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Abstract: Automated reconstruction of Building Information Models (BIMs) from point clouds has
been an intensive and challenging research topic for decades. Traditionally, 3D models of indoor
environments are reconstructed purely by data-driven methods, which are susceptible to erroneous
and incomplete data. Procedural-based methods such as the shape grammar are more robust to
uncertainty and incompleteness of the data as they exploit the regularity and repetition of structural
elements and architectural design principles in the reconstruction. Nevertheless, these methods are
often limited to simple architectural styles: the so-called Manhattan design. In this paper, we propose
a new method based on a combination of a shape grammar and a data-driven process for procedural
modelling of indoor environments from a point cloud. The core idea behind the integration is to
apply a stochastic process based on reversible jump Markov Chain Monte Carlo (rjMCMC) to guide
the automated application of grammar rules in the derivation of a 3D indoor model. Experiments on
synthetic and real data sets show the applicability of the method to efficiently generate 3D indoor
models of both Manhattan and non-Manhattan environments with high accuracy, completeness,
and correctness.

Keywords: Indoor modelling; point cloud; shape grammar; reversible jump Markov Chain Monte
Carlor (rjMCMC); Metropolis–Hastings (MH); Building Information Model (BIM)

1. Introduction

Automatic reconstruction of 3D indoor models is of great interest in photogrammetry, computer
vision, and computer graphics, owing to its wide range of applications in construction management,
emergency response, and location-based services [1,2]. Although recent lidar scanning and
photogrammetry techniques allow efficient capturing of the as-is condition of a building, development
of automated processes for the production of accurate, correct, and complete 3D models from
the data remains highly crucial [3]. However, the automated generation of the 3D models of indoor
environments is challenged by the inherent noise and incompleteness of the data and requires further
investigation [4,5].

In the literature, numerous approaches for automated generation of 3D indoor models using
imagery or lidar data have been employed. Often, these approaches extract 3D geometries of
buildings based purely on a data-driven process, which heavily depend on the quality of the data [6–8].
Alternatively, a few works initially adopt shape grammars, exploiting structural arrangement and
architectural design principles, in the indoor reconstruction [9–11]. Within the field of urban
reconstruction, shape grammars are widely and quite successfully used for 3D synthesizing of
architecture (e.g., building façades) [12–14]. In comparison with the data-driven approaches, this
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procedural-based strategy is less sensitive to erroneous and incomplete data. However, it requires a set
of grammar rules, and in the existing grammar-based approaches to indoor modelling, the parameters
and application order of the rules are manually predefined. Consequently, these approaches are
applicable only to simple grid-like architectural designs known as Manhattan world [11,15].

In this paper, we propose a new method based on the combination of a shape grammar and
a data-driven process which can overcome the limitation of each strategy to procedurally reconstruct
3D models of indoor environments from lidar point clouds. The integration is based on a stochastic
process: the rjMCMC algorithm [16]. Within the field of urban reconstruction, the rjMCMC has been
used to guide the application of grammar rules in the derivation of building façades [17,18]. In addition,
the technique is also applied to integrating local data properties and global constraints in reconstructing
3D objects and structures such as in modelling rail tracks [19], in river and network extraction [20], and
for the generation of 2D floorplans [21]. In our case, we apply the rjMCMC algorithm not only to guide
the automated application of grammar rules but also to integrate the local data characteristics and
global plausibility into the reconstruction of a 3D indoor model from a given point cloud. The rjMCMC
algorithm simulates a Markov chain, in which the next proposed model is derived from the input data
and the current state of the model. Consequently, it enables procedural reconstruction of the most
probable model given a point cloud by exploring the model space of an indoor environment. The main
contributions of our work are as follows:

• A new method for procedural reconstruction of a 3D model of an indoor environment based on
an integration of a data-driven process with a shape grammar using a stochastic approach, i.e.,
the rjMCMC.

• A shape grammar with automated application of the grammar rules, which provides the flexibility
in modelling different indoor architectures, i.e., Manhattan and non-Manhattan World buildings.
The reconstructed models contain not only structural elements (i.e., walls, ceilings, and floors)
and interior spaces (i.e., rooms and corridors), but also the topological relations between them.

• An approach to integrating local data properties and global plausibility and constraints of the model
at the intermediate states of the model, which enhances the robustness of the reconstruction
method to the inherent noise and incompleteness of the data.

The paper is structured as follows: Section 2 provides a review of related literature. Section 3
elaborates our proposed approach for the reconstruction of 3D indoor models. Section 4 describes
the details of the rjMCMC process for procedural model generation. The experiments and results on
both a synthetic data set and real data sets are presented in Section 5. Section 6 concludes the paper by
presenting our discussions and future work.

2. Related Work

Recent approaches to the reconstruction of as-is 3D models of indoor environments can be
classified into two main categories: (1) data-driven approaches and (2) procedural-based approaches.
Among many possible approaches, in this paper, we focus on the reconstruction of 3D indoor models
from point clouds.

2.1. Data-driven Approaches

A data-driven approach generates 3D models of building interiors based on direct interpretation
from input data. Based on characteristics of extracted information, we further classify the data-driven
approaches into (1) local and (2) global reconstruction methods.

A local approach often considers only local data characteristics (point density, orientation,
dimension, etc.) within a local neighbourhood (e.g., plane segments and cells) [22–24]. For example, in
Reference [25], surface-based building models (e.g., walls, ceilings, and floors) are reconstructed as
an arrangement of planar primitives. The planar surfaces are extracted using local plane fitting from
separated clusters of points which have similar normals. Similarly, Xiong et al. [26] estimate geometries
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of building surfaces from voxelized data. The semantic information is further interpreted based on
the intrinsic features (e.g., dimension and orientation) of each individual surface and the contextual
relationships (e.g., orthogonality and parallelism) within their local neighbourhood. Later, a similar
strategy was proposed by Macher et al. [27] and Nikoohemat et al. [28], who favoured the combination of
geometrical features of planar surfaces and their contextual constraints (e.g., distances and parallelism)
or their adjacency relationship in reconstruction of geometrics and semantics of 3D indoor models.

A global approach, on the other hand, enforces the coherence among element characteristics in
a more holistic way. This approach facilitates the integration of global plausibility of the reconstructed
model to a given data (i.e., a point cloud), which lies beyond the relations and constraints within a local
neighbourhood [8,29]. For example, in Reference [5], the reconstruction of a surface-based model is
formulated as a global optimization, which maximizes the global fitness of a model’s surfaces to an
input point cloud. Similarly, Mura et al. [4] propose a method for reconstruction of volumetric indoor
models by solving a multi-label optimization, which maximizes the visibility overlaps from different
viewpoints in the indoor spaces and the point coverages of vertical surfaces. Ochmann et al. [30]
maximized the coverage of points, which are orthogonally projected on the floor plan in order to
distinguish between exteriors and interior structural elements. In Ochmann et al. [31], the authors
optimized the total volume of interior spaces (i.e., rooms and corridors) based on supporting points of
their bounding surfaces and the probability of the surfaces’ visibility from locations inside each space.

In general, data-driven approaches heavily depend on data quality. Meanwhile, a local approach
is suitable for reconstructing indoor environments which are well observable and are captured with
high-quality data. A global approach is less susceptible to noise and occlusion and is more robust
to clutter due to the integration of global coherence of the model to the given input. However,
this integration sometimes has negative influences on the reconstruction of well-captured building
sections. Intuitively, the local data characteristics and the global plausibility of the model are not
contradictory; instead, they are complementary. We therefore expect that the combination of local
data characteristics and the model’s global plausibility can potentially enhance the robustness and
coherence in the reconstruction of 3D indoor models from an input point cloud.

2.2. Procedural-based Approaches

Procedural-based approaches exploit the regularity and repetition of spaces and architectural
design principles in the reconstruction process. Shape grammar is a powerful method for synthesizing
architectural design [32–34]. Within the field of urban reconstruction, Wonka et al. [14] and
Müller et al. [13] adopted the shape grammar concept [35] for efficiently synthesizing highly detailed
3D façade models of a complex building. In order to reconstruct models of real environments, several
researchers successfully propose shape grammars based on integration with a data-driven process
to procedurally reconstruct building façade models from observation data (i.e., images and point
clouds) [12,17,18]. However, the façade grammars are not directly applicable to indoor environments
due to the inherent differences between them. In general, the advantages of the shape grammar-based
approaches lie in the translation of knowledge and principle of architectural design into a form of
a grammar, which ensures topological correctness of the reconstructed elements and the plausibility of
the whole model.

In indoor modelling, Gröger and Plümer [9] were the first to apply a shape grammar to synthesize
an indoor environment. Khoshelham and Díaz-Vilariño [10] proposed a shape grammar to reconstruct
3D interior spaces of Manhattan World buildings from point clouds. Becker et al. [15] combined
L-grammar and split grammar for modelling rooms and hallways of a building interior from a point
cloud and its LOD3 model. Later, Tran et al. [11] extended the Manhattan shape grammar proposed
by Khoshelham and Díaz-Vilariño [10] for the reconstruction of 3D indoor models containing both
structural elements and interior spaces as well as topological relations (i.e., adjacency, connectivity,
and containment) between them. These approaches have a great potential for the reconstruction of
topologically correct as-is 3D indoor models, which have a hierarchical structure and are therefore
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compatible with Building Information Modelling (BIM) standards (i.e., Industry Foundation Classes
(IFC) and indoorGML). However, these recent indoor modelling approaches still require a predefined
order for the application of grammar rules, which restricts them to only simple designs such as
L-shaped [15] and Manhattan World buildings [11].

Table 1 provides a summary and comparison of key features of previous approaches and
the proposed approach in this paper.

Table 1. Overview of reconstructed features by recent indoor modelling approaches.

Ref. (Year) Non-Manhattan Volumetric
walls

Volumetric
spaces

Topological
relations

[4] Mura et al. (2016) Yes No No No

[5] Oesau et al. (2014) Yes No No No

[9] Gröger and Plümer (2010) No No Yes Yes

[10] Khoshelham and Díaz-Vilariño (2014) No No Yes No

[11] Tran et al. (2019) No Yes Yes Yes

[15] Becker et al. (2015) No Yes No No

[26] Xiong et al. (2013) No No No No

[27] Macher et al. (2017) No Yes No No

[28] Nikoohemat et al. (2020) Yes Yes Yes No

[30] Ochmann et al. (2016) Yes Yes No No

[31] Ochmann et al. (2019) Yes Yes No No

Ours Yes Yes Yes Yes

3. Reconstruction of 3D Indoor Models

The approach proposed in this paper is based on the integration of a data-driven process and
a procedural reconstruction process, which overcomes the limitations of each process.

As shown in Figure 1, the proposed approach contains two main steps: space decomposition
and procedural reconstruction. In the first step, the potential planar-surfaces of structural elements
(e.g., wall surfaces) are extracted from clustered points of the point cloud, and the surfaces are then
used to decompose the indoor environment into a set of 3D cells. Intuitively, building surfaces usually
separate different interior elements (e.g., between spaces and walls). Thus, different types of interior
elements (e.g., spaces and walls) are likely to be represented as separated cells. The point cloud and
the 3D cells are then used in the reconstruction process.

In the procedural reconstruction, a 3D layout of the building interiors is derived based on
a combination of a shape grammar, hereafter referred to as indoor grammar, and a stochastic process,
i.e., the rjMCMC algorithm. The indoor grammar is an extension of the Manhattan grammar proposed
in Reference [11] to be applicable to both Manhattan and non-Manhattan designs. In addition to
the iterative application of placement, classification, and merging processes [11], we further include
a splitting process and a reclassification of nonterminal shapes in the derivation of the model. This
facilitates reversible production, which provides the ability to correct modelling errors.
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Figure 1. Overview of the proposed approach.

The modelling procedure starts with a reconstruction of interior spaces (i.e., rooms and corridors).
The shape grammar allows reconstruction of the model in a hierarchical structure by using not only
the geometric information but also the knowledge about structural arrangement, semantic information,
and topological relations, owing to inherent characteristics of a shape grammar in maintaining
topological correctness between the elements. The rjMCMC algorithm guides the automated application
of grammar rules, which induces the next proposed model among several matching possibilities from
the current existing elements of the model, hereafter referred to as the current state. The reconstructed
model is further evolved by a production of the structural elements (e.g., walls, ceilings, and floors),
which are derived based on the geometry and their topological relations with interior spaces. Finally,
the exterior cells within the scope (i.e., bounding box) of the environment, which are neither interior
spaces nor structural elements, are labelled.

3.1. Space Decomposition

The input point cloud is first clustered into three groups: horizontal, vertical, and others. A dual
process, consisting of local-scale extraction and global refinement, is then applied for the extraction
of surfaces of horizontal and vertical structures separately. The cell decomposition of an indoor
environment is created as an arrangement of the extracted structures. The remainder of this section
explains the three steps in detail.

Point clustering: The point cloud is clustered into three groups, i.e., horizontal points representing
the horizontal structures (e.g., ceilings and floors), vertical points representing the vertical structures
(e.g., walls), and others belonging to noises and clutter, based on their normals. The goal is to
eliminate irrelevant points (e.g., noises and clutter) in the extraction of building surfaces as well as in
the reconstruction of the final model.

Given that point clouds captured by various lidar sensors normally have an upright orientation,
a point is classified as horizontal or vertical if its normal np is parallel with the horizontal direction
nh and vertical direction nv, respectively, up to a small deviation θ (e.g., θ ≤ 10 degrees). The points
which belong to neither horizontal nor vertical groups are classified as others, and these points are then
excluded in further processes. Figure 2 shows an example of point clustering, which demonstrates
the exclusion of a considerable amount of clutter from the points representing building structures (i.e.,
vertical and horizontal points) of a hexagonal building.
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Figure 2. Point clustering: (a) an input point cloud of a hexagonal building; (b) vertical points; (c)
horizontal points; and (d) other points (e.g., clutter and noise).

Surface extraction: A random sample consensus (RANSAC)-based plane-fitting algorithm [36]
is used for generating reasonable structure surfaces of the building interior. In this step, we extract
horizontal structures and vertical structures from horizontal and vertical clusters, respectively, to lessen
mutual influences between them. However, the process may still produce undesired surfaces which
have arbitrary orientations and a small number of supporting points when applied to large buildings
and heterogeneous point clouds. To tackle this problem, we propose a multi-scale surface extraction,
including a local-scale extraction and global refinement.

Local-scale extraction: The building surfaces are initially extracted at a local scale, which is at
voxelized structures of horizontal and vertical data. The voxel size is empirically defined and suggested
to be set as an ordinary room’s dimensions, e.g., 3 to 5 meters. By this way, it facilitates the extraction of
building surfaces from a building part that will not be influenced by the points belonging to the other
parts of the building. Thus, it reduces the involvement of irrelevant elements in the extraction of
a building surface. A valid vertical or horizontal building surface is in the vertical or horizontal
directions, respectively, and it contains a certain amount of supporting points. Figure 3 illustrates
the surface extraction at the local scale from vertical points of the hexagonal building.
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vertical surfaces; and (c) extracted horizontal surfaces.

Global refinement: The initial surface segments extracted locally are iteratively refined in order to
generate an optimal set of surfaces for a building interior. Two local surfaces (s1, s2), which are parallel
with each other up to a small threshold angle (angle(s1, s2) < θ) and have a threshold distance between
them (distance(s1, s2) < d) are likely to represent the same building structure and, therefore, will be
merged and replaced by a new surface. In general, the thresholds do not have a significant impact
on the extraction result: the angle θ is recommended to be less than 10 degrees, and the threshold
distance d should be no larger than the nominal accuracy of the data points. The distance between two
surface segments distance (s1, s2) is defined as the minimum point-to-plane distance [37] between
the supporting points of one surface to the other. The merged surface is fitted from the combined set of
supporting points of its two component surfaces. The refinement is repeated until no more surfaces can
be merged. Figure 4 shows the final extracted surfaces of the hexagonal building after the refinement.
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Figure 4. Globally refined surfaces of the hexagon building: (a) vertical surfaces and
(b) horizontal surfaces.

Cell decomposition: An arrangement of the extracted horizontal and vertical surfaces decomposes
the building interior into a set of 3D cells. The intersections between all vertical surfaces with a horizontal
structure, such as the floor surface of the building, are first computed. These line intersections are
then used to partition the horizontal structure into a set of 2D cells using the 2D arrangement [38] of
the Computational Geometry Algorithms Libraries [39]. These horizontal 2D cells are then extruded
in vertical directions and intersected with the other horizontal surfaces (e.g., the ceiling) to generate 3D
cell decomposition of the building interior. Figure 5 illustrates the cell decomposition of the hexagonal
building from its vertical and horizontal surfaces.
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3.2. The Indoor Shape Grammar

The indoor shape grammar is an extension of the shape grammar proposed by Tran et al. [11] to
model both Manhattan and non-Manhattan world indoor environments. The extension includes a new
shape definition, extended grammar rules, and the integration of a stochastic process to the production
procedure using the rjMCMC.

3.2.1. Shapes

In general, a shape grammar contains a finite set of shapes, including a starting shape and
nonterminal and terminal shapes [40]. In the indoor shape grammar, a shape is a polyhedron: it is
assigned a unique identifier id and consists of 4 elements, i.e., a scope (i.e., bounding box), geometry (i.e.,
geometric attributes), semantics (i.e., semantic attributes), and topological relations (i.e., topological
attributes). Similar to Reference [13], the scope is defined as the oriented bounding box of a shape,
represented by a corner point P; three orthogonal vectors X, Y, and Z, indicating its orientation;
and a scale vector S =

{
sx, sy, sz

}
, representing the dimensions along the 3 orthogonal directions.

The shape geometry is described with a boundary representation {V, F}, where V is the set of vertices
and F is its bounding faces. Figure 6 shows an example of a shape with its scope (blue bounding box)
and geometry representation (cyan bounding surfaces).
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Similar to that in Reference [11], the semantic attribute implies the type of a shape, which can
take one of three values (interior space, exterior, and wall), and the topological attributes indicate
the shape’s adjacency, connectivity, and containment relations. The starting shape is a unit scope
with the point P located at the origin of the local coordinate system, and the unit scale S = {1, 1, 1}
represents the dimensions along the x-, y-, and z-axes. The unit scope has empty geometry, no semantic
information, and topological relations.

3.2.2. Grammar Rules

The grammar rules define operations on shapes, which transform antecedent shapes into
subsequence shapes. We propose 8 grammar rules categorized into three types: geometric
transformation, semantic conversion, and topological relation establishment rules. The grammar rules
are defined in the following form:

Rule : Antecedents : cond→ Subsequences : prob (1)

The antecedent shapes are nonterminal shapes, while the subsequent shapes can be either
nonterminal or terminal shapes. The rule is applied on the condition cond and is selected with
probability prob, which is automatically learned during the derivation of the 3D models. The detail of
this derivation process will be described in the next section.

Geometric transformation rules: The rules are operated on the shapes’ geometries and, therefore,
transform the geometry of a model. The applications of the rules can also involve varying the number
of shapes constituting a model. The place and merge rules are inheritably modified from our previous
work [11], while the split rule is new and is defined to allow reversibility of the reconstruction.

(1) Place rule:

R1
place : I : cond(H,0)→ N : prob (2)

The place rule R1
place places a nonterminal shape N into the scope of the indoor environment

by transforming the starting shape I (the unit scope) using a set of transformation parameters H.
The transformation H consists of the scope information of the shape N and its geometry representation.
The scope is determined by a translation vector T =

{
tx, ty, tz

}
and a rotation R =

{
rx, ry, ry

}
, indicating

the location of the shape bounding box, coupling with a scale vector S =
{
sx, sy, sz

}
, and encoding its

dimensions. The shape geometry is represented with a set of vertices and bounding faces {V, F}, which
are obtained from the 3D cell decomposition of the building. If no cell can be found in the environment,
then H is an empty set and the rule cannot be applied.

(2) Merge rule:

R2
merge : {N1, N2} : cond→ B : prob (3)
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The merge rule replaces two nonterminal shapes N1 and N2 with their union B on the condition
that they are both of type interior space and are in a connectivity relation.

(3) Split rule:

R3
split : B : cond→ {N1, N2} : prob (4)

The split rule is the reciprocal of the merge rule. The rule applies a split to a shape B and then
replaces it with two component shapes N1 and N2. The N1 and N2 must be the antecedents, and shape
B is the subsequent of a previous application of the merge rule.

Figure 7 shows an example of a reversible process by application of the merge and split rules.
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Figure 7. Reversible merging and splitting: Merging: from left to right, the two adjacent spaces N1 and
N2 are merged to form space B. Splitting: from right to left, shape B is split into its two component
shapes N1 and N2.

Semantic conversion rules: These rules operate on the semantic information of nonterminal
shapes without changing their geometries or number of shapes in a model. The semantic conversion
rules contain two reciprocal rules: classification and declassification rules.

(1) Classification rule:

R4
class : N[type = ∅] : cond → N[type] : prob (5)

The classification rule assigns a nonterminal shape N, which has no semantic information (i.e.,
type is empty (∅)) and a certain type (i.e., wall, interior space, or exterior). The condition cond and
probability prob of the rule are automatically learned using the stochastic process using rjMCMC during
the reconstruction of interior spaces, which will be detailed in the next section. Meanwhile, the labelling
of structural elements and exteriors are inferred from their geometries and topological relations. For
example, a wall should be in an adjacency relation with interior spaces and the vertex-to-surface
distances [37] between its vertices and the adjacent surface should not be larger than the wall thickness
of the building in accordance with predefined knowledge of the building architecture.

(2) Declassification rule:

R5
deClass : N[type] : cond→ N[type = ∅] : prob (6)

The declassification rule is a reversible process of the classification rule. The rule nulls the type
attribute of a nonterminal shape N. Similar to the classification rule, the condition cond and the probability
prob can be automatically learned during the reconstruction of interior spaces (detailed in Section 4).

Figure 8 illustrates a reversible process involving classification and declassification of
an interior space.
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Figure 8. Reversible classification-declassification processes. Classification: from left to right by
labelling a shape as an interior space (green). Declassification: from right to left by nulling the label of
the interior space.

Topological relation rules: The three topological rules are defined to establish the three
topological relations between shapes, consisting of adjacency, connectivity, and containment relations.
The condition to invoke the rules is similar to that in Reference [11]. However, in this paper, the rules are
assigned a probability prob for its application, which can be learned during the reconstruction process.

(1) Adjacency rule

R6
adj : {N1, N2} : cond→

{
N1

[
adj1], N2[adj2

]}
: prob (7)

The adjacency rule establishes the adjacency relation between two nonterminal shapes N1 and
N2. Prior to the reconstruction of structural elements, the two nonterminal shapes are adjacent on
the condition that they share a common face. After the modelling of structural elements, two final
interior spaces are in an adjacency relation if there is a common wall between them.

(2) Connectivity rule

R7
conn : {N1, N2} : cond→

{
N1

[
conn1

]
, N2

[
conn2

]
: prob (8)

The connectivity rule establishes the connectivity relation between two nonterminal shapes
N1 and N2. Before the reconstruction of structural elements, two nonterminal interior spaces are
connected on the conditions that they are adjacent and there is no actual surface between them. After
the modelling of structural elements, two final interior spaces are in a connectivity relation if there is
a common wall and the wall contains a door. Similar to our previous work [11], the doors are manually
inserted to the model by updating the containment attribute of the walls.

Figure 9 shows the topological adjacency and connectivity relations established between the shapes
N1 and N2, which are two interior spaces of an indoor environment (Figure 9a). The adjacency relation
(Figure 9b) of the shapes N1 and N2 is established due to a shared common face between them, and
the connectivity relation (Figure 9c) is established since there is no actual physical surface between them.

(3) Containment rule

R8
cont : {N1, N2} : cond→

{
N1

[
cont1], N2[cont2

]}
: prob (9)
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Figure 9. An example of topological relations between two nonterminal interior spaces N1 and N2 (a),
which are in an adjacency relation represented by the red dotted line (b) and in a connectivity relation
represented by the black solid line (c), as there is no actual surface between them.

The containment attributes of two nonterminal shapes are updated via the application of
the containment rule. If the shapes N1 and N2 are antecedent and subsequent (or vice versa)
of a previously applied merge rule, their containment relations are established. In addition,
the containment rule can be invoked to establish the containment relation between a door and
a wall.

Figure 10 shows an example of a containment relation where shape B contains two component
shapes N1 and N2.
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Figure 10. An example of containment relation (c) between the two interior spaces N1 and N2 (a) and
their merged shape B (b).

4. Procedural Model Generation Using rjMCMC

Figure 11 shows the production procedure for the generation of a 3D indoor model by iterative
application of the grammar rules. An indoor model M is a configuration of a finite set of shapes,
which is defined by the number of shapes and the shapes’ attributes within the scope of an indoor
environment. Initially, nonterminal shapes N are placed into the scope of the indoor environment
by iterative application of the place rule R1

place (Section 3.2.2). At this stage, each nonterminal shape
N, transformed from the starting shape I (the unit scope), is represented with a scope and geometric
attributes encoding its boundary representation {V, F} but no semantic information and no topological
relations. The probability prob of the rule application is set as 1 in the case that the shape’ geometry
{V, F} is totally matched with a cell’s geometry created from the 3D cell decomposition. If no such 3D
cell can be found, then the rule cannot be applied (prob = 0). Once a shape is placed in the scope of
the building interior, its adjacent relations will be automatically established with its neighbours, which
share a common face.
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The reconstruction of the building interior then proceeds with a search for an optimal configuration
of interior spaces (i.e., rooms and corridors) in the model M. In this step, we aim at maximizing
the model fitness to the input point cloud D, while maintaining the model plausibility and its simplicity.
In other words, we search for the most probable model given the data p(M

∣∣∣D ) based on a stochastic
approach using rjMCMC sampling with the Metropolis–Hastings algorithm [16,41]. The rjMCMC
algorithm simulates random walks from the current model to the next proposed configuration
with a capacity to cope with the variability of the number of shapes in each model configuration.
The transition from a current state Mt to the following configuration Mt+1 is decided by both the model
probability p(M

∣∣∣D ), a transition probability J(Mt+1
∣∣∣Mt) , and an acceptance probability α as defined

in Equation (10). The description of the model probability and the transition kernel are detailed in
the following sections.

α = min

1,
p(Mt+1

∣∣∣D)·J(Mt+1
∣∣∣Mt)

p(Mt|D)·J(Mt
∣∣∣Mt+1)

 (10)

A proposed transition is accepted if the acceptance probability α is larger than a random number
U ∈ [β, 1], where β ∈ [0, 1] is the convergence factor [41]. This triggers the application of grammar rules,
for which guarding conditions are satisfied, in order to generate a new configuration. The acceptance
probability α is assigned as the application probability of the triggered rules. The convergence factor
β provides the flexibility in searching for the optimal model either in a model subspace (β > 0) or
in the whole space of models as default (β = 0) [8]. In general, the application of grammar rules in
the reconstruction of interior spaces is in a stochastic order. However, in order to maintain the global
plausibility of the model and the model conformity to architectural principals, the process requires to
follow certain procedural priorities. For example, once a new interior space is added to the model, its
topological relations (i.e., adjacency and connectivity) must be established spontaneously. Likewise,
when two connected interior spaces are merged together to form a new space, the containment rule
must be applied next to establish the containment relation between the new merged space with its
components. The reconstruction process of interior spaces is final when the number of the random
walks in the model space of the indoor environment reaches a predefined limit. The final model will
be selected among the models with the highest model probabilities given the input data. At this stage,
the geometry transformation rules are no longer applied in the reconstruction process.

The reconstructed interior spaces are then taken into account for the generation of structural
elements. The semantic conversion rules are applied to assign semantic information (e.g., walls and
exteriors) to non-interior spaces which have no semantic information, followed by the application
of topological relation rules to establish the topological relations among reconstructed shapes (i.e.,
final interior spaces and walls) of the model. At this stage, the probability prob of the rule application
is set as 1 (prob = 1) if their guarding conditions are satisfied. Otherwise, the probability is set to 0
(prob = 0). Once all the shapes are labelled and no more topological relations can be established, all
the reconstructed interior spaces, structural elements, and exteriors are terminal shapes.
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4.1. Model Probability

The model probability p(M
∣∣∣D ) indicates the probability of a model configuration M given the input

point cloud D. The probability is defined to encode the prior knowledge of building architecture
and to measure the model fitness to the input and the model plausibility. According to Bayes’ rule,
the model probability p(M

∣∣∣D ) is proportional to the product of the prior P(M) and the likelihood
P(D

∣∣∣M) : P(M|D) ∝ P(M)P(D
∣∣∣M) .

4.1.1. Prior Probability

The prior P(M) of a model M is defined as a joint probability distribution of the prior of the shapes
M(i) comprising the model M, in this case, interior spaces:

P(M) =
∏n

i=1
P(M(i)) (11)

where n is number of interior spaces of the model M. P(M(i)) is the prior of the shape M(i).
Without any observed data, the prior of an interior space is derived from the geometric information

{V, F} and the constraints on knowledge of building architectures. We first define the width of a shape
as the smaller horizontal dimension of its scope (i.e., the bounding box).

Intuitively, an interior space should have a large width in comparison with a structural element
(i.e., walls). We, therefore, assign the prior of an interior space to P(M(i)) = 1, if the shape has a width
larger than the maximum wall thickness. Otherwise, the prior is set to P(M(i)) = 0. For the special
case when the model M has no interior space, the prior of the model is set to P(M) = 1.

4.1.2. Likelihood

The likelihood encodes the model fitness as well as its conformity to the input data. The model
fitness is measured at both local scales for each individual shape (so-called local likelihood) and
the global fitness of the whole model (so-called global likelihood). In other words, the approach
facilitates the integration of both local characteristics of data and global plausibility of the model in
the reconstruction of the model. We therefore define the likelihood of the model P(D

∣∣∣M) as a joint
distribution of the local likelihood PL(D|M) and the global likelihood PG(D|M):

P(D|M) = PL(D|M) PG(D|M) (12)

Local likelihood: The local likelihood PL(D|M) is computed based on the interpretation from
local characteristics of data points enclosing each individual shape of the model. The local likelihood
of a model is a joint distribution of the likelihood of each interior shape to its enclosing data points.
Intuitively, an interior shape is likely to contain points on its top surfaces (i.e., ceiling) [10]. We therefore
define the likelihood of each interior shape as the coverage of its top surfaces [42], which is computed
as the ratio between the alpha-shape area covered by the shape’s data points [43] and the area of the top
surface. The local likelihood of the model, therefore, is formulated as follows:

PL(D|M) =
∏n

1

Cov
∣∣∣M(i).top

∣∣∣∣∣∣M(i).top
∣∣∣ (13)

where n is the number of interior spaces of the model M. |·| denotes the area of a surface of a shape.
Meanwhile, Cov|·| denotes the area of the building surface, which is covered by points.

The local likelihood PL(D|M) ranges from 0, implying that, in the proposed model, there is at least
one interior space with no supporting points, to 1, implying that all the interior spaces are covered
totally by the input data points.

Global likelihood: The global likelihood PG(D|M) measures the fitness of the whole model M
as well as its general plausibility with respect to the entirety of the input point cloud D. The global
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likelihood is defined as the combination of three data terms, i.e., (1) horizontal fitness Phor, measuring
how good the horizontal structure fit with the horizontal points hpoints; (2) vertical fitness Pvert,
measuring the fitness of the vertical structures to the vertical points vpoints; and (3) model plausibility
Pplaus, indicating the reliability and conformity of the model with respect to the data (i.e., both
horizontal and vertical points). Depending on the intrinsic characteristics of data such as the level of
incompleteness, noise, or clutter, the contribution of each data term to the global likelihood varies.
The global likelihood, therefore, is formulated as follows:

PG(D|M) = k1Phor + k2Pvert + k3Pplaus (14)

where k1, k2, and k3 are the normalization factors weighting the contribution of the data terms to global
likelihood. The normalization factors must satisfy the condition k1 + k2 + k3 = 1.

Horizontal fitness: The horizontal fitness Phor is computed as the normalized horizontal coverage
of the model M. The horizontal coverage of a model is the area of the top surfaces of its interior
spaces (i.e., rooms and corridors) covered by horizontal points hpoints. The normalization is the ratio
between the model’s horizontal coverage and the horizontal areas of the building, which are covered
by the horizontal points hpoints. In other words, the more horizontal surfaces covered by the horizontal
points, the higher the horizontal fitness of the mode model M. We formulate the horizontal fitness Phor
of a model M as Equation (15) below:

Phor =

∑n
i=1 Cov

∣∣∣M(i).top
∣∣∣

Covp
∣∣∣hpoints

∣∣∣ (15)

where Covp|·| denotes the alpha-shaped area covered by points.
Vertical fitness: Similar to horizontal fitness, the vertical fitness Pvert of the model M is computed

based on its vertical coverage. The coverage is measured as the surface area of vertical structure (i.e.,
wall surfaces), which is covered by the vertical data points vpoints summed over all interior spaces of
the model. The vertical fitness is formulated as the normalization of the model’s vertical coverage,
which is defined as the proportion of the vertical coverage of the model to the vertical coverage of
the building. The horizontal fitness of the model M is formulated as Equation (16):

Pvert =

∑n
i=1 Cov

∣∣∣M(i).vertical
∣∣∣

Covp(vpoints)
(16)

Model plausibility: The general plausibility Pplaus of model with respect to the input point cloud
is computed based on the areas covered by both horizontal and vertical points, which fall inside
the interior spaces and, therefore, do not represent the horizontal or vertical structures. The more
horizontal and vertical areas covered by these inside points, the lower the plausibility of the model.
The model plausibility is therefore formulated as follows:

Pplaus = 1−

∑n
1 Covp

∣∣∣M(i).inPoints
∣∣∣

Covp
∣∣∣hpoints

∣∣∣+ Covp
∣∣∣vpoints

∣∣∣ (17)

where M(i).inPoints is the horizontal and vertical points which fall inside an interior space M(i).
The model plausibility Pplaus may be influenced by the indoor environments, which have a high

level of clutter. In these cases, the plausibility Pplaus should have only a small contribution to the global
likelihood of the model, and it can be adjusted by lowering the value of its normalization factor k3 in
Equation (14).



Remote Sens. 2020, 12, 838 15 of 26

4.2. Model Transition

The transition kernel J(Mt+1
∣∣∣Mt) represents the probability for the change from the current

model Mt to the next proposed model Mt+1. In the reconstruction of interior spaces, there are four
possible changes in the configuration of a model [8], including adding a new interior space or removing
an existing interior space by application of classification or declassification rules as well as by splitting
an interior space into two components or by merging two spaces into a merged one by invoking
the split rule and merge rule, respectively. These changes will cause the variation in the number of
shapes configuring the model. In addition to maximizing the fitness of the model with respect to
the data, which are encoded via the model probability (Section 4.1—Model Probability), our goal is to
reconstruct a compact model with low complexity. The concept of minimum description length [44] is
therefore adopted to define the transition kernel. The description length of the model is described as
the number of interior spaces. In other words, the model of a building interior, which has a smaller
number of interior spaces, is favoured as being more likely than a complex one with many small spaces.
This strategy ensures that the final model is formed as the union of the final interior spaces rather than
separated components.

We formulate the complexity of a model as follows:

C(M) = log2 n (18)

where n is the number of interior spaces in the model M. In a special case, C(M) = 1, when n = 1.
The transition kernel J(Mt+1

∣∣∣Mt) is defined as follows:

J(Mt+1
∣∣∣Mt) = µ

C(Mt)

C(Mt+1)
(19)

where µ is a smoothing coefficient. To set the value of µ, we consider the following three cases: case 1,
the current model Mt contains the same number of interior spaces as the proposed model Mt+1; case 2,
Mt contains fewer spaces than Mt+1; and case 3, Mt contains more spaces than Mt+1.

5. Experiments and Results

5.1. Experiments

The proposed approach was implemented in MATLAB and C++ on a personal computer (i7-7500U
GPU, 2.7 GHZ, with 16.0 GB memory). The CGAL C++ library was used in the cell decomposition
process. Several experiments were carried out using a synthetic point cloud and two real point clouds
to evaluate the feasibility of our approach in the reconstruction of indoor environments, which contain
both Manhattan and non-Manhattan structures. The synthetic point cloud (hereafter referred to as
SYN) simulates a simple residential house consisting of a common room, 3 private rooms, and an
open indoor space with no clutter. The point cloud has a random error of 5 mm and its average point
spacing is 5 cm. The real point clouds capture a research lab’s office (hereafter referred to as Office) and
an art museum (hereafter referred to as Museum) at the University of Melbourne. The research lab’s
office, which has a common structure of a modern office, contains a large workspace with an irregular
shape, a kitchen, a printing room, a large meeting room, and a long corridor. The museum contains
a reception hall which connects with four other exhibition rooms. The point clouds were captured by
a Zeb Revo RT handheld laser scanner with a nominal accuracy of 3 cm. The real buildings contain
a high level of clutter, which therefore occlude the building surfaces from the scanner. Each data set
has a ground truth BIM model, which is used for quality evaluation of the reconstructed model.

Figure 12 shows perspective views of the synthetic point cloud and its ground truth model, and
Figure 13 shows the point clouds and the ground truth models of the real environments.
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Figure 13. The real data sets including point clouds (left) and ground truth models (right): (a) the Office
and (b) the Museum.

In Table 2, we list the parameters used in the reconstruction process. The max wall thickness is
defined based on prior knowledge of the indoor environments. Meanwhile, appropriate values for
the convergence factor, normalization, and smoothing coefficients are experimentally found in relation
with the quality of input data (i.e., the level of noise, the completeness of data, and the level of clutter).
For the convergence factor, a higher value is more appropriate for data with lower quality so that it can
help to avoid undesired model configurations in the sampling process. The smoothing coefficient is set
such that it favours the applications of the merging rule over the splitting rule. The normalization
factors are set equally to indicate an equal consideration of the level of completeness in both horizontal
and vertical surfaces and the level of clutter of the input data in the modelling process.

Table 2. Parameter settings used in the experiments.

Parameters
Data Set

Max wall
Thickness

(m)

Voxel Size
(m)

Convergence
Factor
β

Normalization
Factors Smoothing Coefficient µ

k1 k2 k3 Case 1 Case 2 Case 3

SYN 0.3 5.0 0.0 1/3 1/3 1/3 1.0 0.8 0.9

Office 0.3 3.0 0.2 1/3 1/3 1/3 1.0 0.8 0.9

Museum 0.4 3.0 0.1 1/3 1/3 1/3 1.0 0.8 0.9
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The proposed approach was also evaluated using the ISPRS indoor modelling benchmark data
sets [45]. Although these data sets mostly contain Manhattan world structures, they represent large and
complex indoor environments with various levels of noise, clutter, and occlusions and were acquired
by different types of laser sensors, including both terrestrial (e.g., Faro Focus) and mobile (e.g., Zeb
and Viametris) laser scanners.

5.2. Results

5.2.1. Model Reconstruction

The proposed approach generally works well on the three test data sets. Figure 14 shows the cell
decompositions and the reconstructed models of the synthetic environment SYN and the two real
buildings, i.e., Office and Museum. The environments are partitioned into a set of arbitrary polyhedral
cells. The final models contain not only the final interior spaces (i.e., rooms and corridors) and
volumetric structural elements (i.e., walls) but also exterior spaces which are located within the scope
of the environments. Due to the lack of data representing exterior surfaces of walls, the exterior
walls are not reconstructed in the Office model. Meanwhile, parts of the exterior walls are present
in the Museum model based on the interpretation from the data points captured in other parts of
the building and from knowledges of building architectures, such as the max wall thickness and their
topological relations with interior spaces. Both exterior and interior walls are reconstructed in the SYN
model as the input data contain data points representing them. Nonterminal shapes are also modelled
as inactive elements in the final model, which allows later querying hierarchical structures of shapes at
different granularities. Akin to exterior spaces, these inactive elements are excluded from visualization.
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5.2.2. Quality Evaluation

Quantitative evaluation of the reconstructed models was carried out by using the evaluation
approach proposed by Tran et al. [3]. Since the volumetric walls are represented by both visible surfaces
and interpreted surfaces [3], the evaluation is based on the comparison between the bounding surfaces
of interior spaces (i.e., rooms and corridors) in the reconstructed model with the visible surfaces of
the structural elements (i.e., walls, ceilings and floors) bounding the corresponding interior spaces of
the ground truth.

The quality of the reconstructed models is measured in terms of three quality metrics, i.e.,
completeness (Mcomp), correctness (Mcorr), and accuracy (Macc) for the buffer size b and the cutoff

distance r in the range [1 cm, 10 cm]. The completeness aspect indicates to what extent the geometric
elements of the ground truth are present in the reconstructed model, while the correctness aspect
expresses to what the extent the elements in the reconstructed model are present in the ground truth.
These quality metrics are defined as follows [3]:

MComp(S, R, b) =

∑m
j=1

∣∣∣∪n
i=1(P(S

i)∩ b(R j))
∣∣∣∑m

j=1

∣∣∣R j
∣∣∣ (20)

MCorr(S, R, b) =

∑m
j=1

∣∣∣∣∪n
i=1

(
P

(
Si

)
∩ b(R j

)∣∣∣∣∑n
i=1

∣∣∣Si
∣∣∣ (21)

where b(.) denotes the buffer with size b created around a ground truth surface Rj and where n and
m are the number of surfaces in the reconstructed model S and in the ground truth R, respectively.
The operator |.| denotes the area of the surface, and P denotes the orthogonal projection operation of
a surface in the reconstructed model on its corresponding surface in the ground truth.
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The accuracy measures the closeness between the ground truth and the reconstructed model and
is defined based on Euclidean distance between the dense points representing the ground truth and
the closest surfaces in the reconstructed model [3]:

MAcc(S, R, r) = Med(
∣∣∣π j

Tpi
∣∣∣) i f

∣∣∣π j
Tpi

∣∣∣ ≤ r

whereπ j
Tpi is the orthogonal distance between a point pi of the point cloud, which represent the ground

truth, and a surface plane π j of the reconstructed model. |.| denotes the absolute value.
The evaluation results of the three reconstructed models is shown in detail in Figure 15.
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As can be seen in Figure 15, the quality curves reveal that the models of both the synthetic
environment and the real buildings are reconstructed with high completeness (Mcomp ≥ 95% at
b = 10 cm) and correctness (Mcorr ≥ 95% at b = 10 cm). It can be verified by visual inspection that
the majority of the ground truth elements are present in the reconstructed models. The SYN model is
reconstructed with high accuracy (Macc < 0.5 cm), which agrees with its random error. Meanwhile,
the accuracy of the Office and the Museum are Macc ≈ 2.62 cm and Macc ≈ 2.47 cm, respectively.

We further locate the completeness and correctness errors in order to identify the additional
elements and the missing elements in the reconstructed models in comparison with the ground
truths. Figure 16 illustrates the localization of the completeness and correctness errors of the Museum.
The completeness and correctness errors indicate that the entrance of the Museum is not well
reconstructed. Most of the surfaces (in blue colour) of this building part having low completeness
(Mcomp ≤ 0.2) and low correctness (Mcorr ≤ 0.2). These elements are therefore considered as
the additional surfaces (blue) in the reconstructed model and missing surface (blue) of the ground
truth in the final model.
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Figure 16. Localization of completeness and correctness errors of the Museum: (a) the completeness
errors localized in the ground truth and (b) the correctness errors localized in the reconstructed model.

5.2.3. Reconstruction of Topological Relations

In addition to the generation of semantically rich 3D models of indoor environments, our proposed
approach is able to establish the topological relations, i.e., adjacency, connectivity, and containment,
between elements of the models owing to the characteristics of the shape grammar in maintaining
the topological correctness. Each element is represented by its assigned unique id in the model. Figure 17
shows the reconstructed topography graphs for the Museum, which are extracted at the granularity of
nonterminal spaces. The blue circles represent the containment relations between the final interior
spaces (the rooms and the corridor) and their subspaces (yellow circles). The relations between the final
interior spaces and their adjacent walls (brown circles) are also established. The adjacency relations are
represented by brown dashed line in Figure 17a. The doors are manually inserted into the wall ids 83,
84, 124, and 152 (green circles). This can be simply done by interactively invoking the containment
rules to establish the containment attribute of the walls. The connectivity relations established between
both final spaces and subspaces are represented as black solid lines as shown in Figure 17b. Figure 18
shows the connectivity at the granularity of the final spaces (i.e., rooms and corridors) of the Museum.
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5.2.4. Reconstruction of ISPRS Benchmark Data Set

The proposed approach is evaluated on the five ISPRS Benchmark data sets, including TUB1,
the 2nd floor of TUB2, Fire Brigade, UVigo, and UoM. Figure 19 shows the point clouds and the models
reconstructed from the ISPRS Benchmark data sets. Visual examination of the reconstructed models
indicates that most of the elements of the indoor environments are correctly reconstructed. However,
these models contain several undesired elements and missing elements in comparison with the as-is
condition of the environments captured in the input point clouds. For example, there are additional
rooms and walls in both the TUB2 and Fire Brigade models as well as missing walls in the UVigo model.
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Figure 19. The ISPRS indoor modelling benchmark point clouds and the corresponding models
reconstructed by the proposed approach: (a) TUB1; (b) TUB2; (c) Fire Brigade; (d) UVigo; and (e) UoM.

In order to gain insight into the quality of the reconstructed models, we compare the models with
the corresponding ground truth models provided in the ISPRS Benchmark data sets [45]. The evaluation
is based on the comparison of wall surfaces bounding the interior spaces of the reconstructed models
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with visible wall surfaces of the ground truths in terms of completeness, correctness, and accuracy
using the evaluation approach proposed by Tran et al. [3]. Figure 20 shows the quality curves of
the five reconstructed models of TUB1, the 2nd floor of TUB2, Fire Brigade, UVigo, and UoM. In
general, the reconstructed models have relatively high completeness (Mcomp ≈ 80% at b = 20 cm). While
the walls in the three models TUB1, TUB2, and UoM achieve relatively high correctness (Mcorr ≈ 80%
at b = 20 cm), the Fire Brigade model contains a considerable amount of incorrect wall surfaces
(Mcorr ≈ 41% at b = 20 cm). The models TUB1, TUB2, Fire Brigade, and UoM achieve quite high levels
of accuracy (2.9 cm < MAcc ≤ 4 cm at b = 20 cm), and the reconstructed model of UVigo has lower
accuracy (MAcc ≈ 8 cm at b = 20 cm). These accuracies inherently represent the accuracy of locations
of building surfaces in the reconstructed models. A comparison with other approaches submitted to
the ISPRS Benchmark on Indoor Modelling [45] shows that the proposed approach achieves higher
correctness for all the reconstructed models and higher completeness for three of the data sets (i.e.,
TUB2, Fire Brigade, and UVigo) but similar accuracy for four of the data sets (i.e., TUB1, TUB2, Fire
Brigade, and UoM) [46]. Meanwhile, the accuracy of the reconstructed model for the UVigo data set is
slightly lower.
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6. Conclusions and Future Work

In this paper, a method for procedural reconstruction of 3D indoor models from point clouds is
presented. The method is based on the combination of a shape grammar and a data-driven process
using the rjMCMC algorithm. The integration facilitates the automated application of grammar rules.
Consequently, it provides flexibility in modelling different building architectures, including Manhattan
and non-Manhattan World designs. Additionally, the integration between the local characteristic of
data and the model plausibility as well as taking into account the current state of the model enhances
the robustness of the method to incompleteness and inaccuracy data. Experiments with several point
clouds of synthetic and real indoor environments demonstrated the potential of the proposed approach
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for generating indoor models with high geometric accuracy and rich semantics as well as topological
relations from lidar data with a high level of clutter.

The current indoor grammar is limited to buildings with planar surfaces. The doors are
also manually added to the model by simply updating the containment attribute of walls without
reconstructing their geometry. In the future, we will investigate the extension of the indoor grammar
to buildings with nonplanar elements (e.g., beams and curved walls). We will also investigate
the extension of the proposed shape grammar to allow geometric reconstruction of details such as
door, windows, and stairs. A method for efficient extraction of structural surfaces of large and complex
buildings is also a future work of this research.
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