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Chapter 1: Introduction. 

• The growing complexity of digital systems make it imperative 

to use automatic processing in their design to the greatest possible 

extent. 	Application of existing digital computers to the production 

stages have so far been successful. 	For example component placement 

and conductor routing of printed circuit boards, back board wiring, 

generation of test sequences,.. .etc. have all been mechanised though 

some of the methods need improvements to cope with more complex 

situations. 	In general, problems at this end do not require creative 

thinking and the main objective is to optimise the solutions according 

to some criteria. However, the problems encountered in the initial 

stages of a digital system design are very different in nature. Here 

the objective is not to optimise but to eliminate unnecessary detail 

which tends to obstruct creative thinking. 	Before automatic processing 

can be introduced into these stages, one question has to be answered. 

'What are the.conditions under which a designer can apply creative 

thinking?' 	The answer to this question should form°the underlining 

philosophy to any successful high level design method. 	It is no use 

finding ingenious techniques which can be easily programmed if they 

obstruct the des igners ? thought processes. 

The design system should provide the user with the basic building 

blocks that he would like to work with and allow him to arrange them 

in any way to form more complex structures. 	Obviously, it is not 

possible to foresee all types of building blocks that the designer 

may wish to use. 	Therefore, he should be allowed to describe new 

ones. The new blocks can be of similar complexity to the existing 

ones or a number of existing blocks can be brought together to form 

a higher level block. 	Whatever the case is, he shouldbe allowed 
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to describe them easily and in a natural way. 	"The development 

and employment of complex concepts doubtless is basic to most 

intellectual activity. 	This must be especially true for creative 

thought... An essential ingredient of creative thought is the 

ability to move quickly and easily from one concept to a related one". 

The designer can be helped by providing useful faci]ities which may 

act as 'suggestions' but his line of thought should not be restricted 

due to some artificial rules. 	He shoul.d be allowed to express himself 

in a natural way and the CAD system should be able to detect his 

mistakes. 

Chapter 2 of this thesis describes some of the better known CAD 

methods for digital systems design. Since it is essential to know 

the 'state of the art' before attempting to improve it, an extensive 

study was made of this area. It is hoped that this chapter forms a 

good source of reference without being too long. 	Chapter 3 describes 

the author's philosophy in designing a digital system and chapter 4 

presents a CAD system based on this philosophy. 

Application of this CAD system to the design of a relatively simple 

digital computer is illustrated in Chapter 5.followed by a description 

of the techniques used in the internal (computer) representation of 

logic designs in Chapter 6. 	Chapter 7 discusses some of the problems 

encountered in realising the components used in the design and presents 

a new state assignment technique for sequential circuits. Some 

proposals are made in Chapter 8 to improve the programs described, 

followed by the general conclusions drawn from this research. 

() 	D.E Wooldridge. 'The machinery of the brain'. 	McGraw-Hill 
1963, page 225. 	 - 
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Chapter 2 : Existing CAD Techniques. 

This chapter discusses some of the better known Computer Aided 

Design methods used in digital systems design. 	Names of such methods 

can be found in the references. 	The methods discussed' in this 

chapter have been selected not because they are better than the others 

but because they form a good cross-reference and show the general• 

techniques used. 	In general, CAD techniques fall into two categories. 

- Methods in which special computer languages are used to 

specify both the structure and the behaviour of digital systems. 

Programs written in the "Design Language" are then translated into 

Boolean equations which realise the digital system. 

- Methods in which the operation of adigital system is 

described by a flow-chart and then realised by using special components 

which have a one-to-one correspondence with the flow-chart symbols. 

Below, some examples from each group are given followed by a 

• general criticism of the methods in each group. 	Finally an overall 

criticism of the general principles employed in each group is presented. 

() Here, "language" is used to infer a linguistic representation, 
with a fixed alphabet and grammar. 
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2.1. 	Design Methods Using Formal Langua. 

The following four sections describe some of the design methods 

that use a formal language in describing a digital system. 	Apart 

from differences in the languages themselves, the four methods 

discussed below differ from each other by the way in which the 

structure of a digital system is defined and also by the way in which 

descriptions are turned into hardware. 

2.1.1. Logic Design Translator. 

LDT (42), (74) is a design system composed of three major 

programs and can be described as "a three-pass, special purpose 

compiler, with logic equations rather than machine code as the final 

output" (42). 	The three passes of LDT correspond to, 

- translation of the input language into an intermediate 

language, 

- timing analysis, 

- term development and logic equation generation 

A language description in LDT consists of two sections. 	The 

"Declarative" section provides a linguistic description of the block 

diagram structure of a digital system. A digital system is seen to 

consist of "Registers" and "Data Paths" which are defined by using 

"Declarative. Statements". 	The language uses the Backus Naur Form 

(BNF) (70) for the representation of declarative statements and the 

syntax for .register declarations is as follows. 
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<register> :: <identifier> I <identifier> C <size> ) 

<register> '( <structure list> ) 

<size> :: = <unsigned integer> I <unsigned integer> 
(unsigned integer> 

(structure list> :: = <register>. F <structure list> 

<register> 

<special register> :: = <register> (<delay> ) I <special. 
register> ( <Structure list> ) 

<delay> :: = <unsigned integer> 

Thus, a register is defined as a set of storage devices (together with 

the associated gating) which require only one clock time to store data 

and a special register is a register which requires more than one clock 

time to store data. Special LAegisters are used to represent more 

complex units such as an adder or a logical unit. 	Some examples of 

declarative, statements are given below. 

P (0,12) 

Q (1,12) (Ql(1,6), Q2 (7,12)) 

SP (1,10) (5) 

Statement 1. defines P as a 13-bit register with bits numbered from 

zero to twelve. 	Statement' 2. defines Q as a 12-bit register and the 

bits are numbered from one to twelve. 	Furthermore, Qi refers to the 

first half of Q and Q2 refers to the second half. 	Statement 3. defines 

SP as a 10-bit special register having a delay of five units. 	Its 

bits are numbered from one to ten. 

("c) One clock time is the time required to set a flip-flop. 
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Since the full description of the block diagram structure of 

a digital system must include the interconnections between the 

registers, these are declared by using "Transfer Statements" which 

name a "Destination Register" and give a list of the "Source 

Registers" which can transfer data to it. 	The BNF representation 

of this type of statement is shown below. 

<transfer) 	<destination register> = ( <source register> ) 

destination register> :: = <register> 

<source register> 	<register> I <source register set> 

<register> 

for example, the statement 

P = (Q,R) 

indicates that register P can accept data from either of the registrs 

Q and R. 

In the "Operational" section of the language description, register 

transfer operations are described using ALGOL like statements. 	The 

general form of such statements is: 

register "operation" register —* register 

which specifies that the result of the operation on the contents of 

the registers to the left of the arrow is to be placed into the register 

on the right hand side of the arrow. 	Statements without "operation" 

indicate simple transfers (P—Q). 	Other types of statements include 

sUbroutine calls, conditional statements, memory access statements, 

etc. A total of thirteen statement types can be specified. 

Some examples are given below. 
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Statement 'ype 

Transfer 

Arithmetic 

Subroutine 

Memory Access 

Control Transfer 

Example 

P—Q 

P+Q — R 

GETBUS 

Li. MA--INSTREG 

5. GOTO1 

Logical 	 6. PAQ— R 

Shift 	 7. P MOVE RIGHT. OFF 3—' P 

Statements are combined to form micro programs which represent the 

instructions to be executed by a digital system. 	The translator 

converts the input language into an intermediate language. 	This 

intermediate language is not a linguistic representation of the input 

description, but a table called the "Design Table" which lists the 

micro operations to be performed. 	The design table has twelve 

columns and as many rows as there are operations to be performed 

within a micro program. When translating the input description into 

the design table, the translator consults the declarations about the 

digital system structure and checks to see if the transfers specified 

are legal. 	In doing so, the translator may detect, for example, that 

the common BUS is required to perform a transfer, if the declaratiye 

section has specified such a structure. 	Furthermore, temporary 

storage may also be detected. 

e;g. When translating the following statement 

(PAQ)V R—P 

the translator generates a new register to hold the result of the AND 

operation and the OR operation will be performed on the contents of 

the temporary storage and the R-register. 	In such cases, the 

translator assigns a name to the temporary register and notifies the 
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designer. 	The columns of the design table contain the following 

information 

Column 1 Source register name. 

it 2 MSB 	of the field of the source register 

if 
 3 LSB+ of the field of the source register. 

' 4 Destination register name. 

" 5 MSB of the field of the destn.: register. 

" 6 - 	 LSB of the field of the .destn. register. 

7 Equipment used for the transfer. 

8 MSB of the field of the equipment used. 

TI.  9 LSB of the field of the equipment. 

" 10 Control conditions to be satisfied. 

" 11 Relative time at which the micro step is to occur. 

12 Delay value of the destination register. 

The operators (e.g.A, i - ) are entered in the control column (column 

10) and the time column (column 11) contains a flag value which will 

be used by the Timing Analysis Routine. 	A "0" flag indicates that 

the following row is a part of the operation (the present row and 

the next can be considered as one) and a "1" flag indicates that the 

design table is partitioned below that row. 

() Most significant bit. 
(+) Least significant bit. 



ME 

The timing analysis routine determines the time at which an 

operation may begin. 	Unless a delay value is specified, the 

transfers takeplace in one clock time. 	Since the control transfer 

statements (Go TO, SUBROUTINE CALL, etc.) alter the sequence of 

operations, the design table has to be partitioned at that point to 

enable the timing analysis of each branch individually. 	The relative 

starting time of each operation is calculated by observing the 

following rules. 

The first operation in the design table may begin immediately. 

The first operation in any partition of the design table may 

begin at time t + 1 where t is the highest clock time 
p 	 p 

assigned to any previous operation in the table. 

The start time of all other operations in any partition is 

found by calculating the earliest time when the registers 

and additional equipment required by the operation, will be 

free. The operation may begin immediately if all devices 

are free, but otherwise has to wait until the previous 

operations are finished and the devices become available. 

Because of the third rule, LDT causes a digital system to be realised 

as a "Pipe-Line" (38) system and to ensure its correct operation 

the design table is partitioned whenever a control transfer statement 

is encountered. 	Finally, to each micro program, an implicit 

subroutine called "Micro Sequence Completed" is added so that control 

may be given to the next micro program in sequence. 	This is achieved 

by inserting the following information after the last row of the 

design table. 
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Column 1 	 0 

11 	4 	 CLOCK 

" 10 	 RESET 

11 	 Tmax 

12 	 Delay value of CLOCK. 

(Thax isthe highest clock time at which any previous operation will 

be completed). 

The following example, taken from (42) shows a micro program 

and the design table after timing analysis. 	It is assumed that the 

declarations about the structure of the system have been previously 

given and that they include the two bus lines BUS1 and BUS2. 

1.. P — 	Q 

 K+1—P 

 S+T —W 

 X MOVE RIGHT. OFF3—X 

 IFKP 

THEN  w—x) 

ELSE  w—Y) 

 R 	W 610- 26 ) 

9. K- l --- P 

Table 2.1 A microprogram input to LDT. 

Table 2.2 gives the design table generated for this micro program. 

(*) The table has been copied from page 257. of ref. (42). 



Microstep Source Destination Eq. 
Number Row Register Begin End Register Begin End Used Begin End Control Time Delay 

k 1 1. 2 3 4 5 6 7 8 9 10 11 12 

1 P 1 n BUS1 1 n . 1 0 
2 BUS1 1 n Q 1 -n 1 1 

2 3 K 1 n BUS1 1 n 2 0 
4 BUS1 1 n COUNT 1 n UP 2 1 
5 COUNT 1 n BUS1 1 n . . 3 0 
6 BUS1 . 	1 n P 1 fl 3 1 

3 7 S 1 n ARITH (A) 1 n ADD 	. 1 5 
8 T . 	 1 n ARITH (B) 1 n ADD 1 5 
9 ARITH 1 •  n W 1 n 6 1 

10 X 1 n SHIFT 1 n RIGHT.OFF 1 1 
11 SHIFT 1 n SHIFT 1 n RIGHT.OFF 2 1 
12 SHIFT . 	 1 •n SHIFT 1 n RIGHT.OFF 3 1 
13 SHIFT 1 n X 1 n . 4 1 

5 14 K 1 	. n BUS1 1 n 4 0 
15 BUS1 1 	. n LOGICAL (A) 1 n EQL 4 3 
16 P 1 - 	 ri BUS2 1 n . 	 .. . 4 0 
17 BUS2 1 n LOGICAL (B) 1 n EQL 4 3 
18 LOGICAL 1 n FF1 1 1 7 1 

6 19 W . 	 . 	1 	- n X 1 n FF1 1 1 FF1 8 1 
7 20 W . 	 1 ii Y 1 n FF1 1 	. 1 "FFl 8 1 
8 21 R • 6 10 W 2 6 FF1 1 1 'FFl 9 1 
9 22 K 1 ii BUS1 1 n . 4 0 

23 BUS1 1 n COUNT 1 n DOWN 4 1 
24 COUNT 1 n BUS1 1 n . 7 0 
25 BUS1 . 	 •1 	- fi P 1 . n . . 	 7 1 

999 26 t'Ott -. 
- CLOCK - - RESET 10 1 

Table 2.2 Design Table. 
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The final step in the design process is to convert the design 

table into application equations for each bit of the registers. 

The term development routine scans each micro program and extracts 

the terms for the bitsof the registers used within the micro program. 

A final sort run combines these terms and forms the application 

equations which may be further processed - to fit practical requirements. 

Proctor (74) reports that the equations generated for a part of the 

Burroughs D825 computer, correspond closely to the actual equations 

used in the earlier design of D825. 	Some of the equations generated 

by LDT  for the example given above, can be found in. the reference. 

2.1.2. Schorr's Register Transfer Language. 

1 

Schorr (80) describes a CAD system for the analysis and 

1. 	 synthesis of digital systems. 	The language used is an adaptation of 

Reed's language (12). 	Using Schorr's approach, a digital system is 

described by a set of register transfers and the two reverse 

processes of design synthesis and analysis are tackled by starting 

with the register transfers and deriving the Bóolean equations to 

realise them, when doing synthesis, and starting with the Boolean 

equations and obtaining a set of register transfers for the analysis 

of a digital system.. The register transfer statements are written 

in a language which can be translated into Boolean equations by a 

syntax oriented compiler. By changing the syntax table of the 

compiler, it can be made to translate the Boblean equations into 

register transfers. 	The simplified syntax tables for both processes 

can be found in the reference (80). 

(1) - Design Synthesis 

Instructions to be executed by a digital system are expressed as 

micro programs using a simple register transfer notation. Each 
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statement is preceded by a "Conditional Expressiont' (CE) enclosed 

within vertical bars. 	The CE's can be timing signals or logical 

expressions formed from timing signals or control signals. 

Concurrent operations can be written on the same line, separated by 

semi-colons. 	The last register transfer expression on a line 

indicates the next timing signal to be activated and hence defines 

the next set of statements to be executed. 

e.g. 

t1  I : P—> Q; X—'Y; 1—t 2  

Individual bits of registers are identified by subscript expressions 

and logical operations, such as AND, OR, EXCLUSIVE OR, NEGATION 

are indicated by the connectives tl.tt, 	 respectively. 

Other symbols used are "," for the concatenatiofl of two or more 

registers, "Lt' to indicate a left-shift by j places and "v" to 

indicate the OR of the individual bits of a register. 

Table 2.3 shows the micro progrEin of an adder. 	This table is 

taken.from ref. (80) and the operations of the adder are as follows. 

Register M contains the augend which will be replaced by the 

sum of the contents of the, M and A registers. 	During the operation 

of the adder, the contents of M are first transferred to the N 

register and a bit by bit addition is performed between the N and A 

registers. Any carries generated are shifted left and stored in N. 

When there are no more carries (indicated by D = 0) the addition is 

complete and the adder waits for an ADD signal and then repeats the 

operation. Any overflow condition is indicated by lighting 'a lamp 

attached to register L. 



• 	 _lL_ 

 

O—OF; l—t2  

1t 2 1 : 

L1 (N.A)—OF,N; 

v(N.A) — 	D; 

 t3.DtI 

OF — 	L; 

Q—ADD; 

 t 3 .D 	: OD; lt 

'ia. f t4 .ADD' : 

4b.. t,.ADD 	: 1—t1  

Table 2.3 Micro operations of adder. 

The control unit for the adder is synthesized'separately, by first 

extracting the micro operations for the control signals. 

Iti l: 	• 	1t2 

It2 !: 	• 	 1—t3 

I t 3  D 	 1—.t 

• 	 l t 	 • 

I t4 .ADD : 	 1 t1  • 

I t4.ADD'l : 	 • 	lt 	• 	 • 	• 

Table 2.4 Control unit signals of adder. 	• 

The timing signals (t.) can then be generated by using any of the 

following synthesis techniques. 

1- Delay line synthesis. 

• 	2- Using a timing counter controlled by the external signals 

ADD and D. 
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3- Using the control unit design introduced by Wilkes (88). 

Schorr gives the realisation of Table 2.11 by using the first and 

second methods mentioned above. 	He also notes that since a CU may 

have to generate more than one set of control signals, the delay line 

synthesis cannot be used in general. 

Translation of the register transfer statements into Boolean 

equations is done by a compiler and the techniques used can be found 

in the reference. 

(ii) - Design Analysis 

The analysis programs can translate Boolean equations into a set 

of. register transfers characterised by those equations. 	The 

translation is possible since the Boolean equations are in BNF form. 

Further requirements are that, the Boolean equations 

must be in the sum-of-products form, 

must be set-reset equations for RS flip-flops, 

must have all literals appearng in them identified. 

The mechanics of translating, the Boolean equations into register 

transfers can be found in (80). 	However, the problem of sorting 

register transfers into appropriate micro programs representing the 

instructions to be executed by a digital computer is unsolved, as 

reported by. Schorr. 

2.1.3. The ALERT System. 

ALERT (39) is a CAD systemdesigned to convert logic descriptions 

into hardware. As input, ALERT takes the architecture of a digital 

system described in Iverson notation and produces the necessary 

Booleari equations to realise the described logic. 	Iverson notation 
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is used in the APL language (4) and has also been used to describe 

the architecture of some computers (37). 	This notation is an 

algorithmic language that makes it possible to represent sequential 

logic as programs of micro events. 	Further processing (25), (78) 

of the Boolean equations generated by ALERT, turns them into standard 

computer circuits. Because of the algorithmic structure of the 

notation it is also possible to simulate the description before 

realising it. 	Several modifications have been made to the Iverson 

notation to use it in ALERT. 	The most significant change is the 

inclusion of declaration statements to define the class and dimension 

of variables. Whereas, in the original notation arrays are not 

declared, in ALERT a constraint was put which causes all variables 

to be taken as a single "bit" unless otherwise is stated in a 

declaration statement. 	Also, the special Iverson operators such 	as 

, w, have been replaced by 'VALUE', = , 'SUFFIX', 

respectively, so that standard input devices can be used. 	ALERT 

goes thrc'ugh eight major steps to outputthe Boolean equations. 

These steps are briefly described below. 

Translation 

During this step the input format, syntax and consistency is 

checked. 	Implied variables are generated and the specification is 

reformulated. 

Selection Decoding 

During this step the necessary decoding to address subscrip1ed 

variables (registers) is generated. 

Macro Generation 

This step replaces some MACRO block definitions with actual logic 

circuits obtained from the system library. 



-17-- 

• 4- Sequence Analysis 

During this step the micro events specified by the description 

algorithm are assigned to time periods. 	This is done in such a way 

asto minimize the number of periods to be used. A micro program 

is partitioned into event groups by splitting it at the following 

points. 

	

(1) 	The beginning of each micro program. 

Statements which are the destinations of "GO TO" statements. 

Statements after each conditional ("IF") statement. 

The second and subsequent assignment statements which assign 

a value to a variable receiving input more than once within 

an event group.' 

Identification of Flip-Flops 

Variables which must retain their values after their inputs have 

changed are identified in this step and are assigned to flip-flops. 

The user may also explicitly declare flip-flops by typing (FF) after 

the name of the variable. For use with such variables, new statement 

types to assign values to the SET or RESET inputs, of flip-flops are 

included in the langnage. 

Control Provision 

This routine generates a control counter and decodes its outputs 

for use as the timing signals required.by step 4. 

.7- 	Consolidation 	- 

During this step duplicated logic blocks are eliminated, 

inefficiently connected arrays are re-arranged and associated elements 

are tied together. 	 . 	 • 

8- Expansion 

This routine expands each connection where an array is implied, 
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• '• '' 	generating an individual copy for each bit in the array and produces 

a point-to-point connection list. 

The following example is given in (39). 

Example: 

Assume that there are eight 3-bit registers forming an array 

called X. 	There is another 3-bit register called the K-Register an 

an 8-bit, register called the M-Register. 	The task is to load the 

last three bits of the M-Register into the k-th register in X (k is 

the value stored in the K-Register) if k is not zero.. 	If k is zero, 

the O-th register in X will be cleared. 

The corresponding statement coded in. the original Iverson notation 

is 

(k / O)/\(w/m). 

This statement is input to ALERT. by. the following micro program. 

D 	X(DIM = 	8113) 	• (FF). X is declared as eight 3-bit registers. 

D 	K(DIM = 	3). K is declared as a 3-bit variable. 

D 	M(DIM = 	8). 	' M is declared as an 8-bit variable. 

M 	LIX This is the Load Index micro program. 

• 	 • X('VALUE'K) 	('OR'/K) 1 AND 1 ( 1 SUFFIX 1 (3)/M).. 

END OF SYSTEM. . 	 • , 	• 

Table 2.5 	A micro program in ALERT. 

ALERT processes the above given micro program and generates the 

necessary logic to realise it, in the form of Boolean equations to 

be processed by other programs. 	The lyout of the logic generated 

by ALERT is given in Figure 2.1. 	It shows how the i-th row of X is 
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selected and how the SET and RESET inputs are driven. 	The "OR" gate 

tests the contents of the K-Register and its output is used to gate 

the last 3-bits of the M-Register. 	The decoder selects the appropriate 

row of X and its outputs are gated with the Sl(l) signal, which is 

the timing signal. 	 a 

SR SR  -  
z--- 

,t(L) 

 

K(D) g(4) K(a) 	M(5) 	 /1(6) 

Figure 2.1 Design generated by ALERT. 
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2.1.4. Digital Systems Design Using Sequential Circuits. 

Gerace (40) describes a method for designing a digital system 

as a network of interconnected sequential circuits. 	Basic to the 

method is a register transfer language to specify the behaviour of a 

digital system and a special tye of sequential circuit, called "Level-

Input, Level-Output, Clocked" (LLC) sequential circuit. 	The final 

structure of the digital system is largely undetermined until the 

flow-tables to realise the register transfers are formed. 	This is 

because the registers do not appear on their own but are 'buried' 

within the LLC circuits that form the digital system. 	The steps 

involved in designing a digital system using this approach can be summed 

up as follows. 

The operation of a digital system is defined by means of 

a formal language using register transfer statements. 

The linguistic description is translated into flow-tables 

representing LLC circuits. 

The flow-tables are turned into sequential circuits using 

realistic components. 

it is observed that the final structure of digital systems 

designed using this method consists of two parts which are called the 

"Operation Part" (Sub-system 0) and the "Control Part" (Sub-system C). 

in pus 0 u1pu 1 S 

Fig. 2.2 System Organisation. 
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The language used to define the register transfers is a simple 

register transfer language. 	A "Sentence" can be formed from 

"Transfer Relations" and "Control Expressions" (CE). 	Transfer 

relations can be "Register Transfer Relations" which are called 

"Operation Words" (OW) since they are executed in sub-system 0, or 

they can be "Control Transfer Relations" which are called "Control 

Words" (CW) since they are executed in sub-system C. 	For example, 

the OW 

A1—. B i 	
1= 0, 1.,.... 

means that the contents of B are to be replaced by the contents of 

A for bit values i = 0 to n. B i is called the "Transfer Register". 

The CW 

2 

indicates a jump from the 'present micro instruction (S1 ) to another 

micro instruction 	The label of any micro instruction (S.) 

is enclosed in vertical bars and precedes the. instruction. 	Logical 

operations such as AND, OR, NOT, EXCLUSIVE OR are allowed and are 

represented by the symbols ".", "1-", "", "s", respectively. 	Also, 

carry digits may be indicated by using square brackets. 	The register 

transfers may be conditioned by using CE's which are enclosed in 

parantheses.. Register transfers which are executed simultaneously 

can be written on the same line, separated by commas. A typical micro 

instruction may look like 	
0 	 0 

s1 1 (ADD,GO:ll) A1 	M. ED [r.] - 	M., S1—u.S2  I = 0,1 ..... 

which represents the micro instruction to add the two digits of the A 
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and M registers and the carry digit from the previous bit and then 

put the result into the corresponding bit of the M-Register. When 

this is done control will be given to another micro instruction - 

whose label is S 2 . These operations will be executed only if both 

ADD and GO signals are equal to logical one. 	When a sentence is 

conditioned as above, it is called a "Conditional Sentence" (CS). 

Micro instructions can be grouped to form micro programs which 

represent instructions to be executed by a digital system. 	It is 

assumed that one of the micro programs is a special one thich fetches 

the operation code of the instruction to be executed and causes a 

jump to the proper micro program to execute it. 

It was mentioned earlier that the linguistic descriptions are 

later turned into flow-tables representing LLC circuits. An LLC 

circuit is a sequential circuit with the following characteristics. 

When the clock pulse is not present the internal state 

of the circuit is stable. 	However, changes in the level inputs may 

produce 2hanges in the outputs. 

When the level inputs are stabilised the clock pulse is 

applied. 	The present state and the outputs do not change during 

the presence of the pulse but all changes may occur only after the 

pulse is removed. 

To see how LLC circuit flow-tables are constructed, consider the 

flow-table of a sequential machine SM1, having two inputs (X 1 ,X2 ), 

two outputs (Z1 ,Z2 ) and three internal states (all inputs and 

outputs are levels). 
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Present Next-State and Outputs 

State 00 01 11 10 

1 1,00 2,01 3,01 1,10 

2 3,00 1,11 1,11 3,10 

3 2,00 1,11 1,10 3,10 

Table 2.6 Flow-table of SM1 . 

To realise SM1  as an LLC circuit, first a pulse inp1t is added to it. 

This input will be the clock pulse controlling the operation of the LLC 

circuit. 	The flow-table of SM1  is then expanded such that all next- 

state entries are stable states when the clock input is zero and are 

the same as those for SM1  when the clock input is one. 	The outputs of 

SM1  are duplicated on the two halves of the flow-table such that 

outputs are the same for input conditions which differ only in the 

value of the clock pulse. Hence the LLC flow-table of SM 1  is 

Present Next-State and Outputs 

State 00 01 11 10 09 01 	11 10 

1 1,00 1,01 1,01 1,10 1,00 2,01 	3,01 1,10 

2 2,00 2,11 2,11 2,10 3,00 1,11 	1,11 3,10 

3 3,00 3,11 3 1 10 3,10 2,00 1 111 	1,10 3,10 

Clock = 0 Clock = 1 

Table 2.7 LLC Circuit flow-table of SM, 

Gerace describes three different types of flip-flops and shows how an 

LLC circuit can be realised by using these special flip-flops. The 

complexity of realisation is seen to Le dependent upon the particular 

type of flip-flop used. 
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The method of converting the language description of a digital 

system into a set of flow-tables for LLC circuits, is fully explained 

in the reference ('to). 	Below, a brief description of the technique 

used is given, followed bya simple example. 

A list "L" of OW's is called "Convertible" if in all the OW's in 

L, the transfer register elements have the same index. 	The first 

step in converting a convertible OW is to define the inputs and outputs 

of the LLC circuit which will realise it. A simplified version of 

the rule by which the inputs and outputs of the LLC circuit are defined, 

is as follows. 	The register names appearing ONLY on the left hand 

side of the arrow form the inputs and the transfer register name forms 

the output of the LLC circuit realising an OW. 	If the convertible 

list L contains more than one OW, then the inputs and outputs of the 

LLC circuit are a conjunction of the inputs and outputs for the 

individual OW's, respectively. 	Once the inputs and outputs are 

determined, the equations defining the behaviour of the LLC circuit can 

be obtaincd by the following procedure. 

	

Let 'k' be the number of OW's in L. 	Then, the transfer register 

name in any OW, say OW, is replacedby the next-state variable 

If the same register name also appears on the left hand side of the 

arrow in ar;y of the OW's in L, then they are replaced by the present-

state variable "y"• 	Finally, the arrows are replaced by "equal" 

signs such that k expressions defining the behaviour of the LLC circuit 

which realises L, will be obtained. As an example, assume that a 

digital system is characterised by a single micro program. 

	

l A. 
	+ B. 	A., B.. :C. 	C. 	, 	S 	S 	i = 0, 1,..., fl 

i 	1 	 1 	1 	1 	1 	 1 	1 
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Since all transfer registers (A and C) have the same index Ci) this 

list of OW's in S1  is convertible. 	The LLC circuit realising this 

micro program has only one input (Bk) and two outputs (A i and Ci). 

Replacing the register names by the corresponding state variables and 

the arrows by the "equal" signs, the following equations are obtained. 

- 	 y1 +BY1  

B.'.y2Y2 

The internal variable map of the flow-table obtained from these equations, 

is given below. 

B. 	= 0 1 

y1 y2  Y1  Y2  

00. 0 9 

01- 0 0 

11 1 0 

10 1 0 

B. = 1 1 

Yl  Y2  

1 0 

l . .l 

1 	1 

1. 	0 

Table 2.8. Internal variable map. 

The outputs are defined by using the relatipns A. = Y1 11 C. 	Y2 . 	Then, 

by giving a name to each row of Table 2.8 and expanding it to form 

the flow-table of an LLC circuit Table 2.,9 is obtained. 

Present Next-State and Outputs (A.,C.) 

State 	. B. = 0 B. 
I = 

1 B I  . = 0 B 
I  
. = 1 

I 

.1 . 	1,00 1,00 1,00 14,00 

2 	. 2,01 	. 2,01 1,01 3,01. 

3 	. 3,11 3 5 11 14 1,11 3 3,11  

4 	. 10 14,10 14,10 4,10 

Clock = 0 Clock . 1 

Table 2.9 LLC circuit to realise the micro program. 
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Note that state" 2 Is disconnected from the others and can be deleted. 

The micro program given above, can then be realised by using 

n + 1 identical LLC circuits and the structure of the system will be 

as shown in Figure 2.3. 

A. Co 	AL CL 	 AC 

CI 
S 

Fig. 2.3 Organisation of the LLC circuits. 

Since the digital system given above consists of one micro step, 

the control part of the system does not exist. 	The conversion of a 

digital system description, consisting of more than one micro programs 

some of which may consist of more than one micro instructions, follows 

the same lines as above but is more complex and is difficult to do by 

hand. 	The full method is described in the reference ,  cite. which 

includes some examples. 

The solution to the final step in the design process, where the 

LLC circuits are realised using actual components, is a problem in 

Sequential Machine Theory. The reader is referred to the appendix 

in reference (-iO) where methods to realise an LLC circuit using any 

of the flip-flop models.introduced by Gerace, are given. 

2.1.5. Discussion. 

The four CAD methods described in section .2.1. ypify the 

major techniques used in designing digital systems from a language 

description. Below, various aspects of these methods are compared 
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with each other. 

(i)- Language Aspects. 

All four methods use languages which describe the operation of 

a digital system by register transfer operations. 	From a language 

point of view, it is very convenient to treat any component as a 

register (or a special register). 	However, with the recent advances 

in MSI technology, many types of registers and standard components 

have become easily and cheaply available and this has made it possible 

to reduce the register transfer operations to, simply, setting the 

mode bits (control inputs) of a component to correct values. 	Therefore, 

writing register transfer equations and obtaining Boolean equations 

for the individual bits of quch standard components is no longer required. 

Withthe exception of the Iverson notation, the languages used are 

simpleand easy to learn. 	Iverson notation however, is a higher level 

language allowing the use of some very, powerful operators and this may 

cause some problems in its usage. 	Consider the example given in 

section 2.1.3. 	It is required to test the value of a 3-bit register, K. 

This is achieved by typing ('OR'/K) which represents the OR operation 

of the bits of K. 	The result will be zero if K is zero and one if K 

is non-zero. 	The same test could be achieved by typing ('VALUE'K 0) 

but this would imply a more complicated t9sting mechanism. 	Since K 

isa 3-bit register and 0 is a scalar variable, a new 3-bit register 

would.be  generated, reset to 0 and then a bit-by-bit comparison of 

the two registers would be done. 	Clearly, the language is too 

powerful and one has to have a very sound knowledge of the notation 

and the way it will be interpreted by the translator so that 'correct' 

expressions can be written. 
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(ii)- System structure. 

The four methods discussed in section 2.1 show varying amount 

of importance attached to defining the structure of a digital system. 

In LDT, all registers and data paths should be declared in the. 

declarative section of the description. 	In Schorr's language the 

registers are declared but the data paths are determined by the 

register transfer statements. 	In ALERT, declaration statements are 

used only to define the size and type of storage elements, otherwise 

default assumptions are made and lengths of variables are matched to 

each other during operations. Gerace's system leaves the structure 

undetermined until the flow-tables are obtained. Each approach has 

its advantages and disadvantages but if the structure is to befully 

described (as in LDT), then facilities should exist to input a block 

diagram structure via graphic input devices. The reason for this is 

that, even though a block diagram can be fully defined in linguistic 

terms, such a form of description fails to give an overall view of the 

structure to the human designer. 	The approach chosen by Gerace has 

the disadvantage that since the structure of a digital system is 

determined as a result of processing the description of its behaviour, 

changes in the specification of the performance may cause changes 

in the structure. This may prove unacceptable since maintenance and 

testingrequirements cannot be planned in advance and designing a 

'family' of digital systems may not be easily achieved. 	A'similar 

problem exists in LDT. When a change is made to the language 

description, since the relative starting times of the micro operations 

in the design table may be effected, the design table has to be 

analysed and new time values have to be evaluated again. This may 

mean a re-design of the timing circuit. 
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Timing and Control. 

The -input to LDT does not contain any timing information. 	The 

timing analysis routine of LDT, determines the execution time of each 

micro statement on a pipe-line basis. 	This makes the design of 

complex concurrent operations difficult since the designer cannot 

synchronise operations. 	Schorr's register transfer language requires 

that each micro statement should specify the next time period to be 

activated. 	The control unit is then designed by separating the 

transfer statements for timing, from the others. 	However, this results 

in a control unit which can generate only the timing signals; other 

control signalsare realised together with the register transfer 

operations. 	ALERT does implicit timing but the user can gain access 

to the cQntrol counter of a micro program by explicitly declaring it 

as a register which he can then set to any value both within and from 

outside that micro program. 	This ability to control the timing makes 

it possible to synchronise operations in a parallel processor. 	The 

final structure of a digital system designed by using Gerace's 

techniques naturally divides into a control and an operation part. The 

flow-table for the control part will have as many internal states as 

there are different states in the micro program and its next-state 

entries will be obtained from the state transfer relations written at 

the end of each micro statement. 

Modularity of Design. 

Schorr's system is applicable to small problems but since there 

is no provision for dividing a digital system into component parts, 

a system has to be designed as a whole, thus making it difficult to 

apply the method to large size problems. Both LDT and ALERT allow 
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for the description of a digital system as composed of component 

parts, each with its own specification. 	However, LDT dissolves the 

modularity when generating the design table, by replacing the 'CALL's 

to other micro programs with the entire micro sequence for the called 

micro program. 	In Gerace's system, decomposition is done when 

converting the input description°iito flow-tables. 	Since a set of OW's 

can form a convertible list only if the index of the transfer registers 

are the same for all OW's in that list, the way in which a digital 

system is partitioned depends upon this index. 	Thus, if a change to 

the input description involves a change of the index of a transfer 

register, a different organization of the sequential networks forming 

the system will be necessary. 

(v)- Conversion into Hardware. 

In LDT, Boolean terms are obtained from the design table and then 

• combined (sorted) to obtain the equations for eachbit of the registers. 

In Schorrs system, equations for register transfers are generated by 

a syntax oriented compiler which translates register transfersinto 

Boolean equations (or vice versa for analysis). 	The quality of these 

equations depend upon the translating and sorting techniques used. 

ALERT generates Boolean equations by methodically expanding the input 

specification and performing implied operations (e.g. selection 

decoding). • A consolidation routine attempts to simplify the structure 

before it is fully expanded and its algorithms strongly influence the 

optimality of designs generated by the ALERT system. However, even 

more important than the consolidation routine are those routines which 

perform the implied operations sinôe they effect the structure. 

Consider the example given in section 2.1.3. 	The subscript expression 

X('VALUE'K) implies the use of a decoder to address array X. 	On the 
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right hand side of the statement..in the micro program shown  in Table 

2.5 5  is the expression 'OR'/K which is used to test the contents of 

K. Since, which output of the decoder becomes active depends upon 

the contents of K, no separate testing is necessary. 	If any register. 

other than the O-th one is addressed, it can be loaded with the last 

three bits of the M-Register and should the O-th register be addressed, 

it can be reset without using the M-Register. 	Figure 2.4 gives the 

logic diagram of this design. 

FAV 

K(0) K(1) K(2) 51(1) LoGic 'o' 	 M5J 	M 01 	 rt % '# 

Figure 2.4 A modification of design generated by ALERT. 



-32- 

It can be seen that four gates to do the test and six gates to load 

data (reset) into the O-th register are eliminated. 	In general 

3N i- 1 gates will be eliminated, where N is the length of the 

registers in X. 	Apart from generating redundant logic, ALERT 

prevents the designer from making full use of the properties of the 

components used. 	This is because the designer does not have access 

to the outputs, of implied components. 	Conversion into hardware 

using Gerace's method is achieved by obtaining a set of flow-tables 

and realising them by using special types of flip-flops (F,G and SR 

flip-flops. See. (40))'. 	Once the tables are obtained they can be 

simplified by using sequential network theory. Gerace also claims 

that when simplifying the flow-tables (state reduction), redundant 

registers may be detected. 	However, it is difficult to accept this 

claim. , The flow-tables are formed such that each bit of a transfer 

register will occupy a flip-flop in the corresponding table. 	If 

state reduction is achieved to such an extent that a flip-flop is 

eliminated, then the eliminated flip-flop must belong to a transfer 

register. As each bit of a transfer register can appear only once in 

a micro. statement (X -' P1 5  Y-- P. is not allowed) this would mean. 

the elimination of an OW, which cannot be possible. 	On the other 

hand any elimination of the registers on the left hand side of the 

arrows may only effect the number' of inputs to the LLC circuit and 

this can be detected much more easily byexamining the OW's before 

converting .them into flow-tables. 

(vi)- Design Evaluation. 

All four methods described in section 2.1 'are suitable for 

simulation. However, in the cases of LDT and ALERT, the system 
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description has to be processed.by  the corresponding translator to 

sort out the timing details, before simulation can be possible. 

Schorr's system also allows for the translation of the Boolean 

equations into register transfer statements for analysing the design. 

However, the problem of sorting the resulting transfer statements 

such that meaningful micro programs can be formed, is still unsolved. 

(vii)- Relation to other Methods. 

The four CAD methods discussed above are by no means the best 

linguistic methods but were selected to indicate the general 

techniques used. 	Similar methods can be found in.the literature. 

Chu's ALGOL like design language (27) is a satisfactory source for 

documenting the behaviour of a digital system but structural details 

cannot be specified using this language. 	The language uses ALGOL 

like statements to describe operations, and statements can be 

conditioned by 'labels' which can be Boolean expressions. 	The control 

unit can be specified as a separate setion generating the necessary 

signaisto enable the execution of operations. 	Reserved names are 

used to indicate specific operations such as ADD, DECODE,..., etc. 

but when such names are used more than once, it is not clear whether 

the same adder (for example) or a different one is used to perform 

the operation. 

The language described by Stabler (81) is simple and gives 

enough structural information to build a digital network. A netwo.k 

is defined in: terms of logic gates and registers or storage elements 

which are treated as 'primitives' since the structure willnot be 

analysed beyond these elements. 	More complex gate types or sub- 

machine types (Macro types) can be specified in terms of the 
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primitives and other macros. 	Hence a network is specified in a 

'bottom-to-top' fashion. Because of the amount of detail involved 

in making the specification, the language could be used for designing 

only small size digital systems. 

The Digital Design Language (DDL)(35) is a very powerful language 

but rather complex. 	The structure of a digital system (or a part 

of it since the language allows for partitioning) is described by 

using a variety of 'Facility Declaration' statements and operations 

are specified with the use of 'Operation' statements whic1 can be 

conditioned. 	Parallel operations can be specified by explicitly 

declaring control counters and setting them to correct values. 	Duley 

and Dietmeyer (36) describe the techniques used in translating a DDL 

description into Boolean equations. 	The methods used are rather 

inefficient since a number of passes over the description is required 

and the entire description has to be re-translated whenever any 

change is made to the initial specification. 

Another design language is proposed by Baray and Su (11). 	It 

allows the designer to partition his design into units which are 

capable of operating independently or with a minimum amount of 

communication with each other. In this language the structure and 

control parts of a digital system are separated and expressed in 

different sections. 	Operators are used to describe the function of 

each unit working under the control of control signals. Units yet 

not designed but whose input-output transfer function can be 

expressed in another algorithmic language (e.g. PL/I) can also be used. 

Parallel operations can be specified with the use of BRANCH and 

JUNCTION elements which are used to. activate more than one control 

branch and bring together more than one control branch, respectively. 
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The control section of the language is simple and efficient but its 

structural part is not so because of the unrealistic representation 

of connections between the operators and links. 	The interconnection 

of operators is indicated by using links which can be links having 

memory (registers) or links with no memory (terminals). 	Since direct 

connections between the operators (i.e. Operator outputs - Operator 

inputs) are not allowed, even a simple feed back has to be made by 

directing the operator outputs to a link (terminal) and directing the 

link to the operator inputs. 

Schlaeppi's LOTIS (79) language is another example of a design 

language. 	In general, it is an adaptation of the ALGOL language with 

the exception that a machine description in LOTIS does not have the 

ALGOLblock structure since the whole description is made as one block. 

The hierarchy of the structure of an object machine is achieved by 

the use of MACRO definitions whereby more complex elements can be 

defined in terms of the primitive operators (and, or,...). 	The 

linguistic constituents of the language correspond to actual elements 

thus making a specification in LOTIS more realistic than would 

otherwise be the case. 	A machine description is made in two parts, 

namely the declarative part and the procedural part. 	Transfer 

statements are used to store data values and the timing of transfers 

can be specified by either declaring a time interval for each of the 

operators involved in the transfer, thereby defining a 'transfer 

duration' (the sum of operator times over the longest path in its 

structural tree) or else by explicitly declaring 'transfer i ntervals ?. 

Concurrent assignments and control statements can be grouped together 

to form a 'Step' and a list of steps forms a 'Sequence'. 	The time 
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relations between the steps of a sequence can be expressed in three 

modes; 

Asynchronous mode: Step interval is equal to the duration 

of the longest operation in the step. 

Fixed-delay mode: Explicit delcarations are used to define 

the step interval. 

Synchronous mode: The first step in succession is activated 

as soon as the step condition (which can be obtained from the 

output of a clock generator)becomes true. 

It is felt that putting the complete description of an object 

machine into a single procedural block and the detail involved in 

specifying some of the timing relations areS the disadvantages of LOTIS, 

which otherwise is a simple and useful language. 

The Sequence Chart (78) of IBM displays timing and sequencing 

information in a graphic manner (it is more correct to say lists, 

since output is not on a graphic display). 	This can represent only 

the control part of a digital network and its form is unsuitable for 

most available input-output equipment. The sequence chart forms 

only a part of the logical design system as it exists within IBM and 

on its own is of little valueas a design aid. 

Bell & Newell (18) describe two descriptive systems for the 

top computer-system (PMS) and the program level (ISP). 	However, 

these two systems are used only for system documentation at the 

respective level and a digital system design method, accepting as 

input the architecture of the object machine in the PMS or ISP 

notation, liasyet to emerge. 
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Finally, it will be proper to conclude this section by mentioning 

some languages which are used only to simulate digital networks. 

None of these languages are used to describe digital systems with 

the purpose of generating the logic to realise them. The level of 

simulation is not the same in all simulators and some simulate  the 

described logic at the gate and flip-flop level (26), (45), (83) 

whereas others provide a functional simulation (5), (58). 	Three 

valued simulation (50)is another alternative. 

2.2. 	Methods Using Flow-Charts. 

Although some experimental CAD systems have been proposed for 

inputting logic diagrams into a digital computer (67), graphical 

approaches to logic design have largely been used only in the area of 

specifying digital systems by drawing a flow-chart of its operations. 

The three methods described in the following sections all use the 

flow-chart approach and in each case design synthesis is achieved by 

using special components which have a ne-to-one correspondence with 

the flow-chart symbols. 

2.2.1. Control Point Design Using Modular Logic. 

C. Rey (75) has proposed some general purpose building blocks 

(modules) to convert a flow-chart design into a logical network. 

The resulting network does not perform any "Data Operationst' but 

merely generates the correct sequence of control signals to initiate 

them. Hence, this approach can be used only in designing control 

circuits. The modularity of the approach comes from the one-to-one 

correspondence between the flow-chart symbols and the components 

used to realise them. The four basic flow-chart symbols are 

described below. 
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The "Task Box" is used to represent a set of elementary 

operations. 

e.g. 	

[TAS TAj 

A "Decision Box" is a point in the flow-chart where the 

control sequence is directed tOwards one of the two output branches 

depending on the logical value of a condition. 

e.g. 

(iii)- The "Circle" has two forms. 	A normalcircie (called the 

"Circle") is used to merge two or more control signals (i.e. logical 

OR). 	A "Dotted-Circle" allows the control flow to continue only when 

all its inputs are activated (i.e. logical AND). 

e.g. 

(iv)- The "Fan-Out Point" is a point where control is split 

-into two or more parallel branches. 

e.g. 

A 
Figure 2.5 shows atypical flow-chart. Since only NAND gates are 

used in designing the modules, it is assumed that all control signals 

are normally at logic "1" and they become a negative pulse (1-0-1) 

when activated. 
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Figure 2.5 Flow-Chart. 
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The basic building blocks are described below. 

(a)- DO Module. 

The DO module realises a task-box. Note that it only generates 

the signals to activate an operation and does not perform the 

operation itself. There are two forms of this module. 	The DOA(n) 

module is used for asynchronous operations. 	Figure 2.6 (b) shows 

its design. Assuming that all the A 1  inputs are initiallyat logic 

111 11 , its operation is as follows. 	When one of the inputs, A.,, 

becomes ttOt?,  the flip-flop (cross-coupled NAND gates) is set. 	When 

A. becomes 111" again, a negative pulse is generated which is used to 

activate the operation to be performed and the A output feeds the 

next module. 	The output signal is also fed back into the flip-flop 

and this resets the system so that the outputs become 111" again. 

Hence both the inputs and oüiputs are negative pulses. 	For trpseudo_ 

Asynchronous" operations the second form of the component is used. 

In this form, it is called the DO(n) module and its design is shown 

in Figure 2.6 (c). 	Its operation is the same as the DOA(n) module 

except that the A output appears after a time delay which simulates 

the duration of the task to be performed. 
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A. 	 A 

(a) Flow-Chart 

A 

A 

A 

Asynch'onous 

I 

A 

(c) Synchronous 

Figure 2.6 The DO lbdule. 
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(b)- Sequence Module 

The S(n) module realises a two-way branch. 	Its input conditions 

are the same as for the DO module and the control flow is directed 

to the SO or Si output depending on the value of the C input. Note 

that C must be set to the correct value before any of the A. inputs 

are activated. 	 - 	 - 

A 	 A 

Si so 

(a) Flow-Chart 

A 

/ 

C. 
	 (b) Logic Design 

Figure 2.7 The Sequence Module. 
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(c)- Wait Module 

The wait module has two forms. 	The first one is called Wl(n). 

In this form, Wl(n) can be realised by using an S(n + 1) module 

but because of its frequent use, a cheaper design has been proposed.. 

Figure 2.8 shows its realisation and the operation of the component 

is clear from Figure 2.8 (a). 

A 

 

A 1 

51 SO 

(b) •S(n + 1) Realisation 

(a) Flcw-Chart. 

p 

I 
'0 

gic Design 

Figure 2.8 Wait Module. 
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The second form of the wait module is called W2(n) and its 

operation is similar to that of Wl(n) except that a pulse appears 

at the output only if all A1  inputs are activated and W is at logic 

It1,,. 

A 	 A 

(a) Flow-Chart. 
VVO 

vvo 

(.b) Logic Design 

Figure 2.9 Second form of Wait Module. 
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A very useful characteristic of the modules described above is 

that the input and output pulses are all of the same polarity (i-a-i) 

so that the outputs of one can be directly connected to the inputs 

of another. For asynchronous and pseudo-asynchronous operations 

the DOA(n) and D0(n) modules are used, respectively. 	For synchronous 

operations, a D0(n) followed by a W(i) (note that Wl(l) is identical 

to W2(l)) should be used and the clock pulse should be connected to 

the "Wt' input of the wait module. 

Figure 2.10 shows the realisation of the flow-chart in Figure 

2.5. 	The one-to-one correspondence between the modules and flow-chart 

symbols is evident from the realisation. 	To obtain a cheaper (and 

faster) design, the flow-chart has to be properly organised. 	C. Rey 

gives some basic rules used to simplify a given flow-chart. 	Using one 

of these rules, the design given in Figure 2.10 can be simplified by 

setting the smaller of delay values 1B  and A equal to the other 

and eliminating the W2(2) module by connecting the outputs of the 

task-boxes B and C to the subroutine c'l unit. 
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Figure 2.10 Realisation of flow-chart. 
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2.2.2. The PDP-16 Concept. 

PDP-16 is a custom designed general purpose digital computer 

which is assembled from functional hardware options (modules). 

Actually, a PDP-16 is a concept rather than a computer since a PDP-16 

does not exist until it is designed to a particular specification. 

The functional options were originally designed by C. Bell using the 

name "Register Transfer Modules (RTM)" (15). 	Their production 

version has been designed by DEC using the name PDP-16 (2). 	The 

hardware options fall into two categories. 

(1)- Functional (data) Options 

The PDP-16 functional options perform arithmetic and logical 

operations and data transfers on 16-bits of data. 	Communication 

between the registers and the General Purpose Arithmetic (GPA) Unit 

is. done through a 16-bit bi-directional data bus. 	All units operate 

in asynchronous mode and contain the necessary logic for the timing 

of operations. 	Every PDP-16 should contain the KBS16 buF sense 

unit (the basic bus structure) and the KTM16 bus terminator (resistive 

network to terminate the data and timing bus lines). 	Allother 

modules are optional and these include memory, registers, GPA, I/O 

interface and flags. 

(ii)- Flow (Control) Options. 

The flow options are used to design the control unit of a 

PDP-16. 	The CU is specified by a flow-chart where each symbol 	has 

a flow-option counterpart. 	The basic options are "Branch" units 

(two-way or eight-way), "OR" units to merge control signals, "Evoke" 

units which represent one complete data operation and "Subroutine 
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Return" units to call a group of operations and continue when they 

are completed. 

A PDP-16 is designed by first selecting a suitable set of data 

options and drawing the flow-chart of the CU which will control 

their operation. There are certain rules to be observed when 

drawing the flow-chart. 	First of all; only the selected data options 

should be referred to (i.e. if "A + B" is required, the corresponding 

options which provide two registers and an adder should be selected 

among the data options). 	Other restrictions are, no output of a 

branch unit can be connected directly to its input without first going 

through an evoke unit, wired -OR connections are not allowed and there 

must be at least one evoke unit between any twosubroutine call 

elements which refer to the same group of operations. A broader 

explanation of these rules can be found in the reference (2). 	When 

the flow-chart is ready, all data and control options are given a 

unique number to identify them and then an input file is prepared. 

This input file, to be procesed by DEC's Chartware design package, 

contains the following information. 

(a)- Socket Definitions. 

•A PDP-16 can be constructed to occupy up to six rows and thirty 

two columns of sockets. 	The positions of the sockets that the 

PDP-16 modules can be plugged in, is defined by giving the row name 

and the first and last socket numbers. For example the first ten 

sockets on the last two rows are assigned by typing 

1, 10 

1, 10 
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Functional-option Definitions. 

All functional options used should be specified by giving the 

module name and the number which identifies them. 

e.g. 

MS16-A, 3, 14 

DB16-C, 9 

identifies units numbered 3 and. 14 as registers and unit 9 as an 

input interface. Additional space can be reserved for future bus 

eXteflsiQfls by using the module name MOD-2. 

Flow-option Definitions. 

The flow options are identified in exactly the same way as the 

functional options. 

e.g. 

KEV16 1  5, 7 

KB16-A, 10-12 

identifies the units numbered 5 and 7 as evoke modules an' units 

numbered 10, 11, 12 are two-way branches. 

(a)- OR Gates and other Modules 

The same format as above is used to identify OR gates. 	Also 

dummy modules to be replaced by future modifications can be specified. 

by using the module name MOD-i. 

e.g. 

KOR716B, 1, 2 

MOD-i, 20, 21 

Units 1 and 2 are defined as four input OR gates and units 20 and 21 

are dummy modules. 
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Wiring Data. 

The connections between the flow-chart elements and the 

functional options are defined by using abbreviated names for the 

inputs and outputs of components, using the following format. 

Output, input, input ...... etc. 

For example, if the functional options are numbered such that the CPA 

is unit 30 (typed as KAC16,30), register "A" is unit 35 (typed as 

KAR16, 35) then the following section of a flow-chart will be coded 

as shown below. 	 - 

—z> F rorr U fl i 	 - 

A-A-1 I 
9 516,35 [LDAJ 	, 30 [A - 1] 

This entry has the following meaning 

95 	 - 	The output of unit 9 is connected to 

16 5 	 the input of evoke unit, number 16, 

35 [LDA] , the "load data into the A register of CPA" input 

of the register unit, number 35, 

30 CA - 	the "decrement register A by one" input of the 

CPA unit, number 30. 

Flow-chart Symbol Definitions. 

This part of the input file is necessary only if a printout 

of the flow-chart is requested. 

The Chartware programs analyse the input file and generate a 

set of documentation listings showing the position of each option 

on a card, the socket to which the cards are to be plugged in, a- 
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pin-to-pin connection listing and the order in which connections 

are to be made for the back-wiring of sockets. 	Control tapes for 

automatic wiring machines can also be obtained. 

In summary, a PDP-16 is designed by selecting some functional 

options and drawing the flow-chart of the control unit. 	The units 

used and the global connections between them, are then given as 

input to the Chartware programs which produce listings showing the 

positions of cards in the sockets and the back-wiring connections. 

2.2.3. The LOGOS Prolect. 

The LOGOS project (41), (46), (47) is an attempt to create a 

CAD system for the integrated software/hardware design of large scale 

computer systems. 	A prime objective in designing the LOGOS system 

has been "a uniform approach to system design (both software and 

hardware) at several levels". 	This implies that software and 

hardware will be specified in the same manner and whatever level the 

designer is working, the method of specification will be the same. 

A further objective has been, to be able to handle modifications, 

without upsetting the unconcerned groups working on the same problem. 

To ensure that all designers obey the ground rules, the design 

environment is an on-line interactive time-sharing computer system 

with a common data base, under the control of a Primitive Data base 

Management System (PDMS) (73). 	Input to LOGOS files is prepared 

in graphical form, on display units. 	A database file can be local 

(unique to a single user) or global (sharable by different users) 

such that separate units (or the different level design of the same 

unit) designed by different people, can be linked together. 	Once 

the input files are ready, the total system performance can be 
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checked and the factoring of software and hardware can be done. 

In LOGOS, a process is represented by drawing a "Directed 

Graph" showing the flow of information (77). 	Separate graphs are 

drawn to represent the data flow and the control flow and these have 

been called the "Data Graph" (DG) and Control Graph" (CG), 

respectively. 	A graph is drawn by joining the "Cell's" (represented 

by squares) to "Operator"s (represented by circles) through edges 

(represented by arrows). 	The cells and operators must be connected 

to each other, in alternating order. The start and end points of a 

graph are indicated by the "Blockhead" and "Blockend" symbols (this 

is not necessary for the data graph). 	Any activity is represented 

by a CC and an associated DC. 	Figure 2.11. shows a typical CG-DG 

pair. 	 - 

a 
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Figure 2.11 A Directed-graph. 

Figure 2.11. can be interpreted as follows. 	Each cell is given a 

unique number for identificationand inside the cell its value is 

written. For digital systems v1  can be 0 or 1 and a "Cell-

Operator-Cell" sequence can be thought of as an "Input terminal-

Component-Output terminal" sequence in a component definition. 

When its input cells contain the correct values, and the output cells 

contain zeros ,operator a1tt  is initiated and activates operator "a" 
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in the data graph. 	Upon completion of its operation on the data vaiqes, 

operator "a" sends a termination signal to 'a 1 ", which then generates 

new outputs and the control flows downstream. Apart from this 

downstream flow of signals, there is also an invisible upstream 

flow since when any operator fires (i.e. changes its outputs), it 

also changes the values in its input cells. 	For non-digital systems, 

the updating of the input cells is done by subtracting one from its 

value, if it is not zero. 	For digital systems however, an operator 

resets its input cells to zero, after it fires. 	With this upstream 

flow, the operator prepares itself for new stimuli. 	The transfer 

function of each operator can be expressed in vector form. 	A "State 

Vector" q is defined as the numbers in each cell written in cell order. 

Thus, the state vector for operator a 1  might be; 

Cell 

1 1 0 

2 1 0 

3 0 1 

4 0 1 

q a1  

Figure 2.12 State Vector of Operator a 1 . 

The operators may represent self-contained structures (Blockhead, 

., Bldckend) so that at any level of design the operators may be 

replaced by their detailed representation and vice-versa. 	The 

blockhead, blockend structure is analogous to the ALGOL "Begin-End" 

block. A pavameter passing method is used when starting a new block. 

The lowest level control operator is called PCON. 	Figure 

2.13 shows a PCON and its transfer function. 
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Figure 2.13 PCON and its State-vector. 

The PCON's can be realised in hardware by replacing the cells with 

flop-flops. 	Figure 2.14 shows the realisation of the PCON, given 

in Figure 2.13. 

Figuie 2.1 14 Realisation of PCON. 

The PCON's may operate in the synchronous or asynchronous mode 

but communication with other PCON's is done asynchronously. 	This is 

essential since any operation may take. anãrbitrarily long time and others 
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have to wait until it is completed. 	Synchronisation between a PCON 

and its corresponding data operator is accomplished by partitioning 

a PCOI'I into an "Initiation" part which activates the data operator, 

and a "Termination" part which is activated by the data operator 

when its operation. is completed. 	This is illustrated in Figure 2.15. 

1 	2 
Cell 

[1 

Figure 2.15 Data Synchronisation of PCON. 
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It is apparent from Figure 2.15 that data dependent operations can 

be specified by !naking the necessary link between the control and 

data operators. 	Thus, the basic LOGOS functions (AND, OR, BRANCH) 

can be defined and implemented in hardware. More complex operators 

can be defined as MACRO operators, using the simpler ones. 	As the 

method of representation is same throughout, the designer can work 

at any level or change to a lower or higher one without difficulty. 

In practice, even though designing the control graph is more 

difficult, the data graph presents more problems in repre'entation. 

This is because the control variables are mostly single bits whereas 

data variables are groups of bits (e.g. a register). 	To prevent 

too much detail in drawing the data graph, text handling facilities 

exist whereby certain types of information can he input in textual 

form. 	This applieg also to specifying the links between the data and. 

control operators although drawing dottedlinest to represent these 

links is also permissible. 

When the input files are ready, the design is analysed. 	Karp 

& Miller (56) has shown that "a schema is determinate if, given an 

initial state and an initial set of values, each data location has a 

fixed sequence of values". 	This condition is shown to be equivalent 

to, 	 . 

no two data operators should be concurrently enabled to 

store data into the same location., 

no data operator should be enabled to store data into a 

location while another operator is enabled to read values from the 

same location.. 

Instead of an exhaustive simulation to verify a design, in 
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LOGOS, the system is checked for determinancy and if it is found to 

be determinate, then it is guaranteed to operate asspecified 

(see section 2.3 ). 

2.2.4. Discussion. 

The common philosophy of the three methods described in the 

previous section is that they all separate the data and control 

operations from each other and the control unit is specified as a 

flow-chart. The way in which the data part is designed and linked 

to the control unit is different in each case. 	In fact, C. Rey 

(75) does not describe this side of the design process at all. 

However, the modules described in section 2.2.1 are quite useful in 

designing control circuits. 	The fact that all control inputs and 

ouputs are pulses of the same polarity (1-0-1) makes these modules 

ideally suited for combined use. By changing the NAND gates to NOR 

gates, the reverse polarity (0-1-0) pulses can be obtained. 

Communication with data elements is done by "level" signals. 	These 

include the "wait" and "branch" inputs of the W(n) and S(ri) modules, 

respectively, and DO output of the DOA(n) and DO(n) modules. 	This 

latter module is very useful since it simulates the task duration. 

Various methods of calling 'subroutines' have been illustrated in 

the refrence. 	When the task duration is not known, a "Wait" 

module following the DO module is used. 

The modules themselves are optimal but there is no guarantee 

that the flow-chart is so, or even that it is well behaved 

(determinate). 	Apart from some basic principles, there is no way 

of simplifying a flow-chart. The simple rules used to this end can 

be found in the reference. Since there is no mention in the 
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reference cited about the computer aids used in describing and 

simplifying the flow-chart and turning it into hardware, an objective 

criticism of the techniques described is not possible. 	Yet, the 

simplicity and efficiency of the modules justify their being 

included for discussion. 

Going one step further than the modules described by C. Rey, 

is the PDP-16 concept. 	The PDP-16 modules form a complete set of 

control and data components able to communicate with each other. 

Their switching circuit details can be found in (16). 	The delay 

values of the elements are quoted in (2) and for the flow-options, 

they are between twelve (for the OR gate) and sixty two (for Evoke) 

nano seconds. 	The PDP-16 concept is commendable for the set of 

comprehensive options which from a system designer's point of view 

are simpleand meaningful and it is possible, with the aid of the 

Chartware design programs, to bring these options together to form a 

complete digital system. 	The flow-options are simple and adequate. 

However, the functional options are rather restrictive. 	Firstly, a 

PDP-16 may have only one "bus" through which all data transfers are 

done. Also, the CPA can perform operations on the contents of A and 

B. registers alone. 	Operations on any other registers can b.e done by 

transferring their contents to the A and/or B register and copying 

the result back. 	In a later version (see reference (16)) 5  a new 

module has been introduced which solves this problem to some extent by 

allowing operations between the A register and one of the registers 

from a 16-address scratch-pad memory. 	In spite of the addition of 

this new module, the data part of a PDP-16 is very rigid in structure 

and the designer cannot control the operations; he can only initiate 

them. 
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The Chartware programs are very useful but the form of the 

input file is rather off-putting.' The control unit of a PDP-16 is 

expressed as a flow-chart and then coded for input to the design 

programs. 	By coding (i.e. turning the diagram into a set of letters, 

digits and punctuation marks) the whole essence of the flow-chart is 

destroyed. 	This step is laborious, uncreative and very error-prone. 

Furthermore, the data part of a PDP-16 is hidden very deeply under 

the specification. 	The only reference to the functional-options 

is from the input file as connections to the specific pins of the 

modules. 	The designer can draw a block-diagram of the structure of 

a PDP-16 but that would be more an academic exercise than a creative 

process. 

In spite of its certain draw-backs, the PDP-16 concept is quite 

useful since with some help from DEC one can design a small size 

digital computer in a relatively short time. 	It is very suitable for 

educational and some special-purpose computer applications. 

Project LOGOS is the most general approach among the flow-chart 

methods described in the previous sections. 	The method of 

specification can be used for defining both hardware and software 

systems. 	In fact, the aim is to specify a system as a whole, analyse 

• 	it and then do the software/hardware split. The control-graph, 

- 	data-graph pair is a special flow-chart which separates control-flow 

from data-flow. 

• ' ""b' 	' 	- 

(ic) DEC used to provide a full PDP-16 design service to genèrate' 
process and construct PDP-16 designs, as required. 	This 
service no longer continues and the Chartware programs are 
not supported anymore. However, the PDP-16 modules can still 
be ordered from DEC. 
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Operations are carried out by special operators that activate the 

next set of operators only if they are ready to accept the activity 

signals. 	Though the principles are equally applicable to loth 

software and hardware, it seems rather doubtful that software 

engineers will be willing to use them. 	Several reasons could be 

given for this. 

Though in hardware systems, race conditions may occur and 

therefore it is a sound principle to activate components only when 

they are ready to receive data, such is not the case for software since 

computer programs are executed sequentially. 	Thus, except for 

multi-processor systems, interrupt handling routines, or in other real-

time applications, the (LOGOS) approach will not be beneficial from 

that point of view. 

Building and testing software systems is relatively cheaper 

than hardware systems. A software engineer does not fear too much 

about hi.6 program not working correctly at the first run (in fact he 

hardly ever expects this to happen). 	By using simple techniques 

such as inserting PAUSE or WRITE statements in his program, or by 

using special debugging programs (e.g. DDT),programs can be corrected 

easily. 	In most cases, program bugs will be such things as using 

a wrong index, forgetting to set a variable to a certain value, 

passing wrong arguments to a subroutine,.... etc. 

•A computer programmer can express the logic of his 

program - much more easily and elegantly, by using the normal flow-chart 

diagrams. 	It is doubtful that he will want to part from such 

"free style" drawings. 
1 
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(iv)- Most programmers draw a flow-chart only after the 

program is written. 	Even if they were convinced to do otherwise, 

it is difficult to estimate the balance of the overheads (increased 

computer usage when preparing a flow-chart, cost of special display 

terminals .....etc.) versus the speed-and accuracy with which 

programs may be written. 

For hardware systems, however, the LOGOS approach is very 

promising. 	As mentioned earlier, the principle that "operators 

should not fire unless others are ready to accept information", is 

essential to any LOGOS design. 	This upstream flow of information 

goes through the same paths as the doi.nstream flow of control. 	It may 

be a good idea to separate these two sets of signals from each other. 

As the current demand is for "Testable" hardware, providing the test 

(or maintenance) engineer with a distinct set of signals indicating 

the status of each operator may be extremely useful. 	Appendix A 

describes a proposal for a different representation of LOGOS diagrams 

and shows how the operators can be designed to incoDporate the changes 

proposed. 

Another philosophy adopted. in LOGOS is to avoid exhaustive 

simulation by replacing it with the Karp & Miller algorithms to check 

if a system is -determinate. 	Even though the upstream flow of 

information eliminates races along a single branch of the control 

graph, there may still be races caused by different control flows 

along separate paths (especially in parallel operations). 	The use of 

analytical techniques to detect such cases is appreciated. However, 

a final check which shows that the specification is correct, is still 

necessary. 
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A designer implementing a particular algorithm should be able to see 

his algorithm in action and make sure that it is correct. 

Therefore, in addition, to the determinancy test, a simulator is 

essential. 

2.3. An overall criticism of existing CAD methods. 

A great majority of existing CAD methods applied to logic design, 

use formal languages in specifying digital systems. 	Probably, the 

reason for this is the relative ease of designing new languages to 

better existing ones, compared to finding new methods of describing 

digital systems. 	Languages are best suited to describe sequential 

operations. 	However, most digital systems operate in parallel. 

Even in those computers, which seem to operate sequentially, at the 

micro program level, there is usually more than one activity taking 

place at a given time. 	The concept of time, which is alien to 

languages, has to be introduced to them in the form of variables (or 

arrays for counters) conditioning the operations and it is here that 

most design languages fail. 	There are some design methods using 

formal languages (e.g. LDT) which eliminate this variable from the 

initial description, but this is 'hiding' the timing from the user, 

rather than eliminating it and produces some undesirable side effects. 

For example, in LDT, if a new operation is inserted into the language 

description, then all operations coming. after it and sharing the same 

registers, will have their timing signals changed. As LDT generates 

designs working as a pipe-line system, this may cause a complete 

re-shuffle of operations. 

() Through private communications with a member of the LOGOS team 
(Prof. F.G. Heath), the author has been informed that the problem 
of writing an equivalent of a simulator for this purpose, is 
under consideration. 
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The second point where languages are deficient is in defining 

the structure of the target digital system. 	Structural information 

is best expressed in block-diagram form. 	Using language statements 

which name the components and give a list of connections among them, 

while being suitable for computer processing, is of little value for 

communicating ideas among designers. 

In spite of these shortcomings, formal languages are of great 

importance in CAD systems because of their desci'iptive powers, and 

if carefully designed, their unambiguity. 

Design methods using flow-charts are relatively new. 	This is 

mainly because special terminals are required to input the flow-charts 

into a digital computer. 	The PDP-16 approach does not .require 

drawing diagrams on a display terminal and expresses the flow-chart 

in language terms. 	The LOGOS project is the only attempt that the 

author is aware of, aimed at designing large scale systems by using 

a directed-graph approach. As the techniques have not yet been fully 

implemented, it is difficult to make a true criticism of LOGOS but 

the approach seems to be a viable proposition. 

The common characteristic of flow-chart methods is the separation 

of data and control operations. This is a sound principle since it 

• 

	

	simplifies the design task and once the overall structure is defined, 

one can try different control organisation to find the best solution. 
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Chapter 3: A Design Philosophy. 

Most existing CAD programs take a description of the target 

machine in some sort of language form, and use it to determine the 

hardware required to realise the operations. 	The key point to any 

approach of this type is the method of specification since it must 

be concise and simple but yet, should carry enough information to 

realise the description in hardware. 	It was observed in Chapter 2 

that introducing some hardware notions into the design specification 

simplifies the task. 	Register transfer languages are a good example 

of this but they are restrictive since the designer is forced to think 

only in terms of register structures and yet, other structures exist. 

Therefore, a method which allows the designer to use various different 

types of logic structure is required. 	Extending this idea further, 

a "Design Space" can be defined which consists only of "Components" 

and "Connections". All required operations can then be defined by 

the corresponding components which will realise them. 	Since the 

operatioiIr to be executed by. a digital system can be divided into 

those of "Data" and "Control", it is logical to specify and realise 

themsepárately. 	Consequently, the design space can be divided 

into a "Data Space" (called the D-space) and a "Control Space" 

(called the C-space), each with its own components and connections. 

The two spaces arethen linked together by the "Control Signals" which 

may originate from either space (so that data dependent opertions 

can be defined). 	Figure 3.1 illustrates these relations. 
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Figure 3.1 The "Design Space" 

The problem of designing a digital system is then resolved into the 

two simpler problems of designing the D-space and C-space. 	The 

instruction repertoire and the type of componente used will determine 

the necessary control signals. If this philosophy is accepted, the .  

target mtchine should be structured so as to allow the specification 

and realisation of the two spaces separately. 

3.1. Structure organisation 

• In the approach to be described, the process of determining the 

components and their organisation begins by the extraction of data 

operations from the design requirements. A set of data components 

is then chosen to implement them. The nature of both data and control 

components is described in the next section. 	Here it suffices to 

say that data components store (e.g. register), route (e.g. common 

highway) or modify (e.g. adder) the data values and the control, 

components generate the required signals to activate them. 	This is 
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illustrated in Figure 3.2. 	AC1 and AC2 are two storage registers 

and ADD is a binary adder. 	These-units share a common highway and 

their operation is controlled by two control components Cl, C2. 

D Spcxce. 	 - 	c - POLCe 

Figure 3.2 A Simple Digital System 

The decomposition of the C-space is left to the designer. He may 

combine Cl and C2 to form a larger component or break them down into 



smaller ones. 	It is better to combine only the related control 

operations and assign them to one component so that modifications 

will effect only a small part of the C-space. 	In the eventual 

machine the components are likely to be positioned close together 

and the separation described he±e is only conceptual. 

3.2. Component types 

An examination of the structure of some existing computers shows 

that many of them use very similar data components. 	The register 

is the most common of all. 	So common, in fact, that several design 

langiages have been designed around a data space which consists only 

of a set of registers (or special registers) and the connections 

between them. As mentioned earlier, it is desirable to add to this 

set, components which can store, route or modify data values. 	This 

freedom is justified by the advances in integrated circuit technology 

since many such components are now available as single packages. 

They usually contain control inputs for external control of their 

operation, thereby making them consistent with the design philosopy 

described here. Even if a particular data component may not be 

directly available, it is a relatively easy task to design one, using 

the existing components. 

The control components however, haveto be designed according 

to the specific control operations required. 	Their task 1,s to 

activate the data components and decide on the next operation to 

be performed. 	Since in most cases such decisions may depend upon 

the results of previous operations, control components are mainly 

sequential circuits. 	Using sequential circuits, control operations 

can be synchronised to each other and the different control states 
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can be represented by the internal-state of such components. 	On the 

other hand, some control functions can be implemented by using 

combinational circuits (e.g. index register selection). 	In either 

case the components in the C-space are themselves small logic 

circuits. Other types of control components can be waveform 

generators or counters, available as standard components. 	When 

implementing the control operations, it is convenient to hide the 

internal structure of such components from the designer, allowing hire 

to work at a higher level and use only the functions that they realise. 

Therefore these components will be represented as "black-boxes" which 

realise switching functions and the designer will be responsible for 

describing their behaviour. 

• • Memories, often of the read-only variety, can also be used as 

control components. They can be thought of as sequential components 

but it is more convenient to give them special treatment. 	In this 

case, the general description of the ROM device can be supplied by 

the design system. but the specific memory contents should e specified 

by the designer. 
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Chapter Lt 	Method of Design. 

This chapter describes three computer programs that form an 

interactive CAD system for designing digital systems. 	The design 

process has been broken into three overlapping activities which are 

called "Component Specification", "Circuit Description" and "Design 

Evaluation". An overall view of the approach is given below 

followed by a description of the facilities provided. 

4.1 	General view of the method 

The first step in the design process is to describe the terminal 

behaviour of some high-level components which will be used to realise 

a particular digital system. 	Some of these components are obtained 

from a component library which contains the definitions of standard 

data or control components (e.g. register, memory, decoder,.. .etc.). 

Other components which realise' control operations specific to the 

particular application, are described by the designer. As mentioned 

in the pr'wious chapter, in general, control components are themselves 

logic circuits which realise combinational or sequential switching 

functions. 	Hence, the "User Defined" components are divided into two 

groups and the first program is used to specify their terminal 

behaviour. 	Specification is made in terms of truth or state-tables 

as appropriate. 	These idealised elements can be realised in 

particular technologies by standard computer algorithms developed 

elsewhere (64). 

The second program allows the designer to draw circuit diagrams 

on a display screen. 	Components are displayed as rectangles with 

an appropriate number of pins (terminals) and connections are made 

by drawing 'rubber-band' lines between their terminals. 	A set of 
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interconnected components can be grouped together and catalogued as 

"Macro" blocks. Terminal behaviour of the user defined components 

can be modified at any time without altering the drawings. 

Logic designs prepared in this manner are then tested by using 

a functional simulator. 	The simulator program is interactive, 

allowing the user to stop simulation to examine and/or change logic 

values. Contents of memory or read-only memory components can also 

be changed so that the digital system being designed can be micro 

programmed. 

The individual programs of the design system are described in 

the following sections. 

4.2. Component specification 

The first program is used to specify the terminal behaviour of 

user-defined conponents. 	The program has two modes of operation. 

In the 'conversational' mode it accepts instructions typed on the 

control teletype so that new components can be created or the 

existing ones can be modified. 	An example of conversation with the 

program is given below. 	Underlined words are program outputs. 

READY: 	Program is ready. 

OPEN 	New component definition. 

NAME: 	Choose a name. 

BLOCK 	Component is to be called BLOCK. 

TYPE: 	Which type? 

C 	Combinational ("S" fOr sequential). 

INPUTS: 	Number of input terminals? 

2 

(*) Certain names are reserved for library components. 
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OUTPUTS: 	Number of output ermina1s? 

2 

READY: 	Data accepted 

START 	Start display. 

Following this conversation, the program enters into a 'graphical' 

mode and displays a 2 input, 2 output truth-table (initially all 

outputs are set to zero). 	This is illustrated in Figure 4.1. 

Joj _ 	IoI _ 

10* 	Fol  

A 	. Fl F2 STORE 
0 	0 0 0 STOP 
0 	1 0 0 	. ONE 
1 	1 • 0 0 ZERO 

0 0 0 

Figure 4.1 Truth-table Display fora Two-input, Two-output component. 

The four boxes seen at the top of the figure represent the input and 

output terminals, in that order. 	Logic values are shown as 1,0, . 

and (don't care condition). By pointing the light-pen to one of 

the logic values and then to a terminal-box, the contents of the box 

can be changed. This way, the user can set up input conditions and 

() 	If the component is a sequential one, the program requests the 
number of internal-states before typing out this line. 
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indicates the outputs they affect by placing 111" into the corresponding 

output-box. 	Hence, more than one output terminal can be affected 

for the same input condition. 	The logic value that the selected 

outputs should produce is shown inside the centre box. 	Pointing 

the light-pen to "STORE" enters the values into the truth-table and 

mistakes can be detected by visual inspection. 	Figure 4.2 shows how 

the second output.of the component can be set to realise the Boolean 

function F2 =A.(i.e. complementof the first input). 

F I 
A 	B 	Fl 	E2 	STORE 
0 	0. 	0 	1 	STOP 
0 	1 	 0 	1 	. 	ONE 
1 	1 	 0 	0 	ZERO 
1 	0 	00 

Figure 4.2 Sp ecifying the Values 

• •• 	Outputs can be further modified by changing the input conditions 

• 	and/or the output value. 	For example by changing the inputs to 

1" and pointing to "STORE" a second time, the function realised 

by F2 becomes F2 A + B. State-tables are specified in a similar 

way, using additional light-buttons to select the present and/or 

next-state values. 	Typing "STOP" on the control teletype terminates 

the program and the tables are stored in a file on disc. 	Components 
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having up to 5 inputs, 5 outputs and 16 internal-states can be 

defined. 	These numbers are adequate since only the non-standard 

control-components are defined in this way. Components which realise 

functions of a larger number of control variables should be broken 

into smaller ones so that specifications and modifications can be 

made easily. 

4.3. 	Circuit description 

Circuit descriptions are also made on-line by using a program 

which enables the designer to draw logic diagrams on the display screen. 

The user may request a component to be displayed by pointing to 

"BRING" and typing a name (and the number pf bits if it is a library 

component) on the control teletype. 	This causes a rectangle to be 

displayed, which shows the name of the component and has an appropriate 

number of input, output terminals. Any component can be used more 

than once and each copy can be positioned, rotated or deleted 

individwilly. 	The mode of operation for a sequential component is 

defined at this step. 	If synchronous operation is required, a 

clock terminal is also displayed on the component. 	Separate copies of 

a sequential component may operate in different modes. 	This is 

illustrated in Figure 4.3. 

• 	Jr 	 Ii 
• 	_______ 	 I0Md 

• 	/11 	1•I 
Figure 4.3 Component Dispy 

() When a sequential component is requested by the user, the system 
asks for the mode of operation and the synchronising edge (1 to 0 
or vice versa) of the clock pulse (if synchronous mode is desired). 
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Connections are made by drawing 'rubber-band' lines between the 

component terminals. 	This is not simply a matter of graphics since 

it involves access to the data structure to check, modify or enter 

some pointers. 	As it is not always practical to make direct 

connections (i.e. pin-to-pin), lines may be joined to arbitrary points 

on existing lines. Also a number of input terminals can be connected 

to each other and if one of them is laterconnected to an output 

terminal, the remaining inputs will also be connected to the same 

output. However, the connections between the individual input 

terminals are not lost so that, if the final connection is deleted, 

the input terminals remain tied to each other. 	The drawing program 

offers considerable freedom in making the connections. 	The only, 

restriction is that each line should have at least one end point 

connected to a terminal. 	In addition, a connection will be rejected 

if it forms a ioop or causes a short circuit between two outputs. 

Figure 4.4 shows some connections. 

Figure 4.4 Some Connections 
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When drawing the data-paths, making a separate ëonnection to each 

terminal of a data-component may become impractical. 	In such cases 

the "Multi-Line" facility can be used. 	A multi-line is a convenient 

form of representing a number of connections to the same component. 

It is drawn as a dotted line and a special sign is used to indicate 

the terminals it covers. 	The restrictions mentioned above still 

apply and a multi-line can be joined to another one only if they both 

represent the same number of bits. 	Figure 't.S shows some multi-line 

connections between two 8-bit universal registers. 

I 

	

I 	SYSO2- 

	

,.,) 	1•1 	I 	I 	I 	I 	.1 	I 	I 

I 	 I  
• 	

I 

I 	 I 
I 	 •• 	.1. 

.IIIIIIII. 	I r 	H I. 

	

I' 	I 	III 	IIIIEi 

Figure 1 • 5 	Multi-line Connections 
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Another feature of the drawing program is the "Macro" facility which 

enables the user to group any set of interconnected components, and 

use the group as a single 'Macro' component. 	The external input, 

output terminals are selected by the user and macro's can be formed 

from other macro components. 	Figure 4.6 illustrates a macro 

formation. 

/ 	I ri 
I 	I 

N1 

1k 
I 	I 	I 

/ 
/ 

	

\\/ 	
/ 

I
LMACRO 

' 	I 

Internal Structure 

Circuit Representation 

Figure 4.6 Defining Macro Components. 

When a macro is defined, its internal, components and connections are 

erased from the sreen but can be automatically rgenerated and 

modified. 	 S  

Logic diagrams can be partitioned using the "PAGE" facility. 

This enables the designer to work on a new page of drawing when the 

display screen is full. The program can erase the screen to 

provide a new page or regenerate the drawings on an existing one. 

Connections between components on different pages can be made by 
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displaying the same component on both pages. 	Note that this is not 

the same as using the same component twice since it is only a display 

procedure. Conflicting connections to the same component can be 

detected easily since the data structure is not partitioned (see - 

Chapter 6).. Hard copies of logic diagrams can be obtained on the 

plotter. 

Component specifications can be altered. without affecting the 

circuit diagrams and when both of them are ready, the design can be 

simulated. 

4.. 	Design evaluation 

The third program is a functional simulator, which accepts the 

data structure prepared by the first two programs. 	Logic diagrams 

are displayed on the screen, allowing the designer to 'probe' the 

components during'simulation. 	All components are assumed to be 

non-ideal and have at least 1 unit delay. 	For a more realistic 

representation of the timing relations, 1 unit is taken as 10 nano. 

seconds.* Simulation is done at 10 ns. intervals for a duration 

(of simulated time) specified by the user. 	However, it can be 

stopped at any time to examine and/or modify the logic or delay 

values. 	The present-state of a sequential component or the contents 

of data-components can also be changed. 	Hence,.if read-only memories 

are used in the design, different micro programs can be tried. 

(*) Although this is not a user controlled feature, the scale can be 
changed easily. 	 . 
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The simulator generates logic waveforms of selected terminals 

and outputs them to disc. 	Hard copies can be obtained by listing 

the output files on the line printer. The waveforms normally have 

a linear time axis where values are produced every 10 nano seconds.. 

However, they can also be generated with a non-linear time axis where 

values are produced only when one of the monitored terminals changes 

state (1 to 0 or vice versa). 	This cuts down the amount of output 

listings produced by eliminating long periods when the signals are 

all stable. 	In addition, the simulator can produce warning messages 

when more than one input or an input and the clock pulse of the same 

component change state simultaneously. 	Spikes (pulses with 10 ns. 

duration) can also be detected. 

Another very useful feature of the simulator is the "TRAP' 1  

facility. 	This enables the user to define conditions (e.g. the 

contents of a register being equal to a certain value) which the program 

is to detect and stop simulation automatically. After examining 

or modifying the values, simulation can be resumed. 	Henc2 the 

simulator program can be used as a debugging aid (similar to software 

debugging programs e.g. DDT). 
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4.5. 	Discussion of the method. 

The three programs described above form high-level tools for 

specifying and simulating logic designs. 	The use of graphical 

techniques makes it possible to describe the structural aspects of 

digital systems in a very natural way (i.e. using circuit diagrams). 

The general characteristics of the design system are as follows: 

Digital systems are described at a high-level and the 

method of representation is natural to logic designers. 

Specifications and modifications can be carried out easily. 

Designs can be partitioned as required and modifications 

can be made without reiterating the total description. 

Pre-defined logic blocks can be used in the design. 

Only the functional characteristics of components are 

described and implementation details are not considered. 

However, the user-defined components can be implemented 

by using standard compute' algorithms. 

Components can operate in the synchronous or asynchronous 

mode. 

All programs operate on the same data structure so that 

no additional processing is required to pass data among 

them. 

All descriptions (including diagrams) are stored inside 

the computer. Hard copies can be obtained and all 

operations are under the user control. 

Chapter 5 illustrates the use of the programs on a design example. 



Chapter 5: Design Exam2le  

The following example illustrates the application of the general 

philosopy presented in Chapter 3, to the design of a digital system. 

The Ferranti DISC computer (3) has been selected as the target 

machine and its design (not complete) was carried out using the three 

programs described in the previous chapter. 	The object of the 

exercise is not to show how this particular computer should be designed 

nor is it the author's aim to prove his competence or otherwise in 

designing a digital. system. 	The main objective is to test the 

viability of the approach and see if a CAD system can be built to 

implement the proposals. 	For that reason very little attention was 

paid to the selection of the particUlar components in the system library. 

Some of these components may be found too abstract with no realistic 

o 

	

	counter part. Others may be too impractical to use in real applications. 

They were modelled simply to enable the author (or any other user) to 

design a digital computer. However, it is hoped to show that if the 

library components are choseli properly, the method of design described 

in Chapters;3 and 4 can be used in solving practical problems. 

A partial specification of DISC is given below (the terminology 

used is from the DISC literature). 
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5.1. 	Machine description. 

DISC is a general purpose digital computer to be used in 

applications where very high speed of execution is not required. 	It 

has an 8-bit/word memory for program storage. Each instruction word 

comprises a 3-bit operation code field and a 5-bit address field. 

Instruction repertoire consists of 7 'basic instructions' and 17 

'additional functions'. 	More orders are. obtained by altering the 

state of the 'Logical Stat' or 'Double-Length Working Stat' which 

modify the meanings of some of the orders. 	Data is stored in 16-bit 

words in a separate, volatile memory which is divided into 3 sectors 

of 30 words each. Arithmetic is done in serial binary form using 

two's complement number representation. 	The main components of the 

centraiprocessor unit are as follows. 

(j)_• 	Accumulator register (AC). 

A 16-bit register used during most arithmetic or logic operations 

on data. 

• 	(ii)- 	P-register (P). 

The P-register is another 16-bit register which is usedto 

extend the AC for double-length working. 	It is also used during 

multiply and divide routines. 

Q-register (Q). 

A 16-bit register used in multiply and divide routines. 

Shift counter (SC). 	 . 	. 

SC is a 5-bit counter used for controlling the shift, multiply 

or divide operations. 

• (v)- 	Program address register (PAR). 

The PAR is a 16-bit register which stores a 12-bit program 

address, 1-bit I/O sector, 2 bits to indicate the volatile memory 
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sector (1, 2 or 3), and a 1-bit 'master jump stt' to enable jump 

instructions. 

Instruction register (IR). 

A 16-bit register which accepts 8-bit instruction words from the 

program memory and stores them during execution. 	If required by 

the instruction, two. consecutive words can be loaded into IR, prior 

to transferring its contents to the AC or. PAR. 

Arithmetic and logical unit (ALU).. 

The ALU handles all data operations and controls inter register 

transfers. 	.. 	 . 

S 	In the example below, some changes were made to these specifications 

and only a small sub-set of the instructions were designed. 	The most 

important changes are, 	 S 	 S  

the new machine operates in parallel, asynchronous mode, 

data word length (and the associated registers) is chosen 

as 8-bits and both memory units have similar characteristics (Memory 

access times are set to 750 and 30 nano seconds for the program and 

- data store, respectively), 	 S  

program memory has only 256 words and correspondingly 

PAR has -12 bits. 

IR has 8 bits. 
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5.2. System design. 

The following sections describe the design of modified DISC. 

The circuit diagrams given below were first drawn on the display 

screen using the light pen and were later reproduced on the plotter.. 

The terminal behaviour of library components used in the design, can 

be found in Appendix B. 	Outputs given in the state-tables are in 

octal. 

5.2.1. Control of memory access 

Memory operations are realised by using two library components 

which complement each other. 	The first one is the memory component. 

Figure 5.1 shows the circuit representation of an 8-bit/word X 256 

word memory. 	It contains a memory buffer register (inputs Ii  to I8 

outputs 01  to  08),  an address register (X 1  to X 1  and Y1  to Y4 ), four 

control inputs, and storage. 	Access to a word is achieved by setting 

the read (R) or write (W) input to logic one and applying a positive 

pulse (0-1-0) to the RX or WX input, respectively. 	Access time is 

specified by the user. 

01 °2 03  Of 05 06 OO 

y4L 

'/3 

Yz 
yt 

w 

wx 

AV 

R. 

Rx 
Tf I 13 Ij I 16 	I 

Figure 5.1 The Memory Component. 
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The second component is used to generate the necessary signals to 

initiate a memory access. 	When a positive pulse is applied to the 

P input, X becomes logic one, a positive pulse appears on PX, and 

after a time delay, another positive pulse appears on SX. 	The X and 

PX outputs are connected to the R (or W) and RX (or WX) inputs of the 

memory component. SX is used to indicate the completion of memory 

access. 

x .rx sx 

ME1CO 

rnable 

Figure 5.2 The Memory Controller Component. 

5.2.2. Designingthe fetch/execute cycle. 

DISC does not use instruction pipe-lining so that the two control 

states of 'instruction fetch' and 'execution' become mutually exclusive. 

Since an asynchronous design is attempted, the end of each instruction 

execution is indicated by setting a flip-flop which will be cleared 

when the computer goes into the fetch state. 	Even though these two 

control states can be represented by a single logical variable, it was 

decided to use separate variables for each one. 	Figure 5.3 gives 

the circuit diagram of the control circuit to realise the fetch/ 

execute cycle. 	The diagram is explained below. 

() This has no particular reason but it was felt that individual 
fetch and execute signals would be more useful. 
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V Figure 5.3 Control of Fetch/execute States. 

- 	 V 
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The 3-input OR gate carries the 'execution complete' signal which 

sets a flip-flop (JKFLP). 	FETCand EXECT take the OR of the two 

inputs and generate both true and complemented outputs. 	MAC01 is 

a macro component which transforms a zero-to-one change at the input 

into a positive pulse 	(i.e. a 'one-shot'). 	When the flip-flop is 

set, both FETCH and EXECT become one. 	This enables MEMCO which 

controls the read access to program memory. The output from MAC01 

which drives MEMCO, is also used to reset JKFLP. 	CNTRL is a 

sequential component which sets FETCH = 1, EXECT = 0 after JKFLP has 

been reset. 	When the memory access is complete, CNTRL complements 

the values of FETCH and EXECUTE and waits until another 'execution 

complete' signal is received. 	Table 5.1 gives the state-table of 

CNTRL. 

Present 	Next-state & present outputs. 

State 000 001 011 010 110 111 101 : 100 

1 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,2 

2 2,2 2,2 2,2 2,2 2,2 2,2 3,1 2,2 

3 3,1 3,1 3,1 14,1 3,1 3,1 3,1 14,1 

14,1 4,1 4,1 4,1 1,2 4,1 4,1 4,1 

Table 5.1 State-table for CNTRL. 

In state J, the component waits for the outputs to settle down and 

then goesinto the 'fetch' state (state 2). 	The'access completed' 

signal from MEMCO causes a transfer into state 3 and then into state 4, 

which is the 'execute' state. 	CNTRL waits in this state until 

EXECT becomes one (causing a momentary FETCH = EXECT = 1) and then 

transfers back into state 1. 
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MAC01 could also-be designed as a sequential circuit. 	However, a 

simpler solution is obtained by making use of the propagation delay 

through an inverter. 	This is shown in Figure 5.4. 

Figure 5.4 The MAC01 Component. 

Duration of the pulse at the output of MAC01 is equal to the 

propagation delay of the inverter. 	 - - 

5.2.3. Instruction fetching and decoding. 

Figure 5.5 shows the connections to the program memory which has 

been ca'.led MAIN8. 

(*) The obvious solution is to make it a library component. 
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- - Figure 5.5 Connections to Program Merno 
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The program address is obtained from the lower order bits of the 

12-bit (plus overflow) program counter,'PRGCT. 	Outputs of the 

memory buffer are connected to the parallel data inputs of an 8-bit 

universal register, REGST, which represents the instruction 

register.. The 3-to-8 decoder, DECOD, is another library component 

which is enabled when FETCH is zero and EXECT is one. 	MEMCO 

initiates the memory access. 	The 'access complete' pulse is used to 

clock the two registers so that REGST accepts the parallel data and 

PRGCT is incremented by one. 	Other connections on the registers 

set the mode of operation (see Appendix B). 

5.2.4. Arranging the data paths. 

Figure 5.6 shows the main data paths. 	HGHWY represents an 

8-bit common highway which is shared among four components. 	It has 

four 'highway request' inputs (inputs 1, 3, 5 and 7) and four data 

ports (each 8-bit wide). 	When one of the request inputs is set to 

logic one, the .8-bit data on the adjacent data port is loaded to the 

highway and the 'highway busy' output (9th output) is set. . The unit 

has priority logic such that if simultaneous requests are mad the 

one on the leftmost input wins the highway. 	Further attempts to get 

the highway are ignored until the last request is cancelled. 	The 

conponent also has storage so that the latest data values are 

retained even after the current request is cancelled. 
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Figure 5.6 HighwayOrganisation. 
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The. four components which share this unit are described below, in 

the order of priority they receive from the highway. 

ALU is the arithmetic and logical unit which perforns 

data operations (defined by the mode inputs) between the contents 

of the highway and the accumulator register. 

REGST is an 8-bit universal register which is used as 

the accumulator. 

MEM80 is the data memory which is similar to MAIN8 

(Figure 5.5), but much faster. 

REOST is another register which is used as the Q-register. 

Each of these components have an associated component to load their 

outputs to the highway. 	Figure 5.7 shows their connection to the 

highway. 
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Figure 5.7 Highway Request Components. 
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For example, the state-table for LQHAS (Load Q-register to Highway 

And Signal) is given below. 

Present 	Next-state & present outputs 

State 	00 01 11 10 

1 	1,0 1,0 1,0 2,1 

2 	1,0 1,0 3,2 2,1 

3 	1,0 1,0 3,2 3,2 

Table 5.2 State-table for LQHAS. 

Tables for the other components are given later. 

5.2.5, Access to data memorjr. 

Two memory controller components are used to control the read and 

write operations in the data memory. 	Memory address is obtained from 

the 5 least significant bits of the instruction register and the two 

sector bits stored in the program counter. 	These connections are 

shown in Figure 5.8. 



I 
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Figure 5.8 Connections to the Data Memory. 
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In addition, two components are used to load the AC or the memory 

buffer to highway and to initiate the memory access. 	Table 5.3 

gives the state-table of a sequential component, LAHSM (Load 

Accumulator to Higway and Store in Memory), which first loads AC 

to the highway and then activates the memory controller component 

handling the write operations. 	A level output from LAHSM indicates 

that data has been stored in memory. The inputs to the component 

indicate 'begin', 'memory access done', 'highway received' and its 

outputs mean 'start memory access', 'get highway', 'operation complete'. 

Its second input and first Output are connected to the component 

(MEMCO) which handles write operations in the data memory. 

Present 	Next-state & present outputs 

State 	000 001 011 010 110 111 101 100 

1 	1,0 	1,0 	1,0 	1,0 	1,0 	1,0 	1,0 	2,2 

2 	2,2 	2,2 	2,2 	2,2 	2,2 	2,2 	3,6 	2,2 

3 	3 9 6 	3 5 6 	3,6 	3,6 	4,0 	4,0 	3,6 	3 31 6  

4 	4,0 	4,0 	4,0 	4,0 	4,0 	4,0 	5,1 	5,1 

5 	1,0 	1,0 	1,0 	1,0 	5,1 	5,1 	5,1 	5,1 

Table 5.3 State-table for LAHSM. 

The state-table of a similar component, AMLDH, which is used to 

• 	'Access Memory and Load Data to Highway', is given below. 	Its 

second input and first output are connected to the component (MEMCO) 

• 	which handles read operations from the data memory. 
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Present 	Next-state & present outputs 

State 000 001 011 010 110 111 101 100 

1 1210 1,0 1,0 1,0 1,0 1,0 1,0 2,4 

2 2,4 2,4 2,4 2,4 3,0 3,0 2,4 2,4 

3 3,0 3,0 3,0 3,0 3,0 3,0 3,0 4,2 

4 4,2 4,2 4,2 4,2 4,2 4,2 5,1 4,2 

5 1,0 1,0 1,0 1,0 5111  5,1 5 5 1 5,1 

Table 5.4 State-table for AMLDH. 

5.2.6. 	Designing load and store instructions. 

The 'load AC from memory' and the 'store AC in memory' instructions 

(operation codes 001 and 010, respectively) are  implemented using the 

last two components describe above. Because of the similarity between 

the two operations, a single component was designed to control both 

of them. 	The component is called S1S2E and receives two inputs from 

the decoder (one for each instruction). 	A third input is obtained 

by passing the 'operation complete' outputs (output 3) of AMLDH and 

LAHSM through an OR gate. 	It generates two outputs 'to activate AMLDH 

and LAHSM, respectively,and the third output is connected to the OR 

gatewhich sets the JKFLP (see Figures 5.3 and 5.9). 	The state-table 

for S1S2E is given below. 

• 	Present Next-state & present outputs 

State 000 001 011 010 110 111 101 100 

1 ' 	 1,0 1,0 1,0 3,2 1,0 1110  1,0 2,4 

2 1,0 1,0 1,0 1,0 2,4 2,4 4,1 2,4 

3 1,0 1,0 4 3 1 3,2 • 	3,2 3,2 3,2 3,2 

4 1,0 1,0 	' 4 31 1 4,1 4,1 4,1 4,1 4,1 

Table 5.5 State-table for S1S2E. 
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The load instruction also requires a clock pulse to be sent to the 

AC so that the contents of the highway can be transferred into the 

accumulator register. This pulse is obtained from the first output 

of S1S2E. 	Also, the mode inputs of AC should be set to 'accept 

parallel data'. 	The circuits for these operations are given later. 

Figure 5.9 shows the complete control circuitry to execute the first 

four instructions (load, store, add, subtract). 	Add and subtract 

instructions are described in the next section. 



Figure 5.9 Control Circuit for the First Four Instructions. 
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5.2.7 Add and subtract instructions 

The add and subtract instructions (operation codes 011 and 100, 

respectively) perform arithmetic operations between the contents of 

the AC register (the lower REGST in Figure 5.6) and a memory location, 

placing the result into the AC. 	As seen from Figure 5.6, ALU can 

perform data operations on the contents of AC and the highway. 

Therefore, first a memory access is needed to get the data word and 

place it on the highway. 	Table 5.6 gives the state-table of a 

component, S3S4E, which activates AMLDH to perform this operation. 

When this is done, S3S4E activates another component, OPCON, which 

waits for the ALU to perform the arithmetic, places the result on the 

highway and informs S3S4E that the operation is complete. 	The same 

signal is sent as clock pulse to AC so that it accepts the result. 

from the highway. 	S3S4E then sends a signal through the OR gate, 

setting JKFLP. 

Present Next-state & present outputs. 

State 000 001 011 010 110 ill 101 100 

1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 2,4 

2 1,0 1,0 1,0 1,0 3,2 2,4 2,4. 2,4 

3 1,0 1,0 1,0 1,0 3,2 4,1 4,1 3,2 

4 1,0 1,0 1,0 13-0  4,1 4,1 4,1 4,1 

Table 5.6 State-table for S3S4E. 

The particular arithmetic operation (addition or subtraction) to be 

performed by the ALU is selected by setting the mode inputs of ALU 

as required. 	The circuit to achieve this will be described later. 

OPCON simulates the task duration of ALU by generating an output, which 

is delayed and fed back. The delay value should be set to half the 
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time needed by ALU to perform the operation. 	The result is put on 

the highway by placing a request through OPCON (see Figure 5.7). 

The state-table of OPCON is given below. 

Present 	Next-state & present outputs 

State 000 001 011 010 110 

1 1310 1,0 1 5 0 1,0 2,1 

2 1 1J 0  1,0 1,0 1,0 2 3,1 

3 1,0 1110 1 5 0 1 5 0 3,0 

II 1,0 1 5 0 1310 1,0 5,14 

5 1,0 1,0 1,0 150 5,14 

111 101 100 

1,0 1,0 2,1 

3,0 3,0 2,1 

3,0 3,0 4,2 

5,4 4,2 4,2 

5,4 5,14 5,4 

Table 5.7 State-table for OPCON. 

Component CHKLB seen in Figure 5.9, is used during multiply operations 

and is described in the following section. 

5.2.8. Shift and multiplyjnstructions 

The shift and multiply operations are treated together since 

multiplication is done by successive addition. (or subtraction) and 

shifting. 	Operation code. 110 indicates the instruction to. shift the 

contents of the AC to the right by the number of places indicated in 

the address field of the instruction. 	However, this number is 

ignored if the shift counter is pre-loaded beforehand. 	Therefore, 

first the contents of the counter is checked and the number in the 

address field is transferred there if the counter is empty. 	During 

a multiply instruction, the number to be loaded is octal 10 (8 shifts). 

Figure 5.10 shows how the data is selected. Gi and G2 are 

combinational components defined by Table 5.8 and AND5M is an AND 

gate which produces a one output during multiply operations. 
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N 

-0 	 - 

Figure 5.10 Selecting Data for the Shift Counter. 
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Ii 12 Gl Il 12 G2 

o o 0 0 0 0 

o '1 1 0 1 1 

1 1 • 0 1 1 1 

1 0 0 1 0 1 

(a) Gi 	 (b) G2 

Table 5.8 Truth-tables for Cl and G2. 

Data is accepted by the counter when the count/load mode input becomes 

zero. The complete circuit for shifting and multiplication is shown 

in Figures 5.11. and 5.12. 
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Figure 5.11 Enabling Shift or Multiply Operations. 
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Figure 5.12 Control of Shiftipg and Multiplication. 
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LOADC ('Load Counter') is a combinational component with 3 inputs 

and 2 outputs. 	Its first input is taken from the decoder output 

which indicates shift operation. 	The second input is obtained 

by passing the counter output through a NOR gate to test its value. 

The third input comes from another, component which controls multiply 

operations. 	The first output indicates that shift (or multiply) 

operation is enabled and the second output indicates whether the 

counter should be loaded with a number. 	Table 5.9 gives the 

truth-table for LOADC. 

	

Il 	12 	13 	01 	02 

	

0 	0 	0 	0 	0 

	

O 	0  

	

O 	1  

	

O 	1. 	0 	0 	0 

	

1 	1 	0' 	1 	1 

	

1 	0 	1 	1 	0 

	

1 	0 	0 	1 	0 

Table 5.9 Truth-table for LOADC. 

The outputs of LOADC are connected to the inputs of LDCNT ('Load 

Controller') which is a 'sequential component. 	It generates two 

outputs. 	The first one shows if the counter is ready for operation 

and the second output is connected to the load/count mode input of 

the counter. 	This output is normally kept at logic one (i.e. count 

mode). 	The second output of LDCNT is also fed back to the third 

input of the component. 	This enables LDCNT to check if loading has 

been done. 	Table 5.10 gives the state-table of LDCNT. 
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Present Next-state & present outputs 

State 000 001 011 010 110 111 101 100 

1 1,1 1,1 1,1 1,1 1,1 2,0 3,3 1,1 

2 1 11 1  1,1 1,1 1,1 3,0 2,0 2,0 3,0 

3 1,1 1,1 .1,1 1,1 3 5 3 3 5 3 3,3 3,3 

Table 5.10 State-table for LDCNT. 

These components prepare the shift counter for operation. 	The counter 

receives a continuous clock pulse (not shown in the diagram) but its 

'count enable' input is controlled by two other components. 	COUNT 

is a 3 input, 1 output combinational component. 	It receives its 

Inputs from the decoder (shift instruction), MULTC (a component used 

during multiplication) and LDCNT (counter ready signal). 	Its 

truth-table is given below. 

Ii 12 . 13 01 

0 0 0 0. 

0 0 1 

o 1 1 1. 

0 1 0 1 

1 1 0 1 

1 1 .1 1 

10 1 1 

1 0 0 0 

Table 5.11 Truth-table for COUNT. 

This component activates COCNT ('Control Counting'), which is a 

sequential component. COCNT receives the clock pulse applied to 

the counter, as a pulse input and passes it on to the AC (and F) 
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register. 	Counting is done towards zero and when that value is 

reached. the overflow pulse generated by the bhift counter stops 

COCNT. 	The overflow pulse is also connected to the OR gate which 

sets JKFLP. 	Table 5.12 gives the state-table of COCNT. 

Present 	Next-state & present outputs 

State 000 001 011 010 110 111 101 100 

1 1,0 2,1 3,1 .1,0 1,0 1,0 1,0 1,0 

2 1,0 2,1 3 5 1 1,0 1110  5,0 3 5 3 1 5 0 

3 1,0 2,1 3,1 1,0 1,0 5,0 3,3 1 5 0 

4 1,0 5,0 5,0 1,0 1,0 5,0 4,1 1,0 

5 1,0 5 5 0 5,0 1,0 1110  5,0 5,0 1,0 

Table 5.12 State-table for COCNT. 

The multiply instruction is an additional function (operation 

code 000) which is written as '00011110' (octal 36). 	It places the 

double-length product of two signed integers (initially in P and Q.) 

into the AC and P registers (least significant bits in P). 	Booth's 

algorithm (66) is used to. perform this operation and in accordance 

with the requirements of this algorithm, the P-register is 9 bits 

long. 	During multiplication, AC and P are shifted together, with 

the last bit of AC feeding the first onc of P. 	The last two bits 

of the P-register are checked before each shift operation and an 

addition or subtraction, is performed between the' AC and the Q-register 

(result in AC) depending upon their values. 	Table 5.13 shows the 

action taken for each possible combination. 	Bit 9 should be zero 

before the multiplication routine is started. 
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Bit 8 	Bit 9 	Action 

o 	0 	Do nothing. 

o 	1 	AddQtoAC. 

1 	1 	Do nothing. 

1 	0 	Subtract Q from AC. 

Table 5.13 Booth's Algorithm for Multiplication. 

The control components for the multiply routine are shown in Figure 5.12. 

The operations are started when the second input of the 'Multiplication 

Start' component, MULST, becomes one •(see Figure 5.11). 	MULST first 

activates LOADC (Table 5.9) and then MULTC ('Multiply Control'). 	The 

overflow pulse stops multiplication. 	Table 5.14 gives the state-table 

of MULST. 

Present Next-state & present outputs. 

State 000 001 011 010 110 111 101 100 

1 .1310 1,0 - 1,0 2,1 2,1 1,0 1,0 1,0 

2 1 5 0 1,0 3,3 2,1 2,1 2,1 1 50 1,0 

3 
1,0 1,0 3113 3 5 3 4,0 4,0 1,0 1,0 

4 1,0 1,0 4,0 4,0 4,0 4,0 1,0 1 50 

Table 5.14 State-table for MULST. 

MULTC does the actual control of the multiplication xoutine. 	It 

loads Q to the highway by activating LQHAS (Table 5.2) which in turn, 

informs CHKLB ('Check Last Bits') that data is ready. 	Bits 8 and 9 

of the P-register are passed through an EXCLUSIVE-OR gate whose output 

is connected to CHKLB which decides if addition or subtraction is 

needed. 	If so, then OPCON is activated (see Figure 5.9). 	When the 

arithmetic is done (or if none is required) CHKLB sends a signal to 
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MULTC which enables counting for one pulse period and stops it again 

to repeat these operations. 	When the overflow pulse is received, 

MULST disables MULTC and the multiplication is completed. 	The 

state-tables for MULTC and CHKLB are given below. 

Present 	Next-state & present outputs. 

State 000 001 011 010 110 111 101 100 

1 1,0 2,2 1,0 1,0 1,0 1,0 1,0 1,0 

2 1,0 2,2 3,1 1,0 1,0 2,2 2,2 1,0 

3 1,0 3,1 3 1 1 1,0 1,0 4,1 43.1  1,0 

4 1,0 2,2 1,0 1,0 1,0 4,1 4311  1,0 

Table 5.15 State-table for MtJLTC. 

Present 	Next-state & present outputs 

State 000 001 011 010 110 111 101 100 

1 . 1,0 1,0 1,0 1,0 2,1 1,0 3,2 2,1 

2 1,0 1,0 1,0. 1,0 2,1 2,1 2,1 2 11 1  

3 1,0 1 11 0 1,0 1 11 0  4 31 0  4 5 0 3,2 3,2 

4 1,0 1,0 1,0 1,0 4,0 4 5 0 4,1 4,1 

Table 5.16 State-table for CHKLB. 

An arithmetic shift (i.e. sign extension) is needed for the 

multiplication routine. 	However, the shift instruction may define 

an arithmetic shift or rotation depending whether the address field 

is written as 'OXXXX' or 'lXXXX', respectively. 	Hence, the data 

to be placed into the topmost bit of AC is determined by using a 

combinational component called SHIFT. 	Its truth-table is given 

below. 	Figure 5.13 shows its connections to the accumulator. 
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Ii 12 13 14 01 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 1 0 

0 0 1 0 0 

0 1 1 0 1 

0 1 1 1 0 

0 1 0 1 0 

0 1 0 Ot 0 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 1 1 

1 l• 1 0 1 

1 0 1 0 

1 0 1 1 1 

1 0. 0 1 1 

1 0 0 0. 1 

Table 5.17 Truth-table for SHIFT. 
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Figure 5.13 AC and P-register. 
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Figure 5.13 also shows how the mode bits of the AC and the P-register 

are set. 	The truth-tables for ACCON and P-CON are given below. 

MAC01 generates a short pulse at the beginning of a multiply routine 

and is used to clear the accumulator. 

Ii 12 13 14 01 02 

O 0 0 0 1 1 

O 00 1 0 1 

O 0 1 1 b 1 

O 0 1 0 1 1 

O 1 1 0 1 1 

O 1 1 1 0 1 

O 1 0 1 0 1 

0 1 0 0 0 0 

1.1 0 0 0 1 

1 1 0 1 0 1 

1 1 1 1 0 1 

1 1 1 0 0 0 

1 0 1 0 0 0 

1 0 1 1 0 1 

1 0 0 1 0 1 

1 0 0 0 1 1 

Table 5.18 Truth-table for ACCON. 
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Ii 12 13 14 01 02 

0 0 0 0 0 0 

0 0 0 1 0 0 

0 0 1 1 0 0 

0 .0 1 0 0 0 

0 1 1 0 0 0 

0 1 1 1 0 1 

0 1 0 1 0 0 

0 1 0 0 0 0 

1 1 0 0 0 0 

1 1 0 1 0 0 

1•  1 1 1 1 1 

1 1 1 0 0 0 

1•  0 1 0 0 0 

1 0 1 1 1 .  0 

1 0 1  0 1 0 0 

•1 0 0 0 0 0 

Table 5.19 Truth-table for P-CON. 

Figure 5.14 shows how the mode bits of the ALU are set. 	The truth-table 

for ALCON is given in Table 5.20. 
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Figure 5.14 Controlling the ALIJ. 
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Ii 12 13 01 02 03 

0 0 0 0 0 1 

0 0 1 0 1 0 

0 1 1 0 0 1 

0 1 0 0 0 1 

1 1 0 0 0 0 

1 1 1 0 0 0 

1 0 1 0 1-• 0 

1 0 0 0 1 0 

Table 5.20 Truth-table for ALCON. 

Finally, Figure 5.15 shows how the clock input of AC is obtained. 
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Figure 5.15 Clock Pulse for Accumulator. 

F 
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5.3. 	Performance evaluation. 

The design presented above has been tested using the simulator 

program. 	A number of modifications were made to the initial 

component and/or circuit specifications until the final form was 

obtained. 	Then the total design was checked by placing a simple test 

program into the program memory. 	Data values were placed into the 

register (and the data memory) and a large scale simulation was made 

The results of the operations were compared with hand worked solutions 

and were all correct. 	A number of spurious spikes were detected and 

some of them were eliminated. 	The remaining ones do not cause any 

malfunction. 	The access time of the two memory units were set to 

750 and 30 nano seconds for the program and data store, respectively. 

The ALU performs operations in 40 nano seconds and the continuous clock 

to the shift counter has a frequency of 12.5 MHz. 	The propagation 

delays and the state transfer times of the remaining components are all 

10 nano seconds. 	With these values, the fetch cycle is 850 nano 

seconds long. 	The duration of the execute cycle for different 

operations is given below. 

Instruction 

Load AC 

Store 

Add 

Subtract 

Shift 0 times) 

Shift (5 times) 

Multiply (requires 5 additions) 

Rotate (21 times) 

Execution time 

270 ns 

250ns. 

380 ns. 

380 ns. 

360 ns.. 

530 ns. 

2210 ns. 

1810 ns. 

CDee 	 203 205 f or s amples of 
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Multiplication can be made faster with a slight modification to the 

circuits such that the Q-register is loaded to the highway only when 

an addition or subtraction is required (at the present, Q is loaded 

to the highway before each shift operation). 	The total cpu time 

taken to simulate 14 instructions (19600 nano seconds) was approximately 

28 minutes using 59980 kilo-core-seconds (i.e. approximately 

59980/800 = £75 running cost). 

5.4. 	Component realisation. 

This section describes how the design components can be realised. 

As an example, a highway conponent with three data ports (i.e. 

sharable among three units) is implemented using gates and flip-flops. 

A sequential component is used for the priority logic. 	Therefore 

the implementation of user defined components is also illustrated. 

Table 5.21 gives the sthte-table of a sequential component. that 

determines which of the three request inputs (R 1 , R2 , R) will be 

given the control of the highway (indicated by the outputs 01 , 0 2 

and 0 3 . respectively). 

Present 	Next-state & present outputs 

State 000 001 011 010 110 ill 101 100 

1 1,0 4,1 3,2 3,2 2,4 2,4 2,4 2,4 

2 	.. 1,0 4,1 3,2 3,2 . 	 2,4 2,4 2,4 2,4 

3 1,0 14,1 3,2 3,2 3,2 3,2 2,4 2,4 

14 1,0 4,1 4,1 3,2 2,4 4,1 4,1 2,4 

Table 5.21 State-table for Priority Controller. 
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As the component is to bperate in asynchronous mode, a state assignment 

free from critical races (may have non-critical ones) is necessary. 

Table 5.22 gives a modified state transition-table and shows the 

binary assignments for the states. 	There are race conditions under 

the 1st, 2nd, 4th and the 8th columns but none of them are critical. 

Output values are the same as those shown in Table 5.21. 

Binary Present Next-state 

Code State 000 	001 

00 1 1 	4 

01 2 1 	1/3/4 

11 3 1/2/4 

10 4 1 	.4 

011 010 110 ill 101 100 

2 2/3/4 2 2 2 2 

3 3 2 2 2 2 

3 3 3 3 2 2 

4 3 1 4 4 1/2/3 

Table 5.22 Modified Transition Table 

Next, an internal variable map is obtained by replacing the next-state 

entries with their state assignments. 	When there is a multiple 

choice (e.g. 1/2/4 entry in the 1st column) some of them are eliminated 

by examining the table so that the number of adjacent entries is 

increased. 

y1y2  000 001 011 010 110 111 101 100 

0 	0 00 10 01 -1 01 01 01 01 

0 	1 00 1- 11 11 01 01 01 01 

1 	1 0- 10 11 11 11 11 01 01 

1 	0 00 10 10 11 00 10 10 0- 

Table 5.23 Internal Variable - Map  
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Then the flip-flop type is selected. 	Here, J-K flip-flops are used. 

Table 5.2 14 gives the transition table for a J-K flip-flop. 

°i• 	
K 

o 	0 	0 	- 

o 	1 	1 	-. 

1 	1 	- 	0 

1 	0 	- 	1 

Table 5. 2L Transition Table for a J-K Flip-flop. 

Excitation maps are obtained for each flip-flop using tables 5.23 

and 5.2l-. 

000 001 011 010 110 111 101 100 

0 	0 0- 1- 0- -- 0- 0- 0- 0- 

0 	1 0- 1- 1- 1- 0- 0- 0- 0- 

1 	1 -1 -0 -0 -0 -0 -0 -1 -1 

1 	0 -1 -0 -0 -0 -1 -0 -0 -1 

(a) 1st flip-flop 

000 001 011 010 110 111 101 100 

o 	0 0- 0- 1- 1- 1- 1- 1- 1- 

0 	1 -1 -- -0 -0 -0 -0 -0 -0 

:i 	1 -- -1 -.0 -0 -0 -0 -0 -0 

1 	0 0- 0- 0- 1- 0- 0- 0- -- 

(b) 2nd flip-flop 

Table 5.25 Excitation Map. 
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The excitation equations are then obtained from Table 5.25 and 

simplified. 

R
1
R2R + y 

2 
 R 1  R  2 

K1  = 'y2R1R3  i-  y 
2  R  1  R 

 2 + R 
2 
 R 3 

= R1R2R 3  + y1R2  + y1R1  

K2  = R1R2  

An output' map is formed to obtain the output equations. 

y1y2  000 001 011 010 110 111 101 100 

0 	0 000 001 010 010 100 100 100 100 

0 	1 000 001 010 010 100 100 100 100 

1 	1 000 001 010 010 010 010 100 100 

1 	0 000 001 001 010 100 001 001 100 

Table 5.26 Output Map 

01 =y 1 R + y2R1R2  + 

02 = y1y2R2  + y1R1R2  + R1R2R3  

0 3  = y1y2R3  + R1R2R3 ' 

Figure 5.16gives the logic diagram of the complete circuit. 



H 
N) 
CO 

o. 	 O2 	03  

Figure 5.16 Logic diagram of thepority circuit. 
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The outputs 01 ,  02, 0 3  are used to select the data to be loaded into 

the highway flip-flops. 	This is shown in Figure 5.17. 

2 	 /.!.. 

R R1  R3 	 A1 	 ci 

Figure 5.17 Realisation of the Highway Component. 
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iiapter seven - discusses some of the techniques used in 

realising sequential and combinational components. 

Also, a new state-assignment method for synchronous sequential machines 

is presented. 
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Chapter 6: Programming Considerations 

This chapter describes the way in which logic designs prepared 

by the user are stored inside the computer. 	It also gives a 

closer view of the three programs described in Chapter '-I and 

discusses some ergonomic considerations. 

The data structure is not of the generalised 'ring-structure' type. 

Such arrangements were examined and taken into consideration but 

the structure implemented in the programs is a different ofle. 

There are twomain reasons for this. 	Firstly, when the research was 

started, it was not known what type of information should be linked 

together. 	For example, should there be a separate ring for display 

information or should the coordinates and the display file names of 

components be placed on the same ring as the connections. 

Furthermore, the type of information to be stored was not fully 

determined. 	'Page','multi-line', 'macro' facilities were added on 

at a later stage. 	Secondly the data structure was expected to be 

(and is) of a moderate size so that no special techniques would be 

required for 'garbage collection' or modifications. 	However, in 

the light of the experience gained, a more general type of data 

structure could be built for the future versions of the programs. 
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6.1 	Data structure organisation 

The data structure consists of a number of tables all of which 

are prepared on-line as the programs are instructed to carry out 

the required operations. 	The user is unaware of these 'behind- 

the-scene' operations but, undoubtedly, their efficiency affects the 

performance of the programs. 

A table, called the "MASTER" table, is prepared (or modified) 

by the component specification program. 	In this table each component 

is represented by a master-block which carries some global 

definitions. 	These definitions include the name, type, number of 

inputs, number of outputs and the number of internal states of the 

component. 	The tabular descriptions (state-table or truth-table) 

of user defined components are also included in this block. 	Master- 

blocks .of library components are entered into the table only when 

they are used in a logic diagram so that the table will not be 

crowded by unused components. 	Figure 6.1 shows a master-block. 
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Nccne 

Type 

No. of ;npuh 	1 

No. of ou+pu s 
	 0 ne co,poTefl4 

N. of 5a+es 

e,I,OCI( Ien9]4 

TA LE* 

Narnc 

Figure 6.1. A MASTER-block 

The. drawing program prepares an "INSTANCE" table where each component 

in the logic diagram is represented by a block. 	Every instance-block 

points to a master-block and 'components which are used more than 

once are represented by multiple instance-blocks, all pointing to the 

same master-block. 	The master-instance relations are illustrated 

in Figure 6.2. 

(*) Not needed for library components. 
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Figure 6.2 Master-Instance Relations 

An instance-block stores certain values used during simulation 

and also indicates the connections to other components. 	Each 

terminal of a component has an associated word in the insLance-block. 

These words are called "output-words" or "input-words" depending 

upon the type of terminal associated with them. 	Figure 6.3 shows 

an output-word. 

L + )OIC /u!i.'e 

Frebenf 	II 	 II 

L oc 	%1OIt)C cfer 

1. un'J dQlay 

L 0c valuE af#er 

2 	.4- deI4ys 

Figure 6.3 An Output -word 
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All components and lines (conductors) used in logic diagrams are 

given internal names and connections between components are 

represented by the tinput_pointers tv stored in input-words. 	The 

input-pointers can indicate not only which terminals are connected 

to each other, but also which line (or lines), makes the 

connection. 

1 

(a) Logic diagram. 

(b) Internal representation. 

Figure 6.4 Pointers in theInstance Table 
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An input-pointer has five fields. 

"V" field shows whether the pointer is directed at an 

input terminal (V = 1) or an output terminal (V = 0). 

"Li't field gives the internal name of the line which 

makes the connection. 

"L2" field gives the internal name of another line which 

is needed to-complete the connection. 	Li and L2 

fields will be the same if the connection is directly 

between two terminals (i.e. only one conductor ties the 

two terminals together). 	However, if the connection 

is from a terminal to a line, L2 is the internal name of 

that line. 

"C" field identifies the component to which the 

connection is made. 

Cv)- 	"T" field identifies a terminal of the component in the 

"C" field. 

Figure 6.5 shows some connections and input-pointers. 

C15  C2  and the numbers on the lines are internal names and the 

pointers are written as "V, Ll, L2, C, T". 

0, 5 6, C 1, 

Figure 6.5. Connections& Input-Pointers 	 0,1,2, C2.,i 
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Note that the 2nd input of Cl does not directly point to the 1st 

output of C2. 	Instead it is seen to be connected to another input 

terminal which points to the required output. 	This is because the 

connection requires three lines (lines 3, 1, and 2) but the pointer 

has only two levels (Ll and L2 fields). 	Therefore, some inputs may 

have to point to other inputs and the connection to the output 

terminal (if any) can be found by tracing the pointers. 	It is 

necessary to retain the connectivity of the inputs to each other so 

that if the connection to the output terminal is deleted, the remaining 

terminals stay tied together. 	Also, the 2nd input of Cl could be 

made pointing to the 1st input of C2, as indicated by the dotted arrow. 

Either way, the same connections are represented and which one will 

be used depends upon the relative positions of Cl and C2 in the instance 

table. 

When connecting a number of inputs to each other or an inter-

connected set of inputs to an output, the direction of the input-

pointers may have to be changed. 	The :echnique used in sorting out 

the directions, is described below. 

If two input terminals S 1  and S 2  are connected to each other, 

their pointers are arranged such that a vloopt  is formed. 

1 
52 	 . 

Figure 6.6 Connection L22 
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If S1  is then connected to another input terminal, say S3 , the 

pointers along the path which starts from S are followed until 

a loop is found. 	The loop is eliminated, directions of pointers 

along the path are reversed and a new loop is formed by pointing S 1  

and S 3  to each other. 	This is illustrated in Figure 6.7 

SI 

Figure 6.7 Forming a New Loop. 

The process is applied to any terminal which is connected to a new 

input. 	Figure 6.8 shows the situation if S 2  is connected to S4  and 

to 55 . 

Connection to S 2  

S5  

Connection to S1  

Figure 6.8 Adding New Connections 

It can be seen that after each connection the pointers are arranged 

such that all inputs point to the last terminal added to the 

51
3  

si'. 
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connections. 	Hence a 'directed-graph' is formed which terminates 

with a loop. 	Making a connection to an output terminal eliminates 

the existing loop but no new loop is created since output terminals 

do not have pointers. 	This is illustrated in Figure 6.9 where 

S2  has been connected to the output terminal 0. 

0 

Figure 6.9 Connection to an Output Terminal 

When connecting two terminals to each other, this procedure is applied 

to each of them separately (if it is an input terminal). 	The 

direction of pointers along one path can be changed only if the path 

terminates with a loop (i.e. no connection to an output terminal). 

If both terminals are outputs or no paths have been found for either 

of them, the connection is rejected since it will short-circuit two 

output terminals. When a connection is deleted, the recovery 

routines will insert a loop (loops) into the graph provided that the 

remaining path (paths) is not connected to an output terminal. 

Figure 6.10 shows the remaining pointers if the connection between 

S and S 2  is deleted. 	The loop can be between S1  and S 3  or between 

S and S5  depending upon the lines used in the connections. 

53  

'I 
/ 

s. 

 

55  

  

  

rel 

 

Figure 6.10 Deleting a Connection 
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Changing the direction of a pointer or inserting a loop is made 

such that the pointers always indicate the line (or lines) used in 

the connection. 	Figure 6.11 shows a logic diagram and the pointers 

stored. 

Iz 	
_I 

I cz, 
I j,2, C2,J. 

2 

I 

Figure 6.11 Inputs Connected to Each Other 

The modif.ed pointers are shown in Figure 6.12 where line 1 has been 

connected to an output terminal. 

1 

Figure 6.12 Modified Pointers After an Output Connection 
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If line 4 is deleted, a loop will be inserted between the 2nd input 

of Cl and the 1st input of C2. 	This is achieved by changing .the 

pointer of the 2nd input of Cl so that it becomes 111, 1, 2, C2, 1". 

It can be seen that a line which is directly connected to an input 

terminal, appears in the ttLltt  field of the pointer on that terminal. 

An input-pointer such as "0, Li, 0, 0, 0" indicates that line Li is 

connected to an input terminal which does not have any other 

connections. 

Q,Lt 1 0,O,O 

Figure 6.13 Free Input Terminal 

This illustrates the efficiency of the pointer-structure in 

representing the connections. 	Even though, some types of connections 

(i.e. Figure 6.13) will not exist in the final logic diaram, it is 

necessary to be able to handle 'them since such connections may appear 

while modifying the diagrams. 	A "Multi-Line" connection is handled 

in the same way and the manipulations - on pointers are applied to each 

pair of terminals of the connections implied by the multi-line. 

The MASTER-INSTANCE 'relations separate the component 

specifications from the circuit descriptions so that either could 

be altered without effecting the other. 	The situation becomes 

somewhat complicated when MACRO components are used since their 

behaviour is determined by the components and their connections which 

form the body of the MACRO. 	Consider Figure 6.1 where a MACRO 

is defined. 
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'.1 

14 

II 	/ I 	
Mill / 

Figure 6.1 14 A MACRO Component. 

Cl, C2 and Ml are each represented by a separate instance-block so 

that the operations described above can be performed on either of 

them.. Since the numbers of inputs and outputs of a component are 

given by its master-block, a new master should be prepared for Ml. 

Figure 6.15 illustrates this. 

I 	 1* 	 I 	I 
ci 

(,2 

Mi 

2. 

/ 	Figure 6.15 Macro Components. 

A 'dummy' instance-block is used to identify the components which are 

used in the macro definition. 	The instance-block of the macro 

points to the dummy and the dummy points to the individual components. 
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A master-block is also needed for the dummy and this has been 

embedded in Ml. 

Figure 6.16 Dummy Block for Macro. 

The dummy block identifies the 'internal' components of a macro and 

also shows which of their terminals are external to the macro (see 

Figure 6.14). 	If a macro component is used more than once, new 

instance-blocks will be created and they will all.point to the same 

dumm 

44 4Q 

M1 	 Mctc.ro 

L. 	 1 MIL 	
Dum 	::::± 

Macfo 

Figure 6.17 Multiple Instances of a MACRO. 
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Figure 6.17 shows that a new master-block has been generated for the 

second instance of the macro. 	This arrangement is required by the 

simulator. 	Mi1  and Ml 2  have the same parameters (i.e. number of 

inputs,... etc.) and also have a storage area where the logic values 

of the outputs of the components used in the macro definition, are 

stored. 	To simulate a macro component, the simulator first carries 

the values from the master-block to these components, evaluates new 

outputs and stores them back in the master. 	Therefore, the structure 

of the macro in the instance-table, is "Re-entrant" and any component 

which shares that structure provides its own data. 	Since all 

instances of a macro component use the same structure,, any modification 

to the latter will be automatically reflected in all.. 	Connections 

to a macro are.made on their instance-blocks. 	The simulator consults 

the dummy-block to find out which of the internal components should 

receive the external inputs and also which of the internal outputs 

should be carried to the external outputs of the macro. 	This section 

of the siulator has been written in a 'recursive' fashion so that the 

internal components of a macro can themselves be macr9 components 

and this can be done to any depth. 

As mentioned in Chapter 4, partitioning a logic diagram does not 

require doing the same to the data-structure. 	A"PACE" table is 

prepared which, for each component, gives the page number and the 

coordinates on that page. 	The program consults this table to see if 

(and where) a component should be displayed on the current page. 

Components which appear on more than one page are entered iwice . 

(or more) into this table and can be positioned or rotated individually. 

A similar arrangement has been made for the lines except that lines 

can appear only on one page. 
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6.2. 	Implementation details. 

The three programs described in Chapter 4 have been written to 

provide the logic designer with a convenient tool which he can use 

to try out various designs and select the one which is best suited 

for the purposes in mind. 	Consequently, the data-structure has been 

organized such that component and circuit descriptions can be modified 

individually without affecting each other. 	Since most of the 

communication between the user and computer is done using the display 

screen, certain links are established between the objects on display 

and their internal representations. 	This has been achieved by 

dividing the display file (see Appendix C) into segments for each 

component or line and using the same internal name to identify a 

segment or its corresponding block in the data-structure. 	When a 

light-pen hit is recorded on any segment, the graphics software returns 

the internal name of that segment and the program does a search to 

find a data block with that name. Alternately wheri a new object 

is to be displayed, a new data block is created, the display segment 

is prepared and the same internal name is given to both of them. 

To keep the interactions at a high level, all operations concerned 

with the internal representation of a logic design are hidden from 
) 

the user. 	For instance, deleting a line between two terminals 

involves identifying the line, checking each of the terminals to find. 

out where they are connected, modifying some pointers and finally, 

eliminating the line from the display. 	As far as the user is 

concerned, the modification has been fully specified by selecting the 

ERASEtt mode and pointing the light-pen to anywhere on the unwanted 

connection. 	In effect, he has issued an instruction to "delete that 

line". 	It is the responsibility of the program to find outwhich 
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line is to be deleted and which pointers are to be modified. 	When 

the required operations have been successfully carried out, visual 

feed-back is provided by causing the connection to disappear from 

the logic diagram. System response to such requests should be as 

quick as possible so that the user is not frustrated. 	In the 

current version of the program, the response time varies between 1 

and 5 seconds depending upon the complexity of the operations to be 

performed. 	However, when the time-sharing computer is heavily loaded, 

delays of up to 30 seconds may be expected. 	It should be noted 

that most of that time will be-spent in bringing the user's job into 

core. 

In an interactive system, it is essential to know what the program 

is currently doing or what instructions the user can give to it. 

Therefore, when a particular mode is selected, the light-button 

corresponding to that mode is displayed at .a larger scale than the 

others. 	Meaningful words have been selected for the light-buttons 

so that they can be used both to give instructions and also to indicate 

the "present-state" of the programs. 	It is also useful to give some 

of the light-buttons different meanings depending upon the current 

mode but care must be taken to ensure that the particular meaning is 

obvious. 	This technique is used in the drawing program. 	In the 

"ERASE" mode no action is taken until the user points the pen to a 

component or line to be deleted. 	However, if the program is in the 

"LINE" mode and the user has started mking a connection, pointing 

to "ERASE" deletes the last part of the line being dra'.m and the 

program automatically returns to "LINE" mode. 	Similarly "FIX" is 

used to fix the end point of a line segment to allow changing 

direction. 	If the end point lies on a terminal (or a line) the 
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connection is finalised, otherwise the program returns to tLINEt 

mode. 	Hence, communications take the form of a simple graphic 

language which the computer can interpret according to the current 

state of the conversation, i.e. it is context dependent. 	Statements 

which have no meaning are ignored (e.g. pointing to a line and 

not specifying an operation). 	There is no need to say tt exit from 

the current mode tt since this is done automatically and the corresponding 

light-button returned to its original scale when the required 

operations are completed. 	Since logic drawings play an important 

role in the total design system, it was found worthwhile spending some 

effort to improve the quality of diagrams displayed on the screen. 

The components are displayed at a slightly higher intensity than the 

lines. 	This helps in recognising each component and makes it easier 

to understand the diagram. 	Also, if a line is connected to another 

line, a bright dot is displayed to distinguish it from a cross-over 

of connections. 	The end points of terminals have similar bright dots. 

As described in Chapter I,  multi-line c'onnections are represented as 

dotted-lines. The program calculates a suitable length for small 

line segments and the gaps between them. 	This is done in such a way 

that the dotted-line starts and ends with a solid segment so that a 

visible corner is formed if the line changes direction. 	This is 

shown in Figure 6.18. 

I 	 I 

I. 	 I 
I 	 I .  

Figure 6.18 Multi-line Cornering 



-143- 

All programs have been written in FORTRAN. 	The size of the 

data-structure is about 5K for the design example given in Chapter 5. 

This does not include the display file which requires an additional 

3K. 	The drawings are made on a 10 point, invisible grid such 

that the coordinates of the corners and the terminals of components 

are rounded off to the nearest 10. 	This helps in alligning the 

components such that connections can be made by horizontal or 

vertical lines. 	If a component is rotated by 180 degrees, its name 

is displayed with zero rotation (not upside down) so that it can be 

easily read. However, to avoid confusion in determining which 

terminals are inputs, in such situations the name is displayed closer 

to the input terminal side of the component. 	When the orientation 

is 90 or 270 degrees, the name of the component is also rotated. 

c 
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Chapter 7: A General Discussion on Component Realisation. 

The logical design of one of the high level components used in 

the design example, was given in Chapter 5. 	Logical design is a 

major problem area and has attracted the attention, of many researchers. 

The following sections present a general discussion on the problems 

encountered in this field and on the.techniques suggested by others 

to solve them. 	The author's contribution to two particular problems 

(finding clearing sequences and state-assignment of sequential machines) 

is described in sections 7.2.1 and 7.2.2, respectively. 

7.1. 	Combinational components 

Algorithms to find the prime implicants and select an irredundant 

set which covers all the 'one' outputs of a Boolean function can be 

found in references (60), (65), (90). 	Most of these algorithms can 

also be applied for the synthesis of multi-output functions. 	Hence, 

the combinational component specifications can be directly fed into some 

other programs to simplify and realise them. 	The outputs from such 

programs are usually in a two-level, sum-of-products (or product-of 

-sums) form and they should be reformulated so that special logic 

types (e.g. NAND/NOR) or multi-level synthesis can be used to 

implement them. Multi-level realisations may result in slower 

circuits but may be necessary because of fan-in limitations. ç when 

such constraints are satisfied the gates areassigned toIC packages 

and placed on printed circuit boards'. Programs to perform such 

operations are reported in (25) and (78).' It may sometimes be 

necessary to include redundant expressions in the final equations 

so that the, logic circuits become hazard-free. 	A hazard is said to 

exist in a combinational circuit if transitions between a pair of 
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adjacent (differing in only one iariable) input combinations cause a 

momentary spurious output. 	If the outputs are same for both of the 

input combinations, then the hazard is tstatic?,  otherwise it is 

'dynamic t . 	One way to prevent such faults is to use all of the 

prime implicants in the implementation of a function. 	This method 

guarantees a hazard-free realisation but may not be practical due to 

its expense. 	Hazards may also exist for multi-input-variable changes 

and these cannot be cured by using all of the prime implicants. 

Therefore, analytical techniques should be used to detect and prevent 

such cases (60). 

It was mentioned in Chapter 4 that the user-defined components 

are limited to 5 inputs and 5 outputs. These figures are just about 

right if standard algorithms are to be used to perform the above 

mentioned operations. 	When the numbers of input and output variables 

are increased the problems become quite difficult to solve, even with 

the largest of computers. 	This is mainly because of the large number 

of terms generated by the algorithms when searching for the prime 

implicants. 	For large variable (e.g. 10 inputs, 10 outputs) 

problems, the core store and execution time required to obtain the 

theoretical minimum solution exceeds beyond acceptable limits. Even 

if the prime implicants can be obtained using a reasonable amount of 

core store and execution time, the problem of finding an irredundant 

set to realise the given function, is a formidable one. 	It is 

reported in (63) that to find an irredundant set of prime implicants 

for a 6 input, 10 output combinational network, 12000 covering terms 

were generated in 28 minutes on an ICL 1907 computer. 	Therefore, 

many researchers have turned their attentions to "approximate" 

algorithms which provide 'near optimum' solutions. 	Using such 
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Compatibility Classes" and then finding a "Minimum Closed Set of 

Compatibility Classes" (90). 	This is a complex procedure and the 

execution time increases rapidly with the number of variables. 

There may be more than one minimum closed sets which require different 

states to be merged and at this stage, there is nothing to indicate 

that one of them will yield simpler equations than the others. 

Furthermore, while it is possible that some of the states can be 

eliminated and don't care values can be introduced into the table, 

there is also the very likely probability that any existing don't care 

entries will be destroyed due to the merging of states. 	Therefore, 

apart from the difficulty in obtaining a fully reduced state-table, 

there is no real guarantee that the excitation equations will be much 

simpler for a fully reduced table. 	Consequently faster working, 

approximate methods can be used for state reduction without any 

apparent loss of optimality (64). 

The next step is to assign binary codes to the internal states 	
11 

such that the excitation equations for the flip-flops are minimised 

to the greatest possible extent. 	In fact, for the minimality of 

total cost, it is necessary to consider the excitation and output 

equations together. Asynchronous components require further 

attention to eliminate 'critical race' conditions. 	A race occurs 

if a change in the internal state of the component requires a 

change in more than one state variable. 	Since it cannot be 

guaranteed that all state variables will change at precisely the 

same moment, the internal-state may temporarily become different 

from either the present or the desired next-state. 	A. race is called 

'critical' if the. next-state entries of these temporary states are 

such that the component may settle in one of them or branch to an 
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unwanted state. 	To date, there is no known method of state 

assignment which will give the theoretical optimum solution with or 

without treating the excitation and output equations together, for 

either the synchronous or asynchronous case. 	Complete enumeration 

of all possible assignments is totally out of the question since the 

nunther of possibilities are far beyond any acceptable limits*. 

Therefore again, approximate methods are used to solve the state 

assignment problem (34), (64), (82), (84), (86). 	Although some 

of these methods may sometimes give better results than the others, 

it is difficult to label any one of them as being the 'best' of all. 

This is because, the techniques used in a method may produce better 

results if applied to a certain type of sequential component. 

Unfortunately, some logic designers are not fully up to date with 

switching theory. 	They regard sequential circuits simply as circuits 

with memory that can operate in the synchronous or asynchronous mode 

and built according to the Moore or Mealy models (60). This is 

probably because the first attempts to apply the algorithms of 

classical switching theory to the simplification and reaiJsation of 

logic circuits have not been very successful due to the inefficiency 

of these algorithms in handling large variable problems. 	However, 

recent advances in this field seem very promising and modern 

switching theory should prove to be an invaluable asset for logical 

design. 	Sequential circuits may be classified in a variety of 

ways; by examining the properties of state-partitions (55), (82), 

the existence or otherwise of homing sequences or distinguishing 

sequences (60), the length of the memory span (90)., the amount of 

() For a 9 state, sequential component, there are more than 10 
million distinct assignments. 	The number of different 
assignments goes beyond 100 million. 
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feed-back (24), the linearity or otherwise of the next-state and 

output functions (28), (43),.. .etc. 	Research has been ddne in 

these areas and some of the results have been put into practice to 

obtain suitable state assignments for real problems. One new method 

is described in section 7.2.2. 

When a suitable state-assignment is found, the flip-flop type is 

selected and the excitation or output equations are extracted. 

These equations can then be realised using the techniques mentioned 

in the previous section. 	For sequential components operating in the 

synchronous mode, static or dynamic hazard detection for the excitation 

equations is not necessary. 	However, asynchronous circuits may suffer 

from yet another hazard condition s  called 'essential hazard' which may 

be caused by the differences in the propagation delays of input and 

state variables. 	They can be eliminated if the state variables are 

slowed down such that all inputs propagate fully before the state 

variables start changing. 

It can be seen that the correct operation of sequential. circuits 

depends upon a number of factors. 	Hence, it is highly desirable 

that they can be tested easily. 	Fault detection in sequential 

components is not discussed here. 	However, an algorithm to find 

'clearing sequences' which can be very useful in that area, is 

presented in the next section. 

() It may be possible to consider the type of the memory element 
when looking for a suitable state assignment. However the 
author is not aware of any method doing this. 
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7.2.1. Findinclearing_sequences 

The formal definition of a sequential machine can be found in 

the literature (90). However, to clarify the following text, the 

definition of the next-state function is also.given here. 

The next-state function mgm  of a sequential machine SM with 

"n" inputs (x1 , x2 ,.. . ,x) and .':m"  states (S 1 , S 2 ,.. S) is 

characterised by, 

St 	g(S , X.) 

where X. is a mm-term of inputs. 	S is called the present-state and 

St is the next-state. 

SM1  is said to be NON-CYCLIC if there exists an input sequence 

1(k) = X1 , 	Xq  such that 

Sk = g( ... g(g(S.,X1 ), x 2 ),... Xq ) 

for all i = 1, 2,..., m and one k, lkm. 

1(k) is called a "Clearing Sequence" (CS) and brings SM to state Sk 

no matter which state (S.) SM 1  starts from. 	SM1  is CYCLIC if it is 

not non-cyclic. 	It is. easy to show that for a 'strongly connected' 

(90), non-cyclic sequential machine, there exists at least one CS 

for any state Sk  and no two.states S Sr have identical clearing 

sequences. 

At a given time, the set of states that SM 1  can be in, is called 

a "Present State Set" (PsS). 	"Next State Sets" (NSS) can be 

generated from a PSS such that 

() The term SM is used to distinguish this example from several 
others described later on. 

(1-) 	Ee e  ylex+ p4e.. 



Since SM1  is non-cyclic there exists at least one state Sk such 

that 

Sk = g(. . .g(g(S,X1 ),X 2 ),. Xq ).  

where  

1(k) = X1 , X2 ,. •Xq  

is a ólearing sequence. 	Also, if SM1  is strongly connected, by 

definition any other state S. can be reached from Sk. 	If T(k-j) 

is the sequence of inputs which brings SM 1  to state S. when the 

initial state is Sk,  then 	. 	 . 

1(j) 	1(k), T(k-j) 

is a clearing sequence for state S... 	It follows that there exists 

at least one clearing sequence for any state S... 

Assume that two states S k 	r 
and S have identical clearing 

sequences (i.e. 1(k) = 1(r)). 	Since the starting state can be any. 

state, it may include Sk. 	Then, 

Sk = g( 	g(g(S,X1 )X2 ) 	Xq) 

and 	..:Sr 	g( ... g(g(S,X1 ),X2 ).. .Xq)  

	

• . whidi is posib1e only if Sk = Sr• 	Hence no two states may have 

identical clearing sequences.: 
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if PSS. 
1 

= 	S1 , S2,..., Sr)  

then NSS. .= 	g(S15 X.) 5  g(S2 ,x.), ... g(S;X.)} 
1 ,•J 

G(PSS
1  :,X.). J 

where 	(...} 	
is used to indicate that the set contains each element 

only once. 

A state set with one element (state) alone, is called a "Terminal Set". 

The behaviour of a sequential machine can be described by constructing 

a "State Set Table" which, for each PSS, shows the corresponding 

NSS under a given input condition. 	Figure 7.1 gives the flow-chart of 

an algorithm to construct this table. 

The algorithm starts by taking the total set of states (S1 2'•••' Sm) 

as the first present-state set and generates the next-state sets from 

it for each input condition. Then the next-state sets are taken one 

by one and new sets are generated from them. 	The process is 

continued until no new state-sets can be found. 	Figure 7.1 gives 

the flow-chart of this algorithm. 
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N2- 

Figure 7.1 Constructing the "State Set Table" 
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Example 	The state-table of a single input sequential machine, SM 2 , 

is given in Table 7.1 

Present: Next Next 

State State State 

x=o 

.4 3 

2 1 3' 

3 14. 4 

4 2 2 

Table 7.1 State Table of SM,.'; 

The state-set table obtained by the application of the above described 

algorithm is given in Table 7.2. 

PSS NSS NSS Group 

XO X1: 	. ' 	 Number 

1 5 2 5 3 2 14 1,2,14 2,3,4 1 

1,2,4 1,2,14 	. 2,3 2 

2,3,4 1,2,4 2,3,4 2 

2,3 1,4 3,4 3 

1,14 2,4 ' 2,3 4 

3,14 . 	 2,4 2,4 4 

2,4. .1,2 - 	 2,3 , 	 ' 	 5 

1,2 1,4 3 6 

.3 . 	 14 7T 

4 2 .2 8 

2 1 . 	 . 	 3 g 

1 14 3 	. 10 

Table 7.2 State-set Table for SM2. 
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Each PSS is, given a group number as follows. 	Row one is group one. 

Any other P55 which is the NSS of a group preceeding it (say G.), 

forms a new group (G.+i). 	Note that a new PSS is formed only if it 

was not found before. 

To find a CS for each internal state, first the terminal sets 

are found and underlined. 	If there are more than one termina.l sets 

for any state, only those in the lowest group (smallest group index) 

are underlined. 	If all states of a sequential machine can be found 

in terminal sets, then the machine is non-cyclic and strongly 

connected. 	If some but not all states can be found in terminal sets, 

then it is non-cyclic but not strongly connected. 	Otherwise, it is 

cyclic. 	SM,  is non-cyclic and strongly connected. 	Its clearing 

sequences can be found by starting from an underlined set and tracing 

its origin to the total set of states 
(Si,  S

2 , S 3 , S 14). 

e.g. Clearing sequence for state 3 is found as. follows., 

State set 3 	can be reached from state set 1,2 by x=l. 

	

it 1,2 	" 	if 	 11 	 H 	if 	if 	2,4  H 	x=O 

Vt 	 2,4 	if tt. 	 It 	It 	1,4 '' 	x=O 

	

1,14 	it II 	 " 	2,3 	xO 

	

2,3 	it H 	 II 	It 	Vt  1,2,14" 	x=l 

to 	1,2,4 	ifH 	 H 	 H 	Vt 	1 13 2,3,411 x=O 

Thus.I(3) = 0,1,0,0,0,1 is a clearing sequence for state 3. 

Note that if a next-state set can be reached from more than one PSS, 

the PSS which is in the lowest group is selected. 	This ensures that 

the shortest CS is found. 	In the example given above, the set 2,3 

can be reached from 1,24 or 1,4 or 2,4. 	Since 1,2,4 is in the 

lowest group, it is selected. 	However, the set 2,4 can be reached 
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from 1,4 or 3,14  both of which are in the same group. 	Hence, either 

of them can be selected without affecting the length of the Cs. 

It is possible to illustrate all of the shortest CS for each 

state of SM2  by a "Distinguishing Tree". 

1,2,3,4 

- 	 x=O 
1,2,4 

x1 

2,3 

.x=>___ 	 x=1 

.1 	 ,14 

x0 	2,4 	 x1 

.x0 
1,2 

( 

xzl 

3 

x0 	 x1 

x=O 	 x1 

x=O 

F' 

Figure 7.2 Distinguishing Tree for SM2. 
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7.2.2. Application of clearing sequences to state assignment 

This section describes a new method of state assignment for 

synchronous sequential machines. 	The method aims at assigning each 

state to a binary code derived from its shortest clearing sequence. 

It has been called the "Shortest Path Algorithm" and can be used only 

for strongly connected, non-cyclic sequential machines operating in the 

synchronous mode. 

It was shown in the previous section that the clearing 	 - 

sequence for any state, say S., of a sequential machine SM 1  with n tt 

inputs, can be written as 

I(Sj ). =X1 X2 ••Xq  

where each X term is a mm-term of "n" variables. When "n" is equal 

to one, X. becomes a binary digit and 1(5.) can be considered as a 

binary number with tlqtt bits. 	Assume now, that 1(5.) is applied 

simultaneously to SM1 .and to a tq bit shift register SR1  which accepts 

serial data. 	SM1  responds to the input data by changing its internal 

state and SR1  does the same by shifting the data on the register. 

Since I(S) is aclearing sequence for state Si' at the end of the 
j.

input sequence, SM1  will be in state S. and the contents of SR1  will 

be the sequence 1(5.). 	Therefore, the binary code assignment of Si 

in SR1  becomes 1(5.). 	If the same is Cone to all states of SM1
, then 

the state assignments for a shift register realisation of SM 1  will be 

found. 	If all-possible input sequences of length "q" are clearing 

sequences (not necessarily the shortest), then a perfect shift 

register realisation of SM1  will be obtained. 	If some of the 

possible input sequences do iot represent any clearing sequence at 

all, then the realisation of SM1  will not be a perfect shift register 

but will still show such characteristics. Consider a very simple 
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example. 	Table 7.3 gives the state table of SM 2 . 

Present Next-State 

State x=0 	x=l 

1 1 	2 

2 1 	3 

3 1 	3 

Table 7.3 	State-table for SM2 . 

The clearing sequences are 

.I(l)=0 

1(21 	0, 1 

1(3) = 1, 1 

To make all clearing sequences have the same number of digits, the 

sequence for state one can be written as 1(1) = -, 0. 	There are 

possible input sequences with 2 bits and it can be seen that each one 

represents a clearing sequence. 	Hencc, if every state of SM 2  is 

assigned to the binary code represented by its clearing sequence, a 

perfect shift register realisation of SM 2  will be obtained. 	Note 

that the state with the shorter clearing sequence (State 1) is 

assigned to two adjacent codes (00 and 10). 	The excitation equations 

are 	 - 	

0 

Yl  = 	Y2  = X. 

The number of flip-flops required for the realisation is equal to the 

length of the longest one of the clearing sequences (i.e. two. 

This number may sometimes be much larger than the minimum number of 

flip-flops to implement a given sequential machine. 	Since a shift 

register realisation cannot be guaranteed, there is not much point in 
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using too many flip-flops with the hope that a good solution can be 

obtained. 	In such cases, the top bits of the clearing sequences can 

be dropped. 	This can be described as an 'overflow' of the shift 

register. 	Then the problem of finding the state assignments becomes 

more complex since two different sequences may become identical if 

their top digits are ignored. 	Thus, conflict situations may arise 

as more than one state has to be assigned to the same binary code. 

Before explaining how such conflicts are resolved, the case for 

sequential machines with more than one input will be discussed. 

When "n" is greater than one, each digit (Xi)  of a clearing 

sequence will be a binary number with "n" bits. 	For the clearing 

sequence itself to represent a binary number, it must be decoded such 

that each digit becomes "1" or "0". 	Since X. can have 
2  values, a 

decoder with that many number of inputs is necessary. 	This may create 

some conflict situations since differen.t sequences may become identical 

if they are decoded. 	There will not be an explicit decoder present 

in the final realisation but all decodings will be examined to find 

the one which causes the least number of conflicts. 	Table 7.4 lists 

all possible decoding functions for n = 2 (i.e. inputs x1 , x2 ). 

F5 =X2 F9=X F13=X1X2+X1X2  

F2=X1X2 	6l2 	F10X1+X2 	F14=X1+X2 

F3 1  =X 	F7=X;X2+X1X; F11 1 	F15=X2  

F4=X1X2 F8=X1X 2  F12=X1+X2 F16=X1X2 

Table. 7.4 Decoding Functions for Two Variables 
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For instance, F7  transforms the sequence 1100, 01, 11, 10" into the 

binary number "0101" and F10  transforms the same sequence into "1101" 

A computer program has been written which finds all of the 

shortest clearing sequences for each state (there may be more than 

one minimal length clearing sequence for any state)and then resolves 

the conflicts caused by truncation or decoding. 	Since all possible 

decodings are examined, only sequential circuits with less than 4 

inputs can be hand1ed. 	The following example describes how the 

program works. 

Example: 

The state-table of a sequential machine SM 3 , with 5 states and 2 

inputs, is given in Table 7.5. 

Present Next-State 

State 00 	01 	11 10 

1 3 	1 	4 2 

2 1 	5 	4 2 

3 3 	4 	3 5 

4 . 	 5 	1 	4 2 

5 5 	4 	3 5 

Table 7.5 	State-table of SM3 . 

First the clearing sequences are found. 	Table 7.6 gives the shortest 

clearing sequence for all states. 

() Number of decoding functions is equal to 2 R where R=2 n 
(n = number of inputs). 	 . 	. 
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State 	Clearing Sequence 

1 	00,01,01, or 01,01,01, or 11,01,01 

2 	00,01,10 or 01,01,10 or 11,01,10 

3 	00,00,11 or 01,00,11 or 11,00,11 

4 	00,00,01 or 01,00,01 or 11,00,01 

or 00,01,11 or 01,01,11 or 11,01,11 

5 

	

	00,00,10 or 01,00,10 or 11,00,10 

or 10,01,00 

Table 7.6 Clearing Sequences for SM 3 . 

Since all sequences have 3 digits and SM 3  has 5 states, a 3 flip-flop 

realisation will be derived without truncating any of the sequences. 

To examine the 16 possible decodings an "Assignment Table" is prepared. 

This table has 16 rows, each corresponding to a different decoding 

function, and 8 columns, each corresponding to a different binary 'code. 

On each row of the table, the states are mapped into the columns 

which represent the binary numbers obtained by decoding the clearing 

sequences with the decoding function of the row. 	For example, on 

row.7, state 1 is mapped into the column for '111' since F 7  transforms 

I(1)=01,01,01 into that number. 	On the same row, state 1 is also 

mapped into the column for 1 011' since F7  transforms the other two 

clearing sequences into that number. 	Conflict situations appear 

when more than one state is mapped into the same column of a row. 

Table 7.7 shows the assignment tãble'for SM 3 . When the assignment 

table is ready, a score is given to each row by considering such 

factors as 

• (i)- 	the total 'number of mappings in a row, 

(ii)- the number of non-conflicting entries (i.e. only one 

state mapped into a column), 



Function 000 001 011 010 110 111 101 100 

F1  1,2,3,4,5  

F 
2 * 

1,3,4 ,5 . 	 . . 	 . - . 	
- 5 

F3 	.. 1,4 2,3,4,5 - - - - 
2,3,4,5 1,4,5 

F4  1,2,4,5 3,4 . 	 . 	 - . 	 - . 	 . 	 - 	 . - 
3,4 1,2,4,5 

F5  5 3,4 1,4 . 	 2,5 2 1,4 3,4 5 

F6 - 3,4,5 1,2,4 - 5 1,2,4  

F 7  3 4,5 1,2 . 	 4 4,5 1,2 4,5 3 

F8  3 1 5 4 1 .2,4,5 2,4 1 4 3,5 

F9  - - 1,4,5 2,3,4,5 2,3,4,5 1,4 - - 

F10  - - 1,2,4,5 14 . 	 3,4 .  1 2 2,4,5 - - 

- - 	 . . 	 - . 1,2,3,4,5 - - 

F12  . 	 - 5 -, 2,5 1,3,4  

F13  1,2 4,5 	. 3 4,5 4,5 3 4 12 

F14 . 	 1 2,4 3,5 .  4 . 	 4 3,5 2,4,5 . 	 .1 

F15  1,4 2 	. .5 . 	 3114 .3 5 4 5 2,5 1,4 

F16 . 	 1,2,4: 5 . 	 - 	 . . 	 3,4,5 3 5 4,5 - . 	 - 1,2,4 

Table 7.7 Assignment Table of SM 3 . 	 . 
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the number of different states which appear as single 

entries, 

the complexity of the decoding function, 

the score given to each column (calculated from the 

number of "l"s in the binary code of that column and the columns 

adjacent to it). 

Then, the non-conflicting entries are selected from the highest 

scoring row, and assigned to the binary code of those columns. 

Assigned states and used columns are deleted, other rows are given an 

additional score if they contain similar entries to the selected ones 

and the process is repeated until all states are assigned. 	The 

algorithm works such that if in any row, there are more than one 

possible assignments for a state, all of them are taken. 	If at a 

later stage, one of the columns is required by another state,.that 

column is released and the others are kept for the original state. 

The program found the following assignments for SM 3 . 

Internal Binary Iteration Selected 

state code step from row 

5 100 1 2 

2 010 2 	. 5 

1 011 3. .8 

3 000 3 8 

4 001 3 8 

Table 7.8 Assignments for SM3. 
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The excitation equations for JK. flip-flops require. 13 gateswIth a 

total of 41 gate inputs. 	For the same problem, results obtained 

by using other methods (34), (614), (84), (86) all require 13 gates 

and the number of gate inputs varies between 31 and 36. 	For this 

particular example, the results are no better than those obtained by 

other methods. 	This is not always the case. 

The quality of the results depend upon the strength of the shift 

register relations inside the sequential machine. 	Table 7.9 gives 

the state-table of another sequential machine which shifts. the data 

on one input to the left or right, depending upon the data on the 

second input. 	 . 

Present Next-state 

State 00 	01 	11 10 

1 1 	2 	8 1 

2 4 	3 	8 1 

3 5 	6 	7 2 

it 8 	7 	72 

5 8 	7 	6 3 

6 5 	6 	6 3 

7 .4 	3 	5 it 

8 1 	2 	5 4 

Table 7.9 Sequential Machine. 

The realisation obtained by the method described above requires 18 

gates and 36 gate inputs for the J-K flip-flops. 	These figUres 

compare favourably with the results from another method (64) which 

require 27 gates and 60 inputs. 	Another state-table is given in 

Table 7.10. 	The realisation obtained by (64) requires 13 gates and 



-164- 

36 inputs. 	The shortest path algorithm found a perfect shift register 

realisation using 4 flip-flops (no additional logic is needed). 

Present 	Next-State 

State 00 01 11 10 

1 21 2 1 

2 31 3 1 

3 41 14 1 

14 .  5 1 5 1 

5 . 5 1 5 1 

(a) State-table 

State Code 

1 ---1 

2 ---10 

3 -100 

4 1000 

5 0000 

(b) State assignment 

Table 7.10 Shift Register Realisation of a State-table 

Don't care entries in the state-table can be ignored without causing 

any problem. e.g. Table 7.11 shows part of a state-table with a don't 

care entry. 	. 	. 	 . 	. 

Present 	Next-state 

State 	x=0 

5 	3 .  

6 	- 

7 	5 

Table 7.11 Part of a State-table with Don't Care Entry. 



-165- 

The next-state set generated from the préent-state set 5, 6, 7 will 

be 3, 5. 	However, if the clearing sequences are to be used for 

testing purposes, the don't care entry should be changed to state 3 

or 5 or a different branch of the distinguishing tree should be used. 

7.3. 	Library components 

Library components are, to a large extent, modelled on available 

integrated circuits. 	The main difference between a model and its 

IC counterpart is that, whereas IC's have a fixed number of bits, the 

size of the model can be changed by the user. 	Therefore, in most cases 

the realisation of a library component requires designing a larger 

circuit with the same input-output characteristics, from the smaller 

ones available on the market. 	For example, a 12 bit counter can be 

obtained by simply cascading three, 4-bit counters and connecting their 

control inputs in parallel. 	However, it may not always be possible to 

do this. 	A 12-bit universal register can be built from three, 4-bit 

ones but it is not so simple to realise a 10-bit register in this 

fashion. 	This is because the unused bits must be by-passed when 

performing shift operations. 	Hence, if the number of bits on the 

model is not a multiple of the number of bits on the IC, additional 

logic may be necessary to realise the library component. 

One solution to this problem is to manufacture IC components 

with a small number of bits (e.g. two bits) so that different size 

components can be easily obtained. However, this approach is against 

the IC philosophy since it means a move towards using discrete components 

again. 	Therefore, the solution lies in manufacturing IC's which can 

be easily adopted to fit certain requirements. 	Additional inputs 

and/or outputs can be provided to give deeper access to the component. 
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An alternative and better way is to manufacture IC's as cellular 

arrays and custom-design the interconnection masks. 	These problems 

are for the component manufacturers to solve. 	Unfortunately, there 

is not a noticable movement in this direction. 	The main fault lies 

in the current design philosophies since the types of components to 

be used are considered at a very late. stage. 	This point will be 

discussed further in Chapter 8 

More complex library components may require a separate design 

cycle to realise them. 	For instance, a logical unit which can perform 

various logic operations (e.g. AND, OR,.. .etc) can be modelled as a 

single component. 	Since operations performed by such components are 

well defined (i.e. standard) their design is not a major task. 	In 

most cases the logic for one bit is repeated for all others and. 

conventional techniques can be used to realise them. 	The 'highway' 

component deserves further comments. 	In many design circles a common 

highway is treated as a complicated data path. On its own, it is not 

seen as a component but rather as the necessary gating to pass data 

among several units. 	This thinking should be changed and the common 

highway should be treated as a component in its own right since it 

performs data operations under external control. The design example 

given in Chapter 5 illustrates this point. 	No claim is made about 

the usefulness of the particular highway component which was used 

but the concept is found to be very helpful in representing and 

designing digital systems. 
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Chapter 8: Proposals For Future Work. 

The CAD programs described in Chapter LI. have been successfully 

applied to the design of a simple digital computer (see Chapter 5). 

Many of the facilities provided were found to be extremely useful. 

The most useful ones were 'Page' (including the facility to display 

components on more than one page), 'Multi-Line', and 'Trap' (see 

Chapter 4). 	However, several improvements can be made to the 

programs to make them more efficient and easy to use. 

8.1. 	Changes to the component library  

The example given in Chapter 5 indicates that digital systems 

can be designed by using a small number of different data components. 

However, the problem of selecting the particular components which 

should be included in the system library needs further investigation. 

Programming a whole range of IC's might appear to be a solution but 

this would create an undesirable side effect by introducing 

implemencation details at a very early stage in the design process. 

Furthermore, currently available IC components are not ideally suited 

for all applications. 	It was mentioned in Section 7.3 that even a 

simple construction such as cascading two identical registers to 

increase the number of bits, may create unnecessary problems. 	It 

is quite clear that present MSI modules are unsatisfactory, in many 

ways. 	This is due to the fact that it is the I.C. manufacturers 

and not the equipment designers who take the initiative in choosing 

the components to be produced. 	This, in turn, is due to existing 

design philosophies. 	In most cases the starting point to a digital 

system design is taken as a description of the required operations. 

Because of the wide variety of techniques used both for making the 

descriptions and turning them into hardware, every design requires 



components of different nature. 	On the other hand, most design 

algorithms aim at finding solutions which use low-level switching 

components (i.e. gates or flip-flops). 	Therefore, enough demand 

• cannot be accumulated to convince the manufacturers that the 

production of a particular high level component is justified. Hence 

the designers have to adapt their designs according to the state of 

the component market. 	Though some attempts have been made to design 

a set of universal modules which can be used in a wide variety of 

applications (e.g. PDP-16), on closer examination mostof the proposals 

are found to be inadequate. 	A new component modelling prillosophy 

is required to solve this problem. 	A set of highly generalised 

modules can be defined and placed in the library. 	Then, the designer 

can delete the unnecessary features to obtain a somewhat simpler 

version of the component. 	For example, in the case of a register, 

options available can be the number of bits, required operations 

(count, load, shift,... etc), external control facilities (e.g. a 

'count enable' input), special outputs (e.g. to.indicate that the 

counter is full),.. .etc. 	The actual IC's can be built in a modular 

fashion by 'plugging in' some special components to a basic module 

and (if required) using different interconnection masks during the 

production. 	The basic module should contain very little control 

logic and should be expandable. 	The rquired features can be added 

to it by connecting special componentswhich provide the necessary 

logic to perform different operations. 	If necessary some of the 

connections inside the basic component can be changed by using a 

different interconnection mask. 
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8.2. 	Improvements to component specification. 

The method of specifying a truth-table or a state-table can be 

improved by allowing the use of a teletype to input Boolean equations 

or state-transfer relations (expressed in a suitable language). 

Programs to accept this form of input need not be very complicated. 

In the case of combinational components all that is required is a 

syntax analyser which can recognise literals, logical operators and 

parentheses and generate the 'canonical' terms from the input 

expressions. 	However, a special language is necessary to describe 

the behaviour of sequential components. 	The language used can be a 

very simple one since there are no data operations to describe. 	More 

- 

	

	general languages of this nature are being used (64) to specify 

state-tables (or truth-tables) of much larger size than those used in 

the CAD system presented in Chapter 4. 	These programs also check for 

inconsistencies created when making the specifications. 	This is not 

required here since the tables are small enough to allow the user to 

detect mstakes by visual inspection. 	All forms of input (graphical 

or linguistic) should be made on-line and the display should be 

immediately updated, as is the case at the present. 

Another useful facility would be to be able to describe a 

component as above and later repeat it a number of times. 	This can 

be achieved by defining a Macro component as required. 	However, 

simple repetition can be obtained more easily and without adding 

new blocks to the Instance table. 	Also, don't care values for 

outputs or internal states should be allowed and the simulator 

program should be modified to warn the user when a component branches 

into an unidentified next-state or if an input terminal receives 

a don't care value (three value simulation is another possibility). 
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The use of the light-pen should be continued since it is often much 

easier to point at an entry to change its value, rather than to type 

. anequation 

8.3. Additional display facilities. 

In general, the generation and display of logic diagrams are 

quite satisfactory. 	However, certain modifications can be made to 

improve their quality and to make the programs easier to use. 	At 

the present, if a component is displayed on more than one page, a 

connection made to .one of its terminals can be seen only if that 

connection is on the current page. 	Hence, if the user attempts to 

connect an input terminal to an output and if that terminal was already 

connectdd to an output terminal, the program rejects the attempted 

connection but it is not known what and where the other connection is. 

The user has to turn to another page to find that. 	This is a handicap 

and should be removed. 	It is difficult to indicate precisely to 

which other terminals a given one is connected. 	The problem is not 

only in finding a suitable form to show this (i.e. displaying the 

name and terminal number of the component to which a given terminal 

is connected) but also in updating this information as connections 

on other pages are modified. 	Therefore a simpler but less specific 

remedy has to be used. 	For example, an asterisk (') can be 

displayed on a terminal which is already connected. 	Note that if 

the connection is on the current page, the asterisk should not be 

displayed. 

Another problem is to identify those terminals to which only 

'multi-line' connections can be made (i.e. data-ports). 	Such 

terminals can be displayed with a slightly different representation 
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to allow easy recognition. 	For example, such terminals can be 

displayed longer or thicker than the rest. Also, it should be 

possible to interchange terminals according to the connections 

required. The user should be able to select a light-button and 

identify the terminals which he wishes to interchange. 	Nothing 

happens on the display but the truth-table or the state-table becomes 

modified as required. 	This is illustrated in Figure 8.1. 

Fl FL 	 ' 

I 	I 	AB 

00 	0 

I 	I 	01 	11 

AS 
11 	10 

10 	10 

(a) Original 

Ft Fl. 

I 	I 	AB 

I' 	00 	01 

I 	I 	01 	10 
A D 

11 	1 0 

10 	11 

(b) After interchanging the inputs 

Figure 8.1 'Interchange' Facility. 

Note that the use of this facility should be allowed only when the 

terminals involved are not connected to any other terminals. 

When a Macro component is defined its internal components are 

removed from the display but can be regenerated and modified. 

However, the order of the external terminals are not identified on 
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the display. 	For example, if the Macro has two inputs, it is not 

clear which internal terminal is the first and which is the second. 

This problem can be solved by displaying a number on the internal 

terminal to identify its position on the Macro. 

It should be possible to give a different name to each individual 

copy of components which are used more than once. 	This can be 

achieved by storing the generic name (name first given when defining 

terminal behaviour, or by default for library components) in the 

Master block and storing another name in the Instance block-. 	It would 

be a very simple task indeed to switch from one name to the other since 

this is only a display procedure. 

8.4. 	Improvements to the data structure. 

Some improvements can also be made to the present organisation of 

internal (computer) representation. 	Facilities should exist to link 

similar data structures together so that designs generated by different 

people can be brought togethcr. Alsc the values of output terminals 

should be stored in a different place and their position in the 

Instance block should be replaced by pointers to the storage area. 

This arrangement eliminates the need for transferring values to and 

from the master table when simulating a macro component. 	Instead, 

the pointers will be changed to get the same effect. 	To use the 

data storage more efficiently, a ring data structure can be formed. 

Separate rings should be formed for the Master and Instance blocks. 

However, on its own, this type of storage would not be satisfactory 

- for simulation. 	Each instance block should be able to loca±e the 

Master immediately (without any search) so that simulation can be 

carried out at full speed. 	Therefore, 'map' tables should be formed 
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to show the position of each block in the data structure. 	Then, 

all references to the Master or Instance blocks can be made via the 

map table. 	This arrangement would also make the blocks relocatable. 

8.5. Increasing the speed of simulation 

To increase the speed of simulation, a different simulator 

program could be written. 	The first change is needed in the type 

of the !input pointers'. 	As shown in Chapter 6, with the present 

arrangement of pointers, some input terminals may have to point to 

other inputs thus forming a chain. 	During simulation, these pointers 

are followed until an output terminal is encountered. 	Timewise, 

this is a costly operation. 	Also, having the pointers at the input 

terminals rather than at the outputs is not a good arrangement 

if fast simulation is required. 	Instead, outputs should point to 

the inputs which they drive. 	In this arrangement an output may have 

more than one pointer since it may be connected to a number of inputs. 

When a component is simulated, the names of all components which 

receive an input from it can be entered into a circular buffer. 

The position in the buffer where the name of a component is entered 

depends upon the delay value of the output terminal. After each 

time step, the buffer is rotated so that the positions of the names 

of.components which have been simulated can be used again. 	Hence 

only those components which bec'me 'active' are simulated and the 

periods of time when all outputs remain stable are skipped over. 

() Note that autonomous components should be treated separately 
as there are no outputs to drive them. 
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These changes cannot be achieved as 'modifications' to the 

existing simulator and the program would have to be rewritten 

accordingly. 	One disadvantage that the new simulator would have is 

the necessity to 'pre-process' the data structure prepared by the 

drawing program before simulation can begin. 	The choice was made to 

have pointers at the input terminals rather than at the outputs 

since such is the requirement of the drawing program. 	Otherwise, 

only pin-to-pin connections between an input and output terminal can 

be made. 
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Chapter 9: Conclusions. 

Existing CAD methods for digital systems design can be divided 

into two main categories. The most popular approach is to use a 

formal design language to describe the behaviour of the target system. 

11 
	

These descriptions can be realised in hardware by using a variety of 

techniques some of which were described in Section 2.1. 	Although 

methods of this nature are very useful, most of them are unsatisfactory 

in expressing timing relations and, system structure. Methods in the 

second group use flow-charts (or similar diagrams) to separately 

represent the flow of data and control signals in a digital system. 

Conversion into hardware is achieved by using special pre-designed 

components which realise the operations indicated by theflow-chart 

symbols. 	This approach is relatively new and a large scale design 

problem has not yet been solved in this manner. 	In general, such 

methods seem promising especially in designing control circuits. 

However, implementing the data operations presents some problems 

since system structure is iot defined elearly. 

Chapter 3 presents a different design philosophy which does not 

use abstract forms to make the descriptions. 	Operations to be 

performed by the target machine are divided into two types (data 

and control) and components are defined to realise them. 	Some of 

the components are provided by the design system whereas others 

are defined by the user. Generally accepted tabular methods are 

used to describe the terminal behaviour of user-defined components. 

Connections are made by drawing logic diagrams so that system 

structure is defined in a natural way. 	CAD programs have been 

written to apply these ideas and a design problem was solved to 

illustrate their use. 	The.general conclusions drawn from in- 
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the only other alternative.. 

Some of the ideas put forward by the author have already been 

expressed by other workers in this field. 	However, to the best of 

the author's knowledge the CAD programs described in Chapter 4 are 

the only existing programs which implement (or make it possible to 

implement) these ideas as a whole, forming a design suite with 

practical applications. 	Especially the implementation of the 

'Multi-Line', 'Page' (including the display of components on more than 

one page) and 'Trap' facilities (see Chapter 4) appear to be novel. 

Also no reference could be found which describes techniques similar 

to the ones used in the internal representation of connections 

(Chapter 6) and the state assignment method presented in Section 7.2.2. 

It is hoped that this research will motivate others in the same 

field so that viable CAD methods will emerge. 	It is difficult to 

visualise a single •.method being used generally,because of the wide 

variety of disciplines adopted by the computer manufacturers. 

Nevertheless, for the continued development of digital systems, more 

powerful CAD systems are absolutely essential. 
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Appendix A : Modified LOGOS approach. 

This section presents a proposal for changing the LOGOS (77) 

representation system. Figure A.l shows zi different drawing of 

LOGOS diagrams. 

fl -- 

L.... .1 

- 

Figure A.l LOGOS Representation with Visible Upstream Flow. 

An operator fires only when all of its inputs are activated and all 

other operators receiving signal from it, are free. 	Upon firing, 

the operator becomes busy until it gets confirmation that it can fire 

again. 	Figure A.2 gives the flow-chart of an operator working in 

that fashion. 	Table T.l gives the state-table of a sequential 

machine which realises the flow-chart and the logic design of the 

module is given in Figure A.3. 	The design is race-free and 

incompatible gates (i.e. gates with different propagation delays) will 

not cause malfunction of the circuit. 
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TPRT 

Module is ready 
	

R - t 

Wait for input 

NN 

Activate next module 

Set module BUSY 	 Rc —o 

Wait until next module 

is activated 
	 S 	I 

yo 

Cancel activity signal 

Wait until next module 

finishes operation 

Figure A.2 Flow-Chart of Primitive Operator. 

H 
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Present State Next-state Outputs 

State Variable Inputs CR 
i  +l ,X. ) R.,Z. 

1 1 .1 

Y1 Y 00 	01 11 10 

1 1 	0 1 	1 4 1 1 	0 

2 0 	1 3 	3 2 2 0 	1 

3 1 	1 3 	3 1 1 0 	0 

4 1 	0 	. 2 	2 2 2 1 	1 

Table T.l State-Output Table of Primitive Operator 

The excitation and output equations are; 

R X..R. 	,Y 
1 1 1+1 2 

S1 =R. 1 .Y 2  

R2 = R. +i.Yi 

S 2 Y1  

R 
i  Y 
	, 
2 	12 

z.=i 	,. 
'1 1 	i 1 

The "X.'t input can be expanded by adding more input t2rminals 

to the NAND gate to which itis connected. 	The "R.+i"  input can be 

expanded in the same way, using separate inverters for each, before. 

connecting to NAND gate 2. 	The module produces both true and 

complemented outputs. However an inverter is used to obtain the 

1i+l signal since this avoids running an extra line to each module. 

A more complicated operator to activate first a data component 

and then the next control operator, can be built using the primitive 

operator described above. 	Its logic design is given in Figure A.4. 
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R ;+i X1 

Figure A.3 Logic Design of Primitive Operator 
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X; 
4 

Lk 	•44 	4 	 I 

o1afaope 0t 
 

Representation 

X; R 1+  

Logic design 

Figure A.'4 Design of Macro Operator. 
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Figure A.5 shows a sequencer which activates more than one data 

operators, in sequence. 

R~ 

'4-- ------ -

Rd 

XJ 
4-.------- - 

Rd 

Xj 
4 -----  --- - 

Figure A.5 Design of Sequencer 

A very useful property of the modules described above is that they 

possess identical terminal characteristics. 
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APPENDIX B: List of library comppnents available from the design 

programs. 

• This section lists all the library components available from 

the design system described in Chapter 4 and describes their terminal 

behaviour. 	Library components are given default names from SYS01 

to SYS11 but they can be renamed. 

SYS01 (AND gate) 

) 

Realises the function 	 0. = C . I. 
1 

SYS02 (Register) 

o------_-- o n  

DO 

I 	I 	I 
ftD 

,T5502 
	

LD 

--------- ... 	 CL 

A general purpose register (similar to Texas Inst. SN54194) which is 

controlled by the mode inputs SO, Si as showr below (operations 

are carried out on the falling edge of the clock pulse). 

SO 	Si 	Action 

0 	0 	Ignore clock pulse. 	 • 	•• 

0 	1 	Shift right (Data on RD replaces data on Ok). 

1 	1 	Accept parallel data. 	• 

1 	0 	Shift left (Data on LD replaces data on O n ). 

Table T.2 Operations of the Register 



Register contents can be cleared irrespective of the position of the 

clock pulse by placing a logic value on the CL input. 

SYS03 (OR gate) 

01 

 1---1  0-  -- 	- 

sY503 

I 
A 

I 	I B1. 	 A, 	B 

Realises the function 	0. = A. .+ B. 
1 	1 	J 

SYS04 (Memory 

yn12- 

>,f 
w 
wx 

Xy./L  
R 

RX 
If - - - - - - - - -  

Represents a memory component. 	I to I are the inputs to the memory 

buffer register and 0 1 	n 	 1 	n/2 	1 
to 0 are its outputs. 	X to X 	and Y to 

Y,2  are the X and Y address inputs (inputs to the .memory address 

register). 	To write into the memory, W is set to logic one and a 

positive pulse (0-1-0) is applied to WX. 	Memory access time can be 

specified by the user and W must be kept at logic one until the access 

is completed. 	Read operations are enabled in an identical manner, 

using the R and RX inputs. 

SYS05 (Decoder) 

op ot  0, 03  O. O Oc 0- 

II 	I 	II 	I 	I 
505 

C 
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Decodes n inputs into 
2n 
 outputs (in binary order) when C input is 

at logic one. 	Outputs become zero when C is returned to zero. 

C. SYS06 (Counter) 

U Os. ------ On 

C 	1-----tCL 

A controllable counter (similar to Texas Inst. SN54193) which can be 

loaded from the parallel inputs by setting L to zero (asynchronous 

loading). 	Counting is enabled when E becomes one and the M input 

allows counting downwards (M = 0) or upwards (M = 1). 	U is an 

overflow bit which is set when the counter becomes zero (if M = 0 

and E = 1) or when all bits are set (if M = 1 5  E = 1). 

7. SYS07 (Memory controller) 

Of 	Ot. 0 3  

*E' C 

A component which is used to activate the memory operations. 	It 

is enabled by setting E to logic zero. 	Then, a positive pulse applied 

to the C input produces the following sequence of outputs. 

031 	- 

021 	 k-I 
I 	I 	 I 

0I I 	I 	I 	 I 	I 
I 	 1:3- - - --* 1 

- I 

C 	 r1..t 	I 
I 	 I 

I 	 I 

Values t1 , t 2 , t 3  and t 14  are specified by the user. 
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S . S08 (Highway) 

O,O2 	op 

I 	I 	I 	I 

I 	I 	- -•- I 	I 
I b 1  

Only multi-line connections (carrying 'p' bits can be made to the 

D. inputs. 	When I. becomes one, data on D. replaces the outputs 

to 0) and B becomes one. 	Further requests from other inputs 

are ignored until I. is set to zero again. 	If simultaneous requests 

are made to get the highway, the leftmost one is answered. 

SYS09 (Multiplexor) 

op 

i 
0 2.n 

Only multi-line connections (carrying 'p' bits) can be made to the D 

inputs. 	Data on the i'th data port (i is the binary number represented 

by the values on inputs Ito In)  replaces the outputs (O  to 0). 

SYS10 (Read-only memory) o1  
io -_i n  I 

C 	1  

When C is set to one, the contents of the p-bit word at address i 

(i is the number represented on the I inputs) replaces the outputs 

(0 
1  to 0 ). p 



11. SYS11 (Arithmetic and logical unit) 

o o f  ----- Op 

' ssi 
I f  

D D, C 

Only multi-line connections (carrying tpf bits) can be made to 

or D2 . SYS11 performs arithmetic or logical operations on the input 

data (D1  and D 2 ) according to the table given below. 

111213 	Operation 

000 D 
2 
 + D 1 

O 0 1 minus 

O 1 1 minus D2  

010 D2 plusD1  

110 

1 1 1 'NOT' 

101 

1 0 0 	'NOT' (D 2  + D1 ) 

Table T.3 Operations of the SYS11 Component. 

C input can be used as the carry (or borrow) input from a previous 

bit and 0 generates a carry (or borrow)' value for the higher order bits. 
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APPENDIX C: Features of the supporting computer system 

Figure Cl gives a simplified block diagram of the êomputer system 

where only those parts essential to the running of the author's 

design programs, are shown. 

1 
Mewer 

KALO 

I CEU I 
I 

jCh 

I 	I/O  

Disc  

I
GOflftOl 

I
Ccztcorrip plc 

I prifcr 

I 	 C O)nyr,uncAf 

I 	Pro,jjde3  

---------- 

3 

net 

0  Diic.unitr. 

5 M worJ5 each 

POF-lo I 
I 

;0n5 I 
I 

rTy  

•r 	I 	I 
3*0 	PeI 

C o rifrel 

- 	 Mgrnot 

I. 
I 	 Df- / 

Figure C .1 Compiteryjem. 
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The central part of the system is PDP-10 computer which is time-shared 

among several users. A monitor program which resides in core at all 

times, allocates resources to other programs and dynamically schedules 

their execution such that each one is given a fixed time slice on 

the central processor. 	When a job uses up its time slice or is 

awaiting the completion of an I/O operation, its execution is stopped 

and another user's program is started. 	If all jobs running in the 

system cannot be. kept in core together, as is usually the case, some 

of them are 'swapped' out onto disc until they get another chance to 

continue. 	Communication with the monitor is achieved by using remote 

terminals (Teletype 33 or Tektronix 4010). 	Directly linked to the 

I/O bus is a satellite computer (PDP-7) which forms the interface 

between the user program and 3 140 display unit. 	The user submits his 

design programs by using one of the terminals which is positioned 

next to the display screen. The PDP-10 filing system allows each user 

to have a private disc directory and user programs are normally stored 

on disc &L. all times. 	Therefore submitting a job requires only 

instructing the monitor accordingly. 

Drawings are generated by using special subroutines obtained from 

the SPINDLE (57) graphics package. 	These routines enable the user to 

prepare, modify or examine the contents, of a 'display file' which 

contains instructions for the 340. 	For example, there are routines 

which generate instructions to position the beam, draw vectors or 

characters at a variety of scale and intensity (brightness) settings, 

enable or disable the light pen, display a tracking cross which can 

follow the movements of the pen,... etc. 	The display file is 

divided into segments and each segment is given a name for 

identification. 	An identical copy of this file is sent to the PDP-7 
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(initially in toto and subsequently incrementally)where it is 

interpreted and the drawings are displayed. 	Light-pen interrupts 

are first analysed by the PDP-7 executive, which sends the name of 

the segment hit and some other information to the user program. 

Logic drawings are prepared such that each component, connection or 

light button is in a separate segment. 	Hence the user program can 

identify the particular item selected by examining the name sent from 

the PDP-7. 	The tracking cross is used in drawing 'rubber-band' lines 

for making the connections. 	The cross is slaved to the light-pen 

and follows its movements on the screen. 	When tracking is stopped 

(by releasing the shutter of the pen), a 'loss of tracking' interrupt 

is generated and the last recorded position of the cross is sent to 

the user program. This information is used to calculate the X and Y 

increments of the line segment to be drawn. 	The display file is 

modified accordingly and changes (or additions) are sent to PDP-7. 

Hard copies of'drawings are obtained by dumping the display file 

on disc and using another program to generate plotter ii.structions 

from it. Outputs from the simulator program are first stored on 

disc and then listed on the line printer by using standard PDP-10 

software. 
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Appendix D: 	Key to logic diagrams. 

The following representations have been used in the logic 

diagrams. 

AND gate 

NAND gate 	 V  

A 
II 	 V 

• 	 V 	(iii)- OR gate 	 V  

(iv)- 	INVERTER 	
V 	

V 

•(v) 	J-K FLIP-FLOP 
V 	

•I 	I •  

K 

1.1 
(vi)- R-S FLIP-FLOP 

LI 
Q 	

•V 

G 	R. 	
• 	 V 	 • 

• 	
• 	I• 

V 	 (vii)- 0th 	 • 

I 	I 
F uncT.On 

•I 	I 
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