
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Motion Synthesis for High Degree-of-Freedom Robots in

Complex and Changing Environments

Yiming Yang

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

School of Informatics
College of Science and Engineering

University of Edinburgh

2017





Yiming Yang:

Motion Synthesis for High Degree-of-Freedom Robots in Complex and Changing Environments

Doctor of Philosophy, 2017 ©

supervisor:

Sethu Vijayakumar

location:

Edinburgh, United Kingdom

iii





A B S T R A C T

The use of robotics has recently seen significant growth in various domains such as

unmanned ground/underwater/aerial vehicles, smart manufacturing, and humanoid

robots. However, one of the most important and essential capabilities required for

long term autonomy, which is the ability to operate robustly and safely in real-world

environments, in contrast to industrial and laboratory setup is largely missing. De-

signing robots that can operate reliably and efficiently in cluttered and changing

environments is non-trivial, especially for high degree-of-freedom (DoF) systems, i.e.

robots with multiple actuators. On one hand, the dexterity offered by the kinematic

redundancy allows the robot to perform dexterous manipulation tasks in complex

environments, whereas on the other hand, such complex system also makes control-

ling and planning very challenging. To address such two interrelated problems, we

exploit robot motion synthesis from three perspectives that feed into each other: end-

pose planning, motion planning and motion adaptation. We propose several novel

ideas in each of the three phases, using which we can efficiently synthesise dexterous

manipulation motion for fixed-base robotic arms, mobile manipulators, as well as

humanoid robots in cluttered and potentially changing environments.

Collision-free inverse kinematics (IK), or so-called end-pose planning, a key prereq-

uisite for other modules such as motion planning, is an important and yet unsolved

problem in robotics. Such information is often assumed given, or manually provided

in practice, which significantly limiting high-level autonomy. In our research, by us-

ing novel data pre-processing and encoding techniques, we are able to efficiently

search for collision-free end-poses in challenging scenarios in the presence of uneven

terrains.

After having found the end-poses, the motion planning module can proceed. Al-

though motion planning has been claimed as well studied, we find that existing al-

gorithms are still unreliable for robust and safe operations in real-world applications,
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especially when the environment is cluttered and changing. We propose a novel

resolution complete motion planning algorithm, namely the Hierarchical Dynamic

Roadmap, that is able to generate collision-free motion trajectories for redundant

robotic arms in extremely complicated environments where other methods would fail.

While planning for fixed-base robotic arms is relatively less challenging, we also in-

vestigate into efficient motion planning algorithms for high DoF (30− 40) humanoid

robots, where an extra balance constraint needs to be taken into account. The result

shows that our method is able to efficiently generate collision-free whole-body trajec-

tories for different humanoid robots in complex environments, where other methods

would require a much longer planning time.

Both end-pose and motion planning algorithms compute solutions in static envi-

ronments, and assume the environments stay static during execution. While human

and most animals are incredibly good at handling environmental changes, the state-

of-the-art robotics technology is far from being able to achieve such an ability. To

address this issue, we propose a novel state space representation, the Distance Mesh

space, in which the robot is able to remap the pre-planned motion in real-time and

adapt to environmental changes during execution.

By utilizing the proposed end-pose planning, motion planning and motion adap-

tation techniques, we obtain a robotic framework that significantly improves the

level of autonomy. The proposed methods have been validated on various state-of-

the-art robot platforms, such as UR5 (6-DoF fixed-base robotic arm), KUKA LWR

(7-DoF fixed-base robotic arm), Baxter (14-DoF fixed-base bi-manual manipulator),

Husky with Dual UR5 (15-DoF mobile bi-manual manipulator), PR2 (20-DoF mobile

bi-manual manipulator), NASA Valkyrie (38-DoF humanoid) and many others, show-

ing that our methods are truly applicable to solve high dimensional motion planning

for practical problems.
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摘要

在过去的几年，尤其是在无人车、无人机、智能制造以及人形机器人等领域，关

于机器人的使用和研究受到了广泛的关注。然而，一个关系到能否实现机器人长时间

自治的关键问题仍然没有得到解决，即如何让机器人能够在复杂、动态的环境下安全

稳定的运作，而非像工业和实验室机器人那样。设计能够在复杂、动态的环境下稳定

工作的机器人并非易事，尤其是对于较高自由度的冗余系统，即由多个电机控制的机

器人。一方面，冗余的机械结构提升了系统的灵活性，使其能够在复杂环境下完成灵

巧的操作；但另一方面，系统的冗余性也带来了规划和控制上的困难。为了解决这两

个内在关联的问题，此论文从三个依次递进的角度来研究机器人运动合成：终点位姿

规划 (End-Pose Planning)，运动规划 (Motion Planning)，以及在线运动适应 (Motion

Adaptation)。通过在每一个领域提出一系列新的观点并进行整合，我们能够在复杂多

变的环境中快速的为机械臂及人形机器人规划出安全有效的运动轨迹。

无碰撞逆运动学，即终点位姿规划，是调用运动规划或步态规划等其他模块的重

要前提条件，同时也是一个尚未解决的问题。此类信息通常都是假设已知，并在实际

应用中由操作人员手动输入，这显然严重的限制了高度自治系统的发展。在此论文的

研究中，通过提出独特的数据预处理和编码技术，我们能够在包含崎岖路面等富有挑

战的复杂环境中快速计算出无碰撞的有效终点位姿。

运动规划模块将在成功获得有效终点位姿之后得以实施。尽管有学者认为运动规

划问题已经被较好的解决，我们仍然发现在很多情况下，尤其当环境非常复杂且变化

时，已有的运动规划算法无法解决实际问题。此论文提出了全新的分辨率完整的运动

规划算法，即层级动态路线图 (Hierarchical Dynamic Roadmap)，其能够在极度复杂

的环境中实时的为多关节冗余机械臂计算无碰撞轨迹，而这一功能是其他现有算法所

无法实现的。解决固定基座机械臂的运动规划问题难度相对较低，我们同时也对高自

由度（30− 40维度）的人形机器人运动规划问题进行了研究，这需要将双足平衡时刻

考虑在内。实验结果表明，我们提出的算法能够在复杂的环境中更快速的为不同的人

形机器人规划出平衡且无碰撞的全身运动轨迹。

终点位姿规划和运动规划都在静态的环境中进行计算，并假设环境在机器人运动

过程中保持静止。人类和大多数动物拥有令人难以置信的应对环境变化的能力，然而
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目前最先进的机器人系统也远不具备这种能力。为了解决这一问题，此论文提出了独

特的状态空间表达方式，即距离网孔 (Distance Mesh)，其能够在机器人运动过程中实

时的改变预先规划的轨迹以适应环境的变化。

通过整合此论文所提出的终点位姿规划算法、运动规划算法以及在线运动

适应算法，我们构建了一个能显著提高机器人自主程度的系统框架。我们所提出

的方法在多种不同的机器人平台上得到了验证，例如UR5（6自由度固定基座机械

臂）、KUKA LWR（7自由度固定基座冗余机械臂）、Baxter（14自由度固定基座双

臂机器人）、Husky with Dual UR5（15自由度移动双臂机器人），PR2 （20自由度

移动双臂机器人）以及NASA Valkyrie（38自由度人形机器人）等，显示了我们的算

法能够被应用于解决多自由度机器人系统的运动规划问题。
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1
I N T R O D U C T I O N

The vision of advanced robots, such as dexterous manipulators, bipedal or mobile-

based1 humanoids, derives from the dream that one day they can accomplish uni-

versal tasks or even co-exist with mankind, to release humans from heavy and dan-

gerous works. However, the state-of-the-art technology is still far from being able to

fulfil such vision. Existing robot systems mostly operate in industrial settings under

the assumptions that — the robots only have six or less Degree-of-Freedom (DoF)

with the base bolted to the ground; the environment is simple and static which the

robots have full knowledge of; finally and in fact most importantly, the robots are

deployed to positions require repeatable but rudimentary motions with minimal dex-

terous capabilities.

Such restricted industrial setup is most imposed by systematic and environmen-

tal complexities. The systematic complexity refers to the high-dimensional kinematic

structure, potentially with a wheeled or bipedal base, which offers excellent dexterity

but in turn, its complexity also makes the motion synthesis extremely challenging,

in particular for safe and reactive tasks in complex environments and in close prox-

imity to people. The environmental complexity refers to the cluttered and changing

environment around the robot. We human, and most animals are incredibly good

at handling complex environmental objects and unexpected perturbations during ac-

tions, but most of the current robotic systems are incapable of achieving anything

close to such capability. The systematic and environmental complexities are different

but related, the complex system that makes planning difficult sometimes is urgently

needed to overcome problems such as avoiding obstacles in complex environments.

How can we efficiently generate reliable motion plans for high DoF robots, and

how can we give them the ability to adapt to run-time perturbations? To address

1 Traditionally, humanoid refers to a human-like robot, i.e. with two arms and two legs. However, we
sometimes call a system with two arms but a mobile base also a humanoid robot.

1
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these questions and toward better robot autonomy, the solutions fall into two areas —

efficient high-dimensional motion planning and real-time online motion adaptation.

1.1 motion planning

When designing a robot system, one of the core functionality we should consider is

for the robot to know how to move, which is called motion planning (LaValle [2006]),

a fundamental problem in robotics which involves automatically finding a sequence

of actions that takes the robot from a start to a goal state. There are two key features

in motion planning, optimality and completeness. Optimality describes the quality of

the plan with respect to defined cost metrics, i.e. can the system find the best and op-

timal way to move to a goal state. Completeness reflects the robustness of the system,

i.e. is the system able to solve all possible problems in different scenarios. Gener-

ally speaking, motion planning algorithms can be grouped into optimization-based

and search-based approaches. Optimization-based algorithms (Ratliff et al. [2009],

Ivan et al. [2013], Schulman et al. [2014]) solve mostly convex optimisation prob-

lems to find locally optimised solutions, whereas search-based algorithms (Lavalle

[1998], Kuffner and LaValle [2000], Kavraki et al. [1996], Elbanhawi and Simic [2014])

search through the entire configuration space to find globally valid solutions. It is

clear that optimization-based methods aim for optimality and search-based methods

are designed for achieving completeness. Optimization-based approaches could get

stuck in local minima and fail to produce valid solution when the problem is non-

convex or ill-defined, e.g. in complex and cluttered environments Koren and Boren-

stein [1991]. On the other hand, search-based approaches, asymptotically, promise

to find valid solutions for complex problems. Thus, in this thesis we mainly explore

search-based algorithms for solving complex problems in difficult scenarios, where

the globally valid solution can be further optimized afterwards — as a warm start for

optimization-based methods.

Search-based algorithms are typically used in path planning problems for mobile

robots (Karaman et al. [2011], Nasir et al. [2013]) and in motion planning problems

for fixed-base low DoF robotic arms (Murray et al. [2016]). Redundant robotic arms,
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mobile manipulators and humanoid robots, on the other hand, have complex struc-

tures that makes searching much more challenging and time consuming (Kuffner

et al. [2005]). Also, traditional search-based methods are incapable of efficiently pro-

viding balanced configurations for legged systems. Thus, optimization-based rather

than sampling-based algorithms, are commonly used on humanoids to generate feasi-

ble balanced motion (Dai et al. [2014]). Such approach works fine in simple and static

environments, however, optimization-based methods face great challenges providing

valid motion in complex environments with cluttered and moving obstacles.

1.2 end-pose planning

Apart from classical motion planning, another challenging but interesting problem

arises with high-DoF redundant robots — End-Pose Planning, or equivalently, collision-

free inverse kinematics (IK). Normally, the task is defined in the workspace, e.g. a de-

sired pose for the end-effector to reach, but the actual planning is mostly carried out

in joint configuration space. The start state is known a priori, which normally is the

current state, but the goal state that is constrained by the workspace task is unknown.

Thus, as the very literal interpretation, end-pose planning is a procedure for finding

the goal state, or so-called end-pose, in the joint configuration space that satisfies the

task’s workspace constraints. The end-pose will be then used as the input goal state

for motion planning.

While motion planning is a well known area that has been extensively studied, we

find that the research on end-pose planning has been lagged behind. One possible

explanation could be that, in classical problems with non-redundant robotic systems,

a given workspace goal can have at most one configuration space solution, which

makes considering collision-free constraint unnecessary. However, for redundant sys-

tems (typically with seven or more actuators), there exist multiple end-poses that

satisfy an identical workspace pose constraint (Siciliano [1990], Henten et al. [2010]),

some of which might be invalid due to self-collision or collision with the environ-

mental objects. Hence, how to efficiently find a sufficient valid end-pose becomes

critical for robot operating in complex environments. Such problem is exacerbated
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on humanoid robots with the extra redundancy introduced by the moveable base.

For example, when reaching a close object, we would consider walk directly to the

target; however, in cases where the object is placed at a distance or behind an obstacle,

we would need to walk around the obstacle first before taking the reaching action. In

complex environments with multiple collision objects, the most practical solution is

to let a human operator to hand-craft such information (Koolen et al. [2013], Tedrake

et al. [2014], Oh et al. [2017]), which becomes the limiting factor for high-level and

long-term autonomy. Thus, how to find appropriate and potentially optimal stand-

ing locations becomes an important and interesting problem for humanoids or mobile

manipulators.

1.3 motion adaptation

After having planned the motion, the robot starts to execute the trajectory and hopes

to accomplish the task without violating any constraints, e.g. collision-free, balance,

end-effector pose, etc. This is true only under the assumption that the environment

and target stay static, and the robot has perfect motor control and sensing systems,

which is not the case in real-world scenarios. Various types of uncertainties exist

in practice, such as inaccurate motor execution, sensory noise, perturbations and

changing environments, that make the goal unachievable by naïvely following the

planned trajectory. Online adaptation techniques must be applied to compensate any

potential uncertainties in the system and environment. Replanning is the most trivial

approach for handling during-execution changes (Karaman et al. [2011]), however,

online replanning is too expensive to be applied on high-DoF robots.

A particular joint configuration corresponds to unique robot rigid body posture in

the world and vice versa, any environmental changes that collide with the robot pos-

ture also invalidate the configuration space state, thus configuration space trajectory

by nature can not adapt to changes. By using surjective but not injective alterna-

tive spaces to configuration space mapping (Ho and Komura [2009], Al-Asqhar et al.

[2013], Ho et al. [2014]), one obtains so-called alternative space trajectory that has

multiple corresponding configuration space and workspace trajectories. An alternate
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Current Pose

Task Goal

(a) Problem setup

End Pose

(b) End-pose planning

Motion Plan

(c) Motion planning

obstacle

Planned Motion

Adapted
Motion

(d) Motion adaptation

Figure 1.1: Motion synthesis overview. (a) Problem setup, a target location is given in
workspace; (b) the robot needs to first find a configuration space end-pose that
satisfy the goal constraint; (c) then the robot needs to plan a motion that suppos-
edly to reach the target; (d) finally, during execution, the robot needs to actively
modify the planned motion to adapt to any unforeseen perturbations.

space state may still be valid even if some of the corresponding configurations be-

come invalid, thus the whole alternate space trajectory is still valid. Work has been

done applying such property on online motion adaptation (Ho et al. [2010a], Ivan

et al. [2013]). However, a majority of the proposed alternative spaces only deal with

internal changes and pre-known environmental objects. Very few ones, if any, are

capable of handling unexpected objects.

1.4 problem statement

We have so far presented the problems and limitations in motion synthesis for high-

DoF robots: efficient motion planning, end-pose planning and real-time online adap-

tation. A more formal definition is given as

EndPose = EndPosePlanning(CurrentState, TaskGoal, Environment), (1.1)

MotionPlan = MotionPlanning(CurrentState, EndPose, Environment), (1.2)

and

MotorCommand = MotionAdaptation(MotionPlan, CurrentEnvironment). (1.3)
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An overview of the whole process is highlighted in Figure 1.1. Given a workspace

task, i.e. reach and grasp the red target, as shown in Figure 1.1a. The first step to

find the end-pose that is collision-free and reaches the target, as shown in Figure 1.1b.

After having the end-pose found, the next step is to plan a motion that can potentially

transit the robot from current state to the end-pose, as shown in Figure 1.1c. The last

step is to execute the planned motion, however, the robot needs to adjust the original

plan to adapt to any runtime changes, which is the online motion adaptation phase,

as shown in Figure 1.1d.

For legged or wheeled robots, the MotionPlanning() can be further divided into

firstly

BaseMovementPlan = BasePlanning(CurrentBase, DesiredBase, Environment), (1.4)

where the BasePlanning() refers to walking planning for legged system and navi-

gation planning for wheeled system, the DesiredBase can be extracted from EndPose.

After having arrived at the desired base location, a fixed-base motion planning is then

invoked

MotionPlan = MotionPlanning(StateAfterBaseMovement, EndPose, Environment). (1.5)

1.5 thesis structure

Different approaches have been proposed attempting to address these problems, e.g.

Kuffner et al. [2005], Yoshida [2005], Park et al. [2014], Dai et al. [2014]. However, most

of the existing work has only demonstrated a proof of concept in simulation or simple

environments, which is not yet ready to be applied to complex scenarios. In this

thesis, we will try to address each of these problems while considering very complex,

cluttered and changing environments. Figure 1.2 layouts the thesis structure. The

main body is organized in three parts — Part I, End-Pose Planning; Part II, Motion

Planning; and Part III, Motion Adaptation. In each part, we first discuss preliminary

and related work, followed by a series of novel contributions, respectively.
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While the goal is assumed given when working with classical motion planning

algorithms such as Rapidly-exploring Random Tree (RRT, Lavalle [1998]) and Prob-

abilistic Roadmap (PRM, Kavraki et al. [1996]), we start with arguing how to firstly

find the goal, i.e. the end-pose planning. A valid end-pose is a feasible robot state2

that satisfy necessary task constraints, e.g. the end-effector reaches the target pose.

While existing work mainly focuses on solving the kinematic reachability problem in

simple environments (Zacharias et al. [2013], Vahrenkamp et al. [2013]), in Chapter 3,

we introduce a novel dynamic reachability map method that enables real-time end-

pose planning capability in complex environments. By using a novel configuration-

to-workspace encoding and indexing technique, we are able to store a sufficient num-

ber of high dimensional configurations and their collision information, which can be

quickly updated during run-time. In Chapter 4, we further extend the method to plan

end-poses for bi-manual manipulation problems with uneven terrains by utilizing the

forward and inverse dynamic reachability maps.

After having the end-pose found, motion planning algorithms can then take the

end-pose as input to generate a motion plan. Although motion planning has been

claimed as well studied (Elbanhawi and Simic [2014]), we find existing methods are

inefficient for complex environments, especially with high dimension systems and

complex environments. In Chapter 6, we introduce a novel resolution complete plan-

ner, namely the hierarchical dynamic roadmap, that is able to plan valid motion for

high DoF robots in complex and cluttered environments in real-time. The motion

planning problem is exacerbated on legged systems with the extra balance constraint,

where the average planning would be significantly increased. In Chapter 7, we pro-

posed a generic method that scales up existing methods for solving motion planning

problems for humanoids in complex environments. Result shows that the proposed

method is much more efficient than existing approaches and easily applicable onto

different humanoid platforms.

While end-pose and motion planning algorithms compute solutions in static envi-

ronments3, the environment might change during execution and the robot needs to

2 A feasible robot state normally refers to a collision-free state, and balanced state for legged robots.
3 The environments are different between planning requests, but assumed to be static during each re-

quest.
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adjust the pre-planned motion to adapt to the changes. In contrast to exiting meth-

ods that only deals with only internal model discrepancies (Ivan et al. [2013]) or

relies on heavy computation (Pan and Manocha [2011]), in Chapter 9, we introduce

a novel distance mesh representation is that enables real-time motion adaptation in

unstructured and changing environments.
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Figure 1.2: Thesis structure layout. The vertical components, e.g. Part I-III, advance to different phases in the motion synthesis framework
(Figure 1.1). The horizontal components advance to more challenging problems in the particular phase respectively.
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1.6 contributions

The main contributions of this thesis include:

• The introduction and generalization of reachability map (RM), inverse reach-

ability map (IRM) and their dynamic versions, i.e. dynamic reachability map

(DRM) and inverse dynamic reachability map (IDRM).

• A novel end-pose planning algorithm using IDRM that allows the robot to,

in real-time, select sufficient standing location and full-body configuration in

complex and cluttered environments. Yang et al. [2016a]

• An extension of the original IDRM end-pose planning method (only works on

flat ground) that utilizes forward and inverse reachability maps, which enables

bi-manual end-pose planning for humanoid robots in complex environments

with uneven terrains. Yang et al. [2017]

• A novel motion planning method, the Hierarchical Dynamic Roadmap (HDRM),

which is a resolution complete planning algorithm that is able to plan valid mo-

tion for high dimensional robotic arms in real-time. Yang et al. [2018]

• A deeply customized sampling-based planning algorithm that efficiently gener-

ates balanced and collision-free full-body motion for humanoid robots in com-

plex environments. Yang et al. [2016b]

• A novel alternate space representation namely the Distance Mesh (dMesh), that

allows the robot to adapt to unexpected changes during execution. Yang et al.

[2015]

• A software framework, the EXtensible Optimization Toolset (EXOTica), that

provides easy access for using/benchmarking/developing different algorithms

and applications for robotic planning and control. All of the aforementioned

contributions are prototyped, implemented and tested using the EXOTica frame-

work. Ivan et al. [2018]
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2
E N D - P O S E P L A N N I N G P R E L I M I N A R I E S

In classical robot motion planning, we often say “given the start and goal states”. How-

ever, in most cases, we only know the start state, e.g. current state, but the goal state

is usually unknown or indirectly defined. So, before diving into motion planning

(Part II), in this part of the thesis, we would like to first discuss how to find the

appropriate goal state, which is referred to as end-pose planning.

2.1 problem formulation

Let q ∈ RN be a N dimensional vector denote a configuration, i.e. the position values

of all joints, of a robot with N joints. Let C denote the set of all possible configurations,

which is called the configuration space where

q ∈ C ⊆ RN . (2.1)

Motion planning algorithms (Equation 1.2) normally require a start state qstart and a

goal state qgoal as inputs, where the former is the current state which is known, but

the latter is often unknown.

Let W ⊆ RW denote the workspace that the robot is operated in where normally

W = 6, i.e. 3 for position and 3 for orientation. Let A(q) ⊂ W denote the robot rigid

body posture in the workspace at configuration q and O ⊂ W be the workspace

region that is occupied by environmental objects. The obstacle region in configuration

space,

Cobs = {q ∈ C | A(q) ∩O 6= ∅}, (2.2)

13
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is the set of all configurations, q, at which A(q) collides with obstacles O. The re-

maining region of configuration space is called the free region,

Cfree = C \ Cobs. (2.3)

It is obvious that all valid and feasible robot configurations must be in the free region,

otherwise the robot will be in collision with the environment. However, not all config-

urations in the free region are necessarily valid since it only guarantees collision-free

constraint between the robot and environment, whereas the validity of a configura-

tion also depends on other constraints, such as self-collision-free, balance, etc. It is

convenient to denote the set of all valid configurations as Cvalid ⊆ Cfree.

In robotics, kinematics is used to describe the motion of a systems composed of

joined parts. The forward kinematics (FK) is defined as

y = FK(q) : C 7−→W

RN 7−→ RW
(2.4)

where y ∈ W is the end-effector pose, e.g. tool pose of a robotic arm, hand or foot

pose of a humanoid robot, at configuration q. The inverse problem, inverse kinematics

(IK),

q = IK(y) : W 7−→ C

RW 7−→ RN
(2.5)

is a mapping from workspace to configuration space, where the output q is a config-

uration at which the end-effector reaches y.

The robot system is called non-redundant if N ≤ W and redundant if N > W. When

N < W, for any input y, there may or may not exist a valid output q; and when

N = W, for every input y, there exists one and only one unique output q. However,

when the robot is redundant, i.e. N > W, for an input y, there exists infinite valid so-

lutions. More intuitively, this means the robot has more DoFs than strictly necessary

to perform the task, e.g. a 7-DoF robotic arm is considered redundant for reaching

desired end-effector pose y∗ ∈ SE(3) ⊂ R6 since 7 > 6. In such case, the robot can

exploit the extra/redundant DoFs to achieve secondary tasks, such as avoid obstacles,
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increase manipulability, and reduce power consumption. In most practical situations,

avoiding collision is one of the top priority tasks. However, to find an IK solution

that satisfy end-effector pose constraint y∗ and also collision-free is non-trivial, espe-

cially in complex and cluttered environments. Hence, the process of finding valid IK

solution, or so-called end-pose planning,

qgoal = EndPosePlanning(y∗) : W 7−→ Cvalid, (2.6)

becomes a key prerequisite, where other actions such as motion planning can only

proceed after a valid end-pose, qgoal, has been found. Note that the problem is ex-

acerbated as the type of the robot base considered changes. For example, a mobile

manipulator has an extra 3 DoFs (SE(2)) introduced by the planner base; similarly, a

humanoid robot with two legs has extra 12 DoFs (SE(3) for each foot).

2.2 collision-free inverse kinematics

Collision-free IK is an old, yet unsolved problem in robotics. For redundant robots in

particular, there exist an infinite number of solutions, which makes it very difficult

to get a closed form solution. Buss [2004] showed that for algorithms such as Jaco-

bian Transpose, Pseudo-Inverse, Damped Least Squares, etc., one common fact is that

different initial states lead to different IK solutions. Hence, a naïve collision-free IK

approach is to randomly restart with different initial seeds until a collision-free solu-

tion is found. Obviously, such method is inefficient, especially in cluttered environ-

ments. Numerical methods are normally used by applying dexterity measures and Ja-

cobian inverse (Guo and Hsia [1990], Sciavicco and Siciliano [1988]). Pre-computation

is also heavily used in collision-free IK (Zacharias et al. [2013], Torres et al. [2014])

for speeding up online computation by providing good initial hint of the seed pose.

Machine learning schemes such as Locally Weighted Projection Regression (D’Souza

et al. [2001]) and Neural Network (Mao and Hsia [1997]) are also used for learn-

ing inverse kinematics, with or without considering obstacles in the environment.

Leibrandt et al. [2015] showed that, with advanced computer hardware, real-time on-

line collision-free IK computation can be achieved for a tube robot. However, most of
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these methods worked for robots with simple or special kinematic structures. More-

over, these methods assume the base of the robot is fixed, whereas wheeled and

legged bases were not considered.

2.3 robot base placement

Although the base of robotic arm is normally fixed, where to fix the base is an inter-

esting problem in itself. Positioning robots at appropriate locations is an important

step in system design for industrial applications. Spensieri et al. [2016] showed that

the productivity can be significantly improved by placing the robot wisely. Abol-

ghasemi et al. [2016a] proposed an Easy-of-Reach-Score (ERS) that describes how an

end-effector pose can be reached with a 6-DoF robotic arm from different base loca-

tions. They have also introduced a learning method to estimate the ERS, which allows

the robot to efficiently calculate the ERS in new environments within one second.

However, only grounded obstacles (or obstacles on a horizontal table Abolghasemi

et al. [2016b]) were considered, where floating objects that could potentially blocking

elbow and wrist links were not taken into account. Romay et al. [2014] introduced a

so-called template-based manipulation method, where a valid robot pelvis pose is as-

sociated to each grasp pose. The collision environment was not taken into account in

their approach, instead, a human-in-the-loop scheme was used to evaluate the colli-

sion status. Such human-in-the-loop and semi-autonomous approach is widely used

in practice to manually select robot base location, such as in the DARPA Robotics

Challenge (Oh et al. [2017], Tedrake et al. [2014], Koolen et al. [2013], Kohlbrecher

et al. [2015]).

2.4 reachability maps

As we have discussed, pre-computation is commonly used in inverse kinematics. This

section presents a particular type of pre-computation method, which will be extended

in Chapter 3, to solve more complex problems in cluttered environments for high

dimensional systems.
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(a) UR5 (b) LWR (c) Valkyrie left arm

Figure 2.1: Top-down view of forward reachability maps of (a) 6-DoF Universal Robotics UR5;
(b) 7-DoF KUKA LWR robotic arm; (c) 10-DoF Valkyrie humanoid left upper body,
i.e. 3-DoF torso and 7-DoF arm.

To find a valid end-pose, one important property to consider is the reachability

of the robot. In other words, given a desired end-effector reach pose, we need to

first check if the robot is able to reach that pose, and how to reach that pose if it

is reachable. A robot’s kinematic reachability is fixed once it has been designed and

built, because such ability purely depends on the kinematic model of the robot, e.g.

number of joints, the length of each link, and the range of motion of each joint. This

means the reachability of a particular robot can be analysed off-line and accessed

directly during runtime. Such information is often referred as the Reachability Map.

There exist two types of reachability maps — the Forward Reachability Map (FRM/RM)

and the Inverse Reachability Map (IRM). As we will discuss later, the FRM is more

suitable for fixed-base robotic arms, while IRM is designed for mobile manipulators

and humanoids.

2.4.1 Forward Reachability Map

The FRM introduced by Zacharias et al. [2007, 2013]1 describes how a robotic arm can

reach certain workspace poses by its end-effector. For a discretized workspace, each

voxelized volume is associated with a score that shows how many robot configura-

tions can reach this particular region. By sampling a large number of configurations,

e.g. in billions, the recorded scores can approximate the physical reachability of the

1 The method is called the capability map in the original work.
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robot. Furthermore, each workspace volume ((x, y, z) ∈ R3) can be divided into many

different orientation sectors (SO(3)) to enable more accurate reachability queries in

SE(3). Since the classic FRM only records numerical scores, i.e one integer or double

type data for each workspace voxel, the storage is not an issue, where one can sample

tens or even hundreds of billions configurations to build a very accurate FRM that

densely covers the entire configuration space. During online phase, given a desired

end-effector pose y∗ ∈ SE(3), the FRM can check if the pose is reachable or not, and

show the quality of the pose, e.g. the reach pose has better quality if the score of

corresponding workspace cell is higher. Examples of forward reachability maps of

different robots are highlighted in Figure 2.1. The coloured voxels are regions where

the robot can reach, and greener ones have higher reachability scores. We can see

that the LWR robot, in general, has “better” reachability than UR5, where the lat-

ter has very poor reachability in medium and distant regions. Thus, the reachability

maps sometimes can be used as a tool to analysis the goodness or optimality of the

kinematic design of certain robot platforms.

By recording also the actual joint values of all the configurations, the FRM can be

used directly as IK solver similar to approximate table lookup approaches (Morris

and Mansor [1997], Halfar [2013]). In theory, if one generate an infinite number of

configurations with an infinitely fine workspace grid, the FRM should return one, or

multiple if redundant, valid configurations that satisfy the desired end-effector pose

y∗. In practice without infinite number of configurations, we first find a configura-

tion that reaches close to y∗, which will be used as the initial seed configuration for

classical IK solvers as warm start.

The FRM assumes that the robot base is fixed since it requires a bounded workspace

volume to constructed a finite number of workspace cells. However, the base move-

ment of a mobile manipulator or humanoid is unbounded, which leads to an infinite

number of workspace cells, meaning that FRM can not be directly applied to robots

with floating bases. Although one can randomly or systematically search for possi-

ble base locations (Leidner et al. [2014]), such procedure can be trapped in cluttered

environments where the selected base locations are occupied by obstacles.
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2.4.2 Inverse Reachability Map

As an improvement upon the original FRM, the Inverse Reachability Map (IRM) pro-

posed by Vahrenkamp et al. [2013] is capable of finding feet/base poses and config-

urations for mobile manipulators or humanoids, by storing a map calculated from

the end-effector pose to infer where to put the robot’s feet or base. In contrast to

FRM, IRM is constructed in the end-effector’s frame and transforms all the configu-

rations to poses with respect to the end-effectors as the origin. By doing so, all the

configurations with unbounded base poses are transformed to a bounded volume

originated at the end-effector, which makes it feasible to store in theory any number

of full-body configurations and base poses using a finite number of workspace cells.

Vahrenkamp et al. [2013] first applied the IRM method on a mobile robot and Burget

and Bennewitz [2015] extended the work to humanoids.

2.5 limitations in complex environments

Both the FRM and IRM consider only the kinematic reachability without taking into

account the collision between robot and environment, which works fine in free or

simple environments. However, such artefact leads to planning failures when facing

complex and cluttered environments, where many poses that are kinematically reach-

able but in collision. For example, in Figure 2.2, the shadowed robot posture is the

output of regular IK planner, which is invalid due to the collision between robot and

environment. The humanoid robot needs to take advantage of its dexterous kinematic

structure and floating base for reaching distant target and avoiding obstacles.
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Collision-free end-pose solution

Regular IK/end-pose solution in collision

Figure 2.2: Illustration of end-pose planning in presence of obstacles. Shadowed robot pos-
ture: IK/end-pose computed without considering collision; solid robot posture:
different end-pose is found when taking collision environment into account.
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Figure 3.1: Illustration of end-pose planning in different environments using inverse dynamic
reachability map. Left: a variety of feasible stances (coloured grids) and postures
are available for the humanoid robot to reach the target; right: solutions are re-
duced due to the obstacle on the ground. A valid and sufficient end-pose is a key
pre-requisite to other tasks, such as footstep planning and motion planning.

To address the problem of end-pose planning in complex environments (Section 2.5),

in this chapter, we introduce a novel approach that allows the FRM and IRM to

dynamically update the collision status of all configurations stored in the map, so that

only collision-free ones will be selected during planning. The new maps are called

the forward dynamic reachability map (FDRM/DRM) and inverse dynamic reachability

map (IDRM) respectively.

As we will show later, although the applications of forward and inverse maps

are very different, they are very similar from an algorithmic point of view. Thus,

rather than trying to describe FDRM and IDRM separately, we explain the two maps

jointly in two phases — offline map construction (Section 3.1) and online planning

(Section 3.2).

3.1 offline map construction

The number, as well as names, of end-effectors vary across different robots, for con-

sistence, we define two types of end-effectors — root and tip links. For example, the

21
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fixed-base of a robotic arm is called the root and the gripper is called the tip. Note

that, a kinematic structure can only have one root but potentially multiple tips, for

instance, the base of a mobile manipulator is the root, while the end-effectors of any

upper-body limbs are the tips. More intuitively, a reachability map, either forward or

inverse, is about fix one end of the kinematic chain and figure out where the other

end can reach. However, the forward and inverse indeed have physical meanings. In

general, a map is called forward if the defined root and tips correspond to the “true”

root and tips. For example, for a robotic arm, the true root is the base and tip is the

gripper. So, a map will be called DRM if the base is defined as root and gripper is

defined as tip; and the map will be called IDRM if the gripper is defined as root and

base defined as tip. The “true” root is normally the parent links in the kinematic tree,

and tip is normally the child or end-effector. For the lower-body of humanoids, our

ultimate goal is to place the feet, rather than the pelvis, to desired locations. Also,

feet are normally the child/leaf links in the kinematic tree, which are considered as

the “true” tips. Thus, a map with pelvis as root and feet as tips is considered as DRM,

while a map with foot as root will be considered as iDRM.

3.1.1 Generate valid samples

To construct a reachability map, we first need to generate valid robot configuration

samples which will be analysed and stored. In general, the samples should satisfy

joint limits, balance and self-collision-free constraints. There exist many different

approaches for generating valid robot configurations, such as MoveIt! (Şucan and

Chitta [2013]) and OMPL (Şucan et al. [2012]) for generating self-collision-free con-

figurations, and Drake (Tedrake [2014]) for generating quasi-statically balanced con-

figurations. We generate a large number, M, of valid samples and transform them

to postures where the root link is at the origin of the map for further processing.

Examples of valid full-body configurations of a humanoid robot are highlighted in

Figure 3.2, where the mid-point of the two feet and the left palm are selected as the

root and tip links. More specifically, in FDRM, the mid-point of the feet is the root
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Root of IDRM / Tip of FDRM

Root of FDRM / Tip of IDRM

Figure 3.2: Balanced full-body configurations generated for FDRM/IDRM. The mid-point of
the two feet and the left palm are selected as the root and tip links.

link and left palm is the tip link; and in IDRM, the left palm is the root link and

mid-point of the feet is the tip link.

3.1.2 Space Discretization

Let xmin, xmax, ymin, ymax, zmin, zmax ∈ R be the bounds of a workspace volume in the

root frame. Given a discretization resolution sx, sy, sz ∈ R+ in each axis, a voxelized

workspace V including

V = d xmax − xmin

sx
e × dymax − ymin

sy
e × d zmax − zmin

sz
e ∈N+ (3.1)

voxels v ∈ V can be created. Murray et al. [2016] showed that by choosing different

grid resolution in different workspace regions, they can obtain dense and accurate

space representation in interested area and sparse representation in less important

area. For simplicity, one can also set sx, sy, sz to identical values to generate a uniform

grid, as highlighted in Figure 3.3. Each voxel v is associate with two lists — a reach

list Rv and an occupation list Ov.

3.1.3 Generate reach list

The reach list Rv of voxel v stores the information of how this voxel can be reached

by the tip link(s) while keeping the root link at the origin. In the present section, we

assume the robot has only one tip link, where the reach list is a vector of integers stor-

ing the indices of samples whose tip link reach this voxel. Scenarios with multi-limb
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Reach = {1}

Reach = {2}

Occup = {2}

Occup = {1, 2}

Occup = {1}Base

𝒒1 𝒒2

(1) (2) (3) (4)

(a) Forward Dynamic Reachability Map (DRM)
Reach = {1}

Reach = {2}

Occup = {2}

Occup = {1, 2}

Occup = {1}End-Effector

𝒒1 𝒒2

(1) (2) (3) (4)

(b) Inverse Dynamic Reachability Map (IDRM)

Figure 3.3: Examples of DRM and IDRM offline map construction. From left to right: 1) dis-
cretized space; 2) generate valid samples; 3) transform samples to map origin; and
4) generate reach and occupation lists.

robots will be discussed in Chapter 4. We can further divide the voxel into sectors

with different orientations to obtain more accurate reachability map (Kuffner [2004],

Zacharias et al. [2013]). In general, this is a trade-off between storage and online

computation, where one extreme is to not store any reachability and calculate the

forward kinematics for all samples on-the-fly; and the other extreme is to store an

infinite number of voxels and orientation sectors so that every sample has its own

reachability voxel and no forward kinematic calculation is required. Between the two

extremes is the area where we can store the reachability voxels up to certain resolu-

tion and leave some finest reach pose calculation to online process. In practice, we

should make the decision wisely based on hardware availability, e.g. computational

power and storage resource.

An example of DRM/IDRM offline construction is given in Figure 3.3. In the for-

ward map scenario (Figure 3.3a), the fixed base is the root link and end-effector is

the tip link; the root and tip links are swapped in the inverse map (Figure 3.3b). The

configurations need to be transformed to postures where the root link aligns with the

origin before processing the reach lists. As shown in the third column, the configura-

tions are transformed to correct postures where the fixed base and end-effector are
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aligned with the map origin in DRM and IDRM respectively. Then the reach list of

each voxel can be found by calculating the forward kinematics of the tip link with

respect to the root link, as highlighted in the fourth column in Figure 3.3.

3.1.4 Generate occupation list

The reason behind reach list is clear, which is to indicate whether a workspace region

is reachable or not. However, such information is correct only if the environment is

empty or at least static. In practice, the pose which is reachable during sampling

might no longer be reachable in new environments due to collision. Thus, it is crucial

to have a method to efficiently check the collision status of all the samples and remove

invalid ones before querying the reachability. In a workspaceW with obstacleO ⊂W ,

we need to identify all invalid configurations that are in collision with the present

environment,

Qinvalid = {q | A(qn) ∩O 6= ∅, n ∈ M}, (3.2)

and remove them from the map. However, such process, which may involve millions

of conventional collision checking between robot A(qn) and environment O, is too

expensive to be deployed during runtime.

In complex and changing environments, since the obstacle O is unknown until the

actual planning query arises, there is very limited information for us to pre-process.

Fortunately, after the workspace voxelization, we can pre-analyse the collision status

up to a certain resolution to reduce runtime computation. The pre-processed infor-

mation for collision checking is stored in the so-called occupation list,

Ov = {n | A(qn) ∩ v 6= ∅, n ∈ M}, (3.3)

for each voxel v ∈ V. The occupation list of voxel v stores the indices of samples

that occupy the voxel v when the root link is at the origin. In actual implementation,

to generate the occupation lists for all voxels, we first create a static environment

with V cube obstacles, each of which represents a workspace voxel. Then for each
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Table 3.1: Size and limits of different data types on X64 architecture system.

size (Byte) numerical limit data type example (C++)

1 255 unsigned char

2 65, 535 unsigned short

3 16, 777, 215 struct (unsigned char, unsigned short)
4 4, 294, 967, 295 unsigned int

8 9, 223, 372, 036, 854, 775, 807 unsigned long int

sample qn, n ∈ M, we apply conventional collision checking to find the voxels that

the present sample occupies,

Vn = {v | A(qn) ∩ v 6= ∅, v ∈ V}. (3.4)

Finally, we append index n to the occupation list of each voxel v ∈ Vn. For example,

in the fourth column of Figure 3.3, considering only samples q1, q2, white voxels

have empty occupation lists Ov = { }, grey voxels have occupation lists Ov = {1}

that means these voxels intersect with sample q1, yellow voxels have occupation lists

Ov = {2} that means these voxels intersect with sample q2, and orange voxels have

occupation lists Ov = {1, 2} which means these voxels intersect with both sample q1

and q2.

After having generated the reach and occupation lists, such information need to

be stored on offline storage devices, e.g. a hard drive, and will be loaded into mem-

ory later during runtime. Depending on the hardware and system architecture used,

one should carefully design the data structure and encoding/decoding methods to

efficiently store and load these information and avoid unnecessary storage and com-

putation. For example, the sizes and limits of different data types on X64 architecture

system is listed in Table 3.1. Depending on the number of samples stored, different

data types should be used for storing the reach and occupation lists. In cases where

65, 535 < M ≤ 16, 777, 215, instead of using the built in 4 Bytes unsigned int, we can

create a customized 3 Bytes data structure. By doing so, additional (very minimum)

computation is required to retrieve the actual index n ∈ M from the structure, but

we can save up to 25% storage space.
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(a) Forward Dynamic Reachability Map (DRM)

Obstacle

𝒑𝑟𝑜𝑜𝑡
∗

𝑪𝒕𝒊𝒑

𝒑𝑟𝑜𝑜𝑡
∗

𝒒 Status

1 Invalid

2 Valid

… …

𝑶𝒊 {1}

output: {𝟐}

(1) (2) (3) (4)

(b) Inverse Dynamic Reachability Map (IDRM)

Figure 3.4: Examples of DRM and IDRM online update. From left to right: 1) problem setup;
2) transform map to root pose; 3) validate collision status; and 4) check tip pose
constraints and find valid samples.

3.2 online end-pose planning

During online planning phase, given desired tip link pose, y∗, we need to find a valid

end-pose q ∈ Cvalid whose tip link reaches y∗. In this section, we discuss how to use

the DRM/IDRM as an end-pose planner (Equation 2.6) to provide valid end-poses.

An example of DRM/IDRM online process steps is illustrated in Figure 3.4.

3.2.1 Map relocation

First, we transform the maps to desired root link location. For DRM, the root is nor-

mally the base link which is fixed, where no transformation is required. In scenarios

where the desired target pose is too far from the current base location, one can move

the base as well if it is not strictly “fixed”. However, where to move the base is

not always trivial, which eventually also becomes an end-pose planning problem for
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Figure 3.5: Octant view of DRM collision update. The coloured voxels indicate the capability
of reaching these voxels with the tip link. The left figure shows the full map in
free space, followed by two updated maps in different environments respectively.

moveable base robot. For IDRM where the end-effector is the root link, the whole map

needs to be transformed to p∗root = y∗, as shown in Figure 3.4b. Note that each voxel

in the workspace will be used as a collision object, meaning that transform the map

involves calculating V (number of voxels) times of geometry transformations, which

might be expensive when the workspace is large or finely discretized. On the other

hand, the environment often contains less number of collision objects, in which case,

instead of transforming the IDRM to p∗root in the world frame, one can also transform

all environmental objects to the IDRM frame.

3.2.2 Collision update

Next, we describe how to remove those samples that are in collision with current

environment. In actual implementation, it is difficult to “remove” configurations, i.e.

removing an element from a vector structure, which is unnecessary and time con-

suming. Instead, we keep tracking the validity of all samples and “remove” collision

samples by setting its status to invalid, as illustrated in third column in Figure 3.4.

We first deploy a conventional collision checking between the discretized workspace

V and current environment O ⊂ W , to find a set of voxels that is occupied by envi-

ronmental obstacles,

Voccup = {v | v ∩O 6= ∅, v ∈ V}. (3.5)
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From the occupation list Ov of each voxel v ∈ Voccup, we can find the configurations

that intersect with these voxels. The status of these configurations are set to invalid

since they are now in collision with the environment. An example is illustrated in

Figure 3.5, for better visualization, only an octant view is shown in the figure while

the whole map is in the shape of sphere. The left figure shows the whole map in free

space, the middle and right figures are updated maps in different environments.

3.2.3 Constraint update

After having the collision status updated, remaining configurations are all collision-

free, but not all of these are valid for the task, which should also be removed. The

constraint of the tip link, Ctip, varies across different tasks. For example, for a fixed-

base reaching problem, as shown in Figure 3.4a, we want the tip link (end-effector)

to be close to the desired target pose y∗; for a moveable base reaching problem, as

shown in Figure 3.4b, the tip (moveable base) pose is valid as long as it is on the

ground, so Ctip should only constrain height and orientation, while allowing free

horizontal movement.

To check if a configuration satisfy the constraint, we need to know the tip pose

Ttip(qn), which can be calculated using forward kinematics. Depending on hardware

availability and planning speed requirement, we can calculate the tip pose during

either pre-processing or online phase. Offline calculation requires more memory for

storing these information, whereas online calculation demands less storage but re-

quires more computation resources.

3.2.4 End-pose selection and adjustment

The remaining valid configurations after the collision and constraint update are called

the end-pose candidates, Qvalid. We score the samples according to a Jacobian based

manipulability measure (Burget and Bennewitz [2015]),

scoren =
√

det J(qn)J(qn)T, (3.6)
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Figure 3.6: Illustration of IK adjustment. The shadowed posture is the selected candidate from
an IDRM dataset of a humanoid that reaches desired left palm pose. The solid
posture is the final end-pose calculated by a standard full-body IK by using the
selected candidate as seed pose. The IK solver corrected the leg configurations to
ensure perfect ground contact, while the workspace difference between the two
posture is negligible, meaning that the final end-pose is also collision-free since
the candidate is guaranteed to be collision-free.

where J(qn) is the Jacobian matrix of qn. The scores of all samples are calculated

offline and readily available during run time. In addition, we introduce another cost

term | qn − qcurr | to penalize samples that are far away from the current configura-

tion qcurr. The best candidate can be found by

q∗ = arg max
qn∈Qvalid

wascoren + | qn − qcurr | wb , (3.7)

where wa and wb are constant weighting factors.

The selected configurations might not strictly satisfy the desired tip pose y∗, where

standard IK solvers can be applied to finalize the configuration. Essentially, the end-

pose planner finds a collision-free seed pose to increase the chance for standard IK to

converge to a collision-free output. In practice where the DRM/IDRM contains mil-

lions or potentially tens of millions of configurations, the selected sample is already

very close to the desired result, where only minor changes are required in the con-

figuration space and the corresponding workspace movement is negligible, meaning

that the final output is also collision-free, as shown in Fig. 3.6. In unlikely scenarios

where the final end-pose is in collision, the next best candidate will be selected as a

new seed pose until valid solution is found.
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(a) End-pose planning

(c) Walking execution

(e) Motion execution(d) Motion planning

(b) Footstep planning
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Figure 3.7: Humanoid motion synthesis system overview. The end-pose planner first searches
for a valid end-pose (a), which will be used to generate a footstep plan (b). The
footstep plan is then executed to bring the robot to desired standing location (c).
Finally, a reaching motion is generated and executed to reach the target (d and e).

So far we have discussed the theoretical concepts of dynamic reachability maps. In

next section, we highlight a practically application showing how to use the inverse

map (IDRM) to plan end-poses for floating base humanoids.

3.3 end-pose planning for humanoids

Humanoid robots are designed for accomplishing a wide variety of tasks in human

friendly environments but have redundant many DoFs, which makes real-time plan-

ning and control extremely challenging. In real world applications, such as in the

DARPA Robotics Challenge (DRC, Pratt and Manzo [2013]), it was unreliable to di-

rectly plan whole body motions. Typically, operators manually decided where the

robot stood and what the desired posture should be to execute an action. However,

such end-pose is non-trivial to find, especially in complex and changing environ-

ments, where standing locations and full-body postures need to be changed for avoid-

ing obstacles, as illustrated in Figure 3.1. In this section, we present how to address

this problem by utilizing the proposed IDRM method.
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3.3.1 Humanoid Motion Planning Framework

As mentioned in Section 1.4, we formulate humanoid motion planning problem as

a combination of end–pose planning (Equation 1.1), footstep planning (Equation 1.4)

and motion planning from a fixed stance (Equation 1.5). Interleaved with walking and

full-body motion execution, the overall system flow can be summarised by Figure 3.7.

The present section focuses on solving the end-pose planning problem, whereas the

motion planning will be discussed later in Chapter 7.

3.3.2 IDRM construction

The general IDRM construction steps have been discussed in Section 3.1. This section

explains in details how to construct an IDRM for humanoid robot, in particular how

to generate balanced full-body configurations. The dimensionality of the IDRM for

a N-DoF humanoid robot is q ∈ RN+6, where the extra 6 DoFs represent the robot

transformation in the world frame. For simplicity, in this chapter, we only consider

single hand reaching problem with the relative position of the two feet fixed, i.e. the

mid-point of the two feet is the tip link of IDRM and the reaching hand is the root

link. More complex scenarios with bi-manual reaching problems will be discussed in

Chapter 4.

3.3.2.1 Generate valid samples

The main difference between fixed-base robot and humanoid is that the later has an

extra balance constraint. We apply a full-body IK solver (Tedrake [2014]) to generate

feasible quasi-statically balanced configurations

q∗ = FullBodyIK(qseed, qnom, C) (3.8)
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which is a sequential quadratic programming (SQP) solver in the form of

q∗ = arg min
q∈RN+6

| q− qnom | 2Qq

subject to bl ≤ q ≤ bu

ci(q) ≤ 0, ci ∈ C

, (3.9)

where Qq � 0 is the weighting matrix, bl and bu are the lower and upper joint bounds.

The seed pose qseed is used as the initial value in the first iteration of SQP solver.

The output q∗ is a configuration that satisfies all the constraints defined in C and

is close to qnom. The constraints include quasi-static balance constraint, end-effector

pose constraint, etc. We say a robot is quasi-statically balanced if the centre-of-mass

(CoM) projection lies within the support polygon with no velocity and acceleration

along any axis. We only store postures that are quasi-statically balanced, self-collision-

free and reach an area of interest in front of the robot. Note that one can still reach

targets behind by rotating the whole robot, which is the key feature of stance pose

selection. We repeat the sampling process with random seed and nominal poses until

M number of random balanced samples are generated.

3.3.2.2 Space discretization and memory consumption

Depending on robot size, different workspace voxel resolution should be chosen (Sec-

tion 3.1.2). In our implementation for the NASA humanoid robot, Valkyrie, which

is close to 2 meter tall, we have created a 43m3 workspace volume, i.e. [−2, 2] for

each axis, with 10cm voxel resolution. According to Equation 3.1, such a discrete

workspace includes V = 68921 voxels.

The memory required for storing such IDRM varies based on different number

of samples, M, as illustrated in Figure 3.8. The sample configuration storage is the

memory required to store the full-body configuration for each sample, which is ap-

proximately equivalent to the memory required for the regular IRM (Burget and

Bennewitz [2015]). We can find that the storage for occupation lists is the significant

component. Ultimately, IDRM requires much more memory storage than IRM. How-

ever, as we show later, IDRM can handle online end-pose queries much faster than
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Figure 3.8: Memory consumptions of IDRM, which is approximately in a linear relationship
with the number of samples.

IRM. In other words, IDRM essentially trades off storage for better efficiency of online

computation. As mentioned earlier, this data needs to be store efficiently to minimize

memory consumption. We store the configurations and occupation information in the

most intuitive but naïve way, i.e. an integer vector. A more efficient storage technique

will be discussed in Chapter 6.

3.3.3 End-pose planning

Online end-pose planning using IDRM has been detailed in Section 3.2. For hu-

manoid reaching problem, we only need to define an appropriate tip constraint, Ctip.

Assume the robot needs to stand on a flat floor with horizontal feet orientation, which

means the Ctip should constrain roll and pitch of feet transformation close to zero. To

avoid checking all samples we first find the voxels Vground that may contain balanced

samples, i.e. voxels that intersect with the floor. Figure 3.9 illustrates different phases

during end-pose planning for humanoids. Note that only a cross section of the IDRM

is plotted for visualization, whereas the whole IDRM should have the shape of a

sphere.
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(a) Original IDRM. (b) Collision update. (c) Constraint update. (d) Selected end-pose.

Figure 3.9: IDRM end-pose planning example. The iDRM is transformed into world frame,
and the axis indicates desired end-effector pose in the world frame. The coloured
voxels indicates the tip (feet) reachability to that voxel while having the reach-
ing hand at the target pose. Greener voxels contain more collision-free reaching
configurations, but each coloured voxel has at least one configuration.

3.3.4 Evaluation

In order to evaluate the end-pose planning performance, we compare IDRM against

the following three approaches:

• Random Placement (RP): the robot’s feet are randomly placed close to the target

within a certain radius. This may be reasonable when no further information is

available. Then a random configuration is passed to IK solver to obtain a result.

• Random Placement DRM (R-DRM): first, we create a regular DRM with mid-point

of feet as the root and left palm as the tip. When we process an online query,

we select stance poses randomly (similarly to RP) and transform the DRM to

this location. We then select a seed configuration from the DRM.

• Inverse Reachability Map (IRM): by bypassing the collision update (Section 3.2.2),

we obtain a regular IRM approach equivalent to Vahrenkamp et al. [2013], Bur-

get and Bennewitz [2015].

All these three methods as well as IDRM iterate until a balanced and collision-free

result is found. The IDRM dataset with 1 million samples and 10cm voxel resolution

is used.

We set up with 3 different scenarios of grasping tasks at an increasing level of

difficulties, as illustrated in Fig. 3.10. In the simple task, the target is placed on top of
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Figure 3.10: Evaluation scenarios, from left to right: easy, medium and hard tasks.

Table 3.2: Humanoid end-pose planning computation time of single-arm reaching problems
(in seconds).

Algorithms
Tasks

Easy Task Medium Task Hard Task

RP 0.1916 1.2322 2.2654
R-DRM 0.7521 2.2531 38.8050
IRM 0.0440 0.9560 2.2910
IDRM 0.0553 0.0566 0.0678

the table close to the edge. There is no other obstacles apart from the table itself. In

the second scenario, the target is moved away from the edge of the table, with a new

obstacle placed at the comfortable standing location. A more challenging scenario

is set up where multiple obstacles are placed on the floor and close to the upper

body as well. In each case, the reaching hand must achieve the full SE(3) desired

pose. In order to fully explore the capabilities of different approaches, each scenario

has 10 sub-scenarios with slightly different target and obstacle positions. For each

sub-scenario, the result of the RP and R-DRM are averaged over 100 trials (IRM and

IDRM will always find same result in each sub-scenario). The sub-scenarios’ results

are then averaged into the 3 different scenarios.

Table 3.2 highlights the performance of the end-pose planning queries for differ-

ent tasks. The result shows that RP performs relatively well due to its simplicity.

R-DRM is not originally designed to work with the floating base system, so the algo-

rithm requires extra time to transform and update the fixed-base DRM thus heavily
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slows down the whole process. IRM and IDRM outperformed RP and R-DRM in

simple tasks mainly because these two algorithms are originally designed for effi-

cient end-pose planning for floating base robots. In difficult scenarios, the random

base placement in R-DRM can lead to the cases where the stance location is occupied

by obstacles and thus the DRM needs to iteratively invalidate all samples. This also

implies one of the major limitations of regular IRM approach that IRM has no knowl-

edge about collision information. In the cases where the samples with the highest

scores are in collision, the algorithm will still select and evaluate them. The valid

samples with relatively low scores can only been found after many iterations. The

computational time of IDRM is approximately constant in different scenarios. Apart

from the initial collision check between IDRM voxels and the environment, IDRM

treats all environments equally no matter simple or complex. Since the collision sam-

ples are already removed, the selected sample is guaranteed to be collision-free. Also,

the selected stance pose allocates the robot close to a balanced posture. The final IK

solver can adjust the sample with a negligible amount of workspace movements such

that the first candidate sample is sufficient for finding valid end-poses.

3.4 conclusion

This chapter presents a novel approach, the forward and inverse dynamic reacha-

bility maps. In particular, we have demonstrated that IDRM is able to plan, in real-

time, valid stance locations and collision-free full-body configurations for humanoid

robots in complex and cluttered environments. We have implemented and validated

the method using the model of a 38-DoF humanoid robot, NASA Valkyrie, and car-

ried out evaluations to compare the performance of IDRM against other approaches.

The results suggest that IDRM method is capable of searching for valid solutions in

different environments in a more efficient manner than other alternatives — typically

finding a valid end-pose within 0.1 seconds.

In this setup, we consider only stance poses on a flat ground where the relative

positions of two feet are fixed with the same orientations on the horizontal surface.

Moreover, we only solve end-pose problem for single arm reaching tasks. In next
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chapter, we will discuss how to solve multi-limb end-pose planning problems for

humanoids on uneven terrains.



4
E N D - P O S E P L A N N I N G W I T H M U LT I - L I M B S T R U C T U R E S

Figure 4.1: Motion planning of grasping on uneven terrains. The robot automatically chooses
collision-free stance locations and grasping configurations.

To make full use of the dual-arm and bipedal nature of humanoid robots, it is essen-

tial to find appropriate end-poses for bimanual manipulation tasks in environments

with uneven terrains. However, it is non-trivial to directly extend the iDRM method

to include both dual-arm and bipedal features due to the curse of dimensionality, as

the memory required to ensure a sufficient configuration space coverage increases

exponentially making it infeasible to run on current commodity hardware.

To resolve this issue, in this chapter, we propose a hybrid approach which combines

the advantages of both the Forward and Inverse Dynamic Reachability Map, i.e. DRM

and IDRM, to plan end-poses for humanoid robots in complex and rugged environ-

ments. We use an upper-body iDRM to first find valid upper-body configurations

and pelvis poses. We then use a lower-body DRM to find valid leg configurations on

uneven floors. A valid full-body end-pose is then obtained by combining valid upper-

body and lower-body configurations. We have validated this approach on the 38-DoF

NASA Valkyrie humanoid robot and demonstrated that the proposed method is able

to find valid, i.e. balanced and collision-free, end-poses for humanoid robots online

for grasping tasks on uneven terrains, as shown in Figure 4.1.

39
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Tip 1 of upper-body IDRM
Root of lower-body DRM

Right Foot
Tip 1 of lower-body DRM

Left Foot
Tip 2 of lower-body DRM

Pelvis

Left Hand
Root of upper-body IDRM

20 DoF Upper-body IDRM

12 DoF Lower-body DRM

Tip 2 of upper-body IDRM

Right Hand

Figure 4.2: Upper-body IDRM and lower-body DRM for the 38 DoF NASA Valkyrie Robot.
Each leg has 6 DoF and each arm has 7 DoF, the robot torso has 3 DoF and the
neck has 3 DoF. The pelvis represents an extra 6 DoF virtual joint that connects
the robot to the world.

4.1 reachability maps with multiple tip links

Recall that both DRM and IDRM can have only one root link but multiple tip links.

For a robot with K tip links, the reach list stores a list of paired values specifying both

sample and tip indices, i.e. Rv = {(n, k) . . . }, where n ∈ M is the sample index and

k ∈ K is the tip index.

As discussed in Section 3.3, an IDRM can be used directly for humanoid end-pose

planning, but is limited to environments with flat ground only. As the IDRM can

have multiple tip links, a direct and naïve approach is to create an IDRM with one

root link and three tip links, where one hand is selected as the root and the rest three

limbs are treated as tip links. However, this significantly increases the dimensionality

of the problem, i.e. the number of samples has to increase exponentially with each tip

link to cover the high dimensional space. Consequently, the required memory size is

so large that it becomes infeasible to run on any commodity hardware.

To plan end-poses on uneven terrain while keeping a manageable number of sam-

ples and memory size, we take advantage of the robot’s inherent structure to treat

upper-body and lower-body separately. We separate the robot at the torso pelvis joint,
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Figure 4.3: Left: the upper-body’s full reachability map; right: the reachability map con-
strained to the front of the robot. All colored voxels are reachable by the robot
and greener voxels are regions with high reachability scores. Only part of the map
is plotted for clarity (the whole map is sphere shaped).

as illustrated in Figure 4.2. We create an IDRM for the upper-body and a DRM for the

lower-body. One hand can be chosen as the root of the upper-body IDRM, and the

other will be the second tip. In the rest of this section, we will discuss how to create

the two maps, and then combine and use them to plan a bimanual tasks on uneven

terrain.

4.1.1 Constructions of DRM/IDRM for humanoids

4.1.1.1 Upper-body iDRM

In this case study, the left hand is selected as the root link of the upper-body iDRM,

and the right hand and pelvis are treated as two tip links. Several iDRM datasets

with different number of samples (all with 10cm workspace voxel resolution) are

generated for the 20-DoF upper-body of Valkyrie. Traditionally, samples of an in-

verse reachability should cover the whole configuration space, i.e. for the case of a

humanoid, samples of the map should reach behind the robot. However, since the

robot’s sensor are predominantly facing forward, we want to express a preference for

stable stance locations that give us reasonable manipulability. We adopt a heuristic

in our method, where we only store samples with both hands reaching comfortable

manipulation poses in front of the robot, as shown in Figure 4.3. Note that the robot

can still manipulate objects that are currently far away or behind the robot by walk-
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Figure 4.4: Left: the lower-body’s unconstrained reachability map, only part of the map is
plotted for clarity; right: the reachability map constrained to feet placed below the
pelvis.

ing to an appropriate pre-action stance location, which is the key point of end-pose

planning.

4.1.1.2 Lower-body DRM

The lower-body of Valkyrie has 12-DoF (6-DoF per leg). Though the legs have a large

range of motion, the manifold of balanced configurations is much smaller even on

uneven terrain. Therefore, we have reduced the “reachability" map for the lower-body

so that the legs have the range to adapt to the uneven terrain but they won’t reach

most unnatural poses1. To this end, we generate lower-body configurations with two

feet placed in a region below the pelvis (0.8− 1.1 meter for Valkyrie), as shown in

Figure 4.4. This ensures that the lower-body DRM has sufficient samples to adapt to

uneven terrain without demanding extra memory for storing poses that can’t provide

support for the robot, e.g. poses where the feet reach above the pelvis.

1 Though a metric of being “unnatural” appears to be subjective, it has meaningful implications for
achieving such poses on a real robot in terms of joint range and sustainable power. In our work, we
define the terms natural and comfortable as the distance in the configuration space from a chosen nominal
configuration derived from the posture shown in Figure 4.2.
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Algorithm 1 Humanoid End-Pose Planning

Require: y∗lhand, C, ε
Ensure: p∗lfoot, p∗rfoot, q∗

1: y∗root = y∗lhand
2: Transform Mupper to y∗root //Figure 3.4b (2)
3: CollisionUpdate(Mupper) //Figure 3.4b (2-3)
4: Q = ∅
5: for ∀qn ∈ collision-free subset of Mupper do
6: Tpelvis, Trhand =TipGlobalPoses(qn, y∗root)
7: if SatisfyConstraint(Tpelvis, Trhand, C) then //Figure 3.4b (4)
8: Transform Mlower to Tpelvis //Figure 3.4a (2)
9: CollisionUpdate(Mlower) //Figure 3.4a (2-3)

10: for ∀qm ∈ collision-free subset of Mlower do
11: plfoot, prfoot =TipPoses(Tpelvis(qn), qm)
12: if ValidTerrainContact(plfoot, prfoot) then //Figure 3.4a (4)
13: q = {qn, qm}
14: if q is balanced then
15: cost = f (q)
16: if cost < ε then
17: return plfoot, prfoot, q
18: else
19: Q = Q ∪ (plfoot, prfoot, q, cost)
20: p∗lfoot, p∗rfoot, q∗ =LowestCost(Q)

return p∗lfoot, p∗rfoot, q∗

4.1.2 End-Pose Planning for Bi-manual Tasks on Uneven Terrain

Let Mupper be the upper-body IDRM and Mlower be the lower-body DRM. Given

a task y∗ = (y∗lhand, y∗rhand), start states ps, qs and the environment Env, the end-

pose planner needs to find an end-pose that contains p∗ = (p∗lfoot, p∗rfoot) and q∗.

Firstly, we create two tip pose constraints Ctip = {Cpelvis, Crhand} for the upper-body

IDRM, where Cpelvis constrains the pelvis link to be inside a feasible height region and

approximately perpendicular to the ground (i.e. upright), and Crhand constrains the

right hand to be near y∗rhand. Algorithm 1 highlights our proposed end-pose planning

method for bimanual tasks on uneven terrain, where in lines 1-7 Mupper is used to

find collision-free upper-body configurations that satisfy the constraints C, such that

two hands can reach the goal y∗ with a reasonable pelvis pose Tpelvis.



44 end-pose planning with multi-limb structures

It is worth emphasizing that, given an upper-body configuration qn, the global

pose of a link can be calculated by forward kinematics. However, since the pelvis and

right hand are two tips of Mupper, we can obtain the global poses of these two links

from the reach poses stored in the IDRM without computing the forward kinematics.

For each tip link, i.e. pelvis and right hand, the IDRM reach pose is referenced in the

root (left hand) frame. Given the desired root pose y∗lhand, the global pose of a tip link

is

Ttip,world
n = y∗ × Ttip,root

n , (4.1)

where Ttip,world
n and Ttip,root

n represent the tip pose of sample n in global and root

frames accordingly. Here Ttip,root
n is pre-computed for each sample during offline pro-

cessing and y∗ is given for each task. Hence, computing the global poses of the pelvis

and the right hand is very efficient in our approach.

After retrieving the global poses, we can then check if the configurations satisfy the

pelvis and right hand constraints. For a candidate upper-body configuration qn, we

transform Mlower to Tpelvis and find valid lower-body configurations, i.e. collision-free

and valid contacts with the terrain, as shown in lines 8-12 of Algorithm 1. To check

foot contacts, we first extract the feasible step regions from the environment. Similar

to Equation4.1 with Tpelvis as the y∗, we can obtain the tip (foot) poses in the global

frame and check if the foot is within the step regions. If the lower-body configuration

has valid contacts, we then combine the candidate upper and lower body configura-

tions to acquire the full-body configuration. A final check is necessary to ensure the

combined full-body configuration is balanced. Since multiple valid end-poses may

exist, we can either iterate though Mupper and Mlower to find the best candidate, or

stop the search once a given threshold ε is met based on the cost function f (q). Dif-

ferent cost functions can be defined for different tasks and environments. In general,

for humanoid robots, it is desirable to have an end-pose with minimum travelling

distance that is close to the start/nominal configuration. The following cost function

is used in our implementation

f (q) = ‖Tpelvis(q)− Tpelvis(qs)‖W1 + ‖q− qs‖W2 , (4.2)
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Figure 4.5: The first figure highlights the upper-body IDRM and lower-body DRM samples,
followed by two examples of selected end-poses in different scenarios.

where W1, W2 are weights.

After end-pose planning, the last step is to refine the output and ensure all neces-

sary constraints are satisfied, e.g. the hand(s) need to precisely reach the target, the

feet need to be perfectly in contact with the terrain, and the pose needs to be statically

balanced. A non-linear optimization-based solver Tedrake [2014] is used to adjust the

candidate end-pose with respect to these constraints. The final output of the solver

is an end-pose which is collision-free and satisfies all the given constraints. In cases

where the solver reports failure or a solution that is in collision, one then needs to

return to the next best candidate end-pose until the solver succeeds.

4.1.3 Footstep and Motion Planning

After fining the end-pose, a footstep planner is invoked to plan a set of footsteps to

enable walking from current stance to p∗, followed by a motion planner to generate

a valid full-body trajectory to realize the end-pose q∗. Footstep and motion planning

are not the main focus of this work, and any suitable algorithms could be used. The

footstep planner from Deits and Tedrake [2014] and the full-body motion planner

from Yang et al. [2016b] are implemented here.
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4.2 evaluation

4.2.1 Construction of dynamic reachability maps

We have generated maps with different root/tip links and number of samples to

analyse how different splitting of the map affects the performance:

• Φ1: A upper-body iDRM with the left hand as the root, pelvis and right hand

as the tips. Three datasets are generated with different number of samples:

100, 000(Φ1a), 1, 000, 000(Φ
1b) and 4, 000, 000(Φ1c).

• Φ2: A upper-body iDRM with the left hand as the root, pelvis and right shoulder

as the tips. Three datasets are generated with different number of samples:

10, 000(Φ2a), 100, 000(Φ
2b) and 1, 000, 000(Φ2c).

• Φ3: A right arm DRM with right shoulder as the root and right hand as the tip.

Three data sets are generated with different number of samples: 10, 000(Φ3a),

100, 000 (Φ
3b) and 1, 000, 000(Φ3c).

• Φ4: A lower-body DRM with the pelvis as the root, left and right feet as the

tips. Four datasets are genreated with different number of samples : 1, 680(Φ4a),

44, 400(Φ
4b), 227, 400(Φ4c) and 742, 560(Φ

4d).

All datasets are created with 10cm workspace grid resolution. The construction time

and file size are highlighted in Table 4.1. The construction time of Φ1 maps are rel-

atively longer because many of the samples are discarded and only these with both

hands fall into the region of interest are kept. The Φ1 maps are also expensive to

store since the kinematic structure includes the entire upper-body with two arms. It

is worth emphasizing that the file size of Φ1 is similar to Φ2 and Φ3 combined with

same number of samples, e.g. Φ
1b ≈ Φ2c + Φ3c.

The proposed end-pose planning method can be obtained by combining Φ1 and Φ4,

for example, combining Φ1a and Φ4a gives a dataset with a theoretical 105 × 1680 =

168 million full-body configurations; combining Φ1c and Φ4c gives a dataset with

a theoretical 909.6 trillion full-body configurations. A further split method can be
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Table 4.1: Analysis of upper- and lower-body reachability maps.

Map No. samples
Construction

time (min)
File size

(MB)

Upper-body
two arms

Φ1a 105 28.8 108
Φ

1b 106 289.7 1, 082
Φ1c 4× 106 1090.8 4, 352

Upper-body
left arm

Φ2a 104 0.25 9
Φ

2b 105 2.61 91
Φ2c 106 25.0 879

Right arm
Φ3a 104 0.05 2
Φ

3b 105 0.58 22
Φ3c 106 6.19 217

Lower-body
two legs

Φ4a 1, 680 0.24 1
Φ

4b 44, 400 6.15 33
Φ4c 227, 400 30.0 160
Φ

4d 742, 560 103.5 535

obtained by combining Φ2, Φ3 and Φ4, for example, combining Φ2c, Φ3c and Φ4c

gives a dataset with a theoretical 2.274× 1017 full-body configurations. It is clear that

the total number of full-body configurations increases exponentially with the number

of components. However, combining these maps significantly slows down the on-line

planning as we are about to show.

4.2.2 End-pose planning benchmarking setup

We have crated a set of benchmark problems by passing random hands and feet pose

constraints, as well as quasi-static balance constraint , into the full-body IK solver to

obtain a random but balanced configuration. The configurations are filtered for self-

collisions. We then populate spherical obstacles into the free environment randomly

but not colliding with the robot until a required number of obstacles is reached.

Finally, we can extract the height and position of each foot from the generated con-

figuration and create terrain areas accordingly. A valid end-pose planning problem is

thereby generated. We also store the desired poses for both hands, collision environ-

ments and terrain areas. Note that the robot configurations are generated to ensure

the problem is solvable with at least one solution. The configuration is not known
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Table 4.2: End-pose planning performance across different lower-body datasets and using the
non-linear full-body IK.

Method
Map success

rate
IK success

rate
Final success

rate
Avg. time(s)

Φ1b + Φ4a 72.7% 71.8% 71.4% 0.08± 0.02
Φ1b + Φ4b 73.7% 72.8% 72.5% 0.09± 0.03
Φ1b + Φ4c 80.7% 79.0% 78.7% 0.13± 0.10
Φ1b + Φ4d 86.3% 84.8% 84.2% 0.23± 0.33

Non-Linear IK - 99.8% 59.3% 0.03± 0.01

to the candidate algorithm, and the algorithm is allowed to find a different but valid

solutions if multiple solutions exist. In our benchmarking, we created 1000 random

problems, each of which contains 20 spherical obstacles with 15− 20cm radius.

4.2.3 Simulation benchmarking

4.2.3.1 Different lower-body datasets

As we have mentioned, the lower-body is used for maintaining balance rather than for

maximum reachability. Thus, we should use a dataset that contains enough samples

which is sufficient for finding balanced configurations rather than having a dataset

with millions of samples that consumes huge amount of memory and slows down on-

line computation. We combine Φ1b with different Φ4 maps to analyse the affects differ-

ent lower-body maps might introduce and therefore select the suitable one for other

experiments. We also evaluated the performance by directly applying the non-linear

IK without using DRM/iDRM. Table 4.2 shows the success rate and average plan-

ning time using different methods. The map success rate is the rate of DRM/iDRM

reports finding valid candidate end-poses, which is then passed to the IK adjustment

function. The IK success rate is the rate of non-linear IK successfully adjusted the

candidate poses and satisfy all constraints. The pose is then passed to a collision

checking function, a final success is reported if the pose is collision-free.

We notice that these methods can not achieve 100% success rate, which is caused

by several factors: firstly, although we have created each map with millions of con-
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figurations, it is still inefficient to cover the high dimensional full-body configuration

space (38 for Valkyrie); secondly, in the interest of time, we only allow the method to

try the first 10 different poses from Q, where a valid pose with relatively high cost

might be discarded; lastly, some valid poses which are not in collision may get inval-

idated due to aliasing of the occupancy grid. Such artefacts can be reduced by using

a finer workspace grid, but they can’t be completely eliminated. This is a common

issue with all grid-based methods.

It is interesting that the final success rate is very close to the initial map success rate,

which means that once the DRM/iDRM maps find candidate end-poses, those poses

are very likely to be valid. On the other hand, the direct non-linear IK method reports

a 99.8% success rate, but only 59.3% is finally valid, e.g. collision-free. The result

suggests that using only the non-linear IK is inefficient in cluttered environments,

and the proposed method is indeed improving the success rate.

The benchmarking was done in randomized and complex environments designed

to fully evaluate different approaches. Although the methods do not achieve 100%

success rate in the benchmarking, as we will show later in Section 4.2.4, they are

sufficient for solving practical problems. Based on the result we conclude that the

success rate as well as planning time increase with the number of lower-body sam-

ples. We use the lower-body dataset Φ4c for the rest of the experiments. However,

other datasets with more samples might be used depending on the different demands

between success rate and planning time.

4.2.3.2 Different map combinatorics

We choose to split the humanoid robot into two parts at pelvis. However, one can

further split the upper-body into smaller parts, e.g. left body part (Φ2) and right

arm (Φ3). Table 4.3 shows the end-pose planning result of using different upper-

body maps, where the success rate and planning time increases with the number of

samples as expected. However, the further splitting (Φ2 + Φ3 + Φ4) leads to a much

longer planning time while the success rate is not significantly improved compare

to the proposed splitting (Φ1 + Φ4). Furthermore, in the case of using further split

method with maps Φ2c + Φ3c + Φ4c, the final success rate is lower than using pro-
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Table 4.3: End-pose planning performance analysis of using same lower-body dataset with
different upper-body datasets. Considering the trade-off between success rate and
planning time, the method Φ1c + Φ4c is used for hardware experiments.

Method Total No.
samples

Map
success

rate

IK
success

rate

Final
success

rate
Avg. time (s)

Φ1a + Φ4c 2.274× 1010 57.9% 57.1% 56.8% 0.04± 0.01
Φ1b + Φ4c 2.274× 1011 80.7% 79.0% 78.7% 0.13± 0.10
Φ1c + Φ4c 9.096× 1011 88.6% 85.7% 85.1% 0.40± 0.37
Φ2a + Φ3a + Φ4c 2.274× 1013 70.0% 65.1% 63.7% 0.10± 0.05
Φ2b + Φ3b + Φ4c 2.274× 1015 91.3% 83.5% 80.4% 0.56± 0.39
Φ2c + Φ3c + Φ4c 2.274× 1017 96.9% 85.0% 81.2% 8.08± 4.68

posed split method with maps Φ1c + Φ4c. Note that the map reports a 96.9% success

rate, but dropped to 85.0% after IK adjustment, most of which were caused by fail

to satisfy balance constraint. This means further splitting the body leads to higher

chance of violating the balance constraint of the full-body. Splitting the upper- and

lower-body at the pelvis link thereby is proved to be the most practical considering

the trade-off between coverage, planning success rate, and algorithm runtime. We use

the proposed split method with datasets Φ1c for upper-body and Φ4c for lower-body

for the following experiments on robot hardware,

4.2.4 Hardware experiments

To demonstrate the capability of end-pose planning on uneven terrain, we created

three bimanual box-picking tasks with different terrain types. In the first scenario

B1 (Figure 4.6a), the robot has to walk onto a higher floor, which in theory can be

found by classic iDRM as well; in the second case B2 (Figure 4.6b), the robot has to

stand on surfaces at two different heights; in the last scenario B3 (Figure 4.6c), the

robot needs to avoid a collision between its right leg and a large obstacle during

the picking task. Our method is capable of finding different collision-free end-poses

in these environments. We found that the possible pelvis poses are quite limited in

practice for bimanual tasks, i.e. the robot has to stand directly in front facing the box

in order to pick it up with two hands. Nevertheless, our DRM/iDRM hybrid method
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(a) B1: Pick up a box from a higher terrain.

(b) B2: Pick up a box by placing the right on a higher terrain.

(c) B3: Pick up a box while the right leg position is restricted by a large obstacle.

Figure 4.6: Bimanual box-picking tasks on the terrains of different heights. The robot is able
to automatically find appropriate standing locations and full-body configurations.

provides a valid solution for the robot to perform bimanual picking tasks in presence

of uneven terrain.

We further validated two single-arm grasping tasks where the target was placed

at different locations, as shown in Figure 4.7. A upper-body iDRM is created with

the left hand as root link and pelvis as tip link. The right arm joints are set to a pre-

defined nominal configuration for all samples, as shown in Figure 4.5. The constrain

set C then contains pose constraints only for the pelvis but not for the right hand. In

the first scenario S1 (Figure 4.7a), the target was placed at the edge of the table, where

the robot could easily grasp without being too close. So, the robot could stay away

from the high surface, while keeping the target at a reachable distance. Whereas in

the second task S2 (Figure 4.7b), the target was placed further away from the edge

of the table and enclosed by the obstacle. The end-pose planner found a feasible

configuration to place two feet on different surfaces so the robot was close enough

for grasping the target.

We would like to highlight that with the modular and combined forward inverse

dynamic reachability maps presented in this work, we are able to find end poses

which include lunging body or taking a sidestep (in scenarios B3 and S1) for increas-
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(a) S1: Grasp a target placed at the edge of the table.

(b) S2: Grasp a target placed deeper on the table.

Figure 4.7: Single-handed grasping tasks on the terrains of different heights. Case I: the target
is easily reachable, so the robot does not need to be too close to the table; Case II,
the robot needs to be closer to the table by placing the right foot on the uneven
terrain.

ing the reachable workspace by leveraging the advantage of the legged system. This

is in contrast with the scenarios demonstrated in Chapter 3 where we limited the foot

poses to a constant distance and planning for the mid-feet point. A supplementary

video can be found at https://youtu.be/o-05EHf-gg8.

4.3 conclusion

We presented a novel end-pose planning algorithm that combines the Forward and

Inverse Dynamic Reachability Map (DRM/IDRM) for humanoid robots to automati-

cally find appropriate end-poses in presence of uneven terrain. Using NASA’s Valkyrie

humanoid as a testbed, we demonstrated the effectiveness of the proposed method

in planning end-poses for both single-arm and bimanual tasks on uneven terrains.

A current limitation of our method is the amount of memory required for stor-

ing the maps, e.g. 4.5GB for Valkyrie using the datasets Φ1c and Φ4c. Techniques

such as interpolation can be used to reduce the required number of samples, thus

reducing the storage size. However, those approaches are normally used for low di-

mensional problems and do not scale. More importantly, collision information can

not be encoded with the interpolation, meaning that online collision checking needs

to be invoked for each interpolation which significantly increases the planning time.

https://youtu.be/o-05EHf-gg8
https://youtu.be/o-05EHf-gg8
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Our future work involves investigating new methods of encoding the configuration-

to-workspace mapping for better memory efficiency. This will allow us to increase

the resolution of the voxel grid and improve the success rate of our method.

In this part of the thesis, we have discussed how to find the “goal state”, for either

fixed-base robotic arms or humanoid robots, single- or multi-limb structures. The

assumption we have mentioned in the beginning of this part, i.e. given the start and

goal states, has now been satisfied and the actual motion planning can proceed.





Part II

M O T I O N P L A N N I N G





5
M O T I O N P L A N N I N G P R E L I M I N A R I E S

A fundamental need in robotics is to have algorithms that convert high-level spec-

ifications of tasks from humans into low-level descriptions of how to move, which

often refers to the term motion planning. It involves automatically finding a sequence

of configurations that takes the robot from a start to a goal. In Part I, we have dis-

cussed how to efficiently find the goal, i.e. end-pose planning (Equation 1.1). We now

move forward to the next phase — motion planning (Equation 1.2).

Generally speaking, motion planning can be grouped into optimization-based and

search-based algorithms. Optimization-based methods (Ivan et al. [2013], Ratliff et al.

[2009], Schulman et al. [2014]) generate optimal trajectories with respect to some

cost function, but may get stuck in local minima and fail to produce valid solution

when the problem is non-convex or ill-defined. On the other hand, search-based ap-

proaches (Lavalle [1998], Kuffner and LaValle [2000], Kavraki et al. [1996], Elbanhawi

and Simic [2014], Yang et al. [2016b]) promise to find valid solutions for complex

problems. As titled, the aim of this thesis is to solve high dimensional planning

problems in complex and cluttered environments, which fits nicely to the type of

problems promised by search-based methods. Thus, we will focus on solving the mo-

tion planning problems by efficiently finding a valid trajectory using search-based

method. The trajectory then can be executed directly, or further improved by other

optimization-based methods.

5.1 completeness in robot motion planning

The notion of completeness, a key property for motion planning algorithms, becomes

very important in this thesis since we are considering planning problems in very

complex environments. An algorithm is considered complete if for any input it cor-

57
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rectly reports whether there is a solution or not. If a solution exists, it must return

one in finite time. Optimization-based methods are incomplete due to local optima,

meaning that in many cases the algorithms are unable to find a solution when one

or even multiple solutions exist. Unfortunately, search-based algorithms are also in-

complete. A weaker notion of completeness called probabilistic completeness is used to

describe random sampling-based algorithms. This means that with enough samples,

asymptotically, infinite, the probability that it finds an existing solution converges

to one. Another term, resolution completeness, is used if an algorithm guarantees to

find a solution in finite time; however, if a solution does not exist, the algorithm may

run forever by incrementally increasing the sampling resolution; or, the algorithm

may terminate in finite time by reporting no solution at certain resolution, though a

solution may exist at a finer resolution.

5.2 search-based motion planning

This section presents two main categories of search-based motion planning algo-

rithms, discrete search planning and sampling-based planning. We first generalize each

approach and then discuss some legacy as well as state-of-the-art algorithms in each

category.

5.2.1 Discrete Search Planning

The discrete search planning provides introductory concepts for better understanding

of the search-based planning, which will be directly used or extended by many other

more advanced algorithms.

Let x be a state of the robot or/and world, and X be the set of all possible states

called the state space1. It is important that, for discrete planning, the state space set

X must be countable, i.e. finite or countably infinite. Let u be an action, which can

1 The state space is equivalent to configuration space if x = q.
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Algorithm 2 General discrete search algorithm

Require: xstart, xgoal, f
Ensure: x[0:T], T ∈N

1: Qopen.Insert(xstart) and Qclosed.Insert(xstart)
2: p(xstart) = (Null, Null)
3: while Qopen is not empty do
4: x← Qopen.GetFirst()
5: Qopen.Remove(x)
6: if x = xgoal then
7: Success = True
8: Break
9: for all x ∈ NX (x) do

10: if x′ /∈ Qclosed then
11: Qopen.Insert(x′) and Qclosed.Insert(x′)
12: p(x′) = (x, u)
13: else
14: p(x′)← Resolve(x, x′, p(x′))
15: if Success = True then x[0:T] = ∅
16: while p(x) 6= Null do
17: x[0:T].PushFront(x)
18: x = p(x′)

be applied to a state x, to produce a new state x′. We define f as the state transition

function,

x′ ← f (x, u). (5.1)

Let U(x) denote all the actions that a state x can take. The set of all neighbour states

of x, i.e. states that can be reached from x by applying an action u ∈ U(x),

NX (x) = {x′ | x′ ← f (x, u), u ∈ U(x)}, (5.2)

is called the neighbourhood of x.

Given a start state xstart ∈ X and a goal state xgoal ∈ X , the planning problem

is to find a sequence of actions that when applied, transforms the start state to goal

state. A general search template is highlighted in Algorithm 2. There are two different

status for each state: open or closed. A state is marked as open if it has not been visited

yet, whereas initially all states except xstart are open. A state is marked as closed if it

has been visited at least once. The transitions are recorded in p(x′) = (x, u), where x
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is often called the parent of x′. This information is used to retrieve the plan in correct

order. When looping through the open set Qopen, the choice of which state to check

first varies across different algorithms. Also, when a state gets visited more than once,

how to resolve the parent state is handled differently in Resolve(x, x′, p(x′)). Different

algorithms have been proposed to solve the search problem, we now presents several

classical search algorithms. It is worth emphasising that, since the state space is finite

and all states are known, these discrete planning algorithms are complete.

5.2.1.1 Breadth First Search

The breadth first search method (Lee [1961]) maintains Qopen as a first-in first-out

queue, which returns the state that is firstly added. This property causes the fron-

tier to grow uniformly, meaning all possible trajectories with T steps are exhausted

before trajectories with T + 1 steps are investigated. Therefore, breadth first method

guarantees to find a path with minimum steps T. Note that the trajectory with mini-

mum steps is not necessarily the optimal one. There is no work to do in the Resolve()

function for breadth first method.

5.2.1.2 Depth First Search

Opposite to breath first search, the open set Qopen in depth first search method is a

last-in first-out queue, where the last added state will be returned first. As a result,

depth first search explores faster in the space and can find longer trajectories very

early. Similar to breadth first, there is no work to do in Resolve() function for depth

first method as well.

5.2.1.3 Dijkstra’s Algorithm

The aforementioned two algorithms have no preference of one action over any oth-

ers during the search, meaning that they only find a feasible path without reasoning

about the quality of it. The Dijkstra’s algorithm (Dijkstra [1959]), however, finds opti-

mal plans based on given criteria.

Let c(x, u) ∈ R≥0 be a non-negative value denote the cost to apply action u on state

x, and C(x) denote the cost-to-come from the initial state xstart to x. The cost-to-come
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can be computed incrementally during the search process. Initially, C(xstart) = 0, and

the cost-to-come is computed as C(x′) = C(x) + c(x, u) each time a new state x′ is

generated. In Dijkstra’s algorithm, the open set Qopen is sorted based on the cost-

to-come, and the state with lowest C(x) is returned when calling Qopen.GetFirst().

This, however, means that if a state x′ is visited again, the new path to x′ might have

lower cost than the currently stored path. So, extra process is required in Resolve()

to ensure the optimality, where the path with smaller cost is selected and the p(x′) is

reassigned accordingly.

5.2.1.4 A* Search

The A* (A-star, Hart et al. [1968]) is an extension of Dijkstra’s algorithm that tries to

reduce the total number of explored states and improve search efficiency by intro-

ducing a heuristic estimate of the cost to get to the goal from a given state. Let G(x)

denote the cost-to-go from state x to xgoal. The A* search algorithm works in exactly

the same way as Dijkstra’s algorithm. The only difference is the function used to sort

Qopen, where the sum C(x) + G(x) is used, implying that the priority queue is sorted

by estimates of the optimal cost from xstart to xgoal. The A* algorithm guarantees to

find optimal plans based on the metric defined in G(x).

5.2.2 Sampling-based Planning

Let bn,l and bn,u denote the lower and upper joint limits of the robot’s n-th actuator,

n ∈ N, where the joint position can be set to any real values qn ∈ [bn,l , bn,u]. Thus, the

configuration space C is uncountably infinite, which means all these aforementioned

discrete planning algorithms are inapplicable since these algorithms require the state

space X be finite or countably infinite. Fortunately, it is not always necessary to

know all states, one can still find valid plans by only knowing or searching a subset

of the entire configuration space. In the rest of this section, we will discuss some

so-called sampling-based planning algorithms that are able to plan complex motion

in a uncountably infinite configuration space. However, note that these algorithms

are incomplete, instead, they are probabilistically complete. We first explain some



62 motion planning preliminaries

Algorithm 3 General single-query sampling-based algorithm

Require: qstart, qgoal
Ensure: q[0:T]

1: Initialise search graph G(V, E) //V: vertex/configuration/state, E: edge/local-
path

2: G.AddVertex(qstart)
3: G.AddVertex(qgoal)
4: while Terminate = False do
5: hasNewSample = False
6: while hasNewSample = False do
7: qnew = NewSample()
8: hasNewSample = SatisfyAllConstraints(qnew)

9: G.Expand(qnew)
10: if qnew = qgoal then
11: q[0:T] = ConstructPath(G)
12: return Success
13: return Failure

preliminaries in sampling-based methods, followed by details of several well-known

algorithms.

Given a start state qstart ∈ Cfree and a goal state qgoal ∈ Cfree, the planning problem

can be defined as finding a sequence of configurations

q[0:T] ← MotionPlanning(qstart, qgoal)

subject to Edge(qt, qt+1) ⊂ Cfree

q0 = qstart

qT = qgoal

(5.3)

However, the collision-free configuration space region Cfree in a particular environ-

ment is difficult, or even impossible, to compute for multi-DoF robots. Instead, it

is relatively easy to check whether a configuration q is in Cfree, which is normally

called collision detection or collision checking. Traditionally, the main constraint in

sampling-based planners is collision-free constraint (including both self-collision-free

and robot-environment collision-free constraints). However, some other constraints

might also be required for other types of robots. For example, a humanoid robot
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Algorithm 4 General multiple-query sampling-based algorithm
// Off-line pre-processing
Ensure: G(V, E)

1: Initialise search graph G(V, E)
2: while Terminate = False do
3: hasNewSample = False
4: while hasNewSample = False do
5: qnew = NewSample()
6: hasNewSample = SatisfyAllConstraints(qnew)

7: G.Expand(qnew)
8: Terminate = HaveEnoughSamples() or TimeUp()

// On-line planning
Require: G(V, E), qstart, qgoal
Ensure: q[0:T]

1: Vstart, Vgoal = FindStartAndGoalVertices(qstart, qgoal)
2: FoundSolution, x[0:T] = DiscreteSearch(Vstart, Vgoal,X ≡ G)
3: if FoundSolution = True then
4: q[0:T].PushFront(qstart)
5: q[0:T].PushBack(qgoal)
6: return Success
7: else
8: return Failure

state needs to satisfy also balance constraint. Thus, in general, a trajectory should

contain only states in the valid region,

q[0:T] → Cvalid, (5.4)

where a valid state q ∈ Cvalid ⊆ Cfree satisfies all necessary constraints, such as

collision-free, within joint limits, balanced, etc.

Sampling-based algorithms treat collision check or validity check as a black-box

function,

φ(q) : C → {True, Flase}, (5.5)

where φ(q) = True if q ∈ Cvalid, and φ(q) = False if q /∈ Cvalid. To obtain a valid

state, one can keep generating random states q ∈ C and pass them into the validity

check module until a valid state q ∈ Cvalid is found. After having the state sampler
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and validity checker modules ready, different algorithms can be developed. In general,

there are two different types of problems in sampling-based algorithms, single-query

and multiple-query. For single-query problem, the start and goal states are given only

once per query, which means there is no need for pre-computation. In contrast, for

multiple-query problems, different start and goal states are given for same environ-

ment, where pre-processing could make the planning more efficient. Many different

sampling-based methods have been proposed over the last two decades, most of

which can be generalized by Algorithm 3 and 4. The main differences across those

algorithms are the ways of how new samples are generated, i.e. NewSample() and

how the graph is expanded, i.e. G.Expand().

In particular, we explain two algorithms and their notable extensions in details —

a single-query planner Rapidly Exploring Random Tree (RRT, Kavraki et al. [1996]) and

a multiple-query planner Probabilistic Roadmap (PRM, Lavalle [1998]).

5.2.2.1 Rapidly Exploring Random Tree (RRT)

The process of Algorithm 3 can be seen as incrementally constructing a search tree

that gradually increases the size of Cfree without considering the whole set C, which is

uncountably infinite. In general, this family of trees is called rapidly exploring dense tree

(RDT). In a special case where the new sample is generated randomly when calling

the NewSample(), the tree is referred as a rapidly exploring random tree (RRT, Lavalle

[1998]). Algorithm 5 highlights the graph expansion process in RRT. Given a new state

qnew, the closest state qnear in the current tree is found. An interpolation function will

be invoked, if the new state is too far from the closest one, to find the state along the

same direction with the maximum allowed distance for one step. This is because the

probability of having collision increases with the distance. A well chosen maximum

distance for one step, dmax, should reduce the chance of running into collision while

keeping relatively faster exploration speed. Finally, a CheckMotion(qnear, qnew) func-

tion is called to evaluate if the motion from qnear to qnew is valid, e.g. collision-free.

A typical CheckMotion(qa, qb) function assumes the robot can move from qa to qb

linearly, where a densely interpolated states between qa to qb will be checked. Differ-

ent motion checking and interpolation functions can be applied in special cases, such
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Algorithm 5 RRT implementation of G.Expand(qnew) in Algorithm 3

1: qnear = G.GetNearestNeighbor(qnew)
2: d = Distance(qnew, qnear)
3: if d > dmax then
4: qnew = Interpolate(qnear, qnew, dmax)

5: if CheckMotion(qnear, qnew) = True then
6: G.AddVertex(qnew)
7: G.AddEdge(qnear, qnew)

as Kinodynamic (Hsu et al. [2002]) or Dubins-Car planning (Karaman and Frazzoli

[2013]). New state and edge will be appended to the existing tree if the motion is

valid. The search procedure keeps repeating until the new sample is equal or close to

the goal state.

There exist many different RRT variations (Elbanhawi and Simic [2014]), where the

two most famous extensions are RRT* (RRT-Star) (Karaman and Frazzoli [2011]) and

RRT-Connect (Kuffner and LaValle [2000]). The RRT* method performs a re-wire step,

after new vertex and edges are added, to find better paths from start to the new state.

Given infinite run time, RRT* converges to an asymptomatically optimal solution.

However, such re-wire significantly slows down the exploring particularly for solving

high dimensional problems. On the other hand, by introducing a bi-directional search

scheme, RRT-Connect shows great improvement in terms of efficient valid motion

planning in high dimensions.

5.2.2.2 Probabilistic Roadmap (PRM)

While RRT-like approaches create new explore trees from scratch every time for differ-

ent start and goal states. The well known multi-query planning method PRM creates

a roadmap off-line and reuses the map for different planning queries. During the off-

line construction phase, instead of finding one closest vertex in the existing tree, a set

of near vertices will be selected. The motion between new sample and each near ver-

tex is checked, and the valid ones will be added into the map. During on-line phase,

given a start and goal states, qstart and qgoal, we first find the closest vertices in the

existing roadmap, Vstart, Vgoal. A discrete search, such as A* or Dijkstra’s algorithm,

is then invoked to find a path in the roadmap that connects Vstart and Vgoal. Finally,
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Algorithm 6 PRM implementation of G.Expand(qnew) in Algorithm 4

1: G.AddVertex(qnew)
2: NG(qnew) = G.GetNearStates(qnew)
3: for all qn ∈ NG(qnew) do
4: if CheckMotion(qn, qnew) = True then
5: G.AddVertex(qnew)
6: G.AddEdge(qn, qnew)

the start and goal states, qstart and qgoal, are appended to the path accordingly. An in-

teresting fact is that, although the discrete search algorithm guarantees completeness

on the roadmap, but the roadmap itself is a finite subset of the infinite configuration

space states. Thus, the discrete search algorithm is complete, however, a PRM algo-

rithm, that internally uses discrete search, is incomplete. Normally, PRM is allowed to

draw new samples only, which makes it probabilistically complete. We can also com-

pletely remove off-line phase and generate new roadmap on-line, which will make

PRM a single-query planner (Sánchez and Latombe [2003]). Similar to RRT*, there

also exists an optimal version of PRM, namely the PRM* (PRM-Star, Karaman and

Frazzoli [2011]). In complex environment, both on-line sampling and re-wiring are

very expensive processes due to multiple collision checking function calls.

5.3 dynamic roadmaps

In sampling-based algorithms, collision checking is normally the most expensive

operation and reportedly consumes up to 90− 95% of the planning time Hsu and

Sun [2004]. Lazy collision checking is used to delay the collision checking until it

is needed Bohlin and Kavraki [2000]. One can also define possible collision regions

and limit collision checking to these regions Sánchez and Latombe [2003]. However,

these techniques only reduce the collision checking time indirectly by reducing the

number of calls, but not the actual computation time of collision checking function.

Parallel implementations have been proposed to speed up collision checking and mo-

tion planning Bialkowski et al. [2011], Pan and Manocha [2012], but these approaches

focus on parallelization and system implementation based on existing algorithms.
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In contrast, the Dynamic Roadmap (DRM2) algorithm Leven and Hutchinson [2002],

an extension to PRM, algorithmically reduces the collision checking time by encoding

configuration-to-workspace occupation information. Given different environments,

the DRM can efficiently remove invalid edges and form a valid subset of the full

roadmap. Subsequently, search algorithms can proceed without considering collision

checking since the remaining vertices and edges are all collision-free.

However, encoding the occupation information requires to store a significant amount

of data, which needs to be loaded into memory during run-time. In the early work Kall-

man and Mataric [2004], Leven and Hutchinson [2002], the low amount of available

memory allowed storing only small roadmaps with limited number of vertices and

edges. Without enough vertices and edges to densely cover the whole configuration

space,the DRM algorithm was incomplete with very low planning success rates Kall-

man and Mataric [2004], Voelz and Graichen [2016].

5.3.1 Dynamic Roadmap Preliminaries

A classical PRM contains a connected graph G = (V , E), where V ⊂ Cfree are the

vertices and E are the edges that connect two neighbouring vertices, as highlighted

in Figure 5.1 (left). However, these vertices and edges are generated during off-line

pre-processing, which may not be valid in unknown and non-static environments.

The validity of pre-stored vertices and edges must be checked, and in many cases we

need to sample new collision-free configurations during the on-line phase which is

very time consuming.

The dynamic roadmap (DRM) is a variation of the PRM proposed by Leven and

Hutchinson [2002]. The DRM is dynamic in the sense that the graph G can be dynam-

ically updated in different environments. The invalid vertices and edges can be effi-

ciently identified and removed, with the remaining ones forming a new graph of only

valid vertices and edges. This reduced graph is ready for path searching algorithms

without considering collision checking. The key feature of DRM is a configuration-

to-workspace mapping, as highlighted in Figure 5.1 (right). One can find the list

2 It is worth emphasising that, in Part I, the term DRM refers to Dynamic Reachability Map for end-pose
planning, while in the present Part, DRM refers to Dynamic Roadmap for motion planning.
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Figure 5.1: Left: probabilistic roadmap in configuration space; right: workspace swept volume
of an edge.

of discretized workspace voxels which an edge occupies, referred to as the swept

volume. If one or more of the voxels in the swept volume are in collision with the en-

vironment, then the corresponding edge becomes invalid. In practice, it is inefficient

to check the swept volume of all edges when the roadmap contains too many vertices

and edges. Instead, the occupation information is stored per each workspace voxel,

i.e. each voxel stores a list of edges that sweep through this voxel. In a new environ-

ment, we first find all the voxels that are occupied by the environmental obstacles.

Then by iterating through the occupation lists of these invalid voxels, all the invalid

edges can be found and removed accordingly.

5.3.2 Limitations: Curse-of-Dimensionality

The main observed limitation of the existing DRM method is its low success rate,

meaning that in many cases, the DRM cannot find a valid plan even when a solution

exists. The success rate could be as low as 20 − 30% Kallman and Mataric [2004],

Voelz and Graichen [2016]. This is due to inadequate edges in the roadmap. However,

the number of edges cannot be arbitrarily increased due to the curse-of-dimensionality

and limited memory for storing the swept volume information.

For a 6-DoF robotic manipulator, where K = 15 different discretization values are

chosen for each joint, e.g. evenly from [−π, π], we have 156 ≈ 11.4 million configu-
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rations for the entire arm—corresponding to the number of vertices in the DRM. A

DRM with this many vertices can easily form hundreds of millions of edges. If each

edge sweeps around 500 workspace voxels, that means the swept volume informa-

tion may contain tens of billions of indices (unsigned int3), which is infeasible to

store on commodity hardware. Note that this is only a 6-DoF case, the problem is

undoubtedly exacerbated as the dimensionality of the robot further increases.

To make the problem tractable, compression techniques were introduced to reduce

the number of vertices and edges to a manageable level Leven and Hutchinson [2002],

Murray et al. [2016]. However, it is clear that the roadmap loses completeness once

any standard compression method gets introduced, which will then result in a low

success rate. A method of hit-matrix was proposed to compress the dataset without

reducing the total number of vertices and edges Schumann-Olsen et al. [2014], which

allows the DRM to store up to one million vertices. However, for robots with more

actuators, a roadmap with only one million configurations is far from being complete.

It has been proven that path search algorithms such as A* is complete on the given

graph Coppin [2004], but the roadmap/graph is itself incomplete as it does not cover

the whole configuration space, i.e. V ( C. Fortunately, as we will formally explain

in next Chapter, resolution completeness could be achieved if the roadmap contains

a sufficient number of samples densely covering the configuration space at a certain

grid resolution.

3 The size of one unsigned int is 4 Byte on 64-bit operating systems. Hence storing indices for the
occupation information in this example requires 4× 500× 108 Byte ≈ 186.5 GB of memory.
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Figure 6.1: The 7-DoF KUKA LWR robot with Dexterous Hand operating inside a cage. Left:
grasping the target from upright posture; right: dropping the object to the side.

As we have mentioned in Section 5.3.2, a complete or resolution complete DRM re-

quires a tremendous number of vertices and edges, yet storing all the information for

these is infeasible on commodity computers with current technology. In this chapter,

we propose a new algorithm, the Hierarchical Dynamic Roadmap (HDRM), which is

resolution complete. A novel hierarchical structure that utilizes the kinematic hierar-

chy and symmetry is introduced to store DRMs with tens of millions of vertices and

billions of edges in a memory efficient manner. Extensive benchmarking has been car-

ried out that proves the HDRM is indeed resolution complete and is able to find valid

solutions under extremely constrained conditions within a few milliseconds or less.

We further demonstrate on a 7-DoF KUKA LWR robot showing that the HDRM can

generate valid motion plans for solving real-world problems in extremely constrained

environments, as highlighted in Figure 6.1.

71
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6.1 resolution completeness of a deterministic roadmap with a dis-

cretized workspace

As we have stated in Section 5.1, completeness is a key property in robot motion

planning. In this section, we provide theoretical proof of the conditions and bound-

aries of resolution completeness for deterministic DRM methods with a discretized

workspace, e.g. the HDRM.

The work in LaValle et al. [2004] has proven that a deterministic roadmap is resolu-

tion complete. Here, deterministic refers to the property of the sampling distribution.

The authors proved that uniform sampling (e.g. a Sukharev grid) results in a resolu-

tion complete planning algorithm. To show this, let Ψ be the subset of the power set of

C corresponding to all open subsets that can be constructed with algebraic constraints

as defined in Latombe [1991], and Ψ(x) for x ∈ (0, ∞) be the set of all Cfree with the

width of Cfree, w(Cfree) ≥ x (see LaValle et al. [2004]). The width x can be viewed as the

minimum width of a passable corridor in the collision free portion of the configura-

tion space. Fig. 6.2a illustrates the corridor (with solid color background). All queries

lie within this corridor, therefore, if all the queries of the deterministic roadmap also

lie within the same corridor, the roadmap is hence resolution complete. The minimal

with of the corridor x required for completeness is defined in LaValle et al. [2004].

We extend their proof to roadmaps with discretized work space.

Lemma 1. After M iterations, a deterministic DRM is resolution complete for all Cfree ∈
Ψ(4b(N)M−

1
N + f (s)), where M is the number of samples, N is the dimension of the con-

figuration space, s is the resolution of the workspace, b(N) is a factor that depends on the
sampling method (b(N) = 1 for HDRM) and f (s) is a robot-dependent function.

Proof : It has been proven in LaValle et al. [2004] that, after M iterations, a de-

terministic roadmap planner is resolution complete for all Cfree ∈ Ψ(4b(N)M−
1
N ),

without workspace discretization. However, as shown in Fig. 6.2, with a discretized

workspace with voxel size s > 0, the corresponding Ccorridor and Cobs are both inflated

due to the workspace discretization, where Ccorridor is the narrowest corridor in the

configuration space. Let C ′corridor and C ′obs denote the inflated Ccorridor and Cobs, respec-

tively, and they must not intersect. After discretizing the workspace, the algorithm is
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Figure 6.2: Illustration of additional volume an obstacle in a discretized workspace occupies
in the configuration space. An algorithm is resolution complete if it accounts for
the additional increase corridor width f (s) due to discretization.

able to solve problems for C ′free where w(C ′free) ≥ w(Cfree) + f (s). Thus, the algorithm

is resolution complete for all Cfree ∈ Ψ(4b(N)M−
1
N + f (s)). �

To calculate f (s), let V(e) denote the voxelized swept volume of an edge e, and

CV(e) be the C space region occupied by V(e), then the width of C ′free can be defined as

w(C ′free) = 4b(N)M−
1
N + f (s) = sup

e∈E
{w(CV(e))}, (6.1)

which yields

f (s) = sup
e∈E
{w(CV(e))} − 4b(N)M−

1
N . (6.2)

It is practically difficult to pre-determine f (s) before sampling as it depends not only

on the number of samples M and resolution s, but also on the robot’s geometric

shape.

6.2 hierarchical configurations

While storing the swept volumes for hundreds of millions of edges is the most mem-

ory consuming part of DRM, storing vertices is also very expensive. This problem

becomes evident only when we consider large, e.g. tens of millions, of vertices. For

instance, a vertex in the six-dimensional roadmap contains six float values corre-
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Figure 6.3: HDRM 2-DoF example with K1 = K2 = 3, the number of roadmap vertices stored
in the structure is K1 × K2 = 9.

sponding to a configuration of a 6-DoF robot. This means 10 million vertices in total

contain 60 million float values, which require 60× 106× 4 Byte = 229 MB of memory.

Though the robot configurations are definitely required, we argue that these millions

of configurations can be managed much more efficiently rather than storing them

explicitly, as described next.

Let [bn,l , bn,u] be the lower and upper bounds of joint n ∈ N of a N-DoF robot. An

even discretization of the n-th joint to Kn ∈N values results in configurations

qn(kn) = bn,l + (kn − 1)× bn,u − bn,l

Kn − 1
(6.3)

where kn ∈ Kn. Let

k(n) = [k1, . . . , kn] (6.4)

be a n-dimensional vector containing the joint value indices for the first n joints, and

q(k(n)) = [q1(k1), . . . , qn(kn)] (6.5)

be a n-dimensional vector contains the actual joint values corresponding to k(n). The

full N-dimensional robot configuration can be retrieved given k(N) for all joints. The

hierarchical configurations can be arranged in a tree-like structure. For example, as

shown in Figure 6.3, consider a 2-DoF robot, where the range of motion of each joint

is [−π, π]. Given K1 = K2 = 3, we have q1(1) = q2(1) = −π, q1(2) = q2(2) = 0, and

q1(3) = q2(3) = π. Then, k(2) = [1, 1] gives the robot configuration q = [−π,−π],

k(2) = [2, 3] gives another robot configuration q = [0, π] and k(1) = [2] gives the

first joint value q1 = 0.
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Algorithm 7 Generate hierarchical indices from integer index

Require: Dimension level n, vertex index i
Ensure: Hierarchical indices k(n)

1: Quotient= i
2: while n > 1 do
3: Quotient, Remainder=Division(Quotient,∏n

1 Kn)
4: kn =Remainder
5: k1 =Quotient

return k(n) = [k1, . . . , kn]

Algorithm 8 Generate integer index from hierarchical indices

Require: Hierarchical indices k(n) = [k1, . . . , kn]
Ensure: Dimension level n, vertex index i

1: i = 0
2: for l ∈ {1, . . . , n− 1} do
3: counter = 1
4: for j ∈ {l + 1, . . . , n− 1} do
5: counter = counter× Kj

6: i = i + counter× kl

7: i = i + kn
Return n, i

There exist M = ∏N
1 Kn different combinations, which is the number of configu-

rations (vertices) that can be described by this structure. So we only need to store

∑N
1 Kn rather than N ×∏N

1 Kn float values for all the configurations. For instance,

assuming N = 6 and Kn = 15, n ∈ N, we can store M ≈ 11.4 million configurations

with 6× 15× 4 = 360 Byte instead of 229 MB of memory as in the previous example.

The robot configurations can be accessed with k(n), however, the vertices in the

roadmap are indexed with one integer index i ∈ M. Let H : (n, i) 7→ k(n) be the map

from pair (n, i) to k(n), and H−1 : k(n) 7→ (n, i) be the corresponding inverse map.

Given an index i and level n, the first n indices k(n) = H(n, i) can be efficiently calcu-

lated using Algorithm 7. Similarly, given hierarchical indices k(n), the corresponding

(n, i) can also be found by Algorithm 8. The hierarchical configuration structure dra-

matically reduces the memory consumption for storing the vertices in the roadmap.

As we will show in 6.4, another advantage of this structure is that the occupation lists

can also be stored hierarchically.
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Figure 6.4: (a) A long edge E(q1, q4) in classical DRM sweeps through a large number of
workspace voxels. (b) Dense vertices and short edges in HDRM.

6.3 removing swept volumes

There are two types of occupation information: the occupation voxels of a vertex

(dark grey voxels in Figure 6.4) and the swept volume of an edge (light grey voxels

in Figure 6.4). In the classical DRM algorithm, the edge is invalidated if one or more

of the voxels in the swept volume are in collision. However, there will be many sub-

edges still valid in the cases where only very few of the voxels are in collision. For

example, in Figure 6.4a, if only the red voxel is in collision, the long edge E(q1, q4) is

invalid while the sub-edge E(q3, q4) is still valid. Yet, the whole edge is considered in-

valid as these sub-edges are not stored in the roadmap. This is the underlying reason

for planning failures and the low success rate of the classical DRM method. In fact,

we think that storing the swept volumes does not utilize the resources because this

information is used only for collision checking but not for the actual path planning.

If possible, we should discard the swept volume information and use the memory for

storing more critical information, such as more vertices and edges.

In our method, we store only the occupation voxels of the vertices but not the

swept volumes of the edges, while still being able to check the collision status of both

vertices and edges. Let Oa be the occupation voxels of a vertex a, and Oa,b be the
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swept volume of edge E(a, b). If the two vertices a, b are very close and the edge is so

short that

Oa,b = Oa ∪Ob, (6.6)

then we do not need to store the swept volume of the edge since it can be represented

by the occupation voxels of the two end-point vertices, as illustrated in Figure 6.4b.

The edge E(a, b) is collision-free if vertices a, b are collision free, and vice versa. This

ensures that a colliding workspace voxel only affects those corresponding short edges

without invalidating other ones. A lower bound of Kn needs to be met in order to

achieve such roadmap density.

Let θn = bn,u − bn,l be the range of motion of joint n, s be the workspace voxel size,

and r be the approximate radius of the robot’s tip link, as illustrated in Figure 6.5.

For joint n, set all the subsequent/child joints to zero positions, so that the rest of

the robot kinematic chain is fully extended to a maximum length Rn. In order to

satisfy (6.6), the distance between the end-effectors of two neighboring configurations

must not be greater than s +
√

2r, so that the two end-effector links occupy same or

neighboring workspace voxels. So, the following inequality constraint must be met,

s +
√

2r
2πRn

≥ ∆n

2π
, (6.7)

rearranging terms yields

∆n ≤
s +
√

2r
Rn

. (6.8)

This means that joint n should have at least

Kn ≥
θn

∆n
+ 1 =

θnRn

s +
√

2r
+ 1 (6.9)

evenly distributed values within the range of motion. We choose the minimum valid

value for each Kn as the minimum value already guarantees resolution completeness for

certain workspace voxel resolution s. Greater Kn only introduces more vertices and

edges that slows down the searching process.
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Figure 6.5: Illustration of the maximum discretization step ∆n the n-th joint can take without
violating (6.6).

The swept volumes can be removed if (6.9) is true for all joints. This will signifi-

cantly reduce the required memory for storing the DRM. Furthermore, the informa-

tion of the hundreds of millions of edges itself can be removed as well, because all the

edges can be calculated analytically from the hierarchical structure. A N dimensional

configuration k(N) has 2× N neighbors (apart from the ones on the border of the

range of motion), each of which forms an edge with the vertex k(N). Since the edges

have no direction, a N dimensional HDRM with M vertices contains roughly N ×M

edges.

6.4 hierarchical occupation lists

We described how to create a hierarchical structure to efficiently store tens of millions

of configurations (6.2), and explained why and how to remove the swept volumes as

well as the edges (6.3). The final step involves processing and storing the occupation

lists of all the vertices. When the roadmap contains tens or potentially hundreds of

millions of vertices, their occupation lists are too expensive to store using classical

methods. Next, we discuss how to take the advantage of the hierarchical structure to

alleviate this problem.
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Figure 6.6: Illustration of different collision bodies of the 7-DoF LWR arm. The greener voxels
represent root bodies and more red voxels represent tip bodies

Let Bn be a collision body between joint n and n + 1. An example of different

collision bodies of the 7-DoF LWR arm is illustrated in Figure 6.6 where the greener

voxels represent root bodies and more red voxels represent tip bodies. Consider KN

configurations with identical values for the first N − 1 joints but only differing at the

last joint, as illustrated in Figure 6.7. These KN configurations are invalid if BN−1 is in

collision at the red voxel. In the classical DRM method, the red voxel’s occupation list

needs to store KN indices to encode this information, where each index corresponds

to a particular configuration, which is very inefficient.

Instead of storing integer indices i ∈ M for each configuration, we store a list

of pairs (n, i), where i ∈ ∏n
1 Kn and n ∈ N. A pair (n, i) is added to a workspace

voxel v’s occupation list if Bn of configuration k(n) = H(n, i) occupies this voxel.

In Figure 6.7, when the red voxel is in collision with the environment, based on the

pair (N − 1, i), we can invalidate the i-th vertex of level N − 1 of the hierarchical

structure. It is clear that that all these KN configurations are invalid since the first

N − 1 joints already caused body BN−1 to be in collision. This means we can encode

the occupation information of KN configurations using only two, rather than KN

indices. Consider another case with K2 · · · × KN vertices, which could be millions,

that have same value k1 for the first joint but differ at all other joints. If k1 puts B1 to

a colliding position with the environment, then the millions of vertices with same k1

are all invalid. In such case, we can more efficiently use only a pair (1, k1) instead of

millions of indices to encode the occupation information of all these vertices. As we
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Figure 6.7: Illustration of hierarchical occupation lists.

will show later, using the hierarchical structure and this novel indexing technique, we

can dramatically reduce the memory required for storing the occupation information.

Algorithm 9 shows the details of generating the full occupation lists for all workspace

voxels. First, given the size of the workspace and grid resolution s, a set of workspace

voxels V can be generated. Each voxel v ∈ V is associated with an empty occupation

list Ov. Lines 3-9 generate the initial hierarchical occupation lists, but we can com-

press the lists to further reduce memory storage (line 10-20). The compression idea

is based on the fact that some robots, or part of the robots, are rotational symmetric,

which means that rotating the last joint does not change the occupation list of the last

link at all. More generally, if the collision body Bn of Kn vertices (xKn + 1 to xKn + Kn,

x ≥ 0) from the same sub-tree of level n occupies a voxel v, then the occupation list

of v needs to store only one pair of (n− 1, ·) rather than Kn pairs of (n, ·), because

the first n− 1 joints already make Bn unavoidably occupy voxel v. We “promote" the

occupation list from level n to n− 1 if such rotational symmetry occurs.

6.5 motion planning using hdrm

With the HDRM created and loaded, our goal is to efficiently solve motion planning

queries online with different start and goal states in changing environments. There

are three main steps as follows.
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Algorithm 9 Generate hierarchical occupation lists

Require: Robot model R, voxelized workspace V

Ensure: Hierarchical occupation lists Ov, v ∈ V

1: for v ∈ V do
2: Occupation list Ov = ∅
3: for n ∈ N do
4: for i ∈ ∏n

1 Kn do
5: k(n) = H(n, i)
6: Set first n joints of R to q(k(n))
7: V = findBodyOccupiedVoxels(V,R,Bn)
8: for v ∈ V do
9: Ov = Ov ∪ {(n, i)}

10: for v ∈ V do
11: for n = N to 1 do
12: O = extractListOfDimension(Ov, n)
13: Remove duplicated indices and sort O
14: for Oi ∈ O do
15: if Oi mod Kn = 0 & Oi+Kn = Oi + Kn then
16: Ov = Ov\{(n, p)|p ∈ [Oi, . . . , Oi+Kn ]}
17: if n > 1 then
18: k(n) = [k1, . . . , kn] = H(n, Oi)

19: Ov = Ov ∪ {(n− 1, ∏
p=n−1
p=1 kp)}

20: i = i + Kn − 1
Return Ov, v ∈ V

6.5.1 Collision update

First, we create a voxelized environment to represent the discretized workspace. Then

given the current environment, we apply conventional collision checking on the two

environments to find the list of voxels that are occupied by the obstacles. For each

occupied voxel, we iterate though its occupation lists and invalidate vertices in the

hierarchical structure accordingly.

6.5.2 Connecting start/goal to roadmap

The start and goal vertices Vstart,Vgoal are required for graph search algorithm, which

are the closest valid vertices to the start and goal configurations qstart, qgoal . Tradition-

ally, this involves comparing the distance between a given configuration q and all ver-
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tices in the roadmap and finding the one with shortest distance. Such process could

be very slow for a roadmap with a large number of vertices. In our approach, instead

of searching though all vertices, we can analytically compute the closest one. Given

a configuration q, we can easily get the closest hierarchical configuration kclosest(N).

Then, the corresponding closest vertex iclosest can be found using Algorithm 8.

6.5.3 Shortest path searching

The last step is to find a valid path connecting Vstart and Vgoal. The A* shortest path

searching algorithm is used. We implemented the sequential version of A* using a

single thread on the CPU. Parallelization is not the main focus of this thesis, however,

we acknowledge that parallel version of Dijkstra or A* algorithms would make the

search even more efficient Rios and Chaimowicz [2011], Schumann-Olsen et al. [2014].

6.6 experiments

The proposed HDRM method is benchmarked against classical DRM approach and

standard sampling-based planners (SBP) in various scenarios with two different robot

models – a 6-DoF Universal Robot UR5 and a 7-DoF KUKA LWR robotic arm. The

evaluation was carried out on an Intel Core i7 − 6700K 4.0GHz CPU with 32GB

2133MHz RAM with the hardware experiments performed on the LWR.

6.6.1 HDRM Construction

In order to create the HDRM, we need to first define Kn for each joint. Given the

robot model, Kn can be calculated by (6.7 - 6.9), as listed in Table 6.1. Two different

workspace voxel resolutions are used, s = 0.1m and s = 0.05m. Smaller s leads to

greater Kn, which means more samples are required to densely cover the space. Tail

joints have smaller Kn, for instance the last joint of UR5 and LWR has Kn = 1. This

is because the last joints have very short or zero extend length Rn and the last body

link is rotational symmetric, where very few of vertices are required to satisfy (6.9).
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Table 6.1: Robot kinematic analysis for creating HDRM.

Robot
Range of motion θ (rad),

extend length R (m)
s (m) Kn

UR5

θn = {6.28, 6.28, 6.28, 6.28, 6.28, 6.28}
Rn = {0.98.0.97, 0.57, 0.23, 0.17, 0.0}

0.1 {37, 36, 21, 9, 7, 1}
0.05 {52, 51, 30, 12, 9, 1}

LWR
θn = {5.86, 4.12, 5.86, 4.12, 5.86, 4.12, 5.86}

Rn = {0.99, 0.79, 0.59, 0.39, 0.19, 0.05, 0}
0.1 {35, 20, 21, 10, 7, 2, 1}

0.05 {49, 27, 29, 14, 10, 2, 1}

We have also implemented classical DRM methods for comparison. For achieving

completeness, we generate the vertices by uniformly sampling in the configuration

space and apply no roadmap compression technique. Three classical DRM datasets

are created with different number of vertices: 1, 000 (DRMa), 10, 000 (DRMb) and

200, 000 (DRMc). A K-nearest neighbor search is then applied to find the edges in the

roadmap.

6.6.2 Memory Consumption

As highlighted in Table 6.2, the HDRM scales exponentially with roadmap size com-

pared to classical DRM methods. Meanwhile, the required memory size is much less

by using the hierarchical structure. In the case of UR5 robot with 10cm voxel size,

HDRM can store over 1.7 million vertices and 10 million edges using only 8.5MB

of memory, which is even less than the memory required for classical DRM to store

only 10, 000 vertices. In the scenario of LWR robot with 5cm voxel size, the HDRM

stores over 10 million vertices and up to 75 million edges with only 266MB of mem-

ory, where the estimated memory size for classical DRM to store the same number of

vertices is over 250GB.

6.6.3 Motion Planning Evaluation

Extensive benchmarking fully analyzes the performances of eight candidate meth-

ods, which include three classical DRM methods DRMa, DRMb, DRMc; four standard

sampling-based planners (SBP), i.e. RRT, PRM, SBL Sánchez and Latombe [2003],
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Table 6.2: Comparison of roadmap and memory size between classical DRM and HDRM.

Robot Method No. Vertices No. Edges s (m) Memory size (MB)

UR5

DRM

1, 000 6, 336
0.1 2.8

0.05 13.6

10, 000 61, 274
0.1 22.3

0.05 104

200, 000 1, 200, 956
0.1 356

0.05 1593

DRM Estimate
1, 762, 236 ∼10, 573, 416 0.1 ∼3136
8, 592, 480 ∼51, 554, 880 0.05 ∼68439

HDRM
1, 762, 236 10, 573, 416 0.1 8.5
8, 592, 480 51, 554, 880 0.05 145

LWR

DRM

1, 000 6, 369
0.1 7.9

0.05 33.4

10, 000 62, 031
0.1 70

0.05 280

200, 000 1, 216, 755
0.1 1239

0.05 4793

DRM Estimate
2, 058, 000 ∼12, 348, 000 0.1 ∼12390
10, 742, 760 ∼64, 456, 560 0.05 ∼256425

HDRM
2, 058, 000 14, 406, 000 0.1 16.7
10, 742, 760 75, 199, 320 0.05 266

and RRTConnect; and finally the proposed HDRM. For DRM/HDRM methods, the

datasets of LWR robot with 10cm voxel resolution are used. For SBP methods, we use

the standard implementations from OMPL library Şucan et al. [2012] and the FCL

library Pan et al. [2012] for explicit online collision checking.

To thoroughly evaluate the performance, we created five different categories of

arbitrary environments with random obstacles. From simple to hard, these environ-

ments have 0%, 0.1%, 0.5%, 1% and 5% of the whole workspace occupied by obstacles,

where the latter four are illustrated in Figure 6.8. The environments with 1% and 5%

obstacle densities are extremely complicated for any kind of motion planning algo-

rithm. We created 1000 random problems for each category, i.e. 1000 random envi-

ronments with valid start and goal states. Note that the problem needs to be solvable,

i.e. there should exist at least one valid trajectory from start to goal. To guarantee

this, a random self-collision-free trajectory is first generated in free space. Obstacles
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(a) Obstacle density 0.1% (b) Obstacle density 0.5%

(c) Obstacle density 1% (d) Obstacle density 5%

Figure 6.8: Random problems in environments with different workspace obstacle densities.
The highlighted trajectories are valid solutions found by HDRM.

are populated into the space randomly without colliding with the trajectory. We keep

populating obstacles until the required obstacle density is reached. All algorithms

are given 10 seconds to solve each problem. Since all problems are solvable, the solv-

ing is only considered a success if a valid solution (which could be different from

the original one) is found. Reporting no solution or exceeding the time limit will be

considered as failed.

The evaluation result is highlighted in Table 6.3. Firstly, as a baseline, all algorithms

achieved 100% success rate in free space. The success rate of the classical DRMs falls

below 100% when the environment is populated with only a few obstacles (0.1%

obstacle density). The SBP methods are in general slower because these approaches

explicitly check collision for every sample, which is very time consuming. In more

complicated environments (0.5% and 1% obstacle densities), the success rate of clas-

sical DRM methods dropped dramatically. SBP methods still achieved reasonable

success rate, but the planning time increased considerably. The HDRM method be-

gan to surpass all other methods in complicated scenarios in terms of both success

rate and planning time. In the extreme cases with 5% obstacle density, we do not
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Table 6.3: Evaluation results of solving motion planning problems using different approaches.
The result shows the success rate of solving 1000 problems with random environ-
ments and valid start/goal states, followed by the average solving time over the
success cases (in milliseconds). All algorithms are given 10 seconds to solve each
problem.

Method
Obstacle

0%
Obstacle

0.1%
Obstacle

0.5%
Obstacle

1%
Obstacle

5%

Standard
SBP

RRT
100% 99% 92% 82% 36%
13.392 22.708 325.21 1036.1 1893.6

PRM
100% 100% 100% 99% 34%
5.7416 4.5041 322.86 656.09 3386.4

SBL
100% 100% 100% 100% 31%
6.8909 14.775 82.473 273.96 4439.4

RRTConnect
100% 100% 100% 100% 74%
1.1930 2.1220 10.117 48.926 1723.7

Classical
DRM

DRMa
100% 92.2% 65.6% 39.0% 1.6%
0.1564 0.7108 0.7911 1.2403 -

DRMb
100% 93.9% 69.5% 48.9% 3.6%
0.3123 0.8779 1.0203 1.5221 -

DRMc
100% 95.7% 74.7% 53.0% 3.3%
3.4152 4.3431 6.5206 9.2316 -

Hierarchical DRM 100% 100% 100% 100% 100%
0.2759 0.8574 1.5813 3.7152 15.506

show the average planning time for the classical DRM methods as the success rate is

too low. All SBP methods also reported lower success rate and much longer planning

time. On the contrary, the HDRM method constantly achieved 100% success rate in

these most complicated cases. The planning time is much longer than that in simpler

scenarios, but still reasonably fast in these extremely constrained environments. All

these results prove that HDRM is indeed resolution complete.

It is interesting that DRMc has a much smaller roadmap than HDRM, but takes

longer time to find a solution even in free space. We break down the DRM/HDRM

planning time into different components, as highlighted in Table 6.4. Note that the

time is given in microseconds for better comparison. The collision update takes 141.6

microseconds in free space, which is basically the communication and function calls

overhead. We use FCL for explicit collision checking where the time increases as
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Table 6.4: Computation time of different components in DRM and HDRM (in microseconds).

Method
Roadmap update Planning

TotalFind coll.
voxels

Remove
invalids

Connect to
roadmap

A* search

Obstacle density 0%

DRMa

141.6 0

14.17 0.581 156.4
DRMb 170.1 0.626 312.3
DRMc 3273 0.698 3415

HDRM 0.229 134.1 275.9
Obstacle density 0.1%

DRMa

694.8

1.665 13.774 0.557 710.8
DRMb 18.71 163.8 0.601 877.9
DRMc 435.0 3212 0.711 4343

HDRM 17.48 0.267 144.9 857.4
Obstacle density 0.5%

DRMa

769.5

7.541 13.48 0.616 791.1
DRMb 86.19 163.4 0.632 1020
DRMc 2450 3300 0.758 6520

HDRM 94.33 0.257 717.4 1581
Obstacle density 1%

DRMa

1212

13.92 13.32 0.607 1240
DRMb 145.5 163.5 0.745 1522
DRMc 4728 3290 1.021 9231

HDRM 177.9 0.233 2325 3715

expected in more complicated environments. Classical DRMs with more vertices

and edges require much longer time to remove invalid roadmap parts, whereas the

HDRM is able to do so relatively faster, considering the enormous number of vertices

and edges. Another expensive step of classical DRMs is connecting to the roadmap,

which increases exponentially with the number of vertices. After connecting to the

roadmap, running A* search is actually very fast since the roadmap size is relatively

small. On the other hand, the time for connecting to the roadmap is negligible for

HDRM since we can analytically compute the closest vertices (6.5.2). However, the

searching takes longer due to the enormous roadmap size.
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(a) Experiment 1: reaching into a confined shelf

(b) Experiment 2: fetching an object in distance. First row, reaching target object; second row,
retrieving object.

Figure 6.9: Experiments on a 7-DoF KUKA LWR robotic arm fitted with SCHUNK Dexter-
ous Hand 2.0. First column is the octomap representation and planned trajectory,
followed by snapshots of motion execution.

6.6.4 Experimental Validation on Robot Hardware

We further validated the HDRM method on a 7-DoF KUKA LWR manipulator fitted

with the SCHUNK Dexterous Hand. We consider one fixed end-effector during a

task compared to the work in Liu et al. [2006], i.e. different HDRM datasets are

required for different end-effectors. Our experiments used a model of the LWR with

the SCHUNK hand to generate the HDRM dataset with s = 5 cm voxel resolution.

Four Microsoft Kinect One RGB-D sensors are fused to sense the environment and

create an octomap representation Hornung et al. [2013] for collision checking. In our

supplementary video (https://youtu.be/2G5uSTCk4UY), we demonstrate challenging

motions in three different, highly constrained environments that emulate real-world

tasks: reaching into a confined shelf space and grasping a target object (Figure 6.9a);

retrieving distant object through a frame (Figure 6.9b); and moving an object with

the robot workspace severely confined by a cage (Figure 7.1).

https://youtu.be/2G5uSTCk4UY
https://youtu.be/2G5uSTCk4UY


6.7 conclusion 89

6.7 conclusion

In this chapter we presented a novel method, the Hierarchical Dynamic Roadmap

(HDRM), for real-time motion planning in high dimensions. The HDRM, through a

sophisticated indexing scheme, is able to encode large numbers of vertices and edges

(up to tens of millions) in a memory efficient manner that allows the approach to

be resolution complete. An extensive benchmarking has been carried out showing

that the HDRM is able to find valid motion plans in extremely complicated environ-

ments in real-time. Hardware experiments on the KUKA LWR robot show that our

method is capable of incorporating live sensing information and provides collision-

free and smooth trajectories that can be executed robustly for solving practical prob-

lems. Since HDRM guarantees resolution completeness and is able to plan in real-

time (few milliseconds or less), the future work involves implementing a closed-loop

online planning/re-planning framework for applications such as real-time interaction

between human and robot in shared workspace.

For the fixed-base robots considered in this chapter, the collision-free region Cfree

and valid region Cvalid are equal, i.e. Cfree = Cvalid. However, such assumption does not

hold for more complex humanoid robots, where not all of the collision-free config-

urations are valid due to balance constraint. The valid region is only a small subset

of the collision-free region, i.e. Cfree ( Cvalid, which makes sampling valid configu-

rations very challenging. In next chapter, we will discuss how to efficiently scaling

sampling-based planning algorithms to bipedal humanoids.





7
E F F I C I E N T M O T I O N P L A N N I N G F O R H U M A N O I D S

Figure 7.1: Collision-free and balanced full-body motion executed on the 38-DoF NASA
Valkyrie robot. Lower body movement is not shown for clarity.

Humanoid robots are highly redundant systems that are designed for accomplish-

ing a variety of tasks in environments designed for people. However, in contrast to

the fixed-based robotic arm discussed in Chapter 6, humanoids have a large num-

ber of degrees-of-freedom which makes motion planning extremely challenging. In

general, optimization-based algorithms are suitable for searching for optimal solu-

tions even in high dimensional systems Rawlik et al. [2012] Ratliff et al. [2009], but it

is non-trivial to generate optimal collision-free trajectories for humanoids using op-

timization approaches within timeframes acceptable for online planning, especially

in complex environments. This is mainly due to the highly non-linear map between

the robot and the collision environment. This mapping can be learned Howard et al.

[2009] Nakanishi et al. [2013] Lin et al. [2015] or modelled in abstract spaces Yang

et al. [2015] Ivan et al. [2013] for low dimensional problems, but is too difficult for

high DoF humanoids due to the curse of dimensionality and it often causes local

91



92 efficient motion planning for humanoids

minima problems. Additionally, solving locomotion and full-body manipulation in

complex environments as one combined problem requires searching through a large

space of possible actions. Instead, as illustrated in Figure 3.7, it is more effective to

first generate robust walking plans to move the robot to a desired standing location,

and then generate collision-free motion with stationary feet. Although assuming fixed

feet position may be viewed as restrictive, we argue that a large variety of full-body

manipulation tasks can still be executed as a series of locomotion and manipulation

subtasks. Approaches for finding appropriate stances and goal states has been dis-

cussed in Section 3.3 and Chapter 4, in this chapter, we propose an extension to

a family of sampling-based motion planning algorithms that will allow us to plan

collision-free full-body motions for bipedal humanoids.

Sampling-based planning algorithms, such as RRT Lavalle [1998] and PRM Kavraki

et al. [1996], are capable of efficiently generating globally valid collision-free trajecto-

ries due to their simplicity. In the past two decades, SBP algorithms have been applied

to countless problems with a variety of derivatives, such as RRT-Connect Kuffner

and LaValle [2000], Expansive Space Trees (EST) Hsu et al. [1997], RRT*/PRM* Kara-

man and Frazzoli [2011], Kinematic Planning by Interior-Exterior Cell Exploration

(KPIECE) Şucan and Kavraki [2009], and many others Elbanhawi and Simic [2014].

However, since the SBP algorithms were originally designed for mobile robots and

low DoF robotic arms, using them on high DoF systems requiring active balancing

is still challenging. The subset of valid robot configurations forms a low dimensional

manifold defined by the balance constraint. In practice, the rejection rate of random

samples is prohibitively high without the explicit or implicit knowledge of the mani-

fold.

Approaches have been proposed to address this particular problem of using SBP

algorithms for humanoid robots. Kuffner et al. [2005] use a customized RRT-Connect

algorithm to plan full body motion for humanoids, where they only sample from a

pre-calculated pool of postures for which the robot is in balance. Hauser et al. [2008]

introduce motion primitives into SBP algorithms where the sampler only samples

states around a set of pre-stored motion primitives. These approaches share the com-

mon idea of using an off-line generated sample set to bootstrap online processes,
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thus allowing algorithms to bypass the expensive online generation of balanced sam-

ples Kuffner et al. [2005] Hauser et al. [2008]. By storing sample configurations with

different lower body postures, one can also generate full body motion that consists

of coordinated locomotion and upper body movement Kuffner et al. [2002]. How-

ever, this leads to the problem where one has to store a significant number of sam-

ples to densely cover the balance manifold, otherwise the algorithms may fail while

valid solutions exist but were not stored in the dataset. Another direction for solving

humanoid motion planning problem is constraint sampling. Dalibard et al. [2009]

replace the steering/interpolation component in RRT-Connect with a constraint con-

nect function to ensure the new nodes added to the tree are balanced and collision

free. Kanehiro et al. [2014] split the full body into several kinematic chains by fixing

the base height. Such separation reduces the processing time for full body kinemat-

ics, however, one loses the redundancy of the full kinematic structure. Most of the

existing approaches are normally platform specific, which makes it difficult and time

consuming to transfer the work to other robot platforms for generic humanoid mo-

tion planning problems. Sampling-based planning methods for humanoids are by no

means new concepts in robotics. However, these methods are often customized from

basic algorithms such as RRT-Connect for particular robots and environments, it is

non-trivial to reuse or apply these methods on generic humanoid robots for solving

generic problems.

To this end, instead of developing new SBP algorithms specifically for humanoids,

we focus on enabling the standard SBP algorithms to solve humanoids motion plan-

ning problems by modifying the underlying key components of generic SBP ap-

proaches, such as space representation, sampling strategies and interpolation functions.

In order to make the method generic for any humanoid platforms, rather than store

balanced samples during offline processing, we use a non-linear optimization based

Tedrake [2014] full-body IK solver to generate balanced samples on-the-fly. Thus, the

proposed method can be easily applied to different humanoid robot platforms with-

out extensive pre-processing and setup. We evaluate the proposed method on a 36

DoF Boston Dynamics Atlas and a 38 DoF NASA Valkyrie humanoid robots, to show

that our method is capable of generating reliable collision-free full-body motion for a
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generic humanoid. We also evaluate the difference between sampling in end-effector

and configuration spaces for different scenarios, and compare the planning time and

trajectory length to find an optimal trade off between efficiency and optimality. In

particular, we apply our work to solve practical reaching tasks on the Valkyrie robot,

as highlighted in Figure 7.1, showing that the proposed method can generate reliable

full-body motion that can be executed on full-size humanoid robots.

7.1 problem formulation

Let C ∈ RN+6 be the robot’s configuration space, where N is the number of articulated

joints and the additional 6 DoF represents the unactuated virtual joint (SE3) that

connects the robot’s pelvis and the world. The valid configuration manifold is given

as

Cvalid = Cbalance ∩ Cfree, (7.1)

where Cbalance ⊂ C is the manifold of statically balanced configurations.

For humanoid robots, valid trajectories can only contain states from valid config-

uration manifold, i.e. q[0:T] ⊂ Cvalid. Generating collision free samples is straightfor-

ward by using random sample generators and standard collision checking libraries.

However, generating balanced samples is non-trivial, where a random sampling tech-

nique is incapable of efficiently finding balanced samples on the low dimensional

manifold Cbalance by sampling in high dimensional configuration space C. Guided sam-

pling or pre-sampling process is required for efficient valid sample generation. In our

approach, a full-body inverse kinematic solver is employed to produce statically bal-

anced samples. The static balance constraint is a combination of constraints on feet

and CoM poses, i.e. the static balance constraint is considered as satisfied when the

robot’s feet have stable contact with the ground and the CoM ground projection stays

within the support polygon spanned by the foot contact points. In our case, we only

consider scenarios where both feet are in contact with the ground, however, as long

as the contact information is given, the method stays the same for whether only one

or multiple end-effectors are in contact with the environment.
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7.1.1 Whole-body Inverse Kinematics

Given a seed configuration qseed and nominal configuration qnom and a set of con-

straints C, an output configuration that satisfies all the constraints (Equation 3.8, 3.9).

The set of constraints for a full-body humanoid robot may include single joint con-

straints, such as position and velocity limits for articulated joints, it may also include

workspace pose constraints, e.g. end-effector poses, centre-of-mass position, etc. In

the rest of this chapter, unless specified otherwise, we assume the quasi-static bal-

ance constraint and joint limits constraints are included in C by default. We use a

randomly sampled state as the initial seed pose qseed for the SQP solver Gill et al.

[2005]. Depending on the implementation of the SBP algorithm, we either choose

qnom to be the current robot state or one of the neighbouring poses drawn from the

pool of candidate poses already explored by the SBP algorithm.

7.2 sampling-based planning for humanoids

Let x ∈ X be the state space where the sampling is carried out. The planning problem

can be formulated as

q[0:T] = HuamnoidSBP(x0, xT, Env) (7.2)

where x0 and xT are the initial and desired states, and Env is the environment in-

stance in which this planning problem is defined. In order for SBP algorithms to

plan motions for humanoid robots, we need to modify the following components

that are involved in most algorithms as shown in Figure 7.2: the space X where the

sampling is carried out; the strategies to draw random samples; and the interpolation

function which is normally used in steering and motion evaluation steps. In the next

section, we will discuss the details of modifications we applied on those components

for scaling standard SBP algorithms to humanoids.

We separate the work into two parts, configuration space sampling and end-effector

space sampling. In configuration space sampling approach, the state is represented in
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Figure 7.2: Instead of developing new algorithms, we modify those underlying components
in SBP solvers to make standard algorithms be capable of solving motion planning
problems for humanoid robots.

RN+6 space with joint limits and maximum allowed base movement as the bounds,

the sampling state is identical to robot configuration, i.e. x = q ∈ C. For reaching

and grasping problems, one might be interested in biasing the sampling in the end-

effector related constraints, e.g. to encourage shorter end-effector traverse distance.

The end-effector space approach samples in SE(3) space with a region of interests

around the robot as the bounds, the state is equivalent to the end-effector’s forward

kinematics,

x = FK(q) : W → C (7.3)

However, the final trajectories are represented in configuration space, thus we asso-

ciate a corresponding configuration for each end-effector space state to avoid ambi-

guity and duplicated calls to the IK solver.

7.2.1 Configuration Space Sampling

Algorithm 10 highlights the components’ modifications required for sampling in con-

figuration space:
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Algorithm 10 Humanoid Configuration Space SBP
sampleUniform()

1: succeed = False
2: while not succeed do
3: q̄rand = RandomConfiguration()
4: qrand, succeed = IK(q̄rand, q̄rand, C)

return qrand

sampleUniformNear(qnear, d)
1: succeed = False
2: while not succeed do
3: A← Zeros(N + 6)
4: while not succeed do
5: q̄rand = RandomNear(qnear, d)
6: Set constraint ‖qrand − q̄rand‖W < A
7: qrand, succeed = IK(q̄rand, qnear, C)
8: Increase A
9: if distance(qrand, qnear) > d then

10: succeed = False
return qrand

interpolate(qa, qb, d)
1: q̄int = InterpolateConfigurationSpace(qa, qb, d)
2: succeed = False
3: A← Zeros(N + 6)
4: while not succeed do
5: Set constraint ‖qint − q̄int‖W < A
6: qint, succeed = IK(q̄int, qa, C)
7: Increase A

return qint

7.2.1.1 Sampling Strategies

For sampleUniform(), we first generate random samples from X and then use full-

body IK solver to process the random samples to generate samples from the balanced

manifold Xbalance

qrand = IK(q̄rand, q̄rand, C) (7.4)

where q̄rand ∈ X is a uniform random configuration and qrand ∈ Xbalance is random

sample from the balanced manifold. We use q̄rand as nominal pose since we want
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to generate random postures rather than postures close to other already existing

samples. This is to indirectly encourage exploration of the null-space of the task. The

constraint set C contains the static balance and joint limit constraints. When sampling

around a given state (sampleUniformNear(qnear, d)), we first get a random state q̄rand

that is close to qnear within distance d. The IK solver is invoked with q̄rand as the seed

pose, and qnear as the nominal pose. An additional configuration space constraint is

added to the constraint set

| qrand − q̄rand |W ≤ A (7.5)

where A ∈ RN+6 is a tolerance vector initially set to zero. In most cases the sys-

tem will be over constrained, in which case we need to increase the tolerance to

ensure balance. Normally, the lower-body joints are neglected first, i.e. increasing cor-

responding wi, meaning that we allow the lower-body joints to deviate from q̄rand

in order to keep the feet on the ground and maintain balance. We use xnear as the

nominal pose since later on the random state is likely to be appended to qnear, and

one wants the random state be close to the near state. The new sample is discarded

if the distance between qnear and qrand exceeds the limit d.

7.2.1.2 Interpolation

In order to find a balanced state interpolated along two balanced end-point states,

we first find the interpolated, likely to be unbalanced state

q̄int = qa + d | qb − qa | . (7.6)

A similar configuration space constraint to Equation 7.5 is applied to constrain the

balanced interpolated state qint close to q̄int

|qint − q̄int | ≤ A (7.7)

The two end-point states qa and qb are valid samples generated using our sampling

strategies. Due to the convex formulation of the balance constraint, a valid inter-

polated state is guaranteed to be found. It is worth mentioning that in some cases
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Algorithm 11 Humanoid End-Effector Space SBP
sampleUniform()

1: succeed = False
2: while not succeed do
3: x̄rand = RandomSE3()
4: Set constraint ‖x̄rand −Φ(qrand)‖ ≤ 0
5: qrand, succeed = IK(q̄rand, q̄rand, C)

6: xrand = FK(qrand)
return xrand, qrand

sampleUniformNear(xnear, d)
1: succeed = False
2: while not succeed do
3: x̄rand = RandomNearSE3(xnear, d)
4: Set constraint ‖x̄rand − FK(qrand)‖ ≤ 0
5: qrand, succeed = IK(qrand, qnear, C)

6: xrand = x̄rand
return xrand, qrand

interpolate(xa, xb, d)
1: x̄int = InterpolateSE3(xa, xb, d)
2: succeed = False
3: B← Zeros(SE3)
4: while not succeed do
5: Set constraint ‖x̄int − FK(qint)‖ < B
6: qint, succeed = IK(qa, qa, C)
7: Increase B
8: xint = FK(qint)

return xint, qint

the interpolation distance equation no longer holds after increasing the tolerance, i.e.
| xint−xa |
| xb−xa | 6= d. However, this is a necessary step to ensure that the balance constraint

are satisfied.

7.2.2 End-Effector Space Sampling

Algorithm 11 highlights the components’ modifications required for sampling in end-

effector space:
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7.2.2.1 Sampling Strategies

It is straight forward to sample in SE(3) space, however, it is non-trivial to sample

balanced samples from the Xbalance manifold. For sampleUniform(), we first randomly

generate SE(3) state x̄rand within a region of interest in front of the robot. The full-

body IK is invoked with an additional end-effector pose constraint

‖x̄rand − FK(qrand)‖ ≤ 0 (7.8)

The sampler keeps drawing new random states x̄rand until the SQP solver returns

a valid output q∗. The valid random state xrand can be calculated using forward

kinematics, e.g. xrand = FK (q∗). The same procedure applies to sampleNear(xnear, d),

but using xnear as the seed configuration.

7.2.2.2 Interpolation

Similar to sampling near a given state, for interpolation in end-effector space, we first

find the interpolated state x̄int ∈ SE(3) and add the following term into constraint set

| x̄int − FK(q) | ≤ B (7.9)

where B ∈ R6 is a tolerance vector initially set to zero. If the system is over con-

strained after adding end-effector pose constraint, we need to selectively relax the

tolerance for different dimensions (x, y, z, roll, pitch, yaw) until the IK solver succeeds.

Then we reassign the interpolated state using forward kinematics, xint = FK(qint).

7.2.2.3 Multi-Endeffector Motion Planning

Some tasks require coordinated motion involving multiple end-effectors, e.g. bi-manual

manipulation and multi-contact motion. It is obvious that, from a configuration space

point of view, there is no difference as long as the desired configuration is specified.

It is also possible for the end-effector space sampling approach to plan motion with

multiple end-effector constraints. Let y∗k ∈ SE(3) be the desired pose constraints

for end-effector k ∈ {1, . . . , K}. A meta end-effector space X ∈ R6×K can be con-



7.3 evaluation 101

Table 7.1: Planning time (in seconds) of empty space reaching problem utilising different
algorithms. The result is averaged over 100 trails.

Algorithms
Sampling Space

End-Effector Space Configuration Space

Unidirectional
RRT 25.863± 22.894 1.4129± 1.4466
PRM 4.2606± 3.0322 0.5912± 0.5912
EST 28.055± 18.270 0.3112± 0.3112

Bidirectional
BKPIECE 5.3989± 5.9470 0.1781± 0.0332

SBL 3.0602± 0.9859 0.2804± 0.0480
RRT-Connect 2.8228± 0.3412 0.1853± 0.0450

structed to represent the sampling space for all end-effectors. Similar sampling and

interpolation functions can be implemented by constructing extra constraints for each

end-effector k.

7.3 evaluation

We aim to generalize the common components of sampling-based motion planning

algorithms for humanoid robots so that existing algorithms can be used without extra

modification. We implemented our approach in the EXOTica motion planning and op-

timization framework Ivan et al. [2018] as a humanoid motion planning solver, which

internally invokes the SBP planners from the Open Motion Planning Library (OMPL,

Şucan et al. [2012]). We have set up the system with our customized components, and

evaluated our approach on the following six representative algorithms: RRT Lavalle

[1998], RRT-Connect Kuffner and LaValle [2000], PRM Kavraki et al. [1996], BKPIECE

Şucan and Kavraki [2009], EST Hsu et al. [1997] and SBL Sánchez and Latombe [2003].

The evaluations were performed in a single thread with a 4.0GHz Intel Core i7-6700K

CPU.
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Table 7.2: Evaluation of full-body collision-free motion planning. RRT-Connecte sampling in
end-effector space, all other methods sampling in configuration space. No. eval-
uation shows the number of state evaluation calls, i.e. evaluate if a sampled/in-
terpolated state is valid. No. IK indicates the number of online full-body IK calls,
and IK time is the total time required for solving those IK, which is the most time
consuming element. The result is averaged over 100 trails.

Tasks Algorithms
Planning
time (s)

No. evaluation No. IK IK time (s)

Task 1

BKPIECEc 42.5± 26.4 1946± 1207 2598± 1582 41.4± 25.7

SBLc 27.8± 8.59 1313± 418 1508± 445 27.0± 8.33

RRT-Connecte 9.91± 4.80 597± 354 727± 387 9.51± 4.58

RRT-Connectc 1.53± 0.80 95± 54 118± 64 1.48± 0.77

task 2

BKPIECEc 40.5± 21.7 1911± 970 2473± 1254 39.4± 20.1

SBLc 22.2± 9.51 1089± 472 1259± 547 21.5± 9.23

RRT-Connecte 12.4± 6.65 656± 405 826± 458 11.9± 6.41

RRT-Connectc 2.25± 0.85 106± 42 166± 59 2.19± 0.83

task 3

BKPIECEc 45.7± 19.8 2057± 949 2758± 1166 44.5± 19.3

SBLc 33.8± 22.2 1414± 950 1756± 1151 33.0± 21.6

RRT-Connecte 25.3± 13.9 1031± 532 1436± 720 24.6± 13.7

RRT-Connectc 3.45± 0.77 165± 49 200± 53 3.36± 0.75

7.3.1 Empty Space Reaching

In the first experiment, we have the robot reach a target pose in front of the robot in

free space, where only self-collision and balance constraints are considered. This is

a sanity check to show that the proposed method can be used robustly across differ-

ent planning algorithms to generate trajectories for humanoid robots. We solve the

reaching problem using the six testing algorithms in two different sampling spaces,

each across 100 trials. The results are shown in Table 7.1. Although the planning

time varies across different algorithms and sampling spaces, the result shows that

standard planning algorithms are able to generate motion plans for humanoid robots

using our method. As expected, bi-directional algorithms are more efficient than their

unidirectional variants. Also, sampling in configuration space is much more efficient

than in end-effector space due to the higher number of IK calls for the later case.
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Table 7.3: Evaluation of full-body collision-free motion planning. RRT-Connecte sampling in
end-effector space, all other methods sampling in configuration space. C cost is the
configuration space trajectory length, W cost is the end-effector traverse distance
in workspace, CoM cost is the CoM traverse distance in workspace. The result is
averaged over 100 trails.

Tasks Algorithms C cost (rad.) W cost (m) CoM cost (m)

task 1

BKPIECEc 7.37± 2.43 2.10± 0.80 0.24± 0.10
SBLc 6.25± 1.06 2.14± 0.71 0.23± 0.06
RRT-Connecte 2.93± 0.96 0.58± 0.11 0.07± 0.02
RRT-Connectc 2.71± 0.68 0.99± 0.23 0.11± 0.03

task 2

BKPIECEc 6.59± 2.43 1.95± 0.59 0.27± 0.09
SBLc 5.34± 2.00 1.79± 0.80 0.24± 0.09
RRT-Connecte 4.12± 2.02 0.77± 0.08 0.09± 0.04
RRT-Connectc 3.29± 1.14 1.20± 0.33 0.14± 0.05

task 3

BKPIECEc 7.49± 2.52 1.96± 0.73 0.25± 0.08
SBLc 8.68± 2.26 2.10± 0.44 0.28± 0.11
RRT-Connecte 7.19± 4.93 0.92± 0.13 0.16± 0.05
RRT-Connectc 4.68± 0.59 1.38± 0.12 0.14± 0.03

7.3.2 Collision-free Reaching

We setup three different scenarios, from easy to hard, as illustrated in Figure 7.3,

to evaluate the performance of different algorithms in different sampling spaces.

Unfortunately, the evaluation suggests that standard unidirectional algorithms are

unable to solve these problems (within a time limit of 100 seconds). Without bi-

directional search, the high dimensional humanoid configuration space is too com-

plex for sampling-based methods to explore. Table 7.3 highlights the results using

four different bidirectional approaches. Note that when sampling in end-effector

space, only RRT-Connect is able to find a valid solution in the given time, other

bidirectional search algorithms like BKPIECE and SBL are also unable to find valid

trajectories. The result indicates that RRT-Connect sampling in configuration space

is the most efficient and the most robust approach for solving humanoid full-body

motion planning problems. It requires the least exploration, thus bypassing expen-

sive online IK queries. Algorithms like BKPIECE and SBL use low-dimensional pro-
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Figure 7.3: Evaluation tasks, from left to right: task 1, target close to robot; task 2, target far
away from robot; and task 3, target behind bar obstacle.

jections to bias the sampling, however, the default projections which are tuned for

mobile robots and robotic arms do not scale up to high DoF humanoid robots, which

leads to long planning time and trajectories with high costs. This can be improved

by better projection bias, but it is non-trivial to find a suitable bias without fine tun-

ing. Also, the trajectories generated using RRT-Connect are shorter, meaning that the

motion is more stable and robust. It is worth mentioning that RRT-Connect takes

longer time to plan when sampling in the end-effector space than it does in the

configuration space, but the planned trajectories have shorter end-effector and CoM

traverse distances. In some scenarios where planning time is not critical, one can

choose to use RRT-Connect in end-effector space to generate trajectories with shorter

end-effector traverse distance. These results also suggest that the full-body IK com-

putation dominates the planning time. This is in contrast with classical SBP problems

where collision-detection is the most time consuming component. However, the IK

solver is necessary for maintaining balance, as shown in Figure 7.5, where the trajec-

tories’ CoM projections are within the support polygon. In more complex scenarios,

such as reaching through narrow passages and bi-manual tasks, most algorithms

fail to generate valid trajectories apart from RRT-Connect. As mentioned, some algo-

rithms’ performance depends on the biasing methods, e.g. projection bias and sam-

pling bias. However, it is non-trivial to find the appropriate bias for humanoids that

would generalize across different tasks. Figure 7.5 highlights some examples of reach-

ing motion in more complex scenarios with different robot models. As stated earlier,

this work focuses on generalising SBP algorithms for humanoids, where as one can

easily setup the system on new platforms as long as the robot model is given. For
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(a) Trajectories generated using configuration space sampling.

(b) Trajectories generated using end-effector space sampling.

Figure 7.4: Whole-body motion plans generated using different sampling spaces. The task
is identical for each column. In general, configuration space sampling leads to
shorter trajectory length; end-effector space sampling leads to shorter end-effector
traverse distance.

instance, one can easily switch from Valkyrie (Figure 7.5a) to Atlas (Figure 7.5b) in

minutes without extensive pre-processing and setup procedures.

In order to test the reliability and robustness of the proposed method, we applied

our work on the Valkyrie robot accomplishing reaching and grasping tasks in differ-

ent scenarios, as highlighted in Fig 7.6. During practical experiments, the collision

environment is sensed by the on–board sensor and represented as an octomap Hor-

nung et al. [2013]. The experiment results show that our method is able to gener-

ate collision-free full-body motion plans that can be executed on full-size humanoid

robot to realise practical tasks such as reaching and grasping. A supplementary video

of the experiment results can be found at https://youtu.be/AZQY_QOX0Pw.

7.4 conclusion

In this chapter we generalise the key components required by sampling-based algo-

rithms for generating collision-free and balanced full-body trajectories for humanoid

https://youtu.be/AZQY_QOX0Pw
https://youtu.be/AZQY_QOX0Pw
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(a) Planned motion for the 38-DoF NASA
Valkyrie robot.

(b) Planned motion for the 36-DoF Boston
Dynamics Atlas robot.

Figure 7.5: Collision-free full-body motion generated in different scenarios with different
robot models. The corresponding CoM trajectories are illustrated in the second
row (red dots). The framework is setup so that one can easily switch to new robot
platforms without extensive preparing procedures.

robots. We show that by using the proposed methods, standard SBP algorithms can

be invoked to directly plan for humanoid robots. We also evaluate the performance

of different algorithms on solving planning problems for humanoids, and point out

the limitations of some algorithms. A variety of different scenarios are tested showing

that the proposed method can generate reliable motion for humanoid robots in differ-

ent environments. This work can be transferred to different humanoid robot models

with easy setup procedure that can be done in very a short period of time, without

extensive pre-processing for adapting the existing algorithms to different robots, as

we have tested on the 36 DoF Boston Dynamics Atlas and the 38-DoF NASA Valkyrie

robots. In particular, we applied this work on the Valkyrie robot accomplishing differ-

ent tasks, showing that the proposed method can generate robust full-body motion

that can be executed on real robots.

The full-body inverse kinematics is crucial in terms of guaranteeing balance and

smoothness, however, the result in Table 7.3 shows that the IK solver dominates over

95% of the online computation time. Although it depends on the implementation and

underlying algorithms of the IK solver which is not the focus of this paper, we intend

to investigate faster IK implementation to bootstrap sampling and interpolation. This

will make the state space exploration more efficient, so that other standard algorithms

may be able to find valid solutions within the same time window.

In this part of the thesis, we have discussed how to plan valid trajectories in com-

plex environments, for either fixed-base robotic arms or humanoid robots. The low
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Figure 7.6: Collision-free full-body motion execution on the NASA Valkyrie humanoid robot.
In each row, the first figure highlights the motion plan, followed by execution
snapshots.

level controller can now follow these plans and drive the actuators, however, the task

can only be correctly accomplished if the environment stays static and all tracking is

perfect. In practice, any environmental changes and tracking inaccuracy might lead

the execution to a failure. In order to improve robustness and success rate, online

re-planning/adaptation is needed for compensating run time perturbations.





Part III
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After having planned the motion (Equation 1.2), along which the robot can reach to

the desired end-pose (Equation 1.1), we can then directly apply the plan in an open

loop manner. However, the robot can only correctly accomplish the task in static envi-

ronments with the assumption of perfect sensing and motor execution, which is not

true in many practical scenarios. Controlling robots in changing environments with

uncertainties is one of the most difficult problems in robotics. It arises in tasks such

as manipulating moving objects, or interacting with people and other robots. The tra-

jectory could become invalid due to various reasons, e.g. the trajectory is blocked by

obstacles, the target moves outside of the working envelope of the robot, inaccurate

motor execution, etc. In such scenarios, replanning is typically required to calculate a

new feasible plan. However, replanning, as a naïve online adaptation approach, is an

expensive process that causes delay, which makes real-time implementation of fast,

dynamic motion a significant challenge. More advanced motion adaptation methods

are required for addressing such challenge (Equation 1.3). In this chapter, we present

related work in online adaptation and discuss the limitations of current approaches.

8.1 classical adaptation approaches

There are different ways for allowing robots to operate in dynamic environments.

One naïve approach is to keep replanning during execution based on the sensory

information (Karaman et al. [2011]), which is a robust but also expensive approach

that normally can not be used for tasks that require both accuracy and efficiency. Re-

cently, Pan and Manocha [2011] showed that real time replanning can be achieved

by using many-core GPUs, where multiple processors are created simultaneously to

speed up the computation. Park et al. [2014] showed that online replanning cost can
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be reduced by interleaving planning with execution, where they split a whole trajec-

tory into multiple sub-trajectories and only plan for one of them at each step. One can

also apply motion adaptation methods such as Dynamic Movement Primitives (DMP,

Schaal [2006]) when one has access to a demonstrated trajectory, where any captured

motion gets encoded into a set of differential equations. These methods can be used

to handle perturbations during execution (Park et al. [2008], Englert and Toussaint

[2014]). The Artificial Potential Field (APF, Khatib [1985]) method and its derivatives

have gained popularity in the field of mobile robots to solve problems involving on-

line collision avoidance. APFs use the idea of imaginary forces acting on the robot,

where the obstacles have repulsive forces and target has an attractive force. The robot

is driven by the sum of all these forces, calculated based on the minimum distance

between robot and obstacles/target. From this point of view, APFs can be consid-

ered as a relative distance based approach. Park et al. Park et al. [2008] introduced

a dynamic potential field where the potential field takes obstacles’ velocities into ac-

count to provide more robust plans. Similar to global methods, the performance of

local planners such as APF can also be improved with the aid of parallel computing

(Kaldestad et al. [2014]). Khansari-Zadeh and Billard [2012] introduced a dynamical

system (DS) based approach where an original motion can be modified on-the-fly to

avoid convex obstacles. However, it only considers the end-effector trajectory while

there are situations where the trajectories of other links are in collision as well.

8.2 motion adaptation in alternate spaces

Classic approaches aim to find a configuration space plan q[0:T] that satisfy all the

constraints, then a unique working space trajectory is given by the configuration

space plan, as shown in Figure 8.1a. The problem of using configuration space rep-

resentation is that the plan is not flexible, i.e. the configuration space state will be

invalidated if the corresponding working space state is in collision. Since the plan in

configuration space is a continuous function (or discrete function with ∆t), it is dif-

ficult to compute another feasible plan by just modifying a few configurations, and

this is where replanning is required.
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Configuration
Space

Working
Space

Invalid

Obs

(a) One-to-one mapping from configuration
space to working space

Configuration
Space

Working
Space

Still Valid

Obs

(b) One-to-many mapping from alternate
space to working space

Figure 8.1: (a): the configuration space plan will be invalidated if the working space state is
in collision. (b): a state in alternate space is still valid even if some of the working
space states are in collision.

While these aforementioned methods aim to find valid configuration space plans,

some approaches encode the plans in alternate spaces (Figure 8.1b). Relationship

based representations have been studied in computer graphics (Ho and Komura

[2009], Ho et al. [2010b], Al-Asqhar et al. [2013], Ho et al. [2010a, 2014]) for motion

re-targeting problems and they have been applied to robotics in Ho and Shum [2013],

Ivan et al. [2013] and Nierhoff et al. [2014]. Rather than using configuration space,

these methods represent the problems in some alternate spaces in which the relation-

ships between robot and environment are encoded, generating executable plans by

capturing relational invariances. The alternate space states typically have multiple

corresponding robot poses, as shown in Figure 8.1b, such that the state can be still

valid if some of the corresponding poses are not.

Ho and Komura [2009] introduced a topological space writhe to solve character

motion animation problem, where writhe indicates how much of the two characters,

or one character and an environmental object, twist around each other. For two curves

C1 and C2, the writhe w can be calculated using Gauss Linking Integral (GLI)

w = GLI(C1, C2) =
1

4π

∫
C1

∫
C2

dC1 × dC2 ·
C1 − C2

| C1 − C2 | 3
, (8.1)

where × indicates cross product and · is dot product. Ho et al. [2010b] also intro-

duced their motion adaptation method using another topological space representa-

tion, namely interaction mesh. The key concepts involved in interaction mesh is the

Laplace coordinate representation and the Laplacian deformation energy minimisa-
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Figure 8.2: Remapping human motion to a robot model with different kinematic structures us-
ing interaction mesh. By continuously remapping human motion to robot model,
we obtain a teleoperation method that works between agents with different kine-
matic structures.

tion. For instance, let a set of key points, P = {pi}, 1 ≤ i ≤ m, represent robot links

and other objects, then the Laplace coordinate for each point is

L(p) = p− ∑
r∈Np

rwpr

∑s∈Np
wps

, (8.2)

wpr =
Wpr

|r− p| , wps =
Wps

|s− p| , (8.3)

where Np are the neighbourhoods of p, wpr is the weighting factor that is inversely

proportional to the distance between points p and r, multiplied by constant Wpr. The

interaction mesh method which is initially introduced to solve graphic problems, can

be applied to solve robot problems as well, as highlighted in Figure 8.2. By choosing

key points on both human and robot’s upper-bodies, e.g. shoulder, elbow and wrist,

we can remap configurations and continuous motion between human and humanoid

robots with different kinematic structures. Similarly, Nierhoff et al. [2014] used a task-

space distance mesh to represent the robot and target in a unified model to imitate

human full body motion to a humanoid robot. In summary, the alternate space adap-

tation methods map reference motion to a new configuration space motion, which

can be seen as a teleoperation technique if the reference motion is generated online.

Nevertheless, these methods can be used to adjust pre-planed reference motion to

correct run time errors.
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These methods typically need to know the relationship in advance and encode

them into the alternate space. However, in real world scenarios, there are many sit-

uations in which one encounters unexpected and unmodelled objects (e.g. moving

obstacles, people) which is non-trivial to handle online with these existing alternate

space methods. In next chapter, we will introduce a new alternate space representa-

tion, the Distance Mesh, which is able to handle unexpected objects on-the-fly.
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Figure 9.1: Robot-human close interaction. Left figure shows the robot’s original motion, the
right figure shows the adapted motion when human subject pushes her hands to
block the original trajectory.

To allow the robots to handle unexpected changes, for problems that involve reach-

ing targets around dynamic obstacles and people in particular, we present a rela-

tive distance based space representation, in which we model the relative distances

between robot links, targets and obstacles. In addition, we construct the relative dis-

tance space plan in an incremental way, which gives the robot the ability to avoid not

only the obstacles which are known apriori during planning phase but also the un-

expected obstacles which are detected during execution. We assume that there only

exists one global minima, such that we can employ a fast local method to remap from

relative distance space to joint space. In contrast to some other end-effector trajectory

adaptation methods, e.g. Dynamical System approach Khansari-Zadeh and Billard

[2012], our method is able to adapt the trajectories of all robot links simultaneously.

We apply our approach on a 7-DoF robot arm with a mock-up welding problem,

as illustrated in Figure 9.1. We also demonstrate the scalability of our method on a

14-DoF dual-arm Baxter robot with a water pouring task. In both experiments, the
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robots operate in relatively unstructured environments, where the robot needs to

accomplish the tasks while avoiding colliding with human.

9.1 relative distance space

This section presents the method for capturing interactions of the robot with its envi-

ronment. Our objective is to create a method that will: 1) capture the pose of the robot

on its own (for mimicking or pose re-targeting), 2) capture the reaching behaviour (as

the task objective), and 3) capture the avoiding behaviour (obstacle avoidance). A rep-

resentation that simultaneously captures these three kinds of interactions would pro-

vide a powerful tool for transferring, adapting, and planning robot motion for a wide

range of reaching and manipulation tasks in environments with dynamic obstacles.

The interaction mesh representation proposed in Ho et al. [2010b] satisfies the first

two requirements (capturing the pose of the robot and its interaction with reaching

targets) but it is not suitable for obstacle avoidance. Maintaining relative pose with the

obstacles generates artefacts in which the obstacles significantly affect the equilibrium

position. To deal with this issue, we propose to use a representation we call the

relative distance space.

Assume a robot has N joints qi, i ∈ N, the adaptation can be formalized as

min
q1,...,qN

N

∑
i=1

c(qi), (9.1)

where c(·) is the state-dependent cost function. Typically,

c(qi) = cpose(qi) + cgoal(qi) + cobs(qi) + crest(qi), (9.2)

where cpose(·) is the cost for maintain particular poses, cgoal(·) is the cost for reach-

ing goal, cobs(·) is the cost for collision avoidance and crest(·) is the cost for other

constraints such as joint limits. However, we argue that since the first three costs

represent such closely-tied behaviours, i.e. reaching target in a particular way while



9.1 relative distance space 119

avoiding obstacles, one can unify them into one cost term in relative distance space.

That is

c(qi) = cD(qi) + crest(qi), (9.3)

where cD(·) is the cost in relative distance space states that should solve pose re-

targeting, reaching and avoiding in a coherent, consistent way. ct
D(qi) = ‖Φ∗ − Φt‖

denotes the actual cost at time t, where Φ∗ is the desired state in relative distance

space, and Φt is the state at time t. The rest of this section explicitly explains how to

compute Φ∗ and Φt.

We attach M number of virtual points pj (j ∈ M) to the robot’s links. These virtual

points are usually joint and end-effector positions. We will also attach E number

of virtual points pe (e ∈ E) to the centre of the obstacles in the environment. The

relative distance space models the edges (φjl) between each pj and pl , l ∈ M ∪ E and

j 6= l. Note that pj always represents a robot link and pl represents another object

(other robot links, targets, obstacles), meaning that we model three different types of

distances (Figure 9.2):

1. φjl = φlink, if pl is a point on different robot link.

2. φjl = φgoal, if pl is a point on target.

3. φjl = φobs, if pl is a point on obstacle.

Note that we ignore the fourth type where j, l ∈ E, since the edges between two

environmental objects are not controllable.

We define the relative distance between robot links as

φlink = wjl‖pj − pl‖, (9.4)

where wjl is the weighting factor of the edge between pj and pl . For φgoal and φobs,

the relative distance can be Euclidean, e.g. φjl = wjldjl , djl = ‖pj − pl‖. However, this

will cause a series of problems. For example, distant targets will have a dominant

influence on the motion. We can apply a non-linear growth model ψ(j, l) on the
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Obstacle

Target

Start
𝜙obs

𝜙obs
∗

𝜙link
∗

𝜙goal
∗ = 0

𝜙goal

Figure 9.2: Desired and current relative distances. The target state Φ∗ = [φ∗link, φ∗goal, φ∗obs]

is constructed before execution, and start/current state Φ = [φlink, φgoal, φobs] is
computed during each control iteration. Not all of the relative distances are shown
here, we only show one example for each type of distances. Note that φobs is not
required if there is no obstacle.

distance metric to generate a smoother and more robust behaviour for targets and

obstacles:

φjl = wjlψ(j, l). (9.5)

Different non-linear models can be applied here. In general, from a reaching and

avoiding point of view, distant obstacles should not affect the robot, and distant

target should not introduce unacceptable large effort. An inverse exponential model

has the property that starts from the origin and quickly converges to a maximum

value, based on which here we show one possible model for handling the interactions

with targets and obstacles

ψjl = 1− e−kdjl , (9.6)

where k > 0 is a constant. The relative distance increases exponentially with djl , and

converges to a maximum value 1 (φjl converges to wjl). A distant obstacle (djl � 0)

will not affect the robot if we set φ∗obs = wjl = wsafe, i.e. φ∗obs ≈ φobs = wsafe, where

wsafe is a non-negative constant. For reaching task, we set φ∗goal = 0, meaning that
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a distant target can only introduce a prescribed maximum effort to the system, i.e.

‖φ∗goal − φgoal‖ ≤ wjl , ∀d ≥ 0.

In order to solve a motion transfer, adaptation and planning problem, we require

the current state Φt, which we compute using Equations 9.4-9.6, and a desired state

Φ∗ = [φ∗link, φ∗goal, φ∗obs] (9.7)

φ∗link constrains robot poses that can be used for imitation problems, where the refer-

ence value φ∗link can be computed from demonstration data. Minimizing the difference

between the demonstrated and current relative distances will then result in transfer-

ring the motion based on the relative distances between the links. However, from

target reaching point of view, the robot pose is often used as a secondary task, along

side a primary reaching task, or it is not used at all. In this case, the relative link

distance term can be ignored entirely. φ∗goal is usually set to zero for reaching tasks.

One can also set φ∗goal to other values, e.g. keeping the end-effector and target with

particular distance. φ∗obs = wsafe, as discussed earlier.

We construct the desired relative distance space target Φ∗ by combining all three

distance terms: φ∗link, φ∗goal and φ∗obs. The state is, however, only valid if we keep up-

dating the positions of the links, obstacles and target. We use an operational space

controller to track the changes in the environment. For this we require the Jacobian

of the relative distance space.

First we compute end-effector Jacobian of the points pl using standard kinematics

tools as

Jeff =
∂Φeff(q)

∂q
∈ R3M×N , (9.8)

where Φeff(q) is the joint space to end-effector space forward map. Our goal is to

find the Jacobian between relative distance space and joint space

J =
∂Φ(q)

∂q
= W

∂Ψ
∂q
∈ RX×N , (9.9)
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where X = (M+E)(M+E−1)
2 , W is the weighting matrix and Ψ = [ψjl ], j ∈ M, l ∈ M ∪ E.

The distances between two obstacles or obstacle and target are not considered, so the

number of controllable distances is X.

Jx,i =
∂φjl

∂qi
= wjl

∂ψjl

∂qi
, (9.10)

where x ∈ X, and ∂ψjl ∈ [ ∂ψlink
∂qi

, ∂ψgoal
∂qi

, ∂ψobs
∂qi

] depend on edge types. If pose retargeting

is required,

∂ψlink

∂qi
= d̄j1 j2 =

(pj1 − pj2) · (Jeff
j1,i − Jeff

j2,i)

djl
, (9.11)

otherwise ∂ψlink
∂qi

= 0. Here, · is the dot product, and J jnt
j,i ∈ R3×1 is the position Jacobian

of point pj w.r.t. the joint i.

For target reaching and collision avoidance, φjl ∈ {φgoal, φobs}, the first derivative

of Equation 9.6 yields

∂ψjl

∂qi
= kd̄jle−kdjl , (9.12)

where d̄jl is the relative distance Jacobian to end-effector space

d̄jl =
(pj − pl) · Jeff

j,i

djl
. (9.13)

Note that the Jacobian entries for goal and obstacles are the same, however, since

they have different desired value, φ∗obs 6= φ∗goal, the effect of their Jacobian entries are

different.

Now we have the desired relative distance space state Φ∗, current state Φt and

the Jacobian that are required by the cost function (Equation 9.1 and 9.3). In gen-

eral, this problem can be solved by any optimization based planners. However, from

a real-time implementation point of view, we choose a Jacobian-pseudo-inverse IK

type controller due to its simplicity and efficiency. We discuss the performance in

Section 9.2.2.
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ObstacleTarget

Start

Φ∗

𝜙obs Φ𝑡=0

Φ𝑡=𝑡1

Φ𝑡=𝑡2

Add 𝜙obs

Remove 𝜙obs

Figure 9.3: Incremental planning structure, i.e. modifying the relative distance state online.
The desired state Φ is computed without obstacle. The robot starts from a state
(Φt=0) with no local obstacle. Obstacle is detected at time t1, new entries will be
added into both Φ∗ (φt=t1

obs = wobs) and Φt=t1 . At time t2 > t1, the obstacle is no
longer close to the robot, the entries for the obstacle are removed.

9.2 incremental planning structure

For the obstacles which are known in advance, their relative distances can be encoded

during planning phase. However, when we deal with unexpected obstacles, such as

humans walking into the workspace of the robot, we have to modify the distance

relationship space on the fly in order to avoid the costly replanning. This will involve

adding and removing obstacle vertices, as illustrated in Figure 9.3.

9.2.1 Incremental Planning Structure

Assume we have a desired alternate space target

Φ∗ = [φ∗0 , φ∗i , . . . , φ∗M+E] ∈ R(M+E)×(M+E) (9.14)

where M + E is the number of vertices (links, obstacles and targets combined), and

φ∗i = [φ∗i0, φ∗i1, . . . , φ∗i,M+E]
T (9.15)
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is the vector that describes the desired distances between vertex i and all other ver-

tices. When a new obstacle k is detected, the original goal Φ∗ is no longer valid. We

want to have a new target in alternate space in the form of

Φ∗new =

 Φ∗ φ∗k

φ∗k
T 0

 ∈ R(M+E+1)×(M+E+1). (9.16)

Note that Φ∗ is still valid since it only depends on old vertices, meaning that we

only need to compute φ∗k and reuse the old plan as part of the new plan. The key to

achieving real-time implementation is to minimise online computation. In our case, it

is straight forward to get φ∗k and modify the plan without heavy computation. From

Equation 9.15 we have

φ∗k = [φ∗k0, φ∗k1, . . . , φ∗k,M+E]
T (9.17)

= [w0
safe, w1

safe, . . . , wM+E
safe ]T (9.18)

where wm
safe, m ∈ M ∪ E are the distances that the obstacle needs to keep from other

objects (robot links). In practice these distances may vary based on the shape of the

links and obstacle, their velocities, etc. When we add new obstacles, we only need to

resize the distance space, keeping the old plan for the existing vertices, and fill in φ∗k

to get a new plan Φ∗new. We can continuously add or remove vertices to the distance

space during execution without the need to perform replanning.

9.2.2 Complexity Analysis

In this section we analyse the computational complexity of our approach. In our ex-

periments we assume that the state is valid when the robot’s pose is collision free

and the end-effector gets closer to or is at the target position. The computation can be

separated into two main steps: construction phase and solving phase. In the construction

phase, we compute the current relative distance space state, Φ, and the relative dis-

tance space Jacobian, J. The desired state Φ∗ is calculated once before execution, and

it will get modified when new obstacles are detected, also, during construction phase.
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Obstacle

Current pen pose

Desired pen pose

Target

𝜙goal

𝜙link

𝜙obs

Figure 9.4: LWR mock-up welding experiment setup. The LWR robot arm is mounted with
a laser pen, the task is to use the laser pen to weld along the target surface. We
add an additional virtual point along the pen, and set its desired position to be
above the real laser tip, such that the robot will keep the pen orthogonal to the
surface. The lines represent the current relative distances, φlink in grey, φobs in red,
and φgoal in green.

In solving phase, we solve operational space control problem using Equation 9.1 and

9.3. The order of complexity of the method is O( 1
2 M(M + E)) in the worst case where

we consider edges between all robot links and all obstacles and targets. Furthermore,

if we consider a reaching problem, without the pose re-targeting, we can omit the

edges between the robot links entirely, which reduces the computational complexity

to O(ME).

We analyse the computational time of our method with different total number of

edges X = M + E on a reaching problem. The increase of the construction time is

negligible compared to the increase of the solving time. An evaluation of maximum

controlling speed with different X is illustrated in Table 9.1. For example, X = 10

can be used for single arm (M = 7) robot in simple environment (1 target and 2

obstacles, i.e. E = 3). In contrast, X = 20 should be more than enough for single arm

robot in most complex environment (e.g. KUKA LWR, Figure 9.4), X = 30 should

be sufficient for a dual-arm upper body robot (e.g. Baxter robot, Figure 9.9), and

X = 50 for humanoids. The result suggests that the proposed method can solve the
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Table 9.1: Maximum controlling frequency with different space size X = M + E.

Evaluation scenarios

Space Size (X) 10 20 30 50 70 100
Control Speed (Hz) 750± 50 630± 20 600± 30 490± 20 350± 10 215± 5

Figure 9.5: A new obstacle (unconnected one) is detected during execution, then new relative
distances will be added into the original state when it gets close

adaptation problem in most common scenarios very efficiently. We have used a 3GHz

Intel Core 2 Quad CPU.

9.3 experiments

We evaluate our approach with two different experiments. The first experiment uses

a 7-DoF KUKA LWR robot arm to mock-up a dynamic welding task (Section 9.3.1),

and the second experiment is a liquid pouring task in a close robot-human interaction

scenario on a 14-DoF dual-arm Baxter robot (Section 9.3.2). The experiment setup

will be detailed in each section accordingly. The tasks are implemented using the

EXtensible Optimization Toolset (EXOTica Ivan et al. [2018]), which is a planning

framework for solving robotics motion planning problems.
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9.3.1 LWR Mock-up Welding Task

Original goal pose

Adapted goal pose

Obstacle

Obstacle

Start pose

Figure 9.6: Example of trajectory adaptation, where the green lines are the original (end-
effector and elbow) trajectories and the red ones are the adapted trajectories under
multiple obstacles constraint.
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Figure 9.7: Position and orientation error analysis of LWR welding mock-up task. Left: End-
effector position error; right: Laser pen orientation offset.
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Figure 9.8: Experiment results on LWR robot hardware. Each figure contains two sub figures,
where the right one is the real world environment, and left is the corresponding
simulated environment.

In the first experiment we aim to show that an accurate manipulation task can be

accomplished by only using relative distance based representation. The experiment

setup is illustrated in Figure 9.4. In addition, we add an extra virtual end-effector

along the physical end-effector’s z axis and a corresponding virtual target to keep

the laser pen orthogonal to the target plane. We set different weighting factors for the

laser tip, virtual point and obstacles (wtip > wobstacle � wvirtual), so that the pen will

be kept orthogonal to the target if there is no other constraints. The orientation will

be sacrificed to ensure physical end-effector position and collision free constraints

in presence of obstacles. We use a real-time object pose recognition and tracking

framework Pauwels et al. [2014] to detect and track the target.

The robot links’ collision bodies are represented by a set of spheres with radius of

7cm and the safety threshold wsafe = 5 cm. The number of φobs can vary based on the

number of obstacles. Since this is a reaching and avoiding problem, the robot pose

constraint is not considered, i.e. φ∗link = φlink = 0.

We run the experiment with four different scenarios: 1) static target without ob-

stacles, 2) moving target without obstacles, 3) static/moving target with dynamic ob-

stacles present before planning started, and 4) static/moving target with unexpected

obstacles present during execution. We record the laser tip position error and the

pose offset over a same time duration across the four scenarios. The position error is
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𝜙goal(centre)

𝜙goal
∗ (centre)= 𝑑

Obstacle

𝜙goal(tip)

𝜙goal
∗ (tip) = 0

Figure 9.9: Baxter water pouring experiment. The robot holds a cup with one hand and a
bottle with the other hand. The main task is to keep the bottle tip above the
cup and avoid obstacles, the secondary task (lower weighted) is to keep a certain
orientation between the bottle and the cup.

illustrated in Figure 9.7, where the y axis is the Euclidean error between real laser tip

position and desired ones. We can see that during all experiments, the errors of the

laser tip are very small (1.1± 0.44 mm). The error during the second scenario is larger

due to the fast movement of the target. In the presence of obstacles, the orientation

is sacrificed to ensure laser tip position and collision free constraints. Examples of

adapted motion in simulation is shown in Figure 9.5. Note that the robot can adapt

not only end-effector trajectory, but also the trajectories of all links. Figure 9.6 shows

an example of adapting end-effector and elbow trajectories simultaneously.

In real world experiments, human subject’s motion are tracked in real-time using

XSENS motion tracking system. A set of obstacles are created to represent the human

subject, as shown in Figure 9.8. Each figure consists two subfigures, left and right

ones, where the right one is the snapshot of the real world environment and left

one is the corresponding simulated environment. These results show that we can

accomplish accurate manipulation tasks under dynamic obstacle constraints.

9.3.2 Baxter Liquid Pouring Task

In this experiment, we evaluate the scalability of our method on a 14-DoF Baxter

robot (Figure 9.9). The robot holds a cup with one hand, keeps it horizontal and uses

the other hand to grasp a bottle to simulate a water pouring task. We use one big
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Figure 9.10: Position and orientation error analysis of Baxter water pulling task. Left: Bottle
tip position error; right: Bottle orientation offset.

unified relative distance space state to encode the tasks for both hands as well as

the possible collision avoidance constraints. Similar to the laser pen orientation in

last experiment, here we add extra virtual point (centre of the bottle) to maintain the

cup and bottle’s orientation. Two goal distances are specified, i.e. φ∗goal(tip) = 0 and

φ∗goal(centre) = dc, where the first one is used to make sure the bottle’s tip is at correct

position and the later one is used to control the pouring angle. In practice, we set dc

to zero, meaning that the bottle should be kept orthogonal to the cup.

The experiment consists of three different scenarios: 1) perturb the robot from the

side on which the hand is holding the bottle; 2) perturb the robot from the side on

which the hand is holding the cup, where the cup’s desired position is not fixed,

meaning the robot can shift both arms to avoid the human; and 3) move the cup

randomly by moving the robot’s hand. The task here is to keep the bottle tip directly

above the cup and keeps the bottle as orthogonal as possible. The result in Figure 9.10

shows that in most cases the bottle can be placed in the correct place with an accept-

able mismatch (0.1cm-1cm). The error in the third scenario is larger due to the fact

that the robot can not follow the cup when it is moved by human with high velocity.

Orientation offsets are similar across three scenarios, which suggests that the robot

is able to "pour" the liquid into the cup with an acceptable pouring angle under

dynamic obstacle constraint. Examples of adapted motions under each scenario are
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Figure 9.11: Experiment 2: Baxter robot water pouring task. In the first scenario (column 1),
the human subject only disturb the robot from the left, the cup’s position is fixed,
the robot needs to adapt its right arm (with bottle) to fill the water while avoiding
human; in the second scenario (column 2), the robot gets perturbed from the
right, which means it needs to move its left arm (with the cup) to another collision
free pose, and meanwhile the relationship between the bottle and cup needs to
be maintained; in the third scenario (column 3), the cup’s position is controlled
by another human subject, the robot needs drive its right hand with the bottle to
follow the cup while avoiding the human.

illustrated in Figure 9.11. A supplementary video of the experiments is available at

https://youtu.be/A1dhiLyLo5U.

9.4 discussion

The experiments show that the proposed method can be used for solving accurate

manipulation tasks in the presence of moving target and dynamic obstacles. The

robot can avoid not only the existing obstacles, but also obstacles that are arbitrarily

added into the scene during the execution.

The current approach has a few limitations, one of which is the local minima prob-

lem. Although relative distance space plan can adapt to environmental changes, the

robot still fails to converge to the target in some situations, e.g. trapped in large non-

convex obstacles, where a global replanning is required to find another valid plan.

Fortunately, such bottle neck can be eliminated with an integration of the real-time

motion planning approach (HDRM) described in Chapter 6.

https://youtu.be/A1dhiLyLo5U
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S U M M A RY

Robots have evolved from the primary form such as the Edinburgh Freddy Robot1

to advanced humanoid robot such as NASA Valkyrie2 over the past several decades.

However, the applications are still limited to industry and laboratory where the in-

teractions with environment and people is highly constrained. The main challenge is

for motion synthesis algorithms to generate motion trajectories that can be executed

robustly and safely in cluttered and changing environments with close interactions

with other robots and people.

In this thesis, we have tried to address the challenge in three phases as highlight

in Figure 1.1, which are then detailed in three main parts: Part I end-pose planning,

Part II motion planning and Part III motion adaptation. The three phases are interre-

lated, for instance, the output of end-pose planning, i.e. the goal state, is the input

to motion planning; the output of motion planning, i.e. a trajectory, is the input to

motion adaptation. In each part, we start with the preliminaries in the related area,

followed by a series of contributions with an increasing level of complexity.

In Part I, we have summarised the preliminaries of collision-free inverse kinemat-

ics and reachability map in Chapter 2. In Chapter 3, we have proposed the novel

forward and inverse dynamic reachability maps (DRM/IDRM) which enable real-

time end-pose planning capability for humanoid robots in cluttered environments.

As the original IDRM can only solve single-arm reaching problems on flat ground,

we have further extended the DRM/IDRM method, in Chapter 4, allowing the hu-

manoid robot to plan end-poses for bi-manual manipulation tasks on uneven terrain.

In Part II, we have generalised a brief but comprehensive overview of search-based

motion planning algorithms in Chapter 5. In Chapter 6, a novel resolution complete

1 The Freddy and Freddy II Robots developed during the 1960s and 1970s at the University of Edinburgh.
http://www.aiai.ed.ac.uk/project/freddy/

2 The NASA Valkyrie humanoid robot constructed by NASA-JSC in 2015 and delivered to the University
of Edinburgh in Spring 2016. http://valkyrie.inf.ed.ac.uk/
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motion planning algorithm is proposed, namely the Hierarchical Dynamic Roadmap

(HDRM), that is capable of solving extremely complicated motion planning problems

in real-time for fixed-base robotic arms. The complexity of motion planning problems

is exacerbated with the type of robot base considered, whereas, in Chapter 7, we

have proposed a generalised sampling-based planner for solving motion planning

problems for humanoid robots with floating-bases. The method is able to efficiently

plan smooth, balanced and collision-free motion for humanoid robots in complex

environments.

In Part III, we have summarised the classical motion transfer techniques as well as

state-of-the-art topological representations that have been applied in robotics in Chap-

ter 8. While existing methods are inefficient dealing with unexpected perturbations,

in Chapter 9, we have proposed a novel Distance Mesh representation that enables

real-time motion adaptation and collision avoidance capability in unstructured and

changing environments.

By utilizing the proposed end-pose planning, motion planning and motion adapta-

tion techniques, we obtain a robotic framework that significantly improves the level

of autonomy. The proposed methods have been validated on various state-of-the-art

robot platforms, such as Universal Robot UR5, KUKA Light Weight Robot, Rethink

Robotics Baxter, Clear Path Husky, NASA Valkyrie and many others, showing that

our methods are truly applicable for solving practical problems.
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F U T U R E D I R E C T I O N S

Despite the fact that significant improvement has been made in this thesis pushing

forward the frontier of robot motion synthesis in clutter, we are still unable to fully

deploy the robot unsupervised into real world applications. In this chapter, we state

a list of open questions that have been made apparent due to this thesis.

11.1 motion synthesis with optimization and system dynamics

So far, most of the work developed in this thesis considers only the robot’s kinemat-

ics without taking into account the dynamics, e.g. velocity, acceleration and force. In

most of the methods, the system dynamics are considered during a post-planning op-

timization step. Attempts had been made exploring techniques to include dynamics

into some of the algorithms such as DMesh or HDRM. However, adding dynamics

will double or even triple the state space’s dimensionality making offline storage or

online planning intractable with current commodity hardware.

It would be interesting trying to integrate dynamic properties into motion synthesis

by developing more advanced configuration-workspace encoding techniques or new

alternate space representations, while still managing to keep acceptable storage size

and planning speed. This will allow the planners to generate not only valid, but

more smooth and optimal trajectories. Similarly, the dataset or valid plan generated

by IDRM or HDRM can also be used as warm start in optimization-based methods

for faster convergence.

135
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Figure 11.1: Illustration of closed-loop motion synthesis framework.

11.2 closed-loop motion synthesis framework

In this thesis, we have addressed the motion synthesis problem separately (Equa-

tion 1.1 – 1.3) with a naïve combination as shown in Figure 3.7, whereas a high-level

decision-making agent is missing, i.e., a system that can decide when and where to

invoke end-pose planning, motion planning or motion adaptation, as shown in Fig-

ure 11.1. When a failure is caught at a certain phase, the system should be able to

recall previous functions to recover from the failure. For example, after an end-pose

has been found, if the footstep planner reports that the end-pose is not reachable, the

system needs to automatically recall the end-pose planner to find another end-pose.

Similarly, during execution time, the system needs to decide when to use motion

adaptation methods for adapting local obstacles, and when to replan entirely if the

original trajectory runs into local minima. With such an intelligent system, we can

then deploy the robot into real world applications with decision making and failure

recovery capabilities.

11.3 motion planning in clutter using deep learning

Deep learning has drawn significant attention in the artificial intelligence community

in the past few years (LeCun et al. [2015]), especially in Computer Vision and Natural

Language Processing. Deep reinforcement learning has also shown promising result

on controlling virtual agents and robots (Mnih et al. [2015], Lillicrap et al. [2015]).

However, those approaches have rarely been validated on real robots, or only on very

simple system in obstacle-free environments. To the best of the author’s knowledge,
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it has not been shown for deep learning approaches to plan and control robots to

operate in complex environments as those shown in this thesis.

Lack of sufficient training data is normally the bottleneck of applying deep learn-

ing methods to high dimensional problems. Fortunately, with the proposed methods

such as DRM and HDRM, we are able to generate a huge number of end-pose and

motion planning problems with correct solutions, which can be used as training data.

It should be possible, with enough training data, to train a deep reinforcement learn-

ing network to plan complex motion. We had already tried such approach, where

a deep network can be trained for solving motion planning problems in simple en-

vironments, however, we were unable to generate collision-free trajectories in com-

plex environments. We had only adopted some existing deep reinforcement learning

methods, where customized and well designed robot specific learning methods might

produce better results. Thus, last but by no means the least, the future work should

include applying deep learning techniques for solving robot planning problems in

cluttered and changing environments.
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