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Abstract: Both protease- and reactive oxygen species (ROS)-mediated proteolysis are thought to be
key effectors of tissue remodeling. We have previously shown that comparison of amino acid compo-
sition can predict the differential susceptibilities of proteins to photo-oxidation. However, predicting
protein susceptibility to endogenous proteases remains challenging. Here, we aim to develop bioin-
formatics tools to (i) predict cleavage site locations (and hence putative protein susceptibilities) and
(ii) compare the predicted vulnerabilities of skin proteins to protease- and ROS-mediated proteolysis.
The first goal of this study was to experimentally evaluate the ability of existing protease cleavage
site prediction models (PROSPER and DeepCleave) to identify experimentally determined MMP9
cleavage sites in two purified proteins and in a complex human dermal fibroblast-derived extracellu-
lar matrix (ECM) proteome. We subsequently developed deep bidirectional recurrent neural network
(BRNN) models to predict cleavage sites for 14 tissue proteases. The predictions of the new models
were tested against experimental datasets and combined with amino acid composition analysis (to
predict ultraviolet radiation (UVR)/ROS susceptibility) in a new web app: the Manchester proteome
susceptibility calculator (MPSC). The BRNN models performed better in predicting cleavage sites in
native dermal ECM proteins than existing models (DeepCleave and PROSPER), and application of
MPSC to the skin proteome suggests that: compared with the elastic fiber network, fibrillar collagens
may be susceptible primarily to protease-mediated proteolysis. We also identify additional putative
targets of oxidative damage (dermatopontin, fibulins and defensins) and protease action (laminins
and nidogen). MPSC has the potential to identify potential targets of proteolysis in disparate tissues
and disease states.

Keywords: extracellular matrix; protease; aging; skin; deep-learning; machine learning; biomark-
ers; degradomics
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1. Introduction

Although the causative mechanisms of aging are not yet fully understood, there is
compelling evidence that biochemical pathways, including protein oxidation, and protease-
mediated cleavage, contribute to proteolysis and loss of proteostasis [1]. Similarly, oxidative
stress and aberrant protease activity are also implicated in pathological remodeling of both
acute and chronically inflamed tissues [2–4]. In the skin, for example, ultraviolet radiation
(UVR), oxidative stress, and upregulated protease activity are interlinked processes asso-
ciated with clinical photoaging, which manifests in the dermis as profound histological
remodeling of fibrillar collagens and elastic fibers and the accumulation of oxidative dam-
age [5–8]. Although collectively UVR, ROS and protease-driven proteolysis may contribute
to the production of the skin photoaging degradome, the relative importance and specific
targets of action of these different mechanisms remain poorly defined [9]. A better under-
standing of tissue proteolysis in the dermis and other tissues may lead to the identification
of novel candidate biomarkers of damage and therapeutic targets [10,11].

Previous studies from our group suggest that both the in vivo remodeling of elastic
fiber-associated fibrillin microfibrils, which is a hallmark of early photoaging, and the rela-
tive susceptibility of these assemblies to in vitro UVR, is likely to be due to specific amino
acid (AA) compositions of the component proteins, principally fibrillin-1 [7,12,13]. This
protein, and others also enriched in both UVR-absorbing (UV-chromophore) and oxidation-
sensitive amino acid (AA) residues, are susceptible to degradation by environmentally
attainable UVR doses [14]. In contrast, ECM protein assemblies, such as collagens I and
VI and tropoelastin, are relatively resistant (as determined by electrophoretic mobility or
ultrastructure) to these doses and wavelengths [13]. Recently, we have also demonstrated,
using a newly-developed proteomic peptide location fingerprinting methodology, that
UVR exposure can induce subtle structure-associated changes in the largest collagen VI
alpha chain (alpha-3), which are not detectable as changes in global collagen VI microfibril
ultrastructure [15] or in vivo architecture [16]. Therefore, AA composition appears to be
a good predictor of relative susceptibility to UVR and oxidative damage (which is also a
factor in non-UVR exposed tissues) [17–20]. However, predicting the relative susceptibility
of proteins to protease-mediated cleavage is a more difficult task, as enzymatic proteolysis
is dependent not only on the primary structure (AA sequence), but also on higher-order
structures [21]. Despite this complexity, there remains the possibility that (as with rela-
tive UVR chromophore abundance) protease cleavage site abundance may serve as a key
determinant of relative protease susceptibility.

The matrix metalloproteinases (MMPs) are a large family of zinc-dependent enzymes,
which are thought to play key roles in skin photoaging and many other age- and disease-
related disorders [22]. Other enzyme families, such as serine proteases, can also degrade
ECM proteins [23,24] but their action in skin aging is not as well characterized. In contrast,
the validated prediction of cleavage sites of enzymes, such as trypsin (where cleavage
occurs at the C-terminal side of Arg and Lys AA residues when not followed by Pro) and
the Staphylococcus aureus protease V8-GluC (where cleavage occurs on the C-terminal side
of Glu in preference to Asp) is well established [25,26]. However, the prediction of cleavage
sites in ECM proteins by MMPs and cathepsins requires the development and application
of complex mathematical models based on state-of-the-art machine learning and deep
learning techniques, which utilize data available in databases, such as MEROPS [27,28].
A number of bioinformatic tools have been developed to predict cleavage sites in AA
sequences. For example, PROSPER, which is based on support vector machines (SVMs)
and DeepCleave, uses a deep convolutional neural network (CNN). Both utilize some
protein structure features to perform their predictions [29–32]. However, to our knowledge,
the predictions of these algorithms have not been experimentally validated against native
ECM proteins, nor has their comparative performance been evaluated in this context.
Moreover, although recurrent neural networks have shown promising results in protein
sequence and function prediction [33], this architecture, again to our knowledge, has not
previously been employed for proteolytic cleavage site prediction [34,35].
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The first goal of this study was to experimentally determine the ability of PROSPER
and DeepCleave to identify MMP9-determined cleavage sites in two exemplar purified
proteins (decorin (DCN) and vitronectin (VTN)) and subsequently in a complex ECM
proteome derived from cultured human dermal fibroblasts (HDFs). Given the relatively
poor performance of these algorithms against native ECM proteins, our next aim was to
develop and evaluate a new protease cleavage prediction algorithm: Manchester proteome
cleave (MPC), which uses state-of-the-art deep bidirectional recurrent neural network
(deep BRNN) architecture [34,35]. Finally, we integrated the MPC model with amino acid
composition analysis to produce a new web tool, the Manchester proteome susceptibility
calculator (MPSC), which can predict relative protein susceptibility based on AA and
protease cleavage site abundance) to two major mechanisms of tissue proteolysis.

2. Results and Discussion
2.1. Accurate Prediction of Protease Cleavage Sites in Native ECM Proteins Is Challenging

In the skin, MMPs and other proteases, such as elastase and members of the cathepsin
and granzyme families, play a significant role in tissue maintenance and remodeling [36,37].
Prediction of proteolytic cleavage sites is dependent on not only the 1◦ AA sequence
but also the higher-order 2◦–4◦ structures, which determine features, such as solvent
accessibility and disordered regions [38,39]. Although currently available algorithms,
such as PROSPER and DeepCleave, can predict cleavage sites with a good degree of
accuracy [29,30], these predictions are (i) often limited to a specific subset of proteases and;
(ii) lack experimental validation both in simple and complex model systems. In this study,
we used SDS–PAGE and liquid chromatography–tandem mass spectrometry (LC–MS/MS)
to characterize protease-mediated proteolysis in order to validate and compare protease
cleavage site predictions for MMP9 (by PROSPER and DeepCleave) for purified DCN
and VTN. MMP9 was chosen due to its association with the skin photoaging process [40].
By SDS-PAGE, we confirmed that both DCN and VTN are MMP9 substrates [41,42], but
in quadruplicate experiments, the effects of MMP9 exposure on the relative staining
intensities and electrophoretic profiles were more profound for VTN than DCN (Figure 1a)
(Supplementary Table S1). This differential effect of MMP9 exposure was also evident
by LC–MS/MS analysis. MMP9 cleavage sites in these two proteins were identified by
performing in-gel digestion with trypsin, LC–MS/MS and a bioinformatic analysis pipeline,
which searched for non-tryptic (assumed to be MMP9-derived) sites in the digested samples.
Using this approach, we identified 33 putative cleavage sites in VTN (478 AA residues)
compared with only 18 in DCN (359 AA residues) (Figure 1b). MMP9 cleavage sites in
VTN were located primarily between AAs 300–400, corresponding to the heparin-binding
domain, which has a proven involvement in fibronectin deposition [43]. In contrast, DCN
cleavage sites were distributed throughout the AA sequence (Figure 1b). We next compared
these experimentally determined cleavage sites with those predicted by PROSPER and
DeepCleave. While PROSPER and DeepCleave achieve excellent performance against
training available in MEROPS data (which represent diverse experimental approaches to
establish enzymatic cleavage sites) their accuracy in predicting MMP9 cleavage sites in
our controlled native VTN and DCN protein digests (as evaluated by area under the curve
(AUC) score) was slightly better than random (PROSPER AUC: 0.55; DeepCleave AUC:
0.64) (Figure 1c).

In order to compare the predictive capabilities of PROSPER and DeepCleave against a
complex proteome, we decellularized a post-confluent culture of HDFs and digested the
remaining ECM with MMP9. Over 60 proteins were identified by LC–MS/MS in the base-
line (non-MMP9 digested) matrix, many of which (COL6A1, COL6A2, COL6A3, EMILIN1,
COL1A1, COL1A2) are found in the human dermis [44,45]. Putative MMP9 cleavage sites
were identified in 40 out of 60 proteins, (including COL6A1, EMILIN1, FBLN2, COL1A2)
resulting in 390 putative MMP9 cleavage sites (Figure 1d). Both PROSPER and DeepCleave
performed poorly in accurately predicting cleavage sites in this complex mixture of native
ECM proteins (PROSPER AUC: 0.56; DeepCleave AUC: 0.6) (Figure 1e). This may be due to:
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(i) a mismatch between the methods used to identify cleavage sites in the training and test
data sets, or (ii) the lack of relevant training data in MEROPS (only 301 MMP cleavage sites
derived from both intact protein and peptide substrates) [27]. A new protease cleavage site
prediction model, which utilizes not only state-of-the-art machine learning approaches but
also more expansive, up-to-date training datasets of native protein substrates, calibrated
against experimental data, may achieve better accuracy.
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Figure 1. Prediction and validation of protease cleavage sites by existing models. (a) Gel-electrophoresis and associated
densitometry profiles for control (black) and MMP9-digested (red) vitronectin (VTN) and decorin (DCN) proteins (the
apparent Mw of glycosylated DCN is 50 kDa). MMP9 digestion induced profound changes in the electrophoretic profile of
VTN. The single ~30 kDa monomer band was replaced by two higher Mw species. In contrast, MMP9 exposure decreased
the staining intensity of the 50 kDa DCN monomer band and promoted the formation of putative lower Mw degradation
products. (b) Differential degradation of VTN and DCN was confirmed by LC–MS/MS on bands excised from the same
gel. Pins on the schematics represent experimentally determined cleavage sites, and the heat maps illustrate the number of
experimental cleavage sites per 50 AA window (darker red = more sites per window). (c) receiver operating characteristic
(ROC) curves evaluating experimentally detected MMP9 cleavage sites (by LC–MS/MS) from purified VTN and DCN
proteins against protease cleavage site prediction models (PROSPER)- and DeepCleave-predicted cleavage sites. Both
algorithms struggled to accurately predict experimental sites in native proteins. (d) MMP9-digested proteins detected
by LC–MS/MS in a complex cell-derived matrix. A total of 60 proteins were detected, from which 40 had at least one
non-tryptic cleavage site (assumed to be due to MMP9). (e) ROC curves evaluating experimentally detected MMP9 cleavage
sites (by LC–MS/MS) from a complex cell-derived matrix against PROSPER- and DeepCleave-predicted cleavage.
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2.2. Protease Cleavage Site Prediction Performance Can Be Improved Using a Deep Bidirectional
Recurrent Neural Network Architecture

Recurrent neural network (RNN) architectures, initially developed for natural lan-
guage processing, are particularly suited to analyze genomic and proteomic sequences [46].
This is particularly important for modeling proteolysis, as the AAs surrounding the cleav-
age sites play a significant role in determining the cleavage specificity [47]. RNNs have
recently achieved notable success in the field of proteomics but have not yet been used to
model proteolysis [35,48]. Here we adapted the methodologies employed by both PROS-
PER and DeepCleave to develop a novel, deep bidirectional recurrent neural network (deep
BRNN) based proteolysis prediction algorithm calibrated against in-house experimental
datasets. For data collection, the training, testing and validating datasets for serine pro-
teases and MMPs were collected from the MEROPS database [27] and supplemented with
additional MMP cleavage sites from a 2016 study [49] by Eckhard et al. Data were collected
for two groups: MMPs (-1, -2, -3, -7, -8, -9, -12 and -13) and other proteases (Elastase 2,
granzyme B, cathepsin -K, -G, -B, -D). These published datasets were also supplemented
with the cleavage site information generated from our MMP9 LC/MS-MS experiments
(Figure 2a).

In addition to the primary AA sequences, secondary structure, disordered regions
and solvent accessibility may also play significant roles in determining the probability of
protease cleavage [30]. Therefore, we used the methods previously employed by PROSPER
(PSIPRED [50], DISOPRED2 [51] and ACCPRO 5.2 [52,53]) to predict these structural
features for the whole human proteome prior to sequence encoding and model training.
Each AA for every protein, in combination with these structural features, was encoded
in a format suitable for RNNs. For sequence encoding, a sliding 8 AA window (4 AAs
upstream and 4 AAs downstream of the predicted cleavage site) was utilized (Figure 2b).

To build a new cleavage site prediction model, we needed to address two challenges.
First, there is limited data on MMP9 substrate specificity (e.g., MEROPs contain informa-
tion on 301 cleavage sites from 53 protein substrates) for training deep learning models
(Supplementary Figure S1). Second, the large imbalance between cleavage sites vs. non-
cleavage sites (i.e., the number of non-cleavage sites vastly outweighs the number of
cleavage sites) resulting in unbalanced datasets. The first challenge was addressed by
(i) complimenting the MEROPS cleavage data with data available in the Eckhard 2016
study [49] and; (ii) using transfer learning approaches, where a general protease cleavage
model was pretrained using all the available data (separately for MMPs and other proteases)
and subsequently used as a starting point to train protease-specific models (using only the
cleavage data for a specific protease) [54]. The second issue was addressed by weighting the
model prior to model training to “pay more attention” to the minority (cleavage sites) class.
For model training, different architectures, depths and hyperparameters of deep learning
networks were evaluated in terms of area under the curve (AUC), the harmonic mean of
the precision and recall score (F1) and The Matthews correlation coefficient (MCC) scores
against cleavage sites. These were sourced from (i) protein substrate identities for each
protease from the MEROPS and the Eckhard 2016 study, which were excluded from the
training datasets (consisting of 15% of the total number, randomly selected); (ii) the DCN,
VTN and HDF MMP9 LC–MS/MS cleavage site datasets as previously described. The best
performing architecture was composed of four bi-LSTM layers, one dense layer and one
fully connected layer (Figure 2c). Crucially, this setup was capable of predicting cleavage
sites in ECM proteins more accurately compared to PROSPER and DeepCleave for all test
sets evaluated by AUC, F1 and MCC scores. The AUC scores for MMP9 for: (i) the 15%
protein test set were MPC: 0.809, DeepCleave: 0.779 and PROSPER: 0.778; (ii) the DCN and
VTN test set were MPC: 0.650, DeepCleave: 0.603 and PROSPER: 0.561 and; (iii) the HDF
data were MPC: 0.71, DeepCleave: 0.640 and PROSPER: 0.554 (Figure 2d), respectively.
For each of the proteases, there was some agreement between MPC, DeepCleave, and
PROSPER predicted cleavage sites; however, each algorithm also identified cleavage sites
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unique to the model (Supplementary Table S2). Tables of AUC values and 95% confidence
intervals are reported in Supplementary Figure S2.
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Figure 2. Manchester Proteome Cleave prediction model: architecture and testing. (a) We developed a novel protease
prediction algorithm, the Manchester proteome cleave (MPC), based on state-of-the-art deep learning methodologies. The
development of MPC involved five major steps: (a) data collection: integration of data from publicly available protease
cleavage databases (MEROPs), the Eckhard 2016 dataset and our own in-house experiments. (b) Sequence encoding:
MPC utilized primary AA sequence and structural features derived by in silico modeling with PSIPRED, DISOPRED
and ACCPRO. One-hot encoding was used to represent the protein sequences in the format required for recurrent neural
networks. (c) Model training: the MPC model consisted of 4 bidirectional long-short-term memory (Bi-LSTM) layers,
one fully connected dense layer and an output layer. A general protease model was first pre-trained, and the resultant
weights were transferred to train a protease-specific model. (d) Model evaluation: hyperparameters were tuned against
15% of excluded proteins and for MMP9, also against our experimental DCN/VTN and human dermal fibroblasts (HDF)
cleavage site dataset utilizing a grid search strategy. (e) Webserver Development and Protein Susceptibility analysis: the
best-performing architecture was used to train an additional four models, which were integrated into our MPSC web tool.
Hence MPSC uses 5 models-averaged ensembles to infer the final cleavage scores for each of the proteases. MPSC web
tool is also capable of performing UV and ROS assessments of proteins. The MPSC web server is publicly available on
https://www.manchesterproteome.manchester.ac.uk/#/MPSC.

https://www.manchesterproteome.manchester.ac.uk/#/MPSC
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2.3. Development of a Web Tool to Predict Protein Susceptibilities: Step #1 Amino
Acid Composition

Having developed a new protease cleavage site prediction model, we next sought to
develop a web tool to predict protein susceptibly to proteolysis by multiple mechanisms.
The first step was to expand our previous analyses of amino acid composition (and hence
UVR/ROS susceptibility) [12] to the whole skin proteome. The AA residues Trp, Tyr and
double-bonded Cys (Cys = Cys) are sensitive to both biologically relevant wavelengths of
UVR and oxidation [14], whereas Met, His, and Cys are sensitive to oxidation alone [55].
We have previously established, in a limited survey of skin components, that proteins rich
in these AA residues are greater at risk of degradation by UVR and/or ROS [7]. Building
on these insights, we have now reviewed published data from experimental studies,
which subjected ECM proteins and assemblies to physiologically relevant UVR doses and
wavelengths, and categorized selected proteins as susceptible, semi-susceptible or resistant
(Supplementary Table S1). As AA composition can predict the relative susceptibilities
of these proteins to UVR/ROS-mediated proteolysis (Figure 3a), we have integrated this
approach into the MPSC web tool.

Applying the MPSC to skin ECM proteins (as defined by the Manchester skin pro-
teome) predicts that many elastic fiber-associated proteins (FBN1, FBN2, FBLN1, FBLN5,
LTBP2, LTBP3, LTBP4, EFEMP2, MFAP2 and MFAP4) [56,57] will be highly susceptible to
degradation by both UVR and oxidation (Figure 3b). These predictions agree well with
in vivo observations of dermal remodeling in photoaging where the loss of FBN1 and
FBLN5 from the papillary dermis, and the presence of disorganized material termed solar
elastosis, characterizes mildly and severely photoaged skin, respectively [58–60]. In con-
trast, based on AA composition, skin collagens are likely to be relatively resistant to both
UVR and to ROS-mediated oxidation (Figure 3a,b), and previously, we have shown that
the electrophoretic mobility of collagen I alpha chains, the most abundant skin proteins, are
unaffected by physiologically relevant doses of UVR [12]. However, in vivo, observational
studies show that collagen I abundance decreases in aged (and particularly in photoaged)
human skin [61,62], suggesting that other mechanisms may drive collagen remodeling.

In addition to predicting the relative UVR/ROS susceptibilities of major structural
components, such as elastin and the collagens, our analysis also identifies potential novel
markers involved in the regulation of TGFβ and collagen fibril formation (DPT) and ECM
development (MGP), which, to our knowledge, have not previously been implicated in
photoaging (Figure 3b). Extracellularly, MPSC predicts that the defensin family (DEFB1,
DEFA3, DEFA1B and DEFB4B) of proteins may be UVR/ROS susceptible (Figure 3c). This
is consistent with the ability of defensins to act as antioxidant proteins [63]. Crucially,
MPSC not only predicts that known photoaging candidate biomarkers (LOX, TIMP3)
will be susceptible to UVR/ROS degradation [44,64,65] but also highlights the potential
susceptibility (TSHB, CTSB, CTSZ) and resistance (DCD, EMCN, CALM5 and APOC1)
of new skin aging biomarker candidates (Figure 3c). In complex tissues, degradative
mechanisms do not act in isolation [36,37], and we, and others, have shown that UVR
exposure can enhance protease-mediated-proteolysis [7,66].

2.4. Development of a Webtool to Predict Protein Susceptibilities: Step #2 Integration of Protease
Cleavage Site Prediction Models

MPSC predicts relative protease susceptibility as the number of protease cleavage
sites/protein length. Cleavage site predictions are derived from an ensemble model
averaging five MPC model outputs (Figure 2e). This approach is based on the hypothesis
that cleavage site abundance predicts experimental protease susceptibility. In order to test
this hypothesis, we compared cleavage site predictions with experimental detection by LC–
MS/MS. Characterization of the HDF-derived matrix revealed two groups of proteins, those
with and those without experimentally detected MMP9 cleavage sites. Proteins apparently
devoid of MMP9 cleavage sites included COL3A1, COL12A1, LTBP2, VCAN and sixteen
others (Figure 1d). We have used the identities of these cleaved and non-cleaved proteins
to determine whether predicted MMP9 protease susceptibilities differ statistically between
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these two groups. The MPSC score for MMP9 was set to 0.8, which corresponds to highly
confident cleavage sites. Using this approach, proteins with not experimentally detected
MMP9 cleavage in the HDF-derived proteome also had significantly lower predicted
MMP9 susceptibilities than the proteins that had at least one MMP9 cleavage site (p = 0.005,
Student’s t-test). This analysis suggests that novel substrates for proteolytic degradation
may be identified using in silico proteolytic modeling and supports the hypothesis that
predicted cleavage site abundance is an indicator of relative susceptibility.
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non-ECM extracellular proteins. Defensins (red) are highlighted as an example of a susceptible protein family.

We next applied MPSC web tool calculations to every ECM and extracellular protein
in the Manchester skin proteome [45] in order to predict their susceptibility to UVR/ROS
and to UV-upregulated skin proteases (interstitial collagenase: MMP1, 92 kDa gelatinase:
MMP9, stromelysin-1: MMP3, cathepsin K, and granzyme B) [40,67].

Using the MPSC web tool, we initially analyzed skin ECM proteins for their predicted
protease and UVR/ROS susceptibilities using MPC models. This analysis suggests that
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tropoelastin (the elastin precursor) will be particularly susceptible to MMP-mediated cleav-
age, which agrees well with experimental observations [68]. In addition, multiple proteins
involved in elastic-fiber formation and organization (FBLN1, FBLN2, FBLN5 EFEMP1,
EFEMP2, MFAP4 and FBN2) were also predicted to be susceptible to not only MMP prote-
olysis but also to UVR/ROS. These predictions suggest that both proteases-mediated and
UVR/oxidative damage may play a role in the deterioration of the elastic fiber architecture,
which is characteristic of photodamage in human skin [69]. We have previously shown an
interplay between these mechanisms whereby UVR exposure enhances the degradation of
fibrillin microfibrils [66].

In addition to elastic fibers, collagens also undergo profound remodeling in photo-
exposed skin. Protease-mediated activity has long been suspected as a driver of age-related
degradation of skin collagens [61,62], but given the intermittent and/or chronic low-
level action of these mechanisms, the causative link has yet to be established. Whilst the
protease susceptibility of Collagen I and III has been confirmed experimentally [70], our
computational techniques also suggest that many skin collagens (i.e., II, III, IV, V, VI, XII,
and XV) will be degraded by proteases (MMP-1, -3, -9, granzyme-B, and cathepsin K),
but not by UVR/ROS. For the ubiquitous microfibrillar collagen VI assemblies, protein
abundance and architecture is resistant to in vivo photodamage [16], suggesting that this
ECM assembly is resistant to multiple degradative agents. However, the alpha 5 chain of
COL6 is degraded by cathepsin K [71,72], and we have shown subtle UV-induced changes
in the structure-associated features by mass spectrometry [15]. Therefore, we conjecture
that differential mechanisms may drive the degradation of elastic fiber components and
skin collagens, necessitating different preventative and/or therapeutic approaches.

In addition to predicting the relative susceptibility of major structural ECM assem-
blies, our analysis also suggests that protease-mediated proteolysis of basement membrane
proteins, including laminins (LAMB-1, -2, -3, -4, LAMA-3, -4) and nidogen (NID1), may
be a contributing factor to the remodeling of the dermal-epidermal junction in photo-
exposed skin [73]. Other proteins predicted to be highly susceptible to MMP degradation
include several proteoglycans (OGE, ASPN, KERA, and DPT), retinoic acid receptor respon-
der protein 2 (RARRES2), matrix Gla protein (MGP), procollagen C proteinase enhancer
(PCOLCE), TGFβ1, apolipoprotein E (APOE) and Von Willebrand factor (VWA5B1). Some
proteins appear to be susceptible to only a single enzyme, such as collagen triple helix
repeat-containing protein 1 (CTHRC1: granzyme B) and adiponectin receptor protein 1
(ADPOQ: cathepsin K) (Figure 4b–f).

Photoaging may also affect non-structural extracellular proteins, such as growth fac-
tors, antioxidants and enzymes, which play key roles in the maintenance and regeneration
of normal healthy skin. Our analysis suggested that MMPs, cathepsin-K and granzyme-B
are capable of digesting (or self-digesting) each other in addition to other catalytic proteins
and inhibitors, such as cathepsins themselves (A, C, K, H, B, Z, V), Kallikreins (KLK5,
KLK6, KLK7, KLK13), MMPs (MMP10, MMP11, MMP19, CPA3), PLAU, ADAMTS17,
CFI, and protease inhibitors TIMP1 and 2, SPINK6, CST6, PI3, SERPINF1, SERPINA1, 3,
12, SERPINB5. It has been previously shown that proteases exhibit complex synergetic
relationships, cleaving one another to amplify protease cascades, such as those mediated
by the so-called “cysteine switch”. [74]. This consistent prediction of such catalytic proteins
being protease-susceptible markers and the extensive literature of protease activation mech-
anisms strengthens our confidence in the predictions of the MPC. Defensin family members
(DEFA1B, DEFB1, DEFB4B) - which play antimicrobial roles in skin - are predicted by
the MSPC to be highly susceptible to both UVR/ROS and proteases, thereby suggesting
their role not only as antimicrobial peptides but also potential sacrificial sunscreen-like
proteins and antioxidants [63,75]. Other examples of proteins predicted to be susceptible
to both proteolysis and UV/ROS include IGF1, TGFα, INHBA, NTF3, VEGFC, HGFAC,
TSHB, and SLURP1. Markers predicted to be susceptible to proteolysis but resistant to
UVR/ROS include galectins (LGALS1, LGALS7B, LGALSL) and annexins-1, 3, 5 (ANXA1,
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ANXA3, ANXA5), potentially indicating their need to be resistant to environmental factors
(Figure 5a–e).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 4. UVR/ROS vs. protease susceptibilities of MMP1, 3 and 7, granzyme B and cathepsin K of skin proteome-derived 
extracellular matrix (ECM) components. (a) Using the protein identities in the MMP9 degradation dataset, which had no 
MMP9 cleavage sites or had at least one cleavage site, allowed the evaluation of the MPC model’s performance to predict 
novel substrates. Proteins that had no experimental cleavage sites yielded significantly lower predicted MMP9 suscepti-
bility scores. Having defined that susceptibilities could be analyzed using the MPC model, we used these models and 
analyzed the susceptibilities for MMP1 (c), 3 (d), and 9 (b), granzyme B (e), and cathepsin K (f). Proteins that were pre-
dicted as highly susceptible by PROSPER or DeepCleave only are labeled in red text. Proteins that are predicted as highly 
susceptible by MPC only are labeled in green text. Throughout, we have highlighted (boxed text) important skin proteins 
COL1A2, FBN2, ELN and COL6A3, which merit discussion. 

Photoaging may also affect non-structural extracellular proteins, such as growth fac-
tors, antioxidants and enzymes, which play key roles in the maintenance and regeneration 
of normal healthy skin. Our analysis suggested that MMPs, cathepsin-K and granzyme-B 
are capable of digesting (or self-digesting) each other in addition to other catalytic proteins 
and inhibitors, such as cathepsins themselves (A, C, K, H, B, Z, V), Kallikreins (KLK5, 
KLK6, KLK7, KLK13), MMPs (MMP10, MMP11, MMP19, CPA3), PLAU, ADAMTS17, 
CFI, and protease inhibitors TIMP1 and 2, SPINK6, CST6, PI3, SERPINF1, SERPINA1, 3, 
12, SERPINB5. It has been previously shown that proteases exhibit complex synergetic 
relationships, cleaving one another to amplify protease cascades, such as those mediated 
by the so-called “cysteine switch”. [74]. This consistent prediction of such catalytic pro-
teins being protease-susceptible markers and the extensive literature of protease activa-
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MMP9 cleavage sites or had at least one cleavage site, allowed the evaluation of the MPC model’s performance to predict
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Figure 5. UVR/ROS vs. protease susceptibilities of MMP1, 3 and 7, granzyme B and cathepsin K of skin proteome-derived
extracellular components. Similar to the ECM components, we have also investigated proteins in the extracellular space
important in maintaining the ECM. We analyzed extracellular components for MMP1 (b), 3 (c), 9 (a), granzyme B (d) and
cathepsin K (e). Proteins that were predicted as highly susceptible by PROSPER or DeepCleave only are labeled in red text.
Proteins that are predicted as highly susceptible by MPC only are labeled in green text. Throughout, we have highlighted
(boxed text) important skin proteins, which merit discussion.

3. Materials and Methods
3.1. Dataset Collection

FASTA sequences and disulfide bonds for each protein in the Manchester skin pro-
teome (MSP) were retrieved from the Uniprot database in Jan 2020 [76]. For MPSC develop-
ment, experimentally validated protein substrate annotations were collected from Eckhard
2016 and MEROPS (v12.2) in Jan 2020 [27,49]. Only human protein cleavage sites were
retrieved. The entire MSP [45] and proteins present in the Eckhard 2016 were digested
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using locally installed PROSPER, and full proteome digestion by DeepCleave was provided
by our Monash collaborators.

3.2. Deep RNN Protease Model
3.2.1. Evaluation Metrics

As the dataset is highly imbalanced, containing thousands of non-cleavage sites
vs. only hundreds of cleavage sites, and thus in order to evaluate the performance of
PROSPER, DeepCleave and MPC, we used F1 score representing the harmonic mean of
precision and recall; the Matthews’ correlation coefficient (MCC), precision, recall and area
under the curve (AUC) scores. Performance differences of classifiers are visualized with
receiver operating characteristic (ROC) curves (sensitivity-(true positive rate) against the
1-specificity (false-positive rate) and evaluated with area under the curve (AUC) score.
MCC and F1 scores are defined as follows:

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

F1 score =
2TP

2TP + FP + FN
(2)

where TP represents the number of true positives, TN represents the number of true
negatives, FN represents the number of false-negatives, and FP represents the number of
false-positives, respectively.

3.2.2. Feature Extraction

PROSPER revealed that not only the AA sequence context surrounding cleavage sites,
but also protein secondary structure, disordered regions and solvent accessibility play
important roles in proteolytic cleavage site prediction [30]. The whole human proteome
was annotated with PSIPRED [50], DISOPRED2 [51] and ACCPRO 5.2 [52,53] to retrieve
these different types of sequence-derived structural features.

3.2.3. One-Hot Encoding

Each AA was encoded using the one-hot encoding, resulting in a 20-dimensional
vector where each dimension represents one of the 20 common AAs. To gain insights
from the surrounding AAs, a sliding window of −4 and +4 AAs additional to the cleavage
site was used for each sequence. At the N- and C- termini, where there are no following
AAs, each position of the 20-dimensional vector contained only zeros. Furthermore, we
complemented each of these vectors with three-dimensional coordinates retrieved from
SCRATCH (x, y, z), one hot-encoded representation of whether amino acid was part of the
coil, strand or helix, two-dimensional one-hot vector encoding whether it was exposed or
buried, as well as a two-dimensional one-hot vector of whether AA was disordered or not.

3.2.4. Train, Test and Validate Data Split

In contrast with previously published models, which split the data in train, test and
validate datasets on the cleavage site basis regardless of the protein source, we have ensured
that the testing, training and validating data all come from independent proteins. We used
TensorFlow random seed to ensure the consistency of evaluations and ensured that the
same protein identities were selected each time when evaluating the model performance;
70% of the proteins were used for the training, 15% for testing and 15% for validating.

3.2.5. Architecture of the Deep RNN

We used the Python 3.8 TensorFlow Keras package to implement our MPC model.
There are many more non-cleavage sites than the cleavage sites resulting in a very im-
balanced dataset. To overcome this, we assigned larger weights to cleavage sites than
non-cleavage sites, enforcing the classifier to “pay more attention” to the underrepresented
class. We also utilized transfer learning to overcome the issue with limited amounts of
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data available for certain proteases [54]. We ensured that the general model and protease-
specific model contained the same identities for testing, training, and validating. MPC
protease models consist of four bidirectional LSTM layers, a fully connected Dense layer
and an output layer. We set epochs to a very large number (>10 000) and monitored the
early stopping by measuring the maximum F1 score with a patience of 20 epochs. A
generic model utilized all the MMPs or other proteases. We then used transfer learning to
convert the generic model into the protease-specific model by loading the initial weights,
freezing the initial layer and continuing the training process with the data that only had
protease-specific entries. Our experimental DCN/VTN and HDF MMP9 datasets were
used to tune the hyperparameters (the number of AAs surrounding cleavage site, learning
rate, batch size, etc.) to achieve the optimal performance in the skin-relevant model system.
Subsequently, based on the optimized hyperparameters, we trained 5 models for each of
the proteases and took the average output score as the final prediction.

3.3. UVR/ROS and Protease MPSC Susceptibility Model Calculations

Previous analysis has revealed a clear agreement between experimental UV and
ROS susceptibility and chromophore content of the FASTA sequence. To implement the
UV, ROS and combined UVR/ROS model, simple mathematical equations were derived,
which quantify the number of UV and ROS chromophore AAs per length of the sequence.
For proteolysis susceptibility calculations, highly confident (score > 0.8), MPC cleavage
sites were selected, and the number of cleavage sites per protein length calculated. The
calculations employed in MPSC are:

UV susceptibility =
∑(Trp + Tyr + [Cys = Cys]/2)

Protein length
∗ 100 (3)

ROS Susceptibility =
∑(Trp + Tyr + Met + Cys + His)

Protein length
∗ 100 (4)

UV−ROS Susceptibility =
∑(Trp + Tyr + Met + Cys + His + [Cys = Cys]/2)

Protein length
∗ 100 (5)

Protease =
∑
(

Proteases(>0.8)

)
Protein length

∗ 100 (6)

where Trp represents tryptophan, Tyr represents tyrosine, Met represents methionine,
Cys represents cysteine, His represents histidine, and Cys = Cys represents disulfide
bound cystine.

3.4. LC–MS/MS Methods for Generating Experimental Testing Dataset
3.4.1. Cell Culture

Human dermal fibroblasts (HDFs) were cultured from a scalp biopsy obtained from
a hair transplant procedure. Ethical approval was obtained from the National Research
Ethics Committee (ref 19/NW/0082), and the tissue donor provided written, informed
consent prior to the procedure. Skin biopsies were cultured dermis-side down in Dul-
becco’s modified Eagle’s medium (DMEM) (Thermo Fisher, Waltham, MA, USA) con-
taining 20% (v/v) fetal bovine serum (FBS), GlutaMAX (2 mM), penicillin (100 U/mL),
streptomycin (0.1 mg/mL) and amphotericin-B (2.5 µg/mL) until HDFs were observed
migrating out of the explant. The culture medium was changed every 2–3 days until cells
reached 80% confluence (approximately 3 weeks), at which point explanted tissue was
aseptically removed from the culture and HDFs were subcultured using trypsin (0.05%
w/v)-ethylenediaminetetraacetic acid (EDTA; 0.02% w/v). Subsequent culture of HDFs
used supplemented DMEM containing 10% (v/v) FBS. For extracellular matrix (ECM)
deposition, HDFs at passage 4 were seeded at 1.2 × 105 cells/mL, in 0.5 mL medium
containing 50 µg/mL ascorbic acid (final concentration), in a 24-well plate, and cultured
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until confluence (approximately 2 days). At this point, a 0.25 mL medium was removed
and replaced with a fresh medium. The medium was replaced every 2–3 days.

3.4.2. HDF-Deposited ECM In Vitro

The procedure for obtaining HDF-deposited ECM was carried-out as previously
described [77]. Briefly, the medium was removed from cultures on day 9 post-confluency,
and the cell layer washed twice with phosphate-buffered saline (PBS). To remove cells,
0.5 mL of extraction buffer (20 mM ammonium hydroxide solution, 0.5% v/v Triton-X
100, in PBS without Ca2+/Mg2+) was added to HDFs for 5 min, and cell depletion was
determined by repeatedly checking cultures under a light microscope. Extraction buffer was
diluted by the addition of PBS, and HDF-depleted ECM was incubated at 4 ◦C overnight.
Following the removal of diluted extraction buffer, the remaining cell debris was removed
by three successive washes in PBS. The presence of deposited, HDF-depleted ECM was
determined by light microscopy.

3.4.3. MMP9 Degradation of ECM and DCN/VTN In Vitro

Human recombinant MMP9 (hrMMP9; R&D Systems) was activated by adding 1 mM
(final concentration) ρ-aminophenylmercuric acetate (APMA) and incubating for 24 h at
37 ◦C. HrMMP9 activity was confirmed by measuring cleavage of the fluorogenic peptide,
Mca-PLGL-Dpa-AR-NH2 (R&D Systems), according to the manufacturer’s instructions.
HDF-depleted ECM was incubated with 10 µg/mL of active hrMMP9, whereas DCN
(ab167743, Abcam, Cambridge, UK) and VTN (ab94369, Abcam) was incubated at a 1:2
protein to active hrMMP9 ratio, diluted in MMP buffer (50 mM Tris, 150 mM NaCl, 10 mM
CaCl2 and 0.05% (w/v) Brij-35, pH 7.5) at 37 ◦C with agitation, for 24 h. For HDF ECM assay,
the buffer was removed and dialyzed for 4 h against ddH2O (Thermo Fisher), and samples
freeze-dried overnight. DCN and VTN samples were run on 4–12% NuPAGE Novex Bis-
Tris Gels (1 µg of protein per well) using standard SDS–PAGE procedures. Nondigested
control bands and digested bands were excised using a scalpel blade. ECM or DCN and
VTN incubated with MMP buffer alone served as negative protease controls, respectively.

3.4.4. HDF-Deposited ECM Sample Preparation

Each sample’s aliquot was added to SMART Digest™ trypsin (Thermo Fisher) beads
and shaken at 1400 rpm overnight at 37 ◦C. The next day, reduction and alkylation were
performed. Next, SMART digest beads were removed using TELOS MicroPlate™ filter tips
(Kinesis; Cheshire, UK) into 1.5 mL Eppendorf® LoBind tubes (Eppendorf; Stevenage, UK)
to minimize electrostatic loss of peptides and acidified with 5 µL of 10% formic acid (FA).
Biphasic extraction was performed to partition organic molecules and surfactants. To do
this, 200 µL of ethyl acetate (EA; Sigma, St. Louis, MO, USA) was added to each sample
in Eppendorf® LoBind tubes and vortexed for 1 min. Samples were then centrifuged to
ensure phases were separated and the upper layer removed using gel-loading pipette
tips. These steps were repeated twice with a further 200 µL of EA, and then the resultant
aqueous bottom phase was vacuum dried for 2 h at room temperature. Once dry, 200 µL
of injection solution (5% (v/v) acetonitrile, 0.1% formic acid) was added to the tube, and
peptide desalting was performed. For all desalting of peptide preparations, OLIGO™ R3
reversed phase resin (Thermo Fisher) beads were used. Beads were wetted to be activated
using 50 µL OLIGO™ R3 beads plus 50 µL of wet solution (50% acetonitrile in ultrapure
water; 1:1). Twenty (20) µL of this mix were placed in detached TELOS filter tips, and the
liquid was pipetted out using a standard p1000 Gilson pipette (Gilson; Middleton, WI,
USA) and the process repeated twice more. Twice beads were washed by adding 50 µL of
wash solution (0.1% FA in ultrapure water) and liquid pipetted out. Once the beads were
activated, 100 µL of the sample was gently added to TELOS filter tips containing activated
OLIGO R3 beads, allowing the peptides from the sample to stick to the beads. The liquid
was pipetted out, and the “flow-through” was retained. The process was repeated with the
remaining sample. Twice beads with bound peptides were gently resuspended in 50 µL of
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wash solution, and the flow-through was discarded. Twice, beads were gently suspended
in 50 µL of eluting solution (50% (v/v) acetonitrile, 0.1% formic acid) to release the peptides
from the beads and liquid was pipetted out and retained. The collected eluted sample
contained the peptides for analysis. Eluted samples were transferred to mass spectrometry
vials and vacuum dried using Speed Vac (Heto-Holten; Frederiksborg, Denmark), ensuring
peptide stability until mass spectrometry was available.

3.4.5. DCN and VTN Gel Sample Preparation

Excised bands were first placed into a perforated well plate and then shrunk by wash-
ing in acetonitrile for five minutes. To remove the acetonitrile from the samples, these were
centrifuged for one minute at 1500 rpm. Sample gel pieces were then dried in a vacuum
centrifuge for 15 min. Next, samples were covered completely by 10 mM dithiothreitol
(DTT) in 25 mM ammonium bicarbonate and incubated at 56 ◦C for one hour to reduce the
proteins. Samples were cooled to room temperature, then centrifuged to remove the DTT.
Iodoacetamide (55 mM) in 25 mM ammonium bicarbonate was added, and the samples
were incubated for 45 min in the dark at room temperature. The iodoacetamide solution
was removed by centrifugation, and the samples were washed with 25 mM ammonium
bicarbonate for 10 min. Samples were then washed with acetonitrile, followed by another
wash with ammonium bicarbonate, then a final wash with acetonitrile, centrifuging in-
between steps to remove the previous wash. The samples were then centrifuged again,
then dried out in a vacuum centrifuge. Next, 5 µL of a 12.5 ng/µL solution of trypsin
along with 45 µL of a 25 mM ammonium bicarbonate solution was added to the dried
samples. Samples were kept at 4 ◦C for 45 min for samples to absorb the buffer. After this
time, samples were covered completely in 25 mM ammonium bicarbonate. Samples were
incubated at 37 ◦C overnight. The following day, peptides were extracted by incubating
with 20 mM ammonium bicarbonate for 20 min, then centrifuging into a fresh storage plate.
Peptides were extracted a further two times (20 min each) using 5% formic acid in 50%
acetonitrile, using the same storage plate to pool all the supernatant into the same tube per
sample. Samples were transferred to mass spectrometry vials and vacuum-dried using
Speed Vac (Heto-Holten; Frederiksborg, Denmark).

3.4.6. Peptide Preparation for Mass Spectrometry

For LC–MS\MS analysis, 20 µL of Injection Solution (5% acetonitrile (ACN) + 0.1%
formic acid (FA) in ultrapure water) was added to each dried peptide samples. Peptide
concentration in solution was measured using a Direct Detect infrared spectrometer (Milli-
pore). According to the concentration detected for each sample, they were diluted to have
12 µL of the solution with a concentration of 800 ng/µL, and samples were submitted to
the Biological Mass Spectrometry Core Facility (University of Manchester).

3.4.7. Liquid Chromatography–Tandem Mass Spectrometry

Mass spectrometry was performed according to the Facility’s protocols [78,79]. Di-
gested samples were analyzed by LC–MS/MS using an UltiMate® 3000 rapid separation
LC (RSLC, Dionex Corporation, Sunnyvale, CA, USA) coupled to a Q Exactive HF (Thermo
Fisher Scientific) mass spectrometer. Peptide mixtures were separated using a multistep
gradient from 95% A (0.1% FA in water) and 5% B (0.1% FA in acetonitrile) to 7% B at
1 min, 18% B at 58 min, 27% B in 72 min and 60% B at 74 min at 300 nL min-1, using a
75 mm × 250 µm i.d. 1.7 µM CSH C18, analytical column (Waters). Peptides were selected
for fragmentation automatically by data-dependent analysis.

3.5. Webserver Development and Data Visualization

The MPSC web tool was developed using the ReactJS framework for the front end and
Python Django as the backend for the API development. Data powering the MPSC web tool
was stored on the Apache server on the MySQL database. Data for this publication were
visualized using GraphPad Prism 8, Adobe Illustrator and Python Matplotlib libraries.
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4. Conclusions

Degradomics is an ever-expanding field with the potential to impact translational
research by deepening our understanding of tissue regeneration processes as well as
contributing to drug discovery efforts [9,80]. In this work, we show that: (i) state-of-the-
art deep BRNN techniques are capable of predicting proteolytic cleavage sites in native
proteins with a better degree of accuracy than previously achieved and that (ii) combining
predictions of protease and oxidative damage may identify novel pathological mechanisms
and therapeutic targets. With this work, we have stratified proteins within the entire human
skin proteome to reveal their predicted susceptibilities to UV, ROS and protease-mediated
proteolysis providing significant novel insights in skin research. Particularly, we have
highlighted the fact that fibrillar collagens are predicted to be preferentially degraded
by proteases alone, whereas elastic fibers are likely to be susceptible to UVR/ROS and
proteases in combination. We also demonstrate that proteins involved in catalytic processes
have a high percentage of predicted confident cleavage sites per protein length. Moreover,
we have made this analysis applicable to any AA sequence of interest. Beyond the field
of dermatology, the concordance between our computational analyses and previously
reported observations of both in vitro and in vivo protein degradation suggests that this
approach has the potential to identify novel protein candidate biomarkers for tissues
subjected to inflammation or aging-related disease.

Whilst the MPC model performed better than existing models, its success in pre-
dicting experimental cleavage sites in native proteins still requires further improvement.
Furthermore, while we have attempted initial experimental MMP9 cleavage site detec-
tion in a complex HDF proteome using LC–MS/MS approaches, it is clear that many
cleavage sites may have been missed, particularly for low abundance proteins, where
the peptide-coverage of the protein is also low; therefore, experimental approaches and
sample preparation methods require even further improvement. The difficulty in pre-
dicting cleavage sites in native proteins may be partly due to the heterogeneous nature
of the data currently available in public databases, such as MEROPS upon which the
algorithms were built. For example, elastin degradation by proteases is very well-defined,
but well-known MMP substrates (such as FBN1) are not necessarily reflected in the avail-
able databases [27,68,81]. Furthermore, data referenced in these databases is drawn from
multiple experimental methods applied to disparate biological samples, including pep-
tide libraries, extracted cartilage proteins, post mortem brain tissue, and many others,
which may not necessarily translate to different in vitro systems [27]. Critically, we have
shown using an LC–MS/MS peptide location fingerprinting approach that ECM proteins
can exhibit tissue-dependent structures [82]. Furthermore, higher-order structures play
a crucial role in determining proteolysis; however, currently, the accurate prediction of
protein secondary and tertiary features remains challenging [83]. In this context, improved
algorithms trained on expanded experimental datasets with additional informative features
would benefit proteolytic cleavage site prediction. Although in its current form, the web
tool is limited to predicting cleavage by 14 proteases (8 MMPS, 4 cathepsins, elastase-2 and
granzyme B), given the availability of suitable training data, the approach used in this study
could be applied to additional proteases. The improved prediction could also be achieved
by taking into consideration the impact of local protein structures on protease-specific
cleavage outcomes.

Overall, the MPSC web tool builds upon the success of the Prosper and DeepCleave
algorithms, which have contributed significantly to the degradomics fields and can further
assist in novel biomarker discovery, reveal the primary AA sequence susceptibilities to
UV/ROS and proteases and even assist in novel bioactive matrikine discovery [84].

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/6/3071/s1, Figure S1: Western Blots; Figure S2: MPC, DeepCleave, Prosper model evaluations,
Table S1: Literature evidence of protein degradation, Table S2: Experimental cleavage sites used for
model training.
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