, in solid phase analysis these mutants failed to bind to Multimerin-2, highlighting the importance of 

these residues for a proper CD93/Multimerin-2 interaction. 

 

Figure 4. Mutation analysis of the CD93/Multimerin-2 interaction. Solid phase analysis of the interaction of the 

C104S and C136S CD93 mutants with Multimerin-2. The expression of the CD93 mutants in the CM from 293T 

transfected cells was comparable, as assessed by immunoblotting using an anti-Myc antibody (bottom panel). 

CM were applied to ELISA plates coated with purified Multimerin-2 and CM from 293T cells transfected with 

the empty vector (mock) were used as a control. Data represent the means ±SD of three independent 

experiments.   

 

 

Recent studies carried out by Khan et al., gauged how Multimerin-2 is the ligand for CLEC14A, CD93 and 

CD248 of group XIV family C-type lectins, but not for TM (Khan et al. 2017). Like us, they assessed correct 



folding of CLEC14A and CD93 upon mutation of the considered cysteines (C103 and C138 for CLEC14A) and 

evaluated their binding to Multimerin-2 obtaining comparable outcomes, which show their important role for 

protein-protein interaction. These “non-canonical” cysteines are unique in CTLDs but highly conserved amongst 

the group XIV family, suggesting disulphide bond formation (Nativel et al. 2016). Furthermore, the statement 

that CD93 along with CLEC14A cysteine mutants were correctly folded but failed to bind Multimerin-2 allowed 

us to speculate that these residues are likely to be important in the local conformation of the long-loop region 

and disulphide bond formation may be essential for binding to Multimerin-2.   

Site-directed mutagenesis studies verified the involvement of key amino acid residues in the proper formation of 

the CD93/Multimerin-2 complex. Experiments have shown that the binding strength of the extracellular domain 

of CD93 to Multimerin-2 is sensitive to amino acid substitution of the two cysteines in the long loop region of 

CD93 (C104 and C136) and of F238 in the sushi-like domain. Based on these results, MD simulations of the 

CTLD-sushi-like region of CD93WT and CD93C104S, CD93C136S and CD93F238T
 mutants where carried out to 

assess the structural impact of these mutations on human CD93. Furthermore, MD simulations of CD93 mutants 

showing increase (E100R) and preservation (D122A/T123A) of interaction with Multimerin-2 (Galvagni et al. 

2017) were also performed in order to carry out a comparative study to better understand the possible 

mechanism behind the loss of interaction upon C104S, C136S and F238T mutations in CD93. Simulations of 

native and mutant CD93 were performed for 500 ns. 

Structural Analysis 

The RMSD was calculated on the backbone. At around 150 ns, the RMSDs for the wild type and mutants 

trajectories are at equilibrium, with a value of 4.3 nm. CD93 C104S mutant did not show significant deviation 

from the initial structure, showing a RMSD profile very stable until the end; CD93 wild type and C136S had a 

progressive increase of 0.1 nm after 250 ns. E100R and D122A/T123A showed a trend comparable to the wild 

type with an evident fluctuation of the double mutant suggesting some influence of the mutation on the structural 



stability of the domains. Mutation F238T, after reaching the point of equilibrium, followed a trend comparable to 

the C104S mutant with a stable RMSD profile until the end.  

Figure 5. Backbone RMSD values during MD simulation. 

 

The RMSF profile for CD93WT
 and for the CD93C104S, CD93C136S, CD93E100R, CD93F238T CD93D122A/T123A mutants 

was computed to reveal the structural fluctuations that occur following induced mutations.  

Overall, the average RMSF of the native conformation and the CD93E100R and CD93D122A/T123A mutants were 

quite comparable (Figure 6); it can be observed that mutation of the Glu100 in Arg resulted in a global increase 

of the CTLD domain stability. Double mutation of Asp122 and Thr123 both in Ala did not impact the overall 

dynamics of the domain, resulting in a residue wise RMSF profile comparable to the wild type. On the contrary, 

significant variations in fluctuations compared to the wild type CTLD were observed in both CD93C104S
 and 

CD93C136S
 following mutations of Cys104 and Cys136 in Ser, and thus the cleavage of the S-S bond. More 

specifically, in Figure 6 is shown that a decrease in fluctuations involved the regions between residues 86-90 and 

117-125  while an increase was detected in the regions between residues 127-137 in both mutants. 

Figure 6. Per residue RMSF profile of each mutant MD simulations against wild type CD93 CTLD domain.  

 

These results suggest that the disruption of the disulphide bond between these highly conserved cysteine residues 

does not impact the CD93/Multimerin-2 binding by affecting the folding of the CD93 CTLD. Rather, these 

cysteines are likely to be important in the local conformation of regions closed to the long-loop region, which is 

believed to be fundamental not only for carbohydrate binding but also to many other structures (Zelensky et al. 



2005). In order to corroborate these assumptions, an additional MD simulation under the same conditions was 

carried out using as representative structure a resolved CTLD (PDB ID: 2NAN; Popsilova et al. 2017) lacking 

the fourth “non-canonical” S-S bond. As shown in Figure 7, the fluctuation profile of the CD302 antigen CTLD 

follows a trend quite comparable to that one showed by CD93C104S
 and CD93C136S

 mutants, with an average 

RMSF value of 1 Å. The results obtained using a resolved CTLD, in addition to validating the correctness of the 

homology model, confirmed the supposition of a correct folding of the CTLD domain despite the disruption of 

the disulphide bond.  

Figure 7. Per residue RMSF profile of PDB:2NAN CTLD crystal structure. 

 

Interestingly, mutation F238T in the sushi-like domain of CD93 also alters the overall flexibility of the CTLD, 

showing a similar trend in fluctuation of specific regions of the domain as compared to CD93C104S
 and CD93C136S

 

(Figure 6). Though we observed a unique increase in the flexibility of the region from residue 78 to residue 84 of 

the CTLD, which does not occur in the CD93WT
 or in the CD93C104S

 and CD93C136S
 mutants, a trend comparable 

to the two cited mutants was instead noticed in the region between residues 40-50. Importantly, a more evident 

increase in fluctuation of the sushi-like domain, when compared to the wild type, was noticed. It is interesting to 

observe that the regions, which increase the flexibility of the CTLD domain, are about the same as the CD93C104S
 

and CD93C136S
 mutants, considering that the disulfide bridge has been kept intact. These observations suggest a 

long-range effect on the motion of the CTLD following mutation of the CD93F238T on the sushi-like domain, 

confirming the pivotal role of this residue, as indicated by next docking studies. Remarkably, despite the 

presence of the disulphide bridge (between cysteine residues 96-133), the long loop region of TM, spanning 

from residue 91 to 107, shows more flexibility in comparison with the long loop region of the wild type CD93 

(data not shown). TM is the only member of the group XIV family unable to bind Multimerin-2 in in vitro assays 

(Khan et al. 2017). As mentioned before, sequence alignment shows the absence of two cysteines in the sushi-

like domain likely involved in disulfide bond formation. Based on these assumptions, it is possible to 

hypothesize a long-range effect on the overall mobility of the TM CTLD due to differences in the motion of the 

sushi-like domain, as supposed for CD93F238T. 

We performed Principal Component Analysis, a multivariate statistical technique used to reduce number of data 

produced by MDs, in order to study in deep how conformational flexibility could influence biological functions 

of CD93 (Ichiye et al. 1991, Amadei et al. 1993). To determine the number of dimensions to which the data is 

reduced we located the dimension prior to the point where the variance rapidly falls to a relatively stable value. 

This can be accomplished by creating a scree plot in which the eigenvalues, determined in the diagonalization of 

the covariance matrix, are ordered from the strongest to weakest. 



As shown in Figure 8, we have reported each system with a cross-plot, representing the projection of each 

trajectory coordinates onto the first three PCs, and the corresponding scree plots. The first three PCs accounted 

for 56.3%, 50%, 52.4%, 55.7%, 48.3% and 52% of the variance in the motion observed for CD93WT, CD93C104S, 

CD93C136S, CD93F238T CD93E100R, and CD93D122A/T123A, respectively. It can be seen that mutations that impair the 

CD93/Multimerin-2 interaction have an impact on the conformational space that the CTLD of CD93 occupies 

during the simulation, when compared to the two mutants able to retain such interaction which show a behavior 

comparable to the wilde type. C104S mutation had the strongest effect on the CTLD motion. When compared to 

the wild type structure, CD93C104S
 occupies a smaller phase space, with a contraction of the conformational space 

and a decrease in the percentage of correlated motion along the first three PCs (30.56 %, 11.31% and 8.15 %). 

This is visible in the two-dimensional cross-plot and suggests that the mutant CTLD domain is less flexible. 

PCA analysis of C136S mutation shows a slighter decrease in the conformational space compared to the wild 

type, with the first three PCs capturing 26%, 11.65% and 8.09 % of the motions, and for both C104S and C136S 

mutants a change in direction of motion of the domain was observed. These results are in accordance with the 

RMSF analysis and suggest that the disruption of the disulfide bridge determines a decrease in the mobility of a 

loop of the CTLD that could thus influence the overall behavior of the domain. If we consider that cysteine 136 

is found at the top of one of the loops peculiar of the group XIV family CTLD domains, we can infer that the 

same loop, following the disruption of the bridge could no longer be held in direction of the C104, allowing for 

new interactions with residues in the inner part of the domain.  

F238T mutation shows a proportion of variance for the first three PC (41.12%, 8.13% and 6.45%) comparable to 

the wilde type with a change in the direction of motion that suggests a long-distance effect on the CTLD (Figure 

8). On the other hand, the increase in the overall mobility, when compared to C104S and C136S mutants, advises 

a different impact on the interaction network of the CTLD. As anticipated above, both E100R single mutation 

and D122A/T123A double mutation PCA analysis show a proportion of variance in the motion of the CTLD 

domain comparable to the wilde type. Once again, these behaviors reflect the RMSF profile.  

 

 

 

 

 



 

Figure 8. Projections of trajectories onto the subspace by the first three eigenvectors. Projection of trajectories 

into PC1, PC2, and PC3 for the CTLD of each system. The converged stable conformation and unstable 

scattered state are shown with red and blue dots, respectively. The white dots indicate the intermediate states 

observed in both complexes 

 

Also, we performed Dynamic cross-correlation analysis (DCCM), in order to investigate fluctuations and 

domain motions. Comparing the CD93WT
 with C104S, C136S, in Figure 9 we observed a decrease in the CTLD 

fluctuations, which translated in the reduction of both correlated and anti-correlated motions. This is particularly 

true for the regions spanning amino acid residues 65-80, 98-150 (including the mutated cysteine residues) and 

145-175, which all seem to move in an anti-correlated manner with respect to the N-terminal region of the 

domain. This loss in correlated movements, in particular in the region of the loop containing C136, is consistent 

with the hypothesis inferred above. As for F238T mutant, the behavior showed by the PCA analysis corresponds 

to an escalation of correlated and anti-correlated motions spread all over the CTLD when compared to the wild 

type but also to the C104S and C136S mutants, despite the mutation is not in the CTLD domain itself.  



 

Figure 9. Dynamical cross-correlation map (DCCM) calculated using the MD simulation of native and mutant –

CD93 CTLD as input. The color scheme follows the range of correlation: cyan corresponds to positive 

correlation values (from 0.25 to 1); pink corresponds to negative correlation values (from −0.25 to −1); white 

corresponds to weak or no-correlation values spanning from −0.25 to +0.25. The variation in the intensity of 

cyan or pink color tracks the magnitude of correlation or anti-correlation. 

 

We observed that the cleavage of the disulfide bridge in CD93C104S, CD93C136S
, namely mutants which are not 

able to interact with Multimerin-2, did not seem to remarkably disrupt the overall residue interaction network 

when compared to the wild type. On the other hand, the histograms in Figure 10 highlighted how the network of 

these systems is characterized by a PIPISTACK interaction involving Trp128 and Phe114 that seems to be 

lacking in the wild type. This behavior reflects the increase in stability showed by the RMSF profile in the region 

near residue 125 of these mutants compared to the native protein.  Once again, this could be due to the disruption 

of the disulfide bridge, as Trp128 is on the same loop containing Cys136. Moreover, mutation of residue 136 

from Cysteine to Serine determines the loss of Van der Waals interactions between Phe114 and residues 136 

itself and Val142 in both C104S and C136S mutants, with respect to the wild type. This is quite interesting since 

Phe114 is a highly conserved residue in the group XIV C-type lectins. From sequence alignment among the 

family (Figure 2) it has been seen that the long loop of the CTLD of these proteins lies between two highly 

conserved hydrophobic regions (94WIGL97 and F114 for CD93), thus we speculate that Phe114 might be 

pivotal for the right folding of the domain.  



 

 

Figure 10. Column chart displaying the total amount of hydrogen bonds (blue) and disulphide bonds (red), Van 

der Waals forces (green), π–π stacking and π–cation (orange), ionic interactions (yellow) only considering the 

loop region containing Cys136. 

 

Furthermore, Surface Accessible Solvent Area (SASA) calculated for all the residues during the simulation 

(Figure 11) shows that the SASA value for Pro124 and Tyr125 is higher in the MD simulation of WT respect to 

C104S, C136S mutants, which consistently shows a higher number of interaction established for these residues, 

confirming that this region of the loop is more densely held in the core of the domain.  

 

 

Figure 11. Surface Accessible Solvent Area (SASA) calculated for all the residues during the simulation 

 



As for F238T, the residue interaction network calculated for the sushi-like domain (Figure 12) shows an increase 

in the interaction established in the region spanning amino acids 234-244, which included the mutated residue. 

This can be explained by the loss of a PIPISTACK following mutation of the Phenylalanine in Threonine but 

interestingly a decompensation, which translates in an increase of established interaction in that same region, can 

be observed for CD93C104S and CD93C136S mutants, despite the presence of the π–π stacking interaction.  

 

 

Figure 12. Column chart displaying the total amount of hydrogen bonds (blue) and disulphide bonds (red), Van 

der Waals forces (green), π–π stacking and π–cation (orange), ionic interactions (yellow) only considering the 

DX domain. 

 

Protein-Protein Interaction (PPI) Docking Analyses 

The aim of PPI docking procedure is to predict correct poses and to score them according to the strength of 

interaction in a reasonable time frame. In this study we presented an extended approach to evaluate the reliability 

of protein–protein complex structures, confirming by new experimental data. Starting from best two plausible 

docking poses, we have applied a four-steps workflow for screening the most trustworthy one. Based on an 

evolutionary statistical approach, our aim was to find co-evolved residues between CD93 and Multimerin-2: if a 

protein-protein interaction is conserved across enough sequenced genomes, using a single pair per genome can 

give accurate predictions of the interacting residues. 



Initially, the paired sequences were concatenated and statistical co-evolution analysis were performed using 

EVcouplings (Marks et al., 2011; Morcos et al., 2011; Aurell and Ekeberg, 2012), that applies a 

pseudolikelihood maximization (PLM) approximation to determine the interaction parameters in the underlying 

maximum entropy probability model (Balakrishnan et al., 2011; Ekeberg et al., 2013; Kamisetty et al., 2013), 

simultaneously generating both intra- and inter-Evolutionary Coupling scores for all pairs of residues within and 

across the protein pairs. Thus, this program predicts interacting residues in protein complexes from sequence 

covariation for the complex of interest. The analysis of correlated evolutionary sequence changes across proteins 

can identify residues that are close in space with enough accuracy to determine the three-dimensional structure 

of the protein complexes; as a consequence, it can be used to screen the reliability of the selected poses (Hopf et 

al. 2014). All results are summarized in Table 1 and represented in Figure 11. For Pose 1, the most interesting 

co-evolved residues couples are closer or equal than 8 Å: Leu-610 (in Multimerin-2) and Glu-131 (in CD93) 

with a distance of 5.5 Å and a high probability score of 0.82; Ala-585 (in Multimerin-2) and Pro-245 (in CD93) 

with a distance of 8 Å and a probability score of 0.70. Although the other two pairs (Ala-597 in Multimerin-2 

and Tyr-125 in CD93; Ala-585 in Multimerin-2 and Pro-245 in CD93) showed an excellent probability score 

respectively of 0.98 and 0.70, and the distances are higher than the threshold of 8 Å. On the contrary, as shown 

in Figure 2., there are no pairs of residues in Pose 2 with a distance below 8 Å. The closest in space co-evolved 

couple is Multimerin-2 Ala-585/ CD93 Pro-245 with a probability score equal to 0.70  and a distance of 11.5 Å. 

Differently from Pose 1, all the other selected pairs of Pose 2 presented distances larger than 20 Å. Being able to 

verify the presence of two co-evolved couples of residues in Pose 1, this first analysis suggested it as the most 

reliable pose.  

 

 

 

 

 

Table 1. Evolutionary coupling results summary. Probability score and distance related to Pose 1 and related 

to Pose 2. 

 

CD93 MMRN2 Probability 
Distance (Å) 

POSE 1 

Distance (Å) 

POSE 2 

E131 E601 0,98 13,2 24,2 

E131 E610 0,82 5,5 31,5 

Y125 A597 0,7 9,6 25,1 

P245 A585 0,7 8,0 11,5 



 

Figure 11. Representation of the closest co-evolved residues couples (coloured sticks) in Pose 1 (A) and in Pose 

2 (B). with their relative distances, resulting from EVcouplings analysis. 

 

The second step evaluated if the two selected poses fitted with experimental results coming from the study of 

Galvagni et al. 2017. In this paper, an extensive mutation analysis of the CD93/Multimerin-2 binding strength 

among wild type and mutated proteins was evaluated by solid phase assay. In order to characterize the 

interacting surface of CD93, point mutations were introduced and the CD93 mutants expressed in 293T cells 

were analysed using Western blots to assess the expression of the soluble recombinant proteins. Every missense 

mutation was evaluated with mCSM-PPI2, a novel machine learning computational tool designed to more 

accurately predict the effects of missense mutations on protein-protein interaction binding affinity (Rodrigues et 

al. 2019). mCSM-PPI2 uses graph-based structural signatures to model effects of variations on the inter-residue 

interaction network, evolutionary information, complex network metrics and energetic terms to generate an 

optimized predictor. The closer the residues pairs, the more accurate the prediction of interaction activity. The 

predicted binding affinity scores were compared with experimental results: the poses that best fits with 

experimental results through the affinity prediction made with mCSM-PPI2 could be consider the most reliable 

one. From observations made in Figure 11, for Pose 1 (Table 2), every binding strength prediction fitted with the 

experimental results apart from D249A (experimental results: increasing, prediction affinity: moderately 

decreasing) and H236A (experimental results: decreasing, prediction affinity: weakly increasing and with a 

distance to interface extremely elevated around 10 Å).  For Pose 2 (Table 2), the major part of predictions fitted 

A 

B 



with experimental results with two serious exceptions for E100R (experimental results: slightly increasing, 

prediction affinity: strongly decreasing and with a distance to interface extremely close around 3.2 Å) and 

D249A (experimental results: increasing, prediction affinity: strongly decreasing, with a distance to interface of 

3.2). In conclusion to this second step, Pose 1 is the docking-pose that best fitted with experimental results. 

RESIDUES 

MUTATED 

DISTANCE TO 

INTERFACE 

MCSM-PPI2 

PREDICTION 
AFFINITY 

POSE 1 POSE 2 POSE 1 POSE 2 POSE 1 POSE 2 

E100R 6,571 3,215 0,131 -1,225 Increasing Decreasing 

E242A 5,402 4,288 -0,45 -0,646 Decreasing Decreasing 

N249A 5,084 3,259 -0,6 -1,311 Decreasing Decreasing 

L256Q 1,67 2,403 -0,003 -0,035 Decreasing Decreasing 

F238T 9,45 7,537 -0,804 -0,714 Decreasing Decreasing 

C104S 6,855 5,392 -0,39 -0,26 Decreasing Decreasing 

N249R 5,084 3,259 -0,405 -0,738 Decreasing Decreasing 

N246R 6,896 10,085 -0,029 -0,013 Decreasing Decreasing 

F248T 7,269 7,23 -0,366 -0,236 Decreasing Decreasing 

C136S 6,305 6,262 -0,335 -0,32 Decreasing Decreasing 

H236A 9,904 9,649 0,028 -0,063 Increasing Decreasing 

 

Table 2. Binding affinity predictions. Every missense mutation of the two poses were evaluated with mCSM-

PPI2; results were compared with experimental outcomes. 

 

As a third step, we have then mapped the gnomAD missense variants to the structure (Karczewski et al. 2019). 

The complex structure of every pose was then analysed using the PDBePISA tool for the selection of interface 

residues (Krissinel and Henrick 2007). We have noticed that in Pose 1, the total amount of variants (excluding 

missense) seen at interface positions of CD93 is larger than in Pose 2.  In Pose 1, for a total of 47 interface 

residues, we observed 26 amino-acid variants positions (excluding missense), while in Pose 2, for a total of 36 

interface residues, no missense variants were found in only 15 positions (Table3). 

The fourth step was based on the exploration regional intolerance to missense variation in interface residues 

located in Pose 1 and Pose 2 by looking into Missense Tolerance Ratio (MTR) (Traynelis et al.2017; Silk et al 

2019) scores. It was crucial in this last step to evaluate missense variant deleteriousness by examining its 

surrounding regional intolerance and  to calculate the MTR scores at their position (Table 3).  As you can see in 

Figure 12, there are no missense intolerant regions placed in the CD93 interfaces both in Pose 1 and in Pose 2. 



Summarizing our results, Pose 1 could be the best docking pose among all the identified ones by PPI docking, as 

per experimental data. 

 

Figure 12. Interface residues in CD93. Panel A represents Pose 1, panel B represents Pose 2. Red regions are 

the most intolerant, blue regions are the most tolerant. 

 

POSE 1 

 

POSE 2 

RESIDUES gnomAD MTR RESIDUES gnomAD MTR 

K64 -1 1 Q98 1 1 

K103 -1 0,96 R99 -1 1 

D106 -1 0,84 E100 1 1 

P107 1 0,83 K101 1 0,97 

S108 -1 0,86 K103 -1 0,96 

L109 1 0,85 D106 -1 0,84 

P110 -1 0,82 P107 1 0,83 

L111 -1 0,84 S108 -1 0,86 

K112 1 0,88 L109 1 0,85 

W116 -1 0,82 P110 -1 0,82 

G120 -1 0,78 G118 -1 0,76 

E121 -1 0,76 G119 1 0,82 

D122 1 0,78 E121 -1 0,76 

T123 1 0,76 I137 1 0,8 

P124 -1 0,77 S138 1 0,77 

Y125 -1 0,8 K139 -1 0,74 

S126 1 0,8 R140 1 0,73 

N127 -1 0,83 G166 1 0,76 

W128 -1 0,82 S167 -1 0,85 

H129 -1 0,82 L191 1 1 

K130 -1 0,81 A192 -1 1,01 

E131 -1 0,81 L193 1 1 

A B 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L132 -1 0,85 G194 1 1,03 

R133 1 0,85 G195 1 1,02 

N134 1 0,82 P196 1 0,97 

S135 1 0,82 E213 -1 0,74 

S138 1 0,77 K241 1 0,85 

R140 1 0,73 E242 1 0,84 

K159 -1 0,74 K243 1 0,85 

E162 -1 0,76 D249 1 0,81 

P164 1 0,74 W250 -1 0,82 

A192 -1 1,01 G251 1 0,81 

L193 1 1 S252 -1 0,82 

G194 1 1,03 S253 1 0,82 

G195 1 1,02 L256 -1 0,79 

P196 1 0,97 L257 -1 0,77 

K241 1 0,85 
 

K243 1 0,85 

A244 -1 0,84 

P245 -1 0,85 

V247 -1 0,86 

D249 1 0,81 

W250 -1 0,82 

G251 1 0,81 

S253 1 0,82 

L256 -1 0,79 

C257 -1 0,77 



Table 3. Results from mapping the gnomAD missense variants to CD93: b-factor=1/-1, where “1” indicated one 

or more missense variants found at this amino acid position and “-1” represented no missense variants seen at 

this amino acid position; for each ones is associated the MTR score. 

 

Conclusion 

In silico and experimental procedures were used as a basis to determine CD93 structure-function relationship. 

The CD93/Multimerin-2 complex was analyzed in vitro, dissecting interactions occurring in specific conditions. 

Homology modeling and protein docking procedures were used to predict the involvement of specific amino 

acid residues in the CD93/Multimerin-2 interaction. Furthermore, structural analysis of regions of the protein-

protein interface were conducted using bioinformatic tools, showing the key role of amino acid residues in the 

interaction. MD simulations and several post-dynamics analysis have been used to provide a comprehensive 

understanding of the impact of the inferred mutations on the protein structure and functions. The obtained results 

demonstrate that the CD93/Multimerin-2 interaction is involved in angiogenesis regulation, opening the 

possibility to develop new therapeutic tools. Furthermore, the CD93 F238 amino acid residue is instrumental for 

binding to Multimerin-2, as well as the presence of the so called “non-canonical” disulfide bridge. Finally, we 

provide an approach to evaluate the best pose of protein–protein complex structures according to new 

experimental data. With the application of bioinformatic tools, we have described a four-steps workflow in order 

to predict effects of variations on the inter-residue interaction network at the PPI, based on evolutionary 

information, complex network metrics and energetic affinity; in addition, it allows to map and explore regional 

intolerance to missense variation. These observations could provide a basis for the development of anti-

angiogenic drugs therapy. 
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