- ° Computer Aided Design Techniques Applied to Logic Design

B.I. Dervisoglu.

Thesis presented for the Degree of Doctor of Phiiosophy of the

University of Edinburgh in the Faculty of Science, July 1973.

" ABSTRACT OF THESIS

..

AdArESS onnveeeeererreeeens 127 . Bruntsfield. Placea. EDINBURGH o ..o eteeevesesfesessaseesssassesessenesssnssessssssas
Degreeueveveverernnne PhlaDaeeirricrercnenannenreeesaessasessesssssensasaeses Date 26thJuly,1973
Title of Thesiscomputer Aided Design Techniques Applied to Logic Design. ... = =

--

Computer Aided Design techniques are essential for the development of
complex digital systems. The existing methods of CAD approach the
problem in two ways. The first one is to use a formal language to
describe system behaviour and then use special algorithms to turn it:
into hardware. The second approach islto use flow-charts to specify
the flow of information within a digital system and then to realise the

flow-chart in hardware.

A differeﬁt approach is presented in this thesis. Components are described
(or providéd by thé design system) which realise the required opérations.
These are displayed on a graphics screen and connections are made by

drawing linés between their terminals. A simulator is used to test the
desigﬁ. To illustrate the use of the CAD system, a simple computer was
designed. Methods fof realising the idealised components in pracfical
versions are also discussed. Part of this involves the well-known state
assignment problem in sequential circuit synthesis, and a new method

is presented.

Use other side if necessary.

Summary .

Computer Aided Design.techniques are essential for the development
of complex digital systems. Thé existing methods of CAD approach
the problem in two ways. The first oné is to use. a formal language
to describe system behaviour and then use spécial algorithms to turn
it into hardware. The second approach is to use flow-charts to
specify the flow éf information within a digital system and then to

realise the flow—chart in hardware.

A different approach is presentéd in this thésis.v Components
are described (or providéd by thé désign system) which realise the
required operations. Thése are'displayed on a graphiéé screen and
connections are made by drawing liﬁes bétweén théir tgrminals. A
simulator is used to test the design. To illustrate the use of the

" CAD system, a simple computer was designed. Methods for realising
nthe idealised’components in practical versions are also discussed.
Part of this invoives the well-known state assignmeﬁt proﬁlem'in |

sequential circuit synthesis, and a new method is presented.

Table of Contents:

1. Introduction.
2. Existing CAD Techniqu;s ,
| 2.l.A De;ign Methods Uéing Formal Languages.
.é.l.l{ Logic Design Traﬁslator.
2.1.2. Schorr's‘Registér Transfér Language.
2.1.3. The ALERT Systém.
2.1.4. Digital Systems Design Using Sequential‘éircuits.
©2.1.5. Discussion.
2.2. Methods Using Flow-Charts.
2.2.1, éontrol Poiﬁf Design Usipg Modular Logié.
2.2.2. The PDP-16 Concept.
2.2.3. The LOGOS Projeét.
2.2.4.,Discussion.»
2.3. An overall criticism of existing CAD methods.
3. A Design Philosophy.
3.1. Strﬁcture organisation.
3.2. Component types .
4. Mefhod pf Design.
4.1. General viéw of the method.
4,2. Component speéificafion.
l4.3. Circuit‘descpiption.
4.4, Design evaluation.
4.5. Discussion of the method.
5. Design Example.
5.1. Machine description. .
5.2. Syétem design.

5.2.1, Control of memory access.

_Page.

5.2.2. Designing the fetch/éxécuté cycle. 85.
5.2.3. Instructién fétching and décoding. 88.
5.2.4. Arranging the data paths. _—) 90.
5.2.5. Access to data mémory. . :_ o | ay,
- 5.2.6. Designing load andvstoré instructions. _ | - 97.
5.2.7. Add and stéré instructions. : © 100. .
5.2.8. Shift and multiply instructions, ' 101.
5.3. Performance evaluation. _ o ©118.
5.4. Component realisation. . ' coL < 119.
6. Programming Considerétions. -'_ o L _ 126.
6.1; Déta structure organisation. A - | : | 127..
6.2. Implementation details. ’ - 1luo.
7. .A General Discussion On Componént~Réalisation. . | _ : 144.
7.1; Combinational-compoﬁents. ' - : ‘ 1uy,
v 7;2. Sequeﬁtial componént;. : | (- ' 146.
7.2.1. Pindiﬁg clearing sequences. R -~ 1s0.

"7.2.2. Application of clearing sequences to state.

aséignment ' : - N 156,

7.3. Librar& componeﬁts, | , '» o | 165;'
8. Proposals For Future Work. - o 167.
'8.1; Changes to fhe componeﬁt library. A : o - 167,

8.2. Improvements to component spe;ifiéation: - '__-" -169._'
8.3. Additional display facilities. o - 170.
8.4; Incfeasing the speed of simulation. v ' 172.
9. Conclu;ions. _ . ' o - 175,
.. Acknowledgements. . .‘ o ‘ 178.
~Appendix A. Moaified LOGOS approach. . ' , . i79.

Appendix B. List of Library components available from the

design prégrams. ‘ Co ‘ 185.

Page.

Appeﬁdix C. Features of the supporting computer system. 190.
Appendix D. Key to logic diagrams. 1383.
194,

References and bibliography.

Chapter 1: Introduction.

Thé gro&ing compléxity of digital systems make it impérativé
to use automatic processing in their design‘to the greatest possibié
exténf. Application of existing digital computers to fhe production
sfagés have so. far béen successful. For example component placement
and conductor.routing of printed circuit boérds, back board wiring,
generatidn of test sgquences,...étc. have all been mechanised though
some of tﬁé methods negd impﬁo&eménts t; cope with more complex
situations. In generél, problems at this end do not.require creativé
thinking and the main objective is to optimise the solutions accofding
to SOmé criteria. However, the problems encounféréd in thé initial
stages of a digifél system deéign are very different in néture. Héré
the objective is not to optimise but to eliminate unnecessary detail
which tends to obstruct creative thinking. éefore automatic processing
can be introduced into,fhese stages, ohe‘question has to be answered.
'What are the.conditions unaer which a designer can\épply creative
thinkiﬁg?' The answer to this question should form the underlining’
philosoﬁhy td any successful high level design méthod. It is-no use
‘finding ingenious techniqﬁes which can be easily programmed_if’they

obstruct the designérs' thought processes.

The design system should provide the user with‘the basic building-
Slocks that he would like to work witﬂjand allow him to arrange them
in any.way~to form more cohplex strucfures. fObviously, it is not
bossible to foresee all types of building blocks tha£ the designef
may wish to'use. Therefore, he should be allowed to describe new
ones. ‘ The new blocks can be of simiiar complexity to the existing
énes or a number of existing blocks can be brought togéther té form _

a higher level block. Whatever the case is, he should be allowed

—2-

to describe them easily and in a natural way. "The development

and employmént of compléx concépts doubtléss is basic to most
intélléctual activity. This must be espécially true for creative
thought... An éssential ingredient of creative thought is the

ability to move quickly and easily from one concept to a related onef;*
The‘desigﬁér can bé hélped by providing uséful facilities which may

act as 'suggéstions' but his line of thought should not be restrictéd
dué to ‘some artificial rules. He should be allowed to express himself

in a natural way and the CAD system should be able to detect his

mistakes.

Chapter 2 of this thesis déscribes some of the better known CAD
methods fbr digital'systems design. Since it is essential to know
the 'state of the art' before attempting to impfove‘it, an éﬁtensivé
study was made of ¥his area. It is hoped that this chapter forms a
"good source of reference without being too long. Chapter 3 descrlbes
the author's philosophy in designing a digital system and Chapter 4

presents a CAD system based on this philosophy.

Application of thiS'CAD.system to the design of a relativély simple
digital computer is 1llustrated in Chapter 5.followed by a descrlptlon
‘of the technlques used in the internal (computer) representation of
logic designs in Chapter 6. | Chapter 7 discusses some of the problems
encountered in reaiising the componehts'used ih.the design and‘presénts
a new state assignment technique for sequential circuits. | Some

proposals are made in Chapter 8 to improve the programs described,

followed by the general conclusions drawn from this research.

i

: .. ooldridge. e machinery of the brain'. McGraw-Hi
~(*) D.E Wooldridge. 'Th hinery of the brain® Hill

1963, page 225.

-3-

Chapter 2 : Existing CAD Techniques.

This chapter discusses some of the better known Computer Aidéd
Design methods used in digital systems.design. Names of.such methods
can be found in the references. The methods discussed in this
chapfer have been selected not because they are better than the others
but‘becausé they'forﬁ'a good cross-reference and show the general’

techniques used. In general, CAD techniques fall into two categories.

(i) - Methods in which special computer languages® are used to
specify both the structure and the behaviour of digital systems.
Programs written in the "Design Language" are then translated into

Boolean equafions which realise the digital system.

(ii) - Methods in which the operatién of a'digital system is
described by a flow-chart and then realised by using special components

which have a one-to-one correspondence with the flow-chart symbols.

Below, some examples from each group are given followed by a
general criticism of the methods in each. group. Finally an overall

criticism of the general principles employed in each group is presented.

(*) Here, "language" is used to infer a linguistic representatlon,
with a fixed alphabet and grammar.

4y

2.1, Design Methods Using Formal Languages.

The follo&ing four sections describe some of the design methods
that use a formal ianguage in describing a digital systém. Apart
from differences in the languages themselves, the four methods
discussed below differ from each other byAthe Qay in which the
structure of a digital system is defined and alsojby theAway in which

descriptions are turned into hardware.

2.1.1, Logic Design Translator.

LDT (42), (74) is a design system composed of threé'major
programs and can be described as "a three-pass, special purpose
compiler, with logic equations rather than machine code as the final
_ output" (42); The three-passes of LDT correspond to,

(1) - translétion of the input language into an intermediate
language, |
(ii) - timing analysis,

(iii) - term development and logic equation generation.

A langﬁage description in LDT Consiststofftwo sections. - The
"Declérative" section provides é'liﬁguistiC'descriptién of the block
diagrah structure of a digital system. A digital systemvis seen to
consist of "Régistérsﬂ and "Da£a Paths" which are defined by using
"Declarative<Statemeﬁté". .. The language usés the Backus Naur Form
(BNF) (70) for the representation of declarative statements .and the

syntax for .register declarations is as follows.

. -5-
(registery :: = {identifier) | (identifier) ((size))
| Cregisted) ({structure lisd)
(sized :: = {unsigned integery | {unsigned ihfege€>-, :

<pnsigned intege%}

(structure list) :: = (registedy | {structure listy , ’ “
| <r'egister>
{special register) :: = {register) (<dela3>)| <specia;?.‘
register) ((structure list))
{delayy :: =unsigned integerd

" Thus, a registér is definedias a set of storage devices (together with
the associated gating) whicﬁ reqﬁire only one clock time® to store data
and a special register is a\register which requires mofe than one’ clock

time to store data. Speéial vegisters are used to represent more
complex units such as an adder or a logical unit. Some examples of
declaratiVe statements are given below.

1. P (0,12)
2. Q (1,12) (Ql(.l,G),_QQ (7,12))

3. SP (1,10) (5)

Statement 1. defines B as-a lB—Bit fegister with bits numbered from
zero to twelve. Statement 2. defines Q.as é l2;bit fegister and the
bits are numbefed from one to twelve. Furthermore, Ql refers to the
vfirst half of Q ahd Q2-refers to»fhe_sécond-half; ‘Stafemént 3. defines
'SP as a 10-bit special register having a delay of five units. Its

bits .are numbered from one to ten.

(%) One clock time is the time required to set a flip-flop.

-6-
Sincé the full description of the block diagram structuré of
a digital system must include the interconnections between the
registers, these are declared by using "Transfer Statements" which
name a "Destination Register" and give a list of the "Source
Registers" which can transfer data to it. The BNF representation

of this type of statement is shown below.

<&ransfé€> 1ro= <ﬁestination régiste€> = ('<§oﬁrce registéﬁ})
<?estination registe%} 1= <%egiste§> | |
<§ourcé registe%) 1= <?egiste€> l <§ource regiéter se€> .

<}egiste€>

for example, the statement
P = (Q,R)

indicates that register P can accept data from either of the registers)

Q and R.

In the "Operétional" section.of the language aescription, regisfer
transfer operations are described using ALGOL like statements. The .
general form of such statements is: |

register "operation" reéister*—e» régister
whichvséecifies that the result of the opefation on the contents of
the registérs to the leff of the arrow .is to be pléced into the register
on the right hand side of the arrow. Statements witﬁout "operation"
indicate simple transfers (P-—; Q). Other types of statements include
subroutine calls, conditional stafements, memory access statements,
. . ..etc.. A total 6f thirteen statement types can be specified.

- Some examples are given below.

-7-

Statement Type Example

Transfer . 1. P—=>Q
Afithmetic 2. P+ Q-%>'ﬁ
Subroutine 3. GETBUS
Memory.Access 4. MA* —> INSTREG
Control Transfer) 5. GO TO 1
Logical = ' 6. PAQ—>R

shift . 7. P MOVE RIGHT. OFF 3—> P

Statements are combined to form micro programs which represent the
instruqtions to be executed by a digital system. fhe translator
converts the inpuf languége into an intermediate language. This
intermediate language is not a linguistic representation of the input
description, but & table called the "Design 'I_‘abie" which lﬁétis the
micro operations to be performed. The design taﬁle has twelvé
columns and as many‘rows as there are operations to be performed °
within a micro program. When translating the input deécription into
tﬂe design table, the translator consults the declarations.ébout the
.digitél system structure and checks to see if the transfers specified"
'afe legal. -in doiﬁg so, the translator may detéct, for example, that
the Qommon4BUS is required to perform a transfef, if the declarative
section has specified such é structure. fUrthermore, temporafy
sforage may:also be detected.
é;g. When translating the following statement

(PAQ) V R—>P
the translator generates a new register to hold the result of the AND
_operation and the OR operation will be performed on the contents of
the temporary storage and the R-register. In such cases, the

translator assigns a name to the temporary register and notifies the

designer.

information

Column 1

"

on

A

"

10

11

12

-8-

The columns of the design table contain the following

Source register name.

MSB* of the field of the source register
LSB+ of the field of the source register.
Destination register name.

MSB of the field of the.destpl'register.
LSB of the fiei& of the .destn. register.
Equipment used for the transfer.

MSB of the field of the equipment ﬁsed.
LSB of the field of the‘equipment.
Control conditions to be satisfied.
Relative timeé at which the micro step is to occur.

Delay value of the destination register.

The operators (e.g.A, +)° are entered in the control column (column

10) and the time column (column 11) contains a flag value which wili

be used by the Timing Analysis Routine. A mon flag indicates that

the following row is a part of the operation (the present row and

the next can be considered as one) and a "l" flag indicates that the

design table is partitioned below that row.

(*)
(+)

Most significant bit.
Least significant bit.

-9-
The timing analysis routine defermines the time at which an
operation may begin. Unless a delay Qalue is specified, thé
transfers take-place in one clock time. Since the control transfer
statements (GO TO, SUBROUTINE CALL, etc.) alter the sequence of.
operations, the design table has to be partitionea at that point to
enable the timing analysis of each branch individually. The relative
starting timé of each operation is calculatéd by observiﬁg the
following rules.
l—‘ The first operation in the design table may begin immediately.
2- The first opération in ény partition of the design table méy.
beginiat time tp + 1 where tp is the highest.clock’time
assigned to any pre?ious operation in the table. |
3- The starf time of all other operations in any partition is
found by calculating the earliest time when the regisfers
- and additional equipment required by the operation, willvbe
free. The operation may begin immediately if ‘all devices
are free, but ofherwiseihés to wait until the pfevious

~operations are finished and the devices become available.

Bécause of the fhird fule, LDT caUsesAa digital systemvtoibe rea;ised
as a-"Pipe-Line" (38) system and to ensure its correct operation
fhe_design téble is partitioned whenever a cén%rolitransfer statement
is_encountered. Afinally,.to each micpo program,Aan implicit
subroutine célled‘"Micro Séquencé Completéd" is added so that control
may be given to the next micro progfam in sequence. This'ié achieved
'By insertiﬁg thé following information after the last row of the

design table.

-10-

Column 1 ' 0
" ﬁ CLOCK
-" 10 : RESET
"‘ 11 Tmax
"1 Delay value of CLOCK.

(Tmax is the highest clock time at which any previous operation will-

be completed).

The following example, taken from (42) shows a micro program
and the design table after *iming analysis. It is assumed that the
declarations about the structure of the system have been previously

given and that they include the two bus lines BUS1 and BUS2.

1. P—>Q
2. K+ 1—>P
3. S + T—>W
4. X MOVE RIGHT. OFF 3—>X
5. IFK =P

4'IHEI~'I (6. W—=X)

ELSE (7. W—>7Y)

(8. Rg_y =1, o)

9. K-1—=P

Table 2.1 A micro program input to LDT.

Table 2.2 gives the design table generated for this micro program.*

-(*) The table has been copied from page 257 of ref. (42).

Eq.

Microstep Source Destination : : : :

Number Row Register Begin En Register Begin End Used Begin End ‘Control Time Delay

k i 1 2 ~ 3 4 5 6 7 8 9 10 11 12

11 1 P 1 n BUS1 1 n 1 0

. 2 BUS1 1 n Q 1 . n 1 1

2 -3 K 1 n BUS1 1 n 2 0]

4 BUS1 1 n COUNT 1 n UP 2 1

5 COUNT 1 .n BUS1 1 n 3 0

6 BUS1 g n P 1 n : 3 1

3 7 S 1 n ARITH (A) 1 n © ADD 1 5

8 T -1 n ARITH (B) 1 n ADD 1 5

9 ARITH 1 n W 1l n 6 1

y 10 X 1 n SHIFT 1 n RIGHT.OFF 1 1

11 SHIFT 1 n SHIFT 1 n RIGHT.OFF 2. 1

12 SHIFT 1 .n SHIFT 1 n- RIGHT.OFF 3 1

13 SHIFT 1 n X 1 n Yy 1

5 14 K 1. n BUS1 - 1 n Yy 0

: 15 ~ BUSl 1. n LOGICAL -(A) 1. n EQL 4 3

16 P 1 n BUS2 - 1 n : &) 0

17 BUS2 1 n LOGICAL (B) 1 n EQL 4 3

18 LOGICAL 1l n FF1l 1 -1 7 1

6 19 W 1 n X 1 n FF1 FFl 8 - 1

7 20 %) 1l n Y 1 n FF1- ~TFl 8 1

8 21 R 6 0O W 2 6 FFl ~FFl 9 1

9 22 K 1 n BUS1 1 n L 0

23 BUS1 1 n COUNT 1 n DOWN 4 1.

24 COUNT -1 - n BUS1 1 n 7 0

25 BUS1 1 n P 1 n : -7 1

999 26 "o - - CLOCK - - RESET 10 1

Table 2.2 Design Table.

=TT

~12-

The final step in the design process is to convert the design
‘table into application equations for eacﬁ bit of thé registérs.
Thé term developmént routine scans each micro program and extracts
the terms for the bits-of the registers used within the micro program.
A final sort run combines these terms and forms the application |
equations which may be further ﬁrocessed'td fit practiéal requifements.
Proctor (74) reports that the equations generated for a part of the
'Burroughs D825 computer, correspond closely to the actual equations
used in the earlier design of D825. Some of the equations generated

by LDT for the example given above, can be found in the reference.

2.1.2. Schorr's Register Transfer Language.

/
Schorr (80) describes a CAD system for the analysis and

.synthesis of digital systems. The language used.is_an adaptation of
ﬁeed‘s language (12). Using Schorr's approach, a digital system is
described by a set of register transfers and the'tﬁo.reverse
processes of design synthesis and analysis are tackled by starting
wifh the register trénsfers and deriving the Boolean eduations to
realise them, when doiﬁg synthésis,'and starting with the Boolean
equations‘and obtaining a set of regiéfer transfers for the analysis
of a-digital‘system.. The register transfer statements are written
:in a language which can be translated inFo Boolean equations by a
syntax oriented-compilef. By chénging the syntax table of the
compiler, it can be made to translate the Bodlean equations-inté

- register transfers. Thg simp;ified‘syntax tableslfor both processes
“can be found in the reference (80).

(i) - Design Synthesis

Inétructions to be executed by a digital system are expressed as

micro programs using a simple register transfer notation. Each

-13- -

statement is preceded by a "Conditional Expression'" (CE) enclosed
within vertical bars. The CE's can be fiming signals of logical
expressions forﬁed from timing signals or control signals.
Concurrent operations can be written on the same line, separated by
semi-colons. The last register transfer expression on a line
indicates the next timing signal to be activated and henpevdefines
the next'éet of statements to be executed. |

e.g. |

| t P—>Q; X—>Y; 1—>t

E 2.

Individual bits of registérsvare identified by subscript expressions
and logical operations, such as AND, OR, EXCLUSIVE OR, NEGATION

-are indicated by the connecti?es e, MM, Mg', "'", respectively.
Other symbols used are "," for the concatenétion 6f two or more
registers, ”Lj" to indicate a left-shift by j places and "v" to

indicate the OR of the individual bits of a register.

Table 2.3 shows the micro progrein of an adder. This table is

taken. from ref. (80) and the operations of the adder are as follows.

Register M C§ntains the augend which will be replaced by the
sum of the conteﬁté of thé_M and A registers. 2-During the operation
of the adder, the contents of M afe first tranéferred to the N
register and a bit by bit addition is pefformed between>the'N‘and AA
registers. Any carries generated ére shifted-left and sfored in N.
" When thefe-are no more carries (indicated by D = 0) the addition is

'complete and the adder waits for an ADD signal and then repeats the
,voperation. Any overflow condition is indicated by lighting a lémp

attached to register L.

14—

l._l tll_ ﬁ—%>lh
0 —>D;
0 —>0F; 1t
2. _Itzl NeA—>A;
Ll(N.A)—aOF,N;
"v(N.A).—> D; 1>ty
3a. | tg.D'| ! o A—sM;
 OF—>1L;
| 0—> ADD; -1-;>tu
3b. I t,.D I T o—'—>D';_' 1>t
ba. I_tq.ADD'| : o IS 1'—>tLl
.hllb.,l_-t .ADD | & - o—>1L; o 1—>) V,

mn

Table 2.3 Micro operations of adder.

The control unit for the adder is synthesized‘separately, by first

extracting the micro operations for the control signals. ‘

'ltllzf L lost,
|t2 |: L | 1:.-——7.'1:3
o
Its.D"l P) 1—>t,
ltu.ADD,l P , 1—>t,
. ltu.ADD"f‘- P 1>t

Table 2.4 Control unit signals'of adder.

"The_timing signals (ti) can then be generated by ﬁsing any 6f the
"f;llowing synthesis techniques. |

1- Delay line Sjﬂthesis.

2- ﬁsing a timing counter controlled by_the external éignals

ADD and D.

-15-
3- Using the control unit design introduced by Wilkes (88).

Schorr gives the realisation of Table 2.4 by using the first .and
second methods mentioned above. He also notes that since a CU may
have to generate more than one set of control signals, the delay line

synthesis cannot be used in general.

Translation of the register transfer statements into Boolean
equaﬁiohs is done by a compiler and the techniques used can be -found
in the reference.

- (ii) - Design Analysis

The analysis,programs can transiate Boolean.equations into a set
of register transfers characterised by those equations. The
‘translation is possible since.the Boolean equations are in BNF form.
Further requirements aré tﬁaf, the Boolean equations

1- must be in the sum—of—producfs form, : o

2- must be set-reset equations for RS flip—fléps,

3- must have all literals appearing in them identified.

The mechanics of translating the Booleaﬁ equations into register
transfers cénvbé fodnd in (80). . However, the broblem ofwsorting
.register transfers intovappropriate'micro progfams representing the
'insfructions to be executed by a digital computer is unsolved, as

réportéd by.Schorr.

2.1.3. The ALERT System.

ALERT (39) is a CAD system designed to convert logic descriptions
_ into hardware. As input, ALERT takes the architecture of a digital
system described in Iverson notation and produces the necessary

Boolean equations to realise the described logic. Iverson notation

~-16- ,

is used in the APL language (u).and has also been used to describe
thé architecture of some computers (37). This notation is an
algorithmic language that makes it possible to represent séquential
logic as programs of micro events. Further processing (25), (78)
of the Boolean equations generated by ALERT, turns them into standard
computer circuits. - Because of the algorithmic structﬁre of the
notation if is élso possible to simulate the description before
realising it. Several modificétions have been made to the Iverson
notatiog to use it in ALERT. The most ;ignificant change is the
inclﬁsion of declagation statements to define the class and dimension -
of variables. Whereas, in the originai notatibn arrays are not
declared, in ALERT a constraint was put which causes all variables
tb be taken as a single '"bit" ﬁnless‘otherwise ié stated in a
declaration statement. Also, the special Iverson operators such as
1, & , W, have been replaéed by 'VALUE', = A, ‘SUFFIX';
respectively, so that standard.input devices can be used. ALER%
goes through gight major steps to output the Boolean equations.
These steps are briefly described below.

1- Translation

During this ste? the input format, syntax‘and consistgncy'is
checked. Implied variables are generated and the'specification is
_reformulated. |

2- ‘Selection Decoding
. During this step the necessary decoding'to-addresg suﬁsérﬁp+{d
variables (registers) is generated.

3- .Macro Generation

This step replaces some MACRb block definitions with actual logic

circuits obtained from the system library.

-17-

Y- Séquencé Analysis

During this step the micro events specified by the description
algorithm are assigned to time periods. Thié is done in such a way
as to minimize the number of periods to be used. A micro program

is partitioned into event groups by splitting it at the following

points.
(1) The beginning of each micro program.
(ii) '. Statements which are the destinations of "GO TO" stateménts.
(iii) ~ Statements after each éonditional ("IF") statement.
(iv) ~ The second and subsequent assignmeﬁt statements which assign

a value to a variable receiving input more than once within
an event group.’

5- Identification of Flip-Flops

Variables which mﬁst retaiﬁ their values after their inputs.héve
" changed are identified in this step and are assigned fo flip—flbps.,
The ﬁser may also explicitly declare flip-flops by typing (=FF) after
the name of the variable. For use with such‘vaniaﬁles, new statement
types to assign values to the SET or RESET inpﬁts éf flip-flops are
included in.the language.

6- Control Provision

This routine éenerates a control counter and decodes its outputs
for use as the timing signals-required.by step 4,

e | Consolidation N - .

During this step duplicated logic blocks are eliminated;
in.e'ffici'.e_ntly connected arrays aré re-arranged and associated elements
are tied together. |

8- Expansioﬁ

This routine expands each connection where an array is implied,

18-

.- : generating an individual copy for each bit in the array and produces
" a point-to-point connection list.

The following example is given in (39).

Example:

Assume that there are eight 3-bit registers forming an array
céllea X. There is another 3-bit register called the K-Registér and
an 8-bit register called the M-Register. The task is to load the-
last three bits of the M-Register into the k-th regiéter in X (k is
the value stored in the K—Regiéfer) if k is not zero.. If k is zero,
the O-th registér in X will be cleared. |

The corresponding statement coded in. the original Iverson notation

xke— (k # OYAG/m).
This statement is input to ALERT. by. the following micro program.

D X(DIM = 8,3) (=FF). X is declared as eight 3-bit registers.

D K(DIM = 3). K is declared as a 3-bit variable.
D M(DIM = 8). a M is declared as an 8-bit variable.
M LIX This is the Load Index micro program.

X('"VALUE'K) = ('OR'/K)'AND'('SUFFIX'(3)/M).
END OF SYSTEM.

Table 2.5 A micro program in ALERT.

ALERT processes the above given micro program and generates the
necessary logic to realise it, in the form of Boolean equations to
be processed by other programs. The layout of the logic generated

by ALERT is given in Figure 2.1. It shows how the i-th row of X is

~19-

sélected and how the SET and RESET inputs are driven. The "OR" gate
tests the contents of the K-REgister and its output is used to gate

the last 3-bits of the M-Register. The decoder selects the appropriate'
row of X and its outputs are gated with the S1(1) signal, which is

the timing signal. : _ .

A AA

kgfk-; k*?‘

mm

DECODER ;

DECODR | N OO
S1(1) k@KW K@) - mes) YO) Mm(#)

Figure 2.1 Design generated by ALERT.

-20-

2.1.4, Digital Systems Design Using Sequential Circuits.

Gerace (40) deseribes a method fof designing a digital-system
as a network of interconnected sequential circuits. Basic to the
method is a register transfer language to specify the behaviour of a
digital system and a special type of sequential circuif, called "Level-
Input, Level—Output,AClocked" (LLC) sequential circuit. The final
structure of_the digifal system is largely undetermined until the
flow-tables to realise the register transfers are formed.v This is
because the registers do not appear on their_oﬁn but are 'buried'
within the LLC circuits that form the digital syetem. The steps '
involved in desighing a digital system using this approach can be summed
up as follows.
(i)- The operation ef e digital system is defined by means of
a formal languége using register transfer statements.
(ii)f The linguistic description is translated into flow-tables
representing LLC circuits.
(iii)- The flow-tables ere turned into sequential circuits using

realistic components.

A
It is observed that the final structure of‘digifai sYstems
designed using this method consists of two parts which are called the

"Operafion Part" (Sub-system 0) and the "Control Part" (Sub-system c).

. - ») SN OU"P”‘.S

Inputs

Fig. 2.2 System Organisation.

-2}

The language used to define the register transfers is a simplé
régister transfer language. A "Sentence" can‘be forméd from
"Transfer Relations" and "Control Expressions'" (CE). Transfer
relations can be "Register Transfer Relations" which are célléd
"Operation Words' (OW) since they are executed in sub—systém 0, or
they can be "Control Transfer Relations" which are called "Control
Words" (CW) since they are executed in sub-system C. For examplé,

the OW °

A;—> B, i= 0, 1,....5n

means that the contents of B are to be replaced by the contents of
A for bit values i = O to n. Bi is called the "Transfer Register'".

The CW

5177 52

indicates a jump from the present micro instruction (Sl) to anotﬁer
micro instruction (82). The label of any micro instruction (Si)

is enclosed in vertical bar§ and precedeé-the.instruction. Logical
operations such as AND, OR, NOT, EXCLUSIVE OR are allowed and are
represénted by the symbols ".", "+",.""5 "@'", respectively. Also,
carry digits may be indicated by using square brackets. The register
transfers may be gonditibned by using CE's which are encloéed in
parantheses. . Régister'transfers which are éxecufedksimultaneously
'cén be wfittén on the same iine? separated by commas. A typical micpo

instruction may look like

: i=0,1,....n
_|51| (ADD,GO:11) A; @ M; @ [r; ;] —> M;, s;—>s5, 1=0,1,

which represents the micro instruction to add the two digits of the A

-29-

and M registers and the carry digit from the previous bit and then
put the result into the corresponding bit of the M-Register. When
this is done control will be given to another micro.instruction -

whose label is S These operations will be executed only if both

9
ADD and GO signals are equal to logical one. When a sentence is
conditioned as above,.it is called a '"Conditional Sentence" (CS).’
Micro instructions can be grouped to form micro programs which
rébregent ingfructions to be executed by a digital system. It is
assumed that one of the micro programs is a special one which fetches

the operation code of the instruction to be executed and causes a

jump to the proper micro program to execute it..

It was mentioned earlier that the linguistic descriptions are
later furned into flow-tables representing LLC circuits. An LLC
circuit is a sequential circuit with the following characteristics.

(i)- VWhen the clock pulse is not pfesent the internal state
df the circuit ié stable. .Howéver; changes in the level inputs may
produce changes in the outputs. |

(ii)- When the level inputs are stabilised the clock pulse is
applied. The present state and.thé outputs do not change during
the pfésence of the pulse but all'chaﬁées may océur only after the

pulse is removed.

" To see how LLC circuit flow-tables arelconétructed, consider the
flow-table of a squential machine SM;, having two inputs (Xl,X2),
two outputs (Zl;Zz) and three internal states (all'inputs and

outputs are levels).

-23-

Present ’ ' Next-State and Outputs

State . - 00 0l 11 | 10
1 . 1,00 2,01 3,01 1,10
2 3,00 1,11 1,11 3,10
3 2,00 1,11 1,10 3,10

Table 2.6 Flow-table of SMl.

To realiée SMl as an LLC circuit, first a pulse inpat is added to it.
This iﬁput will be the clock pulse controlling the operation of the LLC
circuit. The flow-table éf SMl is then expanded such that all next-
state entries are stable stafes when the clock input is zero and are
the same as those for SMl when the clock input is one. The outputs of
SMl are duplicated on the two halves of thg flow-table sucﬁ that

outputs are the same for input conditions which differ only in the

value of the clock pulse. Hence the LLC flow-table of SM. is

« 1
Present , | Next-Stafe and Outputs
state | 00 01 11 10 00 0L 11 | 10
1 1,00 1,00 1,01 1,10 1,00 2,00 3,01 1,10
2 | | 2,00 2,01 2,11 2,10 3,00 1,11 1,11 3,10
3 | N 3,00 3,11 3,10 3,10 2,00 1,11 1,10 3,19/ |

Clock = 0 . ' Clock = 1

Table 2.7 LLC Circuit flow-table of SM,;,

Gerace describes three different types.of flip-flops and shows how an |
LLC circuit can be realised by using these special flip-flops. The
complexity of realisation is seen to be dependent upon the particular

type of flip-flop used.

g, TTen

The method of converting the languagé_description of a digital
system into a set of flow-tables for LLC circuits, is fully explained
in the reference (40). Below, a brief description of the technique

used is given, followed by .a simple example.

A list "L" of OW's is called "Convertible" if in all the OW's in
L, the transfer regisfer eléments have the same index. The first
step invqonverting a convertible OW is to define the inputs and outputé
of the LLC circuit which will realise it. A simplified version of
the rule by which the inputs and outputs of the LLC circuit are definéd,
is as folloﬁs. The register names appearing ONLY on the left hand
side of tﬁe arrow form the inputs and the franéfer register name forms
the output of the LLC circuit realising an OW. - If the convertible
"1ist L contains more than one OW, then the inputs and outputs of the
LLC circuit are a conjunction of the'inputs and outputs for the
individual Ow;s, respecfively.v Oncevthe inputs and outputs are
determined, the equations defining the behaviour of the LLC circuit can

be obtaincd by the following procedure.

Let 'k' be the number of_OW's in L. Then; the transfer‘register'
name in any OW, say owj, is repiaceQ'by the next-state variable "Yj".
If the same register name also appears on the left hand side of the
arrow in any of the OW's in L, then they are repldced by fhg présent—
state variable'"yj"{ Finally, the arréws are replaced by "equal" .
signs such thét k expressions defining the»behéviour of the‘LLC circuit
which realises L, will be obfained. As an example, assume that a

digital system is characterised by a single micro program.
|s, | &, + B~ A, B C;—>C S,—>S. - i=0,1,0.., D

i 1 1

_257

Since all transfer registers (A and C) have the same index (i) this
liét of OW's in Sl is convertible. The LLC circuit realising this
micro program has only one input (Bi) and two outputs (Ai and Ci).'

‘ ﬁeplacing the régister names by the corresponding state variables and

the arrows by the '"equal" signs, the following equations are obtained.

Yy .+ Bi Yl

B. . y2 = Y2

The internal variable map of the flow-table obtained from these'equations,

- is given below.

B. =0 B, = 1

X X
R W Y Y,
0 0 o o0 10
o 1 0 0 1.1
11 1 0 11
10 1 o 1. 0

Table 2.8. Internal variable map.

The outputs are defined by using the relatibns A, =Y ,C. =Y Then,
i 1

i 2°
by giving a name to each row of Table 2.8 and expanding it to form

the flow-table of an LLC circuit Table 2.9 1is obtained. -

Present ‘ Next-State and Outputs (Ai’ci)
State - B, =0 B,=1 B, =0 B, =1
: i i i i
1 : 1,00 1,00 1,00 4,00
2. - © 2,00 2,00 1,00 3,01)
3 A 3,11 3,11 4,11 3,11
T ‘ 5,10 4,10 4,10 4,10
— AE—
— 20 20
Clock = 0 Clock =1

Table 2.9 LLC circuit to realise the micro program.

-26-
Note that state 2 is disconnected from the others and can be deleted.
The micro program given above, can then be realised by using

n + 1 identical LLC circuits and the structure of the system will be

as shown in Figure 2.3.

Ao Co AL CL An Cn

o. 1 — — — = n

N . p
Clock Bo B, Bn

Fig. 2.3 Organisation of the LLC circuits.

Since the digital sysfem given above consists of one micro step,
the control part of the system does not exist. The qonveréion-éf a
digital sy§tém description, consisting of more than one micro programs
some of which may consist of more than one micro instructions, follows
the same lines as above. but is more complex and is difficult to do by
hand. Tﬁe fuli method is described iﬁ the’reference_citeﬂ which

includes some examples.

The solution to the final step in the design process, where the
LLC circuits are realised using actual éomponenté, is a-prbblem in
Sequential Machine Theory. ~The reader is referred to the appendix

in reference (40) where methods to realise an LLC circuit using any

of the flip-flop models introduced by Gerace, afé'given.
2.1.5. Discussion. . ' : .

The four CAD methods described in section 2.1. <typify the
major techniques used in designing digital systems from a language
description. Below, various aspects of these methods are compafed

-

-27-

with each other.
(i)- Language Aspects.

All four methéds usé languagés which déscribé the opéfation4of
a digital system by-register transfer operations. From a languagé
point of view, it is very convenient to treat any component as a
register (or a special register). However, with the recent advances
in MSI technology, many types of registers and_sténdard épmponents
have become easily and cheaply available and this ﬁas ma&e it possible
to reduce the register transfer operations to, simply, setting the
mode bifs (contr&l inputs) of a component to}corréct values. Therefore,
writing register transfer equétions and obtaining Boolean equations-
for the individual bits of guch standard components is no longer réquiréd.
With'the exception of the Iverson notation, the languagés.used abé
simple *and easy to learn. »,Ivefson notation however, is a higher lévél
language allowing the use of some very.powerful éperators and this may
cause some.problems in its usage. _Consider the example given in
sectioh 2.1.3. It is required to test the value ofia 3-bit register, K.
This is achieved by typing ('ORY/K) whiéh represents the OR operation
of the bits of K. | The result will be zero if K is zéfo‘and one if K
is non-zero. The same test could be achieved by typing ('VALUE'K # 0)
but this would imply a more complicated t=sting mechanism. Since K
is a é—bit registér and 0 is a scalar variéble, a new 3-bit register
would,be generafed, reset to O_and then a bit-by-bit comparison of
the two registefs would be done. Cleariy, the language is too
powerfulfand one has to have a very gound knowledgé of the notation
and fhe way it will be interpreted by the translator so fhat 'correct'

expressions can be written.

-28-

(ii)- System structure.

'The four methods discussed in section 2:1 show varying amount

_ of importance attached to defining the structure of a digital system.
In LDT, all reglsters and data paths should be declared in the.
deelaratlve section of the description. In Schorr's language the
registers are deciared but the data paths are determined by the
reglster transfer statements. In ALERT, declaration sfatements are
used only to define the size and type of sto“age elements, otherwise
default assumptions are made and lengths of variables are matched to
each other during operations. Gerace's syetem leaves the structure
undetermined untii the flow-tables are obtained. Each approach has
its advantages and disadvantages but if the structure is to be fully

- described (as in LDT), then facilities should exist to input a block
diagram structure via graphic input devices. The reason for this is
that, even though a block dlagram can be fully defined in llngulstlc
terms, such a form of description fails to give an overall view of the
structure to the human designer. The approach chosen by Gerace has
the dieaanntage that since the strncture of a digital sysfem is
determined as a result of processing the'description of its behaviour,
changes in the specification of tne performance may cause changes

in the Struefure. - This may prove unaeceptable since maintenance and
testing requirements cannot be planned in advance and:designing a
'family' of digital systems may not be easily:achiened. A similar
pronlem exists in LDT. When a change is made to the language
description, since the relative starting times of the micro operations
in the design tabie‘may be effected, the design table has to be
analysed and new time values have to be evaluated again. This may

mean a re-design of the timing circuit.

-29-

(iii)- Timing and Control.

The input to LDT does not contain any timing information. The
timing analysis routine of LDT, determines the execution timé of each
micro statement on a pipe-line basis. This makes thé désign of
complex concufrent operations difficult since the designer cannot
synchronise operations. Schorr's register transfer language requires

>that each micro statement shéuld specify the next time period to be
activated. The control unit is then designediby separating the
transfer.statements for timing, from the others. However, this results
in a control unit %hich-can generate only the timing signals; other
control signals are realised together with the register transfer
6pérations. ALERT does implicit timing but the user can gain accesé
to the control céuﬁter of a micro program by exPlicitly declaring it

as a register whichlhe can then setAto any value both within and ffom
outside that micro program. This ability to édntrol the timing makes
it poésible to synchronise operations in a parallel processor. The
final structure‘of a digital systém designed by using Gerace's
techniques naturally divides‘into a control and an operation part. The
flow-tablé for the‘control'part will have as many internal stéteS'as
there are different states in the micro program and its next-state
entries will be obtained from the state transfer relations written af

the end of each micro statement.

(iv)- Modularity of Design.

Schorr's system is applicable to small problems but since there
is no provision for dividing a digital system into component parts,
a system has to be designed as a whole, thus making it difficult to

apply the method to large size problems. . Both LDT and ALERT allow

-30-

for the description of a digital system as composed of component

parts, each with its own}specifiéation{ | However, LDT dissolves the
modularity when generating the design table, by replacing the 'CALL's
to other micro prbgrams with the entire micro sequence for the called
micro program. In Gerace's system, decomposition is done when
converting the ipput'descpiption‘ihto flow—tables. Sincé a set of OW's
can form a convertible list only if the index of the transfer registers
are the éame for all OW's in that list, the way in which a digital
system is partitioned depends upon this index. Thus, if a change to
the input descr;ption involves a change of the index of a transfer
register, a differeﬁt organization of the sequential networks forminé

the system will be necessary.
(v)« Conversion into Hardware.

In LDT, Boolean terms are obtained from'the design tablé'and thén
- combined (softéd) to obtain the equations for each bit of thé régisters.
In Schorr's system, equations for register transfers are generated by

a syntax oriented compiler which translétés register transfers.into
Boolean equétiohs (or vice versa for analysis). The qualify of these
equations depend upon the franslating and sorting techniques used.
ALERT geﬁerates Boolean equations by methodically expanding the input
specificafion and performing implied opefations (é.g. seledtion.
’décoding);: A consdlidatioﬁ routine attempts to simplify.the structure
before it is fully expanded and its algérithms strongly ihfluence the -
optimality of designs generated by the ALERT system. waever, even
more‘important than the consolidation routine are those routines which
perform the implied operations Sinée the& effect the structure.

_. Consider the example given in section 2.1.3. The subscript expreésion

X('VALUE'K) implies the use of a decoder to address array X. On the

~31-

right‘ﬁand side of the statement in the micro program shown in Table
2.5, is the expression 'OR'/K which is used to test the contents of

K. Since, which output of the decoder becomes active depends upon
~.the contents of k, no separate testing is necessary. If any-régister
other than the O-th one is addressed, it can be loaded with the last
three bits of the M-Register and should the 0-th register beladdressed,
it canvbe reset without using fhe M-Register. Figure 2.4 gives the

logic diégram of this design.

X
/MXD \
S R S R S R SR S R S R
N O -
N
/A
k<o kai ke? /c\ |
TEEaN
DECODER
K(o) Kl1) K@} sSi(1) Losw ‘0’ Mm(s) M(s) M(¥

Figure 2.4 A modification of design generated by ALERT.

-32-

It can be seen that four gates to do the test and six gates to loadA
data (reset).into the O-th register are’eliminafed. In generai
3N + 1 gates will be eliminated, where N is the length of the
registers in X. Apart from generating redundant logic, ALERT
prevents the designer from making full use of the properties of the
components used. This is because the designer does not have access
to the outpufé,of implied components. Conversion into'hardware
using Gérace's method is achieved by obtaining a set of flow-tables
and realising them by using special types of flip-flopé (F,G and SR
flip-flops. Séei(uo)); Once the fables are.obtained they can be
simplified by using sequential network theory. Gerace also claims
that when simplifying the flow-tables (state reduétion), redundant
registers may'be detected. = However, it is difficult to accept this
_claim..‘ The flow;tables are formed such that each bit of a transfer
fegistef will occupy a flip-flop in the corresponding table. If
state reduction is achieved to such an extent that a flip-flop is
" eliminated, then the eliminated flip-fiop must belong to a transfer
régistér. As each bit of a transfer register can appear only once in
a micro statement (X —> P., Y—> P, is not allowed) this wduld mean .
. the elimination of an OW, which cannot be.possiblé. On the other
hand any elimination of the registérs on the left hand side of the
arrows may only effect the number‘éf inputs to the LLC circuit and -
this can be detected much more eaéily by4exqminipg thé40W's befére

converting .them into flow-tables.
(vi)- Design Evaluation.

All four methods described in section 2.1 -are suitable for

simulation. However, in the cases of LDT and ALERT, the system

~-33-

despriptibn has to be processed by the corresponding translator to
éort out the timing details, before simulation can be possible;.
Schorr's system also allows for the translation of the Boolean
equations into register transfer statements for analysing'the design.
However, the problem of sorting the resulting transfer statéménts

such that meaningful micro programs can be formed, is still unsolved.
(vii)- Relation to other Methods.

“The four CAD methods discussed above are by no means the best
linguistic methods but were selected to indicate the general
techniques used. Similar methods can be found in.the literature.
Chu's ALGOL like design language (27) is a satisfactory source for
documentlng the behaviour of a dlgltal system but structural details
cannot be specified using this language. The language uses ALGOL
;ike statements to describe operations, and statements can be
conditioned by 'labels' thch can be Boolean expressions. The control
unit can be specified aé a separate section generating fhe necessary
signalS‘to enable the execution of operations. Reserved names are
used fo indicaté specifié operations such as ADD, DECODE,;..; etc.
but when such names are used more than once, it is not clear whether
the same 'adder (for example) of'a different one is used to perform

the operation.‘

The language described by Stabler (81) is siﬁple and gives
enough structural.informatioﬁ to,bui;d a digital network. A netwoék
is defined injferms of logic gates and registers or étorage elements
which are treated as 'frimitives' since the structure will not be
- analysed beyond thesé eléments.. More complex gate types or sub-

~ machine types (Macro types) can be specified in terms of the

~34-

primitives and other macros. Hence a network is specified in a
'bottom-to-top' fashion. Because of the amount of detail involved
in making the specification, the language could be used for designing

only small size digital systems.

The Digital Design Language (DDL)(35) is a very powerful language
but rather complex. The structure of a digital system (or a part
of it since the language allows for partitioning) is described by
using a variety of 'Facility Declarafion' statements and operations
are specified with the use of 'Operation' statements whicl: can be
conditioned. Parallel operations can be specified by explicitly
declaring control counters and setting them to correct values. Duley
and Dietmeyer (36) describe the techﬁiques used in translating a DDL
description into Boolean equations;v The methods used are rather
inefficient since a number of pagses over the description is required
and the entire description has to be re—traqslated whenever any

change is made to the initial specification.

Another design language is proposed by Baray and Su‘(ll). It
allows the designer to partition his design into units which aré
capable of operating indepeﬁdently or with a minimum amouﬁf of
communication with each other. In this language the structure and
control parts of a digital system are sepgrated and expressed in-
différéﬁt sections. Operators are used to déscribe_the function of
each unit working under the control of control signals. Units yet
not designed but whose input-ouiput transfer function can be

~expressed in another algorithmic language (e.g. PL/I) can also Se-used.
- Parallel operations can be specified with the use of BRANCH and
JUNCTION eléments which are used to.activate more than one control

branch and bring together more than one control branch, respectively.

-35-

"The contfol section of the langﬁage is simple and gfficient but its
structural part is not so because of thé unrealistic representation
of connections between the operators and links. The interconnection
of operatofs is indicated by using links which can be links having
memory (registers) or links with no memory (terminals). Since direct
cbnnections_between the operators (i.e. Operator outputs — Operator
inputs) are not allowed, even a simple feed back has to be made By
directiﬁg the operator oﬁtputs to a link (terminal) and directing the

link to the operator inputs.

Schlaeppi's LOTIS (79) larniguage is another example of a design
languagei ~In general, it is an adaptation of thé ALGOL language with
the exception that a machine description in LOTIS does not have the
ALGOL-block structure since the whole description is made as éne block.
The hierarchy of the struéture of an object machine is achievea by
. the use of.MACRO definitions whereby more complex elements can be
defined in terms of the primitivé operatorél(and, or,.;.). The
linguistic constituents of the languAge correspond to actual elements
thus making a specification in LOTIS more realistic than would
otherwise be the case. A machine description is made in two parts,
namely the declarative part and the procedural part. Transfer
statements are used to store data Qalues and the timing of transfers
can be specified by either declaring a time interval for each of'thé
6perators involved;in the transfer, .thereby defining a 'tranéfer
duration' (the.sum of operator times over £he longest péth in its
"structﬁral'tree) or else by explicitly declaring 'transfer intervals;.
Concuvrent assignments and control statements can be grouped together

to form a 'Step' and a list of steps forms a 'Sequence'. The time
, P _ P q

-36~-

relations between the steps of a sequence can be expressed in three

modes ;

A- Asynchronous ﬁode: Step interval 1is équal to the auration
of the longest operation in the.step.

B- Fixed-delay mode: Explicit delcarations are used to define
-the step interval.

G;' Synchfonous mode: The first step in succession is aétivated
as soon as the step condition (which can be obtained from the

output of a clock generator) becomes true.

It is felt that putting the complete description of an object
machine into a singie procedurél block and the detail involved in
specifying some of the timing relationg are. the disadvantages of LOTIS,
which oéherwise,is a simple and useful language.

The Sequence Chart (78) of IBM displayg timing and sequencing
information in a graphic manner (it is more correct to say lists,
since output is not on a graghic display). This can represent only
the control part of a digital network and its form is unsuitable for
most available input-output equipment. The sequence chart forms

only a part of the logical design system as it exists within IBM and-

on its own is of little value as a design aid.

| Bé;l & Newell (18) deséribe fWo descriptive systems for the
top coﬁputer—system (PMS) and the program level (ISPd. .However?
. these two systems arebused only for system.documentation at the
-respectiveAlevel andia digital system design method, accepting as

" input the architecture of the object machine in the PMS or ISP

notation, Has .yet. to ‘emerge.

~-37-

'Finally, it will be proper to conclude this section by mentioning
some languages which are used only>to simulate digital networks.
None of these languages are used to describe digital systems with
the purpose of generating the logic to realise them. The level of
simulation is not the samé in all simulators and some simulate the
described logic at the gate and flip-flop level (26), (u45), (83)
whereas others provide a functional simulation (5), (58). Three

valueq ‘simulation (50) is another alternative.

2.2. Methods Using Flow-Charts.

Although some experimental CAD systems have Béen proposed for
inputting logic diagrams into a digitai coﬁputer (67), graphical
'approaches to lqgic design have largely been used only in the area of
specifying digital systems by dréwing a flow-chart of its operations.
The three methods describédrin the following sections all use the
flow-chart approach and in each case design'sypthesis is achieved by
using special components which have a one—to;one correspondencé with

AN

the flow-chart symbols.

2.2.1. Control Point Design Using Modular Logic.

C. Rey (75) has proposed some general purpose building blocks

" (modules) to convert é flow-chart design into a logical ﬁetwork.
The‘resulting'network dges not ﬁerfofm any '"Data Operations" but
merely generates the correct sequence of control signals to initiate
them. Hence, this approach can be used only in designing control
~circuits. The modularity of the approach comes from the one-to-one
- correspondence between the flow-chart symbols and the components
used to realise them. The four basic flow-chart s&mbols are

described below.

-38-
(i)- The "Task Box" is used to represent a set of elementary

operations.

e.g. | !

TASK 'A'
v
(ii)- A "Decision Box" is a point in the flow;chart where the
p

control sequence is directed towards one of -the two output branches

depending on the logical value of a condition.

e.g.

(iii)- The "Circle'" has two forms. A normalcircle (called the
"Circle") is used to merge two or more control signals (i.e. logical
OR). A "Dotted-Circle' allows the control flow to continue only when

all its inputs are activated (i.e. logical AND).

. e.g.

(iv)- The "Fan-Out Point'" is a point where control is split
~into two or more pafallel branches.

e.g.

. Figure 2.5 shows a typical flow-chart. Since only NAND gates are
used in designing the moduies, it is assumed that all control signals
are normally at logic "1'" and they become a negative pulse (1-0-1)

'when activated.

_39-

Start

“Call -
Subroutine

Figure 2.5 Flow-Chart.

40~
The basic building blocks are described below.

(a)- DO Module.

The DO module realisgs a task-box. Note that.it only generates
the signals to activate an operation and dqes not perform the
" operation itself. There are two forms éf this module. Thé DOA(n)
module is used for asynchronous operations. Figure 2.6 (b) shows
its design. Assuﬁing that all.the A; inputs are initially at logic
"1", its operation is as follows. When one of the inputs, Ai’
becomes "0", theAflip—flop (cross-coupled NAND gates) is set. When
Ai becomes "1" again, a hegative‘pglse is generated which is used to
activate the operation to be performed and the A output feeds the
next modu;e. The output signal is also fed back into the flip-flop R
and this resets the system so that the outputs become "1" again.
Heﬁce.both the inputs aﬁd outputs are negative pulses. }For "Pseudo-
Asynchroﬁous" operations the second form>of the component is used.
In this.form, it is callea the DO(n).module and its design is shown
in Figure 2.6 (c). Its operation is the same as the DOA(n) module
except-thaf'theVA output appégrs afterva time delay which siﬁulates

the duration of the task to be performed.

TASK ‘A
(a) Flow—Chért
4
A
N Do
A
As
A 7
DoA(N) {b) Asynchiznous
Enable

DO (n)

} > A

(c) Synchronous

Figure 2.6 The DO Module.

-4o-

(b)- Sequence Module

The S(n) module realises a tﬁo-way branéh. Its input conditions
are the same as for the DO module and the control flow is directed
to the SO or Sl output depending on the value of the C iﬁput. thé
that C must be set to the correct value before any éf the Ai inputs

are activated.

S1

- (a) Flow-Chart

> ©1

<

c (b) Logic Design

Figure 2.7 The Séquence Module.

-43-

(c)- Wait Module

‘The wait module has two forms. Thé first one is called Wl(n).
In this form, Wl(n) can be realised by using an S(n + 1) module
but because of its frequent use, a cheaper design has been proposed.
Figure 2.8 shows its realisation and the 6peration‘of the component

is clear from Piggre 2.8 (a).

A Anse .
W
\
S1 SO
(b):fS(n +'l);AReélisation

(a) Flcw-Chart.

A

An

>

o -

.g\l'

Enable | __7F\x/

Figure 2.8 Wait Module.

(c) Logic Design

—yy_

The second form of the wait module is called W2(n) and its
operation is similar to that of Wl(n) except that a pulse appears

at the output only if all Ai inputs are activated and W is at logic

"l".
- (a) Flow-Chart.

Ag_
-

|

| o

| -

| | } ' > WO

I :

| :

]

| '

An

Er ' w
.nabh ’ (b) Logic Design

Figure 2.9 Second form of Wait Module.

—45-

A vefy useful cﬁaracteristic of the modules described above is
that the input and output puises are all of the same polarity (1-0-1)
so that the outputs of one can be directly connected to'the inputs
of another. For asynchronous and pseudo-asynchronous operations
the DOA(n) and DO(n) modules are used, respectively. ' For synchronous
operations, a DO(n) followed by a W(1) (ﬁoté_that W1(1l) is identical
to Wg(l)f should be used and the clock'pu}seAshould be connected to

the "W" input of the wait module.

F&gure 2.10 shows the realisation of the fiow;chart in Figure
2.5. ‘The one-to-one correspdndehce between the modules and flow-chart
symbols is evident from the_realisafion. To obtain a cheaper (and
faster) design, fhe flow-chart has to be ?roperly organised. c. Réy
giveé'éome basic rules used to simplify a given flow—éhart. Using one
of these rules, the design giveﬁ in Figure 2.10 can Sé simplified by
setting the smaller of delay values [SB aﬁ& ZXC equal to the other
and eliminating the W2(2) module by connecting the outputs of the

task-boxes B and C to the svkroutine ccll unit.

—46-—

| caLL

OA

DO(1)

S(1)

DOAR)
w/(1)
Y Y
B C
AB AcC
Do) - Do(t)

Figpre 2.10 Realisation of flow-chart.

wa(2)

47—

2.2.2, The PDP-16 Concept.

PDf—lB is é custom designed general purpose digital computer
which is assembled from functional hardware options (modules).
Actually, a PDP-16 is a concept rather than a computer since a PDP-16
~does not exist until it is designed to a particular specification.
The functional options were originally Qesigped by G. Bell using the
name "Register Transfer Modules (RTM)" (15). Their production
* wversion has been designed by DEC ﬁsing the name PDP-16 (2). The

‘hardware options fall into two categories.
(i)- Functional (data) Options

The PDP-16 functional options pefform arithmetic and logicall
operations and data transfers on lé—bits of data. Communicaggon
between the registers and the General Purpose Arithméfic (GPA) ﬁnit
is done through a 16-bit bi-directional data bus. All units operate
in asyﬁchronous mode and contain the necessary loéic for the timing
of 6perations. Every PDP-16 should contain the KBS16 bus sense
unit (the basic bus sfructure)»and the KTM16 bus terminator (resistive
network to terminate the data and timing bus lines). All-othef

modules are optional and these include memory,.régisters, GPA, I/0

interface and flags.
(ii)~ Flow (Control) Options.

The flow optiéns are used to design the control unit of a
be—lB. ' The CU is specified by a flow-chart ﬁhere each symbol has -
a flow-option counterpart. The basic options are "Branch" units
(two-way or eight-way), "OR" units to merge control signals, "Evoke"

units which represent one complete data operation and "Subroutine

48—

Return" units to call a group of operations and continue when they

are completed.

A PDP-16 is designed by first selecting a suitable set of data
options and drawing the flow-chart of the CU which will control
their operation. There are certain rules to be observed Qhen
drawing the flow—chart. First of all, oﬁly the seiected data optioﬁs
should be referred to (i.e. if "A + B" is required, the corresponding
options which provide‘two registeré and an adder sﬁould be selected
among the data options)._ Other restrictions are, no‘output of a
branch unit can be connected directly to its input without first going
through an evoke unif, wired -OR connections are hot allowed and there
must be at least one evoke unit bgtween any two subroutine éall
elements which refer to the same group of operations. A bfoader
explanation of these rules can.be found in the reference (2). When
the flpw-chart is ready, all data'and'contrgl options are given a
unique nﬁmber'to identify them and then‘an input file is prepared.
This input file, to be processed by DEC's Chartware design package,

contains the following information.
(a)- Socket Definitions.

‘A PDP-16 can be constructed to occupy up to six rows and thirty
twoicolumns of sockets.- The poéitions>6f the sockets that the |
PDP-16 modules can be plugged in, is defined by giving the row name
and the first and last socket numbers. For example the first ten
sockets on the last two rows are assigned by fyping
J;E, 1, 10

F, 1, 10

—49.

(b)- Functional-option Definitions.

All functional options used should be specified by giving the
module name and the number which identifies then.
'e.g.'

MS16-A, 3, 14

DB16-C, 9
1dent1f1es units numbered 3 and. 14 as reglsters and unit 9 as an
1nput interface. Additional space can be reserved for future bus

extensions by using the module name MOD-2.
(¢c)- Flow-option Definitions.

The flow options are identified in exactly the same way as the
functional options.
e.g. -

KEV16, 5, 7

'KB16-A, 10-12
identifies the units numbered 5 and 7 as evoke modules end.pnits

"numbered 10, 11, 12 are two-way branches.
(d)- OR Gates and other Modules

The same format as above is used to identify 6R gates. Also
dumﬁy modules to be replaced by future_modifieations can be specified.
by using the‘moduie name MOD-1.

e.g. -
| KORflGB,-l, 2

MOD-1, 20, 21

Units 1 and 2 are defined as four input OR gates and units 20 and 21

are dummy modules.

-50-

(e)- Wiring Data.

The connections between the flow-chart elements and the
functional options are defined by using abbreviated names for the

'inputs and outputs of components, using the following format.

Output, input, input,.....etc.

For example, if the functional options are numbered such that the GPA
is unit 30 (typed as KAC16,30), register "A" is unit 35 (typed as
KAR16, QS) then the following section of a flow-chart will be coded

as shown below.

l—’—-> From unit @ ’

Aﬁ*fwA"l @

!

This entry has the following meaning

9,16,35 (1pa] , 30 [a - 1]

9, C The output of unit 9 is connected to

le,' . the input of evoke unit, number 16,

35 [LD&] , the "load data into the A register of GPA" input
' | of the register unit, number 35,

30 [A - il the "decreméné fegister A by one™ input of the

GPA unit, number 30
(f)- Flow-chart Symbol Definitions.

This part of the input file is necessary only if a ﬁrintout

of the flow-chart is requested.

o

The Chartware programs analyse the input file and generate a
set of documentation listings showing the position of each option

on a card, the socket to which the cards are to be plugged in, a-

-51-

pin-to-pin connection listing and the order in which connections
are to be made for the back-wiring of sockets. Control tapes for

automatic wiring machines can also be obtained.

In summary, a PDP-16 .is designed by selecting some functional
options and drawing the flow-chart of the éontrol unit. The units
used and the global.connections between them, are then given as
input to the Chartwaré programs which produce iistings showing thé

positions of cards in the sockets and the back-wiring connections.

2.2.3. The LOGOS Project.

The LOGOS project (41), (u46), (47) is an attempt ta create a
CAD system for the integrated‘software/hardware design of large scale
compufep'systems. A prime objective in designing the LOGOS system
has been "a uniform approach to systeﬁ design (béth software and
hardware) at several levels'. _Tﬁis implies that software and
hardwafe'will be specified in the same manner and whatever levél thé
designer is working, the method of specification will be the same.
A further objective has been, to be able toAhandle modificationsi
Qithout upsetting the unconcerned groups working on the same problem.
To ensure that all designers obey the gfoﬁnd rules, the design
environment is an on-line interactive timerharing comﬁﬁter system
with é cqmmon data base, under the control of a Pfimitive Data base
Management System (PDMS) (73). Input to LOGOS file; is prepared
in graphical form, on display units. A database file can be local
-(unique to a single user) or global-(sharable by different users)
such that separate units (or the different level design of the same
unit) designed by different peopie, can be linked together. Once

the input files are ready, the total system performance can be

.~59-

checked and the factoring of software and hardware cén be done.

In LOGOS, a process is represented by drawing a "Directéd
Graph"'shéwing the flow of inférmation (77). Separate graphs are
drawn to represent the data flow and the control flow and these have
been called the "Data Graph" (DG) and Control Graph" (CG),
respectively. A gfaph is drawn by joining the '"Cell's" (represented
by squares) to "Operétor"s (represénted’by circles) through edges
(represented by arrows). The cells éﬁd opérators must be connected
to each other, in alternating order. The start and end points of a
gfaph are indicated by the "Blockhead" and "Blockend" symbols (this

. is not necessary for the data graph). Any activity is represented
'by a CG and én associated DG. Figure 2.11. shows a typicél CG-DG

~ pair.

-53-

\
\
\
\
\
\ - =
—
=~ S—
1.
A\
D ata 3raP)\. ,

‘o : BLoc K
END

Con‘,’ro' 3"0?)‘

"Figure 2.11 A Directed~graph.

Figure 2.11. can be iﬁterpreted as follows. Eaéh cell is given a

. ﬁniéue nﬁmberbfop identifiéaﬁion~andﬁinsidé the cellAité Qalue is
written. For digital syStems v, can be O or 1 and a VCeli—
Operator-Cell" sequence can be thought of as an "Input terminal-
Component-Output terminal' sequence in a component definition.

When its input cells contain the correct values, and the output célls

contain zeros operator "a," is initiated and activates operator "a"

-54-

in thé data graph. Upon completion of its operation on the data values,
operator “a" sends a termination signal to 'al", which then genera%es
new outputs and the control flows downstream. Apart from this
downstream flow of signals, there is also an invisible upstream

flow since when any operator fires (i.e. changes its outputs), it
also changes the values in its input cells. For non-digital systems,
the updating of the input cells is done by subtracting one from its
4value, if it is not zero. For digital sysfems héwever, an operator
resets its input cells to zero, after it fires. Witﬁ this upstream
flow, the operator prepares itself for ﬁew stimuli. The transfef
function of each operator can be expressed in Vectorbform. A "State
Vector" q is defined as the numbers in each cell written in cell order.

Thus, the state vector for operatof a; might be;

Cell
(— — e oy
1 1 0
2 1 o
—
3 o 1
4 0 1
q a; ’

Figure 2.12 State Vector of Operator a-

The operators may represent self-contained sfrucfures (Blockhead,
' ...;, Bldeénd) so that at any level of design tﬁe operators may be
replaced by their detailed representation and-vice—versa.,' The
.blockhead, blockend structure is analogous to the ALGOL "Begin—End"

block. A parameter passing method is used when starting a new block.

The lowest level control operator is called'PCON. Figure

2.13 shows a PCON and its transfer function.

-55-

i 2] 3 ' Cell
- _
1 1 0
U (e] !
2 0 0
o o 3 1| — 0
y 0 1
i -5 4 .5 0 ‘1

Figure 2.13 PCON and its State-vector.

The PCON's can be realised in hardware by replacing the cells with

flop-flops. Figure 2.14 shows the realisation of the PCON, given

in Figure 2.13.

Figure 2.14 Realisation of PCON.

The PCON's may operaté in the synchronous or asynchronous mode
but communication with other PCON's is done asynchronously. This is

essential since any operation may take an arbitrarily long-time and others

-56-

havé‘to wait until it is completed. Synchronisatioﬁ BetWeeh‘é PCON
aﬁd its corresponding data opérator is accomplishéd by partitioning
a PCON into an "Initiation" part which activates the data operator,
and a "Termination'" part which is activated by the data operator

when its operation. is completed. This is illustrated in Figure 2.15.

1 2

: Cell
1 1 0
2 -1 0
X —
| 3 0 1
¢ L 0 1

Figure 2.15 Data Synchronisation of PCON.

-57--

It is apparent from Figure 2.15 that data dependent operations can
be specified by making the necessary liﬁk between thé control and
data operators. Thus, the basic LOGOS functions (AND, OR, BRANCHS
can be defined and implemented in hardwaré. More complex operators
can be definéd as MACRO operators, using the simpler ones. As the
method of representation is same throughout, the designer can work

at any level or change to a lower or higher one without difficulty.

In practice, even though designing the control graph is‘more
difficult, the data graph pfesents more problems in feprésentation.
This is.because the control variables are mostly single bits whefeas
data variables are groupéAof bits (e.g. a regisfer). To prevenf
too much detail in drawing the data graph, text handling facilities
exist whereby certain types of informatioﬁ can be input in textual
form. This applies also to specifying the links between the‘data anA;
control -operators although drawing "dotted-lines" to represent these

links is also permissible.

When the input files are ready, the design is analysed. Karp
& Millef (56) has shown that "a schema is determinate if, given an
initial state and an initial set'of values, each data location has a
fixed sequence of values". This condition is shown'to be equivalent
,to’- ’) | ‘ | . {
(a) no two data operators should $e concurrently enabled to

store data into the same location.,

(b) no data operator should be enabled to store data into a
- location while another operator is enabled to read values from the

" same location.

Instead of an exhaustive simulation to verify a design, in

-58-
LOGOS, the system is checked for determinancy and if it is found to
be determinate, then it is guaranteed to operate as_specified

(see section 2.3).
2.2.4.- Discussion.

The common philosophy of the three methods described in thé
previous section is that they all separate the daté and control
operations from each other and the control unit is specified as a
flow-chart. The way in which the data part is deéighed and linked
to the control unit is different in each case. In fact, C. Rey
(75) does not describe fhis side of the design process at all.
However, the modﬁles described in section 2.2.1 are quite useful in
designing control circuits. .The fact that all'control inputs and
ouputs are pulses of the same polarity (1-0-1) makes these modules
ideally suited for combined use. = By changing the NAND gates to NOR

- gates, the reversé polarity (0-1-0) pulses can be obtained.
Communication with data elements is done by "level" signals. Thesé
include the "wait" and "braﬁch" inputé of the W(n) and S(::) modules,
réspectively; and DO output of the DOA(n) and DO(n) modules; This
latter module is very useful since it simulates the task duration.
Various.methods of calling 'subroutines' have ‘been illustratéd in

“the reference. When the task duration is not known, a "Wait;

module following the DO module is used.

.The modules themselves are optimal but there is no guarantee
fhat the flow-chart is so, or even that it is well behaved
(determinate). Apart from some basic principles, there is no way

"of simplifying a flow-chart. The simple rules used to this end can

be found in the reference. Since there is no mention in the

-59-

reference cited about the computer aids used in describing and
simplifying the flow-chart and tufning it into hardware, an objective
criticism of the techniques described is‘not possible. Yet, the
simplicity and efficiency of the modules justify their being

included for discussion.

Going oné step further than the modules described by C. Rey,
is the PDP-16 concept. The PDP-16 mpdules form a complete set of
control and data components able.fo communicate with each othér;
Their switching circuit details can be found in (16). The delay
values of the elements are quoted in (2) and for the flow-options,
they are between twelve (for the OR gate) and sixty two Zfor Evoke)
nano seconds. The PDP-16 concept is commendable for the set of
comprehensive options which froﬁ a system designer's point of view
‘are simple and meaningful and it is possible,‘with the aid of the
Chartware désign programs, to bring these options together to form a
complete digital system. The floﬁ;options are simplé and adequate.
However, the functional opfions are rather restrictive. Firstly, a
PDP-16 may have only oné "bus' through which all data transfers are
done. Also, the GPA can perform operations on the contents of A and
B registers alone. Operations on any other fegisters can be done by
. transferring fheir contents to the A and/or B register and.copying
_the result back. ' In a later version (seg reference (16)), a new
module has been intrdduced'which solQeé this problem to some extent by
allowing §perations between fhe A register and one of the registers |
* from a 16-address scratch-pad memory. In spite of the addition of
thﬁs new module, the data part of a PDP-16 is very rigid in structure

and the designer cannot control the operations; he can only initiate

them. -

-60~

The Chartware programs are very useful but the form of thé
input file is rather off-putting. The control unit of a PDP-16 is
expressed as a flow-chart and then coded for input to the design
programs. By coding (i.e. turning the diagram into a set of letters,
digits and punctuation marks) the whole essence of the flow-chart is

'destroyéd. Thi; step is laborious, uncreative and very error-prone.
Furthermore, the data part of a PDP-16 is hidden very deeply ﬁnder
the specificatioﬁ.v The only reference to the functional-options
is from the input file.as connections to the specific pins of the
modules. The designer can draw a block-diagram of the structure of
a PDP-16 but thét would be more an academic exercise than. a creative

process.

In spite of its certain draw-backs, the PDP-16 concept is quite
useful since with some help from DEC* one can design a small size
digital computer.in a relatively short time. It is very suitable for

educational and some special-purpose computer applications.

- Project LOGOS is the most general approach among the flow—chqrt‘
methods deécribéd in the previous sections. The method of
spedifiéation can be used for defining both hardware and sbftware
systems. In fact, the aim is to specify é system as a whole, analyse
it and then do the software/hardware split. The control-grapﬁ,
data-graph péir ié a sﬁecial flow—éharf which seﬁarates control-flow

from data-flow.

AU Y N N M N M 0 N N W N W S B N N T 2 U T i W N 200 5 VBT T I I o W e e g TN

(*) DEC used to provide a full PDP-16 design servyice to generate,
process and construct PDP-16 designs, as required. This
service no longer continues and the Chartware programs are
not supported anymore. However, the PDP-16 modules can still
be ordered from DEC. ~

-61-~
Operations are carried out by special operators that activaté the
ﬁext set of operators only if they are ready to accept the activity
signals. Though the principles are equally applicable to both
software and hardware, it seems rather doubtful that software
engineers will be willing to use them. Several reasons could be

given for this.

(i)- Though in hardware systems, race conditions may occur and
therefore it is a sound principle to activate components 6nly when
they are ready to receive data, such is not the case for software since
computer programs are executed sequentially. Thus, except for
multi—processbr systems, intefrupt handling routines, Or ip'other real-

time applications, the (LOGOS) approach will not be beneficial from

that point of view.

(ii)- Buiiding and testing software systems is relatively cheaper
tﬁan hardware systems. A soft&are engineef does not fear too much
about his program nét working correctly at the first run'(in fact he
hardly ever expects this té happen). bBy using simple techniqﬁes
.such as inserting PAUSE or WRITE statements in his program, or by
Ausing special debugging programs (e.g. DDT), programs can be corrected
easily. In most éases, program bugs wiil be such things as using
a Qrong index, forgetting to set a variable'%o a‘certain yalﬁe,

passing wrong arguments to a subroutine,.... etc.

{iii)- A computer programmer can express the logic of his
program-much more easily and elegantly, by using the normal flow-chart
diagrams. It is doubtful that he will want to part from such

"free style" drawings.
i

-62-

(i?)— Most programmers draw a flow-chart only after the .
program is written. ~ Even if they were convinced to do otherw1se
it is difficult to estimate the balance of the overheads (increased
computer usage when pfeparing a flow-chart, cost of special display
terminals,.... etc.) versus the speed and accuracy with which

programs may be written.

'For hardware systems, however, the LOGOS approach is very
promising. '‘As mentioned earlier, the principle thaf "operators
should not fire uﬁless others are ready to accept information", is
essential toAany LOGOS_designf This upstream flow of information
éoes‘through the_samelpaths_asmthe downstream flow of control.. It_may
.be a good idea to separate these two sets of signals from each other.
As.the current demand is for "Testable" hardware, providing the test
(or maintenance) engineer with a distinct sef of signals indicating
the status of each_operator may be extremely useful. Appendix A
describes a.proposal for a different representatien_of LOGOS diagrams
and ehows how the operaters can be designed to incopporate the changes

propesed.

Another philosophy adopted in LOGOS is to avoid exhaustive
simulation by replaeing it with the Karp & Miller algorithms to check
if a system is-deferminate. | Even though the upstreaﬁ flow of
information eliminates races along a single branch of the control
graph there may still be races caused by different control flows
‘along separate paths (espec1ally in parallel operatlons) The use of .
analytical techniques to detect such cases is appre01ated. However,
»a final check which shows that the specification is cobregt, is still

necessary.

-63-

" A designer implementing a particular algorithm should be able to see
his algorithm in action and make sure that it is correct.
Therefore, in addition, to the determinancy test, a simulator is

essential.=®

2.3. An overall criticism of existing CAD methods.

A great majority of existing CAD methods’applied to iogic design,
use fonmal languéges in specifying digital systems. Probably, the
reason for this 1is the relétiVe ease of designing new languages to
better existing ones, compared to finding new methods of describing
digital'systems. Languages are best suited to describe sequential
operations. However, most digital systems operate in paréllel.

Even in those compufers, which geem to operate sequentially, at the
micro program level, there is usually more than one activity taking
place at a given time. The concept of timg; which is-élien to
languages, has to be introduced to them in thé form of variables (or
arrays for counters) conditioning the 6pefationsiand it is here that
-most design languages fail. | There are some design methods using
formal languages (e.g.'LDT) which eliminate this variable from the
initial déscription,‘but this is 'hiding' the timing from the ﬁser,
rather than eliminating it and produces some undeéirable side effects.
For example, in LDT, if a new operation is inserted ipto the:lénguage
description,vthen'allvoﬁerations coming_aftef it énd éhariﬁg the same
fegisters, wili_have their timing signals changed. As LDT generates
'fdesigns working as a pipe-line system, this may cause a complete

re-shuffle of operations.

(*) Through private communications with a member of the LOGOS team
(Prof. F.G. Heath), the author has been informed that the problem
of writing an equivalent of a simulator for this purpose, is
under consideration. ’ ‘

—Bl4-

The second point where languages are deficient is in defining
tﬁe structuré of the target digital system. Structural information .
is bést expresséd in blockfdiagraﬁ form. Using languagé statements
which name thé components and give a list of conﬁections among them,
while being suitable for computer processing, is of little value for

communicating ideas among designers.

In spite of these shortcomings, formal languages are of greét
importance in CAD systems because of their descriptive powers, and

if carefully designed, their unambiguity.

Désign methods using flow-charts are relatively new. This is
mainly because special terminals are required to input the.flow—charts
into a digital computer. " The PDP-16 approach does not .require
drawing diagramsvoh a display terminal and expresses tﬁe flow-chart
in language terms. - The LOGOS project is the only attemp% théf.thej
author is aware of, aimed at designing large scale systems by using
a directed-graph approach. As the éechniques have not yet been fully
implemented, it is difficult to make a true ériticism of LUGOS but

the apprcach seems to be a viable proposition.

The common characteristic of flow-chart methods is the separation
“of data and control operations. This is a sound principle since it
31mp11f1es the de51gn task and once the overall structure is deflned

- one can try different control organlsatlon to find the best solutlon.

-65-

Chapter 3: A Design Philosophy.

Most existing CAD programs take a description of the target
machine in some sort of language form, and use if to determine the
hardware required to realise the operations. The key point to any
approach of this type is the method of specification since it must
be concise and simpie but yet, should carry enough information fo
realise the description in hardware. It was observed in Chapter 2
that introducing some hardware notions into the design epecification
- simplifies the task. Regicster transfer languages are a good example
of this but they are restrictive since the designer is forced to think
only in terms of register structures and yet, other structures exist.
Therefore, a ﬁetﬁod which allows the designer to use various different
types of logic structure is required. Extending this idea furfher,
a "Design Space'" can be defined which consists ohiy of "Compenents"
and "Connections". All required operations cen‘then be-defined by
the corresponding components which will realise them. Since the
operationz to 5e executed by a digital system can be divided into
those of '"Data" and ﬁControl", it is logical to specify and realise
them,separetely. " Consequently, the design épace can be divided
info a "Data Space' (called the D-space) and a "Control Space"

(called the C-space), each with its own combonente and connections.
Tﬁe two spaces are: then llnked together by the "Control Slgnals" which
may originate from elther space (so that data. dependent operations

can be defined). Figure 3.1 illustrates these relations.

-66-

' o\ of compenrbs
DQ+Q onTro)

— = = =]

-
T_——Z7 To+a' 56"
|
|
_I

e e men —— mm—— toefen e — e oo

_27 Tohl 50" Of

) 'Can'ner."‘"m‘s

-2
29
-+~
>+
wp
o
e
S+
3
ole
o=
»0O
[V]
+3
a3
U.D

T > Dea;gn
’ Space

Figure 3.1 The "Design Space"

The probiem of designing a digital systém is then resolved into the
two simpler problems of designing the D—spacé and C-space. ‘The
instruction repertoire and the typé‘of componenfsvusea will determine
the necessary control signals; If fhis philosophy is accepted, the.
térget machinevshould~be structured so as to allow the specification

and realisation of the two spaces separately.

3.1, Structure organisation

In the approach.to be describéd, the process of determining the
componénts and their organisation begins by the egtractionvof data
éperétioné-froh theAdesign‘requirements. A set of data cbmponénts '
is then chosen to implement them. The nature of both data and control
compoﬁents is described in the next section. Here it suffices to
say that data components store (e.g. register), route (e.g. common
highway) or modify (e.g. adder) the data values and the control

components generate the required signals to activate them. This is

-67-

illustrated in Figure 3.2. ACl and AC2 are two storage registers

and ADD is a binary adder. These. units share a common highway and

their operation is controlled by two control components Cl, C2.

si:Ln bit .
' I
AC1 '
l
!
|
) (
AC2 :
| |

ADD &

X
O
_ P
e
N

Higi‘nwa},

4 E)“E5fnxce

C- Space

Figure 3.2 A Simple Digital System

The decomposition of the C-space is left to the designer. He may

combine Cl and C2 to form a larger component or break them down into

-68-

smaller ones. It is better to combine only the related control
' opérations and assign them to one component so that modifications
will effect only a small part of the C-space. In the eventual
machine the components are likely to be positioned closg together

and the separation described here is only conceptual.-

3.2. Component types

An-examiﬂatibn:of the structure of some existing computérs shows
that many of them use very similar data components. The register
is the most common of all. So common, in fact, that several design
lahguages have been designed around a daté space which consists only
of a set of registers (or special registers) and the connections
between them. As mentioned earlier, it is dégirable to add to this
set, components which can store, route or modify data values. This
freedom is justified by the advances in integrated circuit technology
since many such components are now available as single‘packages.
They usually contain control inputs for external control of their
operation, thereby making them consistent with the design philosopy
described here. Even if a parficular data component m;y not be
direétly available, it is a relatively easy- task to design one, using

the existing components.

_The control components however, ha?evto bé designed éccording
~to the specific control operations required. Their task is to
activate the data components and decide on the next operatioﬁ to

be performed. . Since in most cases such decisions may depend upon
‘the results of previous operations, control components are mainly
“sequential circuits. Using sequential circuits, control 6perations

can be synchronised to each other and the different control states

-69-

can be represented by the internal-state of éuch components. On the
other hand, some control functions can be implemented by using
combinational circuits (e.g. index régister selection). In éither
casé the éomponents in the C-space are tﬁemselves small logic

circuits. Other types of control components can bebwaveform
,générators or countérs, availablé as standard components. - Whén
impleménting the control operations, it is conveniént to hide éhe
internal structure of such components from the desiéner, allowing him
to work at a higher level and use oply the functions that they realise.
Therefore these components will be represented as "black-boxes" which

realise switching functions and the designer will be responsible for

describing their behaviour.

Memories, often of the read-only variety, can also be used as
control components. They can be thought of as séquential éomponeﬁts
but it is morevconvenienf'to give them special treatment. 'in this
case, the general description of the ROM device can be supplied by
the design system. but the specific memory contents should »e specified

by the designer.

-70-

Chapter 4 : Method of Design.

Thié chaptér describes three computer programs that form an
interactivé CAD systém for designing digital systems. The design
procéss has beén broken into three overlapping activities which are
calléd "Component Specification", "Circuit Description" énd "Design
Bvaluation"._' An ovérall view of the approach is given below

followed by a description of the facilities provided.

4,1 General view of the method

’Thé first step inlthe design process is to describe thejterminal
behaviour of some high-level components which will be used to realise
a particular digital system. Some of these components are obtainéd
from a component library which contains the definitions of standard
data or control components (e.g. register, memory; decoder,...etc.).
Othér componenté which realise control operatiohs specific to the
particulap application, are described by the designef. As mentioned
in the previous chapter, in general, control components are thémsélvés_
logic circuits which realise combinational dr sequential éwitching
functiops; Hence; the "User Defined" components are divided into two
groups and the first program is used to specify their terminal
behaviour. | Specification is made in terms of‘fruth or stafe—tablés
as appropriate. These idealised elements can be realised in
particular technologies by standard computer algoritﬁms de&elopéd

elsewhere (64).

The second program allows the designer to draw circuit diagrams
on a display screen. Components are displayed as rectangles with
an appropriate number of pins (terminals) and connections are made

by drawing 'rubber-band' lines between their terminals.- A set of

-71-
interconnected components can be grouped together and catalogued as
"Macro" blocks. Terminal behaviour of the user defined components

can be modified at any time without altering the drawings.

Logic designs prepared in this manner are then tested by using
a functional simulator. The simulator program is interactive,
allowing the user to‘st0p-simulation to éxaminé and/or change logic
values. Contents of memory or féad—only memory componéﬁts can also
be changed so that the digital systém being désigned can be micro

programmed.

The individual programs of the design system are described in

the following sections.

4.2. Component specification

" The first program is used to specify the terminal béhaviour of
user-defined comnponents. The program has two modes of operation.
In the 'conversational' mode it accepts instructions typed on the
control teletype so that new components can 5e creatéd_or the
existing ones can be modified._ An example of conversation with the

program is given below. Underlined words are program outputs.

READY:. - Program is ready.
OPEN New component definition. '
- NAME=: - Choose a name.
BLOCK Component is to be called BLOCK*.
TYPE=: Which type?
c Combinational ("S" for sequential).
INPUTS: Number of input terminals?
2

b

(

) Certain names are reserved for library components.

-72-

OUTPUTS : Number of output terminals?
2

READY: - Data accepted®

START Start display.

Following this conversation, the program enters into a 'graphical'
mode and displays a 2 input, 2 output truth-table (initially all

outputs are set to zero). This is illustrated in Figure u.l.

10 % 0

STORE
STOP
ONE
ZERO

-_n_;oo>
O—==0w
oOOoC oT
®N®) CD.C);B

Figure 4.1 Truth-table Diéplazﬁfor a Two-input, Two-output component.
The four boxes seen at the top of the figure represent tﬁe_inpﬁt and
output terminals, in that order. Logic values are shown aé 1, 0, R
and * (don't care.condition). By pointing tﬁe light-pen to one of
the logic values and then to a terminal-box, the contents of the box

can be changed. This way, the user can set up input conditions and

(%) If the component is a sequential one, the program requests the
number of internal-states before typing out this line. ’

~73-

indicates the optputs they affect by placing "1" into the corresponding
output-box. Hénce, more than oné output terminal can be affecféd

for thé samé input condition. The logic'value that the selected
outputs should produce is shown inside the centre box. Pointing'

the light—pén to "STORE'" enters the values into the truth-table and
mistakés can bé détéctéd by visual inspection. Figﬁre 4.2 shows how>

the second output.of the component can be set to realise the Boolean

function F2 =7A (i.e. complement of the first input).

o] [x o .

2 STORE
STOP
ONE

ZERO

—

—_ - O O0O>
O = = OWw

CoooT

Figure 4.2 Specifying the Values

Outputs can be further modified by changing the input conditions
and/or tﬁe oufput Qalue. for exémplé By éhanging the inputs'té

"%, 1" and pointing to "STORE"_a second time, the funcfion realised
by F2 becomes fz = A + B. State-tables are specified in a similar
way, using additional light-buttons to select the present and/or
next-sfate values. Typing "STOP" on the control teletype terminates

the program and the tables are stored in a file on disc. Components

L, JTY

having up to 5 inputs, 5'outputs and 16 internal-states can be
defined. Thésé numbers’aré a&equaté since only the non-standard
confrol—components are defined in this way. ComponentS'whicH realisé
functions of a larger number of control variables should be broken
‘inté smallér onés so that specifications and modifications can be

made éasiiy.

4.3. Circuit description

Circuit desériﬁtions are also made on-line by using a program
which énables the désigner to dfaw logic diagrams on the display scréén.
fhé user may request a component to be displayéd by pointing to
Y"BRING" and typing a namé (and the numbér of bits if it is a library
 06mponent) on the controi teletype. ~ This causes a rectangle to bé
displayéd, which shows éhe name of the component and has an appropriaté
number of input, output terminals. Any cqmpénent can be used more |
than once and each copy can be positioned,_rdtated or deleted
individually. The mode of operation for a sequential componen£ is
defined at this step*. If synchronous operatioﬁ-is required, a
clock terminal is also displayed on the component. Separate copies of

a sequential component may operate in different modes. This is

" illustrated in Figure 4.3.

R
T T

Figure 4.3 Component Display

(*) When a sequential component is requested by the user, the system
asks for the mode of operation and the synchronising edge (1 to O-
or vice versa) of the clock pulse (if synchronous mode is desired).

-75-.

Connéctions are made by drawing 'rubber-band' lines betweén thé
component {erminals. This is not simply a mattér of graphics sincé
it involves access to the data structuré.to check, modify or entér
some pointers. As it is not always practical to make direct
connections (i.e. pin-to-pin), lines may be joined té arbitrary points
on éxisting lines. Also a number of input terminals can bé conneCtéd
fo éach other and if oné of them is latér~connécted to an output
tépminal, the remaining inputs will also be connected to the same
output. Howevef, the connections between.the individual input
terminals are Egi lost so that, if the final connection is deleted,
the input terminals remain tied to each dther. The drawing program
offers considerable freedom in making the comnections. The only.
restriction is that each line shoﬁld'have at least one énd point
connected to a terminal. In addition, é connection will be rejected

if it forms a loop or causes a short circuit between two outputs.

Figure 4.4 shows some connections.

JWOOS'

SCOMP.

Figure 4.4 Some Connections

-76-
Whénvdrawing the data—péths, making a sepérate connection £o,each
fermiﬁai of a data—componént may become impracticai. In such cases
the "Multi-Line" facility can be used. A multi-line is a conveniemt
form of représenting a number of connections to the same component.
It is drawn as a dotted-liné and a special sign is uséd té indicate
%hé térmiﬁals it coyeré. The restrictions mentioned above still
apply and a multi-liné can bé joined to anothér oné only if they both
répresent thé samé number of bits. Figure 4.5 shows somé multi—linév
connéctions between two 8-bit universal registers.

=

|

|

- s
TT T 1T 111 3

-

|

sysoz [~

.
I
l
I
N I
— |
=
l
|
|
]

"""
l . .
|

L

Figure 4.5 Multi-line Connections

-77-
Another feature of the drawing program is the '"Macro" facility which
enébléslthé user to group any sét of interconnécfed componénts, and
usé the group as a single 'Maéro' component. The external input,
output terminals are selected by the user and macro's can be forméq
from other macro components. Figure 4.6 illustrates a macro

formation.

11
/ c1

[]

C2 ' \
\ B) ' (a) Internal Structure
\ /") ‘ '
\ / ' /
XL
-
/ ¥ &
1
[} Macro o o (b) Circuit Representation
\ o ,
|
~r

Figure 4.6. Defining Macro Components.

When a macro is defined, its internal components and connections are
erased from the screen but can be automatically regenerated and

- modified.’

' ngic diagrams can be partitioned using the "PAGE" fécility.
This enabies the designer to work on a new page of drawing when the
display screen is full. The prégram can erase the scfeen to
provide a new page or fegenerate the drawings on an existing one.

- Connections between components on different pages can be made by

-78-

displaying thé‘same component on both pages. Note that this is not
the samé as using the same componént twice since it is only a display
procedufe. Conflicting connéctions to the same componént can be
detectéd éasily since the data structure is not partitioned (see
Chaptér 6).. Hard copies of logic diagrams can be obtained on the

plotter.

Component specifications can be altered without affecting the
circuit diagrams and when both of them are ready, the design can be

simulated.

by, Design evaluation

The third program is a functional simulatorAwhiéh accepts fhe
dgté strﬁctufe prépared by the fifst tﬁo-programs. Logic diagrams
aré displayéd»on the screen, allowing the designef to 'probe'Athé |
components during'simulatiqn. All components aré assumed to be
non-ideal and ha&e at least>l unit delay. For a more realistic
repfésentatioﬁ of the timing relations, 1 unit ié taken as 10 ﬁano.
séponds.*. Simulation is done at lb ns. intervals for a_durafion
(of simulated time) specifiéd by the user. However, it can be
stopped at any.time.to exaﬁine and/or modify the logic or delay

~values. The present-state of a sequential compohenf or the contents
of data—cémponents‘can also be changed .- Hgnce,.if fead;oﬁly memories

are used in the design, different micro programs can be tried.

%

(

) Although this is not a user controlled feature, the scale can be
changed easily. ‘

ﬁg

The siﬁulator generates logic waveforms of selected terminals
and outputs them to disc. Hard copiés can bé obtained by listing
thé output filés on the linéAprinter. Thé waveforms normally havé
a linear time axis where values are produced every 10 nano seconds ..
Howéver, they can also be generated with a non—linear time axis where
values are produced only when one of the monitored terminals changes
state (1 to O or vice versa). This cuts down the amount of output
listings produced by eliminating:long periods when the signals aré
all stablé. In addition, the simulator can produce warning messages
when more than one input or an input and the clock pulse of the same
component éhange state simultaneously. Spikes (pulses with 10 ns.

duration) can also be detected.

Another very useful featuré of the simulator is the "TRAP"
facility. This enables thg user tq define conﬁitiops (e.g. the
contents of a register being equal to a certain value) which the program
is to detect and stop simulation automatically. ~After examining
or modifying the values, simulation can be resumed. Hence thev
simulator program can be used as a debugging aid (similar to software

debugging programs e.g. DDT).

-80-

4.5. Discussion'of the method.

The three programs described above form high-level tools for

specifying and simulating logic designs. The use of graphical

techniques makes it possible to describe the structural aspects of

digital systems in a very natural way (i.e. using circuit diagrams).

The general characteristics of the design system are as follows:

(1)-

(ii)-

(iii)-

(iv)-

(v)-

(vi)-

(vii)-

‘Digital systems are‘described at a high-level and the
method of representation is‘natural to logic designers.
Speéifications and modifications can be carried out easily.
Designs can be partitionéd as reqpired and modificationsA
can be made without reiterating the total description.
Pre-defined logic blocks can be uséd in the design.

Only the functibﬁal characteristics of components are
described and implemenfation detaiis are not considered.
However, thé user-definéd components can be implemented

-by using étandard computer algorithms.

Components can operate in the synchronous or asynchronous

_ mode.

All programs operafe én the same data struqfure so that
no additional pfocessing is required to pass data among
them.

All descriptions (inéluéing diagrams) afe stored inside
the computer. Hard copies can be obtained and all

operations are under the user control.

Chapter 5 illustrates the use of the programs.on a design exémple.

-81-

’

Chapter 5: Design Example

Thé following éxamplé illustratés thé application of thé général
philosopy presented in Chapter 3, to the design of a digital system.
The Ferranti DISC computer (3) has been selected as the target
machine and its design.(not complete) was carried out using thé thréé
.programs déscribed in the previous chapter. The object of thé
exérciéé is not to show how this particular compﬁter should be designed
nor is it the author's aim to prove his competence or otherwise in
designing a digital system. The hain objective is to test the
viability of thé approach and see if a CAD system can be built fo
implement the proposals. | For that reason very little attention was
paid to the selection of the particular components in the system library.
Some of these components may be found too abstract with no realistic
counter paft. Others may be too impractical to ﬁse in real applicatioﬁs.
~They were modelled simply to enable the author (6r ény other user) to
design a digital computer. However, it is hoped to show that if the.
library components are choseir properly, the method of aesign descpiﬁed

in Chapters3-and 4 can be used in solving practical problems.

AApartial specification of DISC is given below (the terminology

used is from the DISC literature).

-82-

5.1, Machine description.

DISC is a géneral purpose digital computer to be used in
‘applications whéré véry high speed of execution is not required. It
has an 8-bit/word memory for program storage. Each instruction word
comprisés a 3-bit opérétion code field and a 5-bit address fiéld.
Instruction répértoire consists of 7 'basic instructions' and li
'addifional functions'. More orders are. obtained by alterihg the
staté of the"Logical Stat' or fDouble-Length Working Stat' thch
modify‘the meanings of some of“tﬁe orders. Data is stored in 16-bit
words in a separate, volatile memory which ig divided into 3 sectors
of 30 words each. Arithmetic is done in serial binary form using
two's complement number representation. The main components of the
céntral-processor unit are as follows.

(i)- Accumulator register (AC).

A 16-bit register used during most arithmetic or logic operations
on dafé.

(ii)- P-register (p).

The P—rggister is another 16-bit registef which is used-to-
exteﬁ&'the AC for doubleflength working. It is also used during
multiply and divide routines. |
‘ (iii)- Q—regiéter (Q).

‘A 16-bit register used in-multiply and'divide routines.:

(iv)- Shift counter (SC).

-SC is a 5-bit counter used for controlling the shift, multiply
or divide oberétions. | | .

l(v)— Programj address register (PAR).

The PAR is a'16—bit.register which stores a 12-bit program

address, 1-bit 1/0 sector, 2 bits to indicate the volatile memory

-83-
sector (1, 2 or 3), and a 1-bit 'master jump stat' to enaﬁle jump
instructions.

(vi)- Instruction registér (IR).

A 16-bit register which accepfs 8-bit instruction words from the
program mémory and stores them during execution. If required By
the instruction, two.consecutive wordé can be loaded into IR, brior
to tran;ferring its contents to the AC or PAR.

(vii)- Arithmetic and logical unit (ALUY.

Thé ALU handleé all data operations and controls inter régister

~ transfers.

In the example below, some changes were made £o these specifications
and only a small sub-set of the instructiqns were designed. The mdst
important changes are,

(a); the new machine operates in parallel, asynchronous mode,

(b)- data word length (and the associated registers) is chosen
as 8-bits and both memory units have siﬁilar characteristics (Memory
.access times are set to 750 and 30 nanc seconds for the program and
data store, respectively), |

(c)- _pfogram memory has only 256 words and correspoﬁdingly
PAR has 12 bits. |

“(d)- IR has ‘8 bits.

-84~

5.2. System design.

Thé following sections describe the design of modified DISC.
Thé circuit diagrams given below were first drawn on the display
scréen using the light pen and were later reproduced on the plotter..
Thé términal behaviour of library components used in the design, can
be found in Appendix B. Outputs given in the state—tables.are in

octal.

5.2.1, Control of memory access

Memory operations are realised by using two library components
which complement each other. The first one is the memory componént.
Figure 5.1 shows the circuit representation of an 8-bit/word X 258
word memory . It contains a memory buffer register (inputs Il to I8’

outputs 0, to Og), an address register (X; to X; and Y

u

" control inputs,Aahd storage. Access to a word is achieved by setting

to Yu), four

1 1

the read (R) or write (W) input to logic one and applying a positive
pulse (0-1-0) to the RX or WX input, respectively. Access time is

~specified by the user.

O, o, 03 Oy Os Og 03 Og

v, — x,
Ys — — X,
“— . MEM-8 - [—%
Y, — o — X4
w _ R R
wx / | I I | l | l | RX

I' I‘_ 13 Iq. Is I6 I; Is

Figure 5.1 The Memory Component.

-85-

The second component is used to generate the necessary signals to
initiate a memory access. When a positive pulse is applled to the

P 1nput X becomes logic one, a positive pulse appears on PX and
after a time delay, another positive pulse appears on SX. The X and
PX outputs are connected to the R (or W) and RX (or WX) inputs of the
memory component. SX is used to indicate the completion of memory

access.

X EX SX

| []
MEMCO
|

P ' Enable

Figure 5.2 The Memory Controller Component.

5.2.2, Designing the fetch/execute cycle.

. DISC does not use instruction pipe-lining so that the two control
states of‘iinstruction fetch' and 'execution! become mutually exclusive.
Since an asynchronous design is attempted, the end of each instruction
execution is 1nd1cated by setting a flip- flOp which-will be cleared
when the computer goes into the fetch state. Even though these two

~control states can be represented by a single logical variable, it was
decided.to use separate variables for each one¥. Figure 5.3 gives
the cifcuit diagram‘of the control circuit to realise the fetch/

execute cycle. 'The diagram is explained below.

(*#) This has no particular reason but it was felt that individual
fetch and execute signals would be more useful.

=86~

Lol g-—’
3 Q.
<
2
MEMCO
MACO 1
FETCH EXECT

TKFLP

Figure 5. 3

Control of Fetch/execute Stat_;e_g_.

-87-

The 3-input OR gate carries the 'execution completé’ signal which
séfs a flip-flop (JKFLP). RET;Hand EXECT take the OR of the two
inputs and generate both trﬁé and complemented outputs. MACOl is

a macro component which transforms_a zero-to-one change at the input
into a positive bulse (i.e. a 'one—ého{'). When the flip-flop is
set, both FETCH and BXBCj:f-become one. This enables MEMCO which
controls the read access to program memory. The output from MACO1
which drives MEMCO, is also used to‘reset JKFLP. CNTRL is a
séquential component which sets FETCH = 1, EXECT = O after JKFLP has
been reset. - When the memory access is complete, CNTRL éomplements
the values of FETCH and EXECUTE and waits until another 'execution

complete' signal is received. Table 5.1 gives the state-table of

CNTRL .
Present Néxt—state & present outputs.
State 000 001 011 010 110 111 101 -100
1 1,2 1,2 1,2 1,2 1,2 1,2 1,2 2,2
2 2,2 2,2 2,2 2,2 2,2 2,2 3,1 2,2
3 3,1 3,1 3,1 4,1 3,1 3,1 3,i' 4,1
y 4,1 5,0 4,0 4,1 1,2 4,1 4,1 4,1

Table 5.1 State-table for CNTRL.

In state !, the component waits for the outputs-fo'settlé down and
‘then goes*iﬁto the 'fetch' state (staﬁé 2). The'access completed'
signal from MEMCO causes a transfer into state 3 and then into state 4,
which is the 'execute' stgte.‘ CNTRL waits in this state ﬁntil-

EXECT becomes one (causing a momentary FETCH = EXECT = 1) and then

transfers back into state 1.

- -88-
MACOl could also be designed as a sequential circuit®. However, a
simpler solution is obtained by making use of the propagation delay

through an inverter. This is shown in Figure 5.4,

T

Figure 5.4 The MACOl Component.

Duration of the pulse at -the output of MACOl is equél to the

propagation delay of the inverter.

5.2.3. Instruction fetching and decoding.

Figufe 5.5 shows the connections to the program memory which has

* been called MAINS.

(*) The obvious solution is to make it a library component.

-89~

I I

‘ DECAD
[;ﬁ_ I I
' RECST l
IR EE
I I)
FETCH EXECT) =
[[l 1 |

T
——\ ’— MEMCO

PRCCT

TTTTTTTTTITT

"Figure 5.5 Connections to Program Memory.

-90-

Thé program address is obtained from the lower order bits of thé
l2—bit (plus ovérflow) program counter, PRGCT. Outputs of thé
membry buffér aré connéctéd to the paraliel data inputs of an 8-bit
univérsal régistér, . REGST, which represents the instruction
régistérc Thé 3-td—8fde¢oder,_DECOD, is another library component
which is enabled when FETCH is zero and EXECT is ome. MEMCO
initiates .the mémory access. The 'accéss complété' pﬁlsé is used to
élock thé two régisters so that REGST accepts the parallel data and |
PRGCT is incremented by one. Other connections on the registérs |

set the mode of operation (see Appendix B).

5.2.4, Arranging the data paths.

Figure 5.6 sﬁowé thé.main data paths. HGHWY represents an
B;bit common higﬁway which is shared amoné four components. It has
four 'highway request' inpufs (inputs 1, 3, 5 and 7) and four data
ppfts (each48-bit wide). When one of the request inputs is sét to
logic one, the .8-bit data on the adjacent data port is loaded_t§ the
highway and the 'highway busy' output (9th output) is set. . The unit
has‘priority logic such that if simultaneous requests are made; the
one on the leftmost input wins the highwéy. Further atfempté tb_get
thé highway are ignored until the last request is cancelled. The
conéonent also has storage so that the latest.data values are

retained even after the current bequeSt'is cancelled.

- — — — — 7 = — T]
/ /l N
HEEEEEEN
HCHWY
ARERRRN
N B)
T S SR 1 .
it N IIIIIIII |
I__ ' RECST b—
—l' I: (TTTTT 17T
T T O O | | L____%
ALU —— l
T I-'l_ -
J | -
r | o |
] ‘-—- __.____._J a TN .
| _I AEENEEE |
T I I 7 —
| . RECST ' - — M4"MBO e
| llllllll /llTll “I

Figure 5.6

~91-

Highway Organisation.

L____I__._____l____

~92-
The. four components which share this unit are described below, in
thé ordér of priority they récéive from thé highway. |

(1)~ ALU is thé arithmetic and logical unit which performs
data opérations (defined by the mode inputs) betwéen the contents
of thé highway and thé accumulator register. |

(iij— REGST is an 8-bit universal registér which is used as
the accumulator.

| (iii)- MEM80O is the data memory which is similar to MAINS

(Figure 5{5),.but much faster.

(iv)- REGST is another register which is used as the Q—regiétér.
Each of these components ha§e an associated component to load their
outputs to the highway. Figure 5.7 shows their connection to the

highway.

-93-

Ll L L

OPCON LAHSM AMLDH

I [

Figure 5.7 . Highway Request Components.

-9y

For example, the state-table for LQHAS (Load Q-register to Highway

And Signal) is given below.

Present Néxt-state & present outputs
State o0 01 11 10

1 1,0 1,0 i,O 2,1

2 1,0 bl,O 3,2 2,;

3 . 1,0 1,0 3,2 3,2

Table 5.2 State-table for LQHAS.

Tables for the other components are given later.

5.2.5, Access to data memory.

Two memory controller components are used fo control the read and
writé operations in the data ﬁemory. Memory address is obtained from
the S.léast significant bits of the instruétién register and thé two
sector bits’storedlin the program counter. These connections are

shown in Figure 5.8.

~95-

ME‘MBO :
L P T T T |
|
l l |
MEMCO MEM_CG '
l l |
|
l N T O T I
PRCCT — RECST
[T T TTTTTTTT] FTTTTT

Figure 5.8 Connections to the Data Memory.

-96 -

In addition, two components'are used to load the AC or the memory
buffér to highway and to initiate thé mémofy accéss. .Tablé 5.3

gives the staté—téblé of a sequential cémponént, LAHSM (Load
Accumulatof to.Higbway and Store in Memory), which first loads AC

to the highway and then activates the memory controller componént
héndling thé write operatiéns. A level output from LAHSM indicatés
that data has been storea in memory. The inputs to the componént
indicaté 'begin', 'memory access done’, 'highway réceivea' and its
outputs mean 'start memory access', iget highway', 'operation complété'.
Its second input and first output are connected to the combonént

(MEMCO) which handles write operations in the data memory.

Present Next-state & present outputs
State 000 ©00L Oll 0l0 110 111 101 100
1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 2,2
2 12,2 2,2 2,2 2,2 2,2 2,2 3,6 2,2
3 3,6 3,6 3,6 3,6 4,0 4,0 3,6 3,6
M 4,0 4,00 4,0 4,0 4,0 4,0 5,1 s,i
5 1,0 1,0 1,0. 1,0 5,1 5,1 5,1 5,1

Table 5.3 State-table for LAHSM.

The state-table of a similar component, AMLDH, which is used to
'Access Memory and Load Data to Highway', is given below. Its
second input and first output are éonnected to the componenf (MEMCO)

which handles read operations from the data memory.

-97-

Present Next-state & present oﬁtputs

State 000 00L 011 010 110 111 101 100
1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 2,4
2 - 2,4 2,4 2,4 2,4 3,0 3,0 2,4 2,4
3 3,0 3,0 3,0 3,0 3,6 3,0 3,0 4,2
Yy 4,2 | 4,2 4,2 4,2 4,2 4,2 5,1 4,2
5 1,0 1,0 1,0 1,0 5,1 5,1 5,1 5,1

Table 5.4 State-table for AMLDH.

5.2.6. Designing load and store instructions.

The 'load AC from memory' and the 'store AC in memory' instructions
(opération codes 001 and 010, réspeétivély) are impiemented using the
last two components déscribe above. Because of the similarity bet?een
the two operations, a single component was designed to contpol both
‘of them. The component is ;alled S1S2E and receives two inputs from
the decoder (one for each instruction). A third input is obtained
by passing the 'operation complete' outputs (output 3) of AMLDH and
LAHSM through an OR gate. It generates two outputs to activate AMLDH
and LAHSM, respectively,and the third output is coﬁnected to the OR
gate ‘which sets the JKFLP (see Figures 5.3 and-5.9). The state-table

for S1S2E is given below.

PresentA Next—étate & present outputs

State 000 | 001 0l1 Old.l 110 111 101 iOO
T 1,0 1,0 1,0 3,2 1,0 1,0 1,0 2,4
2 1,0 1,0 1,0 1,0 2,4 2,4 4,1 2,4
"3 1,0 1,0 4,1 3,2 -3,2 3,2 3,2 '3,2

Y 1,0 1,0 4,1 4,1 4,1 4,1 4,1 4,1

Table 5.5 State-table for S1S2E.

-98-

The load instfuction also requires a clock pulse to be sent to the
AC so that the conténts of thé highway can bé transferréd into thé
accumulator registér. This pulse is obtainéd from thé first output
of S1S2E. Also, the mode inputs' of AC should be set to 'accept
parallél data'. Thé circuits for these operations are given latér.
Figuré 5.9 shows the complete control circuitry to éxécuté the first
four inAstructions-(load, store, add, subtract). Add and subtracf

instructions are described in the next section.

=99~

Figure 5.9 Control Circuit for the First Four Instructions.

N L1 1 |
1 MEMCO] MEMC OR3
l
]]
Macoi| [InveR MACO 1] [INVER]
1 - 1
I I
LAHSM AMLDH
l l
Or? 1 I I -
—] OPCON AV'DC,:
[
S1S2E S3S4E OR?2]
— 1 | I I —
o
] g
OR2 OR2 CHKLEB o
bl Nl

-100-

5.2.7. Add and subtract instructions

Thé add and subtract instructions (operation codes 0ll and 100,
Pespéctively) pérform arithmetic operations between the conténts of
thé AC régistér (the lower REGST in Figure 5.6) and a memory locationy;
placing thé result into the AC. As seen from Figure 5.6, ALU can
perform data operations on the conténts of AC and thé highway.
Théréfore, first a memory access is needed to get the data word and
place it on the highway. Table 5.6 gives the state-table of a
component, S3S4E, which activates AMLDH to perform this operation.
Wheﬁ this is done, S3S4E actiQateé another component, OPCON, which
waits for the ALU to perform the arithmetic, places the result on the
highway and informs S3S4E that the operation is complete. The same’
signal is sent as clock pulse to AC so that it accepts the result.

. from the highway. S3SUE then‘sends a signal through the OR gate,

setting JKFLP.

. Present - Next-state & present outputs.
State 000 001 Ol1 010 110 111 101 100
1 1,0 1,0 ;;o 1,0 1,0 1,0 1,0 - 2,4
2 1,0 1,0 1,0 1,0 3,2 2,4 2,4. 2.4
3 1,0 1,0 1,0 1,0 3,2 4,1 4,1 3,2
o 1,0 1,0 1,0 1,0 i 4,1 4,1 14,1

Table 5.6 State-table for S3SUE.’

The particular arithmetic'éperation (addition or subtraction)'to be
performed by the ALU is selecfed by setting the mode inputs- of ALU
-as required. The circuit to achiéve this will be described later.
. OPCON simulates the task duration of ALU by generating an output, which

is delayed and fed back. The delay value should be set to half the

-101-
time needed by ALU to perform the operation. The result is put on
the highway by placing a request through OPCON (see Figure 5.7).

The state-table of OPCON is given below.

Présént Next-state & present outputs

State 000 001 011 . 010 110 111 10l 100
1 1,o~ 1,0 1,0 1,0 2,1 1,0 1,0 2,1
2 1,0 1,0 1,0 1,0 2,1 3,0 3,0 2,1
3 1,0 1,0 1,0 1,0 3;0 . 3,0 3,0 4,2
i 1,0 1,0 1,0 1,0 5,4 5,4 4,2 4,2
5 1,0 1,0 1,0 1;0 5,4 5,4 S,u 5,4

"Table 5.7 State-table for OPCON.

Component CHKLB seen in Figure 5,9, is used during multiply operations

and is described in the following section.

5.2.8. Shift and multiply instructions

The shift and multiply operations are treated together since
multiplication is done by successive addition. (or subtraction) and
shifting. Operation code 110 indicates the instruction to.shift the
contents of the AC to the right by the number df places indicated in
the address field of the instruction. However, this number is
ignqredAif~th¢ shift counter is pre-loaded beforéhaﬁd. Therefore,

. first the contents of the counter is tchecked and the'number in the
address field‘ié transferred there if the counter is empty. During
a multiply instruction, the number to be loadedvis octal 10 (8 §hifts).
Figure 5.10 shows how the data is selected. Gl and G2 are
combinational components defined by Table 5.8 and ANDSM is an AND

gate which produces a one output during multiply operations.

-102-

- - P A Py ~
Y B
SHCNT —
1
ct c2 ct ct ct
[1]
RECST — ANDSHM

T T T T T T T

Figure 5.10 Selecting Data for the Shift Counter.

-103-

I1 12 Gl 11 I2 G2

0 0 0. 0 o o

0 1 1 0 1 1

1 10 1 1 1

1 0 0 1 0 1
(a) 61 (b) G2

Table 5.8 Truth-tables for Gl and G2.

Data is accepted by the counter when the count/load mode input becomes
zero. The complete circuit for shifting and multiplication is shown

in Figures 5.1 and 5.12.

COUNT LOADC
[] |
NORS
LUiST R
[]] I
!
I I
ANDSM SHCNT
bbb 1T T
|
T 11ttt | A I
' RECST DECOD

~ Figure 5.11 Enabling Shift or Multiply Operations.

)

-105-

T 1T 11
— ___j
COCNT LDCNT
] [
r COUNT LOADC
| I s Sl
BER 1
OPCON LQHAEJ
[T1 T
,]
| MULTC
0R3 N
[1
|
CHKLB MULST
l l

-

Figure 5.12 Control of Shifting and Multiplication.

-106-

LOADC ('Load Counter') is a combinational component with 3 inputs
and 2 outputs. Its first input is taken from thé decoder output
which iﬁdicates shift operation. The second input is obtained

by passing the counter output through a NOR gate to test its value.
The third input comes from another,coﬁponent which controls multiply
operations. The first output indicates that shift (or multiply)
operation is enabled and the second output indicates whether the
counter should be loaded with a number. Table 5.9 gives the

truth-table for LOADC.

I1 12 I3 0l 02

0 0 0 0 0
0 o 1 1 1
0 1 1 1 1
0 1 0 0 0
1 1 o 1 1
1 1 1 1 1
1 0 1 1 0
1 0 0 1 0

Table 5.9 Truth-table for LOADC.

The outpufs of LQADC are coﬁnected to the'inputs of LDCNT (‘Load
Controller') which is a sequential component. It generates two
outputs. The first one shows if the counter is ready for operation
and the second output is connected to the load/count mode input of
the counter. This output is normally kept at logic one (i.e. count
mode). The second output of LDCNT is also fed back to the third
i.input of the éomponent. Thié enables LDCNT to check if loading has

been done. Table 5.10 gives the state-table of LDCNT.

-107-

Présent Next-state & present outputs

State 000 001 011 O0l0 110 111 101 100
1 1, 1,2 1,2 1,1 1,1 2,0 3,3 1,1
2 1,0 1,1 1,1 1,1 3,0 2,0 2,0 3,0
3 1,2 1,2 1,1 1,1 3,3 3,3 3,3 3,3

Table 5.10 State-table for LDCNT.

Thésé components.prepare the shift counter for operation. Thé countér
receivés a continuous clock pulse (not shown in the diagram) but its
'count enable' input is controlled by two other components. COUNT

is a 3 input, 1 output combinational component. .It receives its
inpﬁts from the decoder (shift instruction), MULTC (a component used
during multiplication) and LDCNT'(counter ready signal). Its

truth-table is given below.

11 : 12 13 o1
o o 0 o
0 0 1 C
0 1 1 1
0 1 0 1
1 1 0 1
1 1 1 1
1 0 1 1
1 0 0 0

Table 5.11 Truth-table for COUNT.

This component activates COCNT ('Control Counting'), which is a '
sequential component. COCNT receives the clock pulse applied to

the counter, as a pulse input and passes it on to the AC (and P)

-108-
régister. Counting is done towards zero and when that value is
réachéd. thé ovérflow pulsé génerated by the shift countér stops
COCNT. Thé ovérflow pulse is also connectéd to the OR gaté which

sets JKFLP. Table 5.12 gives the state-table of COCNT.

Present Next-state & present outputs

State 000 001 011 010 110 111 101 100
1 1,0 2,1 3,1 1,0 1,0 1,0 1,0 1,0
2 1,0 2,0 3,1 1,0 1,0 5,0 3,3 1,0
3 1,0 2,0 3,1 1,0 1,0 5,0 3,3 1,0
" 1,0 5,0 5,0 1,0 1,0 5,0 4,1 1,0
5 1,0 50 5,0 1,0 1,0 5,0 5,0 1,0

Table 5.12 State-table for COCNT.

The multiply instruction is an additional function (operation
code 000) which is written as '00011110' (octal 36). It places the
double-length product of two signed integers (initially in P and Q)
into the AC and P registers (least sigﬁificant bits in P). Booth's
algorithm (66) is uéed to. perform this operation and in accordance
with the requirements of this algorithm, the P-register is.9 bits
long. During multiplication, ACland P aré ;hifted together; with -
the last bit of AC feeding the first onc of P. The last two ﬁits
" of the P-register are checkéd before each shift operation and an
addition or subtraction. is perférmed between the AC and the Q-register
(result in AC) depending upon their values. Table 5.13 shows the
action taken for-each possible combination. Bit 9 should be zero

_ before the multiplication routine is started.

-109-

“Bit 8 Bit 9 Action
0 0 Do nothing.
0 N 1 Add Q to AC.
1 1 Do nothing.
1 0 Subtract Q from AC.

Table 5.13 Booth's Algorithm for Multiplication.

Thé control components for the multiply routine'are-shown in Figure 5.12.
Thé operations are started when the second input of the 'Multiplication
Start' component, MULST, becomes one (see Figure 5.11). MULST first
activates LOADC (Table 5.9) and then MULTC ('Multiply Control'). The

overflow pulse stops multiplication. Table 5.14 gives the state-table

of MULST.
Present Next-state & present outputs.
State 000 001 0Ol1 010 110 111 101 100
1 | 1,0 1,0 -1,0 2,1 | 2,1 1,01 1,0 1,0
2 1,0 1,0 3,3 2,1 2,1 2,1 1,0 1,0
3 1,0 1,0 3,3 3,3 4,0 4,0 1,0 1,0
y 1,0 1,0 4,0 4,0 &0 4,0 1,0 1,0

' Table 5.14 State-table for MULST.

MULTC.does the actual cdntfol'of the multiplication routine. It
loads-Q to the highway by activating LQHAS (Table 5.2) which in turn,
informs CHKLB ('Check Last Bits') that data is ready. Bits 8 and 9
of the P-régister are passed through an EXCLUSIVE-OR gate whose output
V is connected to CHKLB which decides if addition or subtraction is
needed. If so, then OPCON is activated (see Figure 5.9). When the

"arithmetic is done (or if none is required) CHKLB sends a signal to

-110-

MULTC which enables counting for one pulse period and stops it again
to repeat these operations. When the overflow pulse is received,
MULST disables MULTC and the multiplication is completed. The

state-tables for MULTC and CHKLB are given below.

Prééent Next-state & present outputs.

State 000 OOi 011 010 110 111 - 101 100
1 i,0 2,2 1,0 1,0 1,0 1,0 1,0 1,0
2 1,0 2,2 3,1‘ 1,0 1,0 2,2 2,2 1,0
3 1,6 3,1 3,1 1,0 1,0 4,1 4,1 1,0
4 i,0 2,2 1,0 1,0 1,0 4,1 4,1 1,0

Table 5.15 State-table for MULTC.

Present . Next-state & preéent outputs

State 000 00L 011 010 110 111 101 100
1 . .1,0 1,0 1,0 1,0 2,1 1,0 3,2 2,1
2 1,0 1,0 1,0 1,0 2,1 2,1 2,1 2,1
3 1,0 1,0 1,0 1,0 4,0 4,0 3,2 3,2
4 | 1,0 1,0 1,0 1,0 4,0 4,0 4,1 4,1

Table 5.16 State-table for CHKLB.

An arithmetic shift (i.e. sign extension) is needed for the
multiplication routine. - However, the shift inétruction méy define
an arithmetic shift or rotation‘depénding whether the address field
is written as 'OXXXX' or '1XXXX', respectively. Hence, the data
to be placéd into the topmost bit of AC is determined by using a
combinational component called SHIFT. Its truth-table is given

below. Figure 5.13 shows its connections to the accumulator.

-111-

Ir I2 I3 Iu o1
0 0 0 0 0
0 0 0 1 0
0 0 1 1 0
0 0 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 0 1 0
0 1 0 0 0
1 1 0 0 1
1 1 0 1 1
1 1 1 1 1
1 1 1 0 1
1 0 1 0 0
1 0 1 1 1
1 0 o 1 1
1 0 0 0 1

Table 5.17 Truth-table for SHIFT.

-112-~

Figure 5.13 AC and P-register.

CHKLB]
[- EX-0R
3 | [{1]] M
RECST P-REC
FT 1T T T 111 1T T T T 111
‘ . T
" SHIFT MACO1 ACCON 8
T N —
-
r
I ANDSM COLUNT
| 1 T

-113-

Figure 5.13 also shows how the mode bits of the AC and the P-register
are set. The truth-tables for ACCON and P-CON are given below.
MACOl generates a short pulse at the beginning of a multiply routine

and is used to clear the accumulator.

1 12 I8 I4 oL 02

0 0] o) 0 1 1
0 0] 0 1 0 1
) 0 1 1 0 1l
0] 0] 1 0 1 1
0 1 1 0 1 1
0 1 1 1 0 1
o) 1 0 1 0] 1
0 1 0 0 0 0
1 1 0 0 0 1
1 1 0 1 0 1
1 1 1 1 0 1
1l 1 1 0 0 0
1 0 1 0 0 0
1 0 .l 1 0 1
1 0] 0 1 0 1

Table 5.18 Truth-table for ACCON.

~114-

I1 12 i3 Iy 0l 02
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 1 0 0
o) 0 1 0 0 0
0] 1 1 0 0 0
0] 1 1 1 0 1
0] 1 0 1 0 0]
0 1 0 0 0 0
1 1 0 o) 0 0
1 1 Y 1 0 0

E 1 1 1 1 1 1
1 1 'l 0 0] 0
1 0 1 0 0 0
1 0 1 1 1 0
1 0, 0 1 0 0]
1 0 0] 0 0 0

Table 5.19 Truth-table for P-CON.

Figure 5.14 shows how the mode bits of the ALU are set. The truth-table

for ALCON is given in Table 5.20.

-115-

ALCON

Figure 5.14 Controlling the ALU.

-116-

I1 I2 13 01 02 03
0 0 0 0 0 1
0 0 1 0 1 0
0 1 1 0 0 1
0 1 0 0 0 1
1 1 0 0 0 0
1 1 1 0 0 0
1 0 1 0 1 - 0
1 0 0 0 1 0

Table 5.20 Truth-table for ALCON.

Finally, Figure 5.15 shows how the clock input of AC is obtained.

-117-

RE&ST
T T 1T 11
OR3
|| L1 |
S1S2E OPCON COCNT

A B O B

Figure 5.15 Clock Pulse for Accumulator.

-118-

5.3. Performance evaluation.

Thé désign presentéd abové has beén tested using the simulator
program. A numbér of modifications wéré madé to the initial
component and/or circuit spécifications until thé final form was

'obtainea. Thén fhé total de;ign was chéckéd by placing a simple test
program into the program ﬁemory. Data valués were placéd into thé
régiéter (and the data memory) and a large scalé simulation was madé?Q
The results of the operations were compared with hand worked solutions
and were all correct. A number of spurious spikes were detected and
some of themlwere eliminated. The remaining ones do not cause any
malfunction. ﬁThe access time of the two memory unité were set to

750 and 30 nano seconds for the program and data store, réspectivély.
Thé‘ALU performs operations in 40 nano seconds and the continuous clock
to the shift counter has a frequency of 12.5 MHz. The propagation
delays and the state transfef times of the remaining components are all
10 nano seconds. With these values, the fetch cycle is 850 nano

seconds long. The duration of the execute cycle for different

operations is given below.

Instruction _ Execution time
Load AC ' - 270 ns
Store , .2§§ns.'

Cpda . o 380 ns.
Subtract | 380 ns.
Shift (3 times) _. 360 ns.-
Shift (5 times) 530 ns.

Multiply (requires 5 additions) 2210 ns.

Rotate (21 times) 1810 ns.

simu [a!‘ar ou{p\)!s.

(%) Gee pages 203-205 for samples of

119
Multiplication can be made faster with a slight modification to the
circuits such that thé Q~régistep is loaded to the highway only when
an addition or subtraction is requiréd (at the présént, Q is loaded
to tﬁe highway béfore each shift operation). The total cpu time
taken to simulate 14 instructions (19600 nano seconds) was approximately
28 minutés usingA59980 kilo-core-seconds (i.e. approximatély

59980/800 = £75 running cost).

5.4. Component realisation.

Tﬁis section describes how the design components can be realised.
As an example,‘a highway component with three data portsl(i.e.
sharable among three units) is impleménted using gates and flip-flops.
A sequential component is used for the priority logic. Therefore
the implementation of user defined components is also illustrated.
Table 5.21 gives the sfate—table of a sequential cémponent. that

determines which of the three request inputs (Rl’ R RS) will be

2’
given the control of the highway (indicated by the outputs 0,5 0,

and 04, respectively).

Presgnt Next-state & present outputs

State 000 001 011 0l0 110 111 101 100
1 1,0 8,1 3,2 8,2 2,8 2,4 2,4 2,4
2 ©. 1,0 8,1 3,2 3,2 . 2,4 2,4 2,4 2,4
3 20 41 3,2 3,2 3,2 3,2 2,4 2,8
b 1,0 4,1 4,1 3,2 2,4 4,1 &1 2,4

Table 5.21 State-table for Priority Controller.

~-120-

As the component is to %Eerate in asynchronous mode, a state assignment
freé from critiéal racés (may have non-critical ones) is nécéssary.
Table 5.22 gives a modified state transition-table and shows the

binary assignments for the states. There are race conditions under
thé 1st, 2nd, 4th and thé 8th columns but none of them are critical.

Output values are the same as those shown in Table 5.21.

Binary Present Next-state
Code State 000 001 011 010 110 111 101 100
00 1 1 4 2 2/3/4 2 2 2 2
o1 - 2 1 1/3/4 3 3 2 2 | 2 2
11 3 1/2/4 . 4 3 3 3 3 2 2

v 1/2/3

10 Y 1 .oy y 3 1 m

Table 5.22 Modified Transition Table

Next, an internal variable map is obtained by réplacing the next-state
éntries with their state assignments; When there is a multiple
- choice (e.g. 17/2/4 entry ir. the lst coiumn) some of them are eliminated
by examining the table so that the number of adjacent entries is

increased.

yly2 000 001 011 010 110 111 101 100

©o0 00 10 oL ‘-1 0L 0L 0L OL°
01 00 1- 11 11 ol 01 01 o0l

1 1 0- 10 11 11 11 11 0l 0l

1 O 00 10 10 11 00 10 10 o~

_Table 5.23 Internal Variable Map

-121-

Then the flip-flop type is selected. Here, J-K flip-flops are used.

Table 5.24 gives the transition table for a J-K flip-flop.

01 Qi+l J K
0] 0 0 -
0 1 1 -
1 1 - 0
1 0 = 1

Table 5.24 Transition Table for a J-K Flip-flop.

Excitation maps are obtained for each flip-flop using tables 5.23

and 5.24.

y,y, 000 ©00L 011 010 110 . 111 10l ' '100

0 0 0- 1- 0- -~ 0- O- 0- . O-
0 1 0- 1- 1- 1- 0- 0- 0- 0- ,
11 -1 =0 -0 -0 -0 -0 -1 -1

1 0 -1 -0 -0 -0 -1 -0 -0 -1

(a) 1st flip-flop

oo o O 1- 1- 1= 1- -1- 1-
o1 .1 - - -0 -0 -0 -0 -0
11 - -1° -0 -0 = -0 -0 -0
10 o0 o0 O 1- 0 0- 0- -

(b) 2nd flip-flop

' Table 5.25 Excitation Map.

-122-

The excitation equations are then obtained from Table 5.25 and

simplified.
Jy = RiRRs + yoRiRy
Kl = y2RlR3 + yleR2 + R2R3
Jy = RIRRy + TR+ ¥Ry
K, = RyR,

An output map is formed to obtain the output equations.

y;y, 000 001 011 0l0 110 111 101 100
0 0. 000 00l 010 010 100 100 100 100
0o 1 000 00l 0l0 010 100 100 100 100
1 :1 000 001 010 ‘010 010 010 100 100

1 0 000 001 001 010 100 001 001 100

Table 5.26 Output Map -

o
"

1 = YRy T YRRy + yoRiRy

-0, = yly2R2 + lelRQ + RlR2R3
0, = ylyQR3 + R1R2R3'

-

Figure 5.16 gives the logic diagram of the complete .circuit.

}.
uba
}

"R

3

Figure 5.16 Logic diagram of the priority circuit.

~e¢T-

-124-

The outputs Ol’ 02, O3 are used to select the data to be loaded into

the highway flip-flops. This is shown in Figure 5.17.

- H Ha
L] [|
Q Q Q Q
| B bt m
3 A& 3 é
' N -\
AN (AR AR

ERIORITY

R 1 Rl R3 A1 8‘_ Cy A" Bxn Cx

Figure 5.17 Realisation of the Highway Component.

~125-
Chapter seven ? discusses some of the techniques used in

e e

realising sequential and combinational components.

Also, a new state-assignment method for synchronous sequential machines

is presented.

-126-

Chaptef 6: Programming Considerations

This chapter describes the way in which logic designs prepared
by the user are stored inside the computer. It also gives a
closer view of the three programs described in Chapter 4 and

discusses some ergonomic considerations.

The data structure is not of the generalised 'riﬁg—structure' type.
Such arrangements were examined and taken into consideration but

the strﬁcﬁure implemented in the programs is a different one.

There are two main reasons for this. Firstly; when the research was
started, it was not known whaﬁ type of information should bé linked
together. For example, should there be a separate ring for display
information or should the coordinates and the display file names of
components be placed on the same ring as the connections.
Purthermoré, the type of information to be stored was not fully
determined. 'Page', 'multi-line', 'macro' facilitieé-were added on
at a iater stage. Secondly, the data stfucture was expected to be
(and is) of a moderate size so that no special techniques would be
required for 'garbage collection' or modifications. However, in
the light of the expérience gained, a more‘general type of data

structure could be built for the future versions of the programs.

-127-

6.1 ‘Data structure organisation

Thé data structure consists of a number of tables all of which
aré prepared on-line as the programs are instructed to carry out
the requiréd opérations. The user is unaware of these 'béhind—
thé—scéne' operations but, undoubtedly, their efficiency affects the

performance of the programs.

A table, called the "MASTER" table, is prepared (or modified)
by the component specification program. In this table éach componént
is represented by a maéter—block which carries some global
definitions. These definitions include the name, type, number of
inputs, number of outputs and the number of internal states of the
component. The tabular descriptions (state-table or truth-table)
of user defined components are also included in this block. Master-
‘blocks.of‘library components are entered into the table only when
they are used in a logic diagram so that the table will not be

crowded by unused components. Figure 6.1 shows a master-block.

-128-

- Name

Type

No. of inpu+5

One componeﬂ+

NO. o 'F OU+PU+5

No. of states

D I_oc‘(lens{'h

TABLE™

/

. Namc

—= s Mas;{‘er Table

Figure 6.1, A MASTER-block

'The. drawing program prepares an "INSTANCE" table where eaéh componenf
in the logic diagram is represented by a block. Every instance-block
points to a master-block and components which are used more than

once are represented by multiple instance-blocks, all pointing to the
same masfér—blo;k. Thelmaster—instance'relations are illustrated

in Figuré'6{2.

ots

(*) Not needed for library components.

-129-

M1 T1(ML)

M2 T1(M3)

M3 ' T1(M4)

MY
M

Master T2{M3
Ta_b'e T nstance
N . Table

Figure 6.2 Master-Instance Relations

An instance-block stores certain yélues used during simulation
and also indicates the connections to other components. Each
terminal of a compéﬁent has én associated erd in the instance-block.
These words are called "output-words'" or "input-words" depending
ubon the type of terminal associated with‘them. Figure 6.3 shows

an output—wordf

L — Las"’ ’ogic value

I
|
|
De,ay VQ'UE | —_— regen “ ”
- |
|

L_og,ic value GH’e.f

.1 unit delay

Losr"c va’ue a{‘l‘e"
2 unit Je(ays

Figure 6.3 An Outpﬁt—word

-130-

All components and lines (conductors) used in logic diagrams aré
givén internal names and connections between componénts aré
répresentéd by the "input-pointers" stored in input-words. The
input-pointers can indicate not only which terminals are connected
to éach other, but also which line (or lines) makes the

connection.

‘_"1".'1J

R ci -

(a) Logic diagram

g
ci]
2 ¥
c2
3
c3
A L)
:' .
' .

<

(b) Internal representation.

Figure 6.4 Pointers in the Instance Table

-131-

An input-pointer has five fields.

(i)- "y" field shows whether the pointer is directed at an

input terminal (V = 1) or an output terminal (V = 0).

(ii)- "L1'" field gives the internal name of the line which

makes the connection.

(iii)- "L2" field gives the internal name of another line which
is needed to-complete the connection. L1 and L2
fields will be the same if the coﬁnection is directly
betﬁeen two terminéls (i.e. only one conductor ties the
two terminals together). However, if the connection
is from a_terminal—to a line; L2 is the internal name of

that line.

(iv)- "C" field identifies the component to which fhe

connection is made.

(v)- "T" field identifies a terminal:-of the component in the

"cY field.

Flgure 6.5 shows some connections and input-pointers.
l’ 02 and the numbers on the lines are internal names and the:

pointers are written as "V, L1, L2, C, T".

| I |
t C1 ,
__+J N XO,L,.Z,CZ.J;
ollf',‘hc"l ! \j
! ,
1,3,4,¢1,3 |3 6

\
(ori,3,1,c2:4) —~

1L

,—-

0, 5,6, c:. 2

—_ e e e e e -

Figure 6.5. Connections & Input -Pointers

0,1,2,c2,4

-132-

Note that the 2nd input of Cl does not directly point to the 1lst

output of C2. Instead it is seen to be connected to another input
términal which points to the required output. This is because the

: connéction requires three lines (lines 3, 1, and 2) but the pointer

has only two levels (L1 and L2 fields). Therefore, some.inputs may
have to point to other inputs and the connection to the output

terminal (if any) can be found by tracing the pointers. It is

' necessary to retain the connectivity of the inputs to each other so
that if the éonnection to the output terminal ié deleted, the remaining
-terminals stay tied together. Also, the 2nd input of Cl could be

made pointing to the lst input of C2, as indicated by the dotted arrow.
Either way, the same connections. are represented and which one will

be used depends upon.the relative positions of Cl and C2 in the instance

tabie.

When connecting a number of inputs to each other or an inter-
connected set of inputs to an output, the direction of the input-
pointers may have to be changed. The ~echnique used in sorting out

the directions, is described below.

If two input terminals Sl and 82 are connected to each other,

their pointers are arranged such that a ‘loop' is formed.

Figure 6.6 Connection Loop

-133-
If Sl is then connected to another input terminal, say 83, the
pointers along thé patﬁ which starts from Sl are followed until
a loop is found. The loop is eliminated, directions of pointers
along the path are reversed and a new loop is formed by pointing Sl

and S, to each other. This is illustrated in Figure 6.7

3
5

Figure 6.7 Forming a New Loop.

The process is applied to any terminal which is connected to a new

input. Figure 6.8 shows the situation if 82 is conmnected to Su and

Sl to 85.

S, e
53 == ‘#: ?' i ¢

(a) Connection to S

2

(b) Connection to Sl

Figure 6.8 Adding New Connections

It can be seen that after each connection the pointers are arranged

such that all inputs point to the last terminal added to the

-134-

connéctions. Hence a 'directed-graph' is formed which terminates
with a loop. Making a connection to an output terminal eliﬁinatés
thé existing loop but no new loop is created since output terminals
do not havé pointers. This is illustratéd in Figure 6.9 where

S, has been connected to the output terminal O.

S S,
W»" < C—"y.

L]

Ss o

Figure 6.9 Comnection to an Qutput Terminal

When connecting two termiﬁals to each other, this procedure is applied
to each of them separately (if it is an input terminal). The
direction of éointers along one path can be changed bnly if the path
terminates with-a loop (i.e. no connection to an output terminal).
Iflbéth terminals are outputs or n§ paths have -been found for either
of them, the connection is‘rejeéted since it will short;circuit two
output terminals. When a connection is‘dele?ed, the recovery s
routines will insert a loop (loops) into the graph provided fhat thé
remaining path'(paths) is not connecfedito an output terminal;
 Figure 6.10 shows the remaining pointers if the connection between

Sl and S, is aeletéd. The -loop ¢an be.between S‘ and S, or between

2 1 3

Sl and S5 depending upon the lines used in the connections.

-

>

.55 - O

Figure 6.10 Deleting a Connection

~-135-

Changing the direction of a pointer or inserting a loop is made
such that the pointers always indicate the line (or lines) used in

the connection. Figure 6.11 shows a logic diagram and the pointers

stored.

Cci Cc2 Cc3
= I I

i,4,2,¢2.1 1\\\\\~___////)’2 1,2,2,€2,4

Figure 6.11 Inputs Connected to Each Other

- The mbdified'pointers are shown in Figure 6.12 where line 1 has been

connected to an output terminal.

| |
1,2,14,¢1,2 cz : c3
0,1, %,Cc1,2 = l , “ l,
2_/ 1,3,2¢C2,1
2 3

Figure 6.12 Modified Pointers After an Output Connection

-136-

If line 4 is deleted, a loop will be inserted between the 2nd input
of Cl1 and the 1lst input of C2. This is achieved by changing the
pointer of the 2nd input of Cl so that it becomes "1, 1, é, c2, 1v.
It can be seen that a line which is directly connected to an input
términal, appears in the "L1" field of the pointer on that términal.
An input-pointer such as "0, L1, 0, O, O" indicates thaf line L1 is
connected to an input terminal which does not have any other

connections.

Cci1

L1

=

O;LL,O;O;O

Figure 6.13 Free Input Terminal

This iiluStrates the efficiency of the pointer-structure in
,represénting the connections. Even though, some types of connections
(i.e. Figure 6.13) will not exist in the final logic diagram, it is
necessary to be able to handle them since such connections may appear
while modifying the diagrams. A "Multi-pine" éonnection is héndléd
in the same wéy and thé_manibulations-on pointers are applied td eack

pair of terminals of the connections implied by the multi-line.

The MASTER-INSTANCE relations sepéréte the componént
specifications from the circuit descriptions so that either could
be altered withoﬁt effecting the other. The situation becomes
somewhat complicated when MACRO components are used since their
behaviour is determined by the components and their connections which
form the body of the MACRO. Consider Figure 6.14 where a MACRO

is defined.

-137-

i~

Figure 6.14 A MACRO Component.

Cl, C2 and Ml are eéch represented by a separate instance-block so
that the operations described above can be performed on éithe: of
them. = Since the numbers of inputs and outputs of a component are
given by its master-block, a new master should be prepared for Ml.

Figure 6.15 illustrates this.

<
ci <
— < ‘ 1 |2 0
c2
14)
ML o » Macro

Figure 6.15 Macro Components.

~ A 'dummy' instance-block is used to identify the components which are
used in the macro definition. The instance-block of the macro

points to the dummy and the dummy points to the individual components.

-138-

A master-block is also needed for the dummy and this has been

embedded in Ml.

c1 .:
4 -1 :)

c2 |

¢

[

ML Macro | :
|

|

- d

Dummy = ---=-d

Figure 6.16 Dummy Block for Macro.

The dummy block iden%ifies the 'internal' components of a macro and
also shows which of their terminals are external to the macro (see
Figure 6.14). If a macro component is used more than once, new
instanée—blocks'Will'be created and they will all point to the same

. dummy.

< e e
C1 ¢ !
|
< ST
cz N | :
1
. ' "
MLy Macro Lo
' i
. ‘_‘ t :
Dummy P2z 2772

|

R

L - J

MGCI’O

Figure 6.17 Multiple Instances of a MACRO.

-139-

Figﬁré 6.17 shows that a new master-block has been generatéﬂ for the
sécona instancé of thé macro. This arrangement is requiréd by thé
simglator. Mll and Ml2 have the same parameters (i.e. numbér of
inputs,... etc.) and also have a storage area where the logic values
of the outputs of the components used in the macro definition, are
storéd. To simulate a macro component, the simulator first carries
the values from the master-block to these components, evaluates néw
outputs and stores them back in the master. Therefore, the structure
of the macro in the instance-table, is "Re-entrant" and ény component
which shares that structure provides its own data. Since all.
instances of a macro component use the same sfructure,iany modification
to the latter will be automatically reflected in all. Connectioné

to a macro are made on their instance-blocks. The simulator consults
the dummy-block to'find out which of the internal components should
receive the external inputs and also whicﬁ of the internal outputs

~ should ge,carried to the extérnal outputs of the macro. Tﬁis section
of the simulator has been writfep in a 'recursive' fashion so that the

internal components of a macro can themselves be macro components

and this can be done to any depth.

As mentioned in Chapter 4, partifioning a logic diagram does not
require doing the same to thé data-structure. A‘"PAQﬁ" ta%le is
prepared which, for each compoﬁenf, gives the page number and the
coordinateé on that page. The program consults this.table-to see if.
(and where) a component should be displayed on the current page.
Components which appear on more than one page afe entéred twice
(or more) into this table and can be positioned or rotated individually.
A similér arrangement has been made for thevlines except that lines

can appear only on one page.

-140-

6.2, Implementation details.

Thé thrée programs described in Chapter 4 have been written to
provide the logic designer with a convenient tool which he can use
to try out various designs and select the one which is best suited
for thé purposes in mind. Consequently, the data-structure has béen
orgahizéd guch that éomponent and circuit descriptions can be modified
individually without affecting each other. Since most of the
communication between the user and computer is done using the display
screen, certain links are estaplished between the objects on display
and their internél representations. This has been achieved by
dividing the display file (see Appendix C) iﬁto segments for each |
component or liné and using the same internal name to identify a
segment or its cofresponding block in the data-structure. When a
. light-pen hit is recorded on any segment, the graphics software returns
the internal name of that segment and the program does a search to-
find a data block with that name. Altérnately whén a.new object:
is to be displayed, a new data block is created, the display segment

is prepared and the same internal name is given to both of them.

To keep the interactions at a high level, all operations concerned

with the internal representation of a logic design are hidden from
| | g 5
the user. For instance, deleting a line between two terminals

involves identifying the line, cheqking‘each of the terminals to find.
out where they are connected, modifying some pointers and finally,
eliminating the line from the display. As fér as the user is
concerned, the modification has been fully specified by selecting the
"ERASE" mode‘énd pointing the light-pen to anywhere on the unwanted
conneétion. In effect, he has issued an instruction to "delefe that

line". It is the responsibility of the program to find out which

-141-

line is to be deleted and which pointers are to be modified. When

) thé réquiréd operations havé béen successfully carriéd out, visual
feéd—back is provided by causing thé connection to disappear from

thé logic diagram. System resbonse to such requests should be as
quick as possible so that the user is not frustrated. In the

current version of the program, the response time varies between 1

and 5 seconds depending upon the complexity of the operétions to be
pérforméd. Howevér, when the time-sharing computér is heavily loaded,
delays of up to 30 seconds may be expected. It should be noted

that most of that time will be‘gpent in bringing the user's job into

core.

In an interactive system, it is éssential to know what the program
is currently doiné or what instructions the user can give to it.
Therefore, when a particular mode is selected, the light-button
corresponding to that mode is displayed at.a larger scale than the
others. Meaningful words have been Selected for the light-buttons
so‘that they can be used botﬁ to give instructions and also to indicate
the "present-state" of the programs. It is also uséful to give some
6f the light-buttons different meanings depending upon the current
mode but care must be taken to ensure that the particular meaning is
obvious. This technique is used in the drawing program. Invthg
ﬁERASEJ mode no aétion is taken until the user points the_penito a
component or line to Be deleted. However, if the pfogramlis iﬁ the.-
"LINE" mode and the user has started mdking a connection, pointing
to "ERASE" deletes the last part of the line being drawn and thé
program automatically returns to "LINE" mode. Similarly "FIX" is

used to fix the end point of a line segment to allow changing

direction. If the end point lies on a terminal (or a line) the

~142-

connection is finalised, otherwise the program returns to "LINE"
mode. Héncé, communications take the form of a simple graphic
languagé which thé computer can interpret according to thé currént
staté of the conversation, i.e. it is context dependent. Statéménts
which have no meaning are ignored (e.g. pointing to a line and
not specifying an operation).. There is no need to sayA"exit from
the current mode" since this is done automatically and the corresponding
light-button returned to its original scale when the réquiped
operations are completed. Since logic drawings play an importanf
role in the total design system, it was found worthwhile spending some
effort to improve the quality of diagrams displayed on the screen.
The components are displayed at a slightly higher intensity than the
lines. This helps in recognising each component and makeé it easier
_ to understand the diagram. Also, if a iine is connected to another
line, a.bright dot is displayed to distinguish it from a cross-over
of connections. The end points ofAterminals have similar bright dots.
As described in Chapter 4, multi-line connections are represented as
‘dotted-lines. The program célculates a suitable length for small
line segments and the gaps between them. This is done in such a wav
that the dotted-line starts and ends with a solid segment so that a
visible corner is formed if the line changes direction. This is

shown in Figure 6.18. ' ' a ‘ o~

— o o— —
— m— — —

s Figure 6.18 Multi-line Cormering

~143-

All pfograms have been written in FORTRAN. The size of thé
data-structure is about 5K for the design example givén in Chapter 5.
This dées not include the display file which requires an additional
3K.- The drawings are made on a 10 point, invisible grid such
that the coordinates of the corners and the terminals of components
are pounaed off to the nearest 10. This helps in alligning the
components'such that connections can be made by horizontal or
vértical lines. If a cémponent is rotated by 180 degrees, its name
is displayed with zero rotation (not upside down) so that it can be
easily read. However, to avoid confusion in determining which
terminals are inputs, in such situations the name is displéyed closer
to the input terminél side of the component. When the orientation

is 90 or 270 degrees, the name of the component is also rotated.

-\

B T

Chapter 7: A General Discussion on Component Realisation.

The logical design of oné of the high level components uséd in
thé désign example, was given in Chapter 5; Logical design is a
major probléﬁ aréa and has attracted the attention.of many réséarchérs.
The following séctions present a general discusgion on the probléms
encéuntéréd in thisifield and on the:techniques suggested by others
to solvé them. Tﬁe author's contribution to two pafticular problems
(finding cléafing sequences and state-assignment of sequential machinés)

is described in sections 7.2.1 and 7.2.2, respectively.

7.1. Combinational components

Algorithms to find the prime implicants and select an irredundant

set which covers a2ll the 'one' outputs of a Boolean function can bé
found in references (60), (65), (90). Most of these aigorifhms can
also be applied for the syhthesis of multi-outﬁut functions. Hence,
the combinational component specificationé can bé directly fed into some
otﬁer programs to-simplify and realise them. The outputs from such
programs arevﬁsually in a two-level, sum-of;products (or produét—of
-sums) form and they should be reformulated so that special logié
types (e.g. NAND/NOR) or multi»lével syﬁthesis can be used to
implémént them. Multi-level realisations may rgsult in slowef
Acirguits but may be necessary because of fan-in limitations. §When
such'constrainté are satisfied the gates'are.assignea to IC packageé
and placed on printed circuit boards. Programs to perform such
operafions are reported in (25) and (78); It may sometimes be
necessary to include'redundant éxpressions in the fiﬁal equations

so thaf the logic circuits become hazard-free. A hazard is said to

exist in a combinational circuit if transitions between a pair of .

~1u45-

adjacent (differing in only one Qariab;e) input combinations cause a
momentary spurious output. If the outputs are same for both of thé
input combinations, thén the hazard is 'static', otherwise it is
'dynamié'. One way to prevent such fauits is to use all of the

prime implicants in thé implementation of a functién.‘ This-method
guarantées a hazard—frge realisation but may not be practical dué to
its éxpense. Hazards may also exist for multi-input-variable changes
and thése cannot be cured by using all of the prime implicants.
Theréforé, analytical fechﬁiques should be used to detect and prevent

such cases (60).

‘It was mentioned in Chaptér 4 that the user-defined components
~are limited to 5 inputs and 5 outputs. :These'fiéures are just about
right if standard algorithms are to be ﬁsed to perform the above
mentioned éperations. When the numbers of input and output variablés
are increaséd the-pfoﬁlems become quite difficult to solvé,'évén with
the largest of compﬁters. This is mainly because of the large pumber
of terms generated by the algorithms when searching for the prime |
implicants. For large variable (e.g. 10 inputs, 10 outputs)
problems, the core store and execution time required to obtain the
theoretical miﬁimum solution éxceéds beyond accepfable limits. Even
if the prime implicants can be obtained using a reasonable amount of
core store apd execution time, the'problem of finding an irrgdundant
set to realise the gifen fﬁnction, ié é formidable one. It is
reported in (63) that to find an irredundant set of prime implicants
for'a 6 input, 10 output combinational network, 12000 covering ferms
Qere generated in Qé minutes on an ICL 1907 computer. Therefore,
many researchers have turned their attentions to "approximate"

algorithms which provide 'near optimum' solutions. Using such

. -146-

" techniques, first the largest (i.e. the simplest) prime implicant

which will cover an input combination is found. Other inputs
covered by the same prime implicant are deleted and the process is
continued until all inputs have been covered. Description of an

algorithm working in this manner can be found in a paper by A.R.

" Meo (19). Similar techniques are used in the CALD system (64).

Unfortunatély, such techniques are sensitive to the ordering of the
inputs in the tfuth—table and different results may be obtained by
simply reformulating the problem. However, the differences will be
only in the ‘nbn-essential‘ prime implicants since ali 'essential'
prime iﬁplicants cah élways be found (otherwise some inputs cannot be

covered at all). Results obtained with such approximate algorithms

‘indicate that considerable savings can be made in the cost of finding

solutions with reasonable sacrifice in minimality.

7.2. Sequential components

The firstlstep in realising a sequentiél component is to Simplify
the state-table by eliminating redundant states and merging the
remaining ones (state reduction). This may reduce the number of
memory elements (flip-flops) necessary fo reali#e the component.

The number of flip-flops required for a sequential machine with "N
states, is K = Logz(N). _ Hence, if the ngmber of states is feducedA
from‘five to four, only two flip-flops will be needed, instead'of

three. Hoﬁever, reducing N from 8 to 5 does not reduce the number

of flip-flops. Even then, it may be useful to simplify the

state-table since eliminating some of the states introduce don't care

. values into the table and may lead to simpler excitation equations

for the flip-flops. State reduction can be achieved by first

constructing an "Implication Table'" to find the set of all "Maximum

-147-

Compatibility Classes" and then finding a "Minimum Closed Set of
Compétibility Classés" (90). This is a complex procedure and thé
éxecution timé incréases rapidly with thé number of variablés.

Thére may bé moré than one minimum closed sets which requiré différent
statés to be mergéd and at this stage, there is nothing to indicate
that oné of them will yield simpler equations than the others.
Purthermoré, while it is possible that some of the states can be
eliminated and don't care values can be introduced into the table,
there is also the very likely probability that any existing don't care
éntries will be destroyed due to the merging of states. Théréfofé,
apart from the difficulty in obtaining a fully reduced state-table,
thére is no real guarantee that the excitation équations will bé much
simpler .for a fully reduced table. Consequently faster working,
approximate methods can be used for state reduction withbut any

apparent loss of optimality (6u4).

The next step is to assign binary codes to the internal states
such that the excitation equations for the flip-flops are minimised
to the greatest possible extent. In fact, for the minimality of
total cost, 1t is necessary to consider the excitation and output
equations together. Asynchronous components require further
attention to eliminate 'critical race' conditions. A race occurs
if a change in the internal state of the compénent requires a
éhange in mofe'thén one state vafiable{ Since it cannot Ee
guaranteed that all state variébles will change at precisely the
Same momeht, the internal-state may temporarily become differenf
from either the present or the desired‘next-state. A race is called
'eritical' if the. next-state entries of thesewtemporary states are

such that the component may settle in one of them or branch to an

-148-
unwantéd s%ate. To date, there is nc known method of state
assignment which will givé the théoretical optimum solution with or
without treating the éxcitation and output équations togéther, for
either the synchronous or asynchronous case. Complete énumeration
of all possible assignments is totally out of the question since the
numbér of possibilities are far beyond any acceptable limits¥.
Thérefore again, approximate methods are used to solve the staté
assignmént problem (3u), (6u), (82), (84), (86). Although somé
of these methods may sometimes give better results than the others,
it is difficult to label any one of them as being the 'best' of all.
This is.because,-the techniques used in a method may produce better
results if applied to a certain type of sequential component.
Unfortunately,-some logic designers are not fully up to date with
switching theory. They regard sequential circuits simply as circuits
with memory that can operate in the synchronous or asynchronous mode
and built according to the Moore or Meély models (60). This is
probably beéausé the first attémpts to apply the algorithms of
classical switching theory fo the simplification and realisa%ion of
logic circuits have not been_very successful due to the inefficiency
of thesé algorithms in handling large variable problems. However,
recent advances in this field seem very promising and modern
switching theory shogld frove to be aﬁ invaluable asset for.logical
design. - Sequenfial ‘circuité may be claséified in alvériety of
ways; by examining the properties of state-partitions (55), (82),
the existence or otherwise of homing sequences or distinguishing

sequences (60), the length of the memory span (90), the amount of

(*) For a 9 state, sequential component, there are more than 10
million distinct assignments. The number of different
assignments goes beyond 100 million.

-1u49-
feéd{back (24), the linearity or otherwise of the next-state and
output'functions (28), (43),...etc. Research has been done in
thésé areas and some of the results have been put into practice to
obtain suitablé state assignments for real problems. One new méthod

is described in section 7.2.2.

"When a suitable state-aséignment is found, the flip-flop type is
sélectéd* and the excitation or output equations are extracted.
These équations can then be realised using the techniques mentioned
in the previous section. For sequen%ial components operating in thé
synchronous mode, static or dynamic hazard detection for thé excitation
équations is not necessary. Howé&er, asynchronous circuits may suffér
from yet another hazard condition; called tessential hazard' which may
be caused by fhe differencgs in the propagation delays of input and
stété variables. They can be eliminated if the state variables are

slowed down such that all inputs propagate fully before the state

variables start changing.

It can be seen that the correct operation of sequential circuits
depeﬁds upon a number of factors. Hence, it is‘highly desirable
that they can be tested easily. Fault detection iﬁ sequential
componentsvis not discussed here. However, an algorithm to find
'clearing sequences' which can be very useful in that area, is

presented in the next section.

(*) It may be possible to consider the type of the memory element
when looking for a suitable state assignment. However the
authcr is not aware of any method doing this.

-150-

7.2.1, TFinding clearing sequences

The formal definition of a sequential machine can be found in
the literature (90). However, to clarify the following text, the

definition of the next-state function is also.given here.

The next-state function "g"™ of a sequential imachine SMl* with
"n" inputs (xl, X2"'°’Xn) and '"m" states (Sl, 82,...,Sm) is
characterised by,

Sy = g(Sp, Xj)
where Xj is a min-term of inputs.’ Sp is called the present-state and

St is the next-state.

SMl is said to be NON-CYCLIC if there exists an input sequence

I(k) = X 5 Xppenes

g(...g(g(Si,Xl), x2),... xq)

X such that
q

Sy

:&rau_i=l,2,“.,mamimmk,l<k5mf

I(k) is called a '"Clearing Sequence" (CS) and brings SM to state S,

no matter which state (Si) SMl starts from. SMl is CYCLIC if it is

not non-cyclic. It is easy to show that for a 'strongly connected'
(90), non-cyclic sequential machine, there exists at least one CS

for any state S, and no two.states S , Sr have identical clearing
' k

+

sequences.

k

At a given time, the set of states that SMl can be in, is called
a "Presemt State Set" (PSS). '"Next State Sets" (NSS) can be

generated from a PSS such that

(*) The term SM, is used to distinguish this example from several
1 g P
others described later on. ’

(1) See next page.

. L50AS

Sinée SMy is non-cyclic there exists at least one state‘Sk such
that
S, - g(. . -g(8(S,,%)),%)) 500 X)
where)
: I(k): = Xy, KpseeoX)
is a ¢l¢aring seqﬁence. »Also,>if SMl is strongly connected, 5y
- definition any other state-Sj can bé reéched from Sk. If T(k-3)
is the sequence of input;_which brings SMlAtO state Sj_when the
initial state is Sk, then '
1(5) = 1(k), T(k-§)
is a clearing sequence for state Sj. " It follows thaf there exists

at least one clearing sequence for any state Sj'

Assume that two states Sk and Sr have identical clearing
sequences (i.e.AI(k) = I(r)). Since the starting state can be any
K

state, it may include S Then,‘

»_Sk. g(-}--g(g(Sk,Xl)',X2),...Xq)

1

" and Q,";SP » g(‘..g(g(Sk,Xl),xz)zp..Xq). |
' whibh'is possible only}if~Sk =S . Hence no two states may have

identical clearing sequences..

-151-

s

iepss, = {s;,5,,..., SI}
.j: ‘{g(sl,xj), g(SQ,Xj),...g(SP;Xj)}l

= G(PSS, ,X.).
. i*75

then NSS.
i

b

where !{...} I is used to indicate that the set contains each élemént
only once. |

A sfaté sét with one element (state) alone, is called a "Terminal Set".
Thé behaviour of a sequential machine can be described by constructing
a "Stété Set Table'" which, for eéch PSS, shows the corresponding

NSS undérAa given input condition. Figure 7.i gives the flow-chart of
an algorithm to construct this table. l

Thé algorithm stérts by taking the total set of states (Sl S,seees Sm)
as the first present-state set and generates the next-state sets from
it for each input condition. Then the néxt—sfate sets are<takén oné
by one and new sets are geﬁerated from them. The process is - '

continued until no new state-sets can be found. Figure 7.1 gives

the flow-chart of this algorithm.

£oSikel) =
NSS(T,I),
K= K+41

-152-

g={s.s, 5.}

I=K=1
posiz)= ¢
5
3=1

(F
YES

E e L=f,.- K

T=T+1

Figure 7.1 Constructing the "State Set Table"

-153-

Examg;e The state-table of a single input sequential machine, SM2,

is given in Table 7.1

Preséﬁt{ Next Next
State State State
X=0 X=1
1 3
2 1 3
3 y . 4
Y 2 2

Table 7.1 State Table of SM

2"-‘

The state-set table obtained by the application of the above described
algorithm is given in Table 7.2.

’

PSS NSS NSS Group

- X=0 | X=1 . " Number

1,2,3,4 1,2,4 2,3,4 1

1,2,4 1,24 2,3 2

2,3,4 1,2,4 2,3,4 2

2,3 1,4 3,4 3

1,4 2,4 2,3 4

3,4 2,4 2,4 4
2,4 1,2 2,3 5 ;

1,2 1,4 3 6

-
-3 & A 7

4 2 2 8

2 1 .3 9

1 Y, 3 10

Table 7.2 State-set Table for SM

"

-154-

Each PSS is given a group number as follows. Row one is group one.
Any other PSS which is the NSS of a group preceeding it (say Gi)’
forms a new group (Gi+l)’ Note that a new PSS is formed only if it

was not found before.

To find a CS for each internal state, first the terminal sets
are found and underlined. If there are more than one terminal sets
for any state, only those in the lowest group (smallest group index)
are underlined. If all states 6f a seqﬁential machine can be found
in terminal sets, then the machine is non—cyclic and strongly
connected. If some but not all states can be found in terminal sets,
then it is non-c&cliC’but not strongly connected. Otherwise, it is
cyclic. SMZ’ is-non-cyclic ana stréngly connected. Its clearing

sequences can be found by starting from an underlined set and tracing

83, Su)’

its origin to the total set of states (Si, 82,

e.g. Clearing sequence for state 3 is found as. follows..

.State set 3 can be reached from state set 1,2 by x=1.

L 1,2 mow T N TSR
" 2,4 non - L A
"1 Womow mooomm 2.3 M x=0
" 2,3 L W 1,2,4" x=1
W12,y now " Woow 12,34 x=0

ThusAI(3) = 6,1,0;0,0,1 is a cleéring'éequénce for state 3.

Note that if a next-state set éan be reached from more fhan one PSS,
fhe PSS which is in the lowest group is selected. This ensuresrthat
the shortest CS is found. In the examble given above, the set 2,3

can be reached from 1,2,4 or 1,4 or 2,4. Since 1,2,4 is in the

lowest group, it is selected. However, the set 2,4 can be reached

~-155-

from 1,4 or 3,4 both of which are in the same group. Hence, either

of them can be selected without affecting the length of the CS.

It is possible to illustrate all of the shortest CS for each

state of SM2 by a '"Distinguishing Tree''.

1,2.u4
x=1
2,3
'x:(;/ \ x=1
li\ | x=0 3,4
x=0 e x=1
l x=0
1,2
o ;o
. .le
3 . .
. N\
x=0 ' &J » x=1
n
x=0 : . . x=1
2
- 1

_Figure 7.2 Distinguishing Tree for SM, .

-156-

7.2.2. Application of clearing sequences to state assignment

This'section describes a new method of state assignment for

- synchronous sequential machines. The.methodfaims at assigning each-
state to a blnary codelderived from its shortest clearing sequence.

It has been called the "Shortest Path Algorithm' and can be used only
for strongly connected, non- -cyclic sequentlal machlnes operatlng in the

synchronous mode.

It was shown in the previous section that the clearing » -
sequence for any state, say Sj’ of a sequential machine SMy with "n"
inputs, ‘can be written as

I(S.) = X ,eees X

1o %y q

where each X term is a min-term of "n" variables. When '"n" is equal
“to one, X becomes a blnary digit and I(SJ) can be considered as a -
:blnary number w1th ng" blts. Assume now, that I(S) is applled
31multaneously to SM ‘and to a "q" bit shift reglster SRl which accepts
‘serial data. SM responds to the input data by changing its internal
state and SR does the same by shifting the data on the reglster.
. Since I(Sj) is a’ clearlng sequence for‘state SJ; at the end of the
1nput sequence, SM will be in state SJ and the contents of SR will
.be the sequence I(S.). Therefore, the binary code as51gnment of SJ
" in SR becomes I(S). If the same is done to all states of SM;, then
vthe state a831gnments for a shift reglster realisation of SMl will be
found.z If all-possible input sequences of length "q" are clearing
sequences‘(not'necessarily the shortest), then a'perfect shift
register realisation of'SMl will be obtained. If some of the
f.possible input sequences do 1ot represent any clearing sequence at
all, then the realisation of SMl will not be a perfect shift register

but will still show such characteristics. Consider a very simple

-157-

example. Table 7.3 gives the state table of SM

9
Présent Next-State
Stafe , x=0 x=1
1 "l 2.
2 : 13 ‘
3 13

Table 7.3 State-table for SM2.

The clearing sequences are

(1) = 0
I(2) = 0, 1
(3) =1, 1

To make éll cleéfing sequences have the saﬁé number of digifs, the
sequence for stéte one can be written as Itl).= ~, 0.. There are 4
possible input sequences with 2 bits and it cah'be seen that each one
represents a cleariﬁg sequernce. - Heﬁcé, if every state of SM2 is
assigned to the binary code represented by its clearing sequence, a ‘

perfect shift register realisation of SM, will be obtained. Note

2
that the state with the shorter clearing sequence (State 1) is
assigned to two adjacent codes (OQ and 10). The excitation equations

are

The number of flip-flops fequired for the realisation is equal to {he
length of tﬁe longest omne of the clearing sequences (i.e. two).

" This number ma§ sometimes be‘much larger than fhe minimum number‘éf
flip-flops tb'implement a given sequential machine. Since a shift

register realisation cannot be guaranteed, there is not much point in

-158-

using too many flip-flops with the hope that a good solution can be

obtained. In such cases, the top bits of the clearing sequences can

be dropped. This can be described as an 'overflow' of the shift
register. Then the problem of finding the state assignments becomes

moré complex since two different sequences may become identical if

théir top digits aré ignored. Tﬁus, conflict situations may arise
as more than one state has to be assigned to the same binary code.

Béforé explaining how suéhvconflicts are resolved, the case for

sequential machines with more than one input will be discussed.

When "n" is greater than one, each digit (Xi) of a clearing

v séquence will be a binary number with '"n" bits. For the clearing |
séquence itself to represent a binary number, it must be decoded such
that each digit becomes "1" or "o, Since Xi can have 2 values, a
decoder with‘that many number of inputs is necessary. This may create
some conflict situations since different sequences may become identical
if they are decoded. | There will not be an explicit decoder present

in the final realisatioﬁ but allldecodings will be examined to find

the one which causes the least number of conflicts. Table 7.4 lists

all possible decoding functions for n = 2 (i.e. inputs X1 x2).
F.=¢ ~ F_=X - F=XJ _ w'oly

1 5 72 9 l‘ ‘ Pls_—XlX2+XlX2

1 1 1

F.,=X.X, F =X, +X F, =X, +X _ !

2 1.2 6 "1 2. N lO. 12 Flu-Xl-i-X2
x X ' | t
F.= F.=X.X_ +X.X L _

371 7 717277172 Fll—l o Fls-X2

F, =X.X ! !

y 7172 F =X.X - F, =X, +X o'y

8 "172 : 12 71772 FlG-XlX2

- Table 7.4 Decoding Functions for Two Variables

-159-
For instance, F7 transforms the sequence '"00, 01, 11, 10" into the

binary number "O01lO0l" and Fl transforms the same sequence into "1101".

0

A computer program has béen written which finds all of the
shortest cléaring sequénce; for each state (thére may be more than
oné minimal length'cleafing sequence‘for any state)and then résolves
the~cohflicts'caused by truncation or decoding. Since all possiblé
décodings are examined, only sequential circuit; with less than &
inputs can.be handled#. The following éxample describes how fhe

program works.

ExamEle:

The state-table of a sequential machine SM3, with 5 states and 2

inputs, is given in Table 7.5.

Present ' Next-8tate

State 00 01 11 10
1 3 1 u 2
2 1 5 4 2
3 3 4 3 5
y 5 1 4 2
5 5 4 3 5

Table 7.5 State-table of SM3.

First the clearing sequences are found. Table 7.6 gives the shortest

clearing sequence for all states.

E

(

) Number of decoding functions is equal to 2R where R=2"
(n = number of inputs). :

-160-

.State Clearing Sequence
1 00,01,01, or 01,01,01, or 11,01,01°
2 Ob,Ol,lO or 01,01,10 or 11,01,10
3 00,00,11 or 01,00,11 or 11,00,11
y 00,00,01 or 01,00,01 or 11,00,01

or 00,01,11 or 01,01,11 or 11,01,11
5 00,00,10 or 01,00,10 or 11,00,10

or 10,01,00

Table 7.6 Clearing Sequences for SM,.

Since all séquencesvhave 3 digits and SM3 has 5 states, a 3 flip-flop
realisation will be derived without truncating any of'the sequences.

To examine the 16 possible decodings an "Assignment Table" is prepared.
This table has 16 rows, each corresponding to a different decoding

- funection, and 8 columns, each corresponding to a different binary code.
On each row of the table, the states afe mapped into the columns

which rebresent the binary numbers obtained by decoding the clearing
sequences with the decoding function of the row. 'For example, on

row .7, stéte 1 is mapped into the column for 'lll' since F7 transforms
I(1)=01,01,01 into that number. On the same ro&, state 1 is also
mapped into the column for '0l1l' since Fy transforms the other two
clearing sequences into that number. Conflict situations appear

when more than one state is mapped into the same column of a row.

Table 7.7 shows the assignmenf table for SM3. Whgn the assignment
table ié ready, a score is given to each row by considering such

- factors as |

(1)- the total number of mappings in -a row, e

(ii)- the number of non-conflicting entries (i.e. only one

‘state mapped into a column),

1,2,3,4,5

%5
2,3,4,5

1,3,4

“1,4,5

2,3,4,5

1,4

1,2,4,5

. 1,2,u4,5

3,4

3,4

3,4

1,4

1,4 2,5

3,4

3,4,5

1,2,4

1,2,4

3,4,5

4,5

1,2

4,5

1,2

4,5

3,5

2,4

2,4,5

3,5

12,3,4,5

-161-

2,3,4,5

1,4,5

1,2,4,5

1,2,4,5

3,4

.3’4 -

1,2,3,4,5

1,3,4

2,5

1;2

Lb,5

4,5

4,5

1,2

3,5

(<]

2,4

2,4,5

1.4

2,5

3,4

3.4

1,2,4

3,4,5

13,4,5

1,2,4%

ASsignment.Tablé of SM3,

Table 7.7

-162-

S

(iii)- the number of differént states which appear as single
entries,

(iv)- the complexity of the decoding function,

(v)- the score given to each column (calculated from the

number of "1"s in the binary code of that column and the columns

adjacent to it).

Then, the non-conflicting entries are selected from the highest
scoring row, and assigned to the binary code of those columns.
Assigned states and used coluﬁns are deleted, other rows are.given an
additional score if they csntain similar entries to the selected ones
and the process is repeated until all states are assigned. The

'algorithm works such that if in any row, there are more than one
possible assignments for a state, all of them are taken. If at a
latér stage, oné of the columns ié_required by anéther<sta{e3,that

column is released and the others are képt for the original state.

.
v EEEN
-

The program found the following assignments for SM,.

Internal Binary Iteration Selected
state code step - from row
5 , 100 1 2
2 010 2 s
1 : Oil 3 . . 8
3 | OOO‘ 3' 8
y . 001 3 8

) Table 7.8 Assignments for SM,.

-163-~
The éXCitatién équations for JqK.fiiqulops;réqﬁire.13 éaéeélwitﬁ a
total of 4l gate inputs. For the same problem, results obtainéd
by using other methods (34), (64), (84), (86) all requife 13 gates
and the number of gate iﬁputs varies betwéen 31 and 36. For this
particular example, the results are no better than those obtained by

other methods. This is not always the case.

The quality of.the results depend upon the‘;trengfh of the shift
register relations inside the'sequential machine. Table 7.9 gives
the state-table of another sequential machine which shifts the data
on one input to the left or right; depending upon the data én the'

second input. -

Present Next-state

State 00 01 11 10
1 1 2 8 1
2 4 3 8 1
3 5 6 7 2 -
Y 8 7 7 2
5 8 7 6 3
6 5 6 6 3
7 4 3 5 4
8 1 2 5 &4

Table 7.9 Sequential Machine SMq.

The realisation obtained by the method described above requires 18
gates and 36 gate inputs for the J—K flip-flops. | These figures

i compare :favourably with the results from another method (64) which
require 27 gates and 60 inputs. Another state-table is given in

Table 7.10. The realisation obtained by (64) requires 13 gates and

-164-
36 inputs. The shortest path algorithm found a ﬁerfect shift register

realisation using 4 flip-flops (no additional logic is needed).

Present Next-State

State 00 01 11 10
1 2.1 2 1
2 3 .1 3 1
3 4 1 4 1
Y | 5 1 5 1
5 5 1 5 1

(a) State-table

State Code
1 -—--1
2 --10
3 -100
L 1000
R 0000

(b) State assignment

Table 7.10 Shift Register Realisation of a State-table

Don't care entries in the state-table can be ignored without causing
any problem. e.g. Table 7.11 shows part of a state-table with a don't

care entry.

Present Next-state

State - x=0
5 ' 3
6 - A
7 4 5

Table 7.11 Part of a State-table with Don't Caré Entry.

~-165-
The next-state set generated from the présent-state set 5, 6, 7 will
be 3, 5. However, if thé clearing séquencés aré to be used for
testing purposes, the don't care entry should be changed to state 3

or 5 or a different branch of the distinguishing tree should be used.

7.3. Library components

Library components afe, to a largé extént, modelled on available
integrated circuits. The main differencé bétweén a model and its
Ic countefpapt is thaf, whereas IC's havé a fixed number of bits, the
size of the model can be changed by the uséf. Therefore, in most cases
the fealisation of a library componént réquires désigning a larger
circuit with the same input—output charactéristics, from the smaller
ones available on the market. For example,'a 12 bit counter can be
obtained by simply cascading three, 4-bit counters and connecting their
control inputs in paraliel. However, it may not always be possible to
do this. A 12-bit uniyersal register can be built from three, 4-bit
ones but it is not so simple to realise a 10-bit register in this
fashion. This is because the unused bits must be by;passed when
performing shift operations. Hence, if the number of bits on the
model is not a multiple of the number of bits on the IC, additional

logic may be necessary to realise the library component.

One solution to this problem is to manufacture IC components
with a small number.of bits (e.g. two bits) so that different size
components can be easily obtéined. Hohever, this approach is against
the IC philosophy since it means a move tqwards_using discrete components
again. Therefore, the éolution lies in manufacturing IC's which can
be easily adopted to fit certain requirements. Additional inputs

and/or outputs can be provided to give deeper access to the component.

-166-
An alternative and better way is to manufacture IC's as cellular
arra&s and custom-design thé interconnéction masks. Thése problems
are for fhe component manufacturers to solve. Unfortunately, there
is not a noticable movement in this direction. The main fault lies
in the current design philosophies sinée the typés of components to
be used are considered at a very late.stagé. This point will be

discussed further in-Chapter 8.

More complex library components may réquire a sepafate design
cycle to realise them. For instancé, a logical unit which can perform
various logic operations (e.g. AND, OR,.;.étc) can be modelled as a
sihgle component. Since operations pérforméd by such components are
well defined (i.e. standard) their design is not a major task. In
most cases the logic for oné bit is repeated for all othérs and
conventional techniques can be used to realise them. The 'highway'
component deserves further comments. In many design circles a common
.highway is treated as a complicated daté EEEE; .On its own, it is not
seen as a componeﬁt but rather as the necessary gating to pass data
among several units. This thinking should be changed and the common
highway should be treated as a component in its own right since it |
performs data-operations under external control. The design example
given in Chapfer 5 illustrates fhis point. No claim is made about
the psefulness'of the particular highway component which was used
bﬁt the concept‘is found to be vefy helpful‘in representipg and

designing digital systems.

~-167-~

Chapter 8: Proposals For Future Work.

The CAD programs described in Chapter 4 have been successfully
applied to the design of a simple digital computér (see Chapter 5).
Many of the facilities provided wéré found to be éxtremely useful.
The most usefﬁl ones were 'Page' (including thé facility to‘display
components on more than one page), 'Multi-Line', and 'Trap' (see
Chapter 4). However, several impro&éménts can bé made to the

programs to make them more efficient and easy to use.

8.1. Changes to the component library

The examplé given in Chapter 5 indicatés that digital systems
can be designed by using a small numbér of different data components.
However, the problem of selecting the particuiar components.which
should be included in the system library néeds further investigation.
Programming a whole range of IC's might appear to be a solution but
this wéuld create an undesirable side éffect by'introducing
implemertation details at a véry early stage in the design process.
Furthermore, currently available IC components are not ideally suited
.for all applications. It was mentioned in Section}7.3 that even a
simple éohstruction such as cascading two identical registers to
increase the ﬁumber of bits, may creatg unﬁecessary problems. It
is quite clear that present MSI module; are unsafisfactory_in many
' wayé. ‘ This is due to the fact that it is the I;C- manufacturers
and not the equipment designers who take the initiative in choosing.
the components to be produced. This, in turn, is due to existing
design philosophies. In most cases the starting point to a digital
system design is taken as a descriptioﬂ of the required operations.
Because of the wide variety of techniques used both for making the

descriptions and turning them into hardware, every design requires

-168-

components of different nature. On the other hand, most design
algo?ithms aim at finding solutions which use low-level switchiﬁg

" components (i.e. gates or flip-flops). Théréforé, enough démand
cannot be aécumulated to convince the manufacturers that the
production of a particular- high lévél componént is justifiéd. Hence
the designers have to adapt their designs according to the state of
the component market. Though some attémpté have been made to design
a set of universal mo&ules which can bé used in a wide variety of
applications (e.g. PDP-16), on closér éxamination most.of the proposals
are found to be inadequaté.' A néw componént modélling pnilosophy
is required to solve this problém. A set of highly generalised
modules can be defined and placéd in thé library. Then, the designer
can delete the unnecessary features to obtain a somewhat simpler
version of the compoﬁent. For examplé, in the case of a register,
options available can be the number of bits, required operations
(count, load, shift,... etc), external‘cﬁntrol facilities (e.g. a
'count enable' input), special outputs (é.g. to.indicate that the
counter is full),...etc. Thé actual IC's can be built in a modular
fashion by 'plugging in' some special‘components to a basic module
and (if required) using diffegent iﬁtérconnéction masks during the
production. The basic module should contain very little control
logic ‘and should be e#pandable. The required features can be added
to it by connecting speéial components‘hﬁich provide the necessary |
logic to pefform different 6perations. if necessary some of the
connections inside the basic compoﬁeﬁt can be changed by using a

different interconnection mask.

-169-

8.2. Improvements to component specification.

The method of specifying a truth-table or a state-table can be
improved by allowing the use of a téletypé to -input Boolean equations
or state-transfer relations (expréssed in a suitable language).
Programs to accept this form of input néed not be very complicated.

In the case of comﬁinational componénts all that is required is a
syntax analyser which can recogﬁisé'litérals, logical operators and
parentheses and generate the 'canonical' térms from the input
expressions. However, a special languaée is necessary to describe
the behaviour of sequential cdmponents.' Thé language used can be a
very simple one since there are no data operations to describe. More
general languages of this nature are béing used (64) to specify

~ state-tables (or truth-tables) of much larger size than those used in
the CAD,syétem presented in Chapter'u. These programs also check for‘
inconsistencies created when making the specifipatiops. This is not
required here since the tables are small enough to allow the user to
detect mistakes by visual inspection. All forms of input (gfaphical
or linguistic) should be made on-line and the display should be

immediately updated, as is the case at the present.

Another useful facility would be to be>able to describe a
component as above and later repeat it a number of times.»l This can
be achieved by defining a Maéro componént as»reqﬁired. However,
simple repetition can be obtained more easily and without édding
new blocks to the Insfance table. Also, don't care values for
outputs or internal states should be allowed and the simulator
program should be modified to warn the user when a component branches
into an unidentified next-state or if an input terminal receives

a don't care value (three value simulation is another possibility).

-170-

The use of the light-pen should be continued since it is often much
easier to point at an entry to change its value, rather than to type

an equation .

8.3. Additional display facilities.

In general, the generation and display Qf'logic diagrams are
quite satisfactory. Howevép, cértain modifications can be made to
improve their quality and to make thé prbgrams easier to use. At
fhe present, if a component is displayed on moré than one page, a
connection made to,one_qf its terminais can be.éeen only if that
connection is on the current pagé. Hencé, if the usér attempts to
connect an input terminal to an output and if thét terminal was already
connectdd to an output terminal, the program rejects the attempted
connection but it is not known what and Qﬁere the other‘connection is:
The ﬁéer has to turn to another pége to findbthat. This is a handicap
and should be removed. It is difficult to indicate precisely to
which other terminals a given one is connected. >The problem is not
only in finding a suitable form to show this (i.e. displaying the
name and terminal number of the component to which a given terminal
is connected) but also in updating this information as connections
on other pageé are modified. Therefore a-simpler-but less specific
remedy has to be used. For example, an asterisk ('#') can be
displéyed‘bn a terminal which is alrea&y connectéd._- Note that if
the connection is on the current page, -the asferisk should ﬁof be

displayed.

Another problem is to identify those terminals to which only
'multi-line' connections can be made (i.e. data-ports). _ Such

terminals can be displayed with a slightly different representation

-171-
to allow easy recognition. For example, such términals can bé
dispiayed longer or thicker than thé rest. Also, it should be
possible to interchange terminals according to the connections
required. The user should be able to séléct a light-button and
identify‘the terminals which he wishés to interchange. Nothing
-happens on the display but the truth-table or the state-table becomes

modified as required. This is illustrated in Figure 8.1.

| | " AB Fl F2
00 0 1
| | 01 11
A 8
11 10
10 10

(a) Original

FL FL
AB Fl F2
00 0 1
| 01 10
A B
11 1 0
10 11

(b) After interchanging the inputs

Figure 8.1 'Interchange' Facility.

Note that the use of this facility should be allowed only when the

terminals involved are not connectéd to any other terminals.

When a Macro component is-defined its internal components are
removed from the display but can be regenerated and modified.

However,'the order of the external terminals are not identified on

-172-
the display. For example, if the Macro has two inputs, it is not
clear which internal terminal is thé first and which is the secoﬁd.
This problem can be solved by displaying a number on the internal

terminal to identify its position on the Macro.

It should be possible to give a différént name to each individual
copy of components which are used more than once. This can be
achieved by storing the generic name (namé firsf given when defining
terminal behaviour, or by default for library components) in the
Master block and storing another name in the Instance blozk. It would
be a very éimple task indeed to switch from one name to the other since

this is only a display procedure.

8.4. Improvements to the data structure.

Some improvements can also be made to the present organisation of
internal (computer) representation. facilities should exist to link
similar data structures togéther so that dééigns genefated by different
people can be brought together. Alsc. the values of oufputAterminals
should be stored in a different place and their position in the
Instance block should be replaced by pointers to the storaée area.
This arrangement eliminates the need for transferring values.fo and
froﬁ_the master‘table when simulating a macro component. Instead,
thé.pointers will be changed‘to get the same effect. 'To use thei
data sforage'more‘efficienfly, a ring data structure can be formed.
Separate rings should be formed for the Master and Instance blocks.

‘Howevef, on its own, this type of storage would not be satisfactory
" for simulation. Each'Instance block should be able to locate the

Master immediately (without any search) so that simulation can be

carried out at full speed. Therefore, 'map' tables should be formed

-173-
to show the position of each block in the data structure. Then,
all references to the Master or Instance blocks can be made via the

map table. This arrangement would also make the blocks relocatable.

8.5. Increasing the speed of simulation

To increase the speed of simulation, a different simulator
program could be written. The first change is needed in the type
of the 'input pointers'. As shown in Chapter 6, with the present °

arrangement of pointers, some input terminals may have to point to

other inputs thus forming a chain. During simulation, these pointers
are followed until an output terminal is encountered. Timewise,
this is a costly operation. Aiso, having the pointers at the input

terminals rather than at the outputs is not a good arrangement

if fast simulatién is required. Instead,'outputs should point to

the inputs which they drive. In this arrangement an output méy have -
more than one pointer since it may be connected to a pumber of inputSy
When a component is simulafed, the names of all components which
receive an input from it can be entered into a circular buffer.

The position in the buffer where the name of a component is entered
depends upon the delay value of the output terminal. After.each

time step, the buffer is rotéted so that the.positions §f the names

of .components which have been simulated can be used agaiﬁ; ' Hence
only those compénents which become ’acfive' afe'simulated-and the

periods of time when all outputé remain stable are skipped over.®

(*) Note that autonomous components should be treated separately
as there are no outputs to drive them.

-174

These changes cannot be achieved as 'modifications' to thé
éxisting simulator and the program would havé to bé réwritten
accordingly. One disadvantagé that the new simulator would.have is
the necessity to 'pre-process' the data strucfure prepared by the
drawing program before simulation can bégiﬁ. The choice was made to
have pointers at thg input terminals rathér than at the outputs
since such is the requirement of the drawing program. Otherwise,
only pin-to-pin connections betweén'an input and output terminal can

be made.

-175-

Chapter 9: Conclusions.

Existing CAD methods for digital systems design can be divided
into two main catégories. Thé most popular approach is to use a
formal design language to describe the behaviour of the target system.
Thésé déscriptions can be realiséd in hardware by using a variety of
téchniqués somé of which were described in Section 2.1. Alfhough
methods of this nature are very useful, most of them are unsatisfactory
in éxppéssing timing relations and,systém’structuré."Mefhods iﬁ tﬁe
second group use flow-charts (or similar diagrams) to separately
représént the flow of data and control signals in a digital system.
Convérsion into hardware is achieved by using special pre—designéd
components which realise the operations iﬁdicated by the:flow—chart
symbols. This approach is relatively new and a largé scale design
problem ﬁas not yet been solved in this manner. In genéral,'such
methods seem promising especially in designing control circuits.
However, implementing the data operations presents some problems

since system structure is not defined clearly.

Chapter 3 presents a different design philosophy which dées not
use abstract forms to make the descriptions. Operations to be
performed by the target machine are divided into two types (data
and control) and components are defined to realise them. . Some of a
the'components are provided by the design system whereas others
are definéd by the user. Generally accepted tabular methods afe
used to describe the terminél behaviour‘of.gser—defined'éomponents.
~ Connections are made by drawing logic diagrams so that system
. structure is defined in a natural way. CAD programs have been
‘written to apply these ideas and a desigﬁ problem was solved to

illustrate their use. The . general conclusions drawn from in-

-176-
vestigating the existing methods of design and applying the author's
approach to a practical problém aré givén beldw.

(i)- Separation of data and control opérations from éach
other'simplifiés the problem of designing a digital systém.

(ii)- Most data operations can be realised by using high-level
standard components. Therefore, the CAD system should provide a
library of suitable data components.

(iii)- Control opérations can be realised by using sequentiai
or combinational components. State-tables and/or truth—tablés can bé
used for speéifying the ferminal behaviour of these compohents without
committing oneself to a parficular way to iﬁplement them.

(iv)- Drawing logic diagrams (using high level componénts) is
a véry convenient and natural way to describe the‘structure of a
digital system. Computer graphics techniques make this form of input
possible.

(v)- All types of descriptions should be input to the désign
-computer as early as possible so that zutomatic processing of'data can
begin from the early stages on.

(vi)- Informétion in the computer.should be kept'as simple as
possible and the component descriptions should be stored separate from
the diagrams so that either of them can be modified without affecting
the other. |

A(vii)— As yet, there is no direct éﬁbstitute for high—ievel

functional simulation toAtes£ the design of a digital system.
Analytical techniques which appear to be more efficient have been
proposed to replace simulation. However, the acceptance of such
--tephniques depends not only on their accuracy but also on the design
methods'that go with them. Until the abstract forms of description

used in these methods become generally accepted, simulation remains

-177-

the only other alternative..

Some of the ideas put forward by fhe author have already beén
expressed by other workers in this field. However, to the best of
the author's knowledge the CAD programs described in Chapter 4 are
the only existing programs which implement (or maké it possible to
implement) these ideas as a whole, forming a design suite with

practical applications. -Bspecially_the implementation of the

'Multi-Line', 'Page' (including the display of components on more than
one page) and 'Trap' facilities (see Chapter 4) appear to be novel.
Also no reference could be found which describes techniques similar
to the ones used in the internal representation of connections

(Chapter 6) and the state assignment method presented in Section 7.2.2.

It is hoped that this research will motivate others in the same
field so that viable CAD methéds will emerge. It is difficult to
visualise a'single ~method being used generally,because of the wide
variety of disciplines adopted by the computer manufacturers.
Nevertheless,'fof the continued develcrment of digital systems, more

powerful CAD systems are absolutely essential.

-178-

Acknowledgements

The author wishes to expréss his gratitudé to his two supervisors
Dr. J.V., 0ldfield and Prof. F.G. Heath (Hériot~Watt University) without
whose generous help, advice and direction this research would not be
possible. Thanks are due to my wifé for typing the draft and to
Miss H. Ritchie for.typing the original form of this thesis. A
special word of thanks fo Mr. A.C. Kilgour who made quite a number of
improvements in the SPINDLE package. His responsiveness tolthe

problems encountered was much appreciated.

This research work was carried out in the Computer Aided Design
Project of the Department of Computer Sciénce, Edinburgh University.
The author was financed by a NATO doctoral grant proVided-by the
Scientific and Technical Research Council of Turkey (TUBITAK). The

computer facilities were provided as a part of a Science Research

Council grant (ref. B/SR/8874).

-179-

Appendix A : Modified LOGOS approach.

This section presents a proposal for changing the LOGOS (77)
representation system. Figure A.l shows a different drawing of

LOGOS diagrams.

Smmmmmmmm—-- o

Figure A.l LOGOS Representation with Visible Upstream Flow.

~An operator fires only when all of its inputs are activated and all
other operators receiving signal from it, are free. Upon firing,

the operator becomes busy until it gets confifmation that it can fire
again. Figure A.2 gives the flow-chart of an operator working inA
that fashion. Table T.1 gives the state-table qf a sequenfial
machine which realises the flow—charf and the logic design of the
module is given in Figure A.3. The design is race-free and
incompatible gates (i.e. gates with different propagation delays) will

not cause malfunction of the circuit.

-180-

Module is ready

Wait for input

Activate next module

Set module BUSY

Wait until next module

is activated

Cancel activity signal S z

Wait until next module

finishes operation

Figure A.2 Flow-Chart of Primitive Operator.

-181-

Présent State _ Next-state
State , Variable Inputs (Ri+l’xi
Y, v, 00 01 11 10
1 1 o0 1 1 4 1
2 0 1 3 3 2 2
3 1 1 3 3 1 1

y 1 0 . 2 2 2 2

Table T.1 State-Output Table of Primitive Operator

-

The excitation and outpﬁt equations are;

Ry =X -RieY

$17Ri 1Yo

Ry*Ri1+V1

)

Outputs
Rj»2;
1 O
0 1
0O O
1 1

The "Xi" input can be expandéd by adding more input *crminals

to the NAND gate to which it is connected: The "Ri+l" input can be

expanded in the same way, using separate inverters for each, before.

connecting to NAND gate 2. The module produces both true and

complemented outputs. However an inverter is used to obtain the

i+l

R, signal since this avoids running an extra line to each module.

A more complicated operator to activate first a data component

and then the next control operator, can be built using the primitive

operator described above. Its logic design is given in Figure A.h.-

-182-

Rio—l Xn

Xi expaneion

|
'
t
I
|
I
!
[
|
|
!
L

/

Figure A.3 Logic Design of Primitive Operator

-183-

Link with € — — = — ——— -
c/a{‘a apera{'ar e e e e e -

Xl‘ Ri“'t
Rd
Y v Vv Y r
(——
X R+ X : R+
Primitive Op Pri'nni'l'-'nre Op.‘_
= R z . R
1
Xd

zZ; v YZ;

(b) Logic design

Figure ‘A.4 Design of Macro Operator.

-184-

Figure A.5 shows a sequencer which activates more than one data

operators, in sequence.

X,‘ Ri+1
" s
G — — = — — - - X R+
Moacro
STt T T T T L R
Rd ~
. L
¥ ¢
Xd —~—
e T p—— X R+
, Macro
—————————— B =
RJ Z 2 RL
¥ .
‘Xi _______ _ rX R+ '
Mo.cro |
Re z z I”t
' Zu'v V,Zf l ' ' R¢

Figure A.5 Design of Sequencer

A very useful property of the modules described above is that they

possess identical terminal characteristics.

-185-

APPENDIX B: List of -library components available from the design

programs.

This section lists all the library components available from
the design system described in Chapter 4 and describes their terminal
behaviour. Library components are given default names from SYSO1l

to SYS11l but they can be renamed.

1. SYS01 (AND gate)

C I| """""" IV\

Realises the function 0, =C. I

2. SYS02 (Register)

O ---ome e On
S
. SYS02 [5°

A general purpose register (similar to Texas Inst. SN54194) which is
controlled by the mode inputs SO, S1 as shown below (operations

are carried out on the falling edge of the clock pulse).

) S1__ Action
-0 . 0 Ignore ClOCkApulse.
0 | 1 Shift right (Data on RD replaces dafa on'Ol).
1 i Accept parallel data.)
1 | 0 Shift left (Data on LD replacés data on On)'

Table T.2 Operations of the Register

-186-

Register contents can be cleared irrespective of the position of the
- clock pulse by placing a logic value on the CL input.
3. SYSO3 (OR gate)

o, R

Realises the function 0. = A. + B,
: i i i

4, Sysou4 (Memory

Yty — - _ L—— Xy

Yy —— SY504 .__X,./z_
w R
w/ LT T T T T T 1T Nae
U I,
Represents a memory component. Il to In are the inputs to the‘memory

buffer register and Ql to On are its outputs. Xl to Xn/2 and Yl to

Y are the X and Y address inputs (inputs to the memory address

n/2 _
register). To write into the memory, W is set to logic one and a
positive pulse (0-1-0) is apﬁlied to WX. Memory access time can be
specified by the user and W must be kept at logic one until the access
is completed. Read operations are enabled in an idehtical manner,

using the R and RX inputs.

5. SYS05 (Decoder)

O O, O, O3 O3 O5 O¢ O3

I I
SYS05

Bl
cC I, I, I,

-187-
Decodes n inputs into 2 outputs (in binary order) when C input is
‘at logic one. Qutputs become zerc when C is returned to zero.

¢. SYS06 (Counter)

A controllable counter (similar to Texas Inst. SN59193) which can bé
loaded from the parallel inputs ﬁy setting L to zero (asynchronous
loading). Counting is enabled when E becomes one and the M input
allows counting downwards (M = 0) or upwards (M = 1). U is an
ovérflow bit which is set when the counter becbmes zero (if M = 0
and E = 1) or when all bits are set (if M=1, E=1).

7. SYSO7 (Memory controller) |

Ol' ol 03

|||
SYSO7

¢/ e

A component which is used to activate the memory operatidns. It
is enabled by setting E to logic zero. Then, a positive pulse applied

to the C input produces the following sequence of outputs.

-

O3 n
i NS
0, :
calt Pnd |
o ’ : tz‘ ' ~ #
1 1 ' l
T ! (i SR € ot
c A L : g
[t 1 £

Values'tl, t2, ts and tu are specified by the user.

-188-

8. SYS08 (Highway)

0, Oz. Op 5

Only multi-line connections (carrying 'p' bits can be made to the

D inputs. When Ii becomes one, data on Di replaces the outputs
(Ol to Op) and B becomes one. Further requests from other inputs
are ignored until Ii is set to zero again. If simultaneous requests

are made to get the highway, the leftmost one is answered.

9. SYS09 (Multiplexor)

wn
<
N
O
o

D, Dyn

dnly multi-line‘céﬁnéétions (carrying 'p' bits) can be made to the D

inputs. D?ta on the i'th data port (i is the binary number represented
by the values on inpﬁts il
10. SYS10 (Read-only memory)

to In) replaces the outputs (Ol to Op).

C I ‘ In

When C is set to one, the contents of the p-bit word at address i
(i is the number represented on the I inputs) replaces the outputs

(0l to Op).

© -189-

11. SYS11l (Arithmetic and logical unit)

O O,----- Oe
[I,
SYS11 —";'2'

T

Only multi-line connections (carrying 'p' bits) can be made to D,

or D2. ' SYS11 performs arithmetic or logical operations on the input

data (Dl and D2) according to the table given below.

Illglg OBeratlon.
000 D2 + Dl
00 l-_ . D2 minus Dl
011 minus D,
010 D2 plus Dl
110 D2‘Dl
111 'NOT! D2
101 _ - D2€B Dl

| 1
100 ’ NOT (D2 + Dl)

Table T.3 Operations of the SYS1l Component.

C input can be used as the carry (or borrow) input from a previous

bit and O generates a carry (or borfow)’value for the higher order bits.

-190-

APPENDIX C: Features of the supporting computer system

Figure Gl gives a simplified block diagram of the computer system
where only those parts essential to the running of the author's

design programs, are shown.

Memary 505

{
' ‘ |
' KALO 6‘[‘K Memor, | .
l CPU - . 36 bits /wo'J |
I f i DQ{"O I
| Channel I
| | |
| ! |
| Q Q Disc.units I
I I/O SMworJa each ‘
| ®us - S |
| ' Disc |
ntrol
| Cortre PpP-10 |
| o J
| !
| —)\
' | Calcomp P'°“""I
| |
| |
I Line Pr;nf‘cr I
I |
Faahiaiaiie
I Coymmunications |
i controller I !
|
| Prowides _,_—7 1 ¢] |
| {6lines m ey Folrry
e | — - = = ===
B
|
| cev
]
| 7 I
emOrv
bl gk
| 18bits /v
|

Figure C.l1 -Computer System.

-191-
The central part of the system is PDP-10 computer which is time-shared
among sévéral usérs. A monitor program which rgsides in coré at all
fimes, allocatés résourcés to other programs and dynamically schédulés
théir execption such that each one is given a fixed time slicé on
thé central processor. When a job uses up its time slice or is
awaiting the completion of an I/0 operation, its execution is stopped
and another user's program is started. If all jobs running in the
system cannot be kept in core together, as is'usually the case, some
of them are"swappgd' out onto disc until they get another chance to
continue. Communication with the monitor is achieved by using remote
terminals (Teletype 33 or Tektronix 4010). -Directly linked to thé
1/0 bus is a satellite computer (PDP-7) which forms the interface
bétween the usef program and 340 display unit. The user submits his
design programs by usiﬁg éne of_fhe terminals which is positioned
next to the display screep;- The PDP-10 filing system allows each usér
to have a private disc directory and usér programs are normally stored
on disc at ali times. Thereforé submitting a job requires only

instructing the monitor accordingly.

Drawings are generated by using special subroutineé obtained from
’ theASPINDLE (57) graphics package. These routinés enable the user to
preparé, mcdify or examine the contents of a 'qispléy file' which
contains instructions for fhe 340. For example, there aré routines
which generate instructions to position the beam, draw vectors or
charactgrs_at a variety of scale and iﬁtensity (brightness) settings,
enable or disable the light pen, displéy a tracking cross which can’
follow the movements of the pen,... etc. The display file isl
divided.into segments and each éegment is givén a name for

identification. An identical copy of this file is sent to the PDP-7

-192-

(initially in toto and subsequently incrementally)where it is
intérprétéd and the drawings are displayéd. Light-pén interrupts
are first énalysed by the PDP-7 executive, which sends the name of
the segment hit and some other information to the user program.
Logic drawinge are prepared such that each component, connection or
light button is in a separate'segment. ‘Hence the user program can
idéntify thé particular item selected by examining the name sent from
the PDP-7. The tracking cross is used in drawing 'rubber-band' lines
for making the connections. The cross is slaved to the light-pen
and follows its movements on the screén. Whén tracking is stopped
(by releasing the shutter of the pen), a ';osé of tracking' interrupt
is.generated and the laét recorded position of the cross is sent to
the user program. This ipformation is used tq'calculate'the X and Y
increments of the line ségment.to be drawn. The display file is
modified accordingly and changes (or additions) are sent to PDP-7.
Hard copies of‘draﬁings are bbtained by dumping the display file
on disc and using another program to generate plotter irstructions :
from it. Outputs from the simulator program are first stored on
disc apd then listed on the line printer by using standard PDP-10

software.

-193-

Appendix D: . Key to loglc dlagrams

The following representations have been used in the logic

diagrams.

(1)- AND gate

(ii)- = NAND gate

(iii)- OR gate

(iv)- INVERTER

(v) J-K FLIP-FLOP

l
Q
3
|

——x' ol—

(vi)- R-S FLIP-FLOP

p EM——

|
R
S
1

(vii)- Others -
1
. IFunc#-:ah'

T

-19y-

References & Bibliography

(1)

(2)
(3)
()
(5)
(6)
(7)
(8)
(9)

(10)

(11)

(12)

H.G. Adshead, et.al.: "New Dimensions in Automatic Logic

Testing and Diagnosis." Proc. IEE Conf. on CAD. April 1972,

pp. 112-118.
Anon.-: "PDP-16 Computer Designers Handbook'".
DEC - 1971.
-Anon.-: "DISC 8/16 Microminiature Computer'.

Inértial Systems Dept. Ferranti Ltd. 1972.

Anon.-: "APL/360 érimer”. Student text.

IBM Corp. 1969.

Anon.-: "SIMBOL. A Primer Fof The Simulation Lénguage".
ICL Ltd. 1968.

Anon.-: "DA70 User Manual".

Plessey Company Ltd. 1971.

Anon.-: "REDAP 22 Logic Simulator".

REDAC Ltd. 1971.

Anon.-: "Semiconductor Componenits Data Book Two'.

TEXAS Iﬁstruments. 197l.>

Anon.-: "FLOG. Logic Simulation Program".

TSL Ltd.

D.B. Armétrong.; "On the Efficient Assignment of Internal Codes‘

to Sequential Machines".

IRE Trans. on Elect. Comp. October 1962. pp. 611-622.

M.B. Baray & Y.H. Su.: "A Digital System Modelling Philosophy
: \
and Design Language'". Proc. of the 8th annual design aufomation
wofkshpp. Atlanta City. 1971.
Bartee, Lebow & Reed.: "Theory and Design of Digital Systems".

McGraw-Hill, 1962.

(13) .

(11)

(15)

(16)

(17)

(18)
(19)
(20)

(215

(22)

(23)

. (24)

-195-

T.C. Bartee.: '"Digital Computer Fundamentals".

McGraw-Hill, 1960.

L.A. Bélady, ét.al.: "A Computer Graphics System for Block
Diagram Problems". IBM Sys. Journ , Vol.10, No. é. 1971

pp. lu43-163.

C.G. Bell & A. Newell.: "The Description and Use of Register
Transfer Modules." IEEE Trans on Coﬁp. Vol C-21, No. 5,

May 1972, pp. 495-500. |

C.G. Bell, J. Grason, A. Newell.: "Designing Computers and
Digital Systems." Digital Press, 1972.

C.G. Béll & A. Newell.: "A Panel Session - Computer Structure -
Past, Present and Future". Proc. Fall Joint Comp. Conf. 1971
pp. 387-396 .

C.G.‘Bell & A. Newell.: "Computer étructures: Réadings and
Examples." McGraw-ill, 1971. |

Biorci (Ed).: "Network and Switching Theory.".Academip:Press,
1968. |

G. Birtwisfle.: "Notes On The SIMULA Language." .Nofwegiap
Computing Centre. - Publ.‘No. 5-7, 1969.

A.H. Boyce.: "A Study of Diagnostic Testing of Seéuential
Circuits." IEE Proc. Conf. on CAD, April 1972. pp. 309-314
A.H. Boyce.: "CLOIS - Computerised Logic Information System."
IEE Célloquium, digest No. 1971/15; No&emﬁer 1971,

Contribution No. 6.

F.T. Bradshaw.: "Some Structural Ideas for Computer Systems."'
IEEE Proc. Compcon. September 1972. .
J.A. Brozozowski.: "On Single loop realisations of Sequential

Machines." Inf. and. Control, Vol. 10, No. 3, 1967,

PpP. 262-314.

-196-~

(25) . P.W. Case, et.al.: "Solid Logic Design Automation." iBM
Journ. of Res. &‘D-ev, Vol. 8 April 1964, pp. 127-140
.(26)' S.G. Chappel & S.S. Yau.: "Simulation of Largé Asynchronous
Logic Circuits Using an Ambiguous Gate Model." Proc. Fall
Joint Conf., 1971, pp. 651-661.
(27) Y. Chu.: "An ALGOL-Like Computer Design Language." Comm. of
the ACM, Vol.8, No. 10, October 1965, pp. 607-615. -
(28) M.Cohn & S. Even.: nIdentification and Minimisation of Linear
Machines." IEEE Trans. on Elect. Comp., Vol EC-14, No. 3,
June 1965, pp. 367-376. |
(28) E.D. Crocket, et.al.: "Computer Aided System Design', Proc. Fall
" Joint Conf., 1970, pp. 287-296.
(30) W.A. Davig & J.H. Brzozowski.: "On the Linearity of Sequential
-Machines." IEEE Trans. on Elect. Comp.,'Vol. EC—iS, No. 1,
Pebruaryigse, pp. 21-29.
(31) W.A. Davis.: ﬁSequenfial'Machineé Realisable With Delay
Elements Only.", IEEE Tfans. on Comp. Vol. C-lg; Né. b,
April, 1970, pp. 353-355.
(32) 1I.B. Dervisoglu.:.”A New Method in State Assignment of
" Synchronous Machines.", Departﬁentél Memo- CAD-I-137, Dept. of'

Comp. Sci., Edinburgh University, November 1971.

(33), I.ﬁ; Dervisqglu.: "Computer Aided Logic Design.", IEE
céiloqﬁium, digest No. 1973/5, Febfuapy 1973,400ntfibqti§n No. 2.
(34) T.A. Dolotta & E.T. McCluskey.: "The Coding of Internal States
of Sequential Circuits.", IEEE Trans. on Elect. Comp.,
Vol EC-13, No. 5, October 1964, pp. 548-562.
(35) ‘J.R; Duley & D.L. Dietmeyer.: "A Digital System Design Language
(DDL).", IEEE Trans. on Comb., Vol C-17, No. 9, September 1968,

pp- 850-861.

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(u4y)

(45)

-197-

J.R. Duley & D.L. Dietmeyer.: "Translation of a DDL Digital
System Specification to Boolean Equations. "IEEE Trans.

on Comp:, Vol C-18, No. 4, April 1969, pp. 305-313.

A.D. Falkoff, K;E. Iverson, E}H. Sussenguth.: "A Formal
Deséription of System /360.", IBM Sys. Journal, Vol 3, No. 3,
1964, pp. 198-263.

C.C. Foster.: "Computer Architecture.", Van Nostrand Reinhold,
1970.

T.D. Friedman.: "Methods Used in an Automatic Logic Design
Generator (ALERT).", IEEE Trans. on Comp., Vol. C-18, No. 7,
July 1969, pp. 593-614.

G.B. Gerace.: "Digital System Design Automation - A Method for
Designing a Digital System As a Sequential Network System.",
IEEE Tfans. on Comp., Vol. C-17, No. 11, November 1968,

pPp. 1044-1067.

E.L. Glaser.: "Introaucfion and Overview of the LOGOS Projecf",
IEEE Proc. Compcon. 'Séptembér 1972. y
D.F. Gorman & J.P. Andersén.:v"A Logic Design Trénslator.",
Proc. Fall Joint Compf~Conf., 1862, pp. 251-261. |
M.A. Harrison.: "Lectures on Linear Sequenfial Machines.",
Academic Press, 1969.

J. Hartmanis.: "Two Tests for The Linearity of Sequential
Machines.", IEEE Trans. on Elect. Comp;; Vol. EC-14, No. s;
December 1965, pp. 781-786. |
G.G. Hays.: "Computer Aided Design: Simulgtion of Digital
System Logic.", IEEE Trans. on Comp., Vol. C-18, No. 1,

June 1969, pp. 1-10.

(46)

(u7)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

-198-
F.G. Heath.: "Project LOGOS - A Computér Aided Désign System
For Integrated Software And Hardware.", Proc. IEE Conf.
on CAD, April 1972, pp. 225-230.
F.G. Heath & C.W. Rose.: "Thg Case FTor Integrated Hardware/
Software With.CAD Implications.",
IEEEProc. Compcon. September 1972.
F.G. Heath.: "Digital Computér Design.' Oliver & Boyd, 1969.

G.C. Jain & G.F. Adshead.: "Automatic Exhaustive Testing &

Diagnosis of Sequential Logic Networks.',

ICL Company. Internal Publ.

J.S. Jephson, et.al.: "A Three-Value Computer Design Verifi-
cation Systéem.'", IBM Sys. Journal, Vol, 5, No. 3, 13869,

pp. 178-188.

D.L. Johnson & D.H. O'Keefe.: "The Application of Shift
Registers To Secondary State Asgigﬁmént.", IEEETrans. on Comp.,
Vol C-17, No. 10, October 1968, pp. 954-977.

H.J. Kahn & J.W.R. May.: "The Use of Logic Simulation in the
Design of a Large Computer System.",

Dept. of Com. Sci. Manchester University. Internal publ.'

A.A. Kaposi & D.R. Holmes.: "Logic Network Analysis.', Computer
Aided Design, Vol. 3, No. 1, Autumn 1970, pp. 9-18.

A.A. Kaposi.: "On the Testability of Digital Hardware.",
Computer Aided Design, Vol 4, No. U, 1972, pp. 169-171.

R.M. Karp.:" Some Techniques of State Assignment for Synchronous
Sequential Machines.", IEEETrans. On Elect. Comp; Vol. EC-13,
No. 5, October 1964, pp. 507-518.

R.M. Karp & R.E. Miller.: '"Parallel Program Schemata", Journ.

of Comp. and Syst. Sci. No. 3, 1969, pp. 147-195.

(57).

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)
(66)

(67)

-199-

A.C. Kilgour.: "SPINDLE Users Manual', CAD. Proj., Dept. of
Comp. Sci, Edinburgh Univ., 1973. '

D.E. Knuth & J.E. McNeley.: "SOL - A Symbo}ic Languége For
General Purpose System Simulation.', IEEE Trans. on Elect.
Comp., Vol. EC-13, No. 4, August 1964, pp.. 401-408.

D.E. Knuth & J.E. McNeley.: "A Formal Définition of SoL.",
IEEE Traﬁs. on Elect. Comp., Vol;EC—IB No. # , August 1864,
pp. 409-4144.

Z. Kohavi.: "Switching And Finité Automata Tbeory.”,
M;Graw—Hill, 1970. |

F. Léraillez, ét.al.:"CRISMASS:.aATool for Conception,
Realisation, Implementation and Simulation of Sequéntial
Synchroncus Machines.', Proc. IEE Conf. on CAD, April 1969,
pp. 59-67.

D.W. Lewin.: ﬁProblem Specification for Computer Assisted
Logic Sysfem Desigp.", IEE Colloquium, digést no. 1971/19,
November 1971, contribution no. 8.

D.W. Lewiﬁ & M.C. Waters.: "Computer Aids to Logic System
Design.", Comp. Bulletin, Vol 13, No. 11, November 1969,
pp. 382-388. »

D.W. Lewin, E.J. Purslow, R.G. Bennets.: "Computer Assisted
Logic Design - the CALD Systém.ﬁ, Proc. IEE Conf..qn CAD,
April 1972, pp. 343-351. .

D.W. Lewin.: "Logical Design of Switching Circuits.",

'Nelson, 1970.

' D.W. Lewin.: "Theory and Design of Digital Computers.",

Nelson, 1972.
J. Martin.: "Design of Man-Computer Dialogues.',

Prentice-Hall, 1973.

(68)

(69)
(70)
(71)

(72)

(73)

(74)

(75)

(76)

(77)

';(78)

-200-

W.C. McGee & H.E. Peterson.: "Micro programming Control for

the Experimental Sciences.", Proc. Fall Joint Conf.,

' 1965, pp. 77-91.

R.B. Miller.: "Response Time in Man-Computer Conversational
Transactions.", Proc. Fall Joint Conf., 1968, pp. 267-277.

P. Naur (Ed).: "Revised Report on the Algorithmic Language
ALGOL—GO.",Comm; ACM, Vol. 6, No. 1, Jan 1963, pp. 1-17.

J.V. Oldfield.: "Interactive Techniques.", Application Course
Lectures, Proc. IEE Conf. on CAD, April 1972.

C.A. Petri.: "Communication With Automata."

RomeOAir Development Center, Tech. Rept. RADC—TR—65—377,'

1966.

M.S. fliner & C.W. Rose.: "A Primitive Data Base Management For
An Integrated Computer Aidéd Design Facility.",

IEEE Proc. Compcon. September l§72.

R.M. Ppocfor.: "A Logic De;ign Translator Experiment Demon-
strating Relationships of Language To Systems And Logic Design.",
IEEE Trans. on Elect. Comp. Vol EC-13, No. 4, April, 1964,

pPp. 422-430. |

C.A. Rey.: "Control Point Design Using Modular Logic.'", Tech.
Rept. Dept. of Comp. Sci. Univ. of Illinois, 1971.

J.S. Reynolds.: "A Conversational Logic Simulator For Use

‘With a Time-Sharing Computer.", Proc. IEE Conf. on CAD.,

1969, pp. 608-615.

C. W. Rose & F.T. Bradshaw.: "The LOGOS Representation System.",

' IEEE Proc. Compcon. September 1972.

J.P. Roth.: "Systematic Design of Automata.", Proc. Fall Joint

Comp. Conf. 1965, pp. 1093-1100.

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

~201-
H.P. Schlaeppi.: "A Formal Languagé for DescribingiMachiné
Logic, Timing And Sequenciﬁg (LOTIS). ", IEEE Traﬁs. on,
Elect. Comp. Vol. EC-13, No. 4, August 1964, pp. 439-4u8.
H. Schorr.: "Computer Aided Digital System Design And Analysis
Using A Régister Transfér Languaée.", IEEE Trans. on Elect.
Comé., Vol. EC-13, No. 6, Décémber 1864, pp. 730-737.

E.P. Stabler.: "System Description Languages.'", IEEETrans.

on Comp., Vol C-19, No. 12, December 1970, pp. 1160-1173.

R.E. Stearns & J. Hartmanis.: "On-The Staté Assignment Problem
For Sequential Machines II. ", IRE Trans. on Elect. Comp.,
December 1961, pp. 593-603.

F. Stevenson.: "An Introduction to LOGIC., A Computer Program
For Simulation of Digital Logic'Networks.", An extract from
the LOGIC users manual, Norwegian Computing Centre, 1968.

J.R. Story, et.al.: "Optimum State Assignment For Synchronous
Sequential Circuits.", IEEETrans. on Comp., Vol C-21, no. 12,
December 1972, pp. 1565—1373. |

I.E. Sutherland.: "Sketchpa&. A Man-Machine Graphical

Communication System.", MIT Lincoln Lab., Tech. Rept.

" No. 296, 1963.

H.C. Torng.: "An Algorithm For Finding Secondary Assignments

of Synchronous Sequential Circuics.'", IEEE Trans. on Comp.

Vol C-17 No. 5, May 1968, pp. 461-469.

M. Uzsoky, et.al.: "Computer Aided Design of Digifal Systeﬁs

in Hungary."; Proc. IEE Conf. on CAD, April, 1972,

pp. 359-365. |

M.V. Wilkes & J.B. Stringer.: "Micro-programming And The Design

of The Control Circuits In An Electronic Digital Computer.™,

" Proc. Camb. Phil. Soc., Vol 4l, Pt. 2, April 1953, pp. 230-238.

-202-

(89) N.E. Wiseman, et.al.: " PIXIE - A New Approach To Graphical
Man Machine Communications.", Proc. IEE Conf. on CAD,
1969, pp. 463-u471.

(%0) P.E. Wood Jr.: "Switching Theory.", McGraw-Hill, 1968 .

_203-

P<¢ <=

@ Ty —— 0
~ AV N v
he N ST . % R [] L}
o o - ’ AV . o X -) A Vv
CHZACIOEQOEESITHS S A S AN E N SENECERE LIS RN EREE (SRR)
- — s s g be Pt e Gt bt B s ot b § .
no ~ v
OO oo B LI
FRZIILODEESEOICOODIIONDESOTONERDEDESE Sssceaass
- = | St e St gt Ot et Gt s e
v © A
DN o '
S O Sy : . K
CTERZo000GS ORGP0 ERENNAESESERNROSAESOREANYCS VSISO E
- Mo
wy o
O N oo .
Ww O :) . o : . '
R ZOS RN E RN NS NEOOS R EOENCSSNSONSESINENEOSSan |
"N
-] v
(3 Mg = . . .
0 . . . N . N . .
unNﬂﬂ,ﬂﬂ,ﬂﬂ@,gggggggaﬂﬂﬂ.z@?0000000“00000@0@0”0“000“00000
M <
@
O NN NN NSNS SNOORRNIOCNOCES0OS
' . - .
»no 3 . . N . v T : A SN
O o - . ' : .- . [.) A]
CRZDNOOARNEEODDS L s es)
7%) ! ' » . A . .
ON - ~ . . R)
w O : : A
2o 000N CE DRSNS RNESSSS 81
"M
[7X..]
OWN o .)
o o = R . , . .
% Z eSS N OGNNSR RS
731-.]'-.- St S Gt =t Pt St Gt S Sve P -I-'I..I..ol.l. Gt Gt et Gt g GG Gt Gt Bt
OO0 A Vv " v A A\ A .
Wivd oo 3 U e . [} g []
»x OA Vv A v - . A v A
w2z SRR N NN RN - s ses ! SRS e)
LN et =0 0t 0=t 2t St bt bt ot et bt llllllllhl\-l.. Gt v Gt St at Pt et 0=t buy St o=t o Py
O A v A v A v A :
— e) U (] U [0 F) [B :
W OA v A v A v A
L) nessNes). N -N--E) [CR-R-N.-¥ N -¥. W)
= "oy —— ——y
N A v A v A v
x v ' ’ . LS -0 s . .
INZoaosooas t SRENARNNIEDS [-R-N-N R NN N NN N - Socaeaanane®
onNN. e § — @ - e v)
[S174] NV A v A v
T E e] ' B} ' i B | [
") o A v A v A v .
4 -X-1-N-N OV NEE ¢ SRCR-N-N RN~ N-N -] S80S
O N -lvl-l.ﬁnltl'l.l- =t S0 ot et Pt ot s e Pt et Ot G St et bt oo
on A v A Y A v
L e [}] . [[s
Ww O A v . A v ~ v
raZoaw i N [SR-R-E-N-NW-N.-¥.-N . L-R-N-X-Y.-J Saosasas
EOSGGEOﬂﬂﬂZOBDOﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬁﬂﬂﬂﬂ00000000000000035
EZOANNON DOV ITNONDODEOAORMINDOIDANON DOEM TN DOV ANOND O S N TN O S
-l 1588889901111112229999022222333000014444445
-20n A A A A A A A AA A A NNNN NN NNNMI MM DI DM DM

_204-

O vt

~
M PN e . . .

x .o o
Mo
"o .
OWN o

w o . . .
. - . . .
-~
v O
O . .
RuﬂNDGGO“G@GazooﬂﬂﬂzaaeﬂogaﬂﬂaﬂﬂﬁﬂﬂaOGBEOZMﬂogoagzeﬂﬂugﬂoooa
-"mo .
12X
O N e . L . . .) .
L o . L. - . Lo .,
= "t «
ON e - . . TN T b >
R3NOU..ﬂﬂﬂﬂﬁﬂOﬂaﬂooﬂaaeevGGOGo000080900000.00009.0300000ooﬂﬂAﬂooa
Lol d
[~X.]

.
-
nwo
TN e . . .
Mo -
-
w o -
’ ’ . : : :
-
"o B
O o .
W o . . .) .
ol o K] L)
0o A v
) vt = L 2 9 . . .
wnzot zaﬂag.azﬂwoaGGOGQGGGGoeaﬂﬂagooaﬂogo.ooaaaaaﬂaaeoaaauaoﬁ
- . . .
TNt vl.l'l.l-lvl.l'lcl.lll-l.l.'l-l'lvlll:l'l'l-l-lllol-l-l-lwl.l.l-l-lnlvl-l'l'l-l'lvl-l'l-llll-Il-cll.'l-llll-
=t - [}
W [=] A .
LZa
w

. . "
oM
on
T - =
s o

O NN e) o~

on A v

x . .] [] . . .

ITNZOoOOODS R R L L N T L L LT Yoy
. . - . ~

DN y A .

B = - [

Ww o A

razZzouuossossoo)

120
110
120
130
149
150
160
170
180
190
200
210
220
230
240
250
260
278
280
290
Jee -~
310
320
330 .
340
350
360
370
380
390
498
410
420
430
449
450
460
470
480
498
500
510
520
530
540
550

- 205~

uﬂﬂmﬂﬂﬂﬂﬂﬂ02000ﬂzﬂgnﬂuﬂﬂvﬂvM“»ﬂﬂ.“.wﬂwa.na ”ﬂu@uwaaﬂ-ﬂvpﬁn

I PO eSS NN Ca O CCO OSSO NN SO CE LSO EN e ENRNN ST S OORNEC S CR NI ES OO S ®

_Buzeﬂgﬂuago.oaaaaeozwB“ﬂ“ﬂ“ﬂ”aaﬂﬂggaﬂﬁo.ﬂ-eusnﬂﬂuaunU””Uﬁgﬂﬂﬂﬂgwﬂaezun

-00300000000000020agoﬂﬂogauﬂagaeneaﬂ.eﬂu“@-ﬂaﬂﬂ.aeoﬂaﬂﬂuﬂaaﬂgeaoﬂﬂﬂ_ﬂ.zﬂ.u

.IGBOUGBGOOQQQG000OGI000ﬂﬂOOQGGEBOiOZQGBGOIEGGQGOﬂwOeﬂﬂﬂﬂﬂﬁﬁﬂﬂﬂﬂcn

O Gah Gt st B0 Bt G0 Gt Bt Gt S Bt Bt Bt Bt Gt Bt St et Gmp Bt Bt St Gt Gt Gt St Gmp Bt Gt Gt Gt Gt St O
» .

A-E-N XN N -N.-F. N N N N -N-N.-N-J ¥ N J-F N -N-J-N X ¥ -N.-X.-N-¥. -

v

. ~ .
‘

.,gooaaoogeouﬂaﬂoagaaoaooaaooeoaaﬂﬂOOOGGaoaaegaﬂaaaaae,oaoau.ﬂao.ﬂea.aﬂ
.G
0 Gt e G Gn G s 0 Bt Gt Gnt Gmi G G Bt Bt Gmp Pt Pt Gnk Bt Bt Bt Pt Gt Gt et Bt Gt Pt Puet

A
-0

I S0 EDEREER0 D NESASENCADRe S

D¢ "¢~

) b Gt GSE G Gt Pt S0 Gd S Puep St Dant St Pt S Geep St D=0 Pt St =t Gut SE Pt St Pud SmE g Suid T e gt Gt Gt Bt Bat Pt Pt

A
(e

e
v
’ .
v - A
SOOI ENSRNENNERDEDNCOD
Ll]
(V4 .

v ‘ _

SO NN EEICCCRNNNROANONNDO B“ggggﬂoaooﬂoﬂBGOBﬂaﬁooaaggaaeaﬂoBgﬂ

- U
AV
. . [} U
) A W
O e NS S N O PO S N NN NN RNINCEERNEDDS | S
.-Il..l-l-l-l-l-l-l.l'l.l-l-ll'l.llcl].l-lcll-l.-la.l.lmll. = ot P
i J v A
4 . ?
R [X A
FEEHN NN DI D
AL R AN E R R L L L L E L L L R L L e L R L I Y T N I T T T T ST S S aSTSy Iy
I NDOR AN T 567890123456789012345678901234567890123456789012345678901
I IN.INO OOV OO OO OO0 7777777778688888888999999999950””000 QDDA A At NN
’ e A I I R e R e e ke hekaba R K K Ko

