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Abstract

Recent developments in robot technology have contributed to the advancement of au-

tonomous behaviours in human-robot systems; for example, in following instructions

received from an interacting human partner. Nevertheless, increasingly many systems

are moving towards more seamless forms of interaction, where factors such as implicit

trust and persuasion between humans and robots are brought to the fore. In this con-

text, the problem of attaining, through suitable computational models and algorithms,

more complex strategic behaviours that can influence human decisions and actions

during an interaction, remains largely open. To address this issue, this thesis intro-

duces the problem of decision shaping in strategic interactions between humans and

robots, where a robot seeks to lead, without however forcing, an interacting human

partner to a particular state. Our approach to this problem is based on a combina-

tion of statistical modeling and synthesis of demonstrated behaviours, which enables

robots to efficiently adapt to novel interacting agents. We primarily focus on interac-

tions between autonomous and teleoperated (i.e. human-controlled) NAO humanoid

robots, using the adversarial soccer penalty shooting game as an illustrative example.

We begin by describing the various challenges that a robot operating in such complex

interactive environments is likely to face. Then, we introduce a procedure through

which composable strategy templates can be learned from provided human demon-

strations of interactive behaviours. We subsequently present our primary contribution

to the shaping problem, a Bayesian learning framework that empirically models and

predicts the responses of an interacting agent, and computes action strategies that are

likely to influence that agent towards a desired goal. We then address the related is-

sue of factors affecting human decisions in these interactive strategic environments,

such as the availability of perceptual information for the human operator. Finally, we

describe an information processing algorithm, based on the Orient motion capture plat-

form, which serves to facilitate direct (as opposed to teleoperation-mediated) strategic

interactions between humans and robots. Our experiments introduce and evaluate a

wide range of novel autonomous behaviours, where robots are shown to (learn to) in-

fluence a variety of interacting agents, ranging from other simple autonomous agents,

to robots controlled by experienced human subjects. These results demonstrate the

benefits of strategic reasoning in human-robot interaction, and constitute an important

step towards realistic, practical applications, where robots are expected to be not just

passive agents, but active, influencing participants.

iii



Acknowledgements

I would first of all like to thank my second supervisor, Prof. D.K. Arvind, thanks

to whom I was able to do my PhD in the first place and be in a position to write this

document now. Four years ago, while I was on the verge of leaving Edinburgh after

my undergraduate degree, he persuaded me to stay on and undertake a challenging yet

highly interesting project. If I was able to start my PhD at the unusually young age of

21, I undoubtedly owe it to him.

I would also like to thank my first supervisor, Dr. Subramanian Ramamoorthy, for

guiding me through this process and for all the very interesting discussions we have

had over these four years. I am particularly grateful for his support and encouragement

during the first months of my PhD, when I was desperately trying to conceal my lack

of experience in robotics (which at the time amounted to a few hours of interaction

with Lego Mindstorm kits). My overall PhD experience has definitely been a smooth

one, and I credit him for this.

Furthermore, I would like to thank all my friends and colleagues who contributed

to making these four years a stimulating and fun experience. I would particularly like

to thank my first office mate, Yiannis, who helped me get acclimatised to the office

environment in my early PhD days. I would also like to acknowledge my other Greek

office mate, Stathis, for the numerous hours we spent together in and out of the lab,

and to express my respect to the rest of the office for having to deal with so many

Greeks on a daily basis. A special thanks goes to Zee, not only for gracing my papers’

supporting videos with her presence, but also for putting up with me, inspiring me, and

helping me become a more (ir)rational individual.

Last, and most certainly not least, I feel the need to thank my family and especially

my parents for everything they have done for me over the past 25 years. Without any

doubt, I would not be anywhere near where I am now, were it not for their continuous

support, encouragement, and sacrifices.

iv



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Aris Valtazanos)

v





Table of Contents

1 Introduction 1

1.1 Problem formulation and domain . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Problem assumptions and constraints . . . . . . . . . . . . . 4

1.2 Summary of main contribution . . . . . . . . . . . . . . . . . . . . . 5

1.3 Experimental domain . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Chapter 2: Related work . . . . . . . . . . . . . . . . . . . . 9

1.4.3 Chapter 3: Sensing and strategic uncertainty in multi-robot in-

teractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.4 Chapter 4: Learning to interact with strategic agents from hu-

man demonstrations . . . . . . . . . . . . . . . . . . . . . . 10

1.4.5 Chapter 5: Learning to shape and influence strategic interactions 10

1.4.6 Chapter 6: Perceptual constraints in interactive teleoperation . 12

1.4.7 Chapter 7: Towards direct strategic human-robot interactions . 12

1.4.8 Chapter 8: Conclusions and future work . . . . . . . . . . . . 13

1.5 List of all contributed publications . . . . . . . . . . . . . . . . . . . 13

2 Related work 15

2.1 Models of autonomous decision making . . . . . . . . . . . . . . . . 15

2.1.1 Partially Observable Markov Decision Processes . . . . . . . 15

2.1.2 Temporally extended action planning . . . . . . . . . . . . . 19

2.2 Opponent modeling and behavioural influence . . . . . . . . . . . . . 21

2.2.1 Intent inference and plan recognition . . . . . . . . . . . . . 21

2.2.2 Regret minimisation and the bandit problem . . . . . . . . . . 22

2.2.3 Ad hoc coordination . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Influence over adversarial agents . . . . . . . . . . . . . . . . 24

vii



2.2.5 Adversarial interactions in graphics . . . . . . . . . . . . . . 26

2.3 Shaping in decision making . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Related concepts . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Connection to interaction shaping . . . . . . . . . . . . . . . 29

2.4 Human demonstration and interaction strategies . . . . . . . . . . . . 29

2.4.1 Connection to interaction strategy learning . . . . . . . . . . 30

2.5 Human-robot interaction and perception . . . . . . . . . . . . . . . . 31

2.5.1 Forms of interaction . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Perceptual constraints . . . . . . . . . . . . . . . . . . . . . 32

2.6 Related domains in robotic soccer . . . . . . . . . . . . . . . . . . . 32

2.7 Hybrid systems and particle filtering . . . . . . . . . . . . . . . . . . 33

2.7.1 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.2 Particle filtering . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.3 Connection to our algorithm . . . . . . . . . . . . . . . . . . 35

2.8 Unconstrained motion capture . . . . . . . . . . . . . . . . . . . . . 35

2.8.1 Human motion capture systems . . . . . . . . . . . . . . . . 35

2.8.2 Dimensionality reduction in sensor networks . . . . . . . . . 37

2.9 Summary and motivation for our approach . . . . . . . . . . . . . . . 38

3 Sensing and strategic uncertainty in multi-robot interactions 41

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 The Reachable Set Particle Filter . . . . . . . . . . . . . . . . 44

3.2.3 Action types, actions, and strategic modes . . . . . . . . . . . 47

3.2.4 Intent inference . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5 Strategic escape . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.6 Regret minimisation . . . . . . . . . . . . . . . . . . . . . . 49

3.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Reachable Set Particle Filter . . . . . . . . . . . . . . . . . . 53

3.3.2 Strategic decision making . . . . . . . . . . . . . . . . . . . 55

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



4 Learning to interact with strategic agents from human demonstrations 61
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Robot platform . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Self-localisation and adversary pose estimation . . . . . . . . 64

4.2.4 Comparison between human and robot perception . . . . . . . 65

4.2.5 Interaction rules . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.6 Human control of the robots . . . . . . . . . . . . . . . . . . 65

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 System formulation and notation . . . . . . . . . . . . . . . . 65

4.3.2 Autonomous goalkeeper behaviour during demonstrations . . 66

4.3.3 Human behaviour demonstration . . . . . . . . . . . . . . . . 66

4.3.4 Learning strategy mixtures . . . . . . . . . . . . . . . . . . . 67

4.3.5 Strategic interaction with novel adversarial agents . . . . . . . 72

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Structure of the experiments . . . . . . . . . . . . . . . . . . 74

4.4.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . 76

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Learning to shape and influence strategic interactions 79
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Preliminaries and notation . . . . . . . . . . . . . . . . . . . 81

5.2.2 Learning from human demonstration . . . . . . . . . . . . . . 82

5.2.3 Bayesian interaction shaping . . . . . . . . . . . . . . . . . . 85

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Shaping region and tactic computation . . . . . . . . . . . . . 91

5.3.2 Shaping agent evaluation . . . . . . . . . . . . . . . . . . . . 92

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Perceptual constraints in interactive teleoperation 99
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Interaction Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 Cooperative task – Target allocation . . . . . . . . . . . . . . 102

6.2.2 Adversarial task – Penalty shooting . . . . . . . . . . . . . . 104

ix



6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Overall performance . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2 User control inputs and trajectories . . . . . . . . . . . . . . 111

6.3.3 Statistical significance . . . . . . . . . . . . . . . . . . . . . 114

6.3.4 User experiences . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Towards direct strategic human-robot interactions 117
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Sensory device outputs . . . . . . . . . . . . . . . . . . . . . 120

7.2.2 Learning translation manifolds . . . . . . . . . . . . . . . . . 122

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . 130

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Conclusions and future work 137
8.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2 Evaluation and lessons learned . . . . . . . . . . . . . . . . . . . . . 139

8.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3.1 Direct strategic human-robot interactions . . . . . . . . . . . 140

8.3.2 Integration with path planning algorithms . . . . . . . . . . . 141

8.3.3 Extension to domains with more robots . . . . . . . . . . . . 142

8.3.4 Improving teleoperation mechanisms in mixed-initiative systems142

Bibliography 145

x



Chapter 1

Introduction

As the physical capabilities of autonomous robots improve, there is also a growing

demand for multi-agent applications where robots can interact more seamlessly with

other agents. In many such domains, and particularly in those featuring humans or

human-controlled agents, robots are currently restricted to a passive role, which typi-

cally requires them to follow instructions or execute some pre-specified behaviour. By

contrast, strategic interactions requiring active influence over interacting, potentially

adversarial agents, remain a challenging problem.

One reason behind this strategic challenge are the limitations in component tech-

nologies, e.g. the perceptual differences between people and robots, or the limited

motion capabilities of many robots. Historically, influence and persuasion in human-

robot interaction have been primarily associated with how humans perceive robots (e.g.

Siegel et al. (2009), Bainbridge et al. (2008)). Furthermore, it is more commonplace

to see people give explicit and detailed instructions that are subsequently translated to

robot motion (e.g. Nyga and Beetz (2012), Klingspor et al. (1997)). Even this task

is incredibly challenging, forcing system designers to push the frontiers of object or

human pose recognition or language processing. However, these issues are precursors

rather than the primary content of interactive decision making. From this behavioural

perspective, one important open question is the related problem of how autonomous

robots can actively impact human decisions during an interaction.

Increasingly, we are seeing applications where the problem of strategy in interac-

tion is being brought to the fore. For instance, consider the enormously successful

automated driving applications. Here, robotics technology has reached a point of ma-

turity where issues such as “failure to anticipate vehicle intent” and “an over-emphasis

on lane constraints versus vehicle proximity in motion planning” are becoming prob-

1



2 Chapter 1. Introduction

Figure 1.1: The MIT-Cornell collision during the 2007 DARPA Urban Challenge. Left:

Cornell’s robot Skynet. Right: MIT’s robot Talos. The collision was partly attributed

to the failure of the involved vehicles to anticipate each other’s intent. Photo: Fletcher

et al. (2008).

lems of immediate interest (Fletcher et al. (2008), Flemisch et al. (2003)). Oversight

of these issues has been shown to lead to erroneous interactive behaviours, as in Fig-

ure 1.1, where the colliding vehicles failed to anticipate and account for each other’s

motion.

Figure 1.2: A robot guide in a hospital environment. Robots operating in these domains

must cooperate effectively with interacting humans and gain their trust, in order to lead

them to the desired destination. Photo: AFP (http://www.theage.com.au/news/

technology/the-future-is-here/2006/11/05/1162661536462.html).

In the domain of personal robotics, the development of robust platforms over the

past decade has led to similar trends where the problem of strategically non-trivial

interaction becomes very relevant, such as motion synthesis that must account for in-

tentions of humans who co-exist in the work space (e.g. Dragan and Srinivasa (2012),

Goodrich and Schultz (2007)). The development of such influencing behaviours would
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constitute an important step towards several practical human-robot interaction appli-

cations, e.g. robot guides in public spaces (Figure 1.2), where trust and implicit per-

suasion are relevant issues that need to be incorporated into task specifications. The

additional challenge for robots operating in these domains is that they must interact

with humans (and not simply other autonomous agents), whose reactions to different

situations may vary and are not known exactly a priori. Furthermore, humans can be

adaptive and exhibit behaviours that change over time, so characterising their actions

with respect to a well-defined library of behaviours may be hard. These constraints

highlight the need for algorithms that unify existing approaches from the robotics,

decision-making, and statistical modeling communities, in order to address the prob-

lem of behavioural influence in multi-robot and human-robot interaction.

1.1 Problem formulation and domain

Motivated by the above interactive decision problems, this thesis focuses on learning

mechanisms for strategic influencing behaviours. We study this problem primarily

in the setting of interactions between teleoperated (i.e. human-controlled) and au-

tonomous robots. This allows us to emphasise learning of strategies, our core focus,

while still operating in a realistic, physical setting, which makes robot learning non-

trivial and challenging. This is also a setting which captures an aspect of robotics

applications where many different robotic systems and people operate, simultaneously

and without explicit coordination, in constrained environments, such as a construction

site. The open questions for us would be:

• How robustly could autonomous robots interact with humans if they were not

hindered by the current inferiority in physical abilities?

• How can robots effectively make strategic decisions that can influence and af-

fect human behaviour during an interaction, without the benefit of analytically

predefined models for the participant?

• How can such strategies be learned from human demonstration, and further syn-

thesised through repeated interaction with a given human-controlled robot?

With these considerations in mind, we introduce the problem of strategic interac-
tion shaping in adversarial mixed robotic environments. A mixed robotic environment
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features both autonomous and human-controlled robots, which have identical hardware

but differ at the behavioural level. In this context,

Definition 1.1.1 The interaction shaping problem1 deals with the ability of an au-

tonomous robot to affect the state of an adversarial agent in a strategic interactive

task.

The conceptual structure of the interaction shaping problem is illustrated in Figure

1.3.

A1

A2

Joint

Interaction

State

action

a1

action

a2

observation

observation

shaping 

influence

Figure 1.3: Conceptual structure of the interaction shaping problem. Agent A1 seeks

to lead, without directly forcing, an adversarial agent A2 to a new joint target state. A1

must achieve this objective by indirectly influencing, through its own chosen actions, the

actions selected by A2.

1.1.1 Problem assumptions and constraints

By considering primarily adversarial interactions, we seek to model situations where

the interacting robot may be actively countering or refusing to cooperate with a shaping

strategy. Furthermore, we consider interactions that are only partially controllable,

in that the autonomous robot cannot directly force the adversary to the desired joint

state. Thus, the robot must shape the interaction indirectly, by identifying actions

that can cause the adversary to behave in accordance with its own goal. Moreover, a

robust shaping robot must learn to influence a given adversary from its own experience,

without the provision of additional information on the characteristics (e.g. human-

controlled vs. autonomous) of that agent. This adversarial setup presents different

challenges to cooperative multi-robot settings, where robots are working towards a

common objective.

1In various parts of this thesis, we use the term “decision shaping” instead of “interaction shaping”,
in order to avoid repetition of the word interaction and its derivatives. However, the two terms should
be treated as equivalent.
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1.2 Summary of main contribution

Opponent

model

Demonstrator

commands

Interacting 

robot states

Interaction

shaping

templates

Input Filtering

& Clustering

Online: autonomous learning of 

interactive shaping behaviours

Current interaction state    

Sensory 

observations

Offline: strategy demonstration 

through human teleoperation

Strategy sampling and selection     

Template sampling
Bayesian Inference

Strategy execution

Repeat until a joint

target state is reached

Observation Filtering

Learning

Update

Strategic interactive behaviour 

demonstration by human operator

Interaction

shaping

templates

Joint

Target

states

Figure 1.4: Conceptual structure of proposed approach to interaction shaping in multi-

robot environments. In the offline learning phase, a human operator remote-controls a

robot in a strategic interaction with another robot, which could also be teleoperated or

be a heuristic autonomous adversary. The operator provides several traces of the de-

sired behaviour, which are filtered and clustered into interaction templates, represented

as state space regions and action space tactics. In the online phase, the learned tem-

plates form the basis of an autonomous shaping agent, who can strategically influence

unknown adversarial robots. The shaping agent additionally maintains a model of its

opponent’s behaviour, which is empirically updated through repeated interaction, and a

set of joint target states, representing desired terminal configurations for the two robots.

By sampling and selecting, through Bayesian inference, different interaction strategies,

the shaping agent progressively learns sequences of actions that can lead, with high

probability, the adversary to the desired target states.

The primary contribution of this thesis is a learning framework for strategic in-

teraction shaping in physical mixed robotic environments. The proposed approach is

divided into two interrelated learning phases (Figure 1.4). In the offline phase, human

demonstrators provide examples of interactive strategic behaviours, which are clus-

tered into composable interaction templates, represented as state space regions and
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action space tactics. In the online phase, the learned templates form the basis for a

probabilistic Bayesian inference and sampling algorithm, which is used to learn be-

haviours that can influence a given strategic adversary. Thus, an agent learns interac-

tion strategies – represented as sequences of actions – that are likely to influence the

given adversary and lead the interaction to a desired state.

The proposed framework is designed to meet the needs of complex physical in-

teractive environments. Here, robots must repeatedly make decisions from limited

sensory information (e.g. noisy images coming from a perspective camera, as in the

top-right part of Figure 1.4), in order to influence strategic adversaries with unknown

behavioural profiles. Thus, our approach addresses different challenges than tradi-

tional established decision-making models, for example, Interactive Partially Observ-

able Markov Decision Processes (Gmytrasiewicz and Doshi, 2005), which focus on

offline optimisation over states and actions. By contrast, this thesis is concerned with

approximate solutions to iterative reasoning problems, which are empirically obtained

through repeated interaction with a given, a priori unknown, strategic adversary.

To the best of our knowledge, our work is the first to introduce a learning model for

interactive, adversarial robotic environments with human-controlled agents. Moreover,

our experiments innovate in demonstrating strategic autonomous behaviours that can

influence interactive human decisions towards a desired outcome. Thus, we introduce

a new modeling paradigm for robotic systems, unifying ideas and techniques from

different heterogeneous domains, which leads to results with significant implications

for many mixed-initiative domains.

1.3 Experimental domain

In order to demonstrate our approach, we require an experimental setup where the

learning agent can interact with a wide range of strategic adversaries, including human-

controlled opponents. To this end, our primary experimental domain is the robotic

soccer penalty shooting problem between NAO humanoid robots (Figure 1.5), which

can be either autonomous or human-controlled. In this game, a striker is tasked

with scoring a goal against an adversarial goalkeeper, within a specified amount of

time. The problem is inspired by the RoboCup Standard Platform League (http:

//www.tzi.de/spl/), an international robotic soccer competition featuring several
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(a) (b)

Figure 1.5: Experimental setup. (a): The NAO humanoid robot. (b): The soccer field,

with an orange ball on the penalty cross mark. The initial poses of the striker (near side,

blue waistband) and the goalkeeper (far side, pink waistband) are also shown.

world-leading research groups in artificial intelligence and robotics2. A defining char-

acteristic of this experimental setup is that the two robots are identical and thus have

the same locomotion capabilities. Thus, even when one of the robots is controlled by

a human subject, that subject cannot benefit by e.g. walking faster or kicking the ball

harder (as would happen in a direct human-robot penalty shooting contest). Thus, we

can compare and contrast autonomous and human-controlled robots directly at the be-

havioural level, without however removing the underlying physical uncertainty that is

present in any realistic human-robot environment.

Penalty shooting is a challenging problem in interactive decision making because it

is an adversarial interaction between competing agents, where decisions must be made

repeatedly in a limited period of time3. Thus, autonomous robots must not only make

robust decisions in the presence of other, potentially human-controlled agents, but they

must also outperform them at the end of each trial. The interactive nature of the task

indicates that simple strategies (e.g. pick a side of the goal at random, align and kick)

are likely to be unsuccessful, as the adversary may be able to recognise and defend

them more easily. Instead, policies that incorporate human behavioural traits, such as

deceiving the goalkeeper into moving towards the other side of the goal, are more likely

2The author of this thesis has also been an active participant in the Standard Platform League. In
2012, the author’s team, Edinferno, reached the quarter-finals of this competition (out of 28 teams). The
author was a key contributor to this effort, having developed most of the team’s technical software and
behaviour algorithms.

3In our version of the penalty shooting game, as later discussed in Section 4.2.5, the striker is only
allowed to kick the ball once (no dribbling allowed). Thus, a key part of the interaction is the interval
preceding the kick, where the players observe each other’s moves and plan their actions accordingly.
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to succeed. A robust autonomous agent must also be able to interact with a wide range

of adversaries, whose behaviour and responses may vary. Thus, penalty shooting is an

excellent fit to the interaction shaping problem considered in this thesis, supporting the

evaluation of different decision-making algorithms in a physical experimental setup.

In the experiments presented in the remainder of this thesis, we look at several

different versions of the penalty shooting problem (e.g. autonomous learning striker

vs. human-controlled goalkeeper, human-controlled striker vs. simple fixed-heuristic

autonomous goalkeeper, etc.). Our results are based on experiments with a wide range

of human subjects, and are aimed at testing our algorithms under a diverse set of con-

ditions and possible opponent strategies.

1.4 Thesis outline

1.4.1 Overview

In this section, we provide a brief summary of the contents of the remaining chapters

of the thesis. We highlight the novel contributions presented in each chapter, as well as

their connections to the overall interaction shaping problem. For each chapter, we also

indicate the type of robotic environment on which analysis and evaluation is based.

To summarise, we first review selected literature from related domains (Chapter

2), and we then describe the problem of decision making in physically constrained

multi-robot environments, highlighting the challenges presented by the sensing and

the strategic uncertainty in these domains (Chapter 3). Then, we introduce and evalu-

ate an algorithm for learning interactive strategic behaviours from human demonstra-

tions (Chapter 4). We subsequently present and experimentally evaluate our main con-

tribution, an empirical learning framework for interaction shaping in mixed environ-

ments (Chapter 5). This evaluation is followed by a further user study, which assesses

the effects of perceptual constraints on the decisions humans make when interacting

strategically with robots (Chapter 6). Motivated by these results, we subsequently de-

scribe a motion tracking algorithm towards the realisation of direct – as opposed to

teleoperation-mediated – strategic human-robot interactions (Chapter 7). Finally, we

discuss possible future extensions to our work (Chapter 8).
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1.4.2 Chapter 2: Related work

In Chapter 2, we review related work (primarily) from the robotics and autonomous de-

cision making literature. We discuss how our approach extends and combines existing

ideas to address a novel class of robotic interaction problems.

1.4.2.1 Summary of chapter contributions

• A comprehensive survey of research methods related to interaction shaping.

• A critical evaluation of related work in the robotics and decision making litera-

ture, and a situation of the proposed approach with respect to these studies.

1.4.3 Chapter 3: Sensing and strategic uncertainty in multi-robot

interactions

Chapter 3 introduces the problem of robust strategic decision making in adversarial

interactions with physical limitations in action and perception. We first describe an in-

ference mechanism for predicting and filtering the state of an interacting agent. Then,

we propose an approach to devising strategic interactive behaviours for autonomous

robots, illustrated through the robotic soccer domain. Our method constitutes a prin-

cipled approach towards addressing the sensory and strategic uncertainty arising in

these environments. We demonstrate how the exploitation of these constraints can lead

to interesting forms of motion strategies against a variety of adversaries.

• Interaction domain: interactions between multiple simulated autonomous robots.

1.4.3.1 Summary of chapter contributions

• Formulation of the Reachable Set Particle Filter, a novel adversary state estima-

tion algorithm combining data-driven approximation with dynamical constraints.

• A learning framework for interactive decision in multi-robot adversarial interac-

tions, based on a combination of probabilistic and game-theoretic tools.

1.4.3.2 Related publications

• A. Valtazanos and S. Ramamoorthy, Intent inference and strategic escape in

multi-robot games with physical limitations and uncertainty. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), 2011.
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1.4.4 Chapter 4: Learning to interact with strategic agents from

human demonstrations

In Chapter 4, we bring humans in the interaction loop as controllers of physical robots.

We address the problem of learning, from human demonstration, strategies that can

indirectly influence adversaries by appropriately chosen actions. We present an algo-

rithm that learns strategy templates from human demonstrations, and synthesises them

based on the observed behaviour of an interacting robot. The resulting algorithm lays

the foundations for our interaction shaping framework, by producing a set of reusable

interaction templates that can be adapted to a wide range of strategic adversaries.

• Interaction domain: multi-robot interactions between NAO humanoid robots.

– Offline phase: human-controlled robot vs. heuristic autonomous robot.

– Online phase: autonomous robot programmed by demonstration vs. au-

tonomous and human-controlled robots.

1.4.4.1 Summary of chapter contributions

• A learning procedure for clustering demonstrated behaviours into composable

interaction templates, combining elements of learning by demonstration and op-

ponent modeling.

• An algorithm for hierarchical synthesis of the learned templates, which is based

on a dynamically weighted Gaussian Mixture Model.

1.4.4.2 Related publications

• A. Valtazanos and S. Ramamoorthy, Decision shaping and strategy learning in

multi-robot interactions, Journal article in preparation.

1.4.5 Chapter 5: Learning to shape and influence strategic inter-

actions

In Chapter 5, we present our main contribution to the interaction shaping problem. The

proposed framework builds on a modification of the procedure of Chapter 4, which pro-

vides templates for shaping behaviours. These templates form the basis of an adaptive
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learning algorithm, which progressively updates distributions on the adversary’s re-

sponses to actions and on the reachability of different state space regions. Through a

combination of Bayesian inference and iterated prediction of the adversary’s actions,

the algorithm learns strategies that are likely to shape the interaction and attain a de-

sirable target state (as in Figure 1.3).

• Interaction domain: multi-robot interactions between NAO humanoid robots.

– Offline phase: human-controlled robot vs. heuristic autonomous robot.

– Online phase: learning autonomous robot programmed by demonstration

vs. human-controlled and autonomous robots.

1.4.5.1 Summary of chapter contributions

• A principled method for using human demonstrations in interactive learning of

strategic decisions.

• A procedure for sampling and selecting demonstrated actions, with the inten-

tion of reaching one of several possible target interaction states. This procedure

yields temporally extended strategies with which a given adversary is expected

to comply, thus maximising the expectation of reaching a target state.

• A Bayesian framework for strategic interaction shaping in mixed robotic envi-

ronments, through which an autonomous agent can learn to interact with a wide

range of adversaries.

1.4.5.2 Related publications

• A. Valtazanos and S. Ramamoorthy, Bayesian interaction shaping: learning to

influence strategic interactions in mixed robotic domains, International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS), 2013.

• A. Valtazanos and S. Ramamoorthy, Decision shaping and strategy learning in

multi-robot interactions, Journal article in preparation.
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1.4.6 Chapter 6: Perceptual constraints in interactive teleopera-

tion

Chapter 6 assesses the ability of humans to respond to strategic behaviours by au-

tonomous robots, and the factors impacting their performance in related mixed robotic

environments. We report on an experimental study assessing the effects of limited per-

ception on human decision making. We assess user performance on a cooperative and

an adversarial task, each requiring different forms of interaction with an autonomous

robot. In each case, the perceptual information available to users is progressively re-

stricted, from full visibility of the interaction environment, to having access only to the

teleoperated robot’s noisy camera feed.

• Interaction domain: multi-robot interactions between teleoperated and autonomous

NAO humanoid robots.

1.4.6.1 Summary of chapter contributions

• An experimental study examining the correlation between the strategic difficulty

of a teleoperation task, the perceptual information available to human operators,

and their ability to infer the intent of the interacting autonomous robots.

• Illustration of specific examples where subjects exhibit considerably different

behaviours when perception is restricted, and scenarios where autonomous robots

are more likely to influence the outcome of an interaction.

1.4.6.2 Related publications

• A. Valtazanos and S. Ramamoorthy, Evaluating the effects of limited percep-

tion on interactive decisions in mixed robotic domains, ACM/IEEE International

Conference on Human-Robot Interaction (HRI), 2013.

1.4.7 Chapter 7: Towards direct strategic human-robot interactions

The methods and experiments described in the previous chapters correspond to inter-

actions where humans are indirect participants as robot operators. Chapter 7 presents

a motion tracking algorithm which can be used for direct physical human-robot in-

teraction. The proposed technique addresses the problem of continuous simultaneous

tracking of human posture and position, in unconstrained interaction environments
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where traditional motion capture systems are not directly applicable. Our method is

based on a combination of optical and inertial sensing motion capture technologies,

which are jointly used to learn a predictive model of human motion from demonstrated

data.

• Interaction domain: human motion capture, with application to physical strate-

gic human-robot interaction.

1.4.7.1 Summary of chapter contributions

• A novel motion tracking algorithm combining the relative strengths of optical

(Microsoft Kinect) and inertial sensing (Speckled Computing) systems, with ap-

plication to complex physical human-robot interactions.

• A novel application of wearable inertial sensor systems to position inference in

unconstrained motion capture environments.

1.4.7.2 Related publications

• A. Valtazanos, D.K. Arvind, S. Ramamoorthy, Using wearable inertial sensors

for posture and position tracking in unconstrained environments through learned

translation manifolds, ACM/IEEE International Conference on Information Pro-

cessing in Sensor Networks (IPSN), 2013.

1.4.8 Chapter 8: Conclusions and future work

Chapter 8 reviews the main contributions of the thesis to interactive decision making in

strategic human-robot interactions. This is followed by a discussion on potential exten-

sions to challenging robotic applications, for example, field robotics systems requiring

robust interaction interfaces between human operators and deployed robots.

1.5 List of all contributed publications

This thesis has led to the publication of the following peer-reviewed international jour-

nal and conference articles:

• A. Valtazanos, D.K. Arvind, and S. Ramamoorthy. Using wearable inertial sen-

sors for posture and position tracking in unconstrained environments through
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learned translation manifolds. ACM/IEEE International Conference on Infor-

mation Processing in Sensor Networks (IPSN), 2013.

• A. Valtazanos and S. Ramamoorthy. Bayesian interaction shaping: learning to

influence strategic interactions in mixed robotic domains. International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS), 2013.

• A. Valtazanos and S. Ramamoorthy, Evaluating the effects of limited percep-

tion on interactive decisions in mixed robotic domains, ACM/IEEE International

Conference on Human-Robot Interaction (HRI), 2013.

• A. Valtazanos, D.K. Arvind, and S. Ramamoorthy. Latent space segmentation

for mobile gait analysis. ACM Transactions on Embedded Computing Systems

12(4), 2013.

• A. Valtazanos and S. Ramamoorthy. Intent inference and strategic escape in

multi-robot games with physical limitations and uncertainty. IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2011.

• A. Valtazanos and S. Ramamoorthy. Online motion planning for multi-robot

interaction using composable reachable sets. RoboCup International Symposium

– Springer Verlag Lecture Notes in Artificial Intelligence, 2011.

• A. Valtazanos and S. Ramamoorthy. NaOISIS: A 3-D behavioural simulator for

the NAO humanoid robot. RoboCup International Symposium – Springer Verlag

Lecture Notes in Artificial Intelligence, 2011.

• A. Valtazanos, D.K. Arvind, and S. Ramamoorthy. Comparative study of seg-

mentation of periodic motion data for mobile gait analysis. ACM International

Conference on Wireless Health, 2010.

The thesis author is the primary author of all the above works, having developed the

described theoretical models and conducted the associated experimental evaluation.



Chapter 2

Related work

This chapter reviews related literature and background material to the methods pre-

sented in this thesis. Section 2.1 reviews models of autonomous decision making based

on Markov Decision Processes. In Section 2.2, we present an overview of related ideas

from the opponent modeling and behavioural influence literature, whereas in Section

2.3 we consider other works where shaping has been studied in contexts different to

our own. Section 2.4 considers the use of human demonstrations in interaction strategy

learning, while Section 2.5 reviews studies on interactive decision making in human-

robot domains (which is the focus of our user study in Chapter 6). In Section 2.6, we

present robotic soccer domains which are similar to our own. Section 2.7 describes

techniques from the hybrid systems and particle filtering, which inspire the inference

algorithm presented in Chapter 3. Furthermore, Section 2.8 reviews related motion

capture platforms and algorithms, which form the basis of our approach to uncon-

strained human motion tracking in Chapter 7. Finally, Section 2.9 summarises the key

findings of this literature review, and reiterates the structure of the remaining chapters

of this thesis.

2.1 Models of autonomous decision making

2.1.1 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) (Kaelbling et al., 1998)

have been the standard model for decision problems in partially observable domains.

A POMDP is defined as a tuple 〈S,A,T,Ω,O,R〉, where:

• S is a set of states

15
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• A is a set of actions

• T : S×A×S 7→ [0,1] is the transition function returning the likelihood of a new

state following the execution of an action

• Ω is a set of observations the agent can make on the environment

• O : S×Ω×A 7→ [0,1] is a function returning the likelihood of an observation

being made at a state following the execution of an action

• R : S×A× S 7→ ℜ is the reward function returning the expected payoff for the

agent following the execution of an action.

In POMDPs, optimal policies are computed through optimisation over the spaces

and functions defined above. This optimisation is typically conducted offline, by iter-

atively computing the expected utility of different policies based on the dynamics of

the modeled system. Due to their general formulation, POMDPs have been applied in

a wide range of decision-making problems (see Cassandra (1998) for a comprehensive

survey), with several of those applications being related to robot planning e.g. (Pineau

and Gordon, 2005; Hsiao et al., 2007; Ong et al., 2009). POMDPs have also been used

in human-robot interaction to model interaction with human agents, e.g. (Broz et al.,

2008; Rosenthal and Veloso, 2011; Taha et al., 2011).

Despite their representational power, POMDPs do not directly account for adver-

sarial or other interacting agents in multi-robot domains. In these environments, a

robot must cope with two types of uncertainty: the sensing uncertainty which is due to

the robot’s noisy sensory readings, and the strategic uncertainty, which represents the

unknown effects of the actions of an interacting robot; in Chapter 3, we discuss these

constraints in more detail. With respect to the observation function Ω defined above,

these two types of uncertainty are indistinguishable. Thus, explicit modeling of and

reasoning over the behaviour of interacting agents becomes a challenging task.

To alleviate this constraint, Interactive POMDPs (IPOMDPs) (Gmytrasiewicz and

Doshi, 2005) extend POMDPs by introducing an interactive definition of the state

space. Interactive states are a product of world states (as defined in traditional POMDPs)

and possible models of the other interacting agents’ policies. In particular, an IPOMDP

for agent i interacting with agent j is a tuple 〈ISi,A,Ti,Ωi,Oi,Ri〉, where:

• ISi = S×M j is a set of interactive states, where S is defined as above, and M j

is the set of possible models for j. A model m j ∈ M j is a tuple 〈 f j,h j,O j〉,
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where h j is a history of observations on j, f j is a mapping from a history to

a distribution ∆(A j) over j’s actions, and O j is a function specifying how the

environment supplies inputs to the agent.

• A = Ai×A j is a set representing the joint actions of both agents

• Ti : S×A×S 7→ [0,1] is the transition function for agent i

• Ωi is a set of observations on the environment

• O : S×Ωi×A 7→ [0,1] is the observation function

• Ri : ISi×A× ISi 7→ℜ is the reward function.

Thus, the IPOMDP representation introduces a clearer distinction between world

states and agent models. IPOMDPs have been primarily considered in adversarial

problems such as money laundering (Ng et al., 2010) and behaviour learning from

human teachers (Woodward and Wood, 2012). However, to the best of our knowledge,

IPOMDPs have not been used in physical robotic environments, due to the combined

complexity of the state and model spaces.

An IPOMDP can be further extended to incorporate different nested levels of rea-

soning in interactive decision-making. These levels represent the depth of reasoning

executed by agent i on the behaviour of agent j. At the base (0-th) level, the beliefs of

i are simply probability distributions over the state space, S. At the next (first) level,

beliefs are augmented to additionally include the 0-level models of agent j. This pro-

cess can be recursively extended up to an arbitrary level l, such that the beliefs of i

at level l incorporate all models of j up to level l− 1. Thus, agent i can model agent

j as a decision maker who also has a bounded depth of reasoning. The incorpora-

tion of reasoning levels leads to the finitely nested I-POMDP, whose modified tuple is

〈ISi,l,A,Ti,Ωi,Oi,Ri〉, where l is the reasoning level, and the remaining components

are defined as in the original IPOMDP formulation.

The transition model of the IPOMDP formulation does not differ fundamentally

from the corresponding POMDP one. However, this similarity is enforced by the fol-

lowing assumption:

Definition 2.1.1 Model Non-manipulability Assumption (MNM) (Gmytrasiewicz and

Doshi, 2005): Agents’ actions do not change the other agents’ models directly.
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The interaction shaping problem considered in this thesis similarly assumes that

the states and actions of interacting agents cannot be directly manipulated. Instead, our

problem is primarily concerned with indirect influence over the actions of a strategic

adversary. Thus, we are interested in learning the transition dynamics of an interactive

system, in order to compute policies with which the adversary is likely to comply.

Both POMDPs and IPOMDPs are known to be intractable in problems with large

state, action, and/or opponent model spaces (Papadimitriou and Tsitsiklis, 1987). Thus,

several approximation algorithms have been proposed instead, such as point-based

methods and sampling-based optimisation techniques (Thrun, 2000; Lusena et al.,

2001; Pineau et al., 2003; Porta et al., 2006; Kurniawati et al., 2008, 2011; Doshi and

Gmytrasiewicz, 2009). These algorithms operate by sampling points from the relevant

belief spaces, in order to approximate optimal policies in uncertain environments.

A related variant of POMDPs are Decentralised POMDPs (DEC-POMDPs) (Bern-

stein et al., 2000). DEC-POMDPs consider models where transitions and reward func-

tions are defined in terms of the states and actions of multiple agents, which jointly

operate in a shared environment.

2.1.1.1 POMDPs and interaction shaping

The interaction shaping problem deals with similar representational and computational

issues as POMDPs and IPOMDPs, arising from the need to find optimal actions against

an unknown adversary. In Chapter 5, we present a Bayesian framework for interac-

tive learning of shaping behaviours, which is similarly based on inference over large

and potentially uncertain state, action, and opponent model spaces. However, a ma-

jor constraint in our problem is that the interacting adversaries are primarily human-

controlled, exhibiting behaviours that may change dynamically during an interaction.

This constraint introduces the need for online, empirical learning mechanisms, which

can adapt to perceived variations in the interacting adversary’s responses. Thus, of-

fline optimisation, through point-based or other approximation methods, does not fully

address the needs of our domain when used in isolation. Similarly, decentralised pro-

cesses like DEC-POMDPs typically assume commonly aligned rewards between inter-

acting agents, so they are also incompatible with our setup, where agents are not aware

of each other’s reward processes.

Our proposed approach is based on a combination of offline sampling and online

learning. In the offline sampling phase (Chapters 4, 5), we collect traces of human

demonstrations of the desired strategic interactive behaviours. These traces are used to
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learn the salient modes of the state and action spaces, thus addressing the complexity of

planning over large spaces analogously to point-based methods. In the online learning

phase (Chapter 5), the robot empirically collects samples of the adversary’s responses

to executed actions. These responses are used to iteratively predict the evolution of

the interaction, following the execution of a temporally extended sequence of actions.

This prediction models the compliance of the adversary with the given sequence, thus

recreating the nested reasoning effect of IPOMDPs. Through this formulation, we ad-

dress the dual challenge of interaction shaping in physically grounded systems, where

autonomous robots must not only learn to influence a non-cooperative agent, but also

to do so interactively from empirically sampled sensory observations.

2.1.2 Temporally extended action planning

Semi-Markov Decision Processes (SMDPs) (Howard, 1971; Bradtke and Duff, 1994;

Mahadevan et al., 1997) define actions that take variable amounts of time and can be

extended over a specified time horizon. This effect is illustrated in the formulation

of Markov options (Sutton et al., 1998, 1999), which are generalisations of action

selection policies with input and termination conditions. An option is defined as a

tuple 〈I,π,β〉, where

• I ⊆ S is the set of input states

• π : S×A 7→ [0,1] is the policy

• β : S 7→ [0,1] is the termination condition

An option o = 〈I,π,β〉 can be invoked from a state s if and only if s ∈ I. If o

is selected, actions are selected according to π, until the (probabilistic) termination

condition β is met. This formulation allows for the creation of localised action poli-

cies, which can be invoked from specific regions of the state space, and which can be

followed for a variable period of time.

In robotic soccer, a notable application of options has been the keepaway scenario

(Stone et al., 2005), where a team of robots tries to pass a ball around while avoiding

interceptions from its opponents. The formulation introduced in that paper was anal-

ogous to a distributed SMDP with no shared knowledge between teammates, where

each player is responsible for a fraction of the overall team decision process. Options

were used to encode various macro-actions relevant to the game, such as ball holding,
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passing, and blocking a pass. Optimisation over these micro-actions was conducted

through the popular reinforcement learning SARSA(λ) algorithm (Sutton and Barto,

1998).

Figure 2.1: The sequential controller switching idea introduced in (Burridge et al., 1999).

Controllers are represented as funnels with initial and termination conditions, which can

be intermittently activated and sequenced in a global policy. Photo: Havoutis (2012).

A related problem in the robot control community is the composition of actions

into a global policy that leads to an overall goal. A classic example is the sequential

composition of local controllers, represented as funnels with initial conditions and goal

states, which can be chained and activated intermittently (Burridge et al., 1999) (Fig-

ure 2.1). This method is extended to motion planning (Conner et al., 2006; Tedrake,

2009), where funnels represent workspace constraints or more formally defined linear

quadratic regulators.

Belta et al. (2007) present a generalisation of this sequential paradigm towards

more general symbolic motion planning. They introduce a hierarchical abstraction that

takes as input a high-level system specification and outputs a controller implementa-

tion for an autonomous robot. To achieve this objective, the provided specification

is partitioned into predicate regions, which represent the possible discrete solutions

to the problem. A graph search over these regions is then performed to select an

appropriate execution sequence, subject to specified sensing, mechanical, and other

robot-related constraints. At the implementation level, the execution is converted into

a hybrid automaton specifying the overall control strategy. The approach also allows

for hierarchical synthesis of multiple controllers developed using the above method.
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2.1.2.1 Connection to interaction shaping

In Chapters 4 and 5, we present decision-making algorithms which are motivated by

the above concepts. Our approach is based on the decomposition of the state and action

spaces into regions and tactics, respectively, based on provided human demonstration

examples. Tactics are similar to options, in being temporally extended actions with

specific preconditions and execution-time constraints. However, the input and target

states of shaping tactics are interactive, so they account for both agents (in contrast

the distributed approach followed by Stone et al. (2005), which does not feature ex-

plicit opponent models). This extends traditional SMDP formulations where there is

no explicit reasoning about the adversary. Moreover, the synthesis of strategies as tac-

tic sequences bears a similarity to funnel controllers in an interactive setting. In our

approach, tactics are chained together through empirical distributions measuring the

reachability of shaping regions. Furthermore, similarly to Belta et al. (2007), we also

begin with instances of the solution space (which in our case take the form of interac-

tive human demonstrations), over which we perform search, synthesis, and inference,

in order to generate the desired autonomous behaviour. Thus, this formulation leads to

policies that are expected to maximise the probability of attaining a desired interactive

target state within a specified time horizon.

2.2 Opponent modeling and behavioural influence

2.2.1 Intent inference and plan recognition

Throughout this thesis, we consider the problem of modeling the intent of other strate-

gic agents. In robotics, intent inference (Demiris, 2007; Valtazanos and Ramamoorthy,

2011a; Wang et al., 2012) is the process of determining the underlying structure of the

behaviour of an interacting robot, from limited sensory information. Plan recognition

is a related concept concerned with the classification of an agent’s actions into a pre-

defined library of plans; see (Carberry, 2001) for a comprehensive review of related

literature in this domain. Techniques in this domain include fast symbolic methods

for processing multi-featured observations, e.g. (Avrahami-Zilberbrand and Kaminka,

2005), vision-based tracking methods, e.g. (Bobick and Davis, 2001; Messing et al.,

2009), and probabilistic algorithms, e.g. (Charniak and Goldman, 1993; Bui, 2003;

Geib and Harp, 2004; Baker et al., 2009; Geib and Goldman, 2009).
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2.2.1.1 Connection to interaction shaping

The opponent modeling techniques presented in this thesis are inspired by the above

symbolic and probabilistic methods. However, our primary focus is on techniques

that can simultaneously account for both the strategic and the sensing uncertainty in

an adversarial domain (Chapter 3), and exploit the acquired observations in order to

influence an interacting agent (Chapter 5).

2.2.2 Regret minimisation and the bandit problem

Game-theoretic techniques have also been used in adversarial decision-making prob-

lems. Regret minimisation is a general method used to determine the utility of actions

against adversaries with unknown strategies (see Nisan et al. (2007) for an overview of

the problem). A related application of regret minimisation is the bandit problem, origi-

nally proposed by Robbins (1952), which models decision making as a set of actions of

initially unknown utility. A wide range of solutions have been proposed for this prob-

lem, ranging from non-stochastic (Auer et al., 2003) to combinatorial (Cesa-Bianchi

and Lugosi, 2012) methods. Moreover, a common theme in bandit-style problems is

the provision of external expert inputs, e.g. (Cesa-Bianchi et al., 1997; de Farias and

Megiddo, 2004), which are used to inform action selection.

Definition 2.2.1 Adversarial bandit problem (Auer et al., 2003): An adversarial ban-

dit problem is specified by the number K of possible actions, where each action is

denoted by an integer 1 ≤ i ≤ K, and by an assignment of rewards, i.e. an infinite

sequence x(1),x(2), . . . of vectors x(t) = 〈x1(t), . . . ,xK(t)〉, where xi(t)∈ [0,1] denotes

the reward obtained if action i is chosen at time step t.

2.2.2.1 Connection to interaction shaping

Our approach to the interaction shaping problem is inspired by the bandit and regret

minimisation ideas. Our goal is to recover the utility of different actions against a

given adversarial agent, in order to compute temporally extended policies that are

likely to achieve a global strategic goal. In Chapter 3, we extend the above concepts

to multi-robot games, where uncertainty and observability limitations pose additional

constraints that must be addressed by an autonomous agent. Then, in Chapter 4, we

introduce human demonstrations of strategic behaviours as expert knowledge in the

process of shaping interactions. Finally, in Chapter 5, we build an empirical Bayesian
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learning framework on top of these demonstrations, which is intended to minimise the

regret of selected strategies over a specified time horizon.

2.2.3 Ad hoc coordination

An emerging problem in the autonomous decision-making literature is the formalisa-

tion of ad hoc coordination in multi-agent teams (Stone et al., 2010). The challenge

in ad hoc coordination lies in developing autonomous agents that can form teams with

a priori unknown teammates, and collaborate effectively in a joint task. The original

approach to this problem (Stone and Kraus, 2010) was based on a multi-armed ban-

dit framework (similar to the one described in the previous section), where the arms

correspond to the possible actions each agent may take in this collaborative setting.

Subsequent work on this domain has focused on the development of role formation

algorithms (Genter et al., 2011), and their empirical evaluation in relevant scenarios,

such as the pursuit domain (Barrett and Stone, 2012).

A recent line of work that comes close to our interaction shaping framework deals

with leadership protocols in ad hoc teamwork, where an agent is tasked with guiding a

group of other teammates towards a desired goal. Agmon and Stone (2012) introduce

a graphical model for leadership in joint action settings, discussing different variants

such as having multiple leaders or considering an extended history of states in action

selection. This model groups related sets of joint actions together, with edges indicat-

ing the ability of switching from one action to another. The optimal set of joint actions

is computed through a polynomial time search algorithm. Furthermore, Genter et al.

(2013) model collaborating agents as a leader-based flock, whose aim is to jointly op-

timise a team-level utility function. This work distinguishes between the cases when

the flock consists of stationary and non-stationary agents, discussing how convergence

is affected in each case.

2.2.3.1 Connection to interaction shaping

Despite their different scope, there are some parallels between the ad hoc coordination

and interaction shaping problems. Both problems deal with behavioural influence in

multiagent domains, where an agent seeks to impact the decisions of one or multiple

other agents towards a desired outcome. Moreover, both frameworks are focused on

algorithms that are robust with respect to a wide range of behavioural profiles and in-

teracting agent characteristics. However, we also note some importand differences be-
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tween the two approaches. First, the ad hoc problem is aimed at cooperative decision-

making problems, whereas interaction shaping focuses on influence over adversarial

agents and features no collaboration. Thus, a shaping agent does not share resources

or select roles within a team; instead, it must exploit its own capabilities in order to

attain its goal. Second, the interaction shaping problem accounts for human-controlled

adversaries whose behaviour may change during the interaction. By contrast, in ad hoc

coordination, non-stationary agents are typically endowed with some additional capa-

bility (e.g. the ability of ad-hoc agents to move in the flocking problem) that impacts

their ability to influence other agents. Third, interaction shaping is focused on empiri-

cal, interactive learning problems in robotic and human-robot systems, whereas ad hoc

teamwork is currently geared towards analytical evaluation and theoretical guarantees

in simulated domains. Thus, the two frameworks can be essentially viewed as two het-

erogeneous approaches to broadly related computational problems, with the common

aim of influencing interacting agents.

2.2.4 Influence over adversarial agents

In multi-agent systems, opponent modeling is often concerned with influence over the

beliefs of other adversarial agents. The aim is to attain intelligent behaviours that em-

ulate human traits, for example, bluffing in poker games (Southey et al., 2005). In

experimental robotic systems, these types of influencing behaviours largely remain an

open problem. Perhaps the most notable recent such example is the work by Wag-

ner and Arkin (2011), which studies the concept of deception in interactions between

adversarial robots. The experimental domain considered in that paper (Figure 2.2) is

structured around a hide-and-seek game between two adversarial robots, where the

hider attempts to provide misleading information to the seeker in order to conceal its

true intentions. This approach is based on a simple Bayesian network representing the

causal relationship between the manipulable obstacles (left, right, centre marker), and

the belief of the seeker on the hider’s location.

In the domain of human-robot interaction, Short et al. (2010) investigate how peo-

ple perceive a robot that attempts to deceive them in a rock-paper-scissors game. The

key finding of their experiment was that several subjects exhibit greater social engage-

ments when interacting with a cheating robot. Another related study (Vázquez et al.,

2011) focuses on the responses of human participants to the decisions of a deliberately

deceptive robot referee, in the context of a simple interactive game.
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Figure 2.2: Experimental setup for the deception problem studied by Wagner and Arkin

(2011). A robot hider (shown in the figure) must navigate to one of three possible

hiding locations (left, centre, right). Another robot (seeker, not shown) must correctly

identify the location selected by the hider. The environment also features three different

obstacles (represented by whiteboard markers), which are positioned along the paths

to the three hiding locations. The hider can deceive the seeker by knocking off a marker

that does not reveal its intended destination (e.g. knock off the left marker while heading

towards the right location).

2.2.4.1 Connection to interaction shaping

Despite these early approaches towards influencing behaviours in interactive robotic

systems, there is a lack of a clear underlying theoretical model of behaviour shap-

ing. Furthermore, these examples represent fairly simple scenarios with very small

state and action spaces, while also suffering from lack of diversity in the exhibited

strategies. By contrast, there is no clear notion of how an autonomous robot can in-

fluence an interacting adversary in a complex, continuous space-action domain, which

also features physical limitations and sensory uncertainty. In this thesis, we seek to

learn and reproduce influencing behaviours in a principled manner, in experimental

environments where the characteristics (e.g. human/autonomous) of the adversary are

not known a priori. To achieve this objective, our learning formulation combines sev-

eral established probabilistic motion planning and decision making techniques, such

as action sampling, iterated reasoning, data-driven approximation, and Bayesian infer-

ence. Thus, the resulting framework leads to interactive strategic learning in physically

grounded adversarial multi-robot environments.
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2.2.5 Adversarial interactions in graphics

Adversarial modeling is also important in computer graphics an animation, where there

is a need for fluent control of virtual interacting characters. Wampler et al. (2010)

present a game-theoretic control method, based on the assumption that characters act

simultaneously and not in turns. This technique combines offline learning of a con-

troller function through iterative approximation and compression heuristics, and on-

line adaptation to the observed actions of the adversary. Similarly, Shum et al. (2008)

describe a character control method which is split into a preprocessing and a run-time

stage. In the first phase, samples of the desired motion are collected and encoded as an

interaction graph, which can be queried for the optimal action through dynamic pro-

gramming or min-max search. In the second phase, actions are selected based on the

outcome of the offline stage, with the option of dynamically recomputing the policy

based on user input.

Our approach to interaction shaping is similarly divided into an offline phase,

where the desired interaction templates are learned from provided demonstrations, and

online adaptation to the actions of the adversary. However, our model is more fo-

cused towards long-term influence over adversaries, based on an iterated prediction

and sampling. Furthermore, unlike the above works, we empirically learn a model

of the interacting agent’s behaviour, and use it both to predict the future state of the

interaction and to select the optimal action in a Bayesian manner.

2.3 Shaping in decision making

The term “shaping” has been used in various contexts in the autonomous agents liter-

ature. Reward shaping (Ng et al., 1999) is the process of affecting an agent’s learning

process by providing additional rewards, as a means of inciting desirable behaviours.

Given an MDP M, the reward function, R : S× A× S 7→ ℜ (defined as in Section

2.1.1), is augmented with an additional, manually specified shaping reward function,

F : S×A× S 7→ ℜ, operating on the same spaces. This modification leads to a new

MDP, M′, where the agent experiences a reward R(s,a,s′)+F(s,a,s′) when transition-

ing from s to s′ through action a, as opposed to just R(s,a,s′) in M. This is followed

by a discussion on the conditions under which an optimal policy in the modified MDP,

M′, will also be optimal in the original MDP. Thus, shaping here refers to the external

influence of an agent’s learning process, through the provision of appropriately defined
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rewards.

Autonomous shaping (Konidaris and Barto, 2006) considers an extension to the

above concept, where an agent learns a shaping function from its own experience and

not through external specification. In this approach, the agent is tasked with solving a

sequence of reward-linked goal directed problems. The main idea is that prior expe-

rience in solved tasks can be used to inform solutions in later, related tasks. Given a

sequence of n problems, S1, . . . ,Sn, the agent learns a value function Vj for each prob-

lem S j. Then, training examples from different tasks are jointly used to learn a transfer

function L, which can be applied to estimate the value of novel problem instances.

Thus, the agent can autonomously shape its future rewards by reusing knowledge from

previously solved problems.

Other approaches use the term “shaping” as defined in the animal learning litera-

ture, i.e. “the process of training by reinforcing successively improving approxima-

tions of the target behaviour” (Bouton, 2007). In this context, Knox and Stone (2009)

define a shaping problem similar to the above, where an agent interactively uses human

reinforcement signals to select actions with expected high reward.

Definition 2.3.1 The Shaping Problem (Knox and Stone, 2009) Within a sequential

decision-making task, an agent receives a sequence of state descriptions, s1,s2, . . .∈ S,

and action opportunities, ai ∈ A at each state. From a human trainer who observes

the agent and understands a predefined performance metric, the agent also receives

occasional positive and negative reinforcement signals correlated with the trainer’s

assessment of recent state-action pairs. The problem is, how can an agent learn an

optimal policy, π : S 7→A, with respect to the performance metric, given the information

contained in the input?

Thus, this version of shaping involves more explicit interaction between the learn-

ing agent and the human trainer, by modeling the provided reinforcement signals and

using them to interactively update the action selection policy.

2.3.1 Related concepts

A different concept that is closely related to shaping is active indirect elicitation (Zhang

and Parkes, 2008), where an agent’s reward function is inferred from incentives sup-

plied by an external interested party. The aim is to influence the agent into following a

policy that maximises the expected value for the interested party. This approach bears
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similarities to the reward shaping problem discussed above, as the supplied incentives

carry the form of user-defined functions, which are applied on top of MDP-based re-

ward functions.

An alternative approach to reasoning about adversaries is the use of external ad-

vice in the form of a coach or other expert agent. Riley and Veloso (2002) introduce

a distributed planning method coupled with probabilistic opponent modeling, where

a simple temporal network is used to represent team-level coordinated movements.

Furthermore, Riley et al. (2002) extend this idea to extract models from past robotic

soccer games and use them in specific game play contexts, such as set plays, formation

learning, and passing. In both works, a coach acts as an external agent who observes

the actions of the opposing side, and devises a plan that is suited to these observations

and the predicted behaviour of the adversaries.
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Figure 2.3: The lemonade stand game (Zinkevich, 2012). The game is played by three

lemonade vendors (indicated by the circle, square, and diamond shapes) on a circu-

lar island with 12 different beaches. The vendors must determine, over a series of

episodes, where to place their stands, in order to maximise their revenue. Vendors

are not initially aware of the choices of their competitors. The expected reward can

be formulated as the sum of the distances to all neighbouring vendors, assuming that

customers are uniformly distributed across the beaches.

Behaviour shaping has also been considered in multi-agent interactions combining

elements of competition and collaboration. One such example is the lemonade stand

game (Zinkevich, 2012), where the reward experienced by an agent depends both on its

own decisions and those of the other interacting agents (Figure 2.3). Thus, an important

challenge in the lemonade stand game is to determine, over a series of episodes, a

behavioural model for the responses of the interacting agents. Wunder et al. (2011)

propose an iterative reasoning framework for this problem, based on a parametrised

version of IPOMDPs. This framework is shown to outperform previously deployed

implementations in lemonade-stand game competitions.
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2.3.2 Connection to interaction shaping

The interaction shaping problem considered in this thesis is similarly concerned with

influence over the behaviour of an interacting agent. Our problem is different to the

studies of Ng et al. (1999), Knox and Stone (2009), Zhang and Parkes (2008), Riley

and Veloso (2002), and Riley et al. (2002) in that there is no interaction in the reward

learning process with human experts or trainers. Instead, human demonstrations are

provided only in an offline phase (Chapter 4), and then used as a basis for an online

learning algorithm. Thus, our problem comes closer to the works by Konidaris and

Barto (2006) and Wunder et al. (2011), where the agent learns from experience fully

autonomously. However, our scope is quite different to Konidaris and Barto (2006),

whose work primarily focuses on the transfer problem, while also not featuring in-

teraction with strategic adversaries. Furthermore, in relation to the coaching works

discussed above, our method does not feature coordination with other agents or an ex-

ternal expert (the coach), but focuses instead on how a single agent can learn to shape

an interaction. Moreover, in relation to Wunder et al. (2011), we consider purely ad-

versarial interactions, where the learning agent is tasked with shaping the behaviour

of non-cooperative agents, whose goals are conflicting with its own. This is a chal-

lenging problem that comes closer to most realistic human-robot interactions (which

are beyond the scope of all the above works), where robots do not have explicit control

over human actions.

2.4 Human demonstration and interaction strategies

In Chapter 4, we formulate an algorithm for learning interaction strategy templates

from potentially imperfect human demonstrations. Learning from human demonstra-

tion is a common choice for programming autonomous robots; see Billard et al. (2008)

for an overview of the problem and Argall et al. (2009) for a comprehensive survey

of related techniques. Many of these works deal with demonstrating specific motor

skills to robots, e.g. (Pastor et al., 2009; Lee et al., 2011; Chatzis et al., 2012), using a

wide range of statistical machine learning tools. Our approach is based on the use of

Gaussian Mixture Models (GMMs), which have been previously used for interactive

policy learning from human demonstrations (Chernova and Veloso, 2007) and motor

task learning (Calinon et al., 2006, 2010). In robotic soccer, the primary experimental

domain of this thesis, Gaussian techniques have been applied to provide illustrations of
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specific manoeuvres, such as ball grasping for four-legged robots (Grollman and Jenk-

ins, 2007). In simulated robotic soccer domains, human demonstrations have been

previously used in the design of more general, team-level strategies (Aler et al., 2005).

2.4.1 Connection to interaction strategy learning

Unlike many of the above works, our focus is on learning interaction strategies instead

of specific single-agent skills. To learn such strategies, we make demonstrators exhibit

a strategic behaviour by teleoperating a robot in interactions with another adversar-

ial robot. In this context, the recorded training data set does not only consist of the

demonstrator’s control inputs and the trajectories of the teleoperated robot, but also of

the trajectories of the adversarial robot. These inputs are jointly used to learn a set

of strategy templates, which are defined interactively to account for both adversaries.

These templates can then be autonomously generalised and adapted to novel strate-

gic opponents, based on the observed state of the interaction, without the provision

of any external human guidance. Thus, even when the demonstrations are provided

in the context of an interaction with a baseline heuristic autonomous opponent, they

can be subsequently synthesised to form strategies that can challenge more sophisti-

cated human adversaries. This form of interaction strategy learning constitutes a novel

connection between the human demonstration and opponent modeling fields.

Another distinguishing feature of our approach is the nature of the collected traces.

In the robotic soccer problem we consider, demonstrations are provided in the context

of interactive games between robots. These demonstrations are annotated only based

on their success and not on their optimality. For example, when learning strategies for

the striker, we only record whether a goal was scored in a trial, and ignore features

such as lags in demonstrator decisions. Thus, a significant proportion of our traces are

suboptimal, as users are focusing on the overall game objective and not explicitly trying

to demonstrate an optimal behaviour. This distinguishes our approach from several

state-of-the-art learning works, (e.g. Abbeel and Ng (2004)), where demonstrations

are treated as expert solutions to a single optimal control problem.

Learning from imperfect demonstrations has been studied by Nemec et al. (2011),

where previous experiences acquired by the robots are used to guide sensorimotor

learning, and by Grollman and Billard (2011), where unsuccessful traces form an in-

tegral part of the learning process. However, these works also consider single-robot

motor skill learning, so there is no notion of interacting agents as in our approach.
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2.5 Human-robot interaction and perception

2.5.1 Forms of interaction

In Chapter 6, we present the results of a user study on the effects of limited perception

on human decisions in interactive multi-robot tasks. In this study, subjects are eval-

uated in different teleoperation tasks requiring interaction with an autonomous robot.

The tasks range cooperative forms of interaction to fully adversarial, the latter requir-

ing subjects to outperform the autonomous robot in an interactive setting.

Human-robot interaction is often considered in the context of cooperative tasks,

where the interacting parties must collaborate to achieve a common goal, e.g. coopera-

tive object manipulation (Edsinger and Kemp, 2007; Dominey et al., 2008). Many such

interactions are centred around the ability of the robot to follow instructions from a hu-

man, in order to fulfil its role in the task, e.g. (Tenorth et al., 2010; Lallée et al., 2010b).

Furthermore, several studies in human-robot collaboration are concerned with model-

ing human intentions; various approaches have been proposed to this effect, such as

velocity-based impedance control (Duchaine and Gosselin, 2007), Dynamic Bayesian

Networks (Schrempf et al., 2005), or interaction history records (Dominey et al., 2008).

2.5.1.1 Connection to our interactive domains

In our work, we look at the related problem of how humans account for the intent of

autonomous robots in dynamic interactions, in both collaborative and adversarial set-

tings. Moreover, we do not allow communication or any form of information exchange

between interacting parties; the human must infer the robot’s intent only through vi-

sual observation which is progressively restricted. Thus, even the cooperative tasks we

consider present users with different challenges than corresponding problems in the

existing literature. Our study therefore analyses the impact of novel factors (strategic

content of task combined with limited perception) affecting interactive teleoperation,

and thus introduces scenarios where human decisions may be less robust than those

made by autonomous agents. This comparison and division of labour between human

control and robot autonomy is an important area of study in the robotics literature; see

Parasuraman et al. (2000) for a more detailed discussion on this problem.
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2.5.2 Perceptual constraints

The influence of perception in human-robot cooperation has been previously exam-

ined in the context of recognising actions and learning skills from observation, e.g.

(Johnson and Demiris, 2005; Lallée et al., 2010a). Learning from demonstration under

perceptual constraints was the focus of a study by Crick et al. (2011), which showed

that robots can learn more effectively when the perception of human demonstrators

is restricted to be similar to their own. An interesting result in that study was that

robots were able to learn more quickly from restricted-perception demonstrations, even

though their quality was often inferior to full-perception ones. A similar study on hu-

man teleoperation was conducted by Lathan and Tracey (2002), where user perfor-

mance was found to be correlated to the availability of perceptual information.

2.5.2.1 Connection to our study

In our study, we are similarly interested in assessing the effects of constrained visibil-

ity on human performance. However, our focus is not on learning from demonstrations

provided independently by a human user, but instead on evaluating human performance

in a purely interactive environment, where humans and robots simultaneously engage

in cooperative and adversarial tasks. Our results demonstrate that restricted perception

may have a significant impact on decisions in complex, strategic tasks – this comple-

ments the results of existing studies, which show that alternative factors such as fatigue

have a limited impact on human teleoperation performance (Mavridis et al., 2012).

2.6 Related domains in robotic soccer

Throughout this thesis, we use the robotic soccer penalty shooting example as an illus-

trative experimental problem. A domain that closely resembles our problem is Segway

soccer (Browning et al., 2004; Argall et al., 2006), which involves mixed teams of

robots and humans mounted on Segways (Figure 2.4). Browning et al. (2004), use

teleoperation to provide demonstrations of human play, which are then generalised

using locally weighted regression (Schaal and Atkeson, 1998).

Our experimental setup shares a similar motivation in that humans and robots com-

pete in an adversarial task with the same physical capabilities. However, we note the

following important differences between the two domains. First, the pace in penalty

shooting is faster (as demonstrated in the supporting videos (Valtazanos, 2012a,b)) than
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Figure 2.4: Illustration of Segway soccer (Argall et al., 2006). Autonomous robots and

humans mounted on Segway compete in a soccer match using identical platforms. This

setup comes close to our penalty shooting experiments, where – otherwise identical –

autonomous and teleoperated robots interact in a competitive game.

in Segway soccer, requiring more frequent interactive decisions by both sides. Second,

being a one-to-one challenge between a teleoperated and an autonomous robot, our

task is more explicitly adversarial than Segway soccer, which features mixed teams

and elements of coordination. Thus, although our domain features fewer robots, it en-

sures that humans and robots get equal “playing time”. By contrast, in a mixed-team

game, humans could dominate the interaction and supplant the role of the robots.

Robotic soccer penalty shooting has been previously studied by Hester et al. (2010)

as a reinforcement learning problem for learning better kicking motions. However, the

goalkeeper was a static player who did not move, so there was no strategic adversary.

2.7 Hybrid systems and particle filtering

In Chapter 3, we present the Reachable Set Particle Filter, an algorithm for computing

the state of adversarial agents from noisy sensory observations. This algorithm com-

bines dynamical constraints (hybrid system formulation) and data-driven estimation

(particle filtering). In this section, we review key concepts from these two domains.

2.7.1 Hybrid systems

A key concern in our work is the modeling of an opponent’s behaviour, which is dic-

tated by choices over discrete behavioural modes and underlying continuous dynamics.

A good framework for thinking about such problems is available within the control the-

ory literature, where systems with joint discrete and continuous dynamics are known

as hybrid systems (Tomlin et al., 2000, 2003; Mitchell et al., 2001, 2005).

A major application of hybrid system modeling has been the formal description
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of aircraft collision avoidance as a pursuit-evasion game (see Vidal et al. (2002);

Gerkey et al. (2004); Karaman and Frazzoli (2010); Bhattacharya and Hutchinson

(2010) for examples of related pursuit-evasion applications) between two adversaries

(Figure 2.5). Each aircraft assumes the role of an evader seeking to avoid collision with

an adversary, who is modeled as a pursuer with the exact opposite goal. An evader has

a notion of a target set of unsafe states, which must be avoided to prevent collision.

Figure 2.5: Illustration of the two-aircraft collision avoidance example (Mitchell, 2007).

The second aircraft is modeled as a pursuer seeking to cause a collision with the first

aircraft. Integration of system dynamics (defined in terms of velocity bounds) over time

lead to the computation of control inputs that may cause a collision in a future time.

A key innovation of this approach is the introduction of reachable sets of states,

which can be classified in one of two ways. A forward reachable set is the set of states

that can be reached from some given initial configurations. A backward reachable

set is the set of states that may give rise to trajectories terminating in a target set of

unsafe states. By computing these unsafe states, one can also determine trajectories

that can lead to their avoidance. In prior work (Valtazanos and Ramamoorthy, 2011c),

we presented a procedure through which backward reachable sets can be used in the

context of motion planning in adversarial robotic environments.

2.7.2 Particle filtering

The particle filter (Gordon et al., 1993) has become a popular tool for state estimation

in uncertain environments, due to the ability to flexibly model arbitrary probability

distributions. A particle filter typically comprises a prediction step, where a fixed set of

hypotheses is computed based on a known prior distribution, and an update step, where

the likelihood of these hypotheses is updated based on the most recent observations.

These algorithms have been used to estimate adversarial models from experience in

strategic games such as poker (Bard and Bowling, 2007). A related game-theoretic
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concept is found in empirical games (Jordan and Wellman, 2009), where one attempts

to extract strategic profiles in a data-driven fashion.

2.7.3 Connection to our algorithm

Our proposed algorithm combines the relative merits of hybrid systems and particle

filters in the context of interactive adversarial state estimation. In particular, we use

formal dynamical constraints, as modeled in hybrid systems, in the prediction step

of a particle filter algorithm tracking the state of an interacting agent. Thus, sensory

observations that are inconsistent with the generated predictions can be discarded in the

update step. This differentiates our approach to most prior works in hybrid systems,

where uncertainty in sensory readings is not modeled directly in the system dynamics.

Furthermore, we introduce a tighter coupling between probabilistic and game-theoretic

concepts, which are jointly used to estimate the state of interacting adversarial robots.

2.8 Unconstrained motion capture

In Chapter 7, we propose an algorithm for simultaneous posture and position track-

ing in unconstrained environments, with application to physical strategic human-robot

interaction. Our approach is based on a combination of optical and inertial sensing

motion capture, which are jointly used to learn a model of human motion through

low-dimensional manifolds. This section reviews related motion capture literature and

technologies, illustrating the key innovations introduced by our method.

2.8.1 Human motion capture systems

Traditional optical motion capture systems, e.g. the Vicon System (http://www.

vicon.com), use an ensemble of high-resolution cameras to track the locations of

reflective markers placed on the body of a subject. The marker positions are used

to compute the full pose (position and posture) of the subject. However, optical sys-

tems suffer from a number of drawbacks that impact their applicability in complex

human-robot interaction scenarios. First, motion capture must be carried out in dedi-

cated studios, which are often expensive to set up and maintain. Second, these systems

have a small area of capture, and subjects cannot be tracked outside its boundaries, e.g.

when moving in and out of rooms, or navigating along corridors in a building. Third,

occlusion problems impact the ability of these systems to track subjects consistently.
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A recent development has been the creation of devices combining stereo cameras

and depth-estimating sensors, most notably the Microsoft Kinect (Figure 2.6(a)). The

combined output of these sensors is used to generate a three-dimensional point cloud,

which can subsequently be analysed to determine the pose of a tracked subject, or fit

the data to a skeleton model (Shotton et al., 2011). These devices are significantly

cheaper than traditional optical systems and also remove the need for markers on the

subject’s body. Furthermore, the portability of the sensors allows for anyplace motion

capture. However, like traditional optical systems, a Kinect must also be fixed in order

to track subjects reliably, and the volume of capture is limited to approximately 15m3.

This makes it unsuitable for tracking subjects in large or unconstrained spaces.

(a) Microsoft Kinect. (b) Orient-4 device.

Figure 2.6: Motion tracking platforms. (a): Optical source – Kinect device with two

cameras and a depth-finding sensor. (b): Inertial measurement unit – Orient-4 device

with tri-axial gyroscopes, accelerometers, and magnetometers.

An alternative to optical systems are wireless inertial sensing platforms, such as

the Orient platform (Young et al., 2007) (Figure 2.6(b)). These systems collect data

from an ensemble of sensor nodes placed on the subject’s body. Each device typically

consists of 3-axis inertial sensors such as gyroscopes, accelerometers, and magnetome-

ters. These sensors jointly estimate the rotation of the body part the device is placed

on, relative to a fixed point on the subject’s body. Data from the different body parts are

transmitted wirelessly to a base station and aggregated to determine the overall posture

of the subject. Inertial sensor networks have been successfully used in tracking various

complex physical activities, such as Tango dancing (Arvind and Valtazanos, 2009).

Due to the wireless transmission and capture of data, inertial sensing avoids the

occlusion problems arising in optical systems. More importantly, as no fixed tracking

source is required, inertial sensing can track subjects in a greater variety of environ-
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ments and in larger areas than optical systems. The main drawback of inertial sensing

is the relative rotational nature of sensory estimates, which means that only postures

can be determined directly. Unfortunately, this approach does not extend to absolute

spatial positions, as computations are performed relative to a stationary reference point.

Position tracking using inertial measurement units has been the subject of several

studies. Most of these works use a model-based approach, where inertial sensor mea-

surements are filtered through a position tracking model to predict the most likely

translation of the tracked subject. The employed models range from analytically de-

fined Kalman filters (Young, 2010; Corrales et al., 2008; Foxlin, 2005) or particle filters

(Kobayashi and Kuno, 2010), to alternative heuristic approaches based on gait event

detection (Ojeda and Borenstein, 2007; Yun et al., 2007; Feliz et al., 2009).

Optical and inertial sensing systems have been previously combined in the context

of motion reconstruction. Tautges et al. (2011) use sparse accelerometer data to search

over a large database of marker-based motions, and retrieve suitable fragments that can

be synthesised to form plausible motions. This approach is based on a combination of

local graph search and cost-based energy minimisation. This latter part of the algo-

rithm is related to our method, which similarly uses a set of weights in order to map

postures to translations. However, we do not use any motion databases or graph search

in the mapping phase; instead we learn a generative model from recorded optical-

inertial motion sequences, and use it to compute translations for novel instances.

2.8.2 Dimensionality reduction in sensor networks

Dimensionality reduction has been used in inertial sensor networks as a discriminative

model for activity recognition and gait phase detection (Yang et al., 2008; Valtazanos

et al., 2010, 2013a). In this context, a high-dimensional motion sequence is projected

into a latent, low-dimensional space, where salient patterns can be detected more ef-

fectively (Figure 2.7). Thus, this approach alleviates the need to look at individual

sensors when analysing multi-dimensional motion sequences.

2.8.2.1 Connection to our method

Compared to prior work, our motion learning framework is different in being a model-

free method with respect to the measurement units, where no assumptions are made

on the sensor placements or the nature of the motion being performed. Instead, the

aggregated sensory data is treated as a single feature vector, from which a mapping to
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Figure 2.7: Example of dimensionality reduction of inertial sensor network data from

a walking motion sequence (Valtazanos et al., 2010). (a): Example of individual joint

data readings. (b): Representation of all sensor readings in a latent, low-dimensional

subspace. Black and red dots indicate local maxima and minima, respectively, which

correspond to hypotheses on the boundaries between consecutive steps. In the latent

space, false positives are avoided, and segmentation points are more easily identifiable.

whole-body translations is learned. Thus, in our experiments (Chapter 7), we compare

against the established model-free method of double integration of accelerometer data.

Nevertheless, our approach can in principle be combined with existing models, where

generated translations can be used as predictive estimates for a filter.

In our work, we use low-dimensional subspaces as generative models for whole-

body translations. In this generative context, learned manifolds have been used in

robotics, in order to facilitate imitation of human gaits by humanoid robots (MacDor-

man et al., 2004; Chalodhorn et al., 2007). By adopting this flexible representation, our

objective is to similarly approximate a wide variety of motion dynamics and structure.

2.9 Summary and motivation for our approach

One of the main open problems in the existing literature is the lack of a theoretic model

for behavioural shaping in interactions between humans and robots (as discussed in

Section 2.3). This thesis seeks to address this issue by proposing and experimentally

validating a model for strategic interaction. However, since addressing this problem

directly in a physical setting is hard, the thesis follows an incremental approach to-
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wards the desired end. Our choice of robotic soccer as the main experimental domain

is inspired by existing approaches (Section 2.6) to strategic human-robot interaction.

In this context, Chapter 3 introduces simple interactions between adversarial agents in

simulated worlds, focusing on the simultaneous reasoning about sensing (c.f. Section

2.7) and strategic (c.f. Section 2.2) uncertainty. Chapter 4 raises the complexity of

the experimental setup through the incorporation of physical NAO humanoid robots.

Furthermore, humans are introduced in the interaction loop, both as strategic agents

and as demonstrators of intelligent interactive behaviours (c.f. Section 2.4). The inter-

action templates presented in this chapter extend the opponent modeling formulation

described in Chapter 3. These concepts are further unified in Chapter 5, which intro-

duces our main approach to the interaction shaping problem. Here, the agent learns

the utility of different interaction templates through repeated interaction, and selects

strategies that are likely to attain a strategic goal in a future time horizon (c.f. Section

2.1). Nevertheless, the effectiveness of these shaping behaviours largely depends on

the availability of sensory information to the interacting agents, which inevitably influ-

ences their actions. Thus, Chapter 6 evaluates the effects of asymmetry of information

on human decision making, inspired by the studies described in Section 2.5. Finally,

Chapter 7 is a step towards attaining direct strategic interactions, where humans are

physically present and not merely operators of robots. Our approach to this problem is

inspired by existing motion capture systems and inference algorithms (c.f. Section 2.8)

– here, we show how these systems can be combined to yield the sensory information

that is needed for decision shaping in complex physical settings.





Chapter 3

Sensing and strategic uncertainty in

multi-robot interactions

3.1 Overview

Even as the autonomous robotics community pushes the frontier of what is possible by

a robot requiring decreasingly less guidance from any external sources, we realise that

some of the most exciting opportunities are to be found in a middle ground where an

autonomous robot interacts with other agents – including people – in a mixed-initiative

or social setting. However, we also find that such interactive behaviour – involving

multiple objectives, constraints, ambiguity and incompleteness of knowledge – can be

even more challenging than the fully autonomous scenario. Part of the reason for this

is the difficulty of modeling sophisticated strategic interactions in a way that is both

principled and practicable.

When these conceptual difficulties are coupled with more pragmatic considerations

of hardware and processing power limitations, we find that even seemingly simple

“intelligent” moves, such as passes and dribbles in a robotic soccer game, are scarce

and often require explicit hand crafting of everything but a few open parameters. In a

domain such as robotic soccer, autonomous robots must face uncertainty in their own

egocentric beliefs, incompleteness and uncertainty in their knowledge of the strategies

of their adversaries and physical limitations such as a very limited field of view using

a relatively mediocre camera.

In this chapter, we focus on the problem of robust strategic decision making in

adversarial games with physical limitations in action and perception. We propose an

approach to devising strategic interactive behaviours for autonomous robots, illustrated

41
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using the robotic soccer domain. We also argue that constraints (in action/perception)

need not be viewed only as a feature to be overcome or eliminated. As we show,

successful interactive behaviour often requires the exploitation of these constraints,

leading to interesting forms of motion strategies. We develop this theme in this chapter,

a decision-making framework for physical multi-robot games, based on the following

high level concepts:

• Intent inference: In the absence of a precise model of its adversary’s strategic

behaviour, a robot may approximate it using a finite collection of intent tem-

plates, each modeling a single coarse behavioural class. These templates are

combined probabilistically into a single distribution that predicts the (re)actions

of the adversary.

• Escape strategies: In a noisy, physically embodied, partially observable en-

vironment, robots may benefit from exploiting the observability limitations of

their adversaries. We refer to such moves as escape strategies, as they seek to

reduce the amount of information available to the adversaries and influence their

decisions.

• Probabilistic adversary state estimation: As robots must deal with noisy and

incomplete information, they require a mechanism for ‘filtering’ their observa-

tions of the adversary. We propose the Reachable Set Particle Filter, a prob-

abilistic state estimation algorithm combining a formal characterisation of the

dynamical constraints of a robotic system, with a data-driven estimation proce-

dure. A reachable set characterises, for all instances of a class of strategies, the

states that might be reached at some future point. Thus, it forms a powerful ad-

dition to the particle filter which, in the basic formulation, does not account for

such constraints.

• Regret minimisation: In realistic games with uncertainty, robots can achieve

the full benefit of strategic modeling only if they adapt to and learn from the

actions of their adversaries. We use the regret minimisation to infer online the

effects of probabilistically selected intent templates, and adjust their distributions

to reward retrospectively optimal strategies.

The proposed framework brings together ideas from probabilistic modeling, game

theory, and strategic reasoning, allowing for online decision making in adversarial

robotic environments with physical constraints.
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In the remainder of this chapter, we first summarise our method and system for-

mulation (Section 3.2), and then we present results from experimental evaluation in

simulation (Section 3.3). Finally, we review the key contributions of the chapter, and

discuss the connection of this work to the remainder of this thesis (Section 3.4).

3.2 Method

We are interested in the problem of decision making by an autonomous robot with

physical limitations. Such limitations include: limited velocities (including, perhaps,

non-holonomic constraints), noisy locomotion, noisy perception with limited sensing

resources, limited methods of object manipulation (e.g. kicking a ball to a specific

point). We develop our framework in the context of the robotic soccer domain, as it

features the above types of uncertainty, together with strategic adversaries of unknown

capabilities. However, the underlying ideas could be extended to other strategic games

and general forms of interaction.

3.2.1 Preliminaries

3.2.1.1 Notation

We consider an interaction involving a total of N autonomous robots. Let ri refer to the

i-th robot, i = 1..N. Furthermore, let s ∼ D be an abbreviation for drawing a sample

s from a set or distribution D, and let dist(P1,P2) denote the Euclidean distance be-

tween two points P1 and P2, with the special case dist0(P) .
= dist(P,〈0,0〉) (distance

from origin 〈0,0〉 of egocentric frame). We consider discrete time, continuous space
decision making (at time instants t), though in later chapters (Chapters 4, 5) we show

how this process can be extended to accommodate continuous time.

3.2.1.2 State Estimation

As most autonomous robots are restricted to egocentric sensing, they compute the

states of other robots relative to their own coordinate frame. For r j, the collection

of relative states of all other robots at time t gives the set of robot beliefs:

R B j,t = { 〈xi
j, yi

j, θ
i
j, ci

j〉t | i = 1..N, i 6= j } (3.1)
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where 〈xi
j, yi

j, θi
j〉t denotes the relative state of ri as computed by robot j, in terms

of planar coordinates x,y and orientation θ, and 0 ≤ ci
j ≤ 1 is a weight representing

the robot’s confidence on the belief. At the simplest level, the position component

〈xi
j, yi

j〉 of a belief is equal to a raw sensor reading, whereas the orientation is inferred

from a history of positions (see Section 3.2.1.3). Correspondingly, relative soccer ball

beliefs are given by BB j,t = 〈xB
j , yB

j , cB
j 〉t . If the ball or a robot is visible at time t, its

confidence weight is set to 1, otherwise it is set to the weight of time t−1 multiplied

by a decay constant δc, 0≤ δc ≤ 1.

3.2.1.3 Orientation Estimation

Robots endowed with some sensing mechanism (e.g. vision and/or sonar) may com-

pute the relative planar positions of their adversaries up to some approximation. Un-

fortunately, this approach does not extend to the relative orientations1. Instead, we use

the autoregressive procedure INFERORIENTATION (Algorithm 1) to compute orienta-

tions based on past robot and ball beliefs. The algorithm relates the flow of a robot’s

motion to the position of the ball and the other robots, and probabilistically infers the

orientation that is most likely leading to these movements.

3.2.2 The Reachable Set Particle Filter

Particle filtering helps robots overcome their sensing limitations. We present a variant

to the original particle filter algorithm (Gordon et al., 1993) for autonomous robots,

which we term Reachable Set Particle Filter (RSPF). The main innovation is the

definition of the proposal distribution for particle updates in terms of backward reach-

able sets, as described by Tomlin et al. (2003). If the dynamics of a system of robots

is known, together with their corresponding minimum and maximum velocity bounds,

then it is possible to compute future sets of states up to a – potentially infinite – time

horizon. The worst-case backward reachable set BR S for ri relative to r j (assuming

both robots are moving with their maximum linear velocities vi and v j) is obtained

through the Hamilton-Jacobi-Isaacs Partial Differential Equation:

∂v(q, t)
∂t

+min[0,H(q,∇v(q, t))] = 0, v(q,0) = g(q), (3.2)

1Unless sophisticated visual pattern recognition algorithms are used, whose computational cost
would be prohibitive for the real-time decision making problems we are considering, and the kinds
of humanoid robots we are targeting our approach at.
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Algorithm 1 Relative Orientation Inference

1: INFERORIENTATION(R B i
j,BB j)

2: Input: Robot beliefs R B i
j for ri, ball beliefs BB j

3: Auxiliary methods: rand {random number ∈ [0..1]}
4: distT h← 0.7m {distance threshold for interacting robot}
5: 〈xi

j, yi
j, θi

j, ci
j〉t ← R B i

j,t , 〈xB
j , yB

j , cB
j 〉t ← BB j,t

6: 〈xi
j, yi

j, θi
j, ci

j〉t−1← R B i
j,t−1

7: cdri← dist0(〈xi
j,t , yi

j,t〉) {current distance of ri}
8: cdb← dist0(〈xB

j,t , yB
j,t〉) {current distance of ball}

9: cdbri← dist(〈xB
j,t , yB

j,t〉,〈xi
j,t , yi

j,t〉) {current distance of ball from ri}
10: ldbri← dist(〈xB

j,t , yB
j,t〉,〈xi

j,t−1, yi
j,t−1〉) {last distance of ball from ri}

11: if rand< 0.7 and ((cdri > cdb or cdbri < ldbri) and cdri > distT h) then
12: θ̃i

j,t ← atan2(yB
j,t − yi

j,t ,x
B
j,t − xi

j,t) {ri is further than the ball but has moved

closer to it→ infer that it is facing towards it}
13: else
14: if rand< 0.5 and cdri < distT h then
15: θ̃i

j,t ← atan2(yi
j,t ,x

i
j,t)+π

16: else
17: θ̃i

j,t ← π {ri is facing in the direction of r j}
18: end if
19: end if
20: return θ̃i

j,t

with Hamiltonian

H(q, p) = max
a∈Ui

min
b∈U j

p · f (q,a,b,vi,v j), (3.3)

where q = 〈xi
j,y

i
j,θ

i
j〉, f (q,a,b,vi,v j) = q̇ denotes the relative system dynamics, g(q)

is a scalar function representing the reachable set at t = 0 (e.g. g(q) =
√

xi
j
2
+ yi

j
2−C,

with C constant), and Ui,U j are the sets of permissible angular velocities. The HJI

PDE is solved backwards in time until convergence. Tomlin et al. (2003) discuss in

more detail the convergence properties of this method.

We assume that all robots have the same physical velocity constraints, so we com-

pute a single reachable set BR S up to a time horizon of 1s. We now show how BR S
can be used in a particle filter.
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Each robot r j maintains a separate particle filter for every other robot ri. In each

case, a set of P particles and weights:

R P i
j = {〈pk, pwk〉 | k = 1..P} (3.4)

is maintained, where every pk = 〈x̃i
j, ỹ

i
j, θ̃

i
j〉 is a state hypothesis and pwk is its associ-

ated weight, such that ∑
P
k=1 pwk = 1. Furthermore, we define R M i

j as a second set of

Q particles over the potential one-step responses of ri:

R M i
j = { 〈mk,mwk〉 |mk = 〈d̃x, d̃y, d̃θ〉, k = 1..Q}, (3.5)

i.e. the potential moves ri can take in a single discrete time step. Each set R M i
j is

initialised randomly. The candidate move at time t is m̄ = 〈〈xi
j,t ,y

i
j,t〉−〈xi

j,t−1,y
i
j,t−1〉,

INFERORIENTATION(R B i
j,BB j)〉. The weight m̄w of a candidate is defined in terms

of the reachable set BR S , so that:

m̄w =

{
1/Q, m̄ ∈ BR S
0, m̄ 6∈ BR S

(3.6)

The oldest particle 〈mo,mwo〉 in R M i
j is replaced by 〈m̄, m̄w〉. Following the replace-

ment, all weights are normalised so that they add to 1. Thus, R M i
j essentially acts

as a predictive distribution for ri, by combining both egocentric estimates and ground

truth dynamics from the reachable set.

To complete the Reachable Set Particle Filter, we set R M i
j as the proposal distri-

bution for the prediction step of R P i
j. Then, at time t:

pk← pk + m̃, 〈m̃, m̃w〉 ∼ R M i
j, k = 1..P (3.7)

The remaining steps are similar to the algorithm described by Gordon et al. (1993).

The observation likelihood distributions for the filter correction step should be suited

to the robot’s sensor specification. For example, the distribution for sonar readings

should account for the minimum and maximum sensing range. Thus, noisy estimates

that are inconsistent with the robot’s hardware limitations can be discarded.

Through this filtering process, the state component of a belief is revised as the

weighted sum of its associated particles:

〈xi
j, yi

j, θ
i
j〉=

P

∑
k=0

pk · pwk (3.8)
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3.2.3 Action types, actions, and strategic modes

Every robot has access to the following set of parametrisable action types:

AT = {MOVE(dx,dy,dθ), KICK(kt,ks), SCAN(dy,d p)} (3.9)

MOVE(dx,dy,dθ) corresponds to a desired displacement and turn; KICK(kt,ks) exe-

cutes a kick of a given type kt ∈ {le f t straight, right straight, le f t side, right side}
and speed factor 0< ks≤ 1, where ks= 1 corresponds to full speed; and SCAN(dy,d p)

alters the robot’s head yaw and pitch by dy and d p respectively, to allow scanning of a

different region of the environment. An action α is an instantiation of an action type

ατ, e.g. MOVE(0.1, 0.0, 0.0).

In order to improve the tractability of the action selection problem and cluster sim-

ilar behaviours together, we also define a set of roles, or strategic modes:

M− = {KICKER, DEFENDER} (3.10)

A KICKER will always try to navigate to the ball and kick it, with additional constraints

to avoid (potentially strategic) obstacles such as the adversaries. The DEFENDER mode

is triggered when a robot cannot see the ball but is close to an adversary, so it instead

attempts to block its path.

The mode µ and action type ατ for r j at time t is chosen deterministically using a

decision tree, based on the actual beliefs R B j,t and BB j,t . The chosen mode depends

on the proximity of the ball and the relative position of the opponents. We label this

procedure:

〈ατt ,µt〉 ← SELECTACTTMODE(R B j,t ,BB j,t). (3.11)

3.2.4 Intent inference

A robot should be able to distinguish between different types of adversaries, and adapt

accordingly to achieve its strategic goal. Clearly an exhaustive search over all possible

actions and strategies available to a robot and its adversary would be both intractable

and inflexible. Instead, we propose and define an intent filter, which is used to classify

the observed movements of an adversary into coarse classes of strategic behaviours.

The intent filter for the adversary ri with respect to r j is a set

I i
j = { 〈Ik, imk, iwk〉 | k = 1..K } (3.12)
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where Ik is one of K predefined intent templates, imk is the next move currently pre-

dicted by Ik for r j, and iwk is its associated weight. In our robotic soccer model, we

define the following coarse intent templates:

I− = {STATIC,BALL,PURSUE,PREDMOVE} (3.13)

where STATIC predicts that ri will not move at the next time step, BALL predicts a

movement towards the ball, PURSUE predicts a movement towards r j, and PREDMOVE

sets the next move to a random weighted sample from R M i
j. Note that these templates

are both logic-based (e.g. STATIC) and data-driven (e.g. PREDMOVE). For every

logic-based template Ik, the rule for the next expected adversarial move imk is explicitly

defined (e.g. for BALL, the relative position of the ball to ri is used to determine how

the adversary will move towards it). Moreover, the adversary ri may have an intent

inference mechanism of its own, in which case its strategy may vary depending on the

action chosen by r j at time t (e.g. ri may be more aggressive if it determines that r j is

playing defensively). Thus, we define a separate intent filter I i
j,µ for every mode µ, each

with its own distribution over the intent templates. By creating such a decomposition,

intent inference becomes analogous to a probabilistic game between the two agents,

where r j selects a behavioural mode and action, ri independently selects an action, and

r j subsequently attempts to synthesise its observations to infer a behavioural profile

for ri.

3.2.5 Strategic escape

The modes and intent templates defined above can be extended to include strategies

that exploit the observability constraints that characterise multi-robot physical games.

We call this class of behaviours escape strategies, as they strive to reduce the amount

of information available to an adversary by moving objects out of their sensing range.

To support the selection of such strategies, we first compute the observability bounds

of ri with respect to r j as the set:

OB i
j ≡ { vbsi

j,sbsi
j }← OBSERVBOUNDS(R B i

j,t ,BB i
j,t) (3.14)

where vbsi
j and sbsi

j are trapezoidal approximations to the vision and sonar sens-

ing ranges of ri, respectively; furthermore, let vbsi
j and sbsi

j be their corresponding

barycentres.

In our problem domain, two examples of strategic escape actions would be:
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• Kick the ball so that the resulting trajectory maximises the distance from the

adversary’s field of view. Given a set of m candidate ball trajectories (of varying

sizes), BT .
= {βm ≡ {βmk ≡ 〈xb

mk,y
b
mk〉 | k = 1..|βm|} }, the optimal ball escape

trajectory β̂ is given by:

β̂ = argmax
βm∈BT

1
|βm|

|βm|

∑
k=1

dist(βmk,vbsi
j) (3.15)

• Move so that the resulting path trajectory maximises the distance from the adver-

sary’s sonar sensing range. As above, given a set of n candidate robot trajectories

R T , the optimal robot escape trajectory ρ̂ is:

ρ̂ = argmax
ρn∈R T

1
|ρn|

|ρn|

∑
k=1

dist(ρnk,sbsi
j) (3.16)

Finally, (3.10) and (3.13) can be augmented to become:

M+ = {KICKER, DEFENDER, EXPLOITER}, (3.17)

I+ = {STATIC,BALL,PURSUE,PREDMOVE,ESCAPE}. (3.18)

An EXPLOITER is endowed with the additional capability of probabilistically se-

lecting escape trajectories. This is modeled as an additional ESCAPE template, which

represents the utility of choosing an escape strategy with respect to each adversary.

This feature is then incorporated into the overall optimal action selection procedure

(Algorithm 2).

3.2.6 Regret minimisation

Most of the components described so far operate on various distributions; however,

only the weights of the particle filter are updated over time. We now consider online

learning of the intent filter weights as a means of adapting to the adversary (Algorithm

3). At time t, each intent template Ik predicts a move imk (Eq. 3.12); however, a robot

probabilistically picks just one template and acts based on its prediction. Then, at

t + 1, regret minimisation assesses the correctness of all predictions, and weights are

modified accordingly.
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Algorithm 2 Optimal Action Selection

1: OPTACTION( j,R B j,t ,BB j,t ,ατt ,µt ,I j)

2: Input: Robot j, robot/ball beliefs R B j,t/BB j,t , action type ατt , strategic mode

µt , current intent filters I j

3: i← CHOOSEADVERSARY {find nearest adversary ri}
4: 〈Ii, imi〉 ∼ I i

j {sample template and predicted move of ri from intent filter I i
j}

5: R B i
j,t ← R B i

j,t + imi {incorporate prediction}
6: OB i

j,t ← OBSERVBOUNDS(R B i
j,t ,BB j,t) {Eq. 3.14)}

7: if ατt == MOVE(·, ·, ·) then
8: if Ii == ESCAPE then
9: R T ← ESCAPERT(R B i

j,t) {find candidate escape trajectories for current

belief}
10: ρ̂ = OPTRESCAPE(R T ,OB i

j,t) {(Eq. 3.16)}
11: else
12: R T ← NORMTRAJ(R B i

j,t)

13: ρ̂ = OPTRNORM(R T ) {no observability}
14: end if
15: αt = MOVE(dx,dy,dθ)← CHOOSEMOVE(ρ̂) {find appropriate path/move for

chosen trajectory}
16: else if ατt == KICK(·, ·) then
17: if Ii == ESCAPE then
18: BT ← ESCAPEBT(BB j,t) {find candidate escape trajectories for current

ball belief}
19: β̂ = OPTBESCAPE(BT ,OB i

j,t) {(Eq. 3.15)}
20: else
21: BT ← NORMTRAJ(BB j,t)

22: β̂ = OPTBNORM(BT ) {no observability}
23: end if
24: αt = KICK(kt,ks)← CHOOSEKICK(β̂) {find kick type and speed for chosen

trajectory}
25: else
26: αt = SCAN(dy,d p)← CHOOSESCAN(BB j,t) {ball not visible, retrack}
27: end if
28: return αt
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Algorithm 3 Intent Regret Minimisation
1: REGMIN(I,t,µt−1, j)

2: Input: Intent templates I, time t, strategic mode µt−1 at time t − 1, estimating

robot index j

3: Auxiliary methods: sort(A) {sort array A in ascending order},
normaliseWeights {Normalise adjusted distributions so that weights add

to 1}
4: µ← µt−1, ε← 0.05

5: for i = 1 to N ; i 6= j do
6: WA = { ε−2(k−1)ε/(|I|−1) | k = 1..|I| }

{weight adjustments, +ε...− ε}
7: Rs← /0 {regrets}
8: for k = 1 to |I| do
9: 〈I, im, iw〉 ← I i

j,µ[k]

10: PP← im+ 〈xi
j,y

i
j〉t−1 {predicted position}

11: Rs[k]← dist(PP,〈xi
j,y

i
j〉t) {regret ∝ |predicted position - actual position|}

12: end for
13: Rs← sort(Rs)

14: for k = 1 to |I| do
15: I i

j,µ[Rs[k]].iw← I i
j,µ[Rs[k]].iw+WA[k]

16: end for
17: end for
18: normaliseWeights {ensure weights sum to 1 after updates}
19: return I j,µ
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Algorithm 4 Complete Decision Making Algorithm

1: DECMAKER(I,M,rm,I W , j)

2: Input: Intent templates I, strategic modes M, boolean rm for regret minimisation,

initial distributions for intent template weights I W , estimating robot index j

3: t← 0

4: I j← INITIALISEIFS(I,I W ) {Initialise intent filters}
5: while TRUE do
6: SENSEWORLD {get latest sensor data}
7: 〈R B j,t ,R P j,R M j〉 ← RSPF {c.f. Sec. 3.2.2}
8: 〈R B j,t ,BB j,t〉 ← FILTERBELIEFS {keep only high confidence beliefs for de-

cision making}
9: if rm == TRUE and t > 0 then

10: I j,µt−1 ← REGMIN(I,ld,t,µt−1, j) {Alg. 3}
11: end if
12: 〈ατt ,µt〉 ← SELECTACTTMODE(R B j,t ,BB j,t)

13: It ∼{〈Ik, imk, iwk〉← I j,µt [k] | k = 1..|I|} {Select intent filters based on current

weights iwk}
14: αt ← OPTACTION( j,R B j,t ,BB j,t ,ατt ,µt ,It)

15: EXECUTEACTION(αt)

16: t← t +1

17: end while

3.2.7 Summary

Algorithm 4 summarises the overall decision making procedure, unifying all compo-

nents and ideas described so far.

3.3 Results

We evaluate our probabilistic state estimation on a simulated robotic soccer environ-

ment with realistic physical constraints (Valtazanos and Ramamoorthy, 2011b). Figure

3.1 shows a panoramic view of the soccer field, along with the associated field of view

and sonar range representations. MOVE and KICK commands are also perturbed by

random noise, with additional constraints imposed on their maximum allowed magni-

tudes.
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(a) Panoramic view of the field and the robots.

(b) Perspective field of view (c) Sonar sensing range

Figure 3.1: Soccer simulator environment.

3.3.1 Reachable Set Particle Filter

We first evaluate the Reachable Set Particle Filter (RSPF) proposed in Section 3.2.2,

and compare it against a number of other state estimation variants, in the context of

determining the state of an adversary. These variants are:

• No filtering (NF): the extracted (noisy) observations from vision and sonar are

converted directly to beliefs, without any probabilistic motion model or obser-

vation distributions taken into account.

• Simple Particle Filter (SPF): This is a particle filter algorithm without the ad-

ditional reachable set constraint. In other words, Equation 3.6 is modified so that

all candidate particles are assigned a probability of 1/Q.

• Intent-based state estimation (IBSE): This procedure attempts to estimate both

a robot’s state and intent in one pass. The probabilistic motion model of Sec-

tion 3.2.2, which was based on the pre-computed reachable set and the collected

moves, is replaced with an intention-based distribution similar to Equation 3.12.

The algorithm attempts to map intents to adversary observations directly, without

explicitly taking into account the motion model for the adversary or the likeli-

hood of the observations.
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We evaluate the different algorithms on a series of soccer games between two

robots; the initial configuration is shown in Figure 3.4. Robots use their sonar sen-

sors to estimate the state of their adversaries, so the observation likelihood distribution

accounts for the angle of the sensor cone and the maximum sensing range. Agents

execute a simple algorithm that makes them move towards the ball, though their exact

strategy is not of interest at this point. As in previous sections, we consider the case of

r j estimating the state of adversary ri. For each filtering algorithm f, we compute the

error in terms of the mean distance of r j’s egocentric estimates, xi,f
j,t , to the true location

of ri, x̄i
t :

MDTL(f) =
1
T

T

∑
t=1

√
xi,f

j,t− x̄i
t

2
. (3.19)

For the RSPF algorithm, the backward reachable set BR S (Section 3.2.2) was

computed with respect to the relative dynamics of the two robots (Figure 3.2), using

the level set toolbox developed by Mitchell (2007). Figure 3.3 visualises the evolution

of the particle filter and one-step reaction distributions over time, illustrating the utility

of the reachable set as a filtering tool.
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Figure 3.2: Three dimensional (x,y,θ) reachable set computed for a time horizon of 1s

based on the relative dynamics of the two robots – maximum linear velocity = 0.2m/s,

maximum angular velocity = 0.2rad/s.

Table 3.1 summarises the results, as averaged over 20 trials. At a first glance, the

6.96% gain obtained when using RSPF instead of no filtering (NF) may seem small,

but one must acknowledge the complexity of the task: robots must estimate the state

of dynamic adversaries whose exact behavioural and motion model is unknown, using

only noisy sensor data. More importantly, any improvement at this level – in rejecting

spurious trajectories – has a substantial impact on the following steps that attempt
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(a) Initial distributions. (b) Update after 15 time steps.

Figure 3.3: Reachable sets and particle filter distributions. Blue: reachable set (Figure

3.2). Black : state particles R P . Light green: one-step reaction distribution R M . Red :

discarded particles lying outside the reachable set.

Filtering method (f) MDTL(f) Error gain wrt. NF

NF 14.79 cm -

SPF 17.63 cm -19.2%

RSPF 13.76 cm +6.96%

IBSE 15.16 cm -2.5%

Table 3.1: Mean error per filtering method

to learn strategic profiles and responses on top of this information. Thus, it is very

useful that the RSPF succeeds in rejecting movement observations that are physically

implausible, as seen by its performance compared to the simple particle filter (SPF), an

effective 25% gain. Moreover, the performance of RSPF relative to IBSE supports our

claim that in games characterised by both strategic and sensory noise, state estimation

should be decoupled from strategy estimation. As we demonstrate in the next section,

our decision making algorithm benefits from reasoning on data that has been filtered

by the RSPF.

3.3.2 Strategic decision making

3.3.2.1 Preliminaries

In the second part of our experiments, we fix the RSPF as the state estimation algo-

rithm, and focus on evaluating different permutations of decision making strategies,

based on the concepts described in Section 3.2. Each decision making strategy is a
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Figure 3.4: Soccer game initial configuration - the ball is at the centre of the pitch, with

the two robots symmetrically placed just behind the circle.

tuple 〈e,r〉, where:

• e ∈ {(N)one, (E)scape} denotes the escape strategy used. In other words, e← N

uses M− and I− (Equations 3.10-3.13), whereas e← E uses M+ and I+ (Equa-

tions 3.17-3.18) as their strategic modes and intent templates, respectively,

• r ∈ {(N)one, (I)ntent regret minimisation} denotes the type of regret minimisa-

tion used - this is the input parameter rm in Algorithm 4.

This formulation leads to a total of 4 valid permutations, namely 〈N,N〉, 〈N, I〉, 〈E,N〉
and 〈E, I〉.

We compare these strategies in the context of a round-robin one-versus-one soccer

tournament, where all strategies are played in four games against each other. The first

two games (10-1 and 10-2) consist of 10 episodes, and the second two of 20 episodes

(20-1 and 20-2). An episode terminates if a robot scores a goal, if the ball leaves the

field bounds, if there is a collision between robots, or if the maximum episode time

(set to 100 time steps for each robot) elapses. As before, Figure 3.4 shows the initial

state of the game. However, note the strategic constraints that this setup introduces:

• The ball is too far from the goals, so robots require a sequence of actions in order

to score.

• The robots are initialised very close to each other, so they require dexterous

manoeuvres to evade their opponents and kick the ball past them.

3.3.2.2 Results and statistics

In addition to the final scores of the games, we also recorded other relevant statistics,

such as the mean time to score a goal (MTS) and to evade the adversary (MTE), and
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(a) Summary of scores and strategy statistics

Strategy P GF GA MTS MTE A-MTS A-MTE

〈N, I〉 35 131 121 71.86 53.32 73.04 58.67

〈E, I〉 34 134 102 67.56 55.06 71.65 55.36

〈E,N〉 18 40 48 71.67 58.68 66.50 51.08

〈N,N〉 14 41 52 71.87 55.50 72.04 56.84

(b) Soccer tournament results

10-1 10-2 20-1 20-2 50-1 50-2

〈N,N〉-〈N, I〉 3-4 2-4 6-8 4-7 14-14 10-12

〈N,N〉-〈E,N〉 1-4 4-4 5-4 5-5 14-16 13-12

〈N,N〉-〈E, I〉 1-2 1-2 5-5 4-3 12-12 15-17

〈N, I〉-〈E,N〉 3-0 4-1 9-5 6-4 17-10 12-15

〈N, I〉-〈E, I〉 4-2 3-3 4-7 4-7 7-19 9-17

〈E, I〉-〈E,N〉 1-2 4-1 5-5 3-5 12-11 13-9

Table 3.2: Results and statistics

the mean time taken by the adversary to score (A-MTS) and to evade (A-MTE). Table

3.2(a) summarises these statistics, together with the total goals scored for (GF) and

against (GA). The entries are sorted with respect to the total points (P), which are

determined through the standard soccer point system (3 points for victory, 1 for draw,

0 for defeat - maximum is 3x12 = 36). Point ties are resolved by the goal difference

(GD) = GF-GA. The best entries in each column are given in boldface. The results

from all games are summarised in Table 3.2(b).

Trajectory traces from two game episodes are given in Figures 3.5(a) (episode be-

tween a “good” and “bad” strategy) and Figure 3.5(b) (the two best strategies). In the

latter case, the scoring robot takes more time to kick the ball past its adversary and

subsequently escape, as indicated by the larger concentration of movements around

the centre of the field.

3.3.2.3 Partial orderings

The results of Tables 3.2(a) and 3.2(b) lead to several observations on the effectiveness

of the various strategies and ideas presented in this chapter. We summarise these find-

ings in terms of partial orderings among templates. We use the notation T1 ≥ T2 to

denote that template T1 performs at least as well as template T2. Furthermore, let ‘·’
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(a) 〈E, I〉 (cyan) vs. 〈N,N〉 (pink) (b) 〈E, I〉 (cyan) vs. 〈N, I〉 (pink)

Figure 3.5: Trajectory traces from selected game episodes.

be the wildcard symbol, and ¬A be any instantiation of a particular strategy or strategy

template except A.

• 〈·, I〉 ≥ 〈·,¬I〉: Regret minimisation seems to be by far the most prevalent strat-

egy, both on its own and when combined with escape strategies, as indicated by

both the overall scores and the statistics.

• 〈E, ·〉 ≥¬〈N, I〉: The use of escape strategies is also highly beneficial when com-

pared to the benchmark 〈N,N〉 that makes no assumptions about the adversary.

Furthermore, strategy 〈E, I〉 achieves the highest scores in all but one of the time

metrics.

• ¬〈N,N〉 ≥ 〈N,N〉: All strategies using at least one heuristic out outperform the

benchmark 〈N,N〉.

3.3.2.4 Convergence of regret minimisation

To verify that regret minimisation is indeed reliable, we tested it against a static ad-

versary who does not move. The regret minimising robot is not aware of this, so it

initialises all intent template weights uniformly. Figure 3.6 illustrates how regret min-

imisation helps converge to the “true” template distribution. Note that the PREDMOVE

template is also representative of a static adversary’s “strategy”; if that adversary is

consistently observed not to move, then the distribution R M will assign high weights

to null moves, thus also predicting a static reaction. Hence, the joint weights of STATIC

and PREDMOVE (Static + PredMove) are correctly observed to converge to 1.
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Figure 3.6: Regret minimisation over the intent templates of a static adversary. The

weights of the intent filters are correctly observed to converge to the “true adversary”

behaviour.

3.4 Conclusions

This chapter presents a strategic decision making framework for a relatively complex

class of multi-robot games, characterised by both sensory and strategic uncertainty.

The specific contributions of this chapter are twofold. On the one hand, we present

a novel probabilistic adversarial state estimation algorithm, featuring both data-driven

approximation and reasoning about dynamical constraints. Our evaluation shows a

performance improvement, in simulation, compared to general purpose filtering algo-

rithms, which supports our argument in favour of decoupling estimation of a noisy state

from estimation of strategy in the noisy adversarial environment. On the other hand,

we have adapted game theoretic concepts, which had previously been studied primar-

ily in an abstract theoretical setting without physical constraints, into a unified intent

inference framework for multi-robot games. We have tested several instantiations of

our framework by evaluating their performance against varying unknown strategies.

Our results favour the use of regret minimisation as an adaptive learning mechanism,

while showing promise for careful use of escape strategies that exploit the adversary,

as part of a larger decision making system with a diverse set of intent templates.

In relation to the interaction shaping problem considered in this thesis, this chapter

introduces the use of techniques that can influence the beliefs of interacting agents,

such as escape strategies. However, these strategies are handcrafted, and do not ac-

count for or adapt to different types of adversaries. In the ensuing chapters, we expand
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on these concepts and situate them within a formal theoretical framework. First, we

introduce a procedure through which templates for such strategies can be learned from

human demonstration (Chapter 4), instead of being defined manually as in this chap-

ter. This is a general procedure that can also be applied to other domains outside

robotic soccer. Second, we formulate a Bayesian learning algorithm, through which

basic strategic behaviours can be synthesised and learned (Chapter 5). This algorithm

is similarly based on regret-minimisation and opponent modeling ideas, but allows for

the generation of temporally extended action strategies, which are expected to lead

the adversary to some target state. Thus, the strategies presented in this chapter can

be essentially viewed as basic shaping behaviours, which we subsequently expand on.

Third, we introduce human subjects directly into our experimental evaluation, by pit-

ting them against various autonomously programmed robots. In these experiments,

humans essentially act as intelligent, strategic adversaries, whose behaviour has not

been scripted in any way. Thus, we improve on the sophistication of the adversaries

presented in this chapter, and we test our models under more realistic and challenging

conditions.



Chapter 4

Learning to interact with strategic

agents from human demonstrations

4.1 Overview

Most compelling application scenarios for autonomous robots involve operation in en-

vironments inhabited by other decision-making agents, e.g. people. In many such ap-

plications, there is a need for non-trivial strategic interaction with these other agents.

As with most forms of robot behaviour that must be adaptive, it would be of great in-

terest to be able to learn to interact strategically. However, the problem of efficiently

learning such strategic behaviours remains open.

In Chapter 3, we introduced a class of strategic behaviours that can be used to in-

fluence an interacting adversarial agent. One drawback of that approach was that these

strategies were manually specified by the system designer, based on heuristics believed

to be optimal for the experimental domain (in that case, robotic soccer). However,

manual design of behaviours is often cumbersome and inflexible, while scaling poorly

to different interaction domains where there may be a lack of clear, appropriate design

heuristics. By contrast, most decision-making frameworks would considerably bene-

fit from a general, automated strategy learning procedure, through which behaviour

components can be extracted directly from provided human demonstrations.

The focus of this chapter is on learning such strategy templates that can facilitate

strategic interaction with humans. In this setting, the open questions for us would

be: how can robots effectively make strategic decisions that can influence and affect

human behaviour during an interaction, and how can such strategies be learned from

human demonstration?

61
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With these questions in mind, we consider the robotic soccer penalty shooting

problem between NAO humanoid robots, which was introduced in Section 1.3. In

this domain, both types of agents have the same locomotion capabilities, so a robot

cannot benefit by e.g. walking or kicking the ball faster. Thus, we can compare agents

directly at the behavioural level, without however removing the underlying physical

uncertainty that characterises most realistic human-robot environments.

Figure 4.1: Overview of proposed approach. Human demonstrators teleoperate a robot

to provide examples of the desired strategic behaviour, in the context of an interaction

with a heuristic autonomous adversary. Demonstrations are organised into interac-

tion tactics and regions, which form the basis of a Gaussian Mixture Model (GMM).

The learned model is used to interact strategically with novel adversaries. The mix-

ture weights are dynamically updated based on the observed actions of the adversary,

which, combined with the current state of the interaction, informs action selection.

We present a semi-supervised learning procedure through which autonomous robots

can learn mixtures of interaction strategies from human demonstration (Figure 4.1).

We first record the control inputs of several subjects demonstrating the striker be-

haviour against a heuristic autonomous goalkeeper. Because of the nature of the in-

teraction, part of the demonstrated examples may be suboptimal (e.g. the robot takes

a lot of time to score a goal). Strategies are extracted directly from demonstrations,

and represented as sequences of tactics that are used to transition between interaction

regions. A region can be viewed as a group of states frequently visited by the com-
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peting robots, whereas a tactic is a continual action intended to change the state of

the game, which is selected in response to the observed behaviour of the adversary.

Regions are represented as a dynamically weighted Gaussian Mixture Model, within

which lie additional distributions for selecting tactics. Through this formulation, new

strategies can be generated and synthesised probabilistically against a wide range of

adversaries.

In the remainder of this chapter, we first describe the experimental setup (Section

4.2) for our problem, by illustrating the interaction rules and the capabilities of our

robots. Then, we present our method for extracting strategies from human demon-

stration (Section 4.3). In Section 4.4, we evaluate our approach against several au-

tonomous and human-controlled agents, and we show that the learned agent can suc-

cessfully compete with different adversaries. Finally, we review the key contributions

of this chapter, and describe its connection to the following chapters of this thesis

(Section 4.5).

4.2 Experimental setup

4.2.1 Robot platform

We use the NAO robot (http://www.aldebaran-robotics.com/en/Discover-NAO/

nao-datasheet-h25.html) (Figure 4.2(a)), a 58cm-tall humanoid with 21 degrees

of freedom and two independently running on-board cameras. The NAO is the official

robot of the RoboCup Standard Platform League (SPL) (http://www.tzi.de/spl).

Our software framework is based on the B-Human team code release (Röfer et al.,

2011), which provides modules for fast walking, vision, and self-localisation.

4.2.2 Field

Our soccer field (Figure 4.2(b)) is a 3:4 scaled-down version of the official SPL field (

http://www.tzi.de/spl/pub/Website/Downloads/Rules2012.pdf), with length

f l = 4.5m and width f w = 3.0m. The goals are 1.40m wide and are painted yellow,

and the ball is also colour-coded orange. The field lines are white and are placed at

known, specified positions.
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(a) (b)

(c) (d)

Figure 4.2: Interaction strategy demonstration - experimental setup. (a): The NAO

humanoid robot. (b): The soccer field, with an orange ball on the penalty cross mark.

The initial poses of the striker (near side, blue waistband) and the goalkeeper (far side,

pink waistband) are also shown. (c): The controller used to command the robot. (d):

Bringing it all together: remote control of the goalkeeper by a user.

4.2.3 Self-localisation and adversary pose estimation

The robots not controlled by humans are fully autonomous, so no external information

(e.g. positions from overhead cameras) is provided to them. The images captured by

their camera are used to identify the relative positions of the ball and the relevant field

landmarks. This information is passed to a self-localisation module, which computes

the robot’s absolute pose (position and orientation) using a particle filter.

Egocentric estimation of the pose of other robots is a challenging task for au-

tonomous NAOs, because of the limited number of distinguishable visual features.

To overcome this problem, we let robots wirelessly communicate their pose estimate

to their adversaries. One drawback of this approach is that any delays or packet losses

in the network will yield outdated information on the state of the adversary.
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4.2.4 Comparison between human and robot perception

The self-localisation and pose estimation techniques (Röfer et al., 2011) used by the au-

tonomous robots are state-of-the-art and have been successfully tested in international

competitions, e.g. RoboCup 2012 (http://www.robocup2012.org). However, they

occasionally lead to false estimates, e.g. when a penalty box line is mistaken for a

field line. This issue, coupled with the wireless connectivity discussed above, leads

to uncertainty in the estimation of the current state of the game. By contrast, humans

have the benefit of full observability of both the field and the robots during the interac-

tion. This perceptual handicap should be taken into consideration when comparing the

behaviour of the autonomous and the human-controlled agents.

4.2.5 Interaction rules

Our interaction follows the official rules of the SPL penalty shootout (http://www.

tzi.de/spl/pub/Website/Downloads/Rules2012.pdf). The robots are initially

placed on the positions shown in Figure 4.2(b). The striker has one minute to score a

goal and is allowed only a single kick per trial. The goalkeeper is not allowed to leave

or touch the ball outside the penalty box; any such violation results to a goal awarded

to the striker. Strikers have a single, straight left kick they may execute; thus, to shoot

towards the corners of the goal, they must adjust their orientation to face towards that

corner.

4.2.6 Human control of the robots

Teleoperated robots are controlled through an Xbox pad (Figure 4.2(c)). There are

commands for controlling the translational (forward-back-sidestepping) and rotational

(left-right turn) motion of the robot, kicking (for the striker), and “diving” to block the

ball (for the goalkeeper).

4.3 Method

4.3.1 System formulation and notation

We consider a continuous-time, continuous-state, and continuous-action system of two

interacting robots. The state of the system at time t ∈ℜ+ is described by:
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• The state of the striker, st = [xs,ys,θs]
T , and the goalkeeper, gt = [xg,yg,θg]

T ,

where {xs,xg} ∈ [− f l/2,+ f l/2], {ys,yg} ∈ [− f w/2,+ f w/2] are the planar co-

ordinates, and {θs,θg} ∈ [−π,+π] are the orientations of the two robots.

• The ball position, bt = [xb,yb]
T , xb ∈ [− f l/2,+ f l/2], yb ∈ [− f w/2,+ f w/2].

• The actions~as,t ,~ag,t requested and executed by the two players – each action~a
is a tuple [dx,dy,dθ,kick,dive]T , where {dx,dy,dθ} ∈ [−1.0,+1.0] are the re-

quested translation and rotation as fractions of the maximum speed of the robot1

(so {0,0,0} for no motion), and kick ∈ {none,kick}, dive ∈ {le f t,none,right}
are the kicking (for the striker) and diving (for the goalkeeper) requests.

For teleoperated robots, joystick commands and button presses are converted to

action requests (e.g. pushing the left joystick forward issues a request of dx =+1.0).

For the remainder of this chapter, we will use the superscripts H and A to denote

human-controlled and autonomous robots, respectively. For example, sH
t is the state of

a human-controlled striker at time t.

4.3.2 Autonomous goalkeeper behaviour during demonstrations

During demonstration of striker behaviours, the goalkeeper runs a simple heuristic

algorithm: given the current estimate of the striker’s orientation, θs, the expected ball

trajectory is a straight line segment starting at the ball position, and following this

angle. Then, the point where this segment intersects the goal line is selected as the best

blocking position, so the goalkeeper moves to this point. The goalkeeper may also dive

to prevent a goal from being scored if he visually detects the ball moving towards his

own axis of motion.

We refer to this player as the heuristic autonomous goalkeeper (HAG). This algo-

rithm also serves as a simple baseline that can be contrasted with autonomous strikers,

not only in the results of this chapter, but also in Chapter 5 where the main shaping

algorithm is presented.

4.3.3 Human behaviour demonstration

We captured the control inputs of several users controlling the striker against the au-

tonomous goalkeeper. Data were collected in our robotics lab (Figure 4.2(b)), and

1The positive directions are forward, left, and counter-clockwise rotation.
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the demonstrators were members of our research group who had prior experience of

the robots. For each trial, we recorded time-indexed sequences of the robot poses, as

well as the control commands input by the users, at a rate of 10 frames/second. Each

recorded sequence q, |q|= M, is of the form:

{{t1,sH
t1 ,g

A
t1,bt1,~a

H
s,t1}, ...,{tM,sH

tM ,g
A
tM ,btM ,~a

H
s,tM}} (4.1)

where~aH
s,t corresponds to an action command by the user. Trials were also annotated

by the experimenter based on their outcome, i.e. whether they led to a goal or not. We

then extracted the set of successful trials leading to a goal:

Q+ = {q1,q2, · · · ,qN}. (4.2)

However, even if a demonstrated example is labelled as successful, it is not necessarily

optimal. Several of the collected trials were suboptimal (e.g. the user took a long

time to score a goal), imperfect (e.g. at least one player converged to an incorrect

self-localisation estimate), or both (e.g. the goalkeeper stumbled and fell over, leaving

an open goal for the demonstrator to score). Nevertheless, we did not discard such

demonstrations from our learning procedure.

In total, 29 successful demonstrated trials were retained. Figure 4.4 shows two

such demonstrations, one of which is successful. Furthermore, Figure 4.3 provides

heat maps of all demonstrations from the lab capture. It can be seen that although

the two sets of trajectories are similar, successful demonstrations are characterised by

a higher intensity of motion (and particularly rotational motion) around the penalty

mark, which indicates an attempt to perform finer adjustments of the striker’s pose and

deceive the autonomous goalkeeper. By contrast, simpler strategies such as walking

directly to the ball and kicking (as in the first example of Figure 4.4) are less likely to

outperform the goalkeeper and score a goal.

4.3.4 Learning strategy mixtures

4.3.4.1 Definitions

We represent striker strategies for the autonomous striker as sequences of tactics used

to transition between different interaction regions. A tactic τ is an action continually

evoked by a robot for a variable period of time, in response to the observed behaviour

of the adversary:
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(a) Unsuccessful demonstrations.
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(b) Successful demonstrations.

Figure 4.3: Heat map representations of demonstrations. Colour indicates the per-

centage of trials in which a particular point was recorded. Left subplots: x− y motion

trajectory components - left blob corresponds to human-controlled striker, right blob to

autonomous goalkeeper trajectories. Right subplots: x−θ motion for the striker.

τ = 〈š, ǧ,~as,dt,T, ã−1
g 〉, (4.3)

where š, ǧ, are the states of the players at the time the tactic is invoked,~as is the action

followed by the striker, dt is the time interval for which this action should be taken,

T is the overall time of the trial from which τ was originally extracted, and ã−1
g is the

action believed to have been followed by the goalkeeper at the time interval preceding

τ.

An interaction region ρ is a distribution over related states frequently visited by the

two robots during the interaction:

ρ = 〈µ,Σ, ã−1
g ,{τ}〉, (4.4)

where µ = [s̄ ; ḡ] is the mean of the region, represented as a joint striker-goalkeeper

state vector, Σ is the covariance matrix, ã−1
g is the adversarial action associated with

the region, and {τ} is the set of tactics that can be invoked from the region. Through

this formulation, the interaction becomes a dynamic game between the two robots,

where the striker must select the appropriate tactics in response to the state and inferred
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Examples of two demonstrations by a user (human-controlled striker, au-

tonomous goalkeeper). (a)-(f): Unsuccessful trial. (g)-(l): Successful trial.

actions of its adversary.

4.3.4.2 Extracting tactics from human demonstration

Given the set Q+ of successful demonstrations, we extract tactics from the recorded

commands, {~aH
s,tk | k = 1..N}, of each demonstration q, where |q| = N. Figure 4.5(a)

shows the raw input commands for the rotation and translation axes from one such

trial. To account for possible joystick miscalibrations, we define the activity thresholds
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ψ = ±0.4 for each motion axis; values with magnitude less than ψ are discarded as

noise. The incorporation of this threshold is important as the input device is very

sensitive to minor pressure on the joysticks, which however do not represent intentional

motion commands. We process inputs as joint continuous signals to segment them into

tactics.
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Figure 4.5: Control inputs and tactics from a successful demonstration. (a): The raw

inputs from the translational and rotational joystick axes. (b): Segmentation of the input

into tactics; a new tactic begins when either of the inputs crosses the activity threshold of

±0.4 (not shown). The cyan vertical lines illustrate the boundaries between consecutive

tactics.

A new tactic τ begins when at least one of the motion inputs, αH ∈ {dx,dy,dθ},
crosses either +ψ or −ψ, i.e. if

~aH
tk > |ψ|>~aH

tk−1
or~aH

tk < |ψ|<~aH
tk−1

. (4.5)

A tactic is in progress while all αH remain on their current side of |ψ|. Figure 4.5(b)

illustrates how the raw input is segmented into tactics using this heuristic. As success-

ful trials always end with a “kick” command, we append an additional such tactic to

our set2.

For every extracted tactic τ, we record the start and end times at its boundaries, ts
and te. Then, the tactic time interval and input states (as defined in Section 4.3.4.1) are

defined as
2In effect, the kick button can be viewed as an additional continuous input whose value is always 0,

except for the end of the trial when it is 1.
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τ.dt← te− ts, τ.š← sH
ts , τ.ǧ← gA

ts. (4.6)

The parameter τ.T is the overall duration of q. The tactic action vector,~as, is the mean

of the motion inputs (and none for kicks/dives) over the duration of τ,

τ.~as ← [
1

te− ts

te

∑
t=ts

α
H
t |αH ∈ {dx,dy,dθ} ]. (4.7)

The last adversarial action, τ.ã−1
g , is obtained by evaluating the goalkeeper’s motion

during the previous tactic. For example, if during that interval a leftward translation

was observed but no forward or rotational motion, we set ã−1
g = [0.0,1.0,0.0,none,

none]T . We assume no motion at the start of the trial, so, for the first tactic, ã−1
g =

[0.0,0.0,0.0,none,none]T .

4.3.4.3 Region computation

Given a set of extracted tactics, regions are generated in a two-step clustering process.

In the first step, we form a set of tactic groups T G = {τg1,τg2, ...,τgM} based on input

state similarity, so that any two tactics τi,τ j within a tactic group τg ∈ T G satisfy

d([τi.š;τi.ǧ], [τ j.š;τ j.ǧ])< δ, (4.8)

where d(·, ·) is the distance between two state pairs, and δ is a distance threshold. Then,

tactics within the same group τg but with different adversarial actions are separated, to

obtain a new set of tactic groups T G′, where any two tactics τ′i,τ
′
j in a group τg′ also

satisfy τ′i.ã−1
g = τ′j.ã−1

g .

Each resulting group τg′ ∈ T G′ is converted to a new region ρ, with adversarial

action ρ.ã−1
g = τ.ã−1

g , and tactic set ρ.{τ} = τg′. The parameters µ and Σ are the

sample mean and covariance of the input states of all tactics in ρ.{τ}.
The collected demonstrations yielded a total of 236 interaction regions, which are

shown in Figure 4.6.

The aim of the region computation procedure is twofold. On the one hand, we

group tactics with similar input states, so that the robot has a choice of actions when

selecting that region. On the other hand, we separate tactics with different associ-

ated adversarial actions, so that the choice of region can be biased by the observed

behaviour of the adversary.
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(a) (b)

Figure 4.6: Means of interaction regions for a striker shooting towards the right goal,

as computed from successful human demonstrations. (a): All regions - only the striker

position (red circle) and orientation (blue line) component of the region mean is shown.

(b): Full visualisation of the means of two regions with similar striker states - note

the difference between the corresponding goalkeeper states and adversarial actions

(indicated by the black arrows).

4.3.5 Strategic interaction with novel adversarial agents

Interaction with an adversarial agent is formulated as a sequential hierarchical region

and tactic selection problem. The striker first selects an interaction region, and then

samples a tactic τ from the tactic set {τ} of that region, which should be followed for

τ.dt. This process is repeated at the completion of the currently executed tactic.

4.3.5.1 Region selection

Given a set of N interaction regions, R = {ρ1,ρ2, · · · ,ρN}, we use their means and

covariances to obtain a set of N multivariate Gaussian distributions,

G = {N (x |ρ1.µ,ρ1.Σ), · · · , N (x |ρN .µ,ρN .Σ)}. (4.9)

where x= [sA
t ;gH

t ] represents the current states of the players. The set G forms the basis

of a dynamically weighted Gaussian Mixture Model (GMM), whose mixing weights

are re-computed based on the current state of the game. Given the current estimate

of the adversary’s last followed action, ã−1
g,t , the weight of the k-th distribution, πk, is

given by



4.3. Method 73

πk = p(ρk.ã−1
g | ã−1

g,t ) =
1

1+ ‖ ã−1
g,t −ρk.ã−1

g ‖

=
1

1+
3

∑
i=1
|ã−1

g,t [i]−ρk.ã−1
g [i]|

. (4.10)

In other words, πk reflects the similarity between ã−1
g,t and the adversarial action of the

k-th interaction region.

If xt = [st ;gt ] is the current estimate of the player states, the probability of selecting

region ρk at time t is

γ(ρk)≡ p(ρk |xt , ã−1
g,t ) =

p(ρk.ã−1
g | ã−1

g,t )p(xt |ρk)

N

∑
j=1

p(ρ j.ã−1
g | ã−1

g,t )p(xt |ρ j)

=
πk p(xt |ρk)

N

∑
j=1

π j p(xt |ρ j)

=
πkN (xt |ρk.µ,ρk.Σ)

N

∑
j=1

π jN (xt |ρ j.µ,ρ j.Σ)

.

(4.11)

The agent then selects the region with the highest probability,

ρ
∗ = argmax

ρ∈R
γ(ρ). (4.12)

By weighting a GMM through action similarity, the agent prefers regions that are both

proximate to the current state of the robots, as well as containing tactics that are suited

to the observed behaviour of the adversary.

4.3.5.2 Tactic selection

Tactics are sampled from the set {τ} of the selected region ρ∗. The probability of

selecting a tactic τ ∈ ρ∗.{τ} is inversely proportional to the overall time of the trial the

tactic was extracted from, i.e.

p(τ|ρ∗) = 1/τ.T
∑τ′∈ρ∗.{τ}1/τ′.T

(4.13)

This prioritisation was enforced to penalise users who took a long time to score a goal

during demonstration. Thus, we seek to reward tactics extracted from fast demonstra-

tions without many redundant movements. However, alternative heuristics would also
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be plausible in this step, depending on the interaction domain and the nature of the

recorded data; one simple approach would be to sample from the tactics of the selected

region uniformly-randomly, without any additional weighting. In Chapter 5, we intro-

duce an empirical learning mechanism through which the utility of different tactics can

be updated interactively.

Once a tactic τ∗ is selected, its action τ∗.~as is followed for τ∗.dt, before another

region/tactic is selected again.

4.3.5.3 Recovery actions

A robot may not always be sufficiently close to one of the sampled interaction regions.

In such a case, rather than selecting a tactic from an unrepresentative region, the agent

moves closer to the sampled regions using a recovery action.

To this end, we define a threshold β for the probability γ(ρ∗) of the most likely

region returned by the mixture model. If γ(ρ∗) < β, the agent computes the vector

linking its current pose to the mean of ρ∗, and selects an appropriate recovery action

to move towards it. For example, if the agent finds itself close to the left side line,

a plausible recovery action would be a right sidestep towards the centre. Once the

probability is over the threshold again, the agent returns to the normal region/tactic

selection mode.

4.4 Experimental results

4.4.1 Structure of the experiments

The aim of our experimental evaluation is twofold. First, we seek to assess how well

our method can reproduce and synthesise the demonstrated strategies, in order to com-

pete against the same adversary (the heuristic autonomous goalkeeper HAG described

in Section 4.3.2). Second, we seek to evaluate the robustness of our approach against

novel, human-controlled adversaries, who were not part of the demonstrated traces.

To this end, our experimental analysis is divided in three parts. First, we evalu-

ate the performance of 30 human-controlled strikers (HCSs), in 5 trials each, against

the HAG. The experimental sample was varied, consisting of both male and female

subjects, young children and adults, users with previous robotics experience and users

who were interacting with robots for the first time. Second, we evaluate an autonomous

striker programmed through the procedure of Section 4.3 in 150 trials (30 independent
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.7: Examples of two trials by the strategy mixture striker (SMS) against a

human-controlled goalkeeper (HCG). (a)-(f): Unsuccessful trial. (g)-(l): Successful trial.

sets of 5 trials) against the HAG. We refer to this autonomous agent as the Strategy

Mixture Striker (SMS). Third, we evaluate the SMS against the same 30 subjects de-

scribed above, who now operate as human-controlled goalkeepers (HCGs). Figure 4.7

shows snapshots from two trials involving the learned agent.
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HCSs vs HAG SMS vs HAG SMS vs HCGs

Total goals scored 61/150 77/150 71/150

Mean striker cuccess rate 40.6% 51.3% 47.2%

Standard deviation ± 20.6% ± 9.2% ± 16.2%

Table 4.1: Overall performance statistics for the three experiment phases. HCSs:

Human-Controlled Strikers. HAG: Heuristic Autonomous Goalkeeper. SMS: Strategy

Mixture Striker. HCGs: Human-Controlled Goalkeepers.

4.4.2 Performance evaluation

Table 4.1 lists the performance statistics for the three parts of the experiment. These

overall results indicate a marginally better performance of the SMS compared to the

average human-controlled striker against the HAG. When the standard deviation is

taken into account, the SMS is seen to perform comparably to the best HCSs. These

results indicate that our method can successfully reproduce the effectiveness of the

demonstrated strategies versus the adversary they were demonstrated against. Sim-

ilarly, when the goalkeeper changes to being human-controlled, the average perfor-

mance of the SMS drops slightly, yet remains comparable to the success rate observed

against the HAG. This indicates that the synthesised templates can be effective even

against opponents who were not included in the demonstration process. However, the

deviation of the success rate in this case also suggests that the SMS struggles against

more able adversaries, whose responses are not fully captured by the learned templates.

Because of the dynamic nature of the interaction, the number of goals scored and

conceded is not fully representative of an agent’s performance. To address this issue,

we assessed strikers on an additional performance metric: the distance of the goal-

keeper from the optimal blocking position at the time of the striker’s kick (Figure

4.8(a)). Through this metric, we model how well each goalkeeper was able to respond

to the moves of the striker, and move to a position that will maximise the chances of a

save.

As shown in Table 4.8(b), the strategy mixture striker is more successful at lead-

ing the HAG to a position from which it is harder to block a shot. This ability drops

slightly against the human-controlled goalkeepers, but the SMS is still capable of out-

performing the mean HCS in this metric. This suggests that the SMS is more robust

at selecting action sequences that can impact the behaviour of the goalkeeper in the

desired manner.
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HCSs vs HAG SMS vs HAG SMS vs HCGs

Mean distance of goalkeeper

from optimal position (mm)

326.73 367.45 358.82

Standard deviation 139.37 108.29 196.66
(b)

Figure 4.8: Performance metric: goalkeeper distance from optimal blocking position.

(a): Explanation of metric. Poses of the striker and the goalkeeper at time of kick -

optimal position for goalkeeper is the intersection of line formed by striker’s orientation,

and goalkeeper’s line of motion. (b): Overall results for each of the three experiments.

Furthermore, Figure 4.9 shows the heat maps for all trajectories recorded during

the experiments. Variability is considerably greater in Figure 4.9(a), as the map collec-

tively visualises attempts by different subjects with varying degrees of skill. Con-

versely, the heat maps of Figures 4.9(b) and 4.9(c) come closer to the successful

demonstrations of Figure 4.3(b), indicating the ability of the SMS to reproduce the

demonstrated strategies. However, these figures also shows trajectories and moves that

were not directly captured by the demonstrations. This highlights the ability of our

algorithm to synthesise and adapt the demonstrated strategies to novel adversaries.

4.5 Conclusions

In this chapter, we present an algorithm for learning to interact with strategic human-

controlled agents in adversarial environments. Our approach is novel in learning strate-

gic behaviours from imperfect human demonstrations, which can be probabilistically

synthesised to interact with previously unseen strategic adversaries. Results demon-

strate that our procedure yields an autonomous agent that can consistently compete
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(c) SMS vs HCGs.

Figure 4.9: Heat map representations of all trajectories. Colour indicates the percent-

age of trials in which a particular point was recorded. Left subplots: x−y motion trajec-

tory components - left blob corresponds to striker, right blob to goalkeeper trajectories.

Right subplots: x−θ motion for the striker.

with both autonomous and human-controlled robots, while outperforming most human

subjects against a fixed, heuristic adversary.

A limitation of the current model is that it does not feature online learning, through

which a robot could interactively adapt to a given adversary. Thus, the mixture of

strategies introduced in this chapter may lead to overfitting, and fail against oppo-

nents who are not within the range of the demonstrated traces. In Chapter 5, we

formulate a game-theoretic model of interaction control, where an autonomous robot

can learn from experience to shape strategic interactions with other human-controlled

robots. This constitutes an important step towards applications where robots can ac-

tively model and influence the behaviour of interacting strategic agents.



Chapter 5

Learning to shape and influence

strategic interactions

5.1 Overview

One important issue for autonomous robots operating in interactive environments is

that they must be able to adapt to a wide range of strategic adversaries. In the previous

chapter, we described a procedure through which demonstrated interactive strategies

can be synthesised against a given opponent. The selection of these templates is based

on a dynamically weighted model, which accounts for the current state of the inter-

action and the observed recent behaviour of the adversary. However, one drawback

of that approach is that the model cannot learn the utility of the various demonstrated

strategies, based on observations from repeated interaction with that adversary. Thus,

the learning component of that method is limited to the offline phase, where the local,

composable strategies are extracted from the provided demonstrations.

In this chapter, we address this issue by introducing a Bayesian framework for

learning, through repeated interaction, influencing behaviours for adversarial environ-

ments. Like the method of Chapter 4, the Bayesian framework also builds on be-

haviours that have been demonstrated by human operators. However, we now define

probability distributions on these strategies, which are updated based on the observed

effects of the executed actions. This probabilistic formulation extends the regret-based

model introduced in Chapter 3, where the intent of the interacting adversary was in-

ferred and updated over time. Moreover, we now consider temporally extended se-

quences of actions that are expected to change the state of the interaction at some

future moment. Thus, unlike the approaches presented in Chapters 3 and 4, where

79



80 Chapter 5. Learning to shape and influence strategic interactions

a single temporally extended action was chosen at every decision point, a robot can

now plan a strategy that spans a greater time horizon. The resulting model constitutes

our main contribution to the interaction shaping problem, which was presented in the

introduction of this thesis (Section 1.1).

Figure 5.1: Our approach to strategic interaction shaping. Human demonstrators pro-

vide traces of the desired behaviour, which are converted into shaping regions and tac-

tics, and used as composable templates by an autonomous agent. Online, the shaping

agent attempts to reach a desired joint state by sampling tactic sequences through iter-

ated prediction of its adversary’s expected responses, and selecting optimal sequences

through Bayesian inference. Opponent models and expected region reachability are up-

dated through repeated interaction.

Our framework for strategic interaction shaping in adversarial mixed robotic envi-

ronments (Figure 5.1) first learns offline a set of interaction templates from provided

human demonstrations of the desired strategic behaviour. The demonstrations are en-

coded as shaping regions and tactics, which represent salient interactive modes of the

state and action spaces. These templates are similar to the interaction regions and tac-

tics introduced in Chapter 4, but are additionally characterised by local, empirically

estimated opponent models. This allows the autonomous robot to track the responses

of its adversary to individually executed tactics. Thus, opponent modeling is now con-

ducted at the tactic and not at the region level.

In the online phase, the shaping robot seeks to lead the interaction to a target joint
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state by chaining sampled sequences of tactics as an interactive strategy. To achieve

this, the agent empirically updates a distribution over the reachability of the various

shaping regions against the given adversary. The reachability metric measures the

compliance of the adversary with executed actions, and thus indicates whether a given

tactic is likely to lead to a desired state. Using this distribution, the interaction shaping

problem is formulated as a two-step sampling and sequencing process. First, different

tactic sequences are sampled through iterated prediction of the adversary’s expected

responses. Then, optimal sequences selected through Bayesian inference over the ex-

pected reachability of their traversed regions. Thus, the shaping robot learns, through

repeated interaction, to choose temporally extended strategies that are likely to suc-

cessfully shape an interaction with a given adversary.

In the remainder of this chapter, we first describe the interaction shaping method

(Section 5.2), distinguishing between offline learning and online synthesis of interac-

tion templates. We also describe the differences between the interaction regions and

tactics introduced in the previous chapter, and the shaping templates described here.

As before, our experimental scenario is the adversarial robotic soccer penalty shooting

problem between NAO humanoid robots. However, we now focus on the ability of

the resulting shaping autonomous robot to interact with and against human-controlled

agents. Our results (Section 5.3) demonstrate an autonomous performance level com-

parable to that of the best human subjects when interacting with the same adversary,

and an ability to improve shaping performance over time even against a challenging

human-controlled adversary. Finally, we discuss the key contributions of this chapter

and its connection to the rest of this thesis in Section 5.4. The methodology and results

presented in this chapter also appear in (Valtazanos and Ramamoorthy, 2013a).

5.2 Method

5.2.1 Preliminaries and notation

We consider a system of two robots, R and R′, interacting in a planar environment,

where R is the shaping robot, and R′ is the shapeable roboty. At time t ∈ ℜ+, the

system is described by:

• The joint state of the two robots, st = 〈st ,s′t〉, st = [xt ,yt ,θt ]
T , s′t = [x′t ,y

′
t ,θ
′
t ]

T ,

where {xt ,x′t} ∈ ℜ, {yt ,y′t} ∈ ℜ are the positional coordinates, and {θt ,θ
′
t} ∈
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[−π,+π] are the orientations of the robots1.

• The action vectors, ~at , ~a′t available to the robots – each vector may consist of

both discrete and continuous actions. For example, in a task involving navigation

and manipulation, one choice for the action vector would be [dx,dy,dθ,grip]T ,

where {dx,dy,dθ} ∈ [−1.0,+1.0] are the requested translation and rotation as

fractions of the maximum speed of the robot, and grip ∈ {open, close} is a

command for the robot’s actuator.

The goal of R is to lead R′ to one of several possible target states z ∈ Z, over a

time horizon η, where each z = 〈s,s′〉 represents a joint target configuration. In other

words, R seeks to reach, at some time t ≤ η, a joint state st ∈ Z.

In the remainder of this chapter, we will use the superscript H to denote states and

actions of human-controlled robots. For example, sH
t is the state of a human-controlled

robot at time t.

5.2.2 Learning from human demonstration

As in the method introduced in Chapter 4, we learn basic templates of the desired

interaction from demonstrations of human subjects performing the same task. As be-

fore, demonstrations are used to identify salient modes of the state and action spaces,

which are used as “building blocks” for the learning algorithm of the shaping agent.

However, we modify the original definition of interaction regions and tactics, so that

different opponent models are now defined for every individual tactic. These models

are formulated as the inferred responses of the adversary to a tactic, and are initially

also learned from demonstration. Nevertheless, later in this section we show how these

responses can be empirically updated during the interaction. We call the resulting ac-

tion and state space templates shaping tactics and shaping regions, respectively, in

order to reflect their direct applicability to the interaction shaping problem.

5.2.2.1 Interaction shaping tactics

An interaction shaping tactic τ is a time-independent action continually evoked by R

for a variable period of time:

τ = 〈iš, tš, ǎ,dt,{r̃}〉, (5.1)

1Positive directions: forward, left, counter-clockwise.
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where iš, tš, are the joint input and target states of the tactic,~as is the action followed

by R, dt is the duration of this action, and {r̃} is a set of normalised expected responses

of R′ to τ. A response m̃ = 〈dx,dy,dθ〉 ∈ {r̃} is a possible move by R′, normalised over

a time interval n̄, in response to τ. For the remainder of this chapter, we set n̄ = 1

second.

The demonstration procedure is identical to the one described in the previous chap-

ter. To recapitulate, we summarise the key features of this approach. Tactics are

computed from recorded inputs of humans teleoperating the shaping agent R in the

desired interaction. During this phase, the adversarial robot R′ can be either also

human-controlled, or an autonomous robot executing a hard-coded behaviour. The

demonstrator-controlled robot R is teleoperated through a game controller, which maps

inputs to action vectors~a.

For each demonstration, we also record the states of the two robots, s and s′. Thus,

we obtain a time-indexed sequence of states and commands, q = {{t1,sH
t1 ,s
′
t1,~a

H
t1 }, ...,

{tN ,sH
tN ,s
′
tN ,~a

H
tN}}. Demonstrations are also annotated based on their outcome as suc-

cessful or unsuccessful examples of shaping behaviour. We then retain the set of suc-

cessful demonstrations, Q+ = {q+
1 , ...,q

+
M}.

For every extracted tactic τ, we record the start and end times at its boundaries, ts
and te. Then, the tactic time interval, input, and target states are τ.dt← te− ts, τ.iš←
〈sH

ts ,s
′
ts〉, and τ.tš← 〈sH

te ,s
′
te〉. Similarly, the tactic action vector, τ.ǎ, is the mean of the

inputs over the duration of τ.

The primary element of novelty in the new, shaping framework is the introduc-

tion of tactic-specific opponent models. These models are formulated as the expected

responses of the adversary to τ, τ.{r̃}, which are initialised by dividing each tactic in-

terval into dτ.dt/n̄e fixed-length segments. Each segment yields a candidate response

by R′, which is the change of the state of R′ between the segment endpoints, averaged

over its duration. We also set an upper bound m on the size of each {r̃}, so if the

number of tactic segments, n, exceeds this bound, n–m randomly selected candidate

responses are discarded. We define this bound as

m = dc · τ.dt/n̄e (5.2)

where c ≥ 1 is a small positive constant, such that the bound is only slightly greater

than the duration of the tactic, τ.dt, and the sampling interval, n̄.

Thus, each successful demonstration q+ is associated with a set of extracted tactics

q.{τ}. By applying this procedure to all demonstrations in Q+, we obtain the set of all
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shaping tactics, ST =
⋃

q∈Q+

q.{τ}.

5.2.2.2 Interaction shaping regions

A shaping region ρ is a normal distribution N over related states frequently visited by

the robots during the interaction:

ρ = 〈µ,Σ,{τ}〉, (5.3)

where µ is the mean joint state of ρ, Σ is the covariance matrix, and {τ} are the tactics

that can be invoked from ρ.

The above definition constitutes a simplification of the interaction regions defined

in Chapter 4, as opponent models are now migrated into individual tactics. However,

the generation of shaping regions follows the same guidelines as before. In particular,

shaping regions are computed by clustering the extracted tactics, ST , based on their

input states. We first form a set of tactic groups T G = {τg1, ...,τgM} based on input

state similarity, so that any two tactics τi,τ j within a tactic group τg satisfy

d([τi.š;τi.š′], [τ j.š;τ j.š′])< δ, (5.4)

where d(·, ·) is the distance between two state pairs, and δ is a distance threshold

defining the similarity between regions within the same group. Each group τg ∈ T G is

converted to a new region ρ, whose tactic set is ρ.{τ} = τg. The parameters ρ.µ and

ρ.Σ are the mean and covariance of the input states of all tactics in ρ.{τ}. Thus, we

obtain a set of shaping regions, SR .

In the problem we are considering, the shaping robot, R, seeks to lead an interaction

with another robot, R′, to one of several possible target states. To associate these states

with specific regions, we first aggregate the last computed tactics of all successful

demonstrations into the set ST L = {q.{τ}|q.{τ}| | q∈Q+}, where |q.{τ}| is the number

of tactics extracted from q (and hence also the index of the last tactic of the set q.{τ}).
Thus, the resulting set ST L is a subset of ST . Then, we apply the above clustering

and partitioning procedure on ST L (as opposed to the whole of ST like above). This

leads to the set of target regions, T R ⊂ SR , representing states the shaping agent

eventually seeks to reach.
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5.2.3 Bayesian interaction shaping

This section describes the main algorithmic component of the proposed interaction

shaping framework. Given a set of computed shaping tactics and regions, we formu-

late our approach to this problem as a two-step sampling and selection process over

these templates, which is followed by an online learning update. The goal for the

shaping robot, R is to identify sequences of tactics, {τ1, ...,τN}, that are likely to lead

the adversarial agent, R′, to a desired target joint state. To achieve this, R first samples

multiple tactic sequences that are likely to reach a target shaping region. This proce-

dure iteratively predicts the expected state of the interaction following the execution

of a sampled tactic, by sampling from the set of opponent responses for that tactic.

Thus, by chaining these estimates together, R can also predict the expected state of the

interaction at the completion of a sequential execution of the tactics.

In the selection process, an optimal sequence is selected from the collected sam-

ples based on the posterior probability of reaching a target region. This probability is

computed through Bayesian inference over the discounted expected reachability of a

sequence’s constituent tactics.

The final stage of the shaping framework is concerned with learning of the em-

ployed reachability and response models. We describe empirical learning mechanisms

for these updates, which extend and follow on the regret minimisation techniques in-

troduced in Chapter 3.

5.2.3.1 Empirical reachability likelihood

The success of an interaction shaping strategy depends on the compliance of R′ with

tactics selected by R. To model this effect, we define the empirical reachability like-

lihood distribution, R D , which expresses the probability of reaching a region with a

given tactic:

R D(ρ1,τ,ρ2,ρ3)
.
= P(ρ3 |ρ1,τ,ρ2). (5.5)

Thus, R D(ρ1,τ,ρ2,ρ3) gives the probability of reaching ρ3, given that τ was invoked

from ρ1 with the intention of reaching ρ2. As explained in Section 5.2.3.2, the correla-

tion between intended and actually reached regions is the main bias in selecting robust

shaping tactics. We initialise R D assuming “perfect control” over tactics, so that
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P(ρ3 |ρ1,τ,ρ2) =

{
1, ρ2 = ρ3

0, ρ2 6= ρ3
. (5.6)

In other words, R is initially assumed to always be able to successfully influence

R′, and complete the execution of a tactic by reaching the desired shaping region.

However, we later show how these probabilities are continually updated during the

interaction, based on the inferred effects of the executed tactics.

5.2.3.2 Tactic sampling and iterated prediction

The number of possible tactic sequences may vary depending on the quantity and qual-

ity of the provided demonstrations. Thus, exhaustive search over these templates may

often be infeasible. To address the complexity of tactic sequence selection, we estab-

lish bounds for the maximum number of sequences, NS, and the length of each se-

quence, LS, sampled at every decision point. We set NS = max
ρ∈SR

|ρ.{τ}| (size of largest

tactic set), and LS = (max
q∈Q+
|q|) (size of longest demonstration).

The robot R first estimates the joint state of the world, st , at the current time t,

based on its sensory observations. Then, the most likely current region, ρt , is selected

as

ρt = arg max
ρ∈SR

N (st |ρ.µ,ρ.Σ). (5.7)

To generate a new tactic sequence, τs, we first select a tactic τ from ρt .{τ} with

probability

P(τ∼ ρt .{τ}) =
1
|SR |∑

ρ́

P(ρ́ |ρt ,τ, ρ́), (5.8)

so as to reflect the overall expected successful reachability of regions from ρt using

τ. In other words, the above probability reprsents the overall accordance between

expected and actually reached regions for a given tactic τ. Then, we iteratively pre-

dict how the interaction may evolve if R follows τ. The expected state of R, s̃, upon

completion of τ, is the target state τ.tš. For R′, we sample dτ.dt/n̄e responses from

τ.{r̃}. Starting from the current state of R′, s̃′ = s′t , we iteratively apply each sampled

response, m̃, to s̃′, i.e.

s̃′← s̃′+
dτ.dt/n̄e

∑
i=1

m̃i (5.9)
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Through this iterative application of the predicted responses of the adversary, we

obtain the expected joint state, s̃ = 〈s̃, s̃′〉, at the end of τ.

We then repeat the procedure of Equation 5.7, in order to compute the most likely

region of s̃, ρ̃ = arg max
ρ∈SR

N (s̃ |ρ.µ,ρ.Σ). We call ρ̃ the expected next region of τ, de-

noted as τ.ρ+1. If ρ̃ is one of the target regions T R , we stop and return the tactics

sampled so far as a tactic sequence τs. Otherwise, we repeat the above iterated predic-

tion process, until either a target region is found, or the maximum sequence length LS

is reached. We repeat the whole procedure to obtain NS sequence samples. The overall

tactic sequence sampling method is summarised in Algorithm 5.

The tactic sampling algorithm predicts the evolution of at most NS · LS tactics in

the worst case. The ability to find sequences leading to a target region depends on

the convergence of the sampled adversarial responses. If these samples are a good

representation of the “true” behaviour of R′ in response to a given tactic, the expected

next regions of that tactic will tend to match the actual reached regions. In interactions

with non-stationary adversaries, however, R may not be able to find sequences leading

to a target region, owing to the discrepancy between expected and reached states. If no

such tactic sequence is found, R attempts to transition to a different region from which

better sequences may be retrieved. Thus, given the interactive nature of our problem

domain, our objective is not an exhaustive search over tactics, but instead an efficient

sampling procedure yielding bounded-length sequences that are likely to impact the

interaction.

5.2.3.3 Tactic selection

In the sampling process, tactic sequences are generated with the intention of reaching

a target region ρG ∈ T R . In the selection process, we seek to identify the sequence

that is most likely to achieve this terminal objective. We formulate this problem in a

Bayesian setting, under the assumption that all ρG are equally desirable for R. In this

context, we define the posterior probability of selecting a tactic sequence, τs, given

that R wants to eventually reach a region ρG ∈ T R from the current shaping region ρt :

P(τs |ρt → T R ) =
P(ρt → T R | τs)P(τs)

P(ρt → T R )
. (5.10)

The prior probability of selecting a sequence τs is inversely proportional to the

overall expected duration of its constituent tactics. We refer to this duration as the in-

verse total time of the sequence, T−1(τs) = 1/(∑τ∈τs τ.dt). Then, the prior probability,
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Algorithm 5 Tactic Sequence Sampling

1: TACTICSEQUENCESAMPLING(st ,SR ,T R ,R D,LS,NS, n̄)
2: Input: Current joint state st , shaping regions SR , target regions T R , reachability

distribution R D , maximum sequence length LS, maximum sampling attempts NS,

response interval n̄
3: Output: Set of tactic sequences {τs}
4: {τs}← {{}}
5: ρt ← arg max

ρ∈SR
N (st |ρ.µ,ρ.Σ) {find current region}

6: for i = 1→ NS do
7: τs←{} {initialise new tactic sequence}
8: j← 1

9: ρ̃← ρt

10: (s̃≡ 〈s̃, s̃′〉)← st

11: while ρ̃ /∈ T R and j ≤ LS do
12: τ̃∼ ρ̃.{τ} {sample tactic using R D as in Eq. 5.8}
13: s̃← τ̃.tš {own expected state← tactic target}
14: for j = 1→ dτ̃.dt/n̄e do
15: m̃∼ τ̃.{r̃} {sample from tactic responses}
16: s̃′← s̃′+ m̃ {apply sample}
17: end for
18: j← j+1

19: s̃← 〈s̃, s̃′〉
20: ρ̃← arg max

ρ∈SR
N (s̃ |ρ.µ,ρ.Σ)

21: τ̃.ρ+1← ρ̃ {assign ρ̃ as expected next region}
22: τs.insert(τ̃)

23: end while
24: {τs}.insert(τs)

25: end for
26: return {τs}

P(τs) is formulated as

P(τs) = β(τs) · T−1(τs)
∑τs′∈{τs}T−1(τs′)

, (5.11)

where β(τs) is a coefficient penalising sequences whose last tactic, τN , is not expected



5.2. Method 89

to reach a target region, i.e.:

{
β(τs) = 1, τN .ρ+1 ∈ T R
0 < β(τs)< 1, τN .ρ+1 /∈ T R

. (5.12)

This factor is incorporated to account for sampled sequences that did not reach

a desired state within the defined sampling bounds of Algorithm 5. Thus, through

P(τs), shorter sequences expected to reach a target shaping region are a priori more

preferable.

The likelihood of reaching a target region given a sequence τs, P(ρt → T R | τs),

is computed as the discounted sum of the empirical reachability likelihoods of the

constituent tactics of τs,

P(ρt → T R | τs) =
β(τs)
|τs|

|τs|

∑
i=1

γ
i−1 ·P(ρ+1 |ρ−1,τi,ρ+1) (5.13)

where β(τs) is defined as in Equation 5.12, 0 < γ≤ 1 is a discount factor incrementally

penalising the contribution of future tactics to the likelihood sum, τi is the i-th tactic

of τs, ρ+1 is the expected next region of τi (line 21 of Algorithm 5), and ρ−1 is the

previous region of a tactic τi,

ρ−1 =

{
ρt , i = 1

τi−1.ρ+1, i > 1
. (5.14)

Thus, the likelihood P(ρt → T R | τs) provides a measure of the expected dis-

counted compliance of the adversary with a tactic sequence.

Finally, the normalisation term, P(ρt → T R ), is given by

P(ρt → T R ) = ∑
τs′∈{τs}

P(ρt → T R | τs′)P(τs′). (5.15)

We select the optimal tactic sequence τs∗ through maximisation over the posterior

distribution, i.e.

τs∗ = arg max
τs∈{τs}

P(τs |ρt → T R ). (5.16)

5.2.3.4 Belief updates

The robustness of the sampled and selected strategies depends on the ability to model

the effects of the executed tactics, and the adaptation to the observed behaviour of a
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given adversary. To this end, the shaping robot R learns to influence an adversary R′

by updating the tactic expected responses and the region reachability distribution R D .

Through these learning updates, the sequence sampling and selection procedures are

biased to favour shaping tactics that more closely account for the observed behaviour

of R′.

-Learning adversary responses: When executing a tactic τ, R observes the re-

sponses of R′, and uses them to update the set τ.{r̃}. The tactic time interval, τ.dt,

is divided into dτ.dt/n̄e segments, and the observed state change of R′ is recorded for

each segment. If t1, t2 are the times at the endpoints of a segment σ, the candidate

response m̃ for σ is

m̃ = s′t2− s′t1. (5.17)

A candidate m̃ is added to the existing set of expected responses of a tactic so as not

to violate the bound on the maximum number of these responses, m. If τ.{r̃} already

has m samples, the oldest sample is replaced by m̃. Otherwise, m̃ is simply appended

to the set. Through this update, τ.{r̃} is biased to reflect the most recently observed

reactions of R′ to τ.

Adversarial responses model the local reactive behaviour of R′, without making

explicit assumptions about the long-term reasoning or strategic intentionality of that

agent. These effects are implicitly addressed by the iterated predictions and expecta-

tions of shaping regions, which model the compliance of R′ with a temporally extended

sequence of actions.

-Learning region reachability: Upon completion of a tactic τ, R updates R D based

on the resulting shaping region ρc. If τ was invoked from region ρi with the intention

of reaching ρ′, we update the probability P(ρ|ρi,τ,ρ
′) based on the rule

P(ρ|ρi,τ,ρ
′) =

{
P(ρ|ρi,τ,ρ

′)+w, ρ = ρc

P(ρ|ρi,τ,ρ
′)− w

|SR |−1 , ∀ρ 6= ρc
(5.18)

where 0 < w < 1 is the update weight. Probabilities are also normalised after each

weight update so that they all lie between 0 and 1. Thus, the distribution progressively

assigns higher weight to region-tactic-region transitions that have been empirically

found to be reachable. These transitions are then favoured in subsequent tactic sam-

pling and selection iterations, as moves that are likely to lead the adversary to a desired

target joint state.
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-Tactic sequence update frequency: The update interval, u, is the number of tactics

after which a new sequence should be selected, based on the updated beliefs. For u= 1,

a new τs will be selected upon completion of every executed tactic. If u is greater than

1, the shaping robot will execute multiple tactics from a sequence before replanning

its strategy.

5.3 Experimental Results

We evaluate the Bayesian interaction shaping framework on the previously described

penalty shooting problem between autonomous and teleoperated NAO robots (Sections

1.3, 4.2). However, in this section, we focus on the learning and shaping ability of

the autonomous robot, in the context of interactions with an adversarial agent. Thus,

we do not restrict our presentation to overall performance results, but we also give a

qualitative and quantitative evaluation of the learning process.

We first describe how shaping regions and tactics are learned from human demon-

stration. The set of provided demonstrations is identical to the one described and used

in Chapter 4. We then illustrate the learning performance of our algorithm in a variety

of interactions with autonomous and human-controlled adversarial agents.

5.3.1 Shaping region and tactic computation

The shaping templates were learned from demonstration by subjects with prior expe-

rience of the NAO robots. Demonstrators provided traces of the desired behaviour by

controlling the striker against a heuristic autonomous goalkeeper (HAG), which runs

the algorithm described in Section 4.3.2. We review the key features of this algorithm:

given the striker’s current orientation, θ, the expected ball trajectory is a straight line

segment starting at the ball position, and following this angle. Then, the HAG moves

to the point where this segment intersects the goal line, as the expected best blocking

position. The HAG may also dive to block the ball when it detects it to move towards

the goal line.

For each trace, we recorded the demonstrator inputs (dx,dy, dθ motion and kick

commands) and the poses of the robots. In total, 29 successful trials were retained

(Figure 5.2(a)). By applying the procedure of Section 5.2.2, the collected data yielded

a total of 134 shaping regions and 320 shaping tactics. Figure 5.2(b) shows the means

of the computed regions, whereas Figure 5.2(c) provides a graph representation of the
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computed tactics, illustrating how they can be chained to form a sequence.

Target regions represent joint states from which the striker is likely to score. In

these states, the striker (R) should be within the kicking distance of 190mm from the

penalty mark, pm = [px, py], where the ball is initially positioned, and the goalkeeper

(R′) should be on the goal side opposite the striker’s orientation, so that either θ > 0

and y′ < 0, or θ < 0 and y′ > 0. In other words, R seeks to reach (one of) the regions

with the properties:

T R = {ρ | d(ρ.µ.[x : y], pm)< 190 and ((ρ.µ.θ > 0 and ρ.µ.y′ < 0) or

(ρ.µ.θ < 0 and ρ.µ.y′ > 0))}.
(5.19)
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Figure 5.2: Learning shaping templates. (a): Heat map representation of successful

demonstrations – these are the traces recorded in the laboratory capture session de-

scribed in Section 4.3.2. Colour indicates percentage of trials in which a point was

recorded. Left: (x) - (y) motion, both players. Right: (x) - (θ) motion, striker. (b): Means

of computed regions. Circles: striker states. Squares: goalkeeper states. Lines: ori-

entations. A region mean comprises both a striker and a goalkeeper state. (c): Tactic

graph – edges represent desired transitions between input and target regions.

5.3.2 Shaping agent evaluation

The evaluation of the autonomous interaction shaping striker (ISS) is twofold. First,

we compare this agent with several human-controlled strikers (HCSs), in interactions
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with the HAG. Our objective is to compare the performance of these two agent types

when they compete against the same adversary. Then, we evaluate the ISS against
a more challenging human-controlled adversarial goalkeeper. Here, we assess how

the interaction shaping performance is affected when the adversary is a truly strategic,

human-controlled adversary, whose exact behavioural model is not known a priori.

To this end, we conduct three different experiments. First, we evaluate the perfor-

mance of 30 human subjects, in 5 trials each, acting as strikers against the HAG. This

phase is identical to the first part of the experiments of Section 4.4, so only the relevant

results are summarised here for comparison purposes. Second, we evaluate the ISS

against the same adversary (HAG), in 10 independent sets of 25 trials each. Third, we

repeat the procedure of the second experiment, but we now evaluate the ISS against an

expert human-controlled goalkeeper (EHCG), who is teleoperated by an experienced

member of our research group.

The EHCG is a considerably harder adversary for two reasons. First, the human

operator has full visibility of the environment through his own eyes, as opposed to

autonomous robots that rely on their noisy camera feed. Second, the operator can

learn to anticipate adversarial moves over time, in contrast to the HAG which has a

fixed, non-adaptive behaviour. Thus, against the EHCG, the ISS must learn to shape

interactions with another learning adversarial agent.

In the last two experiments, the ISS updates adversarial responses and region reach-

abilities using the parameters NS = 20, LS = 10, β = 0.1,γ = 0.7,w = 0.1,u = 1.

Interaction (Striker vs Goal-
keeper)

HCSs vs HAG ISS vs HAG ISS vs EHCG

Total goals scored 61/150 138/250 92/250

Mean striker success rate 40.67% 55.20% 36.80%

Standard deviation ± 20.60% ±5.72% ±6.67%

Table 5.1: Overall results. HCSs: Human-Controlled Strikers. ISS: Autonomous In-

teraction Shaping Striker. HAG: Heuristic Autonomous Goalkeeper. EHCG: Expert

Human-Controlled Goalkeeper.

The overall results are shown in Table 6.7. When competing against the HAG, the

ISS performs considerably better than the mean HCS. Furthermore, when the standard

deviation is taken into account, the success rate of the ISS is found to be comparable

to the best instances of HCS (around 60%). This suggests that the shaping template
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formulation and learning procedure can successfully generate strategic behaviours that

match the sophistication of experienced human users. By contrast, the shaping ability

of the ISS drops considerably against the more challenging EHCG, as indicated by the

reduced success rate, which is however still comparable to the mean rates achieved by

HCSs against the HAG.
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Figure 5.3: Inter-trial performance of the ISS. Each experimental run of 25 trials is split

into blocks of 5, with results averaged over all 10 runs. The mean HCS success rate

(MHCS), as averaged over the 5 trials taken by each of the 30 subjects, is also given.

To better understand how the ISS learns to shape interactions over time, we divided

the sets of 25 trials of the second and third experiments into blocks of 5, and we

measured the mean number of goals scored in each block. Thus, we seek to assess how

the performance of the ISS varies across these blocks. The resulting scores are shown

in Figure 5.3. Despite the discrepancy in the number of goals scored against the two

adversaries, we observe that the overall progression rate is similar. In both cases, the

ISS begins with a low success rate, which improves as interaction progresses. This is

an important result demonstrating that the learning rate of our algorithm is not affected

by the strategic sophistication of the adversary. Thus, even when the ISS is pitted

against an adversary controlled by an expert human operator, it can empirically learn

strategies that improve its success rate.

Despite giving a strong indication of overall performance, goal-scoring rates do

not show how the various strikers tried to influence their adversaries. To address this

issue, we measured the distance of the goalkeeper from the optimal blocking position,

d∗, which was introduced in the previous chapter (Figure 4.8(a)). However, we now

measure this distance throughout an experimental trial, and not just at the end. Through

this modification, we model how well each striker influenced goalkeepers into moving
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(a) HCSs vs HAG
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(b) ISS vs HAG

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000

Time (% of overall trial time)

G
o

a
lk

e
e

p
e

r 
d

is
ta

n
c
e

 f
ro

m
o

p
ti
m

a
l 
b

lo
c
k
in

g
 p

o
s
it
io

n
 (

m
m

)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) ISS vs EHCG

Figure 5.4: Goalkeeper distances from optimal blocking position, d∗ (see Figure 4.8(a)

for an explanation of this metric, which was introduced in the previous chapter). Illustra-

tions of time-indexed heat maps of distances - colour indicates percentage of trials in

which a particular time-distance pair was recorded. The black dotted line (d = 270mm)

shows the expected minimum distance required to score – this is the length covered by

the goalkeeper’s leg after a dive to save the ball. (a): HCSs vs HAG. (b): ISS vs HAG.

(c): ISS vs EHCG.

to a suboptimal position over a temporally extended interval. Thus a good shaping

behaviour should succeed in maximising d∗ at the end of a trial.

As shown in Figures 5.4(a)-5.4(c), the ISS was more successful at maximising

d∗ than most HCSs, thus more explicitly trying to shape interactions. Moreover, in

both ISS experiments, the dominant pattern is that d∗ is initially small, reaching its

maximum value around the midpoint of the trial and then dropping again. However,

when competing against the EHCG, d∗ drops more sharply towards the end. This
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indicates that the expert user is more adept at recovering from deceptive moves by the

striker than the HAG, thus preventing the interaction from being shaped at his expense.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.5: Six snapshots from two trials, ISS vs HAG. (a)-(f): Unsuccessful attempt.

(g)-(l): Successful attempt. The two strategies are similar, but in the second trial, the ISS

waits longer for the HAG to move towards the far side of the goal (3rd-4th snapshots),

before turning to shoot towards the near side (5th-6th snapshots). Thus, the HAG is

deceived into having less time to respond, and the interaction is shaped more effectively.

Furthermore, Figure 5.5 shows snapshots from two trials of the ISS against the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.6: Six snapshots from two trials, ISS vs EHCG. (a)-(f): Unsuccessful attempt.

(g)-(l): Successful attempt. In the successful trial, the strategy followed by the striker

resembles the moves illustrated in the second half of Figure 5.5.

HAG. In both cases, the ISS first turns to face the far side of the goal, before turning

to the near side and shooting. However, in the successful attempt, the ISS waits longer

during the first turn, in order to make the HAG move closer to the far side and reduce

its subsequent recovery time. Thus, d∗ is greater at the end of the trial, and the ISS

manages to shape the interaction more effectively.
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A similar pattern is observed in Figure 5.6, which shows snapshots from trials of

the ISS against the EHCG. In the first example, the striker follows a simple approach

and kick, which is not sufficient to deceive the human controller of the goalkeeper.

However, in the second example, the robot has learned a similar strategy to the second

trial of Figure 5.5, where successive direction changes have been found to increase the

likelihood of leading the goalkeeper to a desired state.

Further examples and illustrations from the above experiments are available in the

supporting video of this chapter (Valtazanos, 2012a).

5.4 Conclusions

In this chapter, we present a framework for strategic interaction shaping in mixed

robotic environments. Our approach combines offline learning of shaping regions

and tactics from human demonstrations, and online learning and synthesis of these

templates through Bayesian inference over the adversary’s expected behaviour. This

method extends the implementation of Chapter 4, where online interactive adaptation

to a novel adversary is not supported by the framework. Experimental results demon-

strate that the shaping agent can shape interactions with a given heuristic adversary

comparably to the best human subjects, as identified from a diverse group of 30 indi-

viduals. Moreover, the shaping agent can successfully learn, through repeated inter-

action, to improve its performance against a challenging, human-controlled adversary,

who is empirically shown to be less susceptible to deceptive behaviours. Thus, our

work constitutes a novel, practical approach to online strategic learning in physical

robotic systems, in interactions with unknown, potentially human-controlled, adver-

sarial agents.

In the following chapter, we evaluate interactive human-robot decision making

from a different perspective. In particular, we look at the ability of humans to interact

with strategic agents who intend to influence their beliefs, such as the ones presented in

this and in the previous chapter. To this end, our next experiment assesses the effects

that factors such as limited visibility of the interaction environment have on human

decisions, when the adversarial autonomous robot is acting strategically. Thus, we

demonstrate why interaction shaping and related decision problems are challenging

not only for autonomous robots, but also for human operators.



Chapter 6

Perceptual constraints in interactive

teleoperation

6.1 Overview

In the preceding chapters, we described learnable autonomous behaviours that can

shape and impact the beliefs of teleoperated agents. In this chapter, we study the related

problem of how humans respond to such behaviours, and what are the factors that affect

their responses. This is an important issue for many existing systems that depend on

teleoperation, for example, rescue robot and de-mining teams in field applications.

These systems often feature both fully autonomous robots and robots teleoperated by

humans, or even physically present humans.

Interaction and coordination between such heterogeneous agents is a challenging

task, largely due to their varied actions, perception, and cognitive capabilities. When

looking at how humans (tele)operate in mixed domains, it is important to assess how

these heterogeneous capabilities affect their ability to make robust decisions, in the

presence of other, possibly adversarial, interacting agents. Humans are generally be-

lieved to have a superior grasp of context and situational awareness than autonomous

robots. This is one reason why most deployed systems still depend quite heavily on the

human user to control robots. However, this awareness also depends on the perceptual

information made available to operators, which influences how they perceive their own

robot’s surroundings and the state of other interacting robots.

In many realistic situations, this information may be sparse or incomplete; for ex-

ample, an operator controlling a rescue robot in a disaster site may only have access

to the robot’s noisy camera feed. Thus, a user having full visibility of the environment

99
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may be able to fully understand how other agents are behaving, and plan the actions

of the teleoperated robot accordingly. By contrast, if the same person has limited vis-

ibility of the environment, the decisions may be less informed and thus less effective.

In the latter case, where users are effectively constrained to have the same perceptual

capabilities as a robot, it is unclear whether their decisions would be able to exceed, or

even match, the performance level of an autonomous agent (Figure 6.1). This is an im-

portant issue to be addressed in systems where the autonomous system can intervene

to assist the human partner.

(a) (b)

Figure 6.1: Sketch of different possible configurations in strategic human-robot inter-

actions. (a): Approach followed in Chapters 4 and 5, in standard interactions between

autonomous and teleoperated robots. Both robots have the same set of actions, how-

ever, humans still maintain the advantage of having full visibility of the interaction en-

vironment (unlike autonomous robots, which can only view it through a low-resolution

camera). (b): The main question addressed in this chapter – when autonomous robots

and human operators have not only the same set of actions, but also the same per-

ceptual information (i.e. the operator is constrained to viewing only the robot’s camera

feed), how do their interactive decisions compare?

In this chapter, we once again consider interactions between autonomous and human-

controlled robots in complex, physical environments. However, we introduce the re-

striction that these domains may be perceptually constrained, i.e. that the human op-

erator may not always have full visibility of the interaction environment. With this

consideration in mind, we present empirical data addressing the following questions:

• What is the effect of incompleteness and asymmetry of information on human

teleoperation performance in interactive robotic tasks?

• Where should the boundary between human control and autonomy lie, and what

is the correlation between the effects of perceptual limitations and the strategic
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content of interactive tasks?

We view these issues as central not only to understanding the factors that influence

interactive decisions, but also to designing mixed robotic systems that can successfully

combine the relative merits of human control and autonomy.

In order to address the above questions, we evaluate the performance of several

users in two different interactive tasks involving a teleoperated and an identical au-

tonomous NAO humanoid robot. Both tasks share the following properties:

• The human users do not know a priori how the autonomous robot will behave,

nor can they exchange any data with it during the task. Thus, they can only infer

its decisions through observation and repeated interaction.

• The tasks are fully interactive, requiring users to make several decisions over a

short time horizon and also to respond to the actions of the autonomous robot.

The first task is a cooperative target allocation task, where the two robots must

reach two different targets without interfering with each other. The second is the strate-

gic adversarial penalty shooting task studied in Chapters 4 and 5 – here we consider the

case of an autonomous striker playing against a teleoperated goalkeeper. The penalty

shooting task is considerably harder for two interrelated reasons:

• The autonomous robot is a strategic adversary who seeks to outperform the

human through deceptive manoeuvres.

• The human subject must estimate and infer finer-grained information, e.g. the

absolute states of the robots and the most likely kicking direction selected by the

striker.

In both cases, we first evaluate subjects under full observability of the interaction en-

vironment, and we subsequently constrain them to viewing only a live feed from the

robot’s camera.

Main hypothesis: In light of the above constraints, our core hypothesis is that only

a small proportion of subjects should perform worse in the cooperative task under re-

stricted perception, whereas a greater fraction would be impacted in the adversarial

task under these conditions. In other words, we hypothesise that the combined chal-

lenge of reasoning about absolute states and the strategic behaviour of the adversary

will have an adverse effect on human performance under limited visibility in the sec-

ond task, unlike the simpler interaction and inference requirements posed by the first

task.
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In the remainder of this chapter, we first describe the two interactive tasks, high-

lighting the challenges for human subject in each case (Section 6.2). We use the same

experimental domain as in Chapters 4 and 5, i.e. interactions between autonomous and

teleoperated NAO robots (see Section 4.2 for a summary of this setup). In Section 6.3,

we present empirical results of our experimental evaluation on several subjects. Our

results suggest that restricted visibility is more likely to impact participants in strategic

interactions, where there is greater uncertainty over the autonomous adversary. We

review the key contributions of this study in Section 6.4.

6.2 Interaction Scenarios

6.2.1 Cooperative task – Target allocation

In the cooperative target allocation task, the two robots are placed in an arena as shown

in Figure 6.2(a). The task requires the robots to reach two different targets in the arena.

The initial positions of the robots are fixed as in Figure 6.2(a), but the targets are moved

around between trials. The autonomous robot initially selects a target at random, and

begins moving towards it. The human user must then infer where the autonomous

robot is heading, and steer his own robot to the other target as fast as possible. The

user must also avoid collisions or interference with the autonomous robot.

The autonomous robot has no external information (e.g. positions from an over-

head camera) and perceives the world only through its own perspective camera. There

is also no communication between the robots, so there is no prior (or interactive) agree-

ment on the allocation of the targets.

6.2.1.1 Autonomous robot behaviour

The autonomous robot navigates to its chosen target using a simple visual servoing

routine. The targets are colour-coded so that they can be easily identified. The random

selection of a target is enforced by having the robot initially look away from the arena

(so that no targets are visible), and then randomly select whether it should start turning

left or right. The robot then keeps turning until it locates a target, and then starts

moving towards it.



6.2. Interaction Scenarios 103

(a) (b)

(c)

Figure 6.2: Experimental setup - cooperative task. (a): An autonomous (top left) and

a teleoperated (top right, in front of human user) robot must reach two different targets

(indicated by the flagpoles) without interfering with each other. The autonomous robot

randomly selects a target to navigate to, which the user must infer during the interaction,

in order to lead his robot to the other target. The initial positions of the robots are fixed

but the locations of the targets change between trials. (b): Same task, but the user now

has access only to the robot’s noisy camera feed (shown in (c)).

6.2.1.2 Full vs. restricted perception

We consider the cooperative navigation task in two different situations. In the first case

(Figure 6.2(a)), the user may view the entire arena, thus having full visibility of the en-

vironment. In the second case (Figure 6.2(b)), the user is restricted to viewing only the

teleoperated robot’s noisy camera feed (Figure 6.2(c)) on a computer screen. Thus, the

user is constrained to have the same perceptual capabilities as the autonomous robot,

so the two robots differ only at the behavioural level (autonomous vs teleoperated).

In the full visibility case, users have a clear view of both robots and both targets.

Thus, it is relatively straightforward to identify where the autonomous robot is head-

ing, and, assuming adequate familiarity with the joystick controller, lead the teleop-
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erated robot to the appropriate destination. However, when perceptual information is

restricted, recognising the autonomous robot’s behaviour and steering the teleoperated

robot becomes more challenging.

6.2.1.3 Teleoperation commands

The user is allowed to control the translational (forward-backward-side steps) and ro-

tational (turn left-right) motion of the robot. In restricted visibility, there are addi-

tional inputs to control the robot’s head movement and scan different parts of the world

through its camera.

6.2.2 Adversarial task – Penalty shooting

(a) (b)

Figure 6.3: Experimental setup - adversarial soccer penalty shooting task. (a): Ini-

tial poses of the autonomous striker (near side, blue waistband) and the teleoperated

goalkeeper (far side, pink waistband). (b): Restricted perceptual information. Left: Vi-

sualisation of the robots’ self-localisation estimate (shown by the red markings on the

field drawing). Right: Perspective view of the goalkeeper, looking at the ball and the

approaching striker.

The adversarial task is the penalty shooting game studied in Chapters 4 and 5.

The rules of the game are the same as those described in Section 4.2.5. The objective

for the human is to guess which way the autonomous striker is going to shoot, and

move the goalkeeper to a suitable shot-blocking position. This is considerably harder

than cooperative navigation, as the autonomous robot now attempts to outperform the

human, by strategically trying to score a goal. Thus, the human must also continuously

reason about the absolute positions of the robots in the field.
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In contrast to the cooperative task, where only relative distances to the targets are

required, the autonomous robot now needs to know its absolute position in the field. To

compute this information, the robot uses the particle-filter method for self-localisation

described in Section 4.2.3.

6.2.2.1 Autonomous robot behaviour

The autonomous striker was programmed to run the Gaussian Mixture Model-based

algorithm introduced in Chapter 4. This algorithm was chosen over the interactive

learning algorithm of Chapter 5, in order to have a fixed behaviour against which all

human subjects can be compared. In other words, our intention was to isolate any

possible artefacts arising from an adaptive behaviour by the autonomous agent, and in-

stead assess the effects of perceptual limitations on interactive human decisions, which

is the core focus of our experiment.

6.2.2.2 Full vs. restricted perception

In the restricted visibility case, the user is provided with both the robot’s live camera

feed and a visualisation of the two robots’ self-localisation estimates (Figure 6.3(b)).

In the full visibility case, uncertainty in localisation presents the autonomous robot

with an even greater perceptual handicap than in the cooperative task, as noisy or

incorrect positional information is likely to lead the striker to misinformed decisions

on its adversary. For humans, restricted visibility introduces the challenge of inferring

the absolute positions of the robots, using only noisy sensory data.

6.2.2.3 Teleoperation commands

As in the cooperative task, users may control the translational and rotational motion of

the goalkeeper. There are also inputs for spreading the robot’s legs to block the ball.

The goalkeeper is programmed to track the ball and the approaching striker automati-

cally (as in Figure 6.3(b)), removing the need to control the robot’s head separately.

6.3 Results

We evaluated the two tasks on 40 different subjects; 20 of these subjects were tested

just on the adversarial task, 10 just on the cooperative task, and 10 participants on

both tasks. The experimental sample was varied, consisting of both male and female
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Figure 6.4: Snapshots from cooperative task trials. Navigation targets are now rep-

resented as orange balls. Rows 1-2: A subject controlling the robot (blue waistband,

starting at the right) under full visibility. Rows 3-4: A trial as seen through the teleoper-

ated robot’s camera. Rows 5-6: The same subject controlling the robot under restricted

visibility.
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Figure 6.5: Adversarial task snapshots. Rows 1-2: Full visibility - a teleoperated goal-

keeper (operator not shown) saves a shot. Rows 3-4: A trial as seen through the robot’s

camera. The last snapshot shows the view of the goalkeeper after an unsuccessful dive

to save the ball. Rows 5-6: Limited visibility - a different subject conceding a goal.
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subjects, young children and adults, users with previous robotics experience and users

who were interacting with robots for the first time. Snapshots from recorded trials are

given in Figures 6.4 and 6.5. Further examples are available in the supporting video of

this chapter (Valtazanos, 2012b). The results presented in this section also appear in

(Valtazanos and Ramamoorthy, 2013b).

Figure 6.6: The five target configurations, cooperative task. Blue circle: Teleoperated

robot initial position. Red square: Autonomous robot initial position. Green triangles:

Target positions.

For the target allocation task, each subject was evaluated on 5 different target con-

figurations, which are shown in Figure 6.6. Targets were progressively moved closer to

increase the difficulty of the task. Subjects were initially tested on each configuration

under full visibility, and then they were asked to repeat this procedure viewing only

the robot’s camera feed. In each trial, we recorded the targets selected by the robots,

the time taken by the teleoperated robot to reach the selected target, whether or not

there was a collision with the autonomous robot, and the user’s joystick inputs. As

target positions were known in each trial, we divided the distance to the selected target

with the total time taken by the subject, to obtain the average speed as a normalised

performance metric.

For penalty shooting, subjects controlled the goalkeeper for 5 trials under full visi-

bility, and then for a further 5 trials under limited visibility. We recorded the outcome

of each trial (goal/no goal), the control inputs of the user, and the self-localisation

estimates of the two robots during the trial.

6.3.1 Overall performance

6.3.1.1 Performance metrics

Results for the overall metrics (average speed for target allocation, goals conceded for

penalty shooting) are shown in Figure 6.7. For target allocation, there was little differ-
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Visibility Full Restricted

Mean average speed over all subjects (mm/s) 86.57 76.70

Minimum average speed 38.83 32.31

Maximum average speed 128.22 93.62

Standard deviation of avg. speed 20.05 13.66

Number of collisions with autonomous robot (out of 100

trials)

4 2

(a) Overall performance metrics – cooperative task.

Visibility Full Restricted

Total number of goals conceded 71/150 90/150

Mean goals conceded per subject 2.36/5 3/5

Standard deviation 0.81 1.14

Mean goal difference between visib. cases 0.663

Standard deviation 0.994
(b) Overall performance metrics – adversarial task.
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(c) Performance metrics per subject - average speed in target allocation (left), goals conceded in penalty

game (right). In each graph, values are sorted by the difference of the performance of the subject be-

tween full and restricted visibility. Values towards the left represent subjects most affected by restricted

visibility, as indicated by the performance degradation.

Figure 6.7: Overall performance metrics – both tasks.

ence between visibility conditions, in both successful execution rate (collisions with

autonomous robot) and performance rate (average speed). An interesting pattern is

observed in the subject-specific illustration of the results (Figure 6.7(c) - left), where

there is a roughly equal number of subjects with improved and deteriorated perfor-

mance between the two visibility cases. This suggests that reduced visibility is not an

impeding factor in this simple interactive setting.
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Figure 6.8: Alternative performance metric for adversarial task: distance from optimal

blocking position (see Figure 4.8 for an explanation of the metric). Results per subject,

sorted by difference between visibility cases.

By contrast, most subjects appeared to struggle more under restricted visibility in

the adversarial task. About two thirds of the subjects saved fewer goals when this

restriction was applied, while only 4 out of 30 managed to save more (Figure 6.7(c)).

For this task, we also recorded a different performance metric, the distance of the

goalkeeper from the optimal blocking position at the time of the shot (see Figure 4.8 for

a more detailed explanation). Through this metric, we model how well users were able

to respond to the moves of the autonomous striker, and lead goalkeepers to a position

that maximises the chances of a save. As shown in Figure 6.8, the recorded distance

for almost half of the subjects increased considerably under restricted visibility.

6.3.1.2 Performance rate

Trial 1 2 3 4 5

Average speed (full visibility) 69.5 94.3 82.4 89.1 97.4

Average speed (restricted visibility) 67.6 76.1 77.9 78.1 83.8

Goals conceded (full visibility) 0.27 0.67 0.40 0.53 0.50

Goals conceded (restricted visibility) 0.60 0.80 0.40 0.50 0.70

Table 6.1: Time-indexed representation of overall results – mean values per trial

Table 6.1 shows a time-indexed representation of the overall results for the different

presented experiments. Due to the small number of trials and the short duration of each

trial (at most 1 minute for both tasks), subjects appear not to be affected by factors such

as fatigue or stress, which could cause a visible performance degradation in longer
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(c) Adversarial - full
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(d) Adversarial - restricted

Figure 6.9: Heat maps of recorded user inputs, all trials. Colour indicates the per-

centage of trials in which a particular control input/time pair was recorded. Top row:

Cooperative task - forward motion (positive direction: front). Bottom row: Adversarial

task - side motion (positive direction: left).

experiments. In the restricted visibility instance of target allocation, subjects are seen

to improve their performance over time, without however reaching the average speeds

attained in the full visibility case. By contrast, there is no conclusive evidence of

time-induced learning in the other experiments, with the mean performance fluctuating

across different trials.

6.3.2 User control inputs and trajectories

In addition to evaluating overall performance, we compared the variation of user con-

trol inputs under the different experimental conditions. Figure 6.9 provides a heat map

representation of all recorded inputs for the two most frequently used axes of motion

in the two tasks – the forward motion in target allocation and the goalkeeper’s side

motion in penalty shooting. In the cooperative task (Figures 6.9(a)-6.9(b)), we again
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(a) Full visibility.
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(b) Restricted visibility.

Figure 6.10: Heat maps of recorded striker and goalkeeper trajectories, all trials. Colour

indicates the percentage of trials in which a particular point was recorded. Left subplots:

heat maps for forward (x) - side (y) motion trajectory components - left blob corresponds

to autonomous striker, right blob to teleoperated goalkeeper trajectories. Right subplots:

heat maps for forward (x) - rotational (θ) motion components for the striker.

observe little variation between full and restricted visibility. However, in the adversar-

ial task (Figures 6.9(c)-6.9(d)), the intensity of commanded motion is stronger in the

full visibility case.

To further quantify this discrepancy, Figure 6.10 shows heat maps for all striker

and goalkeeper trajectories in the adversarial task. It can be seen that although the tra-

jectories of the autonomous striker are similar in both cases, goalkeepers move towards

the edges of the goal less frequently in the second case. This partly explains the higher

number of goals conceded by teleoperated robots under restricted visibility.

Moreover, we looked at how control inputs varied between tasks on a subject-to-

subject basis. To this end, we measured the average idle time, i.e. the percentage of

time during which no command was input by a subject (Figure 6.11). Idle time is

considerably higher in penalty shooting, where subjects spend more time observing

the autonomous robot’s approach before they move their own robot. However, we also

note that both the percentage of subjects whose idle time increases when visibility is

restricted, as well as the average rate of this increase, are considerably higher in the
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(a) Cooperative task.
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(b) Adversarial task.

Figure 6.11: Idle times per subject. The idle time is the percentage of the overall time

during which no command was sent from the user to the robot.
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(a) Striker trajectories.
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(b) Goalkeeper control inputs. Positive direction:

left.

Figure 6.12: Effects of idle time on performance of a specific subject. (a): Two similar

trajectories by the striker against this subject, one per visibility case. Only the full visi-

bility attempt was saved by the teleoperated goalkeeper. (b): Illustration of the variation

of the subject’s side motion between these trials.

adversarial task.

Restricted visibility was also found to impact the response time of subjects in the

adversarial task. To illustrate this effect, Figure 6.12(a) two similar autonomous striker

trajectories (one for each visibility case) against a subject, and the corresponding user

inputs. Although the trajectories are similar, only the full visibility one was saved

by the teleoperated goalkeeper. As seen in Figure 6.12(b), this discrepancy is partly

explained by the more delayed response in the restricted visibility case, where the

subject needs more time to make sense of the interaction.
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6.3.3 Statistical significance

6.3.3.1 Main hypothesis

In order to assess the statistical significance of our overall results, we tested for the

contradiction of the main experimental hypothesis as stated in Section 6.1. In other

words, our null hypotheses are that a worse performance would be observed for a ma-

jority of subjects (greater than 75%) in the simple cooperative task, and for a minority

(less than 25%) of subjects in the more complex strategic task. To assess these null

hypotheses, we conducted a t-test for the overall performance indicators – the average

speed in target allocation, and the number of goals conceded in the penalty game. We

measured the percentage of subjects for which performance deteriorated in each case,

and computed

t =
x̄−µ0

s
·
√

n, (6.1)

where x̄ is the sampled percentage, µ0 is the hypothesised percentage (75% in the

cooperative task, 25% in the adversarial one), s is the sample standard deviation, and n

is the sample size. Based on a two-tailed t-test for the two null hypotheses, we obtain

p-values of 0.013 and 0.03, respectively. So, at a 5% significance level, we reject

the null hypotheses, and conclude that limited perception does not have a significant

impact in the cooperative task, while having a non-negligible effect in the adversarial

one which features more severe constraints on perception and action – this was our

original main hypothesis.

6.3.3.2 Explaining factors

The difficulty in the adversarial task lies in the determination of the autonomous adver-

sary’s strategy, and the estimation of the absolute states of the interacting robots. As

these challenges are not independent of each other, they cannot be explicitly decou-

pled in order to assess their individual contribution to the overall difficulty of the task.

However, we can assess the correlation between the two secondary metrics, the idle

time and the distance from the optimal position, and the overall subject performance.

Our hypothesis is that increases in each metric between visibility cases are linked to

performance degradation, i.e. that the overall mean goal difference (Table 6.7(b)), and

the corresponding difference for subjects impacted by each metric should be compara-

ble (i.e. not differ by more than 1 goal, which is approximately equal to the computed

standard deviation).
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For each metric, we conducted a two-sample pooled t-test to determine its effect on

the overall performance degradation. In particular, we measured statistics for the sets

of subjects for which idle time/distance from optimal position increased under limited

perception, and computed

t =
(x̄1− x̄2)−d0

sp

√
1
n1
+ 1

n2

, s2
p =

(n1−1)s2
1 +(n2−1)s2

2
n1 +n2−2

(6.2)

where x̄1,s1,n1 are the overall mean goal difference, standard deviation, and sample

size, x̄2,s2,n2 are the corresponding values for the subset of subjects for which the

value of the metric increased, and d0 is the hypothesised mean difference. We tested

for the contradictory null hypotheses that the two metrics cannot be used to explain

performance degradation, i.e. that the difference between each x̄2 and the overall mean

x̄1 will be more than 1 goal. For these tests, we obtained p-values of 0.010 for idle

times and 0.008 for optimal positions. At a 5% significance level, we reject the null

hypotheses, and conclude that an increase in the idle time or the distance from the

optimal position is likely to be matched with an increase in the number of conceded

goals under restricted visibility.

6.3.4 User experiences

(a) Cooperative task. (b) Adversarial task.

Figure 6.13: User experiences on restricted visibility.

After each experiment, we asked subjects to give us their opinion on the impact

of restricted visibility on their behaviour (Figure 6.13). In both tasks, most subjects

stated that limited perception impacted their performance. However, the dominant

response in the first case was that restricted visibility made the task only “slightly

harder”, whereas most users found the adversarial task “considerably harder”. Another

interesting result was that some subjects found the penalty game easier under limited
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perception, with one subject labelling it “considerably easier”; not surprisingly, this is

the (only) subject who in Figure 6.7(c)-right saved all 5 shots under restricted visibility.

6.4 Conclusions

Our experimental analysis suggests that limited visibility is more likely to affect tele-

operation performance in challenging, adversarial tasks, which require continuous in-

ference of the absolute state and strategy of an interacting robot. Furthermore, re-

stricted perception appears to affect the ability of humans to (inter)act strategically,

with several subjects being deceived by the autonomous adversarial robot more easily.

By contrast, when the task is not particularly challenging and requires only very basic

modeling of robot states and strategies, most subjects are likely to be unaffected by

this restriction.

Mixed robotic environments are becoming increasingly important in human-robot

interaction, as several applications demand an interplay between autonomous and tele-

operated agents in complex physical settings. In many such domains (e.g. rescue

robotics), perceptual information is inherently limited, so it is important to identify sit-

uations where humans might fall short in teleoperating a robot, and how autonomous

robots can compensate for these weaknesses. In this respect, the work presented in this

chapter contributes an empirical evaluation which highlights interaction scenarios and

visibility conditions where human control is likely to be problematic. Our experiment

also informs decisions about when to assist human decision makers in teleoperation,

and how to structure the balance between human command and robot autonomy. We

believe that our methodology can be applied in the design of mixed robotic teams,

where there is a need to empirically determine both the optimal composition (how

many autonomous/how many teleoperated?) of a team, and the roles (what should

each autonomous/teleoperated robot do?) of its constituent members.

One remaining open question in the strategic environments we consider is how can

humans be directly introduced in the interaction loop (instead of being just operators

of humanoid robots). In Chapter 7, we propose an algorithm through which inertial

sensing and optical motion capture systems can be jointly used to learn a motion model

for human subjects. We discuss how this model can be used in direct strategic human-

robot interactions, by continuously providing autonomous robots with rich information

on the state of interacting human partners.



Chapter 7

Towards direct strategic human-robot

interactions

7.1 Overview

The algorithms and experiments presented so far in this thesis are primarily concerned

with interactions between autonomous and teleoperated robots. One reason behind this

choice is that we want to directly compare and contrast human and robot decision mak-

ing, while minimising the influence of external factors, e.g. the fact that humans can

walk faster and see better than most robots. However, direct human-robot interactions

are also challenging because it is difficult to provide robots continuously and reliable

with information on the state of the interacting human partner(s).

In several domains and applications, robots need to know both the absolute position

of these interacting subjects, as well as finer-grained information on their body posture,

such as arm movements or gait patterns. Furthermore, it is often required that motion

be captured in challenging, unconstrained environments, for example, a home or an

office spanning a large area with multiple rooms and corridors, or an open outdoor

environment. As an illustrative example, consider an interaction between a human and

a personal robot in a domestic environment, where the two sides need to collaborate in

order to prepare a meal. The robot will need to know both where the human is (e.g. is

the subject in the kitchen, or has he/she moved to a different room to retrieve a required

object/ingredient?), as well as what type of motion that subject is performing (e.g. is

the subject using a utensil, opening the fridge, or simply waiting idly for the robot to

do something?). Such information is important if the robot is to make repeated, robust

interactive decisions, and potentially shape and influence the behaviour of the human

117
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participant during the interaction.

Despite recent advances in motion capture and sensing technologies, fulfilling all

the above requirements in a robust manner is a challenging task. For example, optical

motion capture systems can retrieve both positional and postural data, but only within

contained environments limited to a small volume of capture. Inertial sensing systems

allow for greater flexibility in the capture environment, as they are not restricted by

line-of-sight constraints between the sensing devices and the tracked subject. How-

ever, they do so at the expense of not yielding absolute positions, as their calculations

are based on relative sensory estimates, e.g. gyroscope and accelerometer readings.

Similarly, global positioning system (GPS) sensors can compute absolute spatial po-

sitions, but at a coarse level of precision and without supplying postural information,

while also having limited applicability in indoor environments. Other motion capture

technologies, e.g. magnetic systems, also suffer from one or multiple of the above

limitations.
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Figure 7.1: Overall structure of the proposed system. An inertial sensing and an opti-

cal source are synchronised and jointly used to learn generative models of whole-body

translations in an offline phase. These translations are encoded as linear regression-

based mappings from projected latent representations of posture differences, as de-

tected from the inertial source, and positional variations, as detected from the optical

source. Online, the optical source is removed, and the learned model is used to predict

local translations for the tracked subject.

In order to address the challenges of simultaneous posture and position capture in

unconstrained environments, one would need to combine the relative strengths of these

heterogeneous systems in a principled manner. In this chapter, we propose a hybrid

position and posture tracking algorithm (Figure 7.1), which jointly uses an inertial and

an optical motion capture system to learn local models of translation for a given human

subject. The algorithm consists of an offline learning and online generation phase. In

the offline phase, body posture data collected from the inertial sensors are synchronised

with position data captured from the optical source and aggregated into a single dataset.
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Due to their high dimensionality, the posture data are projected and clustered on a low-

dimensional manifold, which captures the salient kinematic structure of the dataset.

For each cluster, the projected data are used to learn a mapping from local posture

differences to whole-body translations through linear regression. In the online phase of

the algorithm, the optical source is removed, and the learned models are used instead to

generate translation vectors from estimated posture differences. By iteratively applying

these translations, the proposed system can track both the position and the posture of

a subject, thus overcoming the main limitation of inertial systems discussed above.

Moreover, due to the removal of the optical source in the online phase, the system is

not affected by the morphology or area of the capture environment.

In the remainder of this chapter, we first describe our method for hybrid posture

and position tracking, distinguishing between the translation learning and generation

phases (Section 7.2). In Section 7.3, our approach is evaluated both in simulations and

experiments, on a selection of systems and motions; first, on data from the Carnegie

Mellon Motion Capture Database (http://mocap.cs.cmu.edu), which are annotated

with ground-truth absolute positions, and then, on a physical motion capture environ-

ment, where we use the Microsoft Kinect (Figure 2.6(a)) as an optical source and the

Orient platform (Figure 2.6(b)) as the inertial system. In both cases, our algorithm

is shown to yield a lower overall position error than the related established tracking

method of acceleration integration in a wide range of motions. Furthermore, in the

physical motion capture case, we demonstrate examples of successful position track-

ing in a challenging office environment, in which existing motion capture technologies

cannot be applied in isolation. We conclude by reviewing possible extensions to our

work, and discussing its potential applications in strategic human-robot interactions

(Section 7.4). The methodology and results presented in this chapter also appear in

(Valtazanos et al., 2013b).

7.2 Method

This section discusses our method for learning translation models from synchronised

optical and inertial sensing data. We begin by outlining the output produced by each

tracking source, and then explain the details of our mathematical model.
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7.2.1 Sensory device outputs

7.2.1.1 Kinect

Figure 7.2: Body contour tracking using the Kinect. The tracking software automatically

detects the outline of a human body, and tracks it as a cloud of points (shown as a blue

blob).

We use the OpenNI body tracking interface (http://www.openni.org) to detect

and track the position of human subjects (Figure 7.2). The software automatically

detects the outline of a human body, and tracks it as a collection of NI image point

coordinates, ~B = {(x1,y1), . . . , (xNI ,yNI)}. The absolute position of the tracked body

is approximated as the centroid of these points as computed through image moments.

Let W , H be the width and height (in pixels) of the image captured by the cameras,

and let I be a two-dimensional array, such that

I(a,b) =

{
1, (xa,yb) ∈ ~B
0, (xa,yb) /∈ ~B

, (7.1)

where 1≤ a≤W, 1≤ b≤ H. The raw image moments, Mi j are defined as

Mi j =
W

∑
a=1

H

∑
b=1

xi
a · y

j
b · I(a,b). (7.2)

Based on these definitions, the image coordinates of the centroid of the tracked body,

C .
= (x̄, ȳ) are given by

C = (round(M10/M00),round(M01/M00) ). (7.3)

The depth of each image pixel (with respect to the device) is measured by the range-

finding sensor of the Kinect. This information is used to convert the computed image
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centroid, (x̄, ȳ), to the centroid of the body surface that is visible to the Kinect. These

coordinates approximate to the absolute positional coordinates of the tracked body,

p = (xB,yB,zB). (7.4)

7.2.1.2 Orient inertial measurement units
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Figure 7.3: Posture estimation using the Orient inertial measurement units. (a): 3-D

model of the tracked body – each device is placed and mapped onto a limb of this

model (represented by white lines). (b): Orientation estimation procedure – raw data

from a device’s sensors computes a quaternion representing the orientation of a limb,

which is in turn converted to three-dimensional Euler angles. (c): Example of Euler

angles produced by one Orient device over a 50-second capture.

The posture of the tracked subject is computed by the Orient devices. Each de-

vice is placed on a limb of the subject’s body (Figure 7.3(a)). The raw data from

the device’s sensors (triaxial gyroscope, accelerometer, and magnetometer) computes

a quaternion representing the orientation at that limb, which is in turn converted into

three-dimensional Euler angles (Figure 7.3(b)) based on a pre-specified rotation order.

Due to this convention, an Euler angle can represent the orientation more succinctly
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than the corresponding quaternion, thus reducing the size of our feature set. An ex-

ample of the angles output by an Orient is given in Figure 7.3(c). By aggregating the

angles computed by all devices placed on the subject’s body, we obtain the posture
vector

π = {(θx
1,θ

y
1,θ

z
1), . . . ,(θ

x
ND
,θ

y
ND
,θz

ND
)}, (7.5)

where ND is the number of deployed units, and (θx
i ,θ

y
i ,θ

z
i ) are the angles computed by

the i-th unit.

7.2.2 Learning translation manifolds

7.2.2.1 Offline learning phase

In the offline learning phase, Kinect positions are time-synchronised with data from

the Orient inertial measurement units. From this hybrid data, a mapping from posture
variations, as computed by the Orient devices, to translations, as computed by the

Kinect, is learned through local linear regression.

Let {(p1,π1, t1), . . . ,(pτ+1,πτ+1, tτ+1)} be a set of recorded synchronised training

data, comprising (τ+ 1) absolute position and posture pairs, along with the times t at

which each pair was recorded. By taking the difference of successive instances, we

obtain a training data set of τ unnormalised translations (i.e. position differences),

posture variations1, and time differences,

D̃ = {(d̃ p1, d̃π1,dt1), . . . ,(d̃ pτ, d̃πτ,dtτ)}= {(p2− p1,

π2−π1, t2− t1), . . . ,(pτ+1− pτ,πτ+1−πτ, tτ+1− tτ)}.
(7.6)

At this stage, translations d̃ p = (d̃x, d̃y, d̃z) do not account for the absolute orientation

of the subject’s body. To address this problem, we assume that at least one inertial

measurement unit, ū, is placed on a point where it can measure the subject’s abso-

lute orientation, θ̄, with respect to the transverse plane of motion. We focus on this

single angle (instead of computing three-dimensional absolute orientations) because it

is closely correlated with most turning movements that occur during walking motion

sequences. Thus, by normalising with respect to θ̄, we can compensate for turns and

changes of direction in the motion of the subject. We take ū to be the device placed on

the subject’s waist or hips as a represantative location for this purpose. The required

angle θ̄ is computed through ū’s magnetometers, which measure absolute orientations

1Angle differences are constrained to lie in [−π,+pi).
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using Earth’s magnetic field. Thus, the unnormalised translation components on the

transverse plane, (d̃x, d̃y), can be normalised through the rotation(
d̃x

d̃y

)
=

(
cos(−θ̄) −sin(−θ̄)

sin(−θ̄) cos(−θ̄)

)
·

(
d̃x

d̃y

)
. (7.7)

Furthermore, we normalise translations and posture differences with respect to their

recorded time intervals, so that they represent uniform-time variations. Thus, the nor-

malised training data set is given by

D = {(d p1,dπ1), . . . ,(d pτ,dπτ)}=

{(d̃ p1/dt1, d̃π1/dt1), . . . ,(d̃ pτ/dtτ, d̃πτ/dtτ)}.
(7.8)

-Dimensionality reduction: The size of each posture variation vector, dπ, is D =

3 ·ND, where ND is the number of deployed devices. Even if ND is not particularly large,

it may be difficult to learn a direct mapping from posture variations to translations, due

to the different modalities of the posture data. To overcome this problem, we project

posture variation vectors to a latent space, from which a mapping can be learned more

efficiently. We use Principal Component Analysis (PCA), which embeds data into a

low-dimensional linear manifold by maximising their variance (Bishop, 2006). Thus,

this method aims to preserve the high-dimensional structure of the data points in the

projected latent space. We summarise the key features of PCA below.

Let {dπi}, 1≤ i≤ τ be the set of posture variation vectors, each having dimension-

ality D. The mean, dπ, and covariance matrix, S, of these vectors are given by

dπ =
1
τ

τ

∑
i=1

dπi, (7.9)

S =
1
τ

τ

∑
i=1

(dπi−dπ)(dπi−dπ)T , (7.10)

respectively. Now let d be the target dimensionality of the low-dimensional latent

space, where d < D. We obtain the d eigenvectors (or principal components) of

S, u1, . . . ,ud , each of dimensionality D, corresponding to the d largest eigenvalues,

λ1, . . . ,λd of this matrix. These vectors are set as the columns of a D×d matrix

M =


u1,1 · · · ud,1

... . . . ...

u1,D · · · ud,D

 (7.11)

The latent representation of a D-dimensional posture variation vector dπ is given by

φ = dπ ·M. (7.12)
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We refer to the manifold projections φ as the feature vectors of our translation learning

algorithm. In both simulated and physical experiments (Section 7.3), we set the target

subspace dimensionality to d = 3.
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Figure 7.4: Feature vector clustering example. (a): Projected feature vector points.

(b): Division of the points in (a) in 100 distinct clusters, each represented by a different

colour.

-Feature vector clustering: In a given set of training examples, there may be groups

of similar posture variations leading to related translation vectors. To exploit this sim-

ilarity, we group the projected feature vectors into clusters of related data points, and

learn a separate translation mapping for each cluster (instead of a single mapping

for the whole dataset). We use the k-means clustering algorithm, which groups in-

put points into a specified number of k distinct clusters (Bishop, 2006). As we use

clustering in a learning context, we use small (with respect to the size of the dataset)

values of k to avoid overfitting the training data; in our experiments, this value does

not exceed 2% of the overall number of training points. Despite the need for this man-

ually specified parameter, k-means clustering has the advantage that it does not make

assumptions about cluster structure (whereas distribution methods such as expectation-

maximisation (Bishop, 2006) assume a Gaussian form), while also favouring clusters

of approximately equal sizes.

Figure 7.4 illustrates an example of clustering on a set of three-dimensional points.

When applied on a dataset of τ feature vectors, the algorithm returns the set of clusters

C = {c1, . . . ,ck}, with centres~µ = {c1.µ1, . . . ,ck.µk}, where each cluster ci, 1≤ i≤ k,

consists of a set of Ni feature vectors

ci = {φi
1, . . . ,φ

i
Ni
} (7.13)
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of size Ni.

-Translation mapping learning: For each data cluster ci = {φi
1, . . . ,φ

i
Ni
}, we learn a

mapping from its constituent feature vectors to their corresponding measured transla-

tions, T c = {d pi
1, . . . ,d pi

Ni
}. We learn a separate mapping for each direction of motion

(x, y, z) through linear regression on the training points. In other words, we represent

each translation component as a linear function of the projected feature vectors.

To learn these mappings, we collect all feature vectors of a cluster as a Ni×d design

matrix,

X =


φi

1,1 · · · φi
1,d

... . . . ...

φi
Ni,1 · · · φi

Ni,d

 . (7.14)

Furthermore, we define three observation vectors, one for each of the directions of

motion, such that

x =


dxi

1
...

dxi
Ni

 , y =


dyi

1
...

dyi
Ni

 , z =


dzi

1
...

dzi
Ni

 . (7.15)

For each observation vector v, we learn a linear mapping from the design matrix X
using least squares approximation. This mapping is represented by a set of d weights

w, computed as

w = (XT X)−1XT v . (7.16)

By applying this procedure to all three observation vectors, x, y, z , we obtain the linear

mapping weights for cluster ci, wi
x,wi

y,wi
z, respectively. These can be collectively

represented as the cluster translation mapping

Wi =


wi

x,1 · · · wi
x,d

wi
y,1

. . . wi
y,d

wi
z,1 · · · wi

z,d

 , (7.17)

with a different Wi computed for each cluster. Thus, the latent space becomes a trans-
lation manifold that can be used to generate translations from given feature vectors.

7.2.2.2 Online translation generation

Learned translation mappings can be applied to novel instances of projected posture

variation vectors to predict whole-body translations. Assuming a known estimate of a
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tracked subject’s initial position, (x0,y0,z0) and orientation, θ0, the predicted transla-

tions can be chained together to track absolute positions over time.

Let d̆πt be the subject’s estimated posture variation at time t, and let θ̄t be the

subject’s absolute orientation at that time. Furthermore, let dtt be the length of the

time interval over which d̆πt was recorded. The projection of d̆πt on the translation

manifold, φ̆t , is computed as φ̆t = d̆πt ·M, where M is the learned projection mapping

from the high-dimensional to the latent low-dimensional space. The cluster nearest to

φ̆t is given by

c∗ = argmin
ci∈C

δ(φ̆t ,ci.µi) (7.18)

where δ(·, ·) is the Euclidean distance between two points. Then, if W∗ is the cluster

translation mapping for c∗, our model predicts a normalised translation for φ̆t as

d̂ pt
.
= (d̂x, d̂y, d̂z) = W∗ · φ̆T

t (7.19)

The updated predicted position at time t, x̃t , ỹt , z̃t , is obtained by applying the orien-

tation θ̄t to d̂ pt , scaling it by dtt to reflect the length of the current time interval, and

adding it to the previously estimated position, (x̃t−1, ỹt−1, z̃t−1). In other words,
x̃t

ỹt

z̃t

=


x̃t−1

ỹt−1

z̃t−1

+dtt


cos(θ̄t) −sin(θ̄t) 0

sin(θ̄t) cos(θ̄t) 0

0 0 1




d̂x

d̂x

d̂z

 , (7.20)

starting at the position (x̃t−1, ỹt−1, z̃t−1) = (x0,y0,z0).

Through this approach, our method can generate translations from novel instances

of feature vectors, and track the position of a subject without an optical source. This

property is important in complex unconstrained environments, where optical systems

cannot be directly applied. As joint angles are inherently supplied by the inertial de-

vices, our approach can simultaneously track both position and posture from a single
set of sensors.

7.3 Results

7.3.1 Simulation results

Our learning framework was first evaluated on recorded sequences from the Carnegie

Mellon University (CMU) Motion Capture Database (http://mocap.cs.cmu.edu).

Motions in this dataset were captured using an optical system that tracks reflective
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markers on the subject’s body. Posture vectors were formed by aggregating the de-

tected marker positions for joints on the lower body parts (thighs, shins, ankles, feet).

Note that this is a slightly different representation to what was presented in Section

7.2, where posture vectors consisted of joint angles, not joint positions. However, this

differentiation does not impact the applicability of our algorithm, which has no internal

model of the nature of the supplied feature vectors.

The position of the root joint, at the subject’s hips, was taken as the absolute po-

sition of the body. This was used as a ground-truth benchmark, against which the

iteratively predicted positions could be checked.

We compared our algorithm with a related open-loop, model-free position gener-

ation technique, the double integration of acceleration. Through this calculation, this

method similarly generates local translations that can be chained together to compute

positions. As the CMU dataset does not explicitly provide acceleration data, we sim-

ulated this information by extracting accelerations from successive positions at the

subject’s root joint, and integrating them twice to estimate translations.

We first demonstrate the ability of learned translation manifolds to correctly repro-

duce translations on the datasets they are trained on. Towards this end, we obtained

several motion sequences and trained the learning algorithm on each of them individ-

ually. We assessed the similarity of the generated translations with the ground-truth

translations, as estimated by differences of consecutive root joint positions. Our met-

ric is the cumulative translation error, obtained by iteratively summing the Euclidean

distance of each generated translation from the corresponding ground-truth translation.

The results for 12 distinct motion sequences, ranging from simple straight walking

to running with turns, are shown in Figure 7.5. In all cases, the translations generated

by the learned manifold yield a lower cumulative error than the corresponding double

integration ones. For the simpler walking motions, the discrepancy between the two

methods is shown to increase over time, thus suggesting that the translation manifold

is more effective at capturing the dynamics of these motions.

The true potential of learned translation manifolds can be fully assessed when ap-

plied on novel instances of previously unseen motions. In our second simulated experi-

ment, we trained our model on a dataset consisting of 11 different motions by the same

subject: a straight walk, a straight walk followed by a 90◦ left turn, a straight walk fol-

lowed by a 90◦ right turn, a walk with a left veer, a walk with a right veer, a fast straight

walk, a straight run, a run followed by a 90◦ left turn, a straight run followed by a 90◦

right turn, a run with a left veer, and a run with a right veer. The total duration of these
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(c) Fast walk

0 5 10 15
0

0.05

0.1

0.15

0.2

Time (s)

C
um

ul
at

iv
e 

er
ro

r 
(m

)

 

 

Learned Translation Manifold
Root Joint Acceleration Double Integration

(d) Fast walk
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(e) Walk with turn
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(f) Walk with turn

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

Time (s)

C
um

ul
at

iv
e 

er
ro

r 
(m

)

 

 

Learned Translation Manifold
Root Joint Acceleration
Double Integration

(g) Run
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(i) Run with turn
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(j) Run with turn
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(k) Run with turn and pause
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(l) Run with turn and pause

Figure 7.5: Cumulative generated translation errors on 12 different motions from the

CMU database. Red: Learned translation manifold that has been trained on the given

motion sequence. Blue: Double integration of the acceleration of the root joint.

captures is 114 seconds, with walking-type and running-type motions accounting for

86 and 28 seconds, respectively. By including different types of motions, our aim was

to model a wide range of posture-translation pairs, and maximise the likelihood that

novel motion instances will be captured by our training set.
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(k) Run with turn and pause
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Figure 7.6: Overall position error estimation for 12 novel instances of unseen motion se-

quences. Red: Trajectories estimated by learned translation manifold. Black: Ground-

truth trajectories.

The learned mapping was applied on 12 new motion sequences of various types.

For these motions, we measured the discrepancy between the trajectories predicted by

the learned manifold, and the ground-truth trajectories. The resulting trajectories are

demonstrated in Figure 7.6. As previously, our algorithm is shown to reproduce ac-
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curate positions for normal walks, with the error increasing for running-type motions.

This increase is partly explained by the larger number of walking motion data points in

the training set, which biases the manifold towards translations of smaller magnitude.

7.3.2 Experimental results

In our second set of experiments, we evaluated the translation learning algorithm on

sensory data obtained from physical devices, using the Kinect as an optical source

and the Orient platform as the inertial sensing source. For the training phase of the

algorithm, data produced by these two sources were synchronised to learn a translation

manifold, as described in Section 7.2. An important restriction in this case was the

small capture volume of the Kinect (approximately 15m3), which limited the variety

of motions that could be performed by the subject. Thus, our framework is evaluated

mainly on walking-type motions that require less physical space for training purposes.

7.3.2.1 Constrained environment experiments

The learning algorithm was first compared with the acceleration integration method

against ground-truth positions estimated by the Kinect. Unlike simulation experiments,

accelerations were now directly supplied by the accelerometers of Orient devices, so

translations were generated through double integration of this data.

We captured 18 motion sequences of variable length, ranging from 20 to 180 sec-

onds. We used a total of 4 Orient devices, placed on the subject’s waist (root joint),

right thigh, left thigh, and left ankle. Motions were captured in an office building

environment, which impacted the quality of the sensory readings, especially magne-

tometers, due to metal in the building structure. For each capture, the subject was

allowed to perform any sequence and combination of walking and standing, provided

s/he remained within the capture area of the Kinect.

We selected 12 of the captured sequences as the training set, and we used the

remaining 6 as novel instances for evaluation. As with simulation experiments, we

first compared the cumulative error of translations generated by the learned manifold,

and translations from double integration of root joint accelerations.

Figure 7.7 illustrates this comparison, along with the corresponding ground-truth

positions captured by the Kinect. In all 6 trials, the subject was observed to repeatedly

move around the capture area in a loop. Although in some cases the cumulative error

generated by the double integration method was initially lower, in all trials the learn-
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(d) (e) (f)

Figure 7.7: Cumulative generated translation errors for 6 novel motion sequences. The

learning algorithm was trained on 12 sequences of varying length and motion compo-

sition. Top of each subfigure: Ground-truth positions computed by the body tracking

interface. Bottom: Cumulative errors. Red: Learned translation manifold. Blue: Double

integration of the acceleration of the root joint.

ing method had a considerably lower error at the end of the sequence. This superior

performance was achieved despite some irregularities in the captured positional data,

as, for example, in Figures 7.7(b) and 7.7(c). This is an important result demonstrating

that our approach can learn a robust translation model on top of potentially noisy sen-
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(a) 1 sequence
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(b) 2 sequences
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(c) 3 sequences
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(d) 5 sequences
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(e) 10 sequences
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(f) 12 sequences

Figure 7.8: Effect of training data set size on generated translations. The cumulative

error is shown to decrease as the number of training motion sequences increases.

sory data, which can yield more accurate translations than methods operating directly

on raw data.

The error of the translation manifold algorithm inevitably depends on the size and
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quality of the training data set. To better understand this effect, we assessed the per-

formance of the algorithm on the last trial of Figure 7.7 under varying training sets.

The results are shown in Figure 7.8, where we start with just one training sequence,

comprising only a few data points, and progressively increase this number. It can be

seen that when only one short sequence is supplied, the performance is considerably

worse than the double integration method. However, as more motion instances are

added to the training set, the error is shown to decrease significantly over time. This

indicates that the learning model relies on a good coverage of the posture and transla-

tion space, in order to be able to generalise effectively to novel instances. Thus, when

recording data, it is important to ensure that the tracked subjects perform a wide range

of motions, including various motion combinations (e.g. straight walks and turns).

Another related constraint on the performance of our algorithm is that motions

captured during training must be similar to those executed in the online generation

phase. For example, if a manifold is learned only from walking motions, it is highly

unlikely to yield accurate translations on novel running motions. Thus, it is essential

to capture not only a significant quantity of data (as shown in Figure 7.8), but also

representative sequences that will be qualitatively similar to the motions the system

will be tested on when deployed.

(a) (b) (c)

Figure 7.9: Illustration of unconstrained office environment. (a): The room and corridor

in which our method was tested. (b): Approximate trajectory followed by the subject,

starting and ending at the same point. (c): Approximate dimensions of the trajectory.

7.3.2.2 Unconstrained environment experiments

In the second set of physical experiments, we evaluated the performance of the learning

in an unconstrained office environment (Figure 7.9). This environment represents a



134 Chapter 7. Towards direct strategic human-robot interactions

setting in which an optical source cannot be used to track subjects, due to its larger

area and morphology (doors, corridors). The subject was asked to follow a trajectory

consisting of several landmark points, located inside an office room and in an adjacent

corridor. There was no restriction on the time given to follow this trajectory, so the

subject was allowed to pause for arbitrary periods of time.
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(d) (e) (f)

Figure 7.10: Generated positions for a subject following the trajectory shown in Figure

7.9, 6 trials. Top subfigures: Generated positions. Bottom: Cumulative errors and

comparison with double integration.

We used the same set of training sequences as in the first set of physical exper-
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iments to learn a translation manifold. Figure 7.10 shows the generated trajectories

for six distinct trials of the subject moving along the prescribed path, along with the

corresponding error comparison with the double integration method. The true precise

trajectory followed in each case was not known, however, the subject always ended his

path at the same point where he started. Thus, by comparing the difference between

the start and end points of each generated trajectory, we can get an estimate of the

resulting error.

Despite not being aware of the duration and nature of the motions performed by the

subject, the learning algorithm is observed to produce translations that closely follow

the true trajectory. The computed mean error for the final position was 1.783m, with

the overall sum of distances between landmark points being about 30m. Furthermore,

as shown in the bottom subfigures of Figure 7.10, the learning algorithm maintains

the superior performance level over the double integration method. A common trait

of both sets of physical experiments is that they feature several alternations between

straight walking and turning motions, which are characterised by repeated variations

in the velocity profile of the tracked subject. In this context, the double integration

method initially produces an error comparable with the learning algorithm, but in both

cases the margin increases exponentially over time. The learning method is therefore

successful in identifying the salient structure of the high-dimensional data, and using

it to learn a mapping that can be applied to novel motions.

7.4 Conclusions

We have presented a method for simultaneous posture and position tracking in uncon-

strained environments, based on learned generative translation manifolds. In an offline

learning phase, two heterogeneous tracking sources, an inertial sensing (Orient-4) and

an optical (Kinect) platform, are jointly used to learn a mapping from posture vari-

ations, as estimated by the former, to whole-body translations, as estimated by the

latter. This mapping is learned through linear regression on clustered latent represen-

tations of posture variation vectors. Online, the optical source is removed, and the

learned translation manifold is used to generate translations for unknown, novel mo-

tion instances. The generative method is experimentally shown to outperform the re-

lated model-free, dead-reckoning method of acceleration integration, and to correctly

reproduce the structure of previously unseen, complex trajectories in unconstrained

environments.
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One drawback of our approach is that a different mapping must be learned when-

ever the system is tested on a new user. This characteristic is due to skeletal mor-

phology and limb dimension constraints, which vary among different subjects. Thus,

motion sequences captured on a specific subject may not adequately cover the pos-

ture difference and translation space for a different subject, thus leading to incom-

plete mappings. Nevertheless, one interesting extension to our work would be to learn

translation manifolds from datasets which contain motions from various subjects with

different characteristics (e.g. short/tall). This extension would be well-suited to the

feature vector clustering procedure described in Section 7.2.2.1. In this context, we

would employ a hierarchical clustering approach, where the evaluated subject would

first be matched to the nearest (in terms of body morphology) user in the training data

set, and then a translation would be generated based on the learned mappings for the

matched subject.

A major strength of our approach is that it does not make any assumptions on

the nature of motion being performed, the number and placement of inertial measure-

ment units, or the morphology of the tracked subject’s body. This property is advanta-

geous for two reasons. First, our method can be applied to complex motions spanning

all three dimensions (e.g. forward jumps), where traditional model-based approaches

tracking gait events and foot contacts would fail. Second, for simpler, planar motion

types (e.g. walking sequences), our method can be used as a predictive step for model-

based filtering approaches, to yield superior tracking results and lower positional er-

rors. Extending our work in these directions would further emphasise the benefits of

using machine learning techniques to exploit the structure of high-dimensional data

produced by physical sensor networks.

The applicability of our method can be extended to direct interactions between

humans and robots. In this context, our algorithm can be used to track the positions

and postures of human subjects, and provide this information in real time to inter-

acting robots. Through this extension, our method could lead to the development of

novel forms of human-robot interaction, in domains such as – but not limited to – un-

constrained office and home environments, which depend heavily on the quality and

quantity of available sensory information. As demonstrated by the results presented

in this thesis, this type of information is a prerequisite for robust, strategic decision

making in physical robotic environments. Thus, the method presented in this chap-

ter contributes to this direction by bridging the gap between sensing technologies and

information processing algorithms in complex human-robot systems.



Chapter 8

Conclusions and future work

8.1 Main contributions

This thesis introduces and proposes an integrated approach to the problem of inter-

action shaping between heterogeneous physical robots. The novel challenge in this

problem lies in indirectly influencing (but not directly forcing) an interacting non-

cooperative agent into moving to a target state. In this context, the goal is to find

a sequence of strategic actions that can incite the desired responses from the inter-

acting agent, and shape the evolution of the interaction accordingly. Our primary

theoretical contribution is a framework for autonomous shaping of interactions with

non-cooperative robots, which is based on a combination of offline learning from hu-

man demonstrations, and online empirical learning during an interaction. Our pri-

mary experimental contribution is a demonstration of the benefits of our approach on

NAO humanoid robots, in a variety of interactions with other autonomous and human-

controlled agents.

In Chapter 3, we introduce the different challenges an autonomous robot must face

in an interactive, adversarial environment. We distinguish between sensing uncertainty,

arising from the need to estimate the state of an interacting agent, and strategic uncer-

tainty, arising from the need to infer the intent and strategy of that agent. For the first

part, our contribution is the Reachable Set Particle Filter, a state estimation algorithm

combining analytical dynamical constraints and empirical observations. For the second

part, we propose a decision-making algorithm that is based on the ideas of regret min-

imisation and exploitation of the adversary’s sensing capabilities. We experimentally

validate our approach in a simulated robotic soccer domain, where we demonstrate the

benefits of negotiating the interaction environment in this principled, modular way.

137
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In Chapter 4, we lift the complexity of our experimental domain to address the

challenges of physical robotic environments. We also consider the more difficult

case where behaviours cannot be handcrafted from domain knowledge, and must in-

stead be learned through a more general procedure, such as from provided human

demonstrations. Our contribution is a method for probabilistically synthesising demon-

strated traces of interactions into adaptive behaviours, which selects appropriate ac-

tions through a dynamically weighted Gaussian Mixture Model. Unlike many existing

approaches to learning from demonstration, the provided demonstrations need not be

optimal, in the sense of being executed by “expert” operators. The experimental eval-

uation of this method illustrates its ability to adapt to novel adversaries and generate

strategies that are not directly encoded in the demonstrated traces.

In Chapter 5, we present our main contribution to the interaction shaping prob-

lem, which is a Bayesian framework that can interactively adapt to a given, unknown

adversary. This framework also builds on interaction traces demonstrated by human

subjects, but uses them as a basis for an empirical learning algorithm that progres-

sively updates the expected utility of different actions and strategies. One of the novel

concepts in this approach is an interactive formulation of reachability of different state

space regions, based on opponent modeling techniques that account for the observed

actions of the adversary. This formulation is then used to identify, through Bayesian

inference, actions and strategies that are likely to influence the adversary in the desired

way. Our experiments demonstrate an autonomous agent that can successfully learn

to improve its influence over robots teleoperated by experienced human users, thus

attaining interactively learned shaping behaviours.

In Chapter 6, we address the factors that affect human decisions in these complex,

physical, strategic interactive environments. Our main contribution is a user study

assessing the performance of subjects in multiple interactive teleoperation tasks, under

different experimental conditions. Our focus is on factors that constrain the perception

of the evaluated subjects, which effectively reduces their sensorimotor capabilities to

those of an autonomous robot and allows for a direct comparison of their interactive

decisions. This makes our study one of the first to contrast human and robot decision-

making in a realistic experimental setup, while also evaluating human responses to

shaping strategies and behaviours like the ones described above. Our experiments

demonstrate that restricted perception has an adverse effect on user performance in

complex interactive tasks. These findings have implications for other applications of

human-robot interaction, where there is a need to appropriately distribute the roles
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between the interacting parties.

In Chapter 7, we present a sensing algorithm towards addressing the needs of de-

cision shaping in direct – and not teleoperation-mediated – strategic human-robot in-

teractions. The novelty in this algorithm lies in the combined use of inertial sensing

(Orient platform) and optical (Kinect) motion capture systems in order to learn a mo-

tion model for a given tracked human subject. This approach combines the relative

advantages of the two systems and allows for human posture and position to be tracked

in unconstrained environments. On the one hand, this is an important contribution to

motion capture systems, where heterogeneous tracking systems and learning models

have not been previously used to detect motion in such a way. On the other hand, our

method can be directly applied to non-trivial interactions between humans and robots,

where there is currently a lack of practical techniques for capturing and continuously

supplying human motion data to an autonomous robot.

8.2 Evaluation and lessons learned

One recurring theme in most chapters of this thesis has been experimentation with real

robotic systems, where autonomous robots are pitted directly against human-controlled

and other autonomous adversaries. Given the interactive and human-centric nature of

several aspects of our algorithms, this physical setting provides a more natural inter-

face for human operators (than, for example, having users interacted with simulated

implementations of robots). Furthermore, real-robot evaluation also allows us to fully

test the robustness of our algorithms, and determine the influence of exogenous factors

(e.g. uncertainty in sensing, locomotion, and localisation). However, experimenta-

tion with physical robots is not without its flaws, especially in experiments involving

learning like our own. Indeed, there is a hard limit on the number of trials that can

be executed, before a robot runs into hardware issues such as motor overheating and

low battery power. Moreover, testing for theoretical performance guarantees becomes

harder on physical platforms, which is why most of our results were empirical. As

algorithmic and multi-agent tools are gradually gaining traction in the field of human-

robot interaction, we believe that it is important to establish a solid interface between

simulated and physical experiments, in order to develop robust interactive systems with

performance standards.

Another defining characteristic of this thesis was that most of our experimental sce-

narios were inspired from our participation in the RoboCup Standard Platform League
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(SPL). Although RoboCup soccer has a long-standing association with multi-agent

systems and reinforcement learning research, we believe that the “human” aspect of

the competition, as investigated in this thesis, is relatively novel. Indeed, much of the

success in RoboCup SPL still depends on fundamental low-level components (vision,

locomotion, localisation) and less so on decision-making and multi-robot interaction.

However, by participating in this competition and observing the types of problems

autonomous robots run into, we gained valuable insights on possible interactive exper-

iments that could incorporate human factors. Thus, even though events like RoboCup

are primarily of a competitive nature, we believe that there is a lot to learn by observing

autonomous robots exhibiting what they can, and, most importantly, what they cannot

do.

8.3 Future directions

The problems and methods discussed in this thesis begin to address several significant

challenges in autonomous robotics and human-robot interaction. Many of these issues,

such as indirect influence and implicit persuasion, are becoming increasingly important

in robotic systems, where there is a need for more robust and seamless interaction

between humans and autonomous agents. This thesis presents a concrete theoretical

framework towards this goal, as well as a wide range of experiments in the popular

robotic soccer domain. However, these ideas can be further refined and extended to

robotic applications of broader interest. In the remainder of this section, we discuss

some of these possible extensions, where we believe our thesis can have an impact in

the near future.

8.3.1 Direct strategic human-robot interactions

One of the remaining big open questions is that of direct strategic interaction between

humans and robotic systems. The teleoperation approach followed in the largest part

of the thesis was chosen for two reasons: first, because it allows for better comparison

between human and robot decision making (by making the two sides interact using

identical “bodies”), and second, because of the challenges involved in tracking the state

of the interacting human partner. The method proposed in Chapter 7 offers a practical

solution to the second issue, however, it has so far been applied only on single-subject

human motion capture examples.
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An immediately attainable and interesting extension is to use our methods in com-

plex direct human-robot interactions, for example, in scenarios taking place in domes-

tic or office environments. These are environments that can benefit from the application

of our approach, as they involve human motion in unconstrained space (e.g. moving

in and out of rooms, navigation along corridors). Furthermore, these domains present

several interesting applications where humans and robots are required to affect each

other’s decisions. For example, in a home environment, a human and a robot may be

tasked with collaborating in order to prepare a meal; in this context, it would be desir-

able for the robot not only to receive instructions from the interacting human subject,

but also to influence that person into performing certain tasks or retrieving certain ob-

jects. In such applications, our ideas and techniques can address several open issues,

ranging from low-level state estimation to high-level decision making. By tackling

these problems, our methods can lead to effective decision shaping and interaction

with physically present human subjects, in a wide range of challenging experimental

domains.

8.3.2 Integration with path planning algorithms

The decision methods presented in this thesis would also benefit from extensions in-

corporating autonomous path planning techniques. The path planning domain has seen

several important developments in recent years, centred around widely adopted tech-

niques such as rapidly exploring random trees (RRTs) (LaValle, 2006) and probabilis-

tic roadmaps (PRMs) (Kavraki et al., 1996). These techniques and their derivatives

have been successfully deployed in several important robotic domains, such as grasp-

ing and obstacle avoidance in cluttered environments. However, extensions incorpo-

rating elements of decision-theoretic planning (Boutilier et al., 1999) and interaction

with adversarial agents have been less studied. One noteworthy recent line of work in-

vestigated the combined use of belief-space constraints and RRT methods, as a means

with dealing with uncertainty in the state of the environment (Bry and Roy, 2011).

Our approach would be to extend and situate our methods within RRT-style frame-

works, in order to provide theoretical guarantees on the execution of interaction shap-

ing behaviours. To achieve this goal, the existing RRT formalisms would be extended

to incorporate constraints on interacting adversarial agents, which would reflect the

ability to successfully execute different strategic action sequences. In effect, we would

seek to refine the obstacle space constraints that currently form the basis of most RRT
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algorithms, in order to address the challenges of impacting the state of interacting

strategic agents. The primary benefit of this approach would be that our techniques

would be augmented with bounds on the feasibility of shaping behaviours against a

given adversary. Thus, it would be possible to determine, given a set of demonstrated

interaction traces and sampled opponent responses, whether a robust interaction shap-

ing strategy exists, or if more demonstrations are needed to achieve this goal. This

extension could also introduce an opportunity to integrate the offline and online learn-

ing components of our method more tightly, and assist in determining regions of the

state and action spaces where demonstrations should be focused.

8.3.3 Extension to domains with more robots

A limitation of many of the algorithms developed in this thesis (particularly those

introduced in Chapters 4 and 5) is that they have been defined for and tested in systems

of two robots. Inevitably, any increase in this number would impact the complexity and

flexibility of the proposed approaches. When interacting with more than one robot, one

possible extension for our framework would be to consider modeling the behaviour of

the interacting team as an ensemble, rather than updating and reasoning about the

responses of individual opponents. This could be effected, for example, by defining

team-level action vectors, representing the actions of a group of robots, which could be

directly plugged in into our existing formulation. A related issue would be to look at

the impact of different team members on an interaction, in order to determine which of

those would be most likely to comply with a given shaping behaviour. In this context,

an important open question would be whether an interaction with a team of robots can

be successfully shaped even if only a fraction of those robots act in the desired manner.

This property could be specified as an additional level in the system hierarchy, i.e.

determining which robot(s) the shaping agent should focus interacting with, in order

to maximise the effectiveness of a shaping strategy.

8.3.4 Improving teleoperation mechanisms in mixed-initiative sys-

tems

This thesis has primarily considered the problem of interaction shaping in multi-robot

environments, where a robot is tasked with influencing another non-cooperative agent.

However, our approach can also be extended to single-agent teleoperation applica-

tions with mixed-initiative agents combining elements of human control and autonomy.
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Here, the goal for the agent would be to influence its own operator, and not a different

robot. By doing so, the agent would learn to improve the quality of the decisions made

by its operator over time.

This extension comes close to the idea of sliding autonomy (Heger and Singh,

2006), where a human operator can intervene to assist an autonomous robot when-

ever necessary. However, we seek to use our shaping model to address the opposite

question, i.e. how a robot can autonomously assist an operator in tasks where hu-

man control may be error-prone. In this context, the shaping agent would be tasked

with modifying human inputs in a way that not only improves their current effect, but

also influences the operator towards better decisions in the future. As demonstrated in

Chapter 5, this outcome can be attained by modeling the interaction with the operator

as a shaping problem, where the goal is to determine action strategies that are likely to

attain a desired joint future state.

The implications of such an extension would be important for several teleoperation

applications in field and rescue robotics, where the data provided to the operator from

the robot is often sparse or incomplete (e.g. the limited field of view case discussed

in Chapter 6), and where communication may be limited. In this context, models of

autonomous influence can assist in overcoming this uncertainty, and improving the

quality of interactive teleoperation decisions in challenging environments.





Bibliography

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement

learning. In International Conference on Machine Learning (ICML).

Agmon, N. and Stone, P. (2012). Leading ad hoc agents in joint action settings with

multiple teammates. In International Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS).

Aler, R., Garcia, O., and Valls, J. M. (2005). Correcting and improving imitation mod-

els of humans for robosoccer agents. In Congress on Evolutionary Computation,

pages 2402–2409.

Argall, B., Gu, Y., Browning, B., and Veloso, M. M. (2006). The first segway soccer

experience: towards peer-to-peer human-robot teams. In International Conference

on Human Robot Interaction (HRI), pages 321–322.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483.

Arvind, D. K. and Valtazanos, A. (2009). Speckled tango dancers: Real-time motion

capture of two-body interactions using on-body wireless sensor networks. In IEEE

International Workshop on Wearable and Implantable Body Sensor Networks (BSN),

pages 312–317.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2003). The nonstochastic

multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77.

Avrahami-Zilberbrand, D. and Kaminka, G. A. (2005). Fast and complete symbolic

plan recognition. In International Joint conference on Artificial intelligence (IJCAI),

pages 653–658.

Bainbridge, W. A., Hart, J., Kim, E. S., and Scassellati, B. (2008). The effect of pres-

ence on human-robot interaction. In Robot and Human Interactive Communication,

145



146 Bibliography

2008. RO-MAN 2008. The 17th IEEE International Symposium on, pages 701–706.

IEEE.

Baker, C. L., Saxe, R., and Tenenbaum, J. B. (2009). Action Understanding as Inverse

Planning. Cognition, 113(3):329–349.

Bard, N. and Bowling, M. (2007). Particle filtering for dynamic agent modelling in

simplified poker. In National conference on Artificial intelligence (AAAI), pages

515–521.

Barrett, S. and Stone, P. (2012). An analysis framework for ad hoc teamwork tasks. In

International Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., and Pappas, G. J. (2007).

Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE

Robotics & Automation Magazine, 14(1):61–70.

Bernstein, D. S., Zilberstein, S., and Immerman, N. (2000). The complexity of de-

centralized control of Markov decision processes. In Conference on Uncertainty in

Artificial Intelligence (UAI).

Bhattacharya, S. and Hutchinson, S. (2010). On the existence of Nash equilibrium for

a two-player pursuitevasion game with visibility constraints. International Journal

of Robotics Research (IJRR), 29(7):831–839.

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot programming by

demonstration. In Springer Handbook of Robotics.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bobick, A. F. and Davis, J. W. (2001). The recognition of human movement using tem-

poral templates. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(3):257–267.

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural

assumptions and computational leverage. Journal of Artificial Intelligence Research,

11:1–94.

Bouton, M. (2007). Learning and Behavior: A Contemporary Synthesis. Sinauer

Associates.



Bibliography 147

Bradtke, S. J. and Duff, M. O. (1994). Reinforcement learning methods for continuous-

time markov decision problems. In Advances in Neural Information Processing

Systems (NIPS), pages 393–400.

Browning, B., Xu, L., and Veloso, M. (2004). Skill acquisition and use for a

dynamically-balancing soccer robot. In National Conference on Artificial Intelli-

gence (AAAI).

Broz, F., Nourbakhsh, I., and Simmons, R. (2008). Planning for human-robot inter-

action using time-state aggregated pomdps. In National Conference on Artificial

intelligence (AAAI), pages 1339–1344.

Bry, A. and Roy, N. (2011). Rapidly-exploring random belief trees for motion planning

under uncertainty. In International Conference on Robotics and Automation (ICRA).

Bui, H. H. (2003). A general model for online probabilistic plan recognition. In

International Joint Conference on Artificial intelligence (IJCAI), pages 1309–1315.

Burridge, R. R., Rizzi, A. A., and Koditschek, D. E. (1999). Sequential composition of

dynamically dexterous robot behaviors. International Journal of Robotics Research

(IJRR), 18(6):534–555.

Calinon, S., D’halluin, F., Sauser, E. L., Caldwell, D. G., and Billard, A. (2010). Learn-

ing and reproduction of gestures by imitation. IEEE Robotics and Automation Mag-

azine, 17(2):44–54.

Calinon, S., Guenter, F., and Billard, A. (2006). On learning the statistical represen-

tation of a task and generalizing it to various contexts. In International Conference

on Robotics and Automation (ICRA).

Carberry, S. (2001). Techniques for plan recognition. User Modeling and User-

Adapted Interaction, 11(1-2):31–48.

Cassandra, A. R. (1998). A survey of POMDP applications. In Working Notes of

AAAI 1998 Fall Symposium on Planning with Partially Observable Markov Decision

Processes, pages 17–24.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P., Schapire, R. E., and

Warmuth, M. K. (1997). How to use expert advice. Journal of the ACM, 44(3):427–

485.



148 Bibliography

Cesa-Bianchi, N. and Lugosi, G. (2012). Combinatorial bandits. Journal of Computer

and System Sciences, 78(5):1404–1422.

Chalodhorn, R., Grimes, D. B., Grochow, K., and Rao, R. P. N. (2007). Learning to

walk through imitation. In International Joint Conference on Artifical intelligence,

pages 2084–2090.

Charniak, E. and Goldman, R. P. (1993). A bayesian model of plan recognition. Arti-

ficial Intelligence, 64(1):53–79.

Chatzis, S. P., Korkinof, D., and Demiris, Y. (2012). A quantum-statistical approach

toward robot learning by demonstration. IEEE Transactions on Robotics, PP(99):1

–11.

Chernova, S. and Veloso, M. (2007). Confidence-based policy learning from demon-

stration using gaussian mixture models. In International Conference on Autonomous

Agents and Multiagent Systems, pages 233:1–233:8.

Conner, D. C., Choset, H., and Rizzi, A. (2006). Integrated planning and control for

convex-bodied nonholonomic systems using local feedback. In Robotics: Science

and Systems (RSS), pages 57–64.

Corrales, J. A., Candelas, F. A., and Torres, F. (2008). Hybrid tracking of human

operators using imu/uwb data fusion by a kalman filter. In International Conference

on Human Robot Interaction (HRI), pages 193–200.

Crick, C., Osentoski, S., Jay, G., and Jenkins, O. C. (2011). Human and robot per-

ception in large-scale learning from demonstration. In International Conference on

Human Robot Interaction (HRI), pages 339–346.

de Farias, D. P. and Megiddo, N. (2004). Exploration-exploitation tradeoffs for experts

algorithms in reactive environments. In Neural Information Processing Systems

(NIPS).

Demiris, Y. (2007). Prediction of intent in robotics and multi-agent systems. Cognitive

Processing, 8(3):151–158.

Dominey, P., Metta, G., Nori, F., and Natale, L. (2008). Anticipation and initiative in

human-humanoid interaction. In IEEE-RAS International Conference on Humanoid

Robots, pages 693 –699.



Bibliography 149

Doshi, P. and Gmytrasiewicz, P. J. (2009). Monte carlo sampling methods for approx-

imating interactive POMDPS. Journal of Artificial Intelligence Research, 34:297–

337.

Dragan, A. and Srinivasa, S. (2012). Formalizing assistive teleoperation. In Robotics:

Science and Systems (RSS).

Duchaine, V. and Gosselin, C. M. (2007). General model of human-robot cooperation

using a novel velocity based variable impedance control. In EuroHaptics Confer-

ence and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator

Systems.

Edsinger, A. and Kemp, C. (2007). Human-robot interaction for cooperative manipu-

lation: Handing objects to one another. In IEEE International Symposium on Robot

and Human interactive Communication.

Feliz, R., Zalama, E., and Garcia-Bermejo, J. G. (2009). Pedestrian tracking using

inertial sensors. Journal of Physical Agents, 3(1):35–42.

Flemisch, O., Adams, A., Conway, S. R., Goodrich, K. H., Palmer, M. T., and Schutte,

P. C. (2003). The H-metaphor as a guideline for vehicle automation and interaction.

In NASA/TM2003-212672.

Fletcher, L., Teller, S., Olson, E., Moore, D., Kuwata, Y., How, J., Leonard, J., Miller,

I., Campbell, M., Huttenlocher, D., Nathan, A., and Kline, F.-R. (2008). The MIT-

cornell collision and why it happened. Journal of Field Robotics, 25(10):775–807.

Foxlin, E. (2005). Pedestrian tracking with shoe-mounted inertial sensors. IEEE Com-

puter Graphics and Applications, 25(6):38 –46.

Geib, C. and Harp, S. (2004). Empirical analysis of a probabilistic task tracking algo-

rithm. In International Conference on Autonomous Agents and MultiAgent Systems

(AAMAS) - Workshop on Agent Tracking.

Geib, C. W. and Goldman, R. P. (2009). A probabilistic plan recognition algorithm

based on plan tree grammars. Artificial Intelligence, 173(11):1101–1132.

Genter, K., Agmon, N., and Stone, P. (2011). Role-based ad hoc teamwork. In Plan,

Activity, and Intent Recognition Workshop at the Twenty-Fifth Conference on Artifi-

cial Intelligence (PAIR).



150 Bibliography

Genter, K., Agmon, N., and Stone, P. (2013). Ad hoc teamwork for leading a flock. In

International Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Gerkey, B. P., Thrun, S., and Gordon, G. (2004). Visibility-based pursuit-evasion with

limited field of view. In International Journal of Robotics Research (IJRR), pages

20–27.

Gmytrasiewicz, P. J. and Doshi, P. (2005). A framework for sequential planning in

multi-agent settings. Journal of Artificial Intelligence Research, 24:24–49.

Goodrich, M. A. and Schultz, A. C. (2007). Human-robot interaction: a survey. Foun-

dations and Trends in Human-Computer Interaction, 1(3):203–275.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to

nonlinear/non-gaussian bayesian state estimation. Radar and Signal Processing,

140(2):107–113.

Grollman, D. H. and Billard, A. (2011). Donut as i do: Learning from failed demon-

strations. In International Conference on Robotics and Automation (ICRA).

Grollman, D. H. and Jenkins, O. C. (2007). Learning robot soccer from demonstra-

tion: Ball grasping. In Robotics: Science and Systems (RSS) - Robot Manipulation:

Sensing and Adapting to the Real World.

Havoutis, I. (2012). Motion planning and reactive control on learnt skill manifolds. In

PhD Thesis, University of Edinburgh.

Heger, F. and Singh, S. (2006). Sliding autonomy for complex coordinated multi-robot

tasks: Analysis and experiments. In Robotics: Science and Systems (RSS).

Hester, T., Quinlan, M., and Stone, P. (2010). Generalized model learning for rein-

forcement learning on a humanoid robot. In International Conference on Robotics

and Automation (ICRA), pages 2369–2374.

Howard, R. A. (1971). Dynamic Probabilistic Systems: Semi-Markov and Decision

Processes. New York: Wiley.

Hsiao, K., Kaelbling, L. P., and Lozano-Perez, T. (2007). Grasping pomdps. In Inter-

national Conference on Robotics and Automation (ICRA), pages 4685–4692.



Bibliography 151

Johnson, M. and Demiris, Y. (2005). Perceptual perspective taking and Action Recog-

nition. International Journal of Advanced Robotic Systems, 2(4):301–308.

Jordan, P. R. and Wellman, M. P. (2009). Generalization risk minimization in empirical

game models. In International Conference on Autonomous Agents and Multiagent

Systems (AAMAS).

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134.

Karaman, S. and Frazzoli, E. (2010). Sampling-based algorithms for a class of pursuit-

evasion games. In Workshop on Algorithmic Foundations of Robotics (WAFR).

Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M. (1996). Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. Robotics and

Automation, IEEE Transactions on, 12(4):566 –580.

Klingspor, V., Demiris, J., and Kaiser, M. (1997). Human-robot communication and

machine learning. Applied Artificial Intelligence, 11(7):719–746.

Knox, W. B. and Stone, P. (2009). Interactively shaping agents via human reinforce-

ment: The TAMER framework. In The Fifth International Conference on Knowl-

edge Capture.

Kobayashi, Y. and Kuno, Y. (2010). People tracking using integrated sensors for human

robot interaction. In IEEE International Conference on Industrial Technology, pages

1617 –1622.

Konidaris, G. and Barto, A. (2006). Autonomous shaping: knowledge transfer in

reinforcement learning. In International Conference on Machine Learning (ICML),

pages 489–496.

Kurniawati, H., Bandyopadhyay, T., and Patrikalakis, N. M. (2011). Global motion

planning under uncertain motion, sensing, and environment map. In Robotics: Sci-

ence and Systems (RSS).

Kurniawati, H., Hsu, D., and Lee, W. S. (2008). SARSOP: Efficient point-based

POMDP planning by approximating optimally reachable belief spaces. In Robotics:

Science and Systems (RSS).



152 Bibliography

Lallée, S., Lemaignan, S., Lenz, A., Melhuish, C., Natale, L., Skachek, S., van der

Zant, T., Warneken, F., and Dominey, P. F. (2010a). Towards a platform-independent

cooperative human-robot interaction system: I. perception. In International Confer-

ence on Intelligent Robots and Systems (IROS), pages 4444–4451.

Lallée, S., Yoshida, E., Mallet, A., Nori, F., Natale, L., Metta, G., Warneken, F., and

Dominey, P. F. (2010b). Human-robot cooperation based on interaction learning. In

From Motor Learning to Interaction Learning in Robots, pages 491–536.

Lathan, C. E. and Tracey, M. (2002). The effects of operator spatial perception and

sensory feedback on human-robot teleoperation performance. Presence: Teleoper.

Virtual Environ., 11(4):368–377.

LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

Lee, S. H., Kim, H. K., and Suh, I. H. (2011). Incremental learning of primitive

skills from demonstration of a task. In International Conference on Human-Robot

Interaction (HRI), pages 185–186.

Lusena, C., Goldsmith, J., and Mundhenk, M. (2001). Nonapproximability results for

partially observable markov decision processes. Journal of Artificial Intelligence

Research, 14:2001.

MacDorman, K. F., Chalodhorn, R., and Asada, M. (2004). Periodic nonlinear princi-

pal component neural networks for humanoid motion segmentation, generalization,

and generation. In International Conference on Pattern Recognition (ICPR), pages

537–540.

Mahadevan, S., Marchalleck, N., Das, T. K., and Gosavi, A. (1997). Self-improving

factory simulation using continuous-time average-reward reinforcement learning.

In International Conference on Machine Learning (ICML), pages 202–210. Morgan

Kaufmann.

Mavridis, N., Giakoumidis, N., and Machado, E. (2012). A novel evaluation frame-

work for teleoperation and a case study on natural human-arm-imitation through

motion capture. International Journal of Social Robotics, 4:5–18.

Messing, R., Pal, C., and Kautz, H. A. (2009). Activity recognition using the velocity

histories of tracked keypoints. In International Conference on Computer Vision

(ICCV), pages 104–111.



Bibliography 153

Mitchell, I., Bayen, A. M., and Tomlin, C. J. (2001). Validating a hamilton-jacobi

approximation to hybrid system reachable sets. In Hybrid Systems: Computation

and Control, pages 418–432. Springer Verlag.

Mitchell, I. M. (2007). A toolbox of level set methods. In UBC Department of Com-

puter Science Technical Report TR-2007-11.

Mitchell, I. M., Bayen, A. M., and Tomlin, C. J. (2005). A time-dependent hamilton-

jacobi formulation of reachable sets for continuous dynamic games. IEEE Transac-

tions on Automatic Control, 50:947–957.

Nemec, B., Vuga, R., and Ude, A. (2011). Exploiting previous experience to constrain

robot sensorimotor learning. In IEEE/RAS International Conf. on Humanoid Robots.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward trans-

formations: Theory and application to reward shaping. In International Conference

on Machine Learning (ICML).

Ng, B., Meyers, C., Boakye, K., and Nitao, J. (2010). Towards applying interactive

POMDPs to real-world adversary modeling. In Innovative Applications of Artificial

Intelligence.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V. (2007). Algorithmic Game

Theory. Cambridge University Press, New York, NY.

Nyga, D. and Beetz, M. (2012). Everything robots always wanted to know about house-

work (but were afraid to ask). In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS).

Ojeda, L. and Borenstein, J. (2007). Personal dead-reckoning system for gps-denied

environments. In IEEE Int. Workshop on Safety, Security and Rescue Robotics.

Ong, S. C. W., Png, S. W., Hsu, D., and Lee, W. S. (2009). Pomdps for robotic tasks

with mixed observability. In Robotics: Science and Systems (RSS).

Papadimitriou, C. and Tsitsiklis, J. N. (1987). The complexity of markov decision

processes. Mathematics of Operations Research, 12:441–450.

Parasuraman, R., Sheridan, T. B., and Wickens, C. D. (2000). A model for types and

levels of human interaction with automation. IEEE Transactions on Systems, Man,

and Cybernetics - Part A: Systems and Humans, 30(3):286–297.



154 Bibliography

Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009). learning and generalization

of motor skills by learning from demonstration. In International Conference on

Robotics and Automation (ICRA).

Pineau, J. and Gordon, G. (2005). Pomdp planning for robust robot control. In Inter-

national Symposium on Robotics Research.

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based value iteration: An anytime

algorithm for POMDPs. In International Joint Conference on Artificial Intelligence.

Porta, J. M., Vlassis, N., Spaan, M. T. J., and Poupart, P. (2006). Point-based value

iteration for continuous pomdps. J. of Machine Learning Research, 7:2329–2367.

Riley, P. and Veloso, M. (2002). Planning for distributed execution through use of

probabilistic opponent models. In International Conference on AI Planning and

Scheduling (AIPS), pages 72–81.

Riley, P., Veloso, M., and Kaminka, G. (2002). An empirical study of coaching. In

Distributed Autonomous Robotic Systems 5, pages 215–224.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of

the American Mathematical Society, 58(5):527–35.
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Taha, T., Miró, J. V., and Dissanayake, G. (2011). A POMDP framework for modelling

human interaction with assistive robots. In International Conference on Robotics

and Automation (ICRA), pages 544–549.

Tautges, J., Zinke, A., Krüger, B., Baumann, J., Weber, A., Helten, T., Müller, M.,

Seidel, H.-P., and Eberhardt, B. (2011). Motion reconstruction using sparse ac-

celerometer data. ACM Trans. Graph., 30(3):18:1–18:12.

Tedrake, R. (2009). LQR-trees: Feedback motion planning on sparse randomized trees.

In Robotics: Science and Systems (RSS).

Tenorth, M., Nyga, D., and Beetz, M. (2010). Understanding and executing instruc-

tions for everyday manipulation tasks from the world wide web. In IEEE Interna-

tional Conference on Robotics and Automation (ICRA).

Thrun, S. (2000). Monte carlo POMDPs. In Neural Information Processing Systems

(NIPS).

Tomlin, C. J., Lygeros, J., and Sastry, S. S. (2000). A game theoretic approach to

controller design for hybrid systems. In Proceedings of the IEEE, pages 949–970.

Tomlin, C. J., Mitchell, I., Bayen, A. M., and Oishi, M. (2003). Computational tech-

niques for the verification of hybrid systems. In Proceedings of the IEEE, pages

986–1001.

Valtazanos, A. (2012a). Bayesian interaction shaping: learning to influence strategic

interactions in mixed robotic domains – supporting video, http://www.youtube.

com/watch?v=5rYVhHZzHQQ.

Valtazanos, A. (2012b). Evaluating the effects of perceptual constraints on inter-

active decisions in mixed robotic environments – supporting video, http://www.

youtube.com/watch?v=6xi7WPgg46A.

Valtazanos, A., Arvind, D. K., and Ramamoorthy, S. (2010). Comparative study of

segmentation of periodic motion data for mobile gait analysis. In ACM International

Conference on Wireless Health, pages 145–154.

Valtazanos, A., Arvind, D. K., and Ramamoorthy, S. (2013a). Latent space segmenta-

tion for mobile gait analysis. ACM Trans. on Embedded Computing Systems, 12(4).



Bibliography 157

Valtazanos, A., Arvind, D. K., and Ramamoorthy, S. (2013b). Using wearable iner-

tial sensors for posture and position tracking in unconstrained environments through

learned translation manifolds. In ACM/IEEE International Conference on Informa-

tion Processing in Sensor Networks (IPSN).

Valtazanos, A. and Ramamoorthy, S. (2011a). Intent inference and strategic escape

in multi-robot games with physical limitations and uncertainty. In International

Conference on Intelligent Robots and Systems (IROS), pages 3679–3685.

Valtazanos, A. and Ramamoorthy, S. (2011b). NaOISIS: a 3-D behavioural simulator

for the NAO humanoid robot. In Roefer, T., Mayer, N. M., Savage, J., and Saranli,

U., editors, RoboCup-2011: Robot Soccer World Cup XV, Lecture Notes in Artificial

Intelligence. Springer Verlag, Berlin.

Valtazanos, A. and Ramamoorthy, S. (2011c). Online motion planning for multi-robot

interaction using composable reachable sets. In Roefer, T., Mayer, N. M., Savage,

J., and Saranli, U., editors, RoboCup-2011: Robot Soccer World Cup XV, Lecture

Notes in Artificial Intelligence. Springer Verlag, Berlin.

Valtazanos, A. and Ramamoorthy, S. (2013a). Bayesian interaction shaping: learn-

ing to influence strategic interactions in mixed robotic domains. In International

Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Valtazanos, A. and Ramamoorthy, S. (2013b). Evaluating the effects of limited per-

ception on interactive decisions in mixed robotic environments. In International

Conference on Human-Robot Interaction (HRI).

Vázquez, M., May, A., Steinfeld, A., and Chen, W.-H. (2011). A deceptive robot

referee in a multiplayer gaming environment. In International Conference on Col-

laboration Technologies and Systems (CTS), pages 204–211.

Vidal, R., Shakernia, O., Kim, H., Shim, D., and Sastry, S. (2002). Probabilistic

pursuit-evasion games: theory, implementation, and experimental evaluation. Trans.

on Robotics and Automation, 18(5):662 – 669.

Wagner, A. R. and Arkin, R. C. (2011). Acting deceptively: Providing robots with the

capacity for deception. International Journal of Social Robotics, 3(1):5–26.

Wampler, K., Andersen, E., Herbst, E., Lee, Y., and Popović, Z. (2010). Character
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