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ABSTRACT
The setting considered in this paper concerns a discrete-time
multivariate population process under Markov modulation.
Our objective is to estimate the model parameters, based on
periodic observations of the network population vector. These
parameters relate to the arrival, routing and departure proc-
esses, but also to the (unobservable) Markovian background
process. When opting for the classical likelihood-based
approach, the evaluation of the likelihood is problematic. We
show however, how an accurate saddlepoint approximation
can be used. Numerical experiments illustrate our method and
show that even under relatively complicated conditions the
parameters are estimated relatively precisely.
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1. Introduction

Population processes are stochastic processes that record the dynamics of
the number of individuals in a population. Owing to their widespread use
in for instance biology, ecology, and chemical reaction networks, they have
become a key object of study in statistics and applied probability. In its
simplest form a population process describes the fluctuations of the popula-
tion size at a single location. Many practically relevant situations, however,
correspond to considerably more general settings. In the first place, the
population process often lives on a multi-node (rather than single-node)
network. This means that individuals can enter and leave the nodes of the
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network, but in addition they can move between its nodes. Secondly, in
many situations the dynamics of the population are affected by exogenous,
often unobservable, factors; think of temperature affecting the spread of
bacteria or weather conditions affecting the mobility of the individuals. In
these cases it is desirable to add an underlying modulating process to the
model, referred to as the background process.
Due to the ubiquity of multivariate modulated population processes

across a wide range of scientific disciplines, there is a clear need for sound
statistical techniques to estimate the underlying parameters. In this paper
we devise such a method based on observations of the network population
vector. We do so in a discrete-time context, with the background process
corresponding to a finite state-space Markov chain. This means that we are
in the context of Markov modulation, with the values of the parameters
pertaining to the arrival, routing, and departure processes being a function
of the state of the background process.
In the setting considered, parameter estimation can be seen as a highly

challenging inverse problem. When developing an estimation procedure,
one needs to cope with two major intrinsic complications.

� In the first place, as we have access to the network population vector only,
we do not observe the number of arrivals, the number of individuals that are
routed between each of the node pairs, and the number of departures, but
only the net effect of these processes. This effectively means that in general
we cannot trace how individuals have moved through the network.

� The second complication is that we assume that we cannot observe the
background process (making its state a hidden variable). The challenge
is to infer from the observations the parameters of the Markovian back-
ground process, and the (background-state dependent) parameters per-
taining to the arrival, routing, and departure processes.

There is a considerable body of work on inverse problems for continu-
ous-time population processes. In the first place we refer to for
example[1–5] for parameter estimation procedures for univariate birth-death
processes without modulation. In these papers the case is considered where
the population is observed at discrete times only, hence the individual
births and deaths are not observed directly. In addition there are various
papers on estimation techniques for infinite-server queues (which can be
seen as population processes in which the times the individuals spend in
the system are independent of each other) without modulation. In this con-
text we mention,[6] in which the service-time distribution is estimated with-
out direct observations of the service times, and,[7] which treats the
estimation of the arrival rate and the service-time distribution from
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observations of the population size. A separate branch of the literature
focuses on parameter estimation for stochastic processes with a Markovian,
unobserved background process. In this respect we mention,[8,9] which con-
centrate on the class of Markovian binary trees and continuous-time obser-
vations or demographic data. In addition, when focusing on a Markovian
arrival process only, rather than the resulting population process, in[10,11]

estimation procedures based on discrete-time observations are presented.
We finally mention,[12] in which a parameter estimation procedure for a
univariate population process under Markov modulation is proposed and
assessed, based on discrete-time observations of the population size.
The work presented in this paper concerns parameter estimation for a

multivariate population process, and can as such be seen as part of the
broader area of network science. There is a strong relation with the subdis-
cipline that focuses on the statistical analysis of network data. We refer
to,[13 Chapters 8 and 9] for more background on statistical procedures for
stochastic processes on networks. It is noted, though, that existing theory
predominantly concentrates on situations in which the routing process on
the network—often referred to as the network flow—is fully observed,
which contrasts with the situation considered in the present paper.
Importantly, to the best of our knowledge, there are no procedures avail-

able for estimating the parameters of modulated multivariate population
process, based on observations of the network population vector. One
could pursue an approach based on maximum likelihood, but evaluating
the likelihood is generally problematic. The main difficulty lies in the com-
plexity of the model, in terms of the size of the underlying network and
the fact that there is a modulating background process. As a consequence,
typically no closed-form expression for the likelihood can be given; in add-
ition, in the special cases where it is possible to obtain such an explicit
expression, there are often numerical complications. We therefore take
another approach, which combines the following two ideas:

� Due to the structure of the model, it is possible to set up a procedure
to compute for each point in time the joint moment generating function
(mgf) pertaining to the network population vector.

� We then apply the technique of saddlepoint approximation to compute
an approximation of the likelihood, and maximize this approximation
over the unknown parameters. The saddlepoint approximation provides
a (typically highly accurate) approximation of the probability mass func-
tion of a random vector, based on the corresponding joint mgf.

The saddlepoint technique has been developed in the 1950s by
Daniels;[14] for a textbook treatment see e.g.,.[15] For specific models
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closed-form expressions for saddlepoint approximations have been
obtained. In this respect we refer to[16] for explicit approximations of the
transition densities and cumulative distribution functions of Markov proc-
esses, whereas in[17] general birth processes are considered. The referen-
ces[18,19] provide extensive general accounts of the use of saddlepoint
techniques in statistics. A few papers where saddlepoint expansions have
been used to approximate the likelihood are[20] which considers the context
of the INAR(p) model,[21] where the focus is on the distribution of the
sum of independent non-identically distributed binomial random variables,
and[3] which aims at estimating the birth and death rates of a linear birth-
and-death process.
We proceed by discussing our paper’s main contributions in more detail.

First and foremost, to our best knowledge, we are the first to develop a
parameter estimation procedure in the highly general and comprehensive
setup of a multivariate population process under Markov modulation,
based on periodic observations of the network population vector. Our
approach is likelihood-based, but only in special (small) networks the likeli-
hood can be computed in closed form, which is why we approximate the
likelihood relying on the saddlepoint approximation. A prerequisite for
using the saddlepoint technique is the availability of the mgf corresponding
to the network population vector at multiple points in time. We present an
efficient technique to evaluate this mgf, by computing the mgf of the net-
work population vector at one observation time conditionally on the popu-
lation vector at the previous observation time. Then this mgf is used to
approximate the likelihood, which numerically boils down to solving a con-
vex optimization problem. Subsequently the approximated likelihood is
maximized over the parameter space to find approximate values for the
maximum likelihood estimates of the model parameters. The last contribu-
tion concerns numerical experiments, which assess the performance of our
parameter estimation technique. They show that even under relatively com-
plicated conditions (modulation, a multi-node system), following our
approach, the parameters can be estimated relatively precisely. The exam-
ples involve single- and multi-node networks, with and without modula-
tion, and illustrate the factors that affect the procedure’s performance.
The remainder of this paper is organized as follows. In Section 2 we for-

mally define the multivariate population process under Markov modula-
tion, and we state the estimation problem. Section 3 focuses on two
examples of small networks (a single-node model and a tandem network of
two nodes), showing how in these cases the likelihood can be computed
explicitly. This section also points out how the expressions for the likeli-
hood become increasingly involved if the number of network nodes
increases. In Section 4 we show how the likelihood can be evaluated using
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saddlepoint approximations; this section also includes the method to com-
pute the mgf of the network population vector. We show how the approxi-
mation of the likelihood can be used to estimate the model parameters,
and investigate the accuracy of this estimation method by numerical studies
in Section 5. We conclude the paper with a discussion in Section 6.

2. Model and estimation

As mentioned in the introduction, this paper considers a population process
on a network with finitely many nodes. Individuals can arrive at each of the
nodes, follow a probabilistic route through the network, and potentially leave
the network. We impose Markov modulation: all parameters in the model are
driven by a discrete-time Markov chain, where each state corresponds to a dif-
ferent set of parameter values. In this section, we first present a detailed math-
ematical description of our Markov modulated multivariate population
process, and then state the corresponding parameter estimation problem.
We throughout adopt the convention that vectors are printed in bold; we

denote by xðkÞ the k-th entry of the vector x. As usual, random variables
and matrices are denoted by capital letters. We use hx,yi to denote
the inner product of x and y (whose dimensions are then assumed to be
compatible). We write N0 :¼ N [ f0g:

2.1. The model

We start by introducing the background process fXkgk2N0
: This is an irredu-

cible discrete-time Markov chain with finite state space E ¼ f1, :::, dg, d 2
f2, 3, :::g: We define by P ¼ ðpijÞdi, j¼1 the corresponding ðd � dÞ transition
probability matrix, a the corresponding initial state distribution (i.e.,
ai :¼ aðiÞ ¼ PðX0 ¼ iÞ), and p the (unique) stationary distribution. Recall
that p>P ¼ p>: The background process modulates the network’s dynamics
in a way we make precise below.
We study a network with L 2 N nodes on which we define the multivari-

ate population process fMkgk2N0
, where the vector Mk records the num-

ber of individuals present at the L nodes at time k. This population process
is the result of an arrival process, a routing mechanism by which individu-
als jump between the nodes, and a departure process. We now introduce
these individual ingredients.

� Denote by fAkgk2N the arrival process, where Ak 2 N
L represents a

vector that counts the number of arrivals at each of the L nodes at time
k. We assume that these arrivals stem from a parametric class, where
the parameters depend on the value of Xk�1, i.e., the state of the
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background process at time k – 1; the arrival process is thus Markov
modulated. More precisely, given Xk�1 ¼ i, for some i 2 E, the moment
generating function (mgf) of the arrivals at time k is assumed to exist
and given by (for s 2 R

L)

/k, iðsÞ :¼ E ehs,Akij Xk�1 ¼ i
� �

, (1)

with the corresponding cumulant generating function (cgf) denoted
by wk, iðsÞ :¼ log/k, iðsÞ: In the sequel, we let the individual compo-
nents of Ak be time-homogeneous and independent, and let Akð‘Þ
have a Poisson distribution with parameter kð‘Þi P0, given Xk�1 ¼ i:
In this case

wk, iðsÞ � wiðsÞ ¼
XL
‘¼1

kð‘Þi ðesð‘Þ�1Þ: (2)

We emphasize that the use of other choices of the arrival process is
straightforward, as long as the mgf defined in (1) exists and
is known.

� The routing and departure processes are Markov modulated as well. To
describe these processes, we first define for each ‘ 2 f1, . . . , Lg the vec-
tor-valued process fDð‘Þ

k gk2N, where D
ð‘Þ
k 2 N

Lþ1: For ‘0 between 1 and
L, Dð‘Þ

k ð‘0Þ counts the number of individual jumps out of node ‘ toward
node ‘0 at time k, whereas the D

ð‘Þ
k ðLþ 1Þ records the number of indi-

viduals that leave the network from node ‘ at time k. We say that a
jump from a node to itself is the same as staying at the node.
Importantly, in our model all individuals can move independently of
each other through the network and do not have to wait for each other.
Let rð‘, ‘

0Þ
i 2 ½0, 1� be the probability of an individual at node ‘ to

jump to node ‘0 at an arbitrary time point when the background state
is i. Also,

rð‘, 0Þi :¼ 1�
XL
‘¼1

rð‘, ‘
0Þ

i

(which is a number in ½0, 1�) denotes the probability of an individ-
ual to leave the network from node ‘ at any time point at which
the background state is i. If rð‘, 0Þi ¼ 0, individuals cannot leave the
network from node ‘ when the background process is in state i.
Note that for each k> 0, given Mk�1 and Xk�1, the vectors D

ð‘Þ
k

are independent. In addition, for a given ‘ the vector Dð‘Þ
k follows

a multinomial distribution.
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In our model we let the change of the background process happen after
the arrivals, the routing and the departures. We remark, however, that this
choice does not impose any restriction: in the very same manner we can
deal with the analogous model in which the background process jumps
before the arrivals, the routing and the departures.
Furthermore, both the routing and the departures occur before the arriv-

als, which implies that newly arrived individuals can only leave the node
the next timeslot at the earliest. It is also possible to assume that the arriv-
als occur before the departures and routing. This leads to a slightly differ-
ent model, in which individuals who leave the system in the same interval
as they arrive are included in both the arrival process and departure pro-
cess, although they are not visible in the population process fMkg:
We proceed by introducing various quantities related to fMkg that play a

crucial role in our analysis. In the sequel we will work intensively with the mgf
ofMk givenMk�1 and Xk�1 ¼ i (with k 2 N and i 2 E): for s 2 R

L,

niðs j mÞ :¼ E ehs,Mkij Mk�1 ¼ m,Xk�1 ¼ i
� �

¼ E ehs,M1ij M0 ¼ m,X0 ¼ i
� �

,

with the corresponding cgf fiðs j mÞ :¼ log niðs j mÞ: Furthermore, we
define for all observation pairs m,m0 2 N

L
0, k 2 N and i 2 E the one-step

transition probabilities

tiðm0 j mÞ ¼ PðMk ¼ m0 j Mk�1 ¼ m,Xk�1 ¼ iÞ ¼ PðM1 ¼ m0 j M0 ¼ m,X0 ¼ iÞ,

and the diagonal matrix

Tðm0 j mÞ ¼ diag t1ðm0 j mÞ, :::, tdðm0 j mÞ� �
: (3)

Note that niðs j mÞ and tiðm0 j mÞ do not depend on k due to time-
homogeneity.

2.2. Parameter estimation

The objective of this paper is to estimate the model parameters from
observations of the population process. We now specify these unknown
parameters and the available data.
Throughout we assume that the network population process fMkg can

be observed at time points k ¼ 0, 1, :::, n for some n 2 N: We denote the
corresponding observations by m0,m1, :::,mn, so that the set
fm0, :::,mng 2 N

L�ðnþ1Þ
0 comprises the available data.

Let

h ¼ ai, pij, k
ð‘Þ
i , rð‘, ‘

0Þ
i : i, j 2 f1, :::, dg, ‘ 2 f1, :::, Lg, ‘0 2 f0, :::, Lg

� �>
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be the unknown parameter vector corresponding to the model. Our goal is
to estimate h given the observation m0, :::,mn: The resulting estimate will
be denoted by

ĥ ¼ âi, p̂ij, k̂
ð‘Þ
i , r̂ð‘, ‘

0Þ
i : i, j 2 f1, :::, dg, ‘ 2 f1, :::, Lg, ‘0 2 f0, :::, Lg

� �>
:

We estimate h by maximum likelihood, which requires the evaluation of
the likelihood function. We make the common assumption that PðM0 ¼
m0Þ ¼ 1: By taking into account all possible paths of the background pro-
cess fXkg (at times k ¼ 0, :::, n�1), and using (3), the likelihood function
can then be written as

Lðh j m0, :::,mnÞ ¼ PhðM0 ¼ m0, :::,Mn ¼ mnÞ
¼

X
x0, :::, xn�12E

PhðM0 ¼ m0,X0 ¼ x0, :::,Mn�1

¼ mn�1,Xn�1 ¼ xn�1,Mn ¼ mnÞ
¼ a>Tðm1 j m0Þ P Tðm2 j m1Þ P � � � P Tðmn j mn�1Þ 1,

(4)

where 1 ¼ ð1, :::, 1Þ>: We conclude that, in order to compute the likelihood
Lðh j m0, :::,mnÞ, it is a prerequisite to be able to evaluate, for any pair
of vectors m0 and m and for any i 2 E, the probability tiðm0 j mÞ:

3. Small networks: explicit approach

In this section we present a few examples of ‘small’ networks in which the
one-step probabilities tiðm0 j mÞ can be computed explicitly. We first con-
sider the special case of a single-node model with Poisson arrivals, also
known as a Markov-modulated infinite-server queue, and then treat a spe-
cific two-node tandem network. For larger networks, transitions from m to
m0 could correspond to a large number of potential scenarios (in terms of
the numbers of individuals arriving, being routed to another node, and
departing), making explicit evaluation prohibitive.

3.1. Single-node model

Consider a model with a single node at which individuals arrive according
to the arrival process fAkgk2N, which is now a univariate random variable.
More precisely, Ak 2 N0 is the number of arrivals in the k-th timeslot. Let,
as before, fXkgk2N0

be a Markovian background process with d states. We
assume that for each state i 2 E, Ak given Xk�1 ¼ i has a Poisson distribu-
tion with parameter kiP0, and individuals can either leave the node with
probability ri 2 ½0, 1�, or stay at the node with probability 1�ri (see
Figure 1). Let the process fDkgk2N count the number of individuals that
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leave the node per timeslot, whereas fMkgk2N0
keeps track of the popula-

tion size at the node. The idea is to compute tiðm0 j mÞ, by conditioning
on the number of departing individuals at time k¼ 1. It follows that

tiðm0 j mÞ ¼
Xm
�m¼0

PðMk ¼ m0 j Dk ¼ �m,Mk�1 ¼ m,Xk�1 ¼ iÞ

PðDk ¼ �m j Mk�1 ¼ m,Xk�1 ¼ iÞ

¼
Xm

�m¼maxf0,m�m0g

ðkiÞm0�ðm��mÞ

ðm0 � ðm� �mÞÞ! e
�ki

m

�m

 !
ðriÞ�mð1�riÞm��m :

3.2. Tandem network

We now consider a tandem model with two nodes, in which individuals
arrive at the first node, then either jump to the second node or stay at the
first node, and from the second node either leave the system or stay at the
second node. We again have a Markovian background process fXkgk2N0

modulating the parameters in the model. We assume that individuals arrive
at the first node according to the arrival process fAkgk2N, where Ak given

Xk�1 ¼ i is Poisson distributed with parameter kiP0: Recall that D
ð1Þ
k ð2Þ

represents the number of individuals jumping from the first to the second
node. Given the state of the background process being i 2 E, each individ-

ual makes this jump with probability rð1, 2Þi 2 ½0, 1�, or stays at the first

node with probability 1�rð1, 2Þi : From the second node, individuals leave the

network with probability rð2, 0Þi 2 ½0, 1�, or stay at the node with probability

1�rð2, 0Þi (see Figure 2).

Figure 2. Schematic representation of the tandem network.

Figure 1. Schematic representation of the single-node model.
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We can compute tiðm0 j mÞ for this model, by conditioning on the
number of individuals that jump from the first node to the second node.
After some elementary algebra we find

tiðm0 j mÞ

¼
Xmð1Þ

�m¼0

PðMk ¼ m0 j Dð1Þ
k ð2Þ ¼ �m,Mk�1 ¼ m,Xk�1 ¼ iÞ

PðDð1Þ
k ð2Þ ¼ �m j Mk�1 ¼ m,Xk�1 ¼ iÞ

¼
X�mup

�m¼�m low

ðkiÞa
a!

e�ki
mð2Þ
b

 !
ðrð2, 0Þi Þbð1�rð2, 0Þi Þmð2Þ��m

mð1Þ
�m

 !
ðrð1, 2Þi Þ�mð1�rð1, 2Þi Þm0ð1Þ��m :

(5)

Here �mlow :¼ maxf0,mð1Þ�m0ð1Þ,m0ð2Þ�mð2Þg, �mup :¼
minfmð1Þ,m0ð2Þg are the lower and upper bounds of the sum, respectively.
In addition, a :¼ m0ð1Þ�mð1Þ þ �m denotes the number of arrivals to the
first node, and b :¼ mð2Þ�m0ð2Þ þ �m the number of departures from the
second node.
In the above two examples we observe that one can develop explicit

expressions for tiðm0 j mÞ, but already in the example of the two-node
tandem the expression becomes quite involved. When trying to extend our
expressions to tandems with more nodes, or even to more general net-
works, the expressions will become increasingly complex as the dimension
of the underlying network grows. As pointed out in e.g.[21] the computa-
tion effectively requires a complete enumeration over all possible configura-
tions, which makes this explicit approach infeasible for larger networks. A
solution to this problem for such networks is to, instead of pursuing exact
calculation of tiðm0 j mÞ, resort to its saddlepoint approximation. We
detail this procedure in the next section.

4. General networks: saddlepoint approximation

The main objective of this section is to set up an accurate and computa-
tionally efficient approximation for the probabilities tiðm0 j mÞ: As
pointed out in Section 3, for multi-node models it is typically infeasible to
evaluate tiðm0 j mÞ explicitly, which motivates the need for such approxi-
mative techniques. We rely on the saddlepoint approach,[14,19] which
approximates a random variable’s probability mass function through its
mgf. In Section 4.1 we point out in detail how this technique works. A
complication is that the saddlepoint machinery does not work for states at
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the boundary of the state space of fMkg: For such points an alternative
computation scheme is proposed in Section 4.2, which is a combination of
the saddlepoint approximation with exact computations. Examples that
assess the procedure’s numerical performance are provided in Section 4.3.

4.1. Interior states: saddlepoint approach

Aiming at applying the saddlepoint approach to approximate tiðm0 j mÞ, we
need to be able to evaluate the mgf niðs j mÞ, where we recall the notation

niðs j mÞ ¼ E ehs,Mkij Mk�1 ¼ m,Xk�1 ¼ i
� �

:

The corresponding cgf is denoted by fiðs j mÞ :¼ log niðs j mÞ: In order
to evaluate niðs j mÞ, observe that the ‘-th component of Mk is equal to

� the number Mk�1ð‘Þ that was present at node ‘ at time k – 1,
� decreased by the number of individuals that leave node ‘ at time k

(either by jumping to another node or by leaving the network),
� increased by external arrivals at node ‘ at time k, and
� increased by the number of individuals that were at node �‘ at time k – 1

and jump to node ‘ at time k, over all �‘ 2 f1, . . . , Lg:

Recall that D
ð‘Þ
k ðLþ 1Þ represents the number of individuals that leave

the network from node ‘ at time k. Summarizing the above, the following
identity links Mk and Mk�1 :

Mkð‘Þ ¼ Mk�1ð‘Þ�
XLþ1

�‘¼1

D
ð‘Þ
k ð�‘Þ þAkð‘Þ þ

XL
�‘¼1

D
ð�‘Þ
k ð‘Þ: (6)

For ease of notation, both sums in (6) contain the variable D
ð‘Þ
k ð‘Þ corre-

sponding to �‘ ¼ ‘, counting the number of individuals that stay at node ‘:
Recall that conditionally on Mk�1 ¼ m and Xk�1 ¼ i, the vectors Dð‘Þ

k are
independent, and that for a given ‘ the entries of Dð‘Þ

k have a multinomial
distribution. Due to these properties and using (6), we find

niðs j mÞ ¼ ehs,mi /iðsÞ E½exp
XL
‘¼1

sð‘Þ
XL
�‘¼1

D
ð�‘Þ
k ð‘Þ �

XLþ1

�‘¼1

D
ð‘Þ
k ð�‘Þ

0
@

1
A

0
@

1
A
�����Mk�1 ¼ m,Xk�1 ¼ i�

¼ ehs,mi /iðsÞ
YL
�‘¼1

E exp
XL
‘¼1

sð‘ÞDð�‘Þ
k ð‘Þ �

XLþ1

‘¼1

sð�‘ÞDð�‘Þ
k ð‘Þ

 !�����Mk�1 ¼ m,Xk�1 ¼ i

2
4

3
5:

(7)

To obtain (7), we have used a change of summation in the first term of the
exponent, a change of variables in the second term of the exponent,
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and the fact that the D
ð‘Þ
k ð�‘Þ are independent in ‘: Continuing from (7),

reordering the terms in the exponent, we conclude that we have

niðs j mÞ ¼ ehs,mi /iðsÞ
YL
�‘¼1

E

"
exp

XL
‘¼1

ðsð‘Þ � sð�‘ÞÞDð�‘Þ
k ð‘Þ � sð�‘ÞDð�‘Þ

k ðLþ 1Þ
 !

jMk�1

¼ m,Xk�1 ¼ i

#
:

Finally using the multinomial property, we arrive at the following result.

Lemma 1. For s 2 R
L and m 2 N

L
0 , and for any i 2 E,

niðs j mÞ ¼ ehs,mi /iðsÞ
YL
�‘¼1

XL
‘¼1

rð
�‘, ‘Þ
i esð‘Þ�sð�‘Þ þ rð

�‘, 0Þ
i e�sð�‘Þ

 !mð�‘Þ

¼ /iðsÞ
YL
�‘¼1

XL
‘¼1

rð
�‘, ‘Þ
i esð‘Þ þ rð

�‘, 0Þ
i

 !mð�‘Þ
:

(8)

Having the expression for niðs j mÞ at our disposal, we now point out
how this can be used in the saddlepoint-based approximation of
tiðm0 j mÞ: To this end, we first note that by taking logarithms on both
sides of Equation (8), we obtain

fiðs j mÞ ¼ wiðsÞ þ
XL
�‘¼1

mð�‘Þ log
XL
‘¼1

rð
�‘, ‘Þ
i esð‘Þ þ rð

�‘, 0Þ
i

 !
: (9)

It is known that any (joint) cgf is a convex function, which implies that
fiðs j mÞ is convex (in s). Define for v,m 2 N

L
0, the corresponding multi-

variate Legendre-Fenchel transforms by

Iiðv j mÞ :¼ sup
s

Iiðv, s j mÞ,

where Iiðv, s j mÞ :¼ hs,vi�fiðs j mÞ:
Let SiðmÞ � N

L
0 the set of states that can be reached from m in one time

step when the background state is i. More concretely,

SiðmÞ ¼ m0 : m0ð‘Þ ¼
XL
‘0¼1

k‘0, ‘ þ k‘, ðk‘0, ‘ÞL‘0, ‘¼1, ðk‘ÞL‘¼1

� �
2 KiðmÞ

8<
:

9=
;,

where KiðmÞ is the subset of N
L2�L
0 consisting of ððk‘0, ‘ÞL‘0, ‘¼1, ðk‘ÞL‘¼1Þ

such that

A. For all ‘ ¼ 1, . . . , L,
PL

‘0¼1 k‘, ‘0mð‘Þ (i.e., the sum of individuals leaving
node ‘ cannot be more than mð‘Þ);
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B. For all ‘ ¼ 1, . . . , L,
PL

‘0¼1 k‘, ‘0 ¼ mð‘Þ if rð‘, 0Þi ¼ 0 (i.e., the sum of
individuals jumping from node ‘ to the other nodes must be exactly
mð‘Þ if rð‘, 0Þi ¼ 0);

C. For all ‘ ¼ 1, . . . , L, k‘0, ‘ ¼ 0 if rð‘
0, ‘Þ

i ¼ 0, and k‘ ¼ 0 if kð‘Þi ¼ 0 (i.e.,
jumps and arrivals cannot occur if the corresponding parameter
equals zero).

We denote by SiðmÞ	 the ‘interior’ of SiðmÞ, to be understood as SiðmÞ
minus its boundaries.
For any v 2 SiðmÞ	 there is a unique optimizing vector s
v for which

Iiðv, s
v j mÞ ¼ Iiðv j mÞ, which is called the saddlepoint; see,[15] Chapter
1] for more details. By the definition of Iiðv, s j mÞ, this saddlepoint is
the unique solution of the system of L first-order conditions

vð‘0Þ ¼ @wiðsÞ
@sð‘0Þ þ

XL
�‘¼1

mð�‘Þrð�‘, ‘0Þi esð‘
0Þ
, XL

‘¼1

rð
�‘, ‘Þ
i esð‘Þ þ rð

�‘, 0Þ
i

 !
, (10)

where the right hand side of (10) is the ‘0-th entry of the gradient of the
cgf, that is the vector of first partial derivatives with respect to the entries
of s. Let Riðv j mÞ be the L� L Hessian matrix of the cgf evaluated at the
saddlepoint with ð‘0, ‘00Þ-th entry given by

Rð‘0, ‘00Þ
i ðv j mÞ ¼ @2fiðs j mÞ

@sð‘0Þ @sð‘00Þ s¼s
v :
��

Note that by taking another partial derivative of the right hand side of
(10), we find for ‘0 6¼ ‘00

@2fiðs j mÞ
@sð‘0Þ @sð‘00Þ ¼

@2wiðsÞ
@sð‘0Þ @sð‘00Þ þ

XL
�‘¼1

mð�‘Þ �rð
�‘, ‘0Þ
i esð‘

0Þrð
�‘, ‘00Þ
i esð‘00ÞPL

‘¼1r
ð�‘, ‘Þ
i esð‘Þ þ rð

�‘, 0Þ
i

� �2 ,
while for ‘0 ¼ ‘00

@2fiðs j mÞ
@sð‘0Þ @sð‘00Þ ¼

@2wiðsÞ
@s2ð‘0Þ þ

XL
�‘¼1

mð�‘Þ
rð
�‘, ‘0Þ
i esð‘

0Þ P
‘ 6¼‘0 r

ð�‘, ‘Þ
i esð‘Þ þ rð

�‘, 0Þ
i

� �
PL

‘¼1r
ð�‘, ‘Þ
i esð‘Þ þ rð

�‘, 0Þ
i

� �2 :

We can now present the saddlepoint approximation.[14,15] In the statement
below, jDj denotes the determinant of the matrix D.

Approximation 1. For m 2 N
L
0,m

0 2 SðmÞ	, and for any i 2 E, the
saddlepoint approximation of tiðm0 j mÞ is given by

tiðm0 j mÞ�ð2pÞ�L=2 Riðm0 j mÞj j�1=2 exp �Iiðm0 j mÞ	 

: (11)
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Observe that the complexity of evaluating this approximation is relatively
low. More specifically, to evaluate tiðm0 j mÞ the maximization of an L-
dimensional concave function needs to be performed and the determinant
of a ðL� LÞ-matrix needs to be computed. To evaluate the full (diagonal)
matrix Tðm0 j mÞ, this has to be done d times. The computation of the
likelihood Lðh j m0, :::,mnÞ then takes 2n matrix multiplications, with
matrices of size d� d, where n of these multiplications can be done rela-
tively efficiently as they involve a diagonal matrix.

Remark 1. In the model considered, individuals jump between nodes until
they leave the network. Interestingly, a ‘branching variant’ of this model, in
which there is the option of a single individual splitting into multiple indi-
viduals, can also be dealt with. This variant is also referred to as a multi-
type branching process with immigration in a random environment;
see[22,23] for an analysis of its limiting distribution. In this case, when an
individual moves from ‘ to ‘0 (with the background process being in state
i), the number of individuals that end up at ‘0 is not necessarily 1, but is
distributed as a random variable Wð‘, ‘0Þ

i 2 N0 with mgf wð‘, ‘0Þ
i ðsÞ (assumed

to exist). Then for s 2 R
L and m 2 N

L
0, and for any i 2 E, the mgf

niðs j mÞ becomes

niðs j mÞ ¼ /iðsÞ
YL
‘0¼1

XL
‘¼1

rð‘
0, ‘Þ

i wð‘0, ‘Þ
i ðsð‘ÞÞ þ rð‘

0, 0Þ
i

 !mð‘0Þ
:

Observe that the resulting network is not necessarily stable; we do not fur-
ther comment on the stability condition of this model. In another variant
that can be dealt with, each individual that leaves ‘ can potentially cause
arrivals at all nodes simultaneously, rather than at just one node.

4.2. States at the boundaries

Above we introduced an approximation for tiðm0 j mÞ with m0 2 SiðmÞ	,
which leaves us with the question what should be done for the ‘boundary
points’ m0 2 SiðmÞ n SiðmÞ	: In the first place we recall (see,[15] Chapter
1]) that for these points the saddlepoint approximation cannot be used, as
a consequence of the fact that the optimizing s
m0 cannot be determined.
To show how we remedy this, we first use the illustrative examples of the
single-node model and the tandem network featured in Section 3. As we
will observe, in these cases the transition probabilities can be found expli-
citly for the boundary states. Later in this subsection we will set up a gen-
eral (exact) procedure to compute the transition probabilities for
boundary states.
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� For the single-node model, SiðmÞ ¼ N0, and thus SiðmÞ n SiðmÞ	 ¼ f0g:
Now consider m0 ¼ 0: For this boundary point an easy explicit expres-
sion for tiðm0 j mÞ can be given. We have the explicit expression

tið0 j mÞ ¼ e�kiðriÞm,
since there should be no new arrivals, and all individuals that were
present at the node have to leave.

� We continue by considering the tandem network. A first observation is
that for this network there are multiple boundary points to take into
account. There are no external arrivals at the second node, because this
node is only fed by individuals moving from the first to the second
node. As a consequence, we have

SiðmÞ ¼ m0 2 N
2
0 : maxf0,mð1Þ �m0ð1Þg6m0ð2Þ6mð1Þ þmð2Þ� �

:

To verify this, note that the maximum number of individuals at the
second node at time k cannot be larger than the total network population
at time k� 1, and the minimum number of individuals cannot be smaller
than the minimum inflow from node 1.
Now consider a boundary point m0 in SðmÞ n SðmÞ	: The claim is that

again for all these boundary points an easy explicit expression for
tiðm0 j mÞ can be given. It is for example readily checked that, in self-
evident notation,

ti ðm0ð1Þ,mð1Þ þmð2ÞÞ> j m
� �

¼ P PoisðkiÞ ¼ m0ð1Þ	 

rð1, 2Þi

� �mð1Þ
1� rð2, 0Þi

� �mð2Þ
:

Notice that this probability corresponds to a scenario in which all individu-
als present at node 1 have to move to node 2, and all those present at node
2 have to stay. Importantly, in this case the complicated combinatorial
expression (5) reduces to a considerably easier expression, essentially due
to the fact that at boundary points the transition corresponds to a very spe-
cific scenario.
With the above examples in mind, let us go back to the general network

setting with L nodes. For ease we restrict ourselves to the situation where
kð‘Þi >0 and rð‘, 0Þi >0 for all i 2 f1, :::, dg and all ‘ 2 f1, :::, Lg: This means
that at each node external arrivals and departures are possible for all states
of the background process. The immediate consequence is that

SiðmÞ n SiðmÞ	 ¼ fm0 : 9‘ 2 f1, :::, Lg : m0ð‘Þ ¼ 0g:
The situation in which some of the kð‘Þi and rð‘, 0Þi are 0 requires a bit more
administration, but can be handled similarly (as in the above tandem
example). Now fix an m0 2 SiðmÞ n SiðmÞ	, a boundary point. We define
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by Nðm0Þ all nodes of the new configuration m0 that contain zero individ-
uals, i.e., Nðm0Þ :¼ f‘ 2 f1, :::, Lg : m0ð‘Þ ¼ 0g: Let Eðm0Þ be the corre-
sponding event defined as Eðm0Þ :¼ f8‘ 2 Nðm0Þ,Mkð‘Þ ¼ 0g: Then,
because fMk ¼ m0g � Eðm0Þ, and using elementary rules for conditional
probabilities,

tiðm0 j mÞ ¼ PðMk ¼ m0 j Mk�1 ¼ m,Xk�1 ¼ iÞ
¼ PðMk ¼ m0 j Eðm0Þ,Mk�1 ¼ m,Xk�1 ¼ iÞ
� PðEðm0Þ j Mk�1 ¼ m,Xk�1 ¼ iÞ:

(12)

For the boundary points m0, tiðm0 j mÞ can be (approximately) evaluated
by evaluating the two factors in (12) separately. As we will see, the second
factor can be computed exactly, whereas for the first one we can set up a
saddlepoint approximation in the way demonstrated in Section 4.1.
To evaluate the second factor in (12), we observe that (i) at time 1, no arriv-

als are allowed in the nodes of Nðm0Þ, and (ii) individuals present at the
nodes in f1, :::, Lg at time 0 should either leave the network or move to a node
in the complement of Nðm0Þ: More specifically, they cannot move to, or stay
in, a node in Nðm0Þ: As a consequence, we have the exact expression

PðEðm0Þ j Mk�1 ¼ m,Xk�1 ¼ iÞ ¼
Y

‘2Nðm0Þ
e�kð‘Þi �

YL
‘¼1

X
‘0 62Nðm0Þ

rð‘, ‘
0Þ

i þ rð‘, 0Þi

 !mð‘Þ
:

(13)

We now concentrate on the first factor in (12), which can be computed
using a saddlepoint approximation. To this end, we first observe that the
occurrence of the event Eðm0Þ (i.e., Mkð‘Þ ¼ 0 for all ‘ 2 Nðm0Þ) changes
the distribution of the random vectors Ak and Dk; in the sequel we denote
the random vectors under this condition by ~Ak and ~Dk: To describe the
distribution of ~Ak and ~Dk, we use the following ‘renormalized’ probabil-
ities, for ‘00 62 Nðm0Þ :

~rð‘
0, ‘00Þ

i ¼ rð‘
0, ‘00Þ

iP
‘00 62Nðm0Þ r

ð‘0, ‘00Þ
i þ rð‘

0, 0Þ
i

, ~rð‘
0, 0Þ

i ¼ rð‘
0, 0Þ

iP
‘00 62Nðm0Þ r

ð‘0, ‘00Þ
i þ rð‘

0, 0Þ
i

:

We then make the following observations.

� Since we have independent Markov-modulated Poisson arrivals at each
of the nodes, the components of ~Ak are independent, with ~Akð‘Þ hav-
ing a Poisson distribution with parameter kð‘Þi for all ‘ =2Nðm0Þ,
whereas ~Akð‘Þ � 0 for all ‘ 2 Nðm0Þ: Recall that no arrivals are allowed
in the nodes of Nðm0Þ due to the condition imposed.

STOCHASTIC MODELS 183



� The random vectors ~D
ð‘0Þ
k , for ‘0 ¼ 1, . . . , L, are independent. More

specifically ~D
ð‘0Þ
k has a multinomial distribution that attains values in

the complement of Nðm0Þ or fLþ 1g, where the latter option corre-
sponds to leaving the network, with its parameters being given by
mð‘0Þ and the probabilities

ð~rð‘0, ‘00Þi Þ‘00 62Nðm0Þ,~r
ð‘0, 0Þ
i

� �
:

Recall that individuals present at any of the nodes should either leave the
network or move to (or stay at) a node in the complement of Nðm0Þ:
Similar to (6), conditionally on Eðm0Þ, we thus have the representation

Mkð‘Þ ¼ Mk�1ð‘Þ þ ~Akð‘Þ þ
XL
�‘¼1

~D
ð�‘Þ
k ð‘Þ�

XLþ1

�‘¼1

~D
ð‘Þ
k ð�‘Þ:

We can now proceed as in Section 4.1, to obtain the mgf of Mk, condi-
tionally on the event fEðm0Þ,Mk�1 ¼ m,Xk�1 ¼ ig: Using the above find-
ings, we find that it equals, with s now being a vector with zeroes at the
positions that correspond to the elements in Nðm0Þ,

E ehs,Mki j Eðm0Þ,Mk�1 ¼ m,Xk�1 ¼ i
h i

¼ ~/iðsÞ
YL
�‘¼1

X
‘ 62Nðm0Þ

~rð
�‘, ‘Þ
i esð‘Þ þ ~rð

�‘, 0Þ
i

 !mð�‘Þ
,

where

~/iðsÞ ¼
Y

‘ 62Nðm0Þ
ek

ð‘Þ
i ðesð‘Þ�1Þ:

Observe in particular the similarity with the result stated in Lemma 1.
Using this mgf, we can use a saddlepoint technique to approximate
PðMk ¼ m0 j Eðm0Þ,Mk�1 ¼ m,Xk�1 ¼ iÞ in (12) by following the same
argument as in Section 4.1, evidently only including the non-zero elements
of m0: We observe that the dimension of this saddlepoint approximation is
now L�fNðm0Þg, which is smaller than L as a consequence
of m0 2 SiðmÞ n SiðmÞ	:
In summary, according to (12) the probability tiðm0 j mÞ can be

factorized into two probabilities. The probability corresponding to
the nodes included in Nðm0Þ can be computed explicitly according to
(13), whereas the probability corresponding to the remaining nodes
can be evaluated relying on the saddlepoint approximation of
reduced dimension.
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4.3. Numerical assessment of approximations

We can illustrate the accuracy of the saddlepoint approximation for the
single-node model and the tandem network, by comparing the explicit
approach from Section 3 with the saddlepoint approach from Section 4.

Example 1. Single-node model. Consider the example of the single-node
model introduced in Section 3.1, where we computed tiðm0 j mÞ explicitly.
In this example SiðmÞ ¼ N, assuming that ki>0 and ri>0, so that SiðmÞ n
SiðmÞ	 ¼ f0g: Using the saddlepoint approach we can, for m0 2 SiðmÞ	 ,
approximate tiðm0 j mÞ using Approximation 1. Recall from (2) that for
the Poisson arrivals at the node we have wiðsÞ ¼ kiðes�1Þ: Using (9) with
rð1, 1Þi ¼ 1�ri and rð1, 0Þi ¼ ri, we find the cgf

fiðs j mÞ ¼ kiðes�1Þ þm log ð1� riÞes þ rið Þ:
It requires a few standard steps to verify that the saddlepoint s
v can be
found by solving

v ¼ wðsÞ :¼ kie
s þm

ð1�riÞes
ð1� riÞes þ ri

; (14)

observe that the right-hand side of (14) is a positive, increasing function in s,
with wðsÞ ! 0 as s ! �1 and wðsÞ ! 1 as s ! 1: This means that for any
v> 0, there is a unique solution s
v : More concretely, es



v can be found in a

standard manner by solving the quadratic equation

�kið1�riÞe2s þ vð1� riÞ � kiri �mð1� riÞð Þes þ vri ¼ 0:

In our one-dimensional context we have

Riðv j mÞ ¼ @2fiðs j mÞ
@s2 s¼s
v :

��
Using that (14) holds when s ¼ s
v , we thus find

Riðv j mÞ ¼ kið1�riÞe2s
v þ vri
ð1� riÞes
v þ ri

We have now collected all ingredients to evaluate the saddlepoint approxi-
mation (11). Concerning m0 2 SiðmÞ n SiðmÞ	 ¼ f0g, we evidently have
tið0 j mÞ ¼ e�ki ðriÞm as we saw before.
In Figure 3 we show the numerically obtained approximation in the sin-

gle-node setting. It displays three examples which provide a good reflection
of the accuracy typically achieved by the saddlepoint approach. In particu-
lar, they illustrate that the accuracy improves as the value of m increases,
which is a known feature of saddlepoint approximations.
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Figure 3. Saddlepoint approximation and exact computation of tiðm0 j mÞ for the single-node
model as a function of m0, for increasing values of m; from the top to bottom panel, m ¼
1,m ¼ 3 and m¼ 7. Parameter values: i ¼ 1,k1 ¼ 4 and r1 ¼ 0:3:
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Figure 4. Saddlepoint approximation and exact computation of tiðm0 j mÞ for the tandem

network as a function of m0: Parameter values: i ¼ 1, k1 ¼ 0:5, rð1, 2Þ1 ¼ 0:5 and rð2, 0Þ1 ¼ 0:2:
Throughout we have fixed m ¼ ð5, 5Þ>: Upper panel: we vary m0ð1Þ, with m0ð2Þ ¼ 7: Middle
panel: we vary m0ð2Þ, with m0ð1Þ ¼ 1: Bottom panel: we vary m0ð1Þ, with m0ð2Þ ¼ 4:
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Example 2 . Tandem network. To further assess the accuracy of the saddle-
point approximation, we consider the example of the tandem network with
two nodes, as introduced in Section 3.2. We compute tiðm0 j mÞ explicitly,
and compare it with its saddlepoint-based counterpart. We do this for
m0 2 SiðmÞ	; note that we already discussed above how to deal with the
boundary points m0 2 SiðmÞ n SiðmÞ	: We can compute the cumulant gen-
erating function fiðs j mÞ from (9). From the fact that we have Poisson
arrivals, we know that wiðsÞ follows from (2). The cgf equals

fiðs j mÞ ¼ kiðesð1Þ�1Þ þmð1Þ log ð1� rð1, 2Þi Þesð1Þ þ rð1, 2Þi esð2Þ
� �

þmð2Þ log ð1� rð2, 0Þi Þesð2Þ þ rð2, 0Þi

� �
:

Hence, for v 2 SiðmÞ	 the saddlepoint s
v can be found by solving the equa-
tions

vð1Þ ¼ kie
sð1Þ þmð1Þ ð1�rð1, 2Þi Þesð1Þ

ð1� rð1, 2Þi Þesð1Þ þ rð1, 2Þi esð2Þ

vð2Þ ¼ mð1Þ rð1, 2Þi esð2Þ

ð1� rð1, 2Þi Þesð1Þ þ rð1, 2Þi esð2Þ
þmð2Þ ð1�rð2, 0Þi Þesð2Þ

ð1� rð2, 0Þi Þesð2Þ þ rð2, 0Þi

:

Having found the solution s
v, the approximation[21] is readily evaluated.
Numerical results for a few representative examples are presented in

Figure 4. The upper panel in Figure 4 shows a cross section at the peak of
the joint distribution of m0ð1Þ and m0ð2Þ, the middle panel shows a cross
section close to the peak, and the bottom panel shows a cross section fur-
ther away from the peak. Our findings confirm the approach’s high accur-
acy that we observed earlier.

5. Parameter estimation

In this section, we show how the saddlepoint approximation of the likeli-
hood—developed in the previous section—can be used to estimate the
model parameters, and we assess the accuracy of this estimation method by
applying it to simulated data.
As argued before, we can use the saddlepoint approximation in (11) to

approximate the probabilities tiðmk j mk�1Þ for each pair of observations
ðmk�1,mkÞ (k ¼ 1, :::, n) and each i 2 E, so as to evaluate the likelihood
(4). This likelihood is then to be maximized over the model parameters (in
the appropriate parameter space) to find the parameter estimate ĥ: We do
this numerically, relying on the built-in solver fmincon of matlab.
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The solver fmincon needs an initial value for h. There are various ways
to choose this value.

� In case the parameter space is finite, a naïve approach would be to sam-
ple the initial value uniformly on the parameter space.

� Another approach is to let the routing be uniform, in the sense that for
any individual all next nodes are equally likely; for example in a fully
connected graph (i.e., the situation that all rð‘, ‘

0Þ
i are positive), we could

set rð‘, 1Þi ¼ rð‘, 2Þi ¼ . . . ¼ rð‘, LÞi ¼ rð‘, 0Þi ¼ ðLþ 1Þ�1 for all i 2 E and ‘ ¼
1, . . . , L: Likewise, the transition probabilities pij could be initialized
with 1=d:

� Alternatively, the initial h can be determined using moment estimators,
or, if available, additional information on the parameters can be used to
set a suitable initial value.

In the remainder of this section, we specify the initial values that we
used for each numerical experiment. As is commonly known, the max-
imum likelihood approach has the intrinsic issue that there can be local
maxima. It is therefore strongly advised to follow the usual procedure to
work with multiple initial values (and to record the one providing the
highest likelihood).

Remark 2. Observe that for example in a model with d¼ 2, swapping the
states in the parametrization results in an observationally equivalent model.
In case of such identifiability issues, additional constraints need to be
imposed on the parameters. In the single-node case of d¼ 2 with an envir-
onment-dependent arrival rate, such a constraint could for instance
be k2 � k1:

Remark 3. We note that, by the structure of expression (4), the evaluation
of the likelihood is linear in n and cubic in d. The complexity of the sad-
dlepoint-based approximation is relatively low, due to the concavity of the
functions Iiðv, s j mÞ:
To illustrate the broad applicability of the method, we perform numerical

experiments for a set of intrinsically different networks. We specifically
investigate the influence of the number of observations n on the estimates:
throughout, we evaluate the estimators for n ¼ 100, n ¼ 500, n ¼ 1000, and
n¼ 2000. For each network and each value of n, we simulate 100 data sets,
to each of which we apply the estimation method to obtain the parameter
estimates. We present and discuss our findings in this section. We use the
two examples from Sections 3 and 4, i.e., the single-node and the tandem,
but we start with an experiment featuring a larger network with a different
structure: a circle network.
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Experiment 1. Circle network. We consider a network of five nodes in a
circle. The individuals can move clockwise through the network from one
node to the next. In this experiment we primarily concentrate on the effect
of the network structure, and therefore we do not impose modulation (i.e.,
we consider the setting d¼ 1). In addition, we let the network be homoge-
neous, in the sense that the arrival processes, the probabilities of leaving
the network, and the probabilities of being forwarded to the next node,
respectively, are the same for any node. More concretely, we work with
three parameters kð1Þ1 ¼ ::: ¼ kð5Þ1 :¼ k, rð1, 0Þ1 ¼ ::: ¼ rð5, 0Þ1 :¼ r0, and rð1, 2Þ1 ¼
rð2, 3Þ1 ¼ ::: ¼ rð5, 1Þ1 :¼ r1: This means that at each node arrivals occur
according to a Poisson process with rate k, and any individual present at
the node leaves with probability r0, or jumps to the following node in the
circle with probability r1. Note that, as a result, individuals stay at a node
with probability 1�r0�r1; see Figure 5 for a pictorial illustration.
Despite the fact that there is no modulation, direct evaluation of the like-

lihood is challenging. As pointed out earlier, the high complexity essentially
lies in the fact that we observe the network population vector only, and not
the arrival, routing and departure processes. An exact evaluation of the
likelihood would require taking into account all paths of the arrival, rout-
ing and departure processes that match with the observed values of the

Figure 5. Schematic representation of the circle network of 5 nodes.
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network population vector, which for our five-node circle network would
be infeasible. This motivates why we resort to evaluating the likelihood
using the saddlepoint approximation.
In our experiments we use simulated data that are generated using the

parameter values k ¼ 1:5, r1 ¼ 0:3, and r0 ¼ 0:1: The maximum likelihood
estimation procedure using fmincon is initialized at k ¼ 1, r1 ¼ 1

3 and r0 ¼
1
3 : Experiments with other initial values lead to similar results. The numer-
ical output is shown in Table 1 and Figures 6–8. Table 1 contains, for each
sample size (rows) and parameter (columns), the mean value of the 100
estimates, together with the corresponding standard deviation between
brackets. We see that the mean values in Table 1 lie close to the true par-
ameter values, and that (as expected) the standard deviations decrease as n
increases. This is visible in the histograms as well, displayed in Figures 6–8.
Each figure shows, for a given value of n and one of the three parameters,
the histogram of the 100 estimates. For each of the three parameters, we
intentionally chose the same horizontal axis in all four pictures, so as to
provide insight into the speed at which the width of the peak decreases as
n grows.

Experiment 2. Single-node model. As a second example, we study the sin-
gle-node model as introduced in Section 3.1. We consider the setup with
r :¼ r1 ¼ r2, which means that only the arrival rate is affected by the
modulation, not the departure probability r. In our simulations we use the
parameter values k1 ¼ 5, k2 ¼ 15, r ¼ 0:1, p12 ¼ 0:1 and p21 ¼ 0:2: The ini-
tial values in the algorithm that maximizes the log-likelihood are based on
moment estimators. The results of the maximum likelihood estimates are
shown in Table 2 and Figure 9.
Table 2 contains for each sample size (rows) and parameter (columns),

the mean value of the 100 estimates, together with the corresponding
standard deviation between brackets. The mean values of the estimates lie
relatively close to the true parameter values, but the standard deviations
fluctuate and do not always decrease in n. The histograms in Figure 9, fea-
turing estimates for r, however, visually show that the estimates get increas-
ingly concentrated around their respective averages. We observe that the
values in the table are affected by outliers in the estimates. As we men-
tioned earlier, when maximizing the likelihood we cannot exclude the pos-
sibility of ending up in local optima. In the circle network we have not

Table 1. Circle network: mean of estimates of 100 data sets, with corresponding standard devi-
ation between brackets. True parameter values: k ¼ 1:5, r1 ¼ 0:3, r0 ¼ 0:1:

k r1 r0

n¼ 100 1.4902 (0.4319) 0.3143 (0.0317) 0.1003 (0.0271)
n¼ 500 1.5081 (0.1613) 0.3070 (0.0131) 0.1006 (0.0104)
n¼ 1000 1.5197 (0.1034) 0.3059 (0.0086) 0.1013 (0.0062)
n¼ 2000 1.5103 (0.0679) 0.3072 (0.0057) 0.1007 (0.0045)
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Figure 6. Circle network: histograms of the obtained estimates for k, with n increasing from left
to right.

Figure 7. Circle network: histograms of the obtained estimates for r1, with n increasing from
left to right.

Figure 8. Circle network: histograms of the obtained estimates for r0, with n increasing from
left to right.

Table 2. Single-node model: mean of estimates of 100 data sets, with corresponding standard devi-
ation between brackets. True parameter values: k1 ¼ 5, k2 ¼ 15, r ¼ 0:1, p12 ¼ 0:1, p21 ¼ 0:2:

k1 k2 r p12 p21
n¼ 100 5.6507 (2.7007) 14.9201 (3.1332) 0.1081 (0.0259) 0.1266 (0.1525) 0.2331 (0.1869)
n¼ 500 4.8028 (1.8180) 14.5595 (1.7340) 0.0991 (0.0174) 0.1240 (0.1011) 0.1977 (0.0630)
n¼ 1000 5.0127 (2.3698) 14.2682 (1.9638) 0.1024 (0.0168) 0.1432 (0.1559) 0.2047 (0.1011)
n¼ 2000 5.2278 (2.1442) 14.6499 (2.4113) 0.1024 (0.0150) 0.1398 (0.1629) 0.2147 (0.1136)

Figure 9. Single-node model: histograms of the obtained estimates for r, with n increasing from
left to right.
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come across this phenomenon, but in our experiments with modulation
there have been a few runs in which we have. The histograms in Figure 9
show these outliers near 0.05 and 0.15. In the histograms of the other
parameters (not included in this paper), similar outliers appear.
To control this issue, it is advised to run the maximization algorithm for

multiple different initial values of the parameters, and choose the parameter
estimates that result in the highest likelihood value. Results of the max-
imum likelihood estimates based on this procedure, using four different,
randomly chosen, initial values of the parameters, are shown in Table 3.
Table 3 shows that the standard deviations improved considerably in com-
parison with the results in Table 2. In particular, the outliers have disap-
peared resulting in standard deviations that decrease in n.
A subtlety is that the accuracy of the saddlepoint approximation for

background state i degrades when ki approaches 0. This is because in the
regime of this arrival rate being 0, mk>mk�1 cannot happen, thus effect-
ively creating a boundary state; cf. the discussion in Section 4.2. We fol-
lowed the pragmatic remedy of imposing an explicit lower bound on the
arrival rates (in our experiments we took 0.01).

Experiment 3. Tandem network. We continue by considering a two-node
tandem network with modulation, as introduced in Section 3.2. In this
experiment we assume P is known and given by

P ¼ 0:9 0:1
0:2 0:8

� �
:

We run simulations for this model with true parameters k1 ¼ 1, k2 ¼
4, rð1, 2Þ ¼ 0:1 and rð2, 0Þ ¼ 0:25: In our likelihood maximization routine we
choose the initial values k1 ¼ 1, k2 ¼ 1, rð1, 2Þ ¼ 0:5, and rð2, 0Þ ¼ 0:5:
Experiments with other initial values provide similar output. The results
are presented in Table 4, showing for each sample size (rows) and param-
eter (columns), the mean value of the 100 estimates, together with the cor-
responding standard deviation between brackets. In line with the first two
experiments, we observe that the mean values in Table 4 lie close to the
true parameter values. The standard deviation fluctuates somewhat, but this
effect can again be mitigated by working with multiple initial values.

Table 3. Single-node model: mean of estimates of 100 data sets, with corresponding standard devi-
ation between brackets. True parameter values: k1 ¼ 5, k2 ¼ 15, r ¼ 0:1, p12 ¼ 0:1, p21 ¼ 0:2:

k1 k2 r p12 p21
n¼ 100 5.1469 (1.9209) 15.2419 (2.4189) 0.1015 (0.0221) 0.1107 (0.0543) 0.2445 (0.1492)
n¼ 500 5.0155 (0.4463) 14.9568 (0.6144) 0.1004 (0.0051) 0.1007 (0.0179) 0.2019 (0.0357)
n¼ 1000 5.0690 (0.3602) 15.0828 (0.4532) 0.1011 (0.0044) 0.0987 (0.0138) 0.1971 (0.0289)
n¼ 2000 5.0195 (0.2274) 15.0482 (0.3116) 0.1004 (0.0027) 0.1004 (0.0106) 0.2067 (0.0242)
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6. Discussion and concluding remarks

In this paper we considered a discrete-time multivariate population process
under Markov modulation. We showed how the likelihood can be eval-
uated using saddlepoint approximations, and how this can be used to esti-
mate the model parameters. We emphasize the model’s high degree of
generality, covering a wide variety of networks with different sizes and
structures, and on top of that the possibility to include modulation.
Moreover, the maximum-likelihood estimation approach is capable of esti-
mating parameters based on observations of the network population vector
only. In other words, the number of arrivals, jumps, and departures are not
observed, but only the net effect of these processes together, while the
modulating background process is not observed at all.
We illustrated the accuracy of the saddlepoint approximation through

two examples, namely a single-node model and a tandem network. For
these examples the likelihood can still be computed explicitly, and hence
the explicit computation can be compared with the saddlepoint approxima-
tion. In a series of numerical tests we found that the differences between
the two are typically small.
Then we investigated the accuracy of the maximum-likelihood estimation

method through a number of numerical studies. We focused on three dif-
ferent settings corresponding to networks with different sizes and struc-
tures. In all examples accurate estimates are obtained. Moreover, working
with multiple initial values to eliminate the outliers, results in standard
deviations that decrease as the sample size grows.
The estimation method in general produces accurate estimates, but in a

few cases the maximization ends up in a local maximum, as a consequence
of the specific shape of the likelihood surface. One effective way to control
it is by using multiple different initial values, choosing the outcome that
results in the highest likelihood value. To be sure that the estimation
method correctly tracks down modulation, it is important that the effect of
the background state is visible in the data. More concretely, one can
imagine a parameter setting in for example the single-node model with two
states, in which the effect of the higher arrival rate on the population size
is essentially canceled out by a higher departure probability, such that the
states cannot be distinguished.

Table 4. Tandem network: mean of estimates of 100 data sets, with corresponding standard
deviation between brackets. True parameter values: k1 ¼ 1,k2 ¼ 4, rð1, 2Þ ¼ 0:1, rð2, 0Þ ¼ 0:25:

k1 k2 rð1, 2Þ rð2, 0Þ

n¼ 100 1.6896 (0.8324) 3.5884 (1.0424) 0.1169 (0.0157) 0.2893 (0.0415)
n¼ 500 1.3161 (0.4669) 3.9394 (0.7301) 0.1076 (0.0096) 0.2692 (0.0230)
n¼ 1000 1.1441 (0.4291) 3.9505 (0.5430) 0.1054 (0.0083) 0.2633 (0.0224)
n¼ 2000 1.1610 (0.5968) 3.7440 (0.7026) 0.1052 (0.0103) 0.2645 (0.0258)
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We believe that the results presented in this paper offer various interest-
ing opportunities for further research. In the first place, note that in our
setup we assumed that the number of states d is known. Choosing d from
the data is a model selection problem and falls outside the scope of this
paper, but would be worth studying in greater detail. Second, we focused
on a discrete-time setting, allowing the computation of the cgf s, and thus
facilitating the application of the saddle-point technique, but one wonders
whether a similar approach could be followed for our model’s continuous-
time counterpart. The major complication is that if the background process
evolves continuously in time, it is not directly clear how to compute the
cgf s.
Various adaptations of our model could be considered as well. In this

paper, we considered only one type of individual, and (conditionally on a
realization of the background process) all individuals move independently
of each other through the network. Instead one could study multi-type
models, or models with routing and departure probabilities that depend on
the population vector before and/or after the transition, besides the state of
the background process.
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