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ABSTRACT

Riemann surfaces frequently possess automorphisms which can be exploited to simplify

calculations. However, existing computer software (Maple in particular) is designed for

maximum generality and has not yet been extended to make use of available symmetries.

In many calculations, the symmetries can be most easily used by choosing a specific basis

for 𝐻1(Σ,Z) under which the automorphism group acts neatly. This thesis describes a

Maple library, designed to be used in conjunction with the existing algcurves, which

allows such a choice to be made. In addition we create a visual tool to simplify the

presentation of Riemann surfaces as sheeted covers of C and the creation of homology

bases suitable for use in the Maple library.

Two applications are considered for these techniques, first Klein’s curve and then

Bring’s. Both of these possess maximal symmetry groups for their genus, and this fact

is exploited to obtain neat algebraic homology bases. In the Klein case the basis is

novel; Bring’s is derived from work in the hyperbolic setting by Riera. In both cases

previous hyperbolic work and calculations are related to the algebraic results. Vectors

of Riemann constants are calculated for both curves, again exploiting the symmetry.

Finally this thesis moves back to simpler cases, and presents a general algorithm

to convert results from general genus 2 curves into results based on a symmetric basis

if one exists. This is applied to algebraic and numeric examples where we discover an

elliptic surface covered in each case.

iii



iv



ACKNOWLEDGEMENTS

I would first like to thank my supervisor, Professor Harry Braden, for his constant en-

couragement and suggestions throughout my time in Edinburgh. Without his invaluable

advice this thesis could never have been completed.

I found the lunchtime discussions in the department invaluable, providing insight

into many diverse aspects of the world. Thankyou!

I would also like to thank my family for their support. My aunt and uncle, Sula and

Niall, kept me sane through the four years here. And my parents, Anna and Pete gave

me my initial interest in mathematics, and encouragement right through to the end of

this project.

v



vi



DECLARATION

I declare that this thesis was composed by myself and that the work contained therein
is my own, except where explicitly stated otherwise in the text.

The results of Chapter 4 exist as arXiv:0905.4202v1 and have been submitted for
publication in collaboration with my supervisor Harry Braden.

(T. P. Northover)

vii



viii



CONTENTS

Abstract iii

Contents xii

1 Introduction 1

2 Extcurves: intersections of homologies 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Representation of Riemann surfaces . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Sheets and branches . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Representation of homology cycles . . . . . . . . . . . . . . . . . . . . . 12

2.4 Intersecting homology cycles . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Reduction to eliminate double-backs . . . . . . . . . . . . . . . . 22

2.4.2 Reduction to eliminate coincident segments . . . . . . . . . . . . 22

2.4.3 Reduction to eliminate intersections with no coincident segments 25

2.5 Development of useful functions . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 find homology transform . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Maple’s own homology . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.3 periodmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.4 transform extpath . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



x

3 CyclePainter: visually representing homologies 33

3.1 Motivation and visual style . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Representation of sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Colouring in surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Precomputing the effect of crossing a cut . . . . . . . . . . . . . 38

3.3 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Surface details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Paths configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Surface display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.4 Sheets configuration . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 Viewport configuration . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.6 File menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Integration with extcurves . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Example: Klein’s curve 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Algebraic representations of Klein’s curve . . . . . . . . . . . . . . . . . 48

4.3 Holomorphic differentials on Klein’s curve . . . . . . . . . . . . . . . . . 50

4.4 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Antiholomorphic involution . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Order 3 cyclic automorphism . . . . . . . . . . . . . . . . . . . . 51

4.4.3 Order 7 automorphism . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.4 Holomorphic involution . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.5 Order 4 automorphism . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Canonical homology basis . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Propagating homology basis to other coordinates . . . . . . . . . 58

4.5.2 Action of symmetries on homology basis . . . . . . . . . . . . . . 60

4.6 Period matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Order 3 symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.2 Antiholomorphic involution . . . . . . . . . . . . . . . . . . . . . 64

4.6.3 Order 7 automorphism . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.4 Holomorphic involution . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.5 Final free parameter . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Riemann period matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



Riemann surfaces with symmetry: algorithms and applications xi

4.8 Relation to period matrix of Rauch and Lewittes . . . . . . . . . . . . . 69

4.8.1 Hyperbolic model of Klein’s curve . . . . . . . . . . . . . . . . . 72

4.8.2 Identification of two models . . . . . . . . . . . . . . . . . . . . . 74

4.8.3 Rauch and Lewittes’ homology in coordinates . . . . . . . . . . . 78

4.8.4 Symplectic transformation . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Vector of Riemann constants . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9.1 Theory of constants up to a half-period . . . . . . . . . . . . . . 80

4.9.2 Constraints from order 7 automorphism . . . . . . . . . . . . . . 81

4.9.3 Using the involution to determine 𝑛 . . . . . . . . . . . . . . . . 83

4.9.4 Final half-period . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Example: Bring’s curve 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Dye’s sextic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Automorphisms of Dye’s sextic . . . . . . . . . . . . . . . . . . . 89

5.3 Craig’s sextic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Special points in Craig’s representation and desingularisation . . 91

5.3.2 Branched covers of P1 and real paths . . . . . . . . . . . . . . . . 92

5.4 Relating two sextics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 Preliminary group theory . . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 First constraint on 𝐴 . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3 Second constraint on 𝐴 . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Riera and Rodŕıguez hyperbolic model . . . . . . . . . . . . . . . . . . . 99

5.5.1 Introduction to 𝐻 . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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2 Chapter 1: Introduction

Riemann surfaces, compact one dimensional complex manifolds, have been studied

for more than a century and have a rich theory, bringing together disparate branches of

mathematics. Algebra, topology, analysis and others have found application in revealing

aspects of these fascinating objects.

The simplest Riemann surfaces are the elliptic curves with genus 1, which provide

analytic answers to many seemingly simple yet intriguing problems. From the motion

of a pendulum to the solution of a quintic equation, classical problems find their home

with the elliptic functions, as for example in [1].

More recently, these surfaces have played a fundamental role in providing explicit

solutions to integrable systems. As discussed by Babelon and Talon in [2], problems

can often be recast as a Lax system with spectral parameter

d𝐿(𝜆)
d𝑡

= [𝐿(𝜆),𝑀(𝜆)],

where 𝐿 and 𝑀 are matrix functions of the dynamical variables and [, ] is a matrix

commutator. In this case Babelon shows that the spectral curve

Σ : det(𝐿(𝜆)− 𝜇1) = 0,

a Riemann surface, is invariant under the motion and the eigenvectors of 𝐿−𝜇1 provide

a line bundle on Σ which will vary with time. One can often show, as for example in

[19], that this line bundle 𝐷(𝑡) has linear motion in the Jacobian

𝐷(𝑡) = 𝛼𝑡+ 𝛽,

where 𝛼 is a function of the system and 𝛽 obviously encodes the initial conditions.

Remarkably, this divisor is enough to characterise the eigenvectors of 𝐿 up to normal-

ization; and so Θ-functions (specifically the ability to give a meromorphic function on Σ

with prescribed poles) allow Babelon and Talon to write down the eigenvectors that

originally gave 𝐷(𝑡).

Finally, these Θ-functions (together with the spectral data encoded in Σ itself)

are enough to reconstruct 𝐿 itself, generally with each entry a rational function of

Θ-functions of time. From 𝐿 one can usually recover the original dynamical variables

by algebraic manipulation.

Via these integrable systems, a path has been made to modern particle physics. In
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particular explicit monopole solutions in various backgrounds reduce to well-known

integrable systems with Lax representations, as in [3]. Discovering analytic and global

properties of solutions obtained like this leads to further consideration of the surfaces

involved.

The Maple software package already has a module called algcurves which provides

routines for dealing with Riemann surfaces expressed as plane algebraic curves. Many of

these functions provide complete information in their realm, however on the analytic side

they lack flexibility. In particular the choice of basis for the first homology group is an

implicit variable in the Θ-functions, via the period matrix of the surface. Maple chooses

this basis behind the scenes, and while it can be exposed to scrutiny it is nevertheless

fixed in all calculations Maple undertakes. The disadvantage of this approach is that in

cases where the surface has holomorphic automorphisms there may be preferred bases

which reflect the symmetry in the associated analytic objects as described (for example)

by Fay in [16]. The algorithm used by Maple to select its basis was designed for use on

completely general surfaces, and so the results obtained frequently don’t reach their

potential simplicity when symmetries are available.

The first goal of this thesis will be to augment the algcurves library with functions

that allow an explicit homology basis to be used. The result is the Maple library

extcurves, built around the new function isect which can calculate the intersection

number of two paths on a given Riemann surface. The intersection number serves as an

analogue of an inner product in the homology group and from this single ability follow a

surprising number of functions; a small step tells us how to find the basis-change matrix

for these canonical bases, 𝛾𝑖 and 𝜂𝑖. If 𝛾𝑖 = 𝑀𝑖𝑗𝜂𝑗 then

⟨𝛾𝑖, 𝜂𝑗⟩ = ⟨𝑀𝑖𝑘𝜂𝑘, 𝜂𝑗⟩

= 𝑀𝑖𝑘⟨𝜂𝑘, 𝜂𝑗⟩

= 𝑀𝑖𝑘𝐽𝑘𝑗 ,

where 𝐽 is the matrix used to define the symplectic group, given in block form by

𝐽 =

⎛
⎝ 0 1

−1 0

⎞
⎠ .
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Hence

𝑀𝑖𝑗 = −⟨𝛾𝑖, 𝜂𝑘⟩𝐽𝑘𝑗 ,

which is a trivial extension of the ability to calculate intersection numbers. Applying

this technique to Maple’s own homology choice will allow us to calculate the period

matrix itself in an arbitrary basis.

The extcurves library, considered alone, goes beyond flexibility and actually makes

seemingly easy tasks rather difficult; we now need a good way to manually specify a

homology basis. The second part of this thesis tackles this problem. A purely algebraic

description is too error-prone and tedious for many purposes, so a new Java program

called CyclePainter is developed which allows homology paths to be visually drawn

and conveniently displays essential information about their analytic continuations so

that monodromy properties are respected.

The next step is to apply these techniques we have developed to some examples.

First comes Klein’s beautiful quartic curve. As is well known, this is a genus 3 surface

with a symmetry group of 168 elements – the maximum possible for that genus. There

have been frequent calculations of its period matrix in the literature, though rarely

making full use of its symmetry group. We continue this tradition and produce a lovely

period matrix of the form

𝜏 =
1
2

⎛
⎜⎜⎜⎝

𝑒 1 1

1 𝑒 1

1 1 𝑒

⎞
⎟⎟⎟⎠ ,

where 𝑒 = 1+i
√

7
4 . This result is published jointly with Harry Braden in the Journal of

Physics A: Mathematical and Theoretical [4]. Period matrices with comparable levels of

symmetry have been discovered in the past, but not with the additional benefits provided

by rational numbers off-diagonal (this added feature permits certain calculations to

make use of the fact that this curve covers others, for example the theta functions

factorize into lower genus versions, as noted by Martens in [26] for example).

After that, we relate this period matrix and basis to one constructed by Rauch and

Lewittes in [29]. This involves a detour into hyperbolic models of Riemann surfaces and

makes full use of the group of symmetries. As a final component to the study of Klein’s

surface, we derive the vector of Riemann constants with respect to our new particularly

symmetric basis.

After Klein’s curve we move on to another surface with a maximal symmetry
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group. This time Bring’s curve is studied, a genus 4 curve where Riera and Rodŕıguez

have already produced (in [30] a period matrix with good symmetry properties in

the hyperbolic model of the surface. As in the Klein case, we find a novel algebraic

representation of the basis producing this matrix and compute the vector of Riemann

constants again. In doing this we will have course to create a new relationship between

algebraic versions of Bring’s curve studied by Dye [13] and Craig [9].

Finally we change direction to deal with simpler surfaces: those with genus 2. In

this particular instance an algorithm is derived which automates the selection of a

symmetric basis. If such a curve covers an elliptic curve then, as Murabayashi showed

in [28], there is a particularly symmetric form of the period matrix. This matrix then

allows the genus 2 Θ-functions to factorise and be written completely in terms of elliptic

Θ-functions, as Martens noted in [26]. We present a sequence of algorithms that, given

a genus two period matrix, finds such covers and searches for the basis transformation

needed to manifest the symmetry.
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8 Chapter 2: Extcurves: intersections of homologies

2.1 Introduction

Source code for the software described in this chapter can be downloaded from http:

//gitorious.org/riemanncycles/extcurves; a snapshot is on the included CD.

The matrix of periods for a Riemann surface is defined for a given canonical homology

basis 𝛾𝑖 = a1, . . . , a𝑔, b1, . . . , b𝑔 and basis 𝜔𝑖 of holomorphic differentials as

Π𝑖𝑗 =
∫︁

𝛾𝑖

𝜔𝑗 =

⎛
⎝𝒜
ℬ

⎞
⎠ .

The a-normalised Riemann period matrix is defined by

⎛
⎝1

𝜏

⎞
⎠ = Π𝒜−1 =

⎛
⎝ 1

ℬ𝒜−1

⎞
⎠ ,

and is equivalent to calculating the matrix of periods with the so-called a-normalised

basis for the differentials, uniquely defined as 𝜔𝒜−1. Thus the period matrix 𝜏 , and

hence Θ-functions, do depend on the choice of homology basis but not on any choice of

basis for the differentials.

Tretkoff and Tretkoff produced an algorithm in [31] which finds such a homology

basis for a general surface presented as a plane algebraic curve. This was implemented

under Maple by Deconinck and van Hoeij (practical considerations are described in [11])

and allows Maple to fully automatically compute a period matrix for an arbitrary curve.

However, not all curves are arbitrary and when they possess symmetries it is

advantageous to use a homology basis where the action of those symmetries is neat. We

will see that such a choice can produce dramatic simplifications in the resulting period

matrix, and arguably even more reduction is possible in Θ-functions.

These symmetric calculations are currently entirely manual and some form of

computer aid in working with symmetric homology bases would be desirable. The

ultimate goal would obviously be a fully automated choice of the best homology basis

available. This inevitably runs into the aesthetic issue of which basis actually is best so

more limited goals must be set. However, work has been done at least on finding good

bases and determining what should be expected. Gilman considers in [17] and [18] the

possible actions of automorphisms on canonical homology bases. Her results are only

directly applicable when the order of the automorphism is a prime and are suggested

by the Riemann-Hurwitz formula. Suppose Σ̂ is a Riemann surface of genus 𝑔 with an

http://gitorious.org/riemanncycles/extcurves
http://gitorious.org/riemanncycles/extcurves
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automorphism 𝜑 : Σ̂→ Σ̂ of order 𝑝. We can form the quotient surface Σ = Σ̂/⟨𝜑⟩ with

genus 𝑔 and natural projection 𝜋 : Σ̂→ Σ. The Riemann-Hurwitz formula is

2𝑔 − 2 = 𝑑𝑒𝑔(𝜋)(2𝑔 − 2) +
∑︁

𝑏𝑞.

where 𝑏𝑖 is called the branching number and is given in this case by

∑︁

𝑝∈𝜋−1(𝑞)

(|{orbit of 𝑝 under 𝜑}| − 1) .

For all but a finite number of points (the so-called branch points, see later for more

details) this is finite. Because the order of 𝜑 is a prime, the branching numbers are

particularly easy to calculate here: the size of an orbit under 𝜑 is either 1 or 𝑝 and so 𝑏𝑖

is either 𝑝− 1 (for a fixed point) or 0 (for a regular point). So, as Gilman notes in [18],

the formula can be rewritten

2𝑔 − 2 = 𝑝(2𝑔 − 2) + (𝑝− 1)𝑓,

where 𝑓 is the number of fixed points of 𝜑; this can be suggestively rearranged to

2𝑔 = 2𝑔𝑝+ (𝑓 − 2)(𝑝− 1).

Gilman shows that there is a canonical homology basis for Σ̂ with 2𝑔𝑝 well-behaved

cycles (falling into 2𝑔 𝜑-orbits) and (𝑓 − 2)(𝑝− 1) anomalous cycles.

This result is obviously of particular interest if there are precisely 2 fixed points,

since then there then are no anomalies to break the pattern. We will soon see that this

actually occurs for Klein’s curve (with an order 3 automorphism) and is responsible for

a great deal of the beauty in the results obtained.

In principle Gilman’s results could be automated. However, given that they are

obtained via a detour into Fuchsian groups of surfaces and the requirement for an auto-

morphism of prime order, it is unclear whether automation would be useful. Certainly

ad-hoc methods of exploiting symmetry have proven adequate to the surfaces at hand.

Here we present a Maple library which is designed to be used in conjunction with

the existing algcurves routines and provides the desired flexibility in homology choice.
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2.2 Representation of Riemann surfaces

There are many ways to describe Riemann surfaces mathematically, and many ways to

represent each of those descriptions computationally. In this section we will fix both of

these parameters and justify the decisions made.

Some of the more obvious options for a mathematical description are:

1. An abstract 1 dimensional complex manifold, perhaps given as a set of coordinate

change functions making up an atlas.

2. A quotient of the Poincaré hyperbolic disc with some Fuchsian group. This

approach has been computationally taken by Buser and Silhol, for example in [8].

3. An algebraic variety in P2, that is, for a given homogeneous polynomial 𝑓 in three

variables

Σ : {[𝑥, 𝑦, 𝑧] ∈ P2 | 𝑓(𝑥, 𝑦, 𝑧) = 0}.

The surface is then defined completely by the polynomial 𝑓 , although for a complete

understanding more work may be needed to resolve singularities.

4. Relatedly, we could choose [𝑥, 𝑦, 1] to represent (nearly) all points above. As

a primitive description this amounts to, given a (not necessarily homogeneous)

polynomial 𝑓 ,

Σ : {(𝑥, 𝑦) ∈ C2 | 𝑓(𝑥, 𝑦) = 0}.

Compared to the previous option, this leaves the points at∞ implicit, so we would

have to revert to projective space to describe them. However, most other points

become slightly simpler.

Our choice is guided by the existing Maple algcurves library. Most of its functions

use the fourth representation above, taking three parameters 𝑓, 𝑥, 𝑦 where 𝑓 is an

algebraic expression in the symbols 𝑥 and 𝑦. In principle the symbols 𝑥 and 𝑦 could

be derived from 𝑓 , since it should only have two indeterminates. However, in use they

are usually distinguished so they are specified explicitly. Since interoperability is a

worthy goal we choose to follow this choice, with a slight modification. Maple provides

a “Record” data-type to package related properties of what is conceptually a single

object. We make use of this in our programming interface; a Riemann surface will be

provided as a Record with three fields: f, x, y.
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For example the Riemann surface

𝑦2 = 𝑥4 + 1

may be given by the definition

> curve := Record(’f’=y^2-x^4-1, ’x’=x, ’y’=y):

Of course variables may be renamed with impunity. The following would be completely

equivalent

> curve := Record(’f’=w^2-z^4-1, ’x’=z, ’y’=w):

However, as mentioned above, swapping the variables as in

> curve := Record(’f’=w^2-z^4-1, ’x’=w, ’y’=z):

would be subtly different. It would still represent the same surface, but functions would

operate on it in different ways.

With this convention normal algcurves functions can obviously still be called. For

example we might write

> genus(curve:-f, curve:-x, curve:-y);

1

2.2.1 Sheets and branches

Having made this choice, we need to consider the consequences of the representation in

more detail. In particular, how should we describe a point on the Riemann surface?

We start by defining the projection maps 𝜋𝑥 and 𝜋𝑦 from Σ to C by

𝜋𝑥([𝑥, 𝑦, 1]) = 𝑥,

𝜋𝑦([𝑥, 𝑦, 1]) = 𝑦.

Disregarding the singular points and points at infinity (i.e. those of the form [𝑥, 𝑦, 0]

in projective space) – both finite in number – if given, say, an arbitrary 𝑥 = 𝛼 ∈ C then

the equation

𝑓(𝛼, 𝑦) = 0

is a univariate polynomial in 𝑦 with finitely many solutions. For generic 𝛼 this will

be a constant deg(𝑓), and we say that the surface has deg(𝑓) sheets (these notions
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correspond to more general ideas from differential topology, the degree has the same

name, but our sheets correspond to the topologists’ fibres). In a neighbourhood of one

of these regular points 𝜋𝑥 itself is a valid coordinate chart on the curve as a manifold.

At some special points of C, called branch points, some of these solutions will merge

and there will be fewer than deg(𝑓) solutions. Suppose 𝑥0 is such a branch point; then

𝜋𝑥 is not necessarily a valid chart: for at least one preimage 𝑃 of 𝑥0 we will have points

𝑄1 and 𝑄2 arbitrarily close to 𝑃 such that 𝜋𝑥(𝑄1) = 𝜋𝑥(𝑄2). That is, on no open

neighbourhood of 𝑃 does 𝜋 give a bijection to (a subset of) C.

In these cases deriving a coordinate chart requires further study. We will usually

avoid such issues because our main concern, paths on the surface, can be deformed so

that they never go near a branch point.

We usually label this set of branch points ℬ. There is a strongly related notion of a

ramification point (essentially the set 𝜋−1
𝑥 (𝑏) for a branch point), but we won’t use this

concept directly.

Note that in the more general topological setting branch points are referred to as

“critical values”. Literature abounds dealing with these issues from both sides, on the

Riemann surface side Farkas and Kra have written the particularly good [15], while the

more general setting is discussed by Lee in [25].

2.3 Representation of homology cycles

Now that we have fixed a representation for surfaces, we need to decide on the homology

cycles that live on them. By definition 𝐻1(Σ,Z) is the set of equivalence classes of paths

on a surface Σ under homological equivalence. Naturally enough we only demand a

single path from the user to represent its entire equivalence class.

Unfortunately there will be a tension in the remaining decisions between allow-

ing potential users expressive freedom to describe the paths they want and keeping

computations manageable.

In principle paths could be as complex and pathological as desired; after all the only

requirement is continuity. One could even devise curves that intersect at a given point

if and only if the Goldbach conjecture is true 1; naturally, restricting this freedom is a

priority but where exactly to draw the line is a difficult issue. Considering piecewise

sections of paths, there are three obvious classes to consider:
1Describing such a path for Maple would present a challenge, fortunately.
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7→

Figure 2.1: Treatment of semicircular arcs encountered in algcurves paths

1. Straight lines. Deciding whether two line segments intersect is trivial, but many

paths won’t naturally be viewed as straight lines so some kind of conversion is

needed.

2. Arcs of circles. It is slightly more difficult to discover whether circles intersect and

additionally the circle/line and circle/circle cases need to be considered separately.

On the other hand they are used internally by algcurves to describe its homology

cycles, so some handling will be essential for interoperability.

3. The rest. No general way to determine whether arbitrary paths intersect.

Initially the first two were permitted because the alternative of computationally

splitting an arbitrary circle into an equivalent path made from line segments is intricate

and could also lead to less efficient analysis. This facility tended to be used only for

compatibility with algcurves since a human is quite capable of splitting a nominally

curved path into visual segments. Fortunately it was noted that algcurves only uses

semicircular arcs centred on branch points with no others inside so any circle emerging

from algcurves’ algorithms could be trivially replaced by two line segments as in Figure

2.1.

Now suppose our path is given by two functions 𝑥, 𝑦 : [0, 1] → C satisfying the

equation 𝑓(𝑥(𝑡), 𝑦(𝑡)) = 0 for all 𝑡. Provided this path does not approach a branch

point, only 𝑦(0) is needed since continuity uniquely determines 𝑦 for every other value.

This motivates the second constraint we put on users: no path is allowed to pass

through a branch point – in fact they should stay far enough away that unique analytic

continuation works even with the vicissitudes of floating point arithmetic.

The advantages from a computational point of view are obvious: with the earlier

restriction to segments our paths will be described as in Figure 2.2 simply by 𝑛 + 1

complex numbers 𝑥0, . . . , 𝑥𝑛 and 𝑦0. For a closed cycle we would certainly demand

𝑥0 = 𝑥𝑛 but also that the induced value of 𝑦 at 𝑥𝑛 matches 𝑦0 – i.e. that we return on

the same sheet.
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(x0, y0)

x1

xn−1

xn

Figure 2.2: Description of homology cycle for extcurves

Further, the algorithms we will employ are themselves greatly simplified by not

having to consider whether paths pass through branch points. If we allowed paths

through branch points then we would have to allow intersections there, which is a far

more complicated issue: we would need knowledge of exactly how sheets come together

(the monodromy parameters) to even make a start. Similarly, näıvely integrating even a

holomorphic differential along a path through a branch point can fail. We would have

to provide a true manifold coordinate in a neighbourhood of the branch in order to

make the differential numerically finite. No matter how useful the demand that we

avoid branch points is for implementation purposes, it is probably more onerous for

users of the algorithms than the demand that all paths be given as straight segments.

Many homology bases have traditionally been given as prescriptions for selected paths

between branch points, for example in [3]. These have to be carefully modified before

our algorithms become usable.

In the end, the representation chosen for a cycle is as follows. We define a data-

type “Segment” whose constructor takes a beginning and an endpoint. We call the

fundamental data type an extpath, and define it as a list with the following structure

∙ The first element is 𝑦0.

∙ Subsequent elements are Segment objects, together giving the path through the 𝑥

plane.

For example if x[0],. . . ,x[3] and y0 are previously defined as complex numbers then

> cycle := [y0, Segment(x[0], x[1]),

Segment(x[1],x[2]),

Segment(x[2],x[3])]:

would construct a valid extpath (and possibly a cycle).
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There is redundancy in this notation if it is being entered manually, but we will

make things easier with utility functions in the programming interface. The advantage

is that Segment can be a reasonably complicated object with some awareness of how

Riemann surfaces behave and the sheet it’s on which simplifies implementation of some

algorithms.

In fact we will construct an entire utility program to mitigate the effects of these

restrictions by presenting a visual interface for the construction of cycles and almost

never have to deal with their internal representation (see Chapter 3).

Meanwhile, extpath is closed provides a useful consistency check. It determines

whether a given extpath represents a bona fide homology cycle or actually just a path

on Σ. If that function returns false then there is no hope of any other algorithms

producing meaningful results.

2.4 Intersecting homology cycles

Now we have fixed upon a representation for both surfaces and cycles, we must turn

our attention to the fundamental purpose of extcurves: calculating the intersection

number of two cycles. Our restriction to piecewise linear paths has simplified matters

greatly, but issues remain at the nodes of paths as we shall soon see.

In this section, given two paths 𝛾 and 𝜂 we will denote the true intersection number

with angle brackets, ⟨𝛾, 𝜂⟩, and the value computed algorithmically as isect(𝛾, 𝜂).

The first hurdle to overcome is the sheeted nature of our representation for Riemann

surfaces. We can certainly decide whether our cycles intersect as piecewise linear paths

in C, but if the paths have differing values for 𝑦 at that point they’re in completely

different areas of the Riemann surface – the putative intersection should be ignored.

With that in mind, a simplistic first attempt is given in Algorithm 1. The repeated

analytic continuations may seem costly, indeed even in the real code they consume the

bulk of the run-time of the algorithm, but the values can easily be cached to mitigate

this redundancy.

In implementing this scheme three nontrivial matters arise

1. Performing the analytic continuation. It is actually very difficult to determine for

certain whether this has been done correctly if the paths get close to a branch

point. Fortunately this is one place where the existing algcurves comes to the
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Algorithm 1 Simplistic intersection algorithm
Require: Two homology cycles: 𝛾 = [𝑦0, 𝑆𝑒𝑔(𝑥0, 𝑥1), . . . , 𝑆𝑒𝑔(𝑥𝑛−1, 𝑥𝑛)] and 𝜂 =

[𝑤0, 𝑆𝑒𝑔(𝑧0, 𝑧1), . . . , 𝑆𝑒𝑔(𝑧𝑚−1, 𝑧𝑚)], together with the surface they live on.
for all 𝑙1 = 𝑆𝑒𝑔(𝑎1, 𝑏1) ∈ 𝛾 do

for all 𝑙2 = 𝑆𝑒𝑔(𝑎2, 𝑏2) ∈ 𝜂 do
if 𝑙1 and 𝑙2 intersect at 𝑋 then
𝑌 ← analytic continuation of 𝑦0 along 𝛾 to 𝑋
𝑊 ← analytic continuation of 𝑤0 along 𝜂 to 𝑋.
if 𝑌 = 𝑊 then

Add intersection with appropriate orientation.
end if

end if
end for

end for

rescue. Some of its own routines face the same problem, so it has an (internal)

function ‘algcurves/Acontinuation‘ which does what we need.

2. Intersections could occur at the endpoints of segments as in Figure 2.3 which,

depending on how we decide whether two segments intersect, may be counted

twice. We might hope to counter this by considering our segments to be open

at one end as sets, but special case code would still be needed to determine the

orientation (and even existence) of an intersection at a node; see for example

Figure 2.3b. If we had allowed branch points in a path this problem would have

been even more intricate because the angles involved wouldn’t be derived purely

from the projection onto C.

3. Worse, two segments could be entirely or partially coincident; this may seem

pathological, but it actually occurs naturally when we want to consider two paths

that are basically the same but on different sheets. This problem actually occurs

in normal definitions of the intersection number, for example in the book by

Griffiths and Harris [20]. One resolution is that perturbations of the curves remove

the issue – any pair of cycles is homotopically equivalent to a pair with only

transverse intersections (i.e. there is a continuous map ℎ : R × R → Σ such

that ℎ(0, 𝑡) = original curve and ℎ(1, 𝑡) = transverse curve) and the intersection

number is preserved under homotopical equivalence. We will adopt a slightly

different approach here.

The latter two problems can be solved by extending the definition of isect (inherently

given only for paths with well-defined tangents intersecting transversely at a point)
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(a) Nodal intersection
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(b) Nodal non-intersection

Figure 2.3: Problematic intersections

7→

Figure 2.4: Split segments at any intersection

to these more complex cases where segments meet at their endpoints. Indeed the key

insight is that each endpoint of coincident segments can be considered independently

and assigned a value ±1
2 (as indicated in Figure 2.5); when these half-integers are added

up the true intersection number is obtained.

As a very first step we make sure that either all segments involved in an intersection

terminate there or none do. If there is an intersection point where a segment ends

then we split every other segment passing through that point as in Figure 2.4. This

transformation is trivially valid and reduces the number of special cases that need to be

considered.

Next we want a result classifying the types of intersection that can occur

Theorem 1. Each nodal intersection point falls into one of the categories in Figure 2.5,

where coincident lines have been replaced by parallel ones and the single intersection

point has been expanded to a circle for clarity.

Proof. This is simple exhaustion. We potentially have four lines meeting at this point:

∙ If all four segments are distinct then one of the diagrams in Figure 2.5a or 2.5b
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±1

(a) 4 directions, intersecting

0

(b) 4 directions, no intersec-
tion

±1
2

(c) 3 directions

0

(d) 3 directions

0

(e) 2 directions, double lines

0

(f) 2 directions, double lines

0

(g) 2 directions, triple line

0

(h) single direction

Figure 2.5: Types of intersection and contribution at a node
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applies.

∙ If there are three distinct lines then one must be doubled as in Figure 2.5c or 2.5d.

∙ With just two distinct segments they either fall into two pairs (Figures 2.5e and

2.5f) or a triple line and a single line (Figure 2.5g).

∙ Finally if all lines are coincident then only Figure 2.5h can apply.

Now that we know what kinds of intersection can occur at the end of segments,

we turn our attention to algorithmically calculating the intersection number from this

information. The basic goal will be to successively reduce the general case to simpler

and simpler intersections by altering the paths slightly, while keeping both ⟨∙, ∙⟩ and

isect(∙, ∙) constant.

These alterations are reminiscent of the Reidemeister moves used for similar simpli-

fications of in knot theory, but with a slightly more concrete numeric twist, suitable for

our eventual implementation on a computer.

But first we must actually define isect as follows.

Definition 2. Suppose two paths, 𝛾 and 𝜂, meet at a point. Without loss of generality

(rotation does not affect intersection number) we may assume 𝛾 comes in at angle 0, out

at 𝛾𝑜𝑢𝑡 and similarly 𝜂 comes in at 𝜂𝑖𝑛 and out at 𝜂𝑜𝑢𝑡. We demand 𝛾𝑜𝑢𝑡, 𝜂𝑖𝑛, 𝜂𝑜𝑢𝑡 ∈ [0, 2𝜋)

as shown in Figure 2.6. Then the local contribution to isect is

1
2
[︀

sgn(𝜂𝑜𝑢𝑡) sgn(𝜂𝑜𝑢𝑡 − 𝛾𝑜𝑢𝑡) + sgn(𝜂𝑖𝑛) sgn(𝛾𝑜𝑢𝑡 − 𝜂𝑖𝑛)
]︀
. (2.1)

This definition simply captures the intuitive notion of intersection number already

annotated in Figure 2.5: 4-way intersections contribute ±1 or 0; segments that double-

back contribute 0 and other coincident segments contribute ±1
2 or 0. In particular note

that it changes sign under both 𝛾 ↔ 𝜂 and changing the direction of either path, as one

would expect.

For example, changing the direction of 𝜂 (for simplicity) induces the map

(𝛾𝑜𝑢𝑡, 𝜂𝑖𝑛, 𝜂𝑜𝑢𝑡) ↦→ (𝛾′𝑜𝑢𝑡, 𝜂
′
𝑖𝑛, 𝜂

′
𝑜𝑢𝑡) = (𝛾𝑜𝑢𝑡, 𝜂𝑜𝑢𝑡, 𝜂𝑖𝑛).
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γ
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ηin

γ

γout

η

ηout

Figure 2.6: Angles in local definition of isect.

Then

sgn(𝜂′𝑜𝑢𝑡) sgn(𝜂′𝑜𝑢𝑡 − 𝛾′𝑜𝑢𝑡) = sgn(𝜂𝑖𝑛) sgn(𝜂𝑖𝑛 − 𝛾𝑜𝑢𝑡)

= − sgn(𝜂𝑖𝑛) sgn(𝛾𝑜𝑢𝑡 − 𝜂𝑖𝑛),

sgn(𝜂′𝑖𝑛) sgn(𝛾′𝑜𝑢𝑡 − 𝜂′𝑖𝑛) = sgn(𝜂𝑜𝑢𝑡) sgn(𝛾𝑜𝑢𝑡 − 𝜂𝑜𝑢𝑡)

= − sgn(𝜂𝑜𝑢𝑡) sgn(𝜂𝑜𝑢𝑡 − 𝛾𝑜𝑢𝑡),

and so half their sums simply changes sign as needed.

Formally, the main argument will be an induction on the number and types of bad

intersections as in Figure 2.5. Two more definitions will be useful to make the argument

concrete.

Definition 3. Let the segments of 𝛾 be given by 𝛾 = (𝛾1, . . . , 𝛾𝑚), and similarly

𝜂 = (𝜂1, . . . , 𝜂𝑛). The nontransversality index is the triple (𝑑, 𝑐, 𝑏) where

𝑑 = |{Number of segments double-backing at an intersection}|,

𝑐 = |{Number of coincident segments on different paths }|,

= |{(𝑖, 𝑗) : 𝛾𝑖 = 𝜂𝑗}|

𝑏 = |{Number of intersections at segment endpoints}|.

Note that since we have cut segments to guarantee that either all or no segments



Riemann surfaces with symmetry: algorithms and applications 21

terminate at a given intersection point, two segments are equal if and only if they have a

coincident section. With a lexicographic ordering, this is the parameter we will perform

the induction over. The second definition clarifies the type of alteration we will need for

the induction to proceed.

Definition 4. A reduction is a scheme for altering paths (not necessarily always

applicable) such that, if it requires 𝛾 ↦→ 𝛾′ and 𝜂 ↦→ 𝜂′ then

1. The new paths are homologically equivalent to the originals; so ⟨𝛾, 𝜂⟩ = ⟨𝛾′, 𝜂′⟩.

2. The calculated intersection number does not change under the alteration; that is

isect(𝛾, 𝜂) = isect(𝛾′, 𝜂′).

3. The alteration strictly reduces the nontransversality index of the two paths.

The theorem we would like to prove can then be stated as

Theorem 5. Suppose that for any two paths with nonzero nontransversality index

(𝑑, 𝑐, 𝑏) we can provide an applicable reduction. Then the scheme presented in Definition

2 calculates the true intersection number. That is

∀𝛾, 𝜂 ⟨𝛾, 𝜂⟩ = isect(𝛾, 𝜂).

Proof. Consider two paths 𝛾, 𝜂. If (𝑑, 𝑐, 𝑏) = (0, 0, 0) then the usual intersection rules

apply and the intersection number is trivially correct.

If not, then some reduction 𝛾 ↦→ 𝛾′, 𝜂 ↦→ 𝜂′ applies. Then

⟨𝛾, 𝜂⟩ = ⟨𝛾′, 𝜂′⟩

= isect(𝛾′, 𝜂′)

= isect(𝛾, 𝜂).

The first equality follows from the first requirement of a reduction; the second follows

from the induction hypothesis (which is applicable because of the third requirement for

a reduction); the third follows from the second requirement for a reduction.

So now all that remains is to provide a reduction applicable to every case. Essentially

we will treat each component of the nontransversality index individually and find a

reduction that decreases it without affecting earlier ones.
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7→

Figure 2.7: Reducing an intersection with a double-backing segment to a simpler case.

2.4.1 Reduction to eliminate double-backs

Suppose 𝛾 and 𝜂 have at least one segment that double-backs on itself at an inter-

section (i.e. an intersection from one of Figures 2.5d, 2.5e, 2.5g or 2.5h). Then the

nonstransversality index is (𝑑, 𝑐, 𝑏) with 𝑑 > 0.

Consider the following transformation.

Reduction 1. Given a common node 𝑝 of 𝛾 and 𝜂 where one segment retraces its steps

there will only be finitely many rays meeting at this node, and hence a direction free of

segments. Further, the closest branch point or other node will be some finite distance

away from 𝑝. Extend the segments in question into this safe space so that the actual

reversal occurs away from any intersections, as in Figure 2.7.

Going through the requirements of a reduction in order

1. The section we are adding is homologically equivalent to 0, so both modified paths

are equivalent to the originals as required.

2. In terms of contributions to isect, we have removed some number of double-backs

each with contribution 0 and replaced each with two identical contributions in

opposite directions which cancel out. Thus isect is preserved.

3. This transformation takes an nontransversality index (𝑑, 𝑐, 𝑏) to (𝑑′, 𝑐′, 𝑏′) where

𝑑′ < 𝑑, a strict reduction.

Therefore this transformation is indeed a reduction, applicable whenever 𝑑 > 0.

2.4.2 Reduction to eliminate coincident segments

The next transformation will apply to pairs 𝛾, 𝜂 with nontransversality index (0, 𝑐, 𝑏)

and act to reduce the number, 𝑐, of coincident segments. This transformation isn’t quite
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Figure 2.8: Displacement transformation at a node

Transformed contribution
Original contribution 𝜃𝜖 > 0 𝜃𝜖 < 0

−1/2 0 −1
+1/2 +1 0

0 +1/2 −1/2

Table 2.1: Effect of transformation in Lemma 6 on isect.

so local, involving an entire segment including both endpoints; so a small lemma on

transformations near a point is helpful

Lemma 6. Suppose two coincident segments meet at a point 𝑝 as in the initial diagram

of Figure 2.8, both entering at angle 0 and leaving at 𝛾𝑜𝑢𝑡 and 𝜂𝑜𝑢𝑡 (both in the range

[0, 2𝜋)) respectively.

Transform this by moving the common segment of 𝜂 to enter the circle at angle

𝜃𝜖 ∈ (−𝜋, 𝜋], closer to angle 0 than either 𝛾𝑜𝑢𝑡 or 𝜂𝑜𝑢𝑡 as in Figure 2.8.

Then the contribution to isect is given by Table 2.1. This transformation has no

effect on a true 4-way intersection at 𝑝 provided 𝜃𝜖 is small enough.

Proof. In this case, in the notation of (2.1), 𝜂𝑖𝑛 = 0 and the equation itself for the

original intersection reduces to

1
2

sgn(𝜂𝑜𝑢𝑡 − 𝛾𝑜𝑢𝑡).

After the modification, define 𝜂′𝑖𝑛 = 𝜃𝜖 + 2𝜋𝑘 so that it is in the range [0, 2𝜋). The local

contribution becomes

1
2
[︀

sgn(𝜂𝑜𝑢𝑡 − 𝛾𝑜𝑢𝑡) + sgn(𝛾𝑜𝑢𝑡 − 𝜂′𝑖𝑛)
]︀

=
1
2
[︀

sgn(𝜂𝑜𝑢𝑡 − 𝛾𝑜𝑢𝑡) + sgn(𝜃𝜖)
]︀
,

since if 𝜃𝜖 > 0 then 𝛾𝑜𝑢𝑡 > 𝜂′𝑖𝑛 and vice-versa (|𝜃𝜖| is small).
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η

γ

θǫ > 0 θǫ < 0

Figure 2.9: Displacement to eliminate coincident segments.

Filling in Table 2.1 is now simple and it is trivial to see that this transformation

does not affect the true intersection number.

We are now in a position to give the reduction applicable in this case.

Reduction 2. Given two paths 𝛾, 𝜂 with nontransversality index (0, 𝑐, 𝑏) choose a

common coincident segment 𝐿 with endpoints 𝑝 and 𝑞.

Since there are only finitely many branch points and finitely many segments, there

are radii 𝑟𝑝 and 𝑟𝑞 such that 𝐵(𝑝, 𝑟𝑝) and 𝐵(𝑞, 𝑟𝑞) contain no other significant points.

We may further assume that these circles do not intersect.

Similarly, there is a radius 𝑟𝐿 such that a parallel displacement of 𝐿 by a distance

less than 𝑟𝐿 will intersect with no branches, segments or nodes except possibly within

𝐵(𝑝, 𝑟𝑝) or 𝐵(𝑞, 𝑟𝑞).

With these quantities displace 𝐿 on 𝜂 (but not 𝛾) as in Figure 2.9.

Looking again at the points defining a reduction:

1. By choice of 𝑟𝑝, 𝑟𝑞 and 𝑟𝐿 this displacement has no effect on the homology of 𝜂

and hence intersection number.

2. isect is unchanged, as will be shown in Lemma 7.

3. No double-backs are introduced and the number of coincident segments is strictly

reduced by this transformation so the nontransversality index will become (0, 𝑐′, 𝑏′)

with 𝑐′ < 𝑐, 𝑏′ > 𝑏.

Lemma 7. The transformation in Reduction 2 has no effect on the calculation of isect.

Proof. Although we started considering just one local section of the path 𝛾, our modifi-

cation of 𝜂 may have affected later or earlier parts of 𝛾 passing through either 𝑝 or 𝑞. If

the secondary effects are from an intersection not involving a copy of 𝐿 then the rider

to Lemma 6 applies and there is no effect on intersection number. On the other hand,
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all intersections involving the common segment can be treated identically and we must

consider the contribution from both endpoints, 𝑝 and 𝑞, for the value of isect to remain

fixed.

We wish to apply Lemma 6 at both 𝑝 and 𝑞. We can freely rotate each node so that

𝐿 enters at angle 0 with no effect on isect. We then have to change the direction of one

or both paths so that they actually enter at that angle. This may change the sign of

the total contribution to isect. But compared to 𝑝, 𝑞 needs the direction of both paths

changed to satisfy the conditions of the Lemma which means the sign-change will be

the same at both 𝑝 and 𝑞.

Now notice for example from Figure 2.9 that at one end of 𝐿, 𝜃𝜖 > 0 and at the

other 𝜃𝜖 < 0. Referring to Table 2.1 this means that the modified contribution to isect

comes from adding an entry from the 𝜃𝜖 > 0 column and one (not necessarily distinct)

from the 𝜃𝜖 < 0 column. The original contribution to isect from both 𝑝 and 𝑞 was just

the sum of the original contributions from two rows in Table 2.1.

It is easy to see that each possible combination leaves the isect fixed. For example

an original −1/2 at 𝑝 and +1/2 at 𝑞 becomes either a −1 at 𝑝 and a +1 at 𝑞 or a 0 at

both: in all cases the total contribution is 0.

2.4.3 Reduction to eliminate intersections with no coincident seg-

ments

Finally we produce a reduction for the nontransversality index (0, 0, 𝑏) which replaces

any remaining nontrivial intersections with straight lines.

Reduction 3. Choose an intersection point 𝑝 with at least one 4-way intersection

contributing to 𝑏. Let 𝑟 be such that the disc 𝐵(𝑝, 𝑟) contains no branch points, no nodes

of either path (except 𝑝 itself) and no segments without an endpoint at 𝑝.

Replace each pair of segments entering 𝐵(𝑝, 𝑟) at 𝑎 and leaving at 𝑏 (hence 𝑎→ 𝑝→ 𝑏)

with the simple chord from 𝑎 to 𝑏 as in Figure 2.10.

Again this is a reduction

1. Because 𝐵(𝑝, 𝑟) contains no branches the paths are homologically equivalent.

2. Lemma 8 shows that isect remains fixed.

3. After replacement all intersections inside 𝐵(𝑝, 𝑟) occur on the interior of segments.

Further, there are no intersections at all on the boundary of 𝐵(𝑝, 𝑟) (such an
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7→

Figure 2.10: Chord replacement at 4-way intersection

Order Intersection number
𝛾𝑜𝑢𝑡 < 𝜂𝑖𝑛 < 𝜂𝑜𝑢𝑡 0
𝛾𝑜𝑢𝑡 < 𝜂𝑜𝑢𝑡 < 𝜂𝑖𝑛 0
𝜂𝑖𝑛 < 𝛾𝑜𝑢𝑡 < 𝜂𝑜𝑢𝑡 +1
𝜂𝑖𝑛 < 𝜂𝑜𝑢𝑡 < 𝛾𝑜𝑢𝑡 0
𝜂𝑜𝑢𝑡 < 𝛾𝑜𝑢𝑡 < 𝜂𝑖𝑛 -1
𝜂𝑜𝑢𝑡 < 𝜂𝑖𝑛 < 𝛾𝑜𝑢𝑡 0

Table 2.2: Dependence of intersection number on angle order.

intersection would originally have been a coincident segment), and for the same

reason no coincident segments are introduced. Finally we have removed at least

one intersection involving segment-ends from 𝑝 and so the nontransversality index

strictly decreases.

It remains to prove

Lemma 8. isect is unchanged by the transformation in Reduction 3.

Proof. The simplest method in this case is to simply enumerate all possible anticlockwise

orders of 𝜂𝑖𝑛, 𝜂𝑜𝑢𝑡 and 𝛾𝑜𝑢𝑡 as in Definition 2. It is easy to check for each row of

Table 2.2 that the nominated intersection number is correct both before and after the

transformation.

These three reductions cover all possible nonzero nontransversality index, and so

since a reduction is always possible Theorem 5 holds. An algorithm to implement this

scheme is conceptually simple, if fiddly in the details.

The final (not really mathematical) issue encountered is the odd properties of

floating point arithmetic. This can result in inconsistent decisions over whether two

segments intersect depending on the exact order of calculations, particularly in the
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already intricate nodal cases. This manifests itself almost exclusively in calculations

based on the 𝑥 coordinate since we have demanded all paths keep away from branch

points which guarantees a certain minimal separation in 𝑦 – well within the bounds of

floating point precision.

In this case the solution is to perform all calculations in 𝑥 with rational numbers,

and in order to retain efficiency we make demands on denominator size which ensure

only 32-bit precision is required. This guarantees native CPU instructions can be used

for these calculations minimising the overhead in the switch.

The result is a function isect with typical use

> isect(curve, cycle1, cycle2);

1

2.5 Development of useful functions

2.5.1 find homology transform

Now that we have a primitive function isect, this opens up many avenues of calculation.

Most fundamentally, suppose we have two canonical bases for the homology group on a

fixed surface Σ

⟨𝛾𝑖, 𝛾𝑗⟩ = 𝐽𝑖𝑗 ,

⟨𝜂𝑖, 𝜂𝑗⟩ = 𝐽𝑖𝑗 .

Then there is some symplectic matrix 𝐴 which converts between the two

𝛾𝑖 = 𝐴𝑖𝑗𝜂𝑗 .

Finding the intersection of both sides of this equation with 𝜂𝑘 yields

⟨𝛾𝑖, 𝜂𝑘⟩ = ⟨𝐴𝑖𝑗𝜂𝑗 , 𝜂𝑘⟩

= 𝐴𝑖𝑗 ⟨𝜂𝑗 , 𝜂𝑘⟩

= 𝐴𝑖𝑗𝐽𝑗𝑘

or, multiplying by 𝐽

𝐴𝑖𝑗 = −⟨𝛾𝑖, 𝜂𝑘⟩ 𝐽𝑘𝑗 .



28 Chapter 2: Extcurves: intersections of homologies

In particular we can find the basis-change matrix solely with intersection calcula-

tions and matrix multiplication. extcurves implements this formula as the function

find homology transform in extcurves. We will give examples of its use for reason-

ably substantial problems in later chapters, particularly those on Klein’s and Bring’s

curves.

2.5.2 Maple’s own homology

If we hope to interact with existing Maple calculations or even draw on its work, we

must have some means of relating any basis we pick to the one it chooses. It is clear

that, with find homology transform written, we need some method to convert Maple’s

homology basis to a list of extpaths.

Fortunately Maple’s own function monodromy has an option which also returns the

homology basis it used to derive that data. For example

> monodromy(y^2 - x^4 + 1, x, y, ‘give paths‘);

[..., [...], paths, r, rootof]

The first three entries in the list are the actual monodromy calculation and don’t concern

us here. The fourth entry is a list of (floating point approximations to) the branch

points.

The fifth entry is the most interesting one for our uses. It is a table describing the

paths Maple uses to get from its chosen base point to each of the branches. Together

with information in the homology calculation (which gives the chosen homology basis

in terms of how branches should be encircled) this is enough to convert any element of

Maple’s basis into an extpath.

The only possible problem is that Maple uses circular arcs to describe some sections

of its cycles. Fortunately the circles are carefully chosen by Maple to just encircle one

branch point and are only specified semicircles so in every case they can be replaced by

two straight line segments (again as in Figure 2.1).

The result is the function extpath from homology which takes a curve and an index,

returning the extpath equivalent of the desired Maple cycle. A convenience function

from algcurves homology is also provided to act on the entire basis at once. Specific

programming details can be found in the extcurves documentation in Appendix A.

This function is not explicitly used in later sections but forms the foundation of the

next function.
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2.5.3 periodmatrix

The package algcurves already provides a function periodmatrix for calculating the

matrix of periods for a surface Σ

Π𝑖𝑗 =
∫︁

𝛾𝑖

𝜔𝑗 ,

where {𝛾𝑖} = {a1, . . . , a𝑔, b1, . . . , b𝑔} is a canonical homology basis and {𝜔1, . . . , 𝜔𝑔} is

a basis for the space of holomorphic differentials on Σ.

The choice of a basis for the holomorphic differentials 𝜔𝑖 is largely unimportant

since most uses for the matrix of periods are via the so-called Riemann period matrix

which is obtained by changing the basis of differentials so that

∫︁

a𝑖

𝜔𝑗 = 𝛿𝑖𝑗 ,

i.e. in block form

Π =

⎛
⎝1

𝜏

⎞
⎠ .

In particular it is 𝜏 that appears in expressions for the Θ-functions on Σ.

However, we would very much like to be able to control which homology basis is

chosen, particularly if Σ has interesting symmetries. Algcurves itself does not provide

this facility, but fortunately we don’t have to reinvent the periodmatrix code to add it.

Suppose we have a basis {𝜂𝑖} we would prefer to use, and that it is related to the

algcurves choice 𝛾𝑖 by

𝜂𝑖 = 𝐴𝑖𝑗𝛾𝑗 .

Then the new period matrix Π̂ is given by

Π̂𝑖𝑗 :=
∫︁

𝜂𝑖

𝜔𝑗

=
∫︁

𝐴𝑖𝑘𝛾𝑘

𝜔𝑗

= 𝐴𝑖𝑘

∫︁

𝛾𝑘

𝜔𝑗

= 𝐴𝑖𝑘Π𝑘𝑗 .
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Or, as matrices

Π̂ = 𝐴Π.

So, by putting together our own existing code to relate algcurves’ basis to our

preferred one and periodmatrix from algcurves we can easily compute the equivalent

period matrix in our own basis.

Extcurves provides its own periodmatrix function, taking a curve and a list of

extpaths representing a homology basis and does precisely this. In fact it does slightly

more: the list does not have to form a basis and our version simply calculates the

integrals along any closed path given which is occasionally helpful.

For example if cycle1 and cycle2 are homology cycles then

> periodmatrix(curve, [cycle1, cycle2]);

will calculate a matrix containing the integrals of each holomorphic differential (as spec-

ified by algcurves/differentials) along cycle1 and cycle2. We will see particular

examples of this in the following chapters.

2.5.4 transform extpath

Finally, there is a much more fragile function for applying given transformations to

an extpath. The problem is that by selecting the transformation carefully, a segment

can be turned into an arbitrarily complex path on the surface. This would force us to

deal with the very issues we had hoped to avoid by demanding paths be presented as

segments. For example, Figure 2.11 arose in Klein’s curve when we tried to calculate the

image of a segment under an order 4 automorphism; notice that the straight segment

became a path wrapping tightly around a branch point. Great care would be needed to

accurately represent this situation by increasing the number of segments produced near

this kink.

On the other hand many transformations, useful in practice, are actually very simple.

Later we will have reason to apply automorphisms of surfaces which are linear in both

components

(𝑥, 𝑦) ↦→ (𝛼𝑥, 𝛽𝑦).

Such transformations should raise no significant issues because they send segments to

segments. Any algorithm we choose to segmentise a generically curved path, no matter

how unreliable in general, should perform well in this instance. Only slightly more



Riemann surfaces with symmetry: algorithms and applications 31

Figure 2.11: Difficult kinks arising from natural transformations

complicated, but still common, are transformations that act as Möbius functions on

each coordinate (or sometimes just 𝑥).

The fundamental problem is taking the push-forwards of a segment under some

transformation, and trying to split this curved path into an equivalent set of straight

segments, twining around each branch point correctly. Additional goals are to stay

away from branch points and to minimize the final number of segments produced (for

computational efficiency on the result).

In the end we chose an algorithm that is rather unstable; however, provided it is

supervised and used within the (simple) cases it handles well, it can save significant

time. Even outside these bounds its output may need to be corrected but it has proven

useful as a first approximation.

The algorithm first tries to approximate the final curve by a single segment. To test

whether this is plausible, it calculates the winding number about each branch point of

the (closed in C) combined path. If it is zero then the paths probably take the same

route around that branch, otherwise we need a better approximation.

The complex issue is deciding how to split the single segment if needed. We adopt

the näıve approach of recursive bisection, which is nevertheless sufficient for many

applications. In particular linear transformations are guaranteed to produce optimal

results and Möbius transformations (under which a segment can only become a circular

arc at worst) usually work.
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Despite these limitations, this function will also see substantial use in dealing with

Klein’s and Bring’s curves later when, in fact, many automorphisms will satisfy the

stringent requirements, and it will prove useful enough to save time on others.
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14
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Figure 3.1: Traditional algebraic representation of paths on a surface

3.1 Motivation and visual style

The latest source code for the software described in this chapter can be downloaded from

http://gitorious.org/riemanncycles/CyclePainter; a snapshot is on the included

CD.

With all the restrictions we have placed on the format of homology cycles for use in

extcurves, some kind of visual interface becomes almost essential.

The fundamental problem is that we have a surface

Σ : {(𝑥, 𝑦) ∈ C2 | 𝑓(𝑥, 𝑦) = 0}, (3.1)

and a path described by two functions, say from the unit interval in R

𝑥, 𝑦 : [0, 1]→ C.

In the absence of four-dimensional displays this path cannot simply be plotted. The

usual solution, shown for example in Figure 3.1 from [10] (with thanks to Antonella

d’Avanzo for the use), is to simply plot the function 𝑥(𝑡) on the plane and exploit the

fact that at any given 𝑥, there are only finitely many possibilities for 𝑦. Recall from

Section 2.2.1 that by considering 𝑓 , Σ is an 𝑛-sheeted cover of C. The style of line then

indicates which actual sheet the path is on. In Figure 3.1 for example, there are 3 sheets

indicated by solid, dashed and dotted lines.

http://gitorious.org/riemanncycles/CyclePainter
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Figure 3.2: CyclePainter representation of paths

This idea can be applied algorithmically, although since many sheets may be needed

(up to 7 in examples presented later), finding enough different styles of dashing proves

impractical and we instead represent sheets by different colours.

With the choices made for CyclePainter and a fairly simple engine to output meta-

post, we can produce – almost automatically and from a basis created for functionality

rather than looks – the images in Figure 3.2.

Clearly compromises have been made. In addition to those discussed above:

∙ Diagrams have to be split up more to remain clear as it is not really practical to

stop cycles interfering with each other.

∙ Paths are less uniform.

However, the same information is represented and with little loss of clarity.

3.2 Representation of sheets

3.2.1 Colouring in surfaces

The biggest problem to be solved at this stage is an algorithmic assignment of colours.

Mathematically, Σ is given by (3.1) with a natural projection 𝜋𝑥 : Σ → C, as in

Section 2.2.1 given by 𝜋𝑥(𝑥, 𝑦) = 𝑥. Then 𝜋−1
𝑥 (𝑥) has at most deg(𝑓) members (the

number of sheets of this map). So if we are given a set of 𝑛 colours, 𝜒, our (unattainable)

goal is to find a function

𝑠 : Σ→ 𝜒

with the following properties
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∙ 𝑠 restricted to 𝜋−1
𝑥 (𝑥) is injective for all 𝑥 ∈ C. This condition says that each sheet

above a given point will have a different colour, essential if we are to unambiguously

display the sheet a path is on with colour.

∙ 𝑠 should be as continuous as possible, in some sense. Complete continuity cannot

be attained since 𝜒 is a finite set so 𝑠 would be constant, but we do want to

minimise the number of surprising changes of colour that occur in paths.

∙ Discontinuities of 𝑠 should occur together in the affine projection as far as possible.

That is, if 𝑠 is discontinuous at (𝑥, 𝑦) then if possible we should try to place

discontinuities on other sheets at points of 𝜋−1
𝑥 (𝑥). This condition will make the

diagrams less cluttered by limiting the number of 𝑥 coordinates where paths can

change colour.

The first property is an absolute requirement, the subsequent ones are more guidelines,

and indeed compromises will have to be made in the name of automation.

It is usual to actually only define the function 𝑠 for most points on Σ. In particular

branch points are often excluded because 𝑠 would necessarily be discontinuous there

and the actual sheet of any paths can be inferred by continuity since each branch point

is isolated.

The normal resolution to finding the function 𝑠, at least on hyperelliptic curves, is

via branch cuts as in Figure 3.3, representing a simple elliptic curve. Lines between

various branch points are cut from 𝜋𝑥(Σ) to give a disconnected set Σ̄. Each component

of Σ̄ can then be given a different colour and visually paths will only change colour

when they cross one of these cuts.

The problem with this approach from a computational point of view is that these

branch cuts cannot be chosen arbitrarily; if we require each branch point to only be

involved in one cut they may not even exist if there are more than two sheets. For

example consider the curve

𝑦3 = 𝑥4 − 1.

It has branch points at ±1,±i (and ∞). If we made the obvious branch cut from 1

to −1 then we would implictly be asserting that a loop around these two in 𝑥 was

actually a closed path on the surface, which is false. In fact it is a simple exercise of

CyclePainter to see that no branch cuts are valid for this curve: a closed path around

any pair of branch points manifestly comes back a different colour.
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Figure 3.3: Branch cuts on a simple elliptic curve 𝑦2 = 𝑥4 − 1

A slight generalisation to the above procedure, however, is appropriate for implemen-

tation. Instead of taking cuts directly between branch points, we designate a preferred

central point 𝑝𝑐 ∈ C and make a cut from 𝑝𝑐 to each branch.

For the sake of simplicity in CyclePainter we demand

∙ that 𝑝𝑐 is not a branch point.

∙ that a ray from 𝑝𝑐 will reach each branch point without passing through another.

∙ that if ∞ is a branch point the left-pointing horizontal ray from 𝑝𝑐 does not pass

through any branch points on C.

The result of these requirements is that straight line cuts radiating from 𝑝𝑐 can be used

unambiguously. Since there are only finitely many branch points such a 𝑝𝑐 can always

be found.

We will use this in the following form

Theorem 9. Given a surface Σ which is an 𝑛-sheeted cover of C, and a base point 𝑝𝑐

as above, we can remove straight line cuts from 𝑝𝑐 to each branch point,

𝐶 =
⋃︁

𝑏∈ℬ
{𝑝𝑐𝑡+ 𝑏(1− 𝑡) : 𝑡 ∈ [0, 1]}.

where ℬ is the set of all branch points. If ∞ is a branch then we take its ray to be from
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Figure 3.4: How to colour a surface to represent sheets.

𝑝𝑐 to the left. Now define

Σ𝑐 = Σ ∖ 𝜋−1
𝑥 (𝐶).

Σ𝑐 has 𝑛 path-connected components and 𝜋−1
𝑥 restricted to C ∖ 𝐶 maps each 𝑥 to

precisely 𝑛 preimages, one from each component.

Proof. Trivial. See for example Hirsch [21].

We can perhaps see more clearly what is going on if we refer to Figure 3.4. In reality,

of course, the surface wouldn’t be self-intersecting past the branch-points. But we can

schematically see that a path looping around a branch point before returning to its

initial (projected) position, may not be closed. Removing the cuts (where the colour

changes discontinuously) is a strong enough change to disallow this possibility.

The computational effect of this result is that we only need to change the colour

of a path when it does cross one of our cuts; further, the colour-change is fixed by

continuity for the entire length of the cut. So, when initialising data-structures for a

specified surface, CyclePainter will precompute how sheets change when a path crosses

one of the cuts and then simply look this data up later on as paths are constructed.

This significantly reduces the runtime cost that would be incurred by routine analytic

continuation and makes realtime update of paths feasible. It is possible this technique

could be adapted to extcurves as well to reduce runtime costs significantly, though

with slight loss of flexibility (realistically, paths would have to cross cuts transversely

and avoid 𝑝𝑐).

3.2.2 Precomputing the effect of crossing a cut

In addition to 𝑝𝑐 we will fix a preferred sector (call it the primary sector) of C ∖ 𝐶, on

which we will initially define the colour map. Other sectors will be numbered in an

anticlockwise manner. In practice this sector will be specified by a point 𝑝𝑠 ∈ C lying
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pc

ps

Figure 3.5: Special points on affine representation of a curve.

inside (as in the proof above). In summary, referring to Figure 3.5 (a representation of

𝑦2 = 𝑥4 − 1 where large dots are branches, solid lines are cuts) note:

𝑝𝑐 = Centre from which straight cuts radiate to the branch points.

𝑝𝑠 = Point at which initial assignment of colours is made.

A slight modification of Maple’s builtin monodromy function gives us, for a specified 𝑝𝑐

∙ A preferred order (𝑦1, . . . , 𝑦𝑛) of the sheets 𝜋−1
𝑥 (𝑝𝑐) at 𝑝𝑐.

∙ The analytic effect of circling any branch point once anticlockwise. Essentially,

with the set of branch points ℬ as before, it provides us with a function

𝑚 : ℬ × {𝑦1, . . . , 𝑦𝑛} → {𝑦1, . . . , 𝑦𝑛},

𝑚𝑏(𝑦𝑖) = End point of loop from (𝑝𝑐, 𝑦𝑖) anticlockwise around 𝑏.

We assign colours from the set 𝜒 to each connected component based on this preferred

order and the primary sector. Points close to (𝑝𝑐, 𝑦𝑖) in the sector of 𝑝𝑠 will be assigned

the 𝑖th colour, giving rise to a map onto the set of colours, 𝜒,

𝑐1 : {𝑦1, . . . , 𝑦𝑛} → 𝜒,

which can be extended by continuity to the rest of Σ𝑐.

Thinking about two separate points, 𝑝𝑐 and 𝑝𝑠 is an unfortunate necessity because,

although Maple provides a preferred sheet ordering at 𝑝𝑐 this is not part of any of the

connected components of Σ𝑐 that we assign colours to. It should be clear that the actual
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b1

Sector 1

Sector 2

c1(yi) = blue

c2(mb1(yi)) = blue

Figure 3.6: The analytic and colouring effect of crossing a cut

colours will depend on the choice of preferred sector: crossing a cut will by definition

change colours even if points are analytically close.

Now consider sector 2, separated from the primary sector by a cut leading to the

branch point 𝑏1 as in Figure 3.6. The function 𝑚𝑏1 provided by monodromy is exactly

what we need to find the function 𝑐2 describing how colours are assigned near 𝑝𝑐 in

sector 2: a loop around 𝑏1 starting near (𝑝𝑐, 𝑦𝑖) in the primary sector and returning

in sector 2 will arrive at the point (𝑝𝑐,𝑚𝑏1(𝑦𝑖)). At the beginning its mapping from

analytic points to colours will be described approximately by 𝑐1 and at the end (since it

has crossed no cuts) by 𝑐2. Thus

𝑐1(𝑦𝑖) = 𝑐2(𝑚𝑏1(𝑦𝑖)),

or

𝑐2 = 𝑐1 ∘𝑚−1
𝑏1
.

From this we deduce that the effect of crossing 𝑏1’s cut in an anticlockwise manner

is given by first finding out the analytic point corresponding to the sector-1 colour ℎ,
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then finding which sector-2 colour this corresponds to. Symbolically the colour-change

𝑙1 induced by crossing the cut to 𝑏1 is

𝑙1 : 𝜒→ 𝜒,

𝑙1(ℎ) = 𝑐2(𝑐−1
1 (ℎ))

= (𝑐1 ∘𝑚−1
𝑏1
∘ 𝑐−1

1 )(ℎ).

Adopting the obvious numeric labelling of branches to correspond with sectors the

generalisation

𝑐𝑖+1 = 𝑐𝑖 ∘𝑚−1
𝑏𝑖
,

𝑙𝑖 = 𝑐𝑖+1 ∘ 𝑐−1
𝑖

= 𝑐𝑖 ∘𝑚−1
𝑏𝑖
∘ 𝑐−1

𝑖 ,

is easily obtained for finite branch points. This system can be implemented as a recursion

scheme as in Algorithm 2.

Algorithm 2 Precomputing effects of crossing cuts.
Require: Monodromy list 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑀𝑜𝑛𝑠 sorted by argument anticlockwise from pri-

mary sector.
Ensure: 𝑐𝑢𝑡𝑠 is a list of the effect of crossing each cut.
𝑠𝑒𝑐𝑡𝑜𝑟𝐶𝑜𝑙← canonical colour map for primary sector.
for all 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑀𝑜𝑛 in 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑀𝑜𝑛𝑠 do
𝑐𝑢𝑡𝑠← 𝑐𝑢𝑡𝑠, 𝑠𝑒𝑐𝑡𝑜𝑟𝐶𝑜𝑙 ∘ 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑀𝑜𝑛 ∘ 𝑠𝑒𝑐𝑡𝑜𝑟𝐶𝑜𝑙−1.
𝑠𝑒𝑐𝑡𝑜𝑟𝐶𝑜𝑙← 𝑠𝑒𝑐𝑡𝑜𝑟𝐶𝑜𝑙 ∘ 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑀𝑜𝑛−1.

end for

Finally, a point at ∞ may be a branch point. 𝑙∞ is simply chosen so that a small

loop around 𝑝𝑐 in C – which should certainly be closed whatever sheet it’s on – does

indeed come back to the same colour. Specifically we demand

|ℬ|∏︁

𝑖=1

𝑙𝑏𝑖
= 1.

3.3 User interface

The startup screen for CyclePainter is shown in Figure 3.7 with the key regions

annotated. The numbering of each region corresponds to subsection numbers in the

following discussion.
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Figure 3.7: Normal CyclePainter user interface, with regions corresponding to subsec-
tions labelled in green.

3.3.1 Surface details

This section is used to specify precisely which surface we should be considering; a change

here will be reflected in the display area (see 3.3.3) and will obviously have a profound

effect on the rendering of paths.

The first line is self-explanatory, allowing the user to specify an affine representation

of the Riemann surface. The second line specifies the two points necessary to determine

sheets. “Base point” is 𝑝𝑐, the point from which our cuts will radiate. “Sheets base” is 𝑝𝑠,

an arbitrary choice of where to assign initial colours. In principle CyclePainter could

quite easily algorithmically derive a valid point for “Sheets base”, however occasionally

a user may want to move it to a more convenient location so the value is editable.

Finally, the “Description” line simply allows human-readable notes to be attached

to a file.

It is usually a semantic error to change the surface but retain paths, however it can

be valid if the change is small enough so CyclePainter does not attempt to second-guess

the user and leaves the list of paths unchanged when a new surface is entered.

3.3.2 Paths configuration

This area serves two related purposes
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Figure 3.8: Demonstration of path selection UI

∙ It allows paths to be added to and removed from the file. Although a surface of

genus 𝑔 naturally has a symplectic homology basis a1, . . . , a𝑔, b1, . . . , b𝑔, forcing

just these paths with this naming convention on a user would be counterproductive;

there are frequent cases when we want to consider either a larger or more limited

set of paths.

∙ It selects which paths should currently be displayed and editable in the viewport

area.

Paths are created by first entering a (valid Maple) name, for example “other” in

Figure 3.8 and then clicking “Add path”. Deletion is by selecting a path in the list box

and (unsurprisingly) clicking “Delete path”.

The more interesting decision is how paths are selected for displaying. This is via

drag and drop from the list box (containing a[1] and b[1] in Figure 3.7) to either of

the two buttons below “Active/visible paths”. The buttons themselves show which

paths will be visible in the main display area (none in Figure 3.7 but a[1] and b[1] in

Figure 3.8).

The highlighted button (b[1] in Figure 3.8) shows which path will be modified by

any editing actions – the active path. That path is displayed as a solid rather than

dashed line in the surface display (again visible in Figure 3.8).
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3.3.3 Surface display

This is where most of the work is done editing paths. The key operations supported are

∙ A left-click either starts a new path or begins extending the existing path. Nodes

added will snap to nearby existing nodes, so creating a closed path does not require

pixel-perfect clicking.

∙ A right click will end the current drawing operation without placing a node under

the cursor.

∙ When not drawing, nodes can be selected by clicking on them; the selected node

is highlighted with a red box.

∙ A selected node can be moved by dragging.

∙ A selected node can be removed by pressing the “Delete” key.

This interface is rather unconventional, but not completely divorced from standard

expectations. It was chosen simply for easy implementation since the primary concern

of this package is mathematical.

3.3.4 Sheets configuration

The drop-down box selects the sheet (either in terms of number or 𝑦 value) of the initial

point of the currently active path.

The button “Sheets data” opens a second window which displays the correspondence

between sheet colour, sheet number and 𝑦 value at two points: the specified “Sheets

base”, and the selected node if it exists.

3.3.5 Viewport configuration

This section simply allows the displayed area of the complex plane to be set in terms of

its lower-left and upper-right coordinates. It effectively acts as a zoom control.

3.3.6 File menu

Finally, as would be expected, the usual Save/Load abilities are here. Of slightly more

interest is a “Write Metapost” option, which partially automates producing diagrams

like those in Figure 3.2 by producing Metapost code which can draw each cycle.



Riemann surfaces with symmetry: algorithms and applications 45

3.4 Integration with extcurves

CyclePainter’s primary save and load functions (in the “File” menu) produce files

that are valid Maple code and provide all the data needed to reconstruct the extpaths

drawn. The conventional filename extension is .pic, and this is reflected in the names

of functions interfacing with extcurves.

However, a couple of utility functions in extcurves make the interoperation much

more painless.

read pic takes a filename and returns a sequence with three elements

1. A curve record, as described in the previous section.

2. A list of extpaths defined by the CyclePainter file.

3. A list of strings, giving the name each extpath has in CyclePainter.

For example

> curve, homology, names := read_pic("somefile.pic"):

Essentially this gives all the information needed by other extcurves routines, in

the format they are needed, and without polluting the global namespace by executing a

read statement in Maple.

A partial inverse is also provided, in case the need to write CyclePainter files from

Maple arises. In its simplest use, the function write pic accepts a filename, curve and

list of extpath s. For example

> write_pic("somefile.pic", curve, homology):

More options are allowed for finer control: see Appendix A for details.
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4.1 Introduction

We will now apply the techniques and software developed above to Klein’s curve. This

is the genus 3 Riemann surface with maximal symmetry group so we should expect

results to be correspondingly simple. First we’ll review the basic facts about Klein’s

curve and its symmetry group. In fact one of the symmetries is surprisingly elusive and

describing it with sufficient precision to be useful will occupy us for a while. After that

it will be easy to find a suitable homology basis (a short calculation based on the tools

created). However, proving that this homology basis actually gives the desired period

matrix will be slightly more involved.

We then study Rauch and Lewittes’ hyperbolic model of Klein’s curve. They

produced a period matrix in that setting in [29], and by constructing a reasonably

precise correspondence between the hyperbolic and algebraic models we show that the

two matrices are indeed equivalent. We give an explicit algebraic analogue of Rauch and

Lewittes’ basis and provide the symplectic transformation relating it to our symmetric

basis.

Finally we calculate the vector of Riemann constants for this curve, an essential

ingredient to any possible applications in integrable systems.

4.2 Algebraic representations of Klein’s curve

Klein’s quartic curve is expressed algebraically in projective space CP3 as

𝑥3𝑦 + 𝑦3𝑧 + 𝑧3𝑥 = 0.

The affine projection can obviously be written as

𝑥3𝑦 + 𝑦3 + 𝑥 = 0,

and has 9 branch-points in the 𝑥-plane. They are at 0, ∞ and the points of a regular

septagon centred on 0 as in Figure 4.1. If we make the birational transformation
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(
27
4

)1/7
eiπ/7

Figure 4.1: Finite branch points of Klein’s curve in quartic representation.

mentioned in [22]

𝜑 : (𝑥, 𝑦) ↦→ (𝑡, 𝑠) =
(︂

1 +
𝑥3

𝑦2
,−𝑥

𝑦

)︂
, (4.1)

(𝑡, 𝑠) ↦→ (𝑥, 𝑦) =
(︂
𝑡− 1
𝑠2

,
1− 𝑡
𝑠3

)︂
, (4.2)

then the coordinates (𝑡, 𝑠) satisfy a septic equation

𝑠7 = 𝑡(𝑡− 1)2.

This representation has 3 branch points on the 𝑡 plane, located at 0, 1 and ∞.

A final useful form of the curve is obtained by applying a fractional-linear transfor-

mation which simply sends these branch-points to the cube roots of unity. If we denote

𝜌 = exp(2𝜋i/3) then the desired transformation is

𝜑 : (𝑡, 𝑠) ↦→ (𝑧, 𝑤) =
(︂
𝑡+ 𝜌2

𝜌𝑡+ 𝜌2
,
𝑠(𝜌2 − 1)
𝜌𝑡+ 𝜌2

)︂
, (4.3)

(𝑧, 𝑤) ↦→ (𝑡, 𝑠) =
(︂
𝜌2(𝑧 − 1)

1− 𝜌𝑧 ,
𝑤

1− 𝜌𝑧

)︂
, (4.4)

and the curve now obtained is

𝑤7 = (𝑧 − 1)(𝑧 − 𝜌)2(𝑧 − 𝜌2)4.
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4.3 Holomorphic differentials on Klein’s curve

We want to pick a basis of holomorphic differentials in each of the spaces so that

disruption is minimised when moving between the pictures. To do this we define the

basis in the quartic form of the curve and pull back twice to obtain corresponding bases

in the two septic cases. Fortunately the pullback is rather simple and the only difference

from the natural choice in each case is a scalar multiple, as we’ll see.

In the quartic case we pick the following (ordered) basis

{𝜔1, 𝜔2, 𝜔3} =
{︂

𝑥d𝑥
𝑥3 + 3𝑦2

,
𝑦d𝑥

𝑥3 + 3𝑦2
,

d𝑥
𝑥3 + 3𝑦2

}︂
. (4.5)

The actual order is unimportant for most of the work, but that chosen will make the

action of the order 2 and 4 automorphism on the differentials simpler later.

It is equivalent to the following simple basis in the (𝑡, 𝑠) version

(𝜑−1)*𝜔1 =
1
7

(𝑡− 1)d𝑡
𝑠5

,

(𝜑−1)*𝜔2 =
1
7

(𝑡− 1)d𝑡
𝑠6

,

(𝜑−1)*𝜔3 =
1
7

d𝑡
𝑠3
.

Finally, moving to the rotationally symmetric (𝑧, 𝑤) plane each differential has a

different scale-factor from the natural choice, but is still just a multiple

(𝜑−1 ∘ 𝜑−1)*𝜔1 =
𝜌− 1

7
(𝑧 − 𝜌)(𝑧 − 𝜌2)2d𝑧

𝑤5
,

(𝜑−1 ∘ 𝜑−1)*𝜔2 =
−1− 2𝜌

7
(𝑧 − 𝜌)(𝑧 − 𝜌2)3d𝑧

𝑤6
,

(𝜑−1 ∘ 𝜑−1)*𝜔3 =
2 + 𝜌

7
d𝑧
𝑤3
.

4.4 Symmetries

It is well-known that Klein’s curve possesses a holomorphic symmetry group of order

168. Making use of this will allow us determine the period matrix almost completely,

but first we must study many of the symmetries in enough depth to determine their

action on both the space of holomorphic differentials and (when we have chosen one) on

the homology basis.

The following is presented in roughly increasing order of complexity. The final
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Representation Action of symmetry
0 = 𝑥3𝑦 + 𝑦3𝑧 + 𝑧3𝑥 [𝑥, 𝑦, 𝑧] ↦→ [𝑦, 𝑧, 𝑥]
0 = 𝑥3𝑦 + 𝑦3 + 𝑥 (𝑥, 𝑦) ↦→

(︀ 𝑦
𝑥 ,

1
𝑥

)︀

𝑠7 = 𝑡(𝑡− 1)2 (𝑡, 𝑠) ↦→
(︀
1− 1

𝑡 ,
𝑡−1
𝑠3

)︀

𝑤7 = (𝑧 − 1)(𝑧 − 𝜌)2(𝑧 − 𝜌2)2 (𝑧, 𝑤) ↦→
(︁
𝜌2𝑧, −𝜌2(𝑧−1)(𝑧−𝜌)(𝑧−𝜌2)2

𝑤3

)︁

Table 4.1: Order 3 automorphism

automorphism is not actually used to determine the period matrix, so it is given purely

for completeness and in less detail than the others.

4.4.1 Antiholomorphic involution

Since the curve is real it possesses an antiholomorphic involution given in [𝑥, 𝑦, 𝑧]

coordinates simply by [𝑥, 𝑦, 𝑧] ↦→ [�̄�, 𝑦, 𝑧].

The only coordinates where this automorphism has nontrivial action in are (𝑧, 𝑤).

In this case the presence of the complex number 𝜌 complicates matters and the relevant

expression is

(𝑧, 𝑤) ↦→
(︂

1
𝑧
,−𝜌�̄�

𝑧

)︂
.

The symmetry simply acts as complex conjugation on the differentials, for example

d𝑥
𝑥3 + 3𝑦2

↦→ d�̄�
�̄�3 + 3𝑦2

.

4.4.2 Order 3 cyclic automorphism

This symmetry is easiest to see in the projective quartic coordinates. Permuting 𝑥, 𝑦, 𝑧

cyclically obviously fixes the curve. Choose [𝑥, 𝑦, 𝑧] ↦→ [𝑦, 𝑧, 𝑥] as a favoured permutation,

and the transformations in each coordinate system are given by Table 4.1.

The effect of the pullback on the holomorphic differentials is as follows

𝜔1 ↦→ 𝜔2,

𝜔2 ↦→ 𝜔3,

𝜔3 ↦→ 𝜔1.

As will be the case for subsequent automorphisms, the action is by definition identical

on the corresponding differentials in the other representations.
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4.4.3 Order 7 automorphism

There is an obvious order 7 automorphism in (𝑧, 𝑤) and (𝑡, 𝑠) spaces; namely if we

define 𝜁 = exp(2𝜋i/7) then

(𝑧, 𝑤) ↦→ (𝑧, 𝜁𝑤)

is a symmetry. The same formula holds in (𝑡, 𝑠), however in the (𝑥, 𝑦) and [𝑥, 𝑦, 𝑧]

quartic coordinates this automorphism is

(𝑥, 𝑦) ↦→ (𝜁5𝑥, 𝜁4𝑦),

[𝑥, 𝑦, 𝑧] ↦→ [𝜁5𝑥, 𝜁4𝑦, 𝑧].

The pullback action on differentials is

𝜔1 ↦→ 𝜁2𝜔1,

𝜔2 ↦→ 𝜁1𝜔2,

𝜔3 ↦→ 𝜁4𝜔3.

4.4.4 Holomorphic involution

This symmetry is really a square of the following order 4 automorphism presented

by Egan at [14], but since it is far simpler to express and is more directly useful in

calculating the period matrix, it has its own section. The techniques used to describe it

are also just simplified versions of those used by Egan for the order 4 automorphism.

The involution is most easily expressed in the projective [𝑥, 𝑦, 𝑧] coordinates since it

is effectively a rotation there. The idea is that if we look at the set of real solutions in

the correct coordinates it has an obvious rotational symmetry of order 2; this extends

to the space of complex solutions and yields the desired involution.

So we proceed in stages from the original 𝑥3𝑦 + 𝑦3𝑧 + 𝑧3𝑥 = 0 form. Since this

equation is homogeneous the set of real solutions forms a cone ((𝑥, 𝑦, 𝑧) a solution

implies (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) a solution). The first step is a rotation so that the 𝑧 axis aligns

with the direction (1, 1, 1) in the original coordinates – the “centre” of the cone. It
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θ0

Figure 4.2: Section of real cone at 𝑧′ = 1 (so after rotation).

corresponds to a rotation of tan−1
√

2 about (1,−1, 0). Explicitly

𝑅1 =
2
3

⎛
⎜⎜⎜⎝

√
3 + 3

√
3− 3 −2

√
3

√
3− 3

√
3 + 3 −2

√
3

2
√

3 2
√

3 2
√

3

⎞
⎟⎟⎟⎠

is the rotation mapping (1, 1, 1) to (0, 0,
√

3) and takes us to coordinates (𝑥′, 𝑦′, 𝑧′).

In these coordinates, the curve can be written rather simply in cylindrical polars,

(𝑟, 𝜃, 𝑧′) as

0 = 4𝑧′4 + 6𝑟2𝑧′2 − 3𝑟4 − 2
√

14𝑟3𝑧′ cos[3(𝜃 − 𝜃0)],

where

𝜃0 =
𝜋

4
− 1

3
tan−1(3

√
3).

This has an obvious threefold symmetry on rotating about 𝑧′. See Figure 4.2 for a

cross-section of the rays making up the cone. The involution is a rotation of the cone

through 𝜋 radians about an axis through the origin, perpendicular to 𝑧′ and with angle

𝜃0 + 𝜋
2 from 𝑥′ (indicated by the dotted line in Figure 4.2). In words, we conjugate a

rotation of 𝜋 radians (𝑎, 𝑏, 𝑐) ↦→ (−𝑎, 𝑏,−𝑐) with a rotation of 𝜃0 about the 𝑧′ axis which

lines up the symmetry of the cone. In (𝑥′, 𝑦′, 𝑧′) coordinates the involution has matrix

form ⎛
⎜⎜⎜⎝

− sin
(︀

2
3 tan−1(3

√
3)

)︀
− cos

(︀
2
3 tan−1(3

√
3)

)︀
0

− cos
(︀

2
3 tan−1(3

√
3)

)︀
sin

(︀
2
3 tan−1(3

√
3)

)︀
0

0 0 −1

⎞
⎟⎟⎟⎠ .

It is now a simple, if detailed, matter to express this involution in the original
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(𝑥, 𝑦, 𝑧) coordinates. The final expression is

⎛
⎜⎜⎜⎝

𝑥

𝑦

𝑧

⎞
⎟⎟⎟⎠ ↦→

⎛
⎜⎜⎜⎝

𝛼 𝛽 𝛾

𝛽 𝛾 𝛼

𝛾 𝛼 𝛽

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝑥

𝑦

𝑧

⎞
⎟⎟⎟⎠ , (4.6)

where

3𝛼 = cos
(︂

2
3

tan−1(3
√

3)
)︂
−
√

3 sin
(︂

2
3

tan−1(3
√

3)
)︂
− 1,

3𝛽 = −2 cos
(︂

2
3

tan−1(3
√

3)
)︂
− 1, (4.7)

3𝛾 = cos
(︂

2
3

tan−1(3
√

3)
)︂

+
√

3 sin
(︂

2
3

tan−1(3
√

3)
)︂
− 1.

At this stage we could calculate what this involution is on either (𝑡, 𝑠) or (𝑧, 𝑤) space.

However the expression gets progressively more complicated (the transformation is not

a projectivity in either of the other systems) and is not very illuminating.

It is, however, essential to calculate the effect on the differentials. This is made much

simpler by the fact that the symmetry is expressed as a linear function in projective

space. We know that

𝜔3 ↦→ 𝐴𝜔1 +𝐵𝜔2 + 𝐶𝜔3

= (𝐴𝑥+𝐵𝑦 + 𝐶)𝜔3

for some fixed numbers 𝐴,𝐵,𝐶. We also know that for any automorphism 𝜑,

𝜑*(𝑓(𝑥, 𝑦)𝜔) = 𝜑*(𝑓)(𝑥, 𝑦)𝜑*(𝜔),

which leads to

𝜔1 = 𝑥𝜔3 ↦→
𝛼𝑥+ 𝛽𝑦 + 𝛾

𝛾𝑥+ 𝛼𝑦 + 𝛽
(𝐴𝑥+𝐵𝑦 + 𝐶)𝜔3,

𝜔2 = 𝑦𝜔3 ↦→
𝛽𝑥+ 𝛾𝑦 + 𝛼

𝛾𝑥+ 𝛼𝑦 + 𝛽
(𝐴𝑥+𝐵𝑦 + 𝐶)𝜔3.

Together these force 𝐴 = 𝑘𝛾,𝐵 = 𝑘𝛼,𝐶 = 𝑘𝛽 for some constant 𝑘. This would be

trivial if 𝑥 and 𝑦 were independent and we could work in the polynomial ring C[𝑥, 𝑦]: we

would know that, since 𝜔1 maps to a holomorphic differential, there are some complex
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numbers 𝐷,𝐸, 𝐹 such that

𝛼𝑥+ 𝛽𝑦 + 𝛾

𝛾𝑥+ 𝛼𝑦 + 𝛽
(𝐴𝑥+𝐵𝑦 + 𝐶) = (𝐷𝑥+ 𝐸𝑦 + 𝐹 )

everywhere. Equating coefficients would immetiately give the result. Fortunately the

same holds true here, though with a slightly more involved proof. Quite generally:

Lemma 10. Let Greek letters denote fixed nonzero complex numbers. Suppose

(𝐴𝑥+𝐵𝑦 + 𝐶)(𝛼𝑥+ 𝛽𝑦 + 𝛾) = (𝐷𝑥+ 𝐸𝑦 + 𝐹 )(𝛿𝑥+ 𝜖𝑦 + 𝜁) (4.8)

for all (𝑥, 𝑦) on Klein’s curve. Then there exists 𝑘 ∈ C such that 𝐴 = 𝑘𝛿,𝐵 = 𝑘𝜖, 𝐶 =

𝑘𝜁,𝐷 = 𝑘𝛼,𝐸 = 𝑘𝛽 and 𝐹 = 𝑘𝛾.

Proof. (With thanks to Leo Butler for this much-simplified version). Equation (4.8)

can be considered the assertion that the determinant of a matrix of linear forms,

𝑀 =

⎛
⎝𝑎1 𝑎2

𝑏1 𝑏2

⎞
⎠ ,

where 𝑎1 = 𝐴𝑥+𝐵𝑦 + 𝐶, 𝑎2 = 𝐷𝑥+ 𝐸𝑦 + 𝐹 , 𝑏1 = 𝛼𝑥+ 𝛽𝑦 + 𝛾 and 𝑏2 = 𝛼𝑥+ 𝛽𝑦 + 𝛾

vanishes.

In this view, one of the suppositions of the Lemma is that det𝑀 |Σ = 0. Now, if

det𝑀 is nontrivial, it defines a quadric which must therefore contain Σ, absurd since Σ

is given by an irreducible equation of degree 4.

Alternatively det𝑀 vanishes identically. This puts us back in the situation mentioned

before this Lemma, and the result is trivial.

Lemma 10 tells us that an automorphism which is linear in projective coordinates

has essentially the same (linear) action on differentials as those coordinates. All that

remains is to determine the scale factor 𝑘.

Because this is an involution, squaring the transformation must yield the identity

which tells us 𝑘2 = 1. So 𝑘 = ±1, and we have to determine the sign. We can do this

with just one term in the expansion of the holomorphic differentials near 0. We switch

to 𝑦 as a coordinate in that neighbourhood and restate 𝜔3 as

𝜔3 = − d𝑦
1 + 3𝑥2𝑦
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Then it is easy to see that to first order the involution maps (via pullback)

𝑦 ↦→ 𝛼

𝛽
+ 𝑦

(︂
𝛾𝛽 − 𝛼2

𝛽2

)︂
+ · · · ,

𝑥 ↦→ 𝛾

𝛽
+ · · · ,

d𝑦 ↦→
(︂
𝛾𝛽 − 𝛼2

𝛽2

)︂
d𝑦(1 + · · · ).

Thus

𝜔3 ↦→ −
𝛾𝛽2 − 𝛼2𝛽

𝛽3 + 3𝛼𝛾2
d𝑦(1 + · · · )

= −𝛽d𝑦(1 + · · · )

= 𝛽𝜔3 + · · ·

and since neither 𝜔1 or 𝜔2 have a constant term at 𝑦 = 0 this suffices to determine

𝑘 = 1. So in full

𝜔1 ↦→ 𝛼𝜔1 + 𝛽𝜔2 + 𝛾𝜔3,

𝜔2 ↦→ 𝛽𝜔1 + 𝛾𝜔2 + 𝛼𝜔3,

𝜔3 ↦→ 𝛾𝜔1 + 𝛼𝜔2 + 𝛽𝜔3.

4.4.5 Order 4 automorphism

In principle this is not much more difficult than the involution above. After the final

coordinate-changing rotation, instead of a simple rotation by 𝜋 we perform the slightly

more complicated transformation

(𝑎, 𝑏, 𝑐) ↦→ (i𝑎, 𝑏,−i𝑐).

This produces many more terms in the resulting matrix, but essentially it’s still a linear

transformation on projective space (in fact its square is easily seen to be the involution

above).

The argument above for the differentials carries through here as well; however, since

it is not actually necessary for the period matrix we won’t go into more detail.
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Branch point 𝑧 Effect on sheet 𝑘
0 𝑘 ↦→ 𝑘 + 1 (mod 7)
𝜌 𝑘 ↦→ 𝑘 + 2 (mod 7)
𝜌2 𝑘 ↦→ 𝑘 + 4 (mod 7)

Table 4.2: Monodromy from base point 0 around each branch in a positive direction

4.5 Canonical homology basis

We try to construct a homology basis so that its transformation under most of these

symmetries is as simple as possible. The curve has genus 3, and so we are looking for

three a-cycles and b-cycles. Thus a natural choice is to specify a1 and b1 and then

define the others as images of the order 3 symmetry.

This is most easily accomplished in the (𝑧, 𝑤) space, where there are only three

branch-points to choose from in constructing our paths and the automorphism is a

simple rotation in the 𝑧-plane.

To have even a hope of constructing such a path, we need to know about the

monodromy around the three branch points. We label the sheets by the 𝑤 value at

𝑧 = 0, i.e. for 𝑘 = 0, . . . , 6 “sheet 𝑘” is (𝑧, 𝑤) = (0, exp( 𝜋i
21(6𝑘 − 1))). The monodromy

about this base point is (for each branch point) a simple constant shift of sheets so

defined. The exact change is given in Table 4.2.

With this in mind, the obvious place to start is some number of circuits around two

branches. So we define a1 to start at sheet 0 and proceed clockwise 3 times around

𝑧 = 1 (taking us to sheet −3) and then once clockwise around 𝑧 = 𝜌2 (taking us back

to sheet −7 = 0). If we then define the remaining a-cycles by applying the order 3

automorphism in Table 4.1 we discover they do not intersect each other and so can

potentially form part of a canonical basis.

We now try to find appropriate b-cycles. One of the simplest approaches is to shift

the sheet of the a-cycles. Fortunately, this works: if we simply start b1 on sheet 2

instead of 0 and then derive the others by the order 3 symmetry again then the basis

obtained is canonical.

See Figure 4.3 for illustration, where the top row gives the a-cycles, and the bottom

row gives essentially the same paths on different sheets for b-cycles.
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Sheet 1 Sheet 2 Sheet 3 Sheet 4 Sheet 5 Sheet 6 Sheet 7

Figure 4.3: Homology basis in (𝑧, 𝑤) coordinates. Along the top are a1, a2, a3 from left
to right, and b𝑖 on the bottom.

4.5.1 Propagating homology basis to other coordinates

Now that we have a functional homology basis in the (𝑧, 𝑤) coordinates, we should find

out what it corresponds to in other spaces.

In principle this could be done automatically by extcurves, but the resulting paths

tend to have more nodes than are strictly necessary with corresponding penalties in

performance for future routines. This would be compounded when we calculate the

effects of the other automorphisms and so we spend some time here making sure the

results are as simple as possible.

Accordingly the general pattern will be

∙ Computationally push each path forward into the next coordinate system. This

uses a fairly simple script wrapping transform extpath.

∙ Inspect the output to remove any extraneous points added, ensure the path doesn’t

go too close to any branch-points and generally create a neater picture of the path.

Naturally the result is simple in (𝑡, 𝑠) coordinates, since the transformation between

𝑧 and 𝑡 is simply Möbius. See Figure 4.4.

In the (𝑥, 𝑦) coordinates it is more complicated. See Figure 4.5.
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Sheet 1 Sheet 2 Sheet 3 Sheet 4 Sheet 5 Sheet 6 Sheet 7

Figure 4.4: Homology in (𝑡, 𝑠) coordinates. Along the top are a1, a2, a3 from left to
right, and b𝑖 on the bottom.

Sheet 1 Sheet 2 Sheet 3

Figure 4.5: Homology in (𝑥, 𝑦) coordinates. Along the top are a1, a2, a3 from left to
right, and b𝑖 on the bottom.
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4.5.2 Action of symmetries on homology basis

Having defined our homology basis and the symmetries in each of the pictures, it is a

simple matter to apply one to the other and write down the action of each automorphism

on the homology.

The action is most simply given as a matrix, so that if {𝛾𝑖} = {a1, a2, a3, b1, b2, b3}
is a canonical homology basis and 𝜑 and automorphism then

𝜑* : 𝛾𝑖 ↦→𝑀𝑖𝑗𝛾𝑗 .

Most of the symmetries have a simple action in at least one of the coordinate systems.

For these finding the matrix is a few simple Maple commands. The involution is more

complicated. Even in the simplest (𝑥, 𝑦) coordinates the transformation is slightly too

complicated for automatic processing.

The results are

∙ Antiholomorphic involution. Easiest to calculate in the 𝑡-plane where it fixes all

branch-points and does not produce singularities from finite values. The command

sequence is fairly natural (conjugate and map2 are built-in Maple functions)

> curve, hom, names := read_pic("TS_tidy.pic"):

> invol := (t,s) -> [conjugate(t), conjugate(s)];

___ ___

invol := (t, s) -> [(t), (s)]

> new_hom := map2(transform_extpath, curve, hom, invol):

> find_homology_transform(curve, hom, new_hom);

and the last line produces the matrix

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



Riemann surfaces with symmetry: algorithms and applications 61

∙ Order 3 automorphism. No computation is needed here. By definition of the

homology this cyclically permutes the a𝑖 and b𝑖 independently.

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

∙ Order 7 automorphism. This acts simply on paths in either septic space, just

shifting sheets. A very similar procedure to the antiholomorphic involution

produces the fairly complicated result

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 1 0 −1

0 0 0 0 1 0

−1 0 −1 0 1 0

−1 0 0 0 1 0

0 −1 −1 1 0 0

1 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.9)

However, since we know that b𝑖 is simply a𝑖 shifted by some sheet number, we

know that some power of this automorphism will map a𝑖 to b𝑖. Indeed 𝑀 itself

takes a2 to b2; 𝑀2 takes a1 to b1; and 𝑀4 takes a3 to b3.

∙ Order 2 involution. Computing the matrix in this case is rather more complicated

than before. transform extpath cannot cope with the track directly because it

sends the original straight lines to complex paths which are very close to certain

branch points. We use the same approach as transforming the homology between

the coordinates: create an approximate path automatically and manually tidy the

output by inspecting the (curved) image of each straight segment in turn.

After that the transformation matrix can be calculated just as easily as before,
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and the following surprisingly simple result is obtained

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0

0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4.6 Period matrix

Many of the symmetries of the surface lead directly to simplifications of its period

matrix via the following basic result of integration. Suppose we have a holomorphic

function of surfaces 𝜎 : Σ→ Σ; then

∫︁

𝜎*(𝛾)
𝜔 =

∫︁

𝛾
𝜎*(𝜔).

This is a simple restatement of how to change variables in an integration, but when 𝜎 is

an automorphism these integrals are related to entries in the matrix of periods.

Since integration of this kind is linear both in the integrand and the path followed,

this equation can be rewritten using the matrices 𝑀 and 𝐿 that give the action of an

automorphism on homology cycles and differentials respectively.

Suppose we have a fixed automorphism 𝜎 acting via pullback on the holomorphic

differentials {𝜔𝑖}
𝜎*(𝜔𝑖) = 𝜔𝑗𝐿𝑗𝑖,

and via pushforward on a canonical basis {𝛾𝑖} = {a1, . . . , a𝑔, b1, . . . , b𝑔}

𝜎*(𝛾𝑖) = 𝑀𝑖𝑗𝛾𝑗 .

The matrix of periods is then

Π =

⎛
⎝𝒜
ℬ

⎞
⎠ ,
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where

𝒜𝑖𝑗 =
∫︁

a𝑖

𝜔𝑗 , ℬ𝑖𝑗 =
∫︁

b𝑖

𝜔𝑗 .

And we can calculate that

(𝑀Π)𝑖𝑘 = 𝑀𝑖𝑗

∫︁

𝛾𝑗

𝜔𝑘 =
∫︁

𝑀𝑖𝑗𝛾𝑗

𝜔𝑘

=
∫︁

𝛾𝑖

𝜔𝑗𝐿𝑗𝑘

=
(︂∫︁

𝛾𝑖

𝜔𝑗

)︂
𝐿𝑗𝑘 = (Π𝐿)𝑖𝑘.

Or

𝑀

⎛
⎝𝒜
ℬ

⎞
⎠ =

⎛
⎝𝒜
ℬ

⎞
⎠𝐿, (4.10)

which in our case (with 𝐿 and 𝑀 known) is set of equations constraining the matrix of

periods.

4.6.1 Order 3 symmetry

This symmetry constrains the a-periods and b-periods separately, but in an identical

manner. We’ll omit further discussion of the b-periods here since later automorphisms

will firmly fix them in terms of the as.

We have previously calculated the action on differentials and our homology basis;

using those results the matrix relation (4.10) in this case becomes

⎛
⎜⎜⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎟⎟⎠𝒜 = 𝒜

⎛
⎜⎜⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟⎠ ,

or ⎛
⎜⎜⎜⎝

𝒜21 𝒜22 𝒜23

𝒜31 𝒜32 𝒜33

𝒜11 𝒜12 𝒜13

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

𝒜12 𝒜13 𝒜11

𝒜22 𝒜23 𝒜21

𝒜32 𝒜33 𝒜31

⎞
⎟⎟⎟⎠ .

This means we can rewrite all 𝒜𝑖𝑗 in terms of the three values 𝒜1𝑖, or even more simply
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just 𝑋,𝑌, 𝑍

𝒜 =

⎛
⎜⎜⎜⎝

𝑋 𝑌 𝑍

𝑌 𝑍 𝑋

𝑍 𝑋 𝑌

⎞
⎟⎟⎟⎠ .

4.6.2 Antiholomorphic involution

This determines the b-periods in terms of the a-periods. Essentially the same argument

holds, although the fact that the symmetry is not holomorphic means its effect on

differentials will not be given by a complex matrix multiplication; we will perform the

calculation explicitly. Calling the symmetry 𝜎, we have

ℬ𝑖𝑗 =
∫︁

b𝑖

𝜔𝑗 = −
∫︁

𝜎(a𝑖)
𝜔𝑗 = −

∫︁

a𝑖

𝜎*(𝜔𝑗) = −
∫︁

a𝑖

𝜔𝑗 = −
∫︁

a𝑖

𝜔𝑗 = −𝒜𝑖𝑗 .

4.6.3 Order 7 automorphism

This symmetry sends a2 to b2, so it tells us

ℬ21 = 𝜁2𝒜21, ℬ22 = 𝜁𝒜22, ℬ23 = 𝜁4𝒜23.

Or, in terms of 𝑋,𝑌, 𝑍

−𝑌 = 𝜁2𝑌, −𝑍 = 𝜁𝑍, −𝑋 = 𝜁4𝑋.

This allows us to write all three numbers in essentially polar form. For example suppose

𝑋 = 𝑟1 exp(i𝜃). Then

−𝑟1e−i𝜃 =
(︁

e2𝜋i/7
)︁4
𝑟1ei𝜃,

or

𝜃 = − 𝜋

14
+ 𝜋𝑘.

The integer 𝑘 is irrelevant here, just corresponding to 𝑟1 being positive or negative in

the end. The solutions given below happen to result in 𝑟𝑖 > 0 but that’s purely an

aesthetic post-hoc choice. We obtain

𝑋 = 𝑟1 exp(−𝜋i/14), 𝑌 = 𝑟2 exp(−11𝜋i/14), 𝑍 = 𝑟3 exp(−9𝜋i/14). (4.11)
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4.6.4 Holomorphic involution

As a first step (4.10) gives the relation (in terms of the trigonometric expressions (4.7)

from Section 4.4.4)

−

⎛
⎜⎜⎜⎝

𝑍 𝑋 𝑌

𝑌 𝑍 𝑋

𝑋 𝑌 𝑍

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

𝑋 𝑌 𝑍

𝑌 𝑍 𝑋

𝑍 𝑋 𝑌

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝛼 𝛽 𝛾

𝛽 𝛾 𝛼

𝛾 𝛼 𝛽

⎞
⎟⎟⎟⎠ (4.12)

which naively corresponds to three independent equations. However the 𝛼, 𝛽, 𝛾 are not

independent and

𝛼𝛾 = 𝛽(𝛽 + 1),

𝛽2 = (𝛼+ 1)(𝛾 + 1),

together with permutations of those relations. So if we (say) multiply the first equation

in (4.12)

𝛼𝑋 + 𝛽𝑌 + 𝛾𝑍 = −𝑍

or equivalently

𝛼𝑋 + 𝛽𝑌 + (𝛾 + 1)𝑍 = 0

by (𝛽 + 1)/𝛼 we in fact get the second equation

(𝛽 + 1)𝑋 + 𝛾𝑌 + 𝛼𝑍 = 0.

Similarly the remaining equation is actually equivalent to both of these. Thus there is

only one independent (complex) equation in (4.12).

However, as we only have three real parameters 𝑟1, 𝑟2, 𝑟3 left, this is enough to

determine (say) 𝑟1 and 𝑟2 in terms of 𝑟3 and hence the matrix of periods up to an overall

real multiple.

This in turn completely fixes the Riemann form of the period matrix, and we’ll see

in the next section that even the scalar parameter is explicitly calculable.
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Take the first entry of (4.12) as our starting point;

𝛼𝑋 + 𝛽𝑌 + 𝛾𝑍 = −𝑍.

This can be solved algorithmically after substituting (4.7) and (4.11), and greatly

simplified. Trigonometric simplification is more of an art than an algorithm. But

we know that each of 𝛼, 𝛽, 𝛾 are algebraic numbers and simplification over algebraic

extensions of Q is just a matter of time rather than insight; a computer can deal with the

problem with no difficulty. Mathematica in particular includes a function RootReduce

which takes an arbitrary algebraic expression of algebraic numbers (specified by minimal

polynomial and root number) and produces its minimal polynomial. The application of

this function to the present case is given as a notebook on the associated CD.

It tells us that

𝑟1 = 𝜇𝑟3, 𝑟2 = 𝜈𝑟3;

where

𝜇3 + 𝜇2 − 2𝜇− 1 = 0, 𝜈3 − 2𝜈2 − 𝜈 + 1 = 0.

Each of these have three real roots, and split over Q(𝜁). The solution we desire is seen

to be

𝜇 = 𝜁 + 𝜁−1, 𝜈 = 1 + 𝜁 + 𝜁−1.

4.6.5 Final free parameter

The final free parameter can be computed directly from the integral in the (𝑡, 𝑠) space.

The cycle a3 can be deformed to a path traversing 𝑡 = 0 to 𝑡 = 1 and then back again on

a different sheet. Along this segment there is a sheet where 𝑠 remains real, and all other
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sheets are simply related by multiplication with some power of 𝜁. Thus for example

𝑌 =
∫︁

a3

𝜔3

=
1
7

∫︁

a3

d𝑡
𝑠3

=
𝜁𝑘

7

∫︁ 1

0

d𝑡
𝑡3/7(𝑡− 1)6/7

+
𝜁 𝑙

7

∫︁ 0

1

d𝑡
𝑡3/7(𝑡− 1)6/7

=
𝐵(4/7, 1/7)

7
(𝜁𝑘 − 𝜁 𝑙).

All that remains is to determine the integers 𝑘 and 𝑙. This is a trivial matter of

analytically continuing the path a3 over to somewhere on the segment (0, 1) and noting

the argument of the resulting 𝑠. We discover

𝑌 =
𝐵(4/7, 1/7)

7
(𝜁4 − 𝜁).

Using this to express 𝑟2 in terms of Γ-functions rather than 𝐵-functions

𝑟2 =
√︀

2 + 2 cos(𝜋/7)
Γ(8/7)Γ(4/7)

Γ(5/7)
.

4.7 Riemann period matrix

The a-normalised Riemann period matrix is

𝜏 = ℬ𝒜−1.

Because 𝒜 and ℬ have cyclic symmetry, we can express them as

𝒜 = 𝑃𝑊𝐷𝑊−1,

ℬ = 𝑃𝑊𝐷′𝑊−1,

where

𝑃 =

⎛
⎜⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎟⎠ , 𝑊 =

⎛
⎜⎜⎜⎝

1 1 1

1 𝜌 𝜌2

1 𝜌2 𝜌

⎞
⎟⎟⎟⎠ .
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The diagonal matrices 𝐷, 𝐷′ are the eigenvalues of 𝑃𝒜 and 𝑃ℬ respectively, thus

𝐷11 = 𝑋 + 𝑌 + 𝑍,

𝐷22 = 𝑋 + 𝜌𝑌 + 𝜌2𝑍,

𝐷33 = 𝑋 + 𝜌2𝑌 + 𝜌𝑍,

𝐷′
11 = −�̄� − 𝑌 − 𝑍,

𝐷′
22 = −�̄� − 𝜌𝑌 − 𝜌2𝑍,

𝐷′
33 = −�̄� − 𝜌2𝑌 − 𝜌𝑍.

So we may write

𝜏 = ℬ𝒜−1

= 𝑃𝑊𝐷′𝑊−1𝑊𝐷−1𝑊−1𝑃

= 𝑃𝑊𝐷′𝐷−1𝑊−1𝑃

= 𝑃𝑊𝐷′′𝑊−1𝑃.

And we see that 𝜏 has the structure

𝜏 =

⎛
⎜⎜⎜⎝

𝜏1 𝜏2 𝜏3

𝜏3 𝜏1 𝜏2

𝜏2 𝜏3 𝜏1

⎞
⎟⎟⎟⎠ .

We can calculate the entries of 𝐷′′ in terms of

𝑋 = 𝑟3 exp(−𝜋i/14)(𝜁 + 𝜁−1),

𝑌 = 𝑟3 exp(−𝜋i/14)(−1− 𝜁 − 𝜁2),

𝑍 = 𝑟3 exp(−𝜋i/14)𝜁−2.

In the ratios that occur 𝑟3 will cancel as we knew it should. After simplification we find

𝐷′′
11 =

3 + i
√

7
4

,

𝐷′′
22 =

−3 + i
√

7
4

,

𝐷′′
33 =

−3 + i
√

7
4

.
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This can be inverted trivially to give

𝜏 =

⎛
⎜⎜⎜⎝

−1+i
√

7
4

1
2

1
2

1
2

−1+i
√

7
4

1
2

1
2

1
2

−1+i
√

7
4

⎞
⎟⎟⎟⎠ =

1
2

⎛
⎜⎜⎜⎝

𝑒 1 1

1 𝑒 1

1 1 𝑒

⎞
⎟⎟⎟⎠ , (4.13)

where 𝑒 = −1+i
√

7
2 .

4.8 Relation to period matrix of Rauch and Lewittes

In [29], Rauch and Lewittes have already described a canonical homology basis for this

curve and calculated the associated Riemann period matrix. We would like to relate

the result they obtained (in particular their homology basis) to our own above.

Recall that changing the basis for the homology group produces a natural action on

the period matrix 𝜏 ; if the symplectic matrix giving the basis change is written as

⎛
⎝𝐴 𝐵

𝐶 𝐷

⎞
⎠ ,

satisfying

𝐴𝑇𝐷 − 𝐶𝑇𝐵 = 1,

𝐴𝑇𝐶 = 𝐶𝑇𝐴,

𝐷𝑇𝐵 = 𝐵𝑇𝐷,

then it acts naturally on the matrix of periods by simple matrix multiplication

⎛
⎝1

𝜏

⎞
⎠ ↦→

⎛
⎝𝐴 𝐵

𝐶 𝐷

⎞
⎠

⎛
⎝1

𝜏

⎞
⎠ =

⎛
⎝𝐴+𝐵𝜏

𝐶 +𝐷𝜏

⎞
⎠ ≡

⎛
⎝ 1

(𝐶 +𝐷𝜏)(𝐴+𝐵𝜏)−1

⎞
⎠ .

This clearly induces the natural action on the Riemann period matrix 𝜏 ,

𝜏 ↦→ (𝐶 +𝐷𝜏)(𝐴+𝐵𝜏)−1.

In its most immediate form, then, our problem is that we have two period matrices

𝜏 and 𝜏 ′ arising from different canonical homology bases. We want a symplectic



70 Chapter 4: Example: Klein’s curve

transformation such that

𝜏 ′ = (𝐶 +𝐷𝜏)(𝐴+𝐵𝜏)−1.

This gives rise to a set of linear and quadratic equations in 𝐴,𝐵,𝐶,𝐷

𝜏 ′𝐵𝜏 + 𝜏 ′𝐴−𝐷𝜏 − 𝐶 = 0,

𝐴𝑇𝐷 − 𝐶𝑇𝐵 = 1,

𝐴𝑇𝐶 = 𝐶𝑇𝐴,

𝐷𝑇𝐵 = 𝐵𝑇𝐷,

which must be solved over Z. The first of these is linear in each entry of the symplectic

matrix, and can be easily solved by converting the linear system to Smith normal form.

However the remaining equations are quadratic in nature.

The general solution to a system of quadratic equations is unknown. In fact Britton

shows in [7] that if linear terms are allowed then there is no algorithmic solution. Of

course, these equations are not completely general and may well fall into a subset for

which an algorithm can be produced; but a näıve approach will not work.

This problem is actually solvable via another route. Siegel gave a fundamental

domain for the space of period matrices under the action of the symplectic group,

described by Klingen in [24]. Unfortunately the algorithm for putting a period matrix

into canonical form relies on Minkowski reduction of a lattice, for which there is no

known algorithm that executes in polynomial time. Thus the algorithm consumes time

exponential in the genus 𝑔 and so practical calculations, as in this thesis, must rely on

alternate means to find basis transformations.

It should be noted that Maple’s algcurves library includes a function Siegel modelled

after this algorithm. However, it substitutes a Minkowski reduction with the (fast but

approximate) Lenstra–Lenstra–Lovász lattice reduction algorithm. As a result the

output of the algorithm, while lying in a restricted subset of the space of all possible

period matrices, does not necessarily lie in the fundamental domain and so is not

canonical.
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For example our period matrix for Klein’s curve is

𝜏1 =

⎛
⎜⎜⎜⎝

−1+i
√

7
4

1
2

1
2

1
2

−1+i
√

7
4

1
2

1
2

1
2

−1+i
√

7
4

⎞
⎟⎟⎟⎠ ,

and Rauch and Lewittes’ is

𝜏2 =

⎛
⎜⎜⎜⎝

−1+3i
√

7
8

−1−i
√

7
4

−3+i
√

7
8

−1−i
√

7
4

1+i
√

7
2

−1−i
√

7
4

−3+i
√

7
8

−1−i
√

7
4

7+3i
√

7
8

⎞
⎟⎟⎟⎠ .

These should be equivalent, but applying Maple’s Siegel algorithm results in the

different matrices (truncated to 3 d.p.)

𝜏 ′1 ∼=

⎛
⎜⎜⎜⎝

−0.125 + 0.992i 0.375− 0.331i −0.375 + 0.331i

0.375− 0.331i −0.125 + 0.992i −0.375 + 0.331i

−0.375 + 0.331i −0.375 + 0.331i −0.125 + 0.992i

⎞
⎟⎟⎟⎠ ,

𝜏 ′2 ∼=

⎛
⎜⎜⎜⎝

−0.125 + 0.992i 0.375 + 0.331i +0.375 + 0.331i

0.375 + 0.331i 0.125 + 0.992i −0.375− 0.331i

0.375 + 0.331i −0.375− 0.331i 0.125 + 0.992i

⎞
⎟⎟⎟⎠ .

The situation is actually rather worse than suggested just by this example. In this

specific case, while the matrices aren’t identical they are clearly related and a little

work would allow us to go between 𝜏 ′1 and 𝜏 ′2. Unfortunately, not only is there no reason

for this to be true in general, but it is expected that increasing the complexity (genus)

makes the correspondence progressively more tenuous.

Indeed, applying the Siegel to two period matrices for Bring’s curve (the algcurves

and Riera matrix, see next chapter for details) we obtain something much less useful,

𝜏 ′1 ∼=

⎛
⎜⎜⎜⎜⎜⎜⎝

.2500 + 1.0348i −.2500 + .1015i .2500− .1015i .2500 + .6696i

−.2500 + .1015i .2500 + 1.0348i .2500− .1015i .2500 + .6696i

.2500− .1015i .2500− .1015i .2500 + 1.0348i −.2500− .6696i

.2500 + .6696i .2500 + .6696i −.2500− .6696i 0 + 1.3392i

⎞
⎟⎟⎟⎟⎟⎟⎠
,
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𝑒1 𝑒3 𝑒5 𝑒7 𝑒9 𝑒11 𝑒13

↕ ↕ ↕ ↕ ↕ ↕ ↕
𝑒6 𝑒8 𝑒10 𝑒12 𝑒14 𝑒2 𝑒4

Table 4.3: Side identifications in Klein’s curve

and

𝜏 ′2 ∼=

⎛
⎜⎜⎜⎜⎜⎜⎝

−.5000 + .8685i .5000− .2678i .5000− .2678i 0− 0.649𝑒− 1i

.5000− .2678i −.5000 + .8685i 0− 0.649𝑒− 1i .5000− .2678i

.5000− .2678i 0− 0.0649𝑒i .5000 + .8685i −.5000− .2678i

0− 0.649𝑒− 1i .5000− .2678i −.5000− .2678i −.5000 + .8685i

⎞
⎟⎟⎟⎟⎟⎟⎠
.

With this in mind, our approach to Rauch and Lewittes’ basis will be much more

direct. If we can describe the two bases in the same (algebraic) setting then the tools

provided by extcurves will allow us to easily write down the symplectic transformation

between them.

So our task is to build a strong enough correspondence between the hyperbolic and

algebraic models of Klein’s curve that we can carry out this procedure.

4.8.1 Hyperbolic model of Klein’s curve

As described in [22], the hyperbolic model arises from the quotient of Poincaré’s

hyperbolic disc with a discrete Fuchsian group of symmetries and amounts to a regular

14-gon (shown in Figure 4.6) centred in the disc with the identification of vertices and

pairs of sides as given by Table 4.3. As can be seen in Figure 4.6, it may be tiled by 336

triangles with angles (2𝜋/7, 𝜋/3, 𝜋/2), each of which can form a fundamental domain

of the symmetry group (extended by the antiholomorphic involutions). This group is

then manifest as rotations about any triangular vertex together with reflections in any

geodesic line consisting of triangular edges.

Rauch and Lewittes’ homology basis is then described in terms of paths back and

forth between 𝑃1 and 𝑃2 along prescribed edges. Taking positive numbers to indicate

anticlockwise traversal (about the centre) and negative the reverse, the basis is explicitly

a1 = 1− 4− 7− 9, a2 = −4− 9, a3 = −4− 5,

b1 = 2 + 3 + 4 + 5, b2 = −3 + 7, b3 = 3− 5.
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e4/e13
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e6/e1

e7/e12e8/e3

e9/e15

e10/e5

e11/e2

e12/e7

e13/e4

e14/e9

Figure 4.6: Hyperbolic disc model of Klein’s curve.
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(So for example a1 consists of moving from 𝑃1 to 𝑃2 along side 1, back to 𝑃1 along 7, to

𝑃2 again along 4 and finally back to the start along 9 – there is ambiguity in the order

of edges taken, but all resulting paths are homologous).

It will be our goal to express this as a path in some coordinate space so that we can

apply the tools developed in extcurves and CyclePainter to relate this basis to the

earlier one.

4.8.2 Identification of two models

We now wish to identify the two models of Klein’s curve so that we can express Rauch

and Lewittes’ homology basis as a path in some coordinate plane. The first step here

is to realise that each of our coordinates are essentially meromorphic functions on the

surface. However, in this light, any symmetry is seen to send one meromorphic function

to a different one, so there is no unique choice of how to map our coordinates to the

disc.

We can turn this restriction to our advantage, however, by picking a correspondence

that has nice properties on the disc. We work in (𝑡, 𝑠) coordinates for reasons that will

soon become apparent.

Consider the subgroup of the full automorphism group generated by

𝑍 : (𝑡, 𝑠) ↦→ (𝑡, 𝜁𝑠),

𝑅 : (𝑡, 𝑠) ↦→
(︂

1− 1
𝑡
,
𝑡− 1
𝑠3

)︂
,

𝑐 : (𝑡, 𝑠) ↦→ (𝑡, 𝑠).

These satisfy the relations 𝑅𝑍𝑅−1 = 𝑍4, 𝑐𝑅𝑐−1 = 𝑅, 𝑐𝑍𝑐−1 = 𝑍−1 which allow us to

express any element of the group as 𝑐𝑖𝑍𝑗𝑅𝑘 and hence the group has order 42 (the

explicit representation above tells us that each of 𝑍, 𝑅, 𝑐 are nontrivial, so the relations

simply serve to limit the size of the group).

It is easy to verify that the symmetry group of Klein’s curve (which is isomorphic to

𝑃𝐺𝐿(2, 7)) has eight subgroups of order 42, all of which are conjugate. So if we can

find an appropriate isomorphic group on the hyperbolic model (one which interacts well

with Rauch and Lewittes’ basis) then by applying some automorphism we may assume

without loss of generality that this corresponds to our group ⟨𝑍,𝑅, 𝑐⟩.
𝑍 must correspond to some rotation of (an integer multiple of) 2𝜋/7 about the
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centre of one of the septagons. The natural choice is, of course, the central septagon.

We note that any such rotation will fix precisely 3 points. In the hyperbolic model it is

easy to see that these are 𝑃0, 𝑃1, 𝑃2 in Figure 4.6. In fact a single rotation can equally

be considered as a rotation about any of these points.

At this stage we can see it would be prudent to use either (𝑧, 𝑤) or (𝑡, 𝑠) coordinates.

In either case 𝑃0, 𝑃1, 𝑃2 would be identified with the branch points (which are fixed by

𝑍), and so Rauch and Lewittes’ homology could be expressed as traversing specified

paths between branch points – easy to convert to our notation.

Now we note that 𝑅 cyclically permutes the branch points in coordinate space, so it

must permute 𝑃0, 𝑃1, 𝑃2 in hyperbolic space. There are 14 vertices on the disc which

possess order three rotations fixing {𝑃𝑖}. These are indicated as 𝑅∙ in Figure 4.6 and

come in pairs: a rotation of 2𝜋
3 about one such point is equally a rotation of 4𝜋

3 about

one of the others. We must include all (seven) of these rotations in our hyperbolic group

of order 42 (they are conjugate under 𝑍), but by using that conjugacy we will favour

the rotation about 𝑅0 and make it correspond to the automorphism 𝑅.

Exactly which rotation fixing 𝑅0 we need is determined by the relation 𝑅𝑍𝑅−1 = 𝑍4,

since if we pick the wrong one we will discover 𝑅2𝑍𝑅−2 = 𝑍2. This requires us to

identify 𝑅 with a rotation of 2𝜋/3 anticlockwise about 𝑅0.

Finally we consider 𝑐. It should obviously correspond to a reflection (as it reverses

the orientation on the surface). Further it fixes 𝑃0, 𝑃1, 𝑃2 so it must be reflection in a

line through (say) the centre. Again all possible choices are in the group, and all choices

have the correct commutation with a central rotation; however, by demanding that 𝑅

correspond to a rotation about 𝑅0 we have already fixed 𝑐 to be the reflection in the

dashed line of Figure 4.6 – other reflections do not commute with rotation about 𝑅0.

The fixed points of 𝑐 make the choice between (𝑧, 𝑤) and (𝑡, 𝑠) coordinates obvious.

In (𝑡, 𝑠) coordinates, the fixed points correspond simply to the real axis, whereas in

(𝑧, 𝑤) they form the circle |𝑧| = 1. The real axis will be easier to work with, so we use

(𝑡, 𝑠) coordinates.

In summary, given any identification 𝜎 : 𝐻 → C2 such that 𝜎(𝑝) = (𝑡(𝑝), 𝑠(𝑝)), 𝑍

induces the transformation 𝑍 : 𝐻 → 𝐻 given by

𝑍(𝑝) = (𝜎−1 ∘ 𝑍 ∘ 𝜎)(𝑝).

If 𝑍 is not initially a rotation about the centre of the disc, we replace 𝜎 by 𝜎 ∘ 𝑔 so
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that it is. The arguments above showed that by replacing the new 𝜎 yet again by

𝜎 ∘ 𝑍𝑘 for some 𝑘 we could demand that �̄� = (𝜎−1 ∘𝑅 ∘ 𝜎)(𝑝) is a rotation about 𝑅0.

Considerations of the relations among these automorphisms then showed in addition

that

∙ �̄� is actually a rotation of 2𝜋/3 anticlockwise.

∙ 𝑐 is the reflection in the dashed line of Figure 4.6.

∙ {𝜎(𝑃0), 𝜎(𝑃1), 𝜎(𝑃2)} = {(0, 0), (1, 0), (∞,∞)}.

Moving on, if we replace 𝜎 by 𝜎 ∘ �̄�𝑘 all of the above properties are unchanged, but

in addition we can ask that

𝜎(𝑃0) = (∞,∞).

We then deduce that 𝜎(𝑃1) = (1, 0) and 𝜎(𝑃2) = (0, 0).

At this stage we know that traversing side 2/11 is equivalent to travelling from 𝑡 = 0

to 𝑡 = 1 along the real axis in both 𝑡 and 𝑠. If we knew that 𝑍 corresponded to a central

rotation by 2𝜋𝑗/7 then we could deduce the phase of 𝑠 along any numbered edge in

terms of 𝑗. Specifically, along edge 2𝑘

𝜎(𝑝) ∈ R× 𝜁(𝑘−1)𝑗−1
R,

where the inverse is taken mod 7. The odd edges are obtained by their identification

with even edges. This would be enough to completely determine any path expressed, as

Rauch and Lewittes do, by which numbered edges should be traversed in the hyperbolic

model.

So our final task is to identify 𝑗, or equivalently which central hyperbolic rotation our

coordinate transformation 𝑍 corresponds to. The solution is provided by the hyperbolic

structure near the point 𝑃1. The idea is that 𝑃1 is the centre of a septagon and if you

go towards it on some edge and away on another then in some sense the angle between

these paths corresponds to how many branch cuts you would cross doing the same thing

in coordinate space. Requiring the same phase for 𝑠 from both processes is enough to

fix 𝑗.

More precisely, we can deduce from Figure 4.6 how the numbered edges are laid

out around 𝑃1 and 𝑃2. For example the bottom vertex shows us that an anticlockwise

rotation of 2𝜋/7 about 𝑃1 will take us from edge 1 to edge 14. Putting all this information
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e4/e13

e12/e7

e6/e1

e14/e9e8/e3

e2/e11

e10/e5

Figure 4.7: How edges come together near 𝑃1

Edge 2/11 4/13 6/1 8/3 10/5 12/7 14/9
Phase 1 𝜁4 𝜁 𝜁5 𝜁2 𝜁6 𝜁3

Table 4.4: 𝑠 phase on each numbered edge

together, we obtain Figure 4.7.

Now notice the unlabelled “spokes” in the diagram. We can think of these as branch

cuts in coordinate space. If a branch cut was some ray from 𝑡 = 1 on all sheets, then in

hyperbolic space these would be represented by a single line and its images under the

sheet-changing operator 𝑍 (or some power). These lines won’t necessarily be geodesic,

but they will have a well-defined direction emerging from 𝑃1 and be related by a 2𝜋/7

rotation in Figure 4.7. Thus (for example by considering a small neighbourhood around

𝑃1) we may as well consider the unlabelled “spokes” as the branch cuts.

Now we can put these two pictures together. Suppose we start with both 𝑡 and 𝑠

real. If we go around the branch point 𝑡 = 1 once anticlockwise we discover that 𝑠 ∈ 𝜁2R

(cf. Table 4.2 pushed forwards to (𝑡, 𝑠) coordinates). In doing so we’ve crossed just one

branch cut.

In the hyperbolic picture what we’ve done is start on edge 2 and go anticlockwise

crossing one spoke. So we are on edge 10. But this corresponds to 𝑠 ∈ 𝜁4𝑗−1R. For

these two statements to be consistent 𝑗 = 2, 𝑍 corresponds to a central rotation of 4𝜋/7

and the argument of 𝑠 along each edge is as in Table 4.4.

Note that in the above there was an ambiguity over the direction of paths – an

implicit assumption that anticlockwise was the same in both models. This corresponds

to a choice of orientation. Group theoretically if we conjugate by 𝑐 it takes us between

these two choices (because 𝑐𝑍𝑐−1 = 𝑍−1). The choice made gives us a symplectic
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Sheet 1 Sheet 2 Sheet 3 Sheet 4 Sheet 5 Sheet 6 Sheet 7

Figure 4.8: Rauch and Lewittes’ homology basis in (𝑡, 𝑠) coordinates.

transformation between the two homology bases, rather than antisymplectic.

4.8.3 Rauch and Lewittes’ homology in coordinates

With the above identification, we can simply read off which sheets Rauch and Lewittes’

homology basis uses in its repeated journeys between 𝑡 = 0 and 𝑡 = 1. From that

information we put together paths that make the same journeys and so draw the basis.

We obtain Figure 4.8.

We can algorithmically check that these paths form a canonical homology basis, and

indeed we discover the correct intersection matrix.

4.8.4 Symplectic transformation

It is now a simple matter to calculate the symplectic transformation moving from our

basis to this one. If our basis is 𝛾𝑖 and the Rauch-Lewittes one 𝛾′𝑖 then the transformation

(obtained by applying find homology transform) is 𝛾′𝑖 = 𝑀𝑖𝑗𝛾𝑗 where

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 1 −1 0

0 −1 1 0 −1 1

−1 −1 0 0 0 1

0 1 0 0 0 −1

0 0 0 0 0 1

−1 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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As a final check we note that if

𝑀 =

⎛
⎝𝐴 𝐵

𝐶 𝐷

⎞
⎠

in block diagonal form then the action of the symplectic transformation on the Riemann

period matrix 𝜏 is 𝜏 ↦→ (𝐶 +𝐷𝜏)(𝐴+𝐵𝜏)−1. Applied to (4.13) this indeed gives the

Rauch-Lewittes period matrix

𝜏 =

⎛
⎜⎜⎜⎝

−1+3i
√

7
8

−1−i
√

7
4

−3+i
√

7
8

−1−i
√

7
4

1+i
√

7
2

−1−i
√

7
4

−3+i
√

7
8

−1−i
√

7
4

7+3i
√

7
8

⎞
⎟⎟⎟⎠ .

4.9 Vector of Riemann constants

A similar mixture of analysis and numeric work allows us to determine the vector of

Riemann constants with respect to our chosen homology basis. Recall that the Abel

map based at a point 𝑄 of a Riemann surface Σ is the function essentially defined by

integrating the 𝑔 holomorphic differentials from 𝑄 to 𝑃 , that is

𝐴𝑄(𝑃 ) =
(︂∫︁ 𝑃

𝑄
𝜔1, . . . ,

∫︁ 𝑃

𝑄
𝜔𝑔

)︂
.

Of course, this is ill-defined as a map Σ→ C𝑔 since it depends on the basis chosen for

differentials and the path taken from 𝑄 to 𝑃 . The solution is to define the Abel map

onto the Jacobian of Σ instead, considering it well-defined only up to the addition of

periods, for any closed path 𝛾, we consider points differing by

(︂∫︁

𝛾
𝜔1, . . . ,

∫︁

𝛾
𝜔𝑔

)︂

to be equivalent. Since any such period can be expressed in terms of a homology basis,

the result is a quotient of C𝑔 with a 2𝑔 dimensional lattice of points – a torus.

The other issue, of what happens when a different basis is chosen for 𝜔𝑖 is less

important, it’s simply viewed as taking a different basis for the Jacobian. Naturally,

a coordinate free abstract definition can be given for the Jacobian (see for example

Griffiths and Harris in [20] or, for a more readable and immediately applicable exposition

Miranda’s book [27]), but for our purposes this concrete version is more useful.
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Given this Abel map, recall that Θ-functions can be defined as general meromorphic

maps from this Jacobian back to C. (for details, see Farkas and Kra’s book [15]). These

two types of function then have the property that

𝑃 ↦→ Θ(𝐴𝑄(𝑃 )− 𝑒)

has precisely 𝑔 zeroes 𝑃1, . . . , 𝑃𝑔 and there is a vector 𝐾𝑄, called the vector of Riemann

constants and independent of 𝑒, such that

𝐴𝑄(𝑃1) + · · ·+𝐴𝑄(𝑃𝑔) +𝐾𝑄 = 𝑒.

This relation is frequently used in integrable systems to give explicit solutions to

differential equations in terms of these theta functions. See for example Babelon and

Talon’s book [2].

4.9.1 Theory of constants up to a half-period

Symmetries can be most easily applied to finding the vector of Riemann constants via

the well-known relation

− 2𝐾𝑄 = 𝐴(𝒦Σ), (4.14)

where 𝒦Σ is the canonical divisor, i.e. the divisor of a meromorphic differential. Any

differential will serve and in all cases will have degree 2𝑔− 2. If we select a holomorphic

differential then the divisor will be positive. It can be taken to consist of the 2𝑔 − 2

points 𝑃1, . . . , 𝑃2𝑔−2 and (4.14) may be written as

− 2𝐾𝑄 =
2𝑔−2∑︁

𝑖=1

𝐴𝑄(𝑃𝑖). (4.15)

The symmetries of Klein’s curve will completely determine −2𝐾𝑄 and thus the vector

of constants up to adding an arbitrary half-period.

We proceed as follows. Suppose 𝜑 : Σ→ Σ is a symmetry of Klein’s curve and acts

on the basis of a-normalised holomorphic differentials, 𝜔, via the matrix 𝐹

𝜑*(𝜔) = 𝐹𝜔.



Riemann surfaces with symmetry: algorithms and applications 81

We work first on the Abel map itself and discover

𝐹𝐴𝑄(𝑃 ) = 𝐹

∫︁ 𝑃

𝑄
𝜔

=
∫︁ 𝑃

𝑄
𝜑*(𝜔)

=
∫︁ 𝜑(𝑃 )

𝜑(𝑄)
𝜔

=
∫︁ 𝑄

𝜑(𝑄)
𝜔 +

∫︁ 𝜑(𝑃 )

𝑄
𝜔

= 𝐴𝑄(𝜑(𝑃 )) +
∫︁ 𝑄

𝜑(𝑄)
𝜔.

Applying this to (4.15) (noting that 𝜑(𝒦𝐶) ∼ 𝒦𝐶 , still a canonical divisor) yields

𝐹 (−2𝐾𝑄) = −2𝐾𝑄 + (2𝑔 − 2)
∫︁ 𝑄

𝜑(𝑄)
𝜔.

If we choose the base, 𝑄, of the Abel map to be a fixed point of 𝜑 then the second term

vanishes and we are left with the even more simple relation

(𝐹 − 1)(−2𝐾𝑄) = 0, (4.16)

where this equality is of course in the Jacobian and hence numerically will only hold up

to the addition of a period.

4.9.2 Constraints from order 7 automorphism

We are now in a position to apply the above results directly to Klein’s curve. We

favour the order 7 automorphism by choosing to base the Abel map at (0, 0) in (𝑥, 𝑦)

coordinates, calling the resulting vector of constants simply 𝐾0. Thus we have

𝜑(𝑥, 𝑦) = (𝜁5𝑥, 𝜁4𝑦),

and the pullback on our chosen differentials (rather than the a-normalised ones) is given

by the matrix 𝐹

𝜑*(𝜔) = 𝐹𝜔 =

⎛
⎜⎜⎜⎝

𝜁2 0 0

0 𝜁 0

0 0 𝜁4

⎞
⎟⎟⎟⎠𝜔.
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This means that the action on the a-normalised basis implicit in the Abel map is given

by

𝐹 = 𝒜−1𝐹𝒜.

In C6 rather than the Jacobian, the symmetry constraint (4.16) becomes

(𝐹 − 1)(−2𝐾0) =
(︁

1 𝜏
)︁
k,

for some vector of integers k, or (since 1 is not an eigenvalue of 𝐹 and so 𝐹 − 1 is

invertible)

−2𝐾0 = (𝐹 − 1)−1
(︁

1 𝜏
)︁
k. (4.17)

At first glance, every choice of k will give different possible value for −2𝐾0, however we

are still only interested in determining −2𝐾0 up to a period and in fact many choices

of k give equivalent vectors. We want to know when k and k + a give equivalent values

for −2𝐾0 so our task is to find out which a ∈ Z6 make the equations

(𝐹 − 1)−1
(︁

1 𝜏
)︁
a =

(︁
1 𝜏

)︁
b,

solvable for b ∈ Z6. Multiplying by 𝐹 − 1 again and applying the result (4.10) from

Section 4.6 that 𝐹
(︁

1 𝜏
)︁

=
(︁

1 𝜏
)︁
𝑀 , we obtain

(︁
1 𝜏

)︁
a =

(︁
1 𝜏

)︁
(𝑀 − 1)b,

which, since a and b are in Z6, is equivalent to the set of wholly integer linear equations

a = (𝑀 − 1)b.

Calculating the Smith normal form of 𝑀 − 1 we discover unimodular matrices 𝑈, 𝑉
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such that

𝑀 − 1 = 𝑈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑉,

giving

𝑈−1a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(𝑉 b).

Since 𝑉 is also invertible over the integers this has a solution provided the final entry of

𝑈−1a is a multiple of 7. That is, (𝐹 − 1)−1
(︁

1 𝜏
)︁
a is a period if and only if

(𝑈−1a)6 = −3𝑎1 + 𝑎2 + 2𝑎3 − 4𝑎4 − 𝑎5 − 2𝑎6 ≡ 0 (mod 7).

In particular any choice of k in (4.17) leads to −2𝐾0 equivalent to one obtained from

the restricted set k ∈ {(𝑛00000) : 𝑛 ∈ {0, . . . , 6}}, which means

−2𝐾0 = (𝐹 − 1)−1
(︁

1 𝜏
)︁ (︁

𝑛 0 0 0 0 0
)︁𝑇

= 𝑛(𝐹 − 1)−1e1

for some 𝑛 ∈ {0, . . . , 6}.

4.9.3 Using the involution to determine 𝑛

Now that we have a very limited number of possibilities for −2𝐾0, and in particular a

discrete set, we can use numeric methods to determine 𝑛 above.

The only other symmetry which fixes (0, 0) is the antiholomorphic involution; a

calculation shows that this unfortunately gives us no new information: any 𝑛 satisfies the

constraint derived from it. Of the remaining symmetries, the order 3 automorphism is

slightly more complicated to apply numerically since it sends (0, 0) to (∞,∞). Therefore
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we will apply the holomorphic involution again.

The involution sends (0, 0) to (𝛾/𝛽, 𝛼/𝛽), and we call its action on the dual basis of

differentials 𝑇 . Then the constraint imposed is

(𝑇 − 1)(𝐹 − 1)−1𝑛e1 = 4
∫︁ (𝛾/𝛽,𝛼/𝛽)

(0,0)
𝜔 +

(︁
1 𝜏

)︁
l.

In principle this could be checked algebraically: the integral would have to be evaluated

fully, but since it is a 1
14th-period this isn’t a huge barrier.

However, it is easier to simply evaluate numerically. We discover fairly quickly that

𝑛 = 3 is the only possible solution and hence

𝐾0 =
3
2

(𝐹 − 1)−1e1 +
1
2

(︁
1 𝜏

)︁
m,

where m ∈ {0, 1}6.

4.9.4 Final half-period

The value of m can be determined numerically by its relation to the zeroes of the

Θ-function. We pick three points 𝑃1, 𝑃2 and 𝑃3. Then we can directly calculate

e = 𝐴0(𝑃1) +𝐴0(𝑃2) +𝐴0(𝑃3) +
3
2

(𝐹 − 1)−1e1 +
1
2

(︁
1 𝜏

)︁
m.

Finally we check whether (say) Θ(𝐴𝑄(𝑃1) − 𝑒) = 0 for each m. We discover that

m =
(︁

1 1 1 1 0 0
)︁

is the only possible solution and so

𝐾0 =
3
2

(𝐹 − 1)−1e1 +
1
2

(︁
1 𝜏

)︁ (︁
1 1 1 1 0 0

)︁𝑇

=
3
2

(𝐹 − 1)−1e1 +
(︁

3+i
√

7
8

3
4

3
4

)︁𝑇
.

With a little fiddling (adding full periods to make the result look neat) we can finally

obtain the simple result

𝐾0 =
i√
7

(︁
3 −1 5

)︁𝑇
.

4.10 Summary

In this chapter we have combined two very different representations of Klein’s curve, one

as an algebraic plane curve and the other as a quotient of the hyperbolic disc. These
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ideas originated in very different fields of mathematics for different reasons, and have

largely remained isolated until now.

However, by building a bridge between these two models we were able to transfer

results from one setting to the other. In particular we took a homology basis on the

hyperbolic side that gives a particularly beautiful form to the period matrix and, by

understanding the group structure of this curve were able to present an equivalent basis

on the algebraic side, in a form suitable for further calculation.

We then made use of this by calculating the vector of Riemann constants for Klein’s

curve, an essential component to explicit calculations arising from the application of

these ideas to integrable systems. See, for example Babelon and Talon’s book [2].
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5.1 Introduction

Bring’s curve is a Riemann surface of genus 4 admitting the automorphism group 𝑆5,

proven to be the maximum available for a genus 4 surface in [5] by Breuer, for example.

The fundamental definition, used by Bring in [6] to study solutions of the quintic, is as

a subset of P4 given by

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 0,

𝑥2
1 + 𝑥2

2 + 𝑥2
3 + 𝑥2

4 + 𝑥2
5 = 0,

𝑥3
1 + 𝑥3

2 + 𝑥3
3 + 𝑥3

4 + 𝑥3
5 = 0.

The 𝑆5 symmetry is manifest as permutations of the coordinates 𝑥𝑖.

As with Klein’s curve, we will study plane algebraic and hyperbolic representations of

Bring’s curve. The first representation comes from Dye’s paper [13], where he explicitly

gives a sextic plane curve and proves its equivalence to Bring’s. The remarkable fact

about this representation is that of the full 𝑆5 symmetry group, 𝐴5 is generated by

projectivities in P2.

In [9], Craig studies the rational points of a second genus 4 sextic which possesses

at least 𝐴5 as a symmetry group. In fact this curve is very closely related to Dye’s

representation and we will show that it too is equivalent to Bring’s curve by giving an

explicit transformation of P2 mapping Dye’s curve to Craig’s. Craig’s representation

will be seen to be more useful for our purposes since it has more obvious real structure

and simpler branching properties.

On the hyperbolic side Riera and Rodŕıguez, in [30], studied a representation much

like that of Klein’s curve and produced a very simple period matrix of the form

𝜏 = 𝜏0

⎛
⎜⎜⎜⎜⎜⎜⎝

4 1 −1 1

1 4 1 −1

−1 1 4 1

1 −1 1 4

⎞
⎟⎟⎟⎟⎟⎟⎠
,

for a determined 𝜏0 ∈ C. The period matrix already exhibits much of the symmetry

implicit in the automorphism group and we won’t attempt to improve on this result, but

we relate this representation to Craig’s plane algebraic one and provide an equivalent

homology basis in that setting.
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Finally we compute the vector of Riemann constants for Bring’s curve in Riera and

Rodŕıguez’s homology basis. We first use an almost purely numeric method to obtain a

result suitable for computations, then we apply a hybrid algebraic-numeric approach

which allows us to derive an algebraic form much as in the Klein case.

5.2 Dye’s sextic

Let 𝑗 = 1+
√

5
2 , i.e. a root of 𝑗2 = 𝑗 + 1. In [13], Dye studies the plane sextic curves

given by

𝒟𝜆(𝑥, 𝑦, 𝑧) := (𝑥+ 𝑗𝑦)6 + (𝑥− 𝑗𝑦)6 + (𝑦 + 𝑗𝑧)6

+ (𝑦 − 𝑗𝑧)6 + (𝑧 + 𝑗𝑥)6 + (𝑧 − 𝑗𝑥)6 + 𝜆(𝑥2 + 𝑦2 + 𝑧2)3 = 0.

For generic 𝜆 ∈ C the curve has genus 10, but if 𝜆 is chosen to be −78+104𝑗
5 then the

genus drops to 4 and the resulting curve is shown in [13] to be equivalent to Bring’s.

We correspondingly define

𝒟(𝑥, 𝑦, 𝑧) := 𝒟− 78+104𝑗
5

(𝑥, 𝑦, 𝑧).

5.2.1 Automorphisms of Dye’s sextic

𝒟(𝑥, 𝑦, 𝑧) has the obvious order three cyclic symmetry

𝑏′ : (𝑥, 𝑦, 𝑧) ↦→ (𝑦, 𝑧, 𝑥),

as well as the less obvious order two symmetry

𝑎′ :

⎛
⎜⎜⎜⎝

𝑥

𝑦

𝑧

⎞
⎟⎟⎟⎠ ↦→

⎛
⎜⎜⎜⎝

−𝑗 1 𝑗2

1 −𝑗2 𝑗

𝑗2 𝑗 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝑥

𝑦

𝑧

⎞
⎟⎟⎟⎠ ,

both presented by Dye in his paper [13]. The primes in these equations are for convenience

later; it will become apparent that we really want to consider a slightly different set of

generators to those given by Dye.

Note that there are also obvious order-2 symmetries produced by changing the sign

of one or more of 𝑥, 𝑦, 𝑧. However, these only generate a group of order 24 so Dye
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needed to look further for the richer group.

It is easy to check that these 𝑎′ and 𝑏′ are the classical generators for 𝐴5:

𝑎′𝑏′ =

⎛
⎜⎜⎜⎝

𝑗2 −𝑗 1

𝑗 1 −𝑗2

1 𝑗2 𝑗

⎞
⎟⎟⎟⎠ (5.1)

which has order 5 (taking into account the projective nature of the space). So

𝑎′2 = 𝑏′3 = (𝑎′𝑏′)5 = 1.

Recall that the entire symmetry group of Bring’s curve is 𝑆5 so there are more

symmetries to be found. However these need not be expressible as a simple matrix

action on the projective coordinates (𝑥, 𝑦, 𝑧). Indeed, as Dye notes, the surprising fact

is that 𝐴5 ≤ 𝑆5 is realized this simply.

5.3 Craig’s sextic

Craig describes in [9] a sextic equation, also of genus 4 and admitting 𝐴5 as a symmetry

group:

𝒞(�̃�, 𝑦, 𝑧) := �̃�(𝑦5 + 𝑧5) + (�̃�𝑦𝑧)2 − �̃�4𝑦𝑧 − 2(𝑦𝑧)3 = 0. (5.2)

In this case an order 5 symmetry is obvious and we may take

̃︀𝑎𝑏 : (�̃�, 𝑦, 𝑧) ↦→ (𝜁2�̃�, 𝜁4𝑦, 𝑧), (5.3)

where 𝜁 = e2𝜋i/5.

There is also a corresponding order two symmetry described by Craig

̃︀𝑎 :

⎛
⎜⎜⎜⎝

�̃�

𝑦

𝑧

⎞
⎟⎟⎟⎠ ↦→

⎛
⎜⎜⎜⎝

1 2 2

1 𝜁 + 𝜁−1 𝜁2 + 𝜁−2

1 𝜁2 + 𝜁−2 𝜁 + 𝜁−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�̃�

𝑦

𝑧

⎞
⎟⎟⎟⎠ .

Together these generate 𝐴5 again since ̃︀𝑎 ̃︀𝑎𝑏 =: ̃︀𝑏 has order 3 (hence the slightly unusual

choice of notation for ̃︀𝑎𝑏 above).

This representation will turn out to be the most convenient for later work so it is

worth spending some time on its detail, particularly its desingularisation.
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5.3.1 Special points in Craig’s representation and desingularisation

The points at infinity for Craig’s curve (5.2) are näıvely given by [0, 1, 0] and [1, 0, 0],

however the latter is singular. In fact the singularities of Craig’s curve are [1, 0, 0] and

[𝜁𝑘, 𝜁2𝑘, 1] for 𝑘 ∈ {0, . . . , 4} so we must work out expansions nearby in order to form a

compact curve.

We will follow the procedure detailed by Kirwan, for example, in the very readable

book [23]. Briefly, the idea is to enumerate possible series expansions near the singular

points. This can be done either as so-called Puiseux series involving fractional powers

of the usual variables or in terms of another, independent complex parameter (𝑡, say)

which acts as a true manifold coordinate.

Regardless of that detail, when we have the possible expansions, we will find that

some cannot possibly be related by a diffeomorphism (i.e. coordinate change). There is

a large theory behind this (much of it developed by Brieskorn, see for example his book

with Knörrer [32]), but the result is that when you identify points on a desingularised

space by these expansions, a compact nonsingular manifold structure can be imposed.

First the infinite singularity: consider the structure near [1, 0, 0], say at points [1, 𝑦, 𝑧]

for small 𝑦, 𝑧. The curve reduces to

𝑦5 + 𝑧5 + 𝑦2𝑧2 − 𝑦𝑧 − 2𝑦3𝑧3 = 0,

so in the usual Puiseux construction (again, see [23] for details) we suppose 𝑧 = 𝐴𝑦𝛼+· · ·
(with 𝛼 > 0) and equate coefficients of the lowest order. Of course, which term is lowest

order depends on 𝛼. There’s a well-defined algorithm involving Newton polygons for

determining candidates, but in this particular case it should be clear that regardless of

𝛼, the only candidates are 𝑦𝑧, 𝑧5 and 𝑦5.

Equating lowest order terms in the valid combinations we get one of

∙ 𝐴5𝑦5𝛼 −𝐴𝑦𝛼+1 = 0 which implies 𝑧 = 𝑦1/4.

∙ 𝑦5 −𝐴𝑦𝛼+1 = 0 which implies 𝑧 = 𝑦4 + · · · .

The second of these gives a single 𝑧 for each 𝑦 near 0, the first gives four different values

for 𝑧. Together these make up the expected five sheets and so expansions after this

point are unique. All expansions in the first equation are conjugate under a coordinate

change, arising from points [1, 0, 0] ∼ [1, 𝑡4, 𝑡] where 𝑡 is a manifold coordinate. Hence
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the point [1, 0, 0] desingularises into precisely two points on the nonsingular curve:

[1, 0, 0]1 ∼ [1, 𝑡4, 𝑡], 𝑦 ∼ 𝑥−3 (5.4)

[1, 0, 0]2 ∼ [1, 𝑡, 𝑡4]. 𝑦 ∼ 𝑥3/4

For the remaining singular points, we only need to explicitly investigate one and then

note that the automorphism [𝑥, 𝑦, 𝑧] ↦→ [𝜁𝑥, 𝜁2𝑦, 𝑧] will tell us how the other singularities

behave (i.e. very similarly).

So we look at [1, 1, 1]. At first sight two of the sheets come together here. Consider

[1 + 𝜖, 𝑦, 1] near to [1, 1, 1]. To first order

𝑦5 − 2𝑦3 + 𝑦2 − 𝑦 + 1 = 0. (5.5)

This quintic has four distinct roots: two are complex, corresponding to nonsingular

points and will play no role in future developments. There is a real negative root

(approximately −1.7549) which also corresponds to a nonsingular point and will occur

later. Finally 1 is a root, which gives us the expected singularity at [1, 1, 1].

Expanding about this singular point, at the next order we discover

𝑦 = 1 + 𝜖
1 +
√

5
2

+ · · · ,

𝑦 = 1 + 𝜖
1−
√

5
2

+ · · · .
(5.6)

These are clearly distinct solutions and together with the nonsingular expansions exhaust

the five possible nonsingular preimages near 𝑥 = 1, so [1, 1, 1] also desingularises to two

distinct points.

5.3.2 Branched covers of P1 and real paths

We now consider Craig’s curve as a branched cover of P1 with 𝑥 as the coordinate. The

equation obtained by setting 𝑧 = 1 in (5.2) is

𝑥𝑦5 + 𝑥+ 𝑥2𝑦2 − 𝑥4𝑦 − 2𝑦3 = 0. (5.7)

There are 5 sheets above the generic 𝑥, with branch points at 0,∞ and

{︂
𝜁𝑘

4

(︁
1674± 870i

√
15

)︁1/5
: 𝑘 ∈ {0, . . . , 4}

}︂
.
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Näıvely there is also a double solution at 𝑥 = 𝜁𝑘 but these are precisely the singular

points similar to [1, 1, 1] we investigated before and after resolution the cover is regular

there.

At 𝑥 = 0 we have two preimages, one corresponding to [0, 0, 1] with an expansion

𝑦 =
1

21/3
𝑥1/3 + · · · , (5.8)

and the other to [0, 1, 0] with expansion

𝑦 =
√

2𝑥−1/2 + · · · . (5.9)

Similarly at 𝑥 =∞ we have two preimages after desingularisation, [1, 0, 0]1 and [1, 0, 0]2.

The other branch points will play a much less critical role in the future so we don’t go

into details.

Real paths on Craig’s curve

The real paths in this cover will be of particular interest later on so we will take some

time to explore their nature now. Firstly, if the number of real roots of (5.7) considered

as a polynomial in 𝑦 changes then its discriminant

− 𝑥3(256𝑥20 − 1349𝑥15 + 5386𝑥10 − 7749𝑥5 + 3456) (5.10)

must vanish there. The only real roots of this equation are 𝑥 = 0, 1, so we are reduced

to considering the intervals (−∞, 0), (0, 1), (1,∞).

∙ If 𝑥 < 0 then there is just one real root.

∙ If 0 < 𝑥 < 1 then there are three real roots.

∙ If 𝑥 > 1 then there are also three real roots.

Referring to the expansions (5.8) and (5.9) we see that a real path starting with

𝑥 < 0 moving towards 𝑥 = 0 must be approaching [0, 0, 1] along the expansion 𝑦 =

2−1/3𝑥1/3 + · · · (i.e. 𝑦 → 0 too). Continuity demands that when extended past 𝑥 = 0 it

should have 𝑦 small and positive for small 𝑥 > 0 too. We will call this path 𝛾0.

We now turn our attention to another real path approaching 𝑥 = 0, this time from

above. It must lie on the expansion 𝑦 =
√

2𝑥−1/2 + · · · and hence 𝑦 is either large and
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positive or large and negative; we will call these paths 𝛾+ and 𝛾−. In fact the expansion

is telling us that 𝛾+ and 𝛾− meet at [0, 1, 0] and we could form a single continuous path,

but we will maintain the distinction for now.

In summary we have three real paths coming out of 𝑥 = 0 along the positive axis,

satisfying (for small 𝑥 > 0),

𝑦(𝛾−)≪ 0 < 𝑦(𝛾0)≪ 𝑦(𝛾+).

Now we are ready to consider what happens at 𝑥 = 1. On the desingularised curve

there are three real points here (the two from desingularising 𝑦 = 1 and the remaining

real root of about −1.7549). Each of the curves coming out of 𝑥 = 0 must pass through

one of them. Further, the order of the 𝑦 values among the paths must be the same

approaching 𝑥 = 1 as it was leaving 𝑥 = 0 since otherwise they would have crossed in

between and this would have shown itself in (5.10).

The three expansions near 𝑥 = 1 in order of increasing 𝑦 for 𝑥 < 1 are

𝑦 ∼ 𝛼 𝑦 ∼ 1 + (𝑥− 1)
1 +
√

5
2

𝑦 ∼ 1 + (𝑥− 1)
1−
√

5
2

,

where 𝛼 < 0 is the remaining real solution to (5.5). Thus the path that started 𝑦 ≪ 0

must pass through the first point, 𝑦 ∼ 0 must pass through the second and 𝑦 ≫ 0 the

third. Significantly this means the latter two paths actually cross at 𝑥 = 1 and for

𝑥 = 1 + 𝜖 we have

𝑦(𝛾−) < 𝑦(𝛾+) < 1 < 𝑦(𝛾0).

Finally we consider the points at ∞. Recall the expansions (5.4). If 𝑥 ≪ 0 then

naturally there is only one real path, which arrives at [1, 0, 0]1 with small 𝑦. If 𝑥≫ 0 the

situation is very similar to 𝑥 = 0: two expansions with |𝑦| ≫ 0 arriving at [1, 0, 0]2 and

one in the middle with 𝑦 ∼ 0. As before the paths cannot have crossed between 𝑥 = 1

and 𝑥 =∞ and so we are forced to conclude that 𝛾− has the expansion 𝑦 ∼ −𝑥3/4, 𝛾+

has the expansion 𝑦 ∼ 𝑥−3 and 𝛾0 has the expansion 𝑦 ∼ 𝑥3/4 near ∞.

Putting these facts together we can plot Figure 5.1 (the joined semicircular dots

represent the same point on the curve, separated to show the distinct 𝑦 values of paths

entering them). We discover that all the paths (𝛾−, 𝛾0, 𝛾+ and the 𝑥 < 0 path) actually

form part of one large closed loop.
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y ∼
√

2x−1/2

y ∼ 21/3x1/3

y ∼ −
√

2x−1/2

y ∼ x−3

y ∼ −x3/4

y ∼ x3/4

γ− γ+ γ0

x = 0

x =∞

Figure 5.1: Real paths on Craig’s curve as a branched cover of P1.

5.4 Relating two sextics

Since these are two homogeneous sextic equations, if they both describe Bring’s curve

we might hope they are related by a simple linear transformation on the coordinates.

It turns out that the symmetries of the curves constrain this supposed linear map

completely and leave just one candidate isomorphism which can easily be tested. In

conjunction with Dye’s result this analysis proves that Craig’s sextic is indeed another

representation of Bring’s curve.

5.4.1 Preliminary group theory

Suppose x ↦→ 𝐴−1x maps Dye’s curve to Craig’s, that is

𝒟(x) = 0 ⇐⇒ 𝒞(𝐴−1x) = 0. (5.11)

The matrix 𝐴 cannot be unique for two related reasons. First there is the intrinsically

projective nature of the curves in question. If 𝐴 satisfies (5.11) then any nonzero scalar

multiple 𝜆𝐴 will too since

𝒞(𝜆−1𝐴−1x) = 𝜆−6𝒞(𝐴−1x) = 0 ⇐⇒ 𝒞(𝐴−1x) = 0.
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In fact 𝐴 and 𝜆𝐴 describe the same transformation on the projective spaces and this is

just the relevant manifestation of that property.

But more freedom is granted by the automorphisms. If ̃︀𝜎 is an automorphism on

Craig’s curve and 𝜏 on Dye’s then consider

𝐴′ := 𝜏−1 ∘𝐴 ∘ ̃︀𝜎−1.

A simple argument shows that 𝐴′ will also act to transform between the representations.

We will use this fact to find a candidate for 𝐴.

Also, given an isomorphism 𝐴 we can conjugate any automorphism on Dye’s curve

to one on Craig’s. In more concrete terms, if ̃︀𝜏 is an automorphism of Dye’s curve then

𝐴−1̃︀𝜏𝐴

will be an automorphism on Craig’s.

Combining this with the previous result, we obtain the fact that for any ̃︀𝜎 in the

automorphism group of Craig’s curve

̃︀𝜎−1(𝐴−1𝜏𝐴)̃︀𝜎

is also an automorphism of Craig’s curve. And hence, if we have a favourite (conjugate)

automorphism on each side we can demand that our isomorphism 𝐴 sends one to the

other by replacing it with 𝐴𝜎 if necessary.

5.4.2 First constraint on 𝐴

In 𝐴5 there are two conjugacy classes for elements of order 5. In matrix representations,

eigenvalues are preserved under conjugacy since

det(𝐵𝐴𝐵−1 − 𝜆1) = det
(︀
𝐵(𝐴− 𝜆1)𝐵−1

)︀
= det(𝐴− 𝜆1).

In our projective case, of course, eigenvalues will only be preserved up to a scalar

multiplication. Equivalently, ratios of eigenvalues will be preserved but not necessarily

the values themselves. Looking at (5.1) we find that 𝑎′𝑏′ has eigenvalues

{︂
1 +
√

5, 1 + i
√︁

5 + 2
√

5, 1− i
√︁

5 + 2
√

5
}︂
,
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and the other conjugacy class (represented by (𝑎′𝑏′)2 say) in contrast1 has eigenvalues

{︂
2(3 +

√
5),−2(2 +

√
5− i

√︁
5 + 2

√
5),−2(2 +

√
5 + i

√︁
5 + 2

√
5)

}︂
.

The order 5 element ̃︀𝑎𝑏 on the Craig side given by (5.3) obviously has eigenvalues

{︀
𝜁2, 𝜁4, 1

}︀
.

Now, if we divide the eigenvalues of (𝑎′𝑏′)2 by 2(3 +
√

5) we obtain this same Craig set,

so the ratios of eigenvalues in (𝑎′𝑏′)2 are compatible with it corresponding to Craig’s ̃︀𝑎𝑏.
The same is not true for 𝑎′𝑏′ no matter how we try to arrange it. So at this stage we

modify our generators for the Dye automorphism group slightly. We define

𝑎𝑏 = (𝑎′𝑏′)2

=

⎛
⎜⎜⎜⎝

2 + 2𝑗 −2𝑗 2 + 4𝑗

2𝑗 −2− 4𝑗 −2− 2𝑗

2 + 4𝑗 2 + 2𝑗 −2𝑗

⎞
⎟⎟⎟⎠ , (5.12)

also of order 5. We need a replacement for 𝑎′ too since 𝑎′(𝑎𝑏) does not have order 3.

𝑎 := 𝑎′𝑏′2𝑎′𝑏′𝑎′

≡

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎟⎠

suffices (𝑎2 = 𝑏3 = (𝑎𝑏)5 = 1) and we can now demand that 𝐴 conjugates 𝑎𝑏 to ̃︀𝑎𝑏, i.e.

𝐴−1(𝑎𝑏)𝐴 = 𝜆( ̃︀𝑎𝑏)

𝐴−1

⎛
⎜⎜⎜⎝

2 + 2𝑗 −2𝑗 2 + 4𝑗

2𝑗 −2− 4𝑗 −2− 2𝑗

2 + 4𝑗 2 + 2𝑗 −2𝑗

⎞
⎟⎟⎟⎠𝐴 = 𝜆

⎛
⎜⎜⎜⎝

𝜁2 0 0

0 𝜁4 0

0 0 1

⎞
⎟⎟⎟⎠

1The fact that these are incompatible incidentally proves that we would have to look further afield
than projectivities for the full 𝑆5 symmetry group. If this representation could be extended then these
two elements would be conjugate and hence have the same eigenvalues.
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for some 𝜆. In fact this is simply a matter of diagonalising 𝑎𝑏 and a solution is given by

the columns of 𝐴 taking on the eigenvectors v1,v2,v3 of 𝑎𝑏 in (5.12)

𝐴 = ⟨v1|v2|v3⟩ .

It is easy to see that this solution is essentially unique and the only freedom remaining

is to scale each column of 𝐴 independently giving possible isomorphisms

𝐴 = ⟨𝑝1v1|𝑝2v2|𝑝3v3⟩ .

5.4.3 Second constraint on 𝐴

To identify these scaling factors 𝑝𝑖 we must look at another automorphism. In 𝐴5 with

the standard generators 𝑎2 = 𝑏3 = (𝑎𝑏)5 there are precisely 5 elements, 𝑥, of order 2

with the property that 𝑥𝑎𝑏 has order 3. Specifically these are 𝑎 and its conjugates under

powers of 𝑎𝑏. Since this conjugation leaves 𝑎𝑏 fixed we are still free to use it in our

search for the matrix 𝐴; it allows us to demand, in addition to what we already know,

that

𝐴−1𝑎𝐴 = 𝜇̃︀𝑎

(for some 𝜇) rather than any other element of order 2 in Craig’s representation. Solving

the resulting equations yields (scalar multiples of)

𝐴 =

⎛
⎜⎜⎜⎝

𝑗 1 1

0 −i
√

2 + 𝑗 i
√

2 + 𝑗

1 −𝑗 −𝑗

⎞
⎟⎟⎟⎠ . (5.13)

So we now have a candidate 𝐴. If any matrix is going to provide the transformation

between the two curves, this will. In fact it would be very odd if it failed at this stage:

it certainly induces a correspondence between the two representations of 𝐴5 involved.

An algebraic calculation confirms that

𝒟(𝐴x) = −960(9 + 4
√

5)𝒞(x),
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and hence

𝒟(x) = 0 ⇐⇒ 𝒞(𝐴−1x) = 0,

and so Craig’s curve is just another representation of Bring’s.

5.5 Riera and Rodŕıguez hyperbolic model

5.5.1 Introduction to 𝐻

Riera and Rodŕıguez, in [30], give Bring’s curve as a quotient, 𝐻, of the hyperbolic disc.

They then proceed to calculate a period matrix taking account of the symmetries of the

curve.

The essential features of the model can be seen in Figure 5.2. The surface is seen

to be a 20-gon with edges identified as shown in the table below the figure. This leads

to vertices of the polygon falling into three equivalence classes, also annotated in the

figure. Naturally, this surface has genus 4.

For future calculations it will also be very useful to know exactly how the splintered

points 𝑃2 and 𝑃3 come together as two regular points on a manifold. This can be

reconstructed quite easily from Figure 5.2. For example, start near 𝑃1 in the bottom

right quadrant on edge 2/9. Make a small arc around 𝑃1 proceeding anticlockwise and

you will next reach edge 1/14. Repeating at edge 14 tells us that we next meet 6/13. If

this procedure is continued we obtain Figure 5.3.

The polygon can be tiled by 120 double triangles (one can take a sector of the central

pentagon as a fundamental domain). Now consider the automorphism group. Let 𝑑 be

a rotation of 𝜋
2 about a vertex of the central pentagon and 𝑐 be a rotation of 𝜋 about

the midpoint of an adjacent pentagon edge. Then clearly 𝑐2 = 𝑑4 = 1. But it is also

easy to see that 𝑐𝑑 is a rotation of 2𝜋
5 about the centre and hence (𝑐𝑑)5 = 1. 𝑐 and 𝑑 are

thus the classical generators of 𝑆5 and this describes the entire automorphism group of

Bring’s curve.

Riera and Rogŕıguez give the homology basis for this model by prescribing which

edges of the polygon to traverse. We are going to construct an equivalent basis in

Craig’s model by understanding an isomorphism

𝑓 : 𝐻 →
{︀

(𝑥, 𝑦, 𝑧) ∈ C3 : 𝒞(𝑥, 𝑦, 𝑧) = 0
}︀

(5.14)
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C

P1

P2

P3

P2

P1

P2

P3

P2

P1 P2

P3

P2

P1

P2

P3

P2

P1

P2

P3P2

R

e1

e2

e3

e4

e5

e6

e7

e8

e9e10

e11

e12

e13

e14

e15

e16

e17

e18

e19 e20

Edge identifications
1 ↔ 14 5 ↔ 18 9 ↔ 2 13 ↔ 6 17 ↔ 10
3 ↔ 12 7 ↔ 16 11 ↔ 20 15 ↔ 4 19 ↔ 8

Figure 5.2: Riera and Rodŕıguez hyperbolic model, 𝐻, of Bring’s curve
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P1

e1/e14

e6/e13

e5/e18 e10/e17

e2/e9

P3

e3/e12

e11/e20

e8/e19 e7/e16

e4/e15

P2

e4/e15

e1/e14

e11/e20

e10/e7

e7/e16
e6/e13 e3/e12

e2/e9

e8/e19

e5/e18

Figure 5.3: Conformal structure of 𝑃1, 𝑃2 and 𝑃3

well enough to determine the precise values each edge of the polygon in Figure 5.2 maps

to. Once this is achieved converting the homology basis will be a purely mechanical

affair as in the Klein case. Along the way we will gain some understanding of how 𝑓

acts on the automorphism group by conjugation.

5.5.2 Riera and Rodŕıguez’s basis

We start by recapitulating the hyperbolic basis we will be interested in. Riera and

Rodŕıguez begin with a simple non-canonical basis. They first define in [30]

𝛼1 = 𝑒1 + 𝑒2,

𝛼2 = 𝑒3 + 𝑒4

(in edge traversal notation). Next they act on these by rotations of 2𝜋𝑘
5 to obtain their

initial basis. So essentially

𝛼𝑖 = 𝑒2𝑖−1 + 𝑒2𝑖.

Next they specify (by fiat) a matrix which transforms these 𝛼𝑖 into a canonical basis



102 Chapter 5: Example: Bring’s curve

and proceed to derive further basis change to make use of the symmetries. The end

result is the following basis-change matrix (implicit in [30])

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −2 0 1 0

1 −1 0 −1 −1 1 1 1

1 −1 0 0 −1 2 1 −1

0 −1 0 0 1 2 0 0

1 −1 1 0 −1 1 −1 −1

1 −1 1 −1 0 0 −1 1

1 −1 1 −1 0 1 0 1

0 −1 0 −1 1 1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.15)

which sends the initial 𝛼1, . . . , 𝛼8 homology basis to another which is not only canonical

but behaves well with respect to the symmetry group of the curve. As a result they

prove that the period matrix can be written as

𝜏 = 𝜏0

⎛
⎜⎜⎜⎜⎜⎜⎝

4 1 −1 1

1 4 1 −1

−1 1 4 1

1 −1 1 4

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where 𝜏0 ∼= −0.5 + 0.186676i is defined in terms of 𝑗-invariants by

𝑗(𝜏0) = −293 × 5
25

,

𝑗(5𝜏0) = −25
2
.

Riera and Rodŕıguez, in [30], swap these two equations. However, we believe this to be

a typographical error.

5.5.3 Understanding the isomorphism 𝑓

We now turn our attention to the isomorphism, 𝑓 , mentioned in (5.14). Actually there

clearly won’t be a single isomorphism since (as was the case on Craig and Dye’s curves)

if 𝑎 is an automorphism of 𝐻 and 𝜎 of Craig’s representation then 𝜎 ∘ 𝑓 ∘ 𝑎 will also be

an isomorphism from the hyperbolic model 𝐻 to Craig’s representation. Once again we

exploit this fact rather than become discouraged by it.
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There are two keys to this process. First is the rotation of the entire hyperbolic

polygon about its centre by 2𝜋/5 (the automorphism 𝑐𝑑 above). This automorphism

allows us to express all twenty of the polygon’s edges in terms of just four, a great

simplification of our problem. If we knew the values of 𝑓 on four edges, and the matrix

representing 𝑓*(𝑐𝑑) then

𝑓(edge 𝑘 + 4) = 𝑓 ((𝑐𝑑)(edge 𝑘))

= 𝑓*(𝑐𝑑)𝑓(edge 𝑘),

which allows us to compute the values of 𝑓 on the remaining 16 edges.

Second is a geodesic reflection on the hyperbolic disc, denoted by the dashed lines

in Figure 5.2; the line starts at 𝑃3, goes through 𝐶 to 𝑃1, along edge 1 to 𝑃2 and along

edge 3 back to 𝑃3. If we knew how this acted in Craig’s model, we would know its

fixed points correspond in some manner to edges 𝑒1/𝑒14 and 𝑒3/𝑒12, and the marked

diameter.

Identifying points 𝑃1, 𝑃2 and 𝑃3 on the Craig representation would then complete

the picture by dividing this fixed line up into just the intervals needed to draw homology

paths around known branch points.

Starting with the central rotation 𝑐𝑑 on the hyperbolic model and some isomorphism

𝑓 to Craig’s representation, since all order 5 elements of 𝑆5 are conjugate there is a

Craig-automorphism ̃︀𝜎 ∈ 𝑆5 such that

̃︀𝜎𝑓*(𝑐𝑑)̃︀𝜎−1 = 𝑍𝑘,

where 𝑘 ∈ {0, . . . , 4} and

𝑍 : [𝑥, 𝑦, 𝑧] ↦→ [𝜁𝑥, 𝜁2𝑦, 𝑧].

We are being flexible about which power of 𝑍 occurs here because later choices (specifi-

cally rotations about 𝑅 in Figure 5.2) will disrupt any decision we make at this stage.

But then

(𝜎 ∘ 𝑓)*(𝑐𝑑) = 𝜎*(𝑓*(𝑐𝑑))

= 𝜎𝑓*(𝑐𝑑)𝜎−1

= 𝑍𝑘.
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So the isomorphism 𝜎 ∘ 𝑓 from the hyperbolic model to Craig’s sends 𝑐𝑑 to 𝑍𝑘.

Now consider a rotation about 𝑅 in Figure 5.2 which cyclically permutes the fixed

points of 𝑐𝑑. The fixed points on the hyperbolic side are 𝐶,𝑃1, 𝑃2, 𝑃3 and on the Craig

side [0, 1, 0], [0, 0, 1], [1, 0, 0]1, [1, 0, 0]2. Let integers 𝑖 and 𝑛 be defined by the equations

𝑃𝑖 = (𝜎 ∘ 𝑓)−1([0, 0, 1]), 𝑅𝑛(𝑃𝑖) = 𝐶.

Then

(𝜎 ∘ 𝑓 ∘𝑅−𝑛)(𝐶) = (𝜎 ∘ 𝑓 ∘𝑅−𝑛)(𝑅𝑛(𝑃𝑖))

= (𝜎 ∘ 𝑓)(𝑃𝑖)

= [0, 0, 1],

and further

(𝜎 ∘ 𝑓 ∘𝑅−𝑛)*(𝑐𝑑) = (𝜎 ∘ 𝑓)*
(︀
𝑅−𝑛
* (𝑐𝑑)

)︀

= (𝜎 ∘ 𝑓)*
(︀
(𝑐𝑑)𝑗

)︀

= 𝑍𝑗𝑘

= 𝑍𝑚,

for some integers 𝑗 and more importantly 𝑚. Since we haven’t fixed the power of 𝑍 up

to now this means that 𝜎 ∘ 𝑓 ∘𝑅−𝑛 serves our purposes just as well as 𝜎 ∘ 𝑓 did.

We used most freedom to constrain the interaction between 𝑓 , 𝑍 and 𝐶, but we

actually still have the ability to apply a central rotation if it would help since that would

disrupt neither of the above properties.

Consider complex conjugation in Craig’s model. It is a symmetry that reverses

orientation (and so not part of the 𝑆5 symmetry group). It fixes an entire line (the real

axis) including the fixed points of 𝑍. In the hyperbolic picture this means it must be a

reflection about some diameter. We use our final remaining freedom to demand that it

is reflection about the dashed diameter in Figure 5.2, i.e. that the real axis in Craig’s

model corresponds to these dashed edges (and diameter).

We now have two tasks remaining:

∙ Find out what 𝑃1, 𝑃2 and 𝑃3 become in Craig’s model so we can describe edge

1/14 as the real path from 𝑃2 to 𝑃1 and edge 3/12 as the real path from 𝑃2 to 𝑃3.
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∙ Find out what power of 𝑍 the central rotation of 2𝜋/5 becomes so we can describe

(for example) edge 4/15 as 𝑍𝑘 applied to the real path from 𝑃2 to 𝑃3.

The second task is actually easier to accomplish at this stage. Consider the structure

near [0, 0, 1] (which we demanded was the centre of the polygon, 𝐶, hyperbolically);

there are three sheets coming together at this branch so unwrapping it will effectively

divide angles by 3. Mathematically this means that any set of manifold coordinates

𝜑 : 𝒞 → C centred on [0, 0, 1] will satisfy

𝜑([𝑥, 𝑦, 1])3 = 𝛼𝑥+𝑂(𝑥2).

In these coordinates, since [0, 0, 1] is a fixed point 𝑍 : [𝑥, 𝑦, 𝑧] ↦→ [𝜁𝑥, 𝜁2𝑦, 𝑧] acts locally

as a rotation. Denoting this action in the coordinates 𝜑 by 𝑍𝜑 this means

𝑍𝜑(𝑡) = 𝛽𝑡+𝑂(𝑡2),

where 𝛽 is characteristic of 𝑍 and independent of 𝜑. Now, on the one hand

𝑍𝜑 (𝜑([𝑥, 𝑦, 1]))3 = 𝜑 (𝑍([𝑥, 𝑦, 1]))3

= 𝜑([𝜁𝑥, 𝜁2𝑦, 1])3

= 𝛼𝜁𝑥+𝑂(𝑥2),

but also

𝑍𝜑 (𝜑([𝑥, 𝑦, 1]))3 =
(︀
𝛽𝜑([𝑥, 𝑦, 1]) +𝑂(𝜑2)

)︀3

= 𝛽3𝜑([𝑥, 𝑦, 1])3 +𝑂(𝜑4)

= 𝛽3𝛼𝑥+𝑂(𝑥2).

So 𝛽3 = 𝜁, or

𝛽 = exp
(︂

2𝜋i
15

+
2𝜋i𝑘

3

)︂

for some 𝑘 ∈ {0, 1, 2}. But since 𝑍 has order 5 we also know that 𝛽5 = 1, which in

terms of 𝑘 means that

2𝜋i
3

+
10𝜋i𝑘

3
=

2𝜋i
3

(1 + 5𝑘) ∈ 2𝜋iZ,
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or 𝛽 = exp(4𝜋i
5 ) and at last we can conclude that 𝑍 corresponds to a rotation of 2× 2𝜋i

5

about 𝐶 in the hyperbolic model.

Intuitively we have unwrapped the three sheets coming together at [0, 0, 1] to obtain

Figure 5.4 in 𝑥. We know that 𝑍 sends (say) [𝜖, 𝑦, 1] to [𝜁𝜖, 𝑦′, 1] on some sheet 𝑦′,

which makes it one of the labelled destinations. But only one of these gives an order 5

transformation so we know 𝑍 completely.

Sheet 1

Sheet 2

Sheet 3

ǫ

Z(ǫ)?
Z(ǫ)

Z(ǫ)?

Figure 5.4: Intuitive action of 𝑍 near [0, 0, 1].

Using this information together with our knowledge that complex conjugation in

Craig’s model is a dashed reflection in Figure 5.2 allows us to deduce the outline

structure in Figure 5.5. The dots are the branch-points of Craig’s model and the grey

lines are the images of the hyperbolic polygon’s edges under the isomorphism to Craig’s

model. It remains to establish which parts (and sheets) of each spoke in Figure 5.5

correspond to which hyperbolic edges (for example, does edge 1/14 correspond to 𝑥 > 0

or 𝑥 < 0, and what about 𝑦?)

Similar analysis of the other fixed points of 𝑍 will allow us to actually identify the

remaining 𝑃𝑖. We first discover

∙ Near [0, 1, 0], 𝑍 is a rotation of 3
(︀

2𝜋
5

)︀
.

∙ Near [1, 0, 0]1 ∼ [1, 𝑡4, 𝑡], 𝑍 is a rotation of 4
(︀

2𝜋
5

)︀
.

∙ Near [1, 0, 0]2 ∼ [1, 𝑡, 𝑡4], 𝑍 is a rotation of 2𝜋
5 .

But hyperbolically, it is easy to see that a rotation of 2
(︀

2𝜋
5

)︀
about 𝐶 (which 𝑍 is) is

the same as one of 4
(︀

2𝜋
5

)︀
about 𝑃1, 3

(︀
2𝜋
5

)︀
about 𝑃2 or 2𝜋

5 about 𝑃3 so we can deduce
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1/14 and 3/12

2/
9

an
d

11
/2

0

10/17 and
8/19

5/
18

an
d

7/
16

6/13
an

d
4/15

Figure 5.5: Hyperbolic polygonal edges in Craig’s model

that [0, 1, 0]↔ 𝑃2, [1, 0, 0]1 ∼ [1, 𝑡4, 𝑡]↔ 𝑃1 and [1, 0, 0]2 ∼ [1, 𝑡, 𝑡4]↔ 𝑃3.

Therefore, edge 1/14 corresponds to the real path from [0, 1, 0] to [1, 0, 0]1 ∼ [1, 𝑡4, 𝑡];

referring to Figure 5.1 we see that this is the path where 𝑦 starts out large and positive

near 𝑥 = 0 (and remains positive). Edge 3 corresponds to the real path from [0, 1, 0] to

[1, 0, 0]2 ∼ [1, 𝑡, 𝑡4] which turns out to be the one starting out large and negative near

𝑥 = 0 (and remaining negative).

The remaining paths (𝑦 small near 𝑥 = 0) correspond to the diameter of the

hyperbolic model and have no large role to play in describing the homology basis.

Other edges can now be obtained by applying a rotation of 2𝜋/5 on the hyperbolic

side and 𝑍3 on the Craig side. The results are in Table 5.1.

1/14 [R+,R+, 1] 2/9 [𝜁R+, 𝜁
2R+, 1]

3/12 [R+,R−, 1] 4/15 [𝜁4R+, 𝜁
3R−, 1]

5/18 [𝜁3R+, 𝜁R+, 1] 6/13 [𝜁4R+, 𝜁
3R+, 1]

7/16 [𝜁3R+, 𝜁R−, 1] 8/19 [𝜁2R+, 𝜁
4R−, 1]

10/17 [𝜁2R+, 𝜁
4R+, 1] 11/20 [𝜁R+, 𝜁

2R−, 1]

Table 5.1: Values for [𝑥, 𝑦, 1] on hyperbolic edges



108 Chapter 5: Example: Bring’s curve

5.5.4 Riera and Rodŕıguez basis algebraically

We are now in a position to express the Riera and Rodŕıguez basis on this branched

cover. Recall that Riera and Rodŕıguez used

𝛼𝑖 = (2𝑖− 1) + (2𝑖)

as a prescription on which edges to traverse in the hyperbolic model.

This becomes a specification to look up the relevant edges in Table 5.1, and construct

a path that has its main component in the specified regions (circling 𝑥 = 0 and outside

all finite branch points enough times to reach the correct sheets). In fact, just like

Riera and Rodŕıguez we only need to construct 𝛼1 and 𝛼2 and then repeatedly apply

(𝑥, 𝑦) ↦→ (𝜁𝑥, 𝜁2𝑥) to obtain the rest.

To be explicit and referring to Table 5.1, 𝛼1 must go out along 𝑥 > 0 with 𝑦 ≫ 0 near

0, loop around infinity until it can come back in to 𝑥 = 0 along a ray with arg 𝑥 = 2𝜋
5

and arg 𝑦 = 4𝜋
5 before looping around 0 until it can join up with the beginning again. A

path conforming to this description is shown in Figure 5.6.

Similarly 𝛼2 goes out along 𝑥 > 0 with 𝑦 < 0, loops and comes back with argument

of 𝑥 as −2𝜋/5 and argument of 𝑦 as 6𝜋/5; it is also depicted in Figure 5.6.

α1 α2

Figure 5.6: 𝛼1 and 𝛼2 homology cycles in Craig’s branched cover. Graphs of subsequent
𝛼𝑖 are rotations of these by 2𝜋i

5 .

These are read into extcurves and converted into a full basis with the commands

> curve, hom, names := read_pic("homology.pic"):

> zeta := exp(2*Pi*I/5):

> trans := (x,y) -> [zeta^3*x,zeta*y]:

> for i from 1 to 3 do

hom := [op(hom),
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transform_extpath(curve, hom[-2], trans),

transform_extpath(curve, hom[-1], trans)];

od:

An immediate check to this calculation is provided by calculating the intersection

matrix of this constructed basis

> Matrix(8, (i,j) -> isect(curve, hom[i], hom[j]));

produces (with considerably less work and chance of error) precisely the matrix claimed

by Riera and Rodŕıguez

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1 1 −1 0 1 −1

−1 0 1 −1 1 0 0 0

1 −1 0 1 −1 1 −1 0

−1 1 −1 0 1 −1 1 0

1 −1 1 −1 0 1 −1 1

0 0 −1 1 −1 0 1 −1

−1 0 1 −1 1 −1 0 1

1 0 0 0 −1 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally we can calculate the period matrix and apply the transformation from (5.15)

to reproduce the claimed result that

𝜏 = 𝜏0

⎛
⎜⎜⎜⎜⎜⎜⎝

4 1 −1 1

1 4 1 −1

−1 1 4 1

1 −1 1 4

⎞
⎟⎟⎟⎟⎟⎟⎠
.

5.6 Vector of Riemann constants

We will now calculate the vector of Riemann constants for this surface in two slightly

different ways. First we will apply a purely numeric approach suitable for any calculations

needed regarding, for example, Θ-functions. Nevertheless this approach will allow us to

guess the algebraic form of the vector, which itself could be very useful for enhancing

the precision of any computations undertaken (if we can find a more precise vector,

then the dubious methods used are, after all, not that important).
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After that we will adopt a hybrid algebraic-numeric approach capable of actually

deriving an algebraic form of the vector. This will naturally be harder work, but the

results correspondingly more useful. This second version is very similar to that employed

for Klein’s curve, except the numerics involved will be more analytic than algebraic in

nature, with corresponding increase in cost. Fortunately the problem is small enough

that this is not important.

5.6.1 Purely numeric Riemann constants

Numerically calculating the vector of Riemann constants can now proceed in an almost

identical manner to Klein’s curve in Section 4.9.

1. Find a divisor for a holomorphic differential. We use Craig’s representation and

the differential
(𝑦 − 𝑥2)d𝑥

−5𝑥𝑦4 − 2𝑥2𝑦 + 𝑥4 + 6𝑦2
.

It has a simple 0 at [0, 0, 1], a double 0 at [0, 1, 0] and a triple 0 at [1, 0, 0] ∼ [1, 𝑡, 𝑡4]

for the required total of 2𝑔 − 2 = 6.

2. Choose a base-point 𝑄 and calculate −2𝐾𝑄 = 𝐴𝑄(𝒦𝐶). We choose [0, 0, 1] as the

base and discover

−2𝐾𝑛𝑢𝑚
0

∼=

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.900002173641643699 + 1.30672399048697319i

1.89999072196101570 + 0.186685232667863965i

0.599990762181047632 + 1.12006518865340832i

−1.59999547497843220 + 0.373348898781978522i

⎞
⎟⎟⎟⎟⎟⎟⎠
.

3. Pick 4 generic points and add half-periods to −𝐴0(𝒦𝐶)/2 until we find the correct

vanishing properties with respect to Θ functions. We discover

𝐾𝑛𝑢𝑚
0

∼=

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.299998896336445942− 0.1866708344i

−2.19999535149310521 + 0.373348534635175533i

−0.299995378646934263− 0.5600325922i

1.29999774009064328− 0.1866744408i

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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4. Add periods to make this result as neat as possible, obtaining

𝐾𝑛𝑢𝑚
0

∼=

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.299998890223328429− 0.1866708287i

−0.199995316631002673 + 0.373348521868197392i

0.200004641308583864 + 0.373349724864026844i

0.299997742729032346− 0.1866744176i

⎞
⎟⎟⎟⎟⎟⎟⎠
.

5. Identify the numbers appearing in terms of 𝜏0. We can see that it is very probable

that

𝐾0 =
1
10

⎛
⎜⎜⎜⎜⎜⎜⎝

−3

−2

2

3

⎞
⎟⎟⎟⎟⎟⎟⎠

+ Im (𝜏0)

⎛
⎜⎜⎜⎜⎜⎜⎝

−1

2

2

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

i. (5.16)

5.6.2 Justifying the algebraic vector of constants

Our final goal will be to actually prove the guess in (5.16). If we were to follow the

full procedure from Section 4.9 we would have to develop a much more complete

understanding of

∙ The action of the automorphisms on holomorphic differentials.

∙ The action of the automorphisms on homology cycles.

∙ The structure of the full matrix of periods, Π.

Fortunately the problem is such that we can just touch on each of these issues and still

emerge with the proof we desire. Recall that the fundamental way symmetries constrain

the vector of Riemann constants is via the equation (expressed in C𝑔 rather than the

Jacobian and assuming the Abel map is based at a fixed point of the automorphism)

𝐹𝐾0 = 𝐾0 +
(︁

1 𝜏
)︁
k, (5.17)

where 𝐹 is the action of some symmetry on the holomorphic differentials, expressed in

the basis dual to our chosen canonical homology basis. If we can use this, as at the

beginning of Klein’s result, to constrain the vector of constants to a finite set of algebraic

possibilities then numeric methods will suffice to justify the ansatz made above.



112 Chapter 5: Example: Bring’s curve

In the Bring case the useful simplification is that everything follows from a deep

study of the single (order 5) automorphism given in Craig’s representation by

𝜑 : [�̃�, 𝑦, 𝑧] ↦→ [𝜁2�̃�, 𝜁4𝑦, 𝑧].

The first and easiest calculation is deriving its action on the differentials. We fix the

ordered basis

𝜔1 =
(𝑦3 − �̃�)d�̃�
𝜕𝑦𝒞(�̃�, 𝑦, 1)

, 𝜔2 =
𝑦(�̃�2 − 𝑦)d�̃�
𝜕𝑦𝒞(�̃�, 𝑦, 1)

,

𝜔3 =
(𝑦 − �̃�2)d�̃�
𝜕𝑦𝒞(�̃�, 𝑦, 1)

, 𝜔4 =
(𝑦2�̃�− 1)d�̃�
𝜕𝑦𝒞(�̃�, 𝑦, 1)

.

It is easy to check that

𝜑*(𝜔1) = 𝜁𝜔1, 𝜑*(𝜔2) = 𝜁2𝜔2,

𝜑*(𝜔3) = 𝜁3𝜔3, 𝜑*(𝜔4) = 𝜁4𝜔4,

the remarkable (and useful) fact being that there is no invariant differential. In terms

of matrices this takes the form 𝜑*(𝜔𝑖) = 𝐹𝑖𝑗𝜔𝑗 where

𝐹 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜁 0 0 0

0 𝜁2 0 0

0 0 𝜁3 0

0 0 0 𝜁4

⎞
⎟⎟⎟⎟⎟⎟⎠
. (5.18)

To apply (5.17), we will need to express this action in the a-normalised basis, which

requires knowledge of 𝒜𝑖𝑗 =
∫︀
a𝑗
𝜔𝑖. We can use 𝜑 itself again to obtain this knowledge.

The first step is deriving its action on homology cycles: 𝜑*(𝛾𝑖). With extcurves on hand

this is a simple computational matter, complicated only slightly by the noncanonical
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nature of the paths we obtained in Section 5.5.4. We obtain 𝜑*(𝛾𝑖) = 𝑀𝑖𝑗𝛾𝑗 where

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0

−1 0 0 −1 0 0 0 0

0 −1 0 1 0 0 0 0

0 0 −1 −1 0 0 0 0

0 0 0 0 −1 1 −1 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.19)

5.6.3 The Abel map of the canonical divisor

Since the action of 𝜑 on the differentials has no invariants we know, as in the Klein case,

that 𝐹 − 1 is invertible and

−2𝐾0 = (𝐹 − 1)−1
(︁

1 𝜏
)︁
k,

up to some period. Again there are only finitely many essentially unique values for k,

the rest simply altering −2𝐾0 by a period. In this case k and k+a give results differing

by a period if

(𝐹 − 1)−1
(︁

1 𝜏
)︁
a =

(︁
1 𝜏

)︁
b

has a solution in b (again a,b ∈ Z8), or, rearranging and using the fact that 𝐹
(︁

1 𝜏
)︁

=(︁
1 𝜏

)︁
𝑀 , (︁

1 𝜏
)︁
a =

(︁
1 𝜏

)︁
(𝑀 − 1)b,

which is equivalent to

a = (𝑀 − 1)b.

Calculating the Smith normal form of 𝑀 − 1 gives us unimodular matrices 𝑈, 𝑉 such

that

𝑀 − 1 = 𝑈 diag(1, 1, 1, 1, 1, 1, 5, 5)𝑉
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or

𝑈−1a = diag(1, 1, 1, 1, 1, 1, 5, 5)𝑉 b,

which has a solution provided the final two entries of 𝑈−1a are multiples of 5. That is,

(𝐹 − 1)−1
(︁

1 𝜏
)︁
a is a period if and only if

−𝑎5 + 𝑎6 − 𝑎7 − 4𝑎8 ≡ 0 (mod 5),

−𝑎1 + 2𝑎2 − 3𝑎3 − 𝑎4 − 11𝑎5 + 6𝑎6 − 𝑎7 − 34𝑎8 ≡ 0 (mod 5).

This gives 25 possible unique candidates for −2𝐾0; we can vary 𝑘𝑖 arbitrarily (by adding

an appropriate a) without essentially changing −2𝐾0 for (say) 𝑖 = 2, 3, 4, 6, 7, 8 but

then 𝑘1 and 𝑘5 are fixed. Explicitly, every −2𝐾0 is equivalent to one generated by

k =
(︁
𝑘1 0 0 0 𝑘5 0 0 0

)︁
.

5.6.4 Action of 𝜑 on dual differential basis

The final step before we can actually apply numerical methods is determining what the

matrix 𝐹 , acting on the differentials, actually is. This needs knowledge of the matrix of

periods.

Applying the two equations (5.19) and (5.18) to the standard constraint on period

matrices 𝐹
(︁
𝒜 ℬ

)︁
=

(︁
𝒜 ℬ

)︁
𝑀 , we obtain the following information about 𝒜𝑖𝑗 =

∫︀
a𝑗
𝜔𝑖

𝒜 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑎1 0 0 0

0 𝑎2 0 0

0 0 𝑎3 0

0 0 0 𝑎4

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1− 𝜁4 1 + 𝜁4 + 𝜁3 𝜁

1 −1− 𝜁3 1 + 𝜁3 + 𝜁 𝜁2

1 −1− 𝜁2 1 + 𝜁2 + 𝜁4 𝜁3

1 −1− 𝜁 1 + 𝜁 + 𝜁2 𝜁4

⎞
⎟⎟⎟⎟⎟⎟⎠
,

for some unknown 𝑎𝑖, which since 𝐹 is diagonal are fortunately irrelevant. It follows

that the representation of 𝜑 on the basis of differentials dual to our chosen canonical
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homology basis is 𝐹 = 𝒜−1𝐹𝒜, which can be simplified to

𝐹 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We can finally apply numerical methods to obtain results that are nonetheless

algebraic. Comparing each possible 𝑘{1,5} against 𝐾𝑛𝑢𝑚
0 we discover that only 𝑘1 =

𝑘5 = 3 gives a result differing by a period. That is,

−2𝐾0 =
1
5

⎛
⎜⎜⎜⎜⎜⎜⎝

−12

−3

3

−3

⎞
⎟⎟⎟⎟⎟⎟⎠

+ 𝜏0

⎛
⎜⎜⎜⎜⎜⎜⎝

−6

−6

3

0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

with the explicit relation to the numerically derived version given earlier

−2𝐾0 = −2𝐾𝑛𝑢𝑚
0 +

(︁
1 𝜏

)︁ (︁
4 −1 −3 1 1 1 −2 1

)︁𝑇
.

Now that we know −2𝐾0 the argument proceeds in an identical manner to the numeric

case and we obviously obtain (5.16) again, with more justification this time.

5.7 Summary

In this chapter, we have considered three representations of Bring’s curve which is

known to be the unique curve of genus 4 with 𝑆5 as an automorphism group, just as

Klein’s is the unique genus 3 curve with maximal symmetry.

I believe the two sextic representations were known to be equivalent previously: Dye

certainly knows his curve is equivalent to Bring’s (see the introduction to [13]). Craig

does not explicitly state this result but suggests in [9] that he knows that 𝐴5 is only

part of the group which would result in equivalence to Bring’s.

However, here we have produced a novel and explicit relationship between these

two equations. This mapping is as simple as could possibly be expected and will allow

future work on one curve to be transferred to the other, no matter how concrete the

result seems.
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The third hyperbolic representation used by Riera and Rodrúıguez in [30] was

different, but we have created a strong enough bridge between it and the algebraic

equations that we could transfer their result on a homology basis to the other setting.

Finally, we presented two methods of calculating a vector of Riemann constants for

this curve. In this case we had enough information that both were applicable. On other

curves, only one or the other of these techniques may be practical.
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6.1 Introduction

6.1.1 Curves covering curves

Given a curve 𝒞 of genus 𝑔 it is often useful to know curves of lower genus covered.

For example this can allow us to write the Θ-functions of 𝒞 in terms of the (simpler)

Θ-functions on the curve with lower genus, as described by Martens in [26].

Suppose 𝜋 : 𝒞 → 𝒞 is such a cover onto 𝒞 of genus 𝑔. The Poincaré reducibility

criterion gives a relation between the period matrices of the two curves, and can actually

be used in reverse when the genus of 𝒞 is 2 to identify such covers. We derive the

equation as follows. Suppose

𝜋*(𝜔𝑖) = �̂�𝑗𝜆𝑗𝑖,

𝜋*(𝛾𝑖) = 𝑀𝑖𝑗𝛾𝑗 ,
(6.1)

where 𝛾s represent a choice of homology bases, and 𝜔s of one-forms; the matrices of

periods will be denoted Π𝑖𝑗 :=
∫︀
𝛾𝑖
𝜔𝑗 . Both 𝜆 and 𝑀 have maximal rank:

∙ 𝜋* is surjective: suppose we have an arbitrary cycle 𝛿 : [0, 1]→ 𝒞. We can choose

a preimage of 𝛿(0) and extend this by continuity to obtain 𝜋−1
* (𝛿) : [0, 1]→ 𝒞. (If

𝛿 passed through any branch points of 𝜋 then further arbitrary choices would be

required, but continuity could be maintained). The only barrier to 𝜋−1
* (𝛿) being a

preimage of 𝛿 under 𝜋* (i.e. in 𝐻1(𝒞,Z)) is that it may not be a closed cycle. But

this can be corrected by adjoining a path 𝜒 on 𝒞 whose push-forward, 𝜋*(𝜒), is

homotopic to 0 but which closes 𝜋−1
* (𝛿). Then we would have 𝜋−1

* (𝛿) + 𝜒 a closed

path satisfying

𝜋*(𝜋−1
* (𝛿) + 𝜒) = 𝜋*(𝜋−1

* (𝛿)) + 𝜋*(𝜒) = 𝛿 + 0.

Such a path will always exist: the monodromy based at 𝛿(0) can be calculated

around all branch points of the cover and must allow access to all sheets (since

𝒞 is connected). Hence, on 𝒞, paths that go out from 𝛿(0) to any branch point,

perform a small loop and return along the same track are homologous to zero and

allow us to change to any sheet. For example Figure 6.1 shows a possible scenario

where a genus 2 surface covers a torus with two branch points.

∙ 𝜋* is injective since it is the adjoint of the surjective 𝜋*.
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π−1
∗ (δ)

χ δ

π∗(χ)

Figure 6.1: Adding a path 𝜒 (shown dotted) to close a pullback.

Then

𝑀𝑖𝑗Π𝑗𝑘 = 𝑀𝑖𝑗

∫︁

𝛾𝑗

𝜔𝑘 =
∫︁

𝑀𝑖𝑗𝛾𝑗

𝜔𝑘

=
∫︁

𝜋*(𝛾𝑖)
𝜔𝑘 =

∫︁

𝛾𝑖

𝜋*(𝜔𝑘)

=
∫︁

𝛾𝑖

�̂�𝑗𝜆𝑗𝑘 = 𝜆𝑗𝑘

∫︁

𝛾𝑖

�̂�𝑗 = Π̂𝑖𝑗𝜆𝑗𝑘.

That is, if 𝒞 covers another curve 𝒞 then there exists

∙ an integer matrix 𝑀 of size 2𝑔 × 2𝑔 with maximal rank,

∙ a complex matrix 𝜆 of size 𝑔 × 𝑔,

such that

𝑀Π = Π̂𝜆. (6.2)

For the 𝑔 = 2, 𝑔 = 1 case Murabayashi proves the converse in [28]. With slight alterations

to avoid introducing extra notation, his result is stated

Theorem 11 (Murabayashi). 𝐽𝐶 has a period matrix of the form

⎛
⎝𝑧1

1
𝑘 1 0

1
𝑘 𝑧2 0 1

⎞
⎠ , 𝑧1, 𝑧2 ∈ h

if and only if 𝐶 has a maximal map 𝜓 of degree 𝑘 to an elliptic curve 𝑋.

Here, 𝐽𝐶 is the Jacobian of a Riemann surface 𝐶 of genus 2 and h is the upper-half

complex plane.

As we will see later, if there is one solution to equation (6.2) with matrices having

the required properties then there are more, and some of these will give Π̂ precisely the

form stated in Murabayashi’s result (up to sign conventions). This tells us that there is

some covering map whenever we can solve (6.2).
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6.1.2 Simplification when 𝑔 = 2, 𝑔 = 1

Here we specialise to the case where a genus 2 curve covers one with genus 1. I am

indebted to my supervisor Harry Braden for most of the work on this simplification.

(6.2) is equivalent to the single matrix equation (actually valid whenever it makes sense,

i.e. 𝑔 = 2𝑔) given in block form by

(︁
Π̂ 𝑀

)︁
⎛
⎝ 𝜆

−Π

⎞
⎠ = 0.

Now, the left-hand operand is a 4× 4 matrix, so a necessary condition for a nontrivial

solution to exist in 𝑀,𝜆,Π is that

det
(︁

Π̂ 𝑀
)︁

= 0.

If we can find all solutions to this equation then since we’re working with genus 2

and 1, the only barrier to solving (6.2) itself is whether a bona fide period matrix is

induced from the eigenvector on the right; this is merely a matter of checking positive

definiteness of the imaginary part of Π21/Π11.

The next thing to note about this equation is that if we have a solution 𝑀 and

Π̂ =

⎛
⎝𝒜
ℬ

⎞
⎠

then

0 = det

⎛
⎝𝒜 𝑀1

ℬ 𝑀2

⎞
⎠

= det

⎛
⎝𝒜 𝑀1

ℬ 𝑀2

⎞
⎠

⎛
⎝𝒜

−1 0

0 1

⎞
⎠

= det

⎛
⎝1 𝑀1

𝜏 𝑀2

⎞
⎠ .
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So we search for solutions to this latter equation

0 = det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 𝑚11 𝑚12

0 1 𝑚21 𝑚22

𝜏11 𝜏12 𝑚31 𝑚32

𝜏12 𝜏22 𝑚41 𝑚42

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Expanding this determinant we obtain

0 =

⃒⃒
⃒⃒
⃒⃒
𝑚31 𝑚32

𝑚41 𝑚42

⃒⃒
⃒⃒
⃒⃒− 𝜏11

⃒⃒
⃒⃒
⃒⃒
𝑚11 𝑚12

𝑚41 𝑚42

⃒⃒
⃒⃒
⃒⃒ + 𝜏12

⎛
⎝

⃒⃒
⃒⃒
⃒⃒
𝑚11 𝑚12

𝑚31 𝑚32

⃒⃒
⃒⃒
⃒⃒−

⃒⃒
⃒⃒
⃒⃒
𝑚21 𝑚22

𝑚41 𝑚42

⃒⃒
⃒⃒
⃒⃒

⎞
⎠

+ 𝜏22

⃒⃒
⃒⃒
⃒⃒
𝑚21 𝑚22

𝑚31 𝑚32

⃒⃒
⃒⃒
⃒⃒ + (𝜏11𝜏22 − 𝜏2

12)

⃒⃒
⃒⃒
⃒⃒
𝑚11 𝑚12

𝑚21 𝑚22

⃒⃒
⃒⃒
⃒⃒ , (6.3)

which must be solved for the 𝑚𝑖𝑗 given known 𝜏𝑖𝑗 .

Each of these minor determinants must be an integer first and foremost, thus in our

search for a solution the first step is to define

𝑞1 =

⃒⃒
⃒⃒
⃒⃒
𝑚31 𝑚32

𝑚41 𝑚42

⃒⃒
⃒⃒
⃒⃒ , 𝑞2 = −

⃒⃒
⃒⃒
⃒⃒
𝑚11 𝑚12

𝑚41 𝑚42

⃒⃒
⃒⃒
⃒⃒ , 𝑞3 =

⃒⃒
⃒⃒
⃒⃒
𝑚11 𝑚12

𝑚31 𝑚32

⃒⃒
⃒⃒
⃒⃒−

⃒⃒
⃒⃒
⃒⃒
𝑚21 𝑚22

𝑚41 𝑚42

⃒⃒
⃒⃒
⃒⃒ ,

𝑞4 =

⃒⃒
⃒⃒
⃒⃒
𝑚21 𝑚22

𝑚31 𝑚32

⃒⃒
⃒⃒
⃒⃒ , 𝑞5 =

⃒⃒
⃒⃒
⃒⃒
𝑚11 𝑚12

𝑚21 𝑚22

⃒⃒
⃒⃒
⃒⃒ ,

and search for solutions to the reduced equation

𝑞1 + 𝑞2𝜏11 + 𝑞3𝜏12 + 𝑞4𝜏22 + 𝑞5(𝜏11𝜏22 − 𝜏2
12) = 0

in integers 𝑞𝑖. We can then take each of these solutions and search for corresponding

𝑚𝑖𝑗 , which must exist by Murabayashi’s results in [28]. A second constraint on the 𝑞𝑖 is

provided by the demand, for an order ℎ cover, that

ℎ𝐽 = 𝑀𝑇𝐽𝑀, (6.4)

where 𝐽 and 𝐽 are the 2 × 2 and 4 × 4 (respectively) standard sympelctic matrices

defined earlier.

Equation (6.4) can be derived in two stages by considering a suitably defined pseudo-
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inverse for 𝜋* acting on homology cycles. Let 𝜋−1(𝛾) be defined by taking all possible

preimages of 𝛾 and joining the endpoints to form a closed path. That is

𝜋−1(𝛾) = �̂�1 + · · ·+ �̂�ℎ

where each of �̂�𝑖 are (not usually closed) paths in 𝒞 pushing forwards to 𝛾. Now we

define the matrix 𝑄 to be the action of 𝜋−1 on a canonical homology basis

𝜋−1(𝛾𝑖) = 𝑄𝑖𝑗𝛾𝑗 .

We can calculate 𝑄 as follows

𝑄𝑖𝑘𝐽𝑘𝑗 = 𝑄𝑖𝑘⟨𝛾𝑘, 𝛾𝑗⟩

= ⟨𝜋−1(𝛾𝑖), 𝛾𝑗⟩,

which, by considering each intersection point on 𝒞 and 𝒞 is

= ⟨𝛾𝑖, 𝜋*(𝛾𝑗)⟩

= ⟨𝛾𝑖, 𝛾𝑘⟩𝑀𝑗𝑘

= 𝐽𝑖𝑘𝑀𝑗𝑘.

This assumes transverse intersections occurring only at regular points of 𝜋, but these

conditions can always be arranged by deforming the paths involved. The result is

𝑄 = −𝐽𝑀𝑇𝐽.

Finally we eliminate 𝑄 again by noting that

𝜋* ∘ 𝜋−1 = ℎ1,
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and calculating as follows

ℎ𝐽𝑖𝑗 = ℎ⟨𝛾𝑖, 𝛾𝑗⟩

= ⟨(𝜋* ∘ 𝜋−1)(𝛾𝑖), 𝛾𝑗⟩

= ⟨𝜋*(𝑄𝑖𝑘𝛾𝑘), 𝛾𝑗⟩

= 𝑄𝑖𝑘⟨𝜋*(𝛾𝑘), 𝛾𝑗⟩

= 𝑄𝑖𝑘𝑀𝑘𝑙⟨𝛾𝑙, 𝛾𝑗⟩

= −𝐽𝑖𝑚𝑀
𝑇
𝑚𝑛𝐽𝑛𝑘𝑀𝑘𝑙𝐽𝑙𝑗 .

Or, upon multiplying left and right by 𝐽 ,

ℎ𝐽 = 𝑀𝑇𝐽𝑀,

as required. When written out for our genus and expressed in terms of the 𝑞𝑖 this

equation reduces to

𝑞23 + 4(𝑞1𝑞5 − 𝑞2𝑞4) = ℎ2,

and will be the key to showing that only finitely many solutions exist for a given ℎ.

6.1.3 Running example (tetrahedral monopole)

To illustrate typical results obtained while constructing this solution we will use a

particularly symmetric curve which we know a priori to cover some elliptic curves.

In [3], Braden and Enolski consider a hyperelliptic curve of particular relevance to

monopoles. This curve is given by the equation

𝑦2 − (𝑥3 + 5
√

2)2 − 4 = 0,

and they prove that it has period matrix

𝜏 =
1
78

⎛
⎝−20𝜌+ 47 −24𝜌+ 33

−24𝜌+ 33 −60𝜌− 15

⎞
⎠ ,

where 𝜌 = e2𝜋i/3, a solution to 𝜌2 + 𝜌+ 1 = 0.
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6.2 Solve for 𝑞𝑖

Presented with the period matrix for a genus 2 curve, we must first solve the equations

𝑞1 + 𝑞2𝜏11 + 𝑞3𝜏12 + 𝑞4𝜏22 + 𝑞5(𝜏11𝜏22 − 𝜏2
12) = 0, (6.5)

𝑞23 + 4(𝑞1𝑞5 − 𝑞2𝑞4) = ℎ2. (6.6)

The difficult equation here is (6.6) which is quadratic in the unknowns 𝑞𝑖. For now we

will leave this and concentrate on (6.5).

6.2.1 Converting linear part to system of Diophantine equations

Our first step is to convert (6.5) into a linear system of Diophantine equations. Knowing

the matrix 𝜏 , we can place the entries in an appropriate extension field 𝐾 : Q. We

can then express (6.5) in terms of a basis for 𝐾 over Q and use linear independence

to obtain an equivalent set of linear equations with coefficients in Q. Finally we clear

denominators to give proper Diophantine equations.

Typically, 𝜏 lives in a fairly uncomplicated algebraic extension to Q and the analysis

is easy. In the running example, we have

0 = 𝜌2 + 𝜌+ 1, (6.7)

𝜏 =
1
78

⎛
⎝−20𝜌+ 47 −24𝜌+ 33

−24𝜌+ 33 −60𝜌− 15

⎞
⎠ .

The polynomial for 𝜌 is irreducible over Q so we can work in the field Q(𝜌) and in light

of (6.7), the linear equation (6.5) becomes

1
78

(78𝑞1 + 47𝑞2 + 33𝑞3 − 15𝑞4 − 31𝑞5) +
2
39

(−5𝑞2 − 6𝑞3 − 15𝑞4 − 5𝑞5)𝜌 = 0,

which vanishes if and only if both parts vanish separately. Simultaneously clearing

fractional parts we obtain

78𝑞1 + 47𝑞2 + 33𝑞3 − 15𝑞4 − 31𝑞5 = 0,

−5𝑞2 − 6𝑞3 − 15𝑞4 − 5𝑞5 = 0,
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which can be expressed as

𝐴q :=

⎛
⎝78 47 33 −15 −31

0 −5 −6 −15 −5

⎞
⎠q = 0. (6.8)

Note that in this case an equivalent set of equations would have been obtained by

splitting (6.5) into real and imaginary parts. In general finer information is obtained

by the use of field extensions as above but, particularly in cases where we only know 𝜏

numerically, the real/imaginary split can be useful. We return to this topic in Section

6.7.1 with an explicit example.

6.2.2 Solving the linear Diophantine system

The solution to Diophantine equations of the form 𝐴q = 0 is well known. The first step

is to put 𝐴 into Smith normal form using an integer variant of Gaussian elimination, to

obtain

𝐴 = 𝐿Λ𝑅

where 𝐿 and 𝑅 are unimodular matrices and Λ (not necessarily square) has the block

form

Λ =

⎛
⎝𝐷𝑛 0

0 0

⎞
⎠ ,

𝐷𝑛 = diag(𝑑1, . . . , 𝑑𝑛)

and 𝑑𝑖|𝑑𝑖+1. We then have the equation

𝐿Λ𝑅q = 0.

As 𝐿 is invertible over Z it can be immediately eliminated to yield

Λ(𝑅q) = 0,

which has general solution

q = 𝑅−1

⎛
⎝0𝑛

⋆

⎞
⎠ .
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In the case of (6.8) immediately at hand we find the factorisation

𝐴 =

⎛
⎝ 1 0

−298 1

⎞
⎠

⎛
⎝1 0 0 0 0

0 −39 0 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−23 1 3 2 1

23 0 −12 −3 −1

23 −1 10 0 0

3 3 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which leads to the general solution

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝛼+ 2𝛽 + 𝛾

−12𝛼− 3𝛽 − 𝛾
10𝛼

𝛽

𝛾

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.9)

as 𝛼, 𝛽, 𝛾 range over Z.

6.2.3 The quadratic equation

Dietmann shows in [12] that there is an algorithm to determine whether a single

quadratic diophantine equation (in an arbitrary number of variables) as we have in (6.6)

is solvable. The algorithm actually produces a solution if one exists, but it is still of

theoretical interest only in this particular case for two reasons:

∙ It is exponential in the coefficients involved.

∙ It only guarantees one solution will be found if it exists and says nothing about

the character of others.

Fortunately (6.6) is not a generic quadratic equation, particularly once we have extracted

some information from (6.5), so other techniques can be applied.

In this section we will describe the example first and then move on to more general

theory. Substituting (6.9) into the quadratic equation (6.6) gives

100𝛼2 + 4𝛾2 + 12𝛽2 + 12𝛾𝛼+ 12𝛾𝛽 + 48𝛽𝛼 = ℎ2.
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The important thing to notice about this is that the left hand side can be written as

x𝑇𝑄x :=
(︁
𝛼 𝛽 𝛾

)︁
⎛
⎜⎜⎜⎝

100 24 6

24 12 6

6 6 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝛼

𝛽

𝛾

⎞
⎟⎟⎟⎠

and is a positive definite quadratic form in 𝛼, 𝛽, 𝛾. Its eigenvalues, 𝜆𝑖 are roughly 0.2,

9.2 and 106.6. Suppose it is diagonalisable by the orthogonal matrix 𝑇 , then (quite

generally)

x𝑇𝑄x = (𝑇x)𝑇 (𝑇𝑄𝑇 𝑇 )(𝑇x)

= 𝜆1(𝑇x)21 + · · ·+ 𝜆𝑛(𝑇x)2𝑛

≥ min(𝜆𝑖)((𝑇x)21 + · · ·+ (𝑇x)2𝑛)

= min(𝜆𝑖)||𝑇x||2

= min(𝜆𝑖)||x||2.

Hence (since min(𝜆𝑖) > 0), given an ℎ2 we only need to search for solutions where

||x||2 ≤ ℎ2

min(𝜆𝑖)
,

or in our case

||x||2 ≤ 6ℎ2,

in particular there are only finitely many solutions in Z for each ℎ. This is the best

we can expect since elliptic curves cover themselves so in general if there is a single

solution we would expect solutions for arbitrarily high ℎ obtained by first mapping the

genus 2 curve to the elliptic curve and then self-mapping the elliptic curve.

At this stage we have a reasonably practical (polynomial time in ℎ) algorithm to

find candidate coverings by a genus 2 curve. When applied, the solutions in Table 6.1

are found after moving back from x = (𝛼, 𝛽, 𝛾) to the desired q variables.

Each row has a pair of solutions, obtained by the symmetry of (6.5) and (6.6) under

q ↦→ −q. Notice that most of the solutions for ℎ = 4 are simply double those from

ℎ = 2. This is a manifestation of the self-mapping of the elliptic curves. However, the

final pair is distinctive.
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ℎ q = (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5)
2 (0 1 0 -1 2) (0 -1 0 1 -2)

(1 -2 0 1 -1) (-1 2 0 -1 1)
(1 -1 0 0 1) (-1 1 0 0 -1)

3 No solutions
4 (0 2 0 -2 4) (0 -2 0 2 -4)

(2 -4 0 2 -2) (-2 4 0 -2 2)
(2 -2 0 0 2) (-2 2 0 0 -2)

(1 3 -10 5 -6) (-1 -3 10 -5 6)

Table 6.1: Candidate solutions to (6.5) and (6.6) for small ℎ.

Moving back to the general theory, the question arises of how lucky we were to

discover a positive definite quadratic form that only allowed finitely many solutions.

Certainly the original equation (6.6) was not definite, and in principle the form of the

solution (6.9) could be very different for other curves (perhaps even fewer or more

degrees of freedom) so there’s no a priori reason to expect a definite form to result.

In fact just splitting (6.5) into real and imaginary parts with 𝑞𝑖 ∈ R always provides

enough constraint to guarantee the quadratic part is positive definite:

Theorem 12. Given a 2× 2 period matrix 𝜏 (in particular a symmetric matrix with

positive definite imaginary part), the quadratic form

𝑞23 + 4(𝑞1𝑞5 − 𝑞2𝑞4)

is positive definite on the hyperplane defined by the solutions to (6.5).

Proof. Since the 𝑞𝑖 are certainly real, we begin by splitting (6.5) into real and imaginary

parts. Suppose

𝜏𝑖𝑗 = 𝛼𝑖𝑗 + i𝛽𝑖𝑗 ,

and note that since 𝜏 is symmetric with positive definite imaginary part we cannot have

𝛽11 = 0. Then (6.5) becomes

0 = 𝑞1 + 𝑞2𝛼11 + 𝑞3𝛼12 + 𝑞4𝛼22 − 𝑞5(𝛼2
12 − 𝛽2

12 − 𝛼11𝛼22 + 𝛽11𝛽22),

0 = 𝑞2𝛽11 + 𝑞3𝛽12 + 𝑞4𝛽22 − 𝑞5(2𝛼12𝛽12 − 𝛼11𝛽22 − 𝛽11𝛼22).
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Since 𝛽11 ̸= 0, this has solution

𝑞2 = −𝑞3𝛽12 + 𝑞4𝛽22 − 𝑞5(2𝛼12𝛽12 − 𝛼11𝛽22 − 𝛽11𝛼22)
𝛽11

,

𝑞1 =
𝛼11[𝑞3𝛽12 + 𝑞4𝛽22 − 𝑞5(2𝛼12𝛽12 − 𝛼11𝛽22 − 𝛽11𝛼22)]

𝛽11

+ 𝑞3𝛼12 + 𝑞4𝛼22 − 𝑞5(𝛼2
12 − 𝛽2

12 − 𝛼11𝛼22 + 𝛽11𝛽22).

When substituted back into (6.6) the resulting quadratic form has the following matrix

⎛
⎜⎜⎜⎝

1 2𝛽12

𝛽11
−2𝛽11𝛼12+𝛼11𝛽12

𝛽11

2𝛽12

𝛽11
4𝛽22

𝛽11
−4𝛼11𝛽22−𝛼12𝛽12

𝛽11

−2𝛽11𝛼12+𝛼11𝛽12

𝛽11
−4𝛼11𝛽22−𝛼12𝛽12

𝛽11
4(𝛼2

12 − 𝛽2
12 + 𝛽11𝛽22 + 𝛼2

11𝛽22−2𝛼11𝛼12𝛽12

𝛽11
).

⎞
⎟⎟⎟⎠

For this to be positive definite it is sufficient for successive determinants anchored at

the top left to be positive, but the values of these are

det(𝑄1,1) = 1,

det(𝑄1...2,1...2) = 4
𝛽11𝛽22 − 𝛽2

12

𝛽11
,

det(𝑄1...3,1...3) = 16
(𝛽11𝛽22 − 𝛽2

12)2

𝛽2
11

.

The latter two are positive precisely because 𝛽 is the imaginary part of a period matrix

and hence itself positive definite.

A summary of the algorithm developed in this section is given in Algorithm 3.

Algorithm 3 Find all 𝑞1, . . . , 𝑞5 for a given genus 2 curve of a given covering order
Require: ℎ ∈ N+, genus 2 period matrix 𝜏 .
Ensure: 𝑠 is the set of all quintuples (𝑞1, . . . , 𝑞5) satisfying (6.5) and (6.6).
𝑠← ∅.
(q ↦→ 𝐴𝛼)← solution of (6.5) in terms of 𝛼 ∈ Z𝑘.
𝛼𝑇𝑄𝛼 = ℎ2 ← substitution into (6.6).
𝜆← minimum eigenvalue of 𝑄.
for all 𝛼 with ||𝛼|| ≤ ℎ√

𝜆
do

if 𝛼𝑇𝑄𝛼 = ℎ2 then
𝑠← 𝑠 ∪ {𝐴𝛼}

end if
end for
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6.3 Solve for 𝑚𝑖𝑗

Now that we have all possible values for 𝑞𝑖 (given a covering order) we must refer back

to the equations satisfied by 𝑚𝑖𝑗 ,

0 = det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 𝑚11 𝑚12

0 1 𝑚21 𝑚22

𝜏11 𝜏12 𝑚31 𝑚32

𝜏12 𝜏22 𝑚41 𝑚42

⎞
⎟⎟⎟⎟⎟⎟⎠
, (6.10)

where we now know each possible 2× 2 determinant made up of 𝑚𝑖𝑗 and want the 𝑚𝑖𝑗

themselves.

Once again we are faced with solving a system of quadratic diophantine equations –

dangerously close to the impossible problem of [7] discussed in the Klein chapter earlier.

However, this situation is not hopeless. Another result of Murabayashi’s paper [28] is

that at least one solution exists for each set of 𝑞𝑖 found. We also have extra freedoms

and symmetries that allow us to restrict our search for 𝑚𝑖𝑗 to a finite, and even practical,

subset of all 4× 2 matrices.

6.3.1 Matrices equivalent to given 𝑀

In order for a 2 × 2 period matrix to cover an elliptic curve equation (6.10) must be

solvable, and then the values of 𝑚𝑖𝑗 determine the elliptic curve. However the solution

will not be unique, and certain obvious transformations can be applied to simplify the

situation

1. We may perform a symplectic transformation on the genus 2 period matrix.

2. We may perform a symplectic transformation on the (implicit) genus 1 matrix.

The first of these is less interesting. It changes the admissible values for 𝑞𝑖 since

the linear equation for 𝑞𝑖, (6.5) depends on the particular values of the genus 2 period

matrix 𝜏 . At this stage we are imagining we have an exhaustive list of possible solutions

𝑞𝑖 so this doesn’t really gain anything.

The second freedom is much more fruitful. A genus 1 symplectic transformation is

simply a member 𝑇 ∈ 𝑆𝐿(2,Z). Its action on 𝑀 follows from the definition (6.1), and

can be seen in (6.2) to be

𝑀 ↦→𝑀𝑇,
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Each 𝑞𝑖, being a 2× 2 sub-determinant of 𝑀 , gets mapped to itself:

⃒⃒
⃒⃒
⃒⃒
𝑚𝑖1 𝑚𝑖2

𝑚𝑗1 𝑚𝑗2

⃒⃒
⃒⃒
⃒⃒ ↦→

⃒⃒
⃒⃒
⃒⃒

⎛
⎝𝑚𝑖1 𝑚𝑖2

𝑚𝑗1 𝑚𝑗2

⎞
⎠𝑇

⃒⃒
⃒⃒
⃒⃒ =

⃒⃒
⃒⃒
⃒⃒
𝑚𝑖1 𝑚𝑖2

𝑚𝑗1 𝑚𝑗2

⃒⃒
⃒⃒
⃒⃒ .

As a result, given a solution to the equations for 𝑞𝑖, each 𝑀 falls into an 𝑆𝐿(2,Z)

orbit. 𝑆𝐿(2,Z) may be generated by elementary matrices, which act act as integer-

invertible column operations on 𝑀 itself. We use this freedom to pick out a special

representative from each orbit and prove that only finitely many such solutions exist.

6.3.2 Orbit representatives

We will now use the freedoms described above. By performing elementary integer-

invertible column operations on 𝑀 we can guarantee that rows 3 and 4 have the

form ⎛
⎝𝑚31 𝑚32

𝑚41 𝑚42

⎞
⎠ =

⎛
⎝𝑥 0

𝑦 𝑧

⎞
⎠ . (6.11)

Now, if the determinant of this matrix is nonzero (i.e. 𝑞1 ̸= 0) then neither 𝑥 nor 𝑧 can

vanish (𝑥𝑧 = 𝑞1) and we can also demand 0 ≤ 𝑦 < |𝑧|. We will deal with 𝑞1 = 0 later,

as it splits into more complicated cases.

The important point to note here is that there are only finitely many possible values

this submatrix can take for a given 𝑞1, so we algebraically try to fill in the remaining 4

𝑚s from each possibility.

Hence, here and afterwards we will adopt the following notation

∙ Letters from the end of the alphabet denote variables we know very little about.

∙ Letters from the beginning of the alphabet denote unknowns with only finitely

many solutions – once every variable to be solved for is in this form, algorithmic

loops can be written to exhaustively find all solutions.

In this manner we rewrite (6.11) as

⎛
⎝𝑚31 𝑚32

𝑚41 𝑚42

⎞
⎠ =

⎛
⎝𝑎 0

𝑐 𝑑

⎞
⎠ . (6.12)
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6.3.3 Continuing progress

Having found a candidate as above, the remaining equations are

𝑚12𝑐−𝑚11𝑑 = 𝑞2,

𝑚22𝑐−𝑚21𝑑−𝑚12𝑎 = 𝑞3,

−𝑚22𝑎 = 𝑞4,

𝑚11𝑚22 −𝑚12𝑚21 = 𝑞5.

Once again we are reduced to a single quadratic equation (the one for 𝑞5) and a set of

linear equations in 𝑚𝑖𝑗 . In this case we will see that there are enough linear constraints

that ad-hoc solution reduces the quadratic equation to a triviality.

The next obvious equation to attack is 𝑞4, yielding just one value for 𝑚22 (call it 𝑒),

and remaining equations

𝑚12𝑐−𝑚11𝑑 = 𝑞2,

𝑒𝑐−𝑚21𝑑−𝑚12𝑎 = 𝑞3,

𝑚11𝑒−𝑚12𝑚21 = 𝑞5.

By the assumption 𝑞1 ̸= 0, 𝑎 and 𝑑 are nonzero. Hence the first two equations here are

nondegenerate and can be solved to give a set of solutions 𝑚11(𝛼),𝑚12(𝛼),𝑚21(𝛼) in

terms of a single integral parameter 𝛼. This reduces the final equation to

𝑄(𝛼) = 𝑞5, (6.13)

which we can simply solve over R and check whether the solutions are actually integers

(n.b. if one is integral, the other will be).

Thus, at the conclusion, provided 𝑞1 ̸= 0 each choice for (6.12) extends consistently

to 0, 1 or 2 solutions for the rest of 𝑀 , depending on how many solutions the quadratic

equation (6.13) has.

6.3.4 When 𝑞1 = 0

Unfortunately this case fragments rather quickly. Looking at (6.12) again we now know

that 𝑎𝑑 = 0 giving four mutually exclusive possibilities, three of which are interesting
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1. 𝑎 = 𝑐 = 𝑑 = 0. This implies all 𝑞𝑖 and hence 𝑚𝑖𝑗 vanish. We will call cases like

this where the only solution is 𝑀 = 0 degenerate, and ignore them.

2. 𝑎 = 0, at least one of 𝑐, 𝑑 ̸= 0. This can only occur if 𝑞4 = 0

3. 𝑎 ̸= 0, 𝑑 = 0, 𝑐 = 0. This can only occur if 𝑞2 = 0.

4. 𝑎 ̸= 0, 𝑑 = 0, 𝑐 ̸= 0. No further restrictions on 𝑞𝑖 vanishing.

These cases are mutually exclusive relative to a known 𝑎, 𝑐 and 𝑑 but a given set

of 𝑞𝑖 allows for more than one solution in those variables. Thus when designing an

algorithm to find 𝑚𝑖𝑗 given 𝑞𝑖 we must usually consider more than one situation in the

list. Specifically, one of the following cases will hold

∙ 𝑞1 = 0; 𝑞2, 𝑞4 ̸= 0. A solution could only come from 4 above.

∙ 𝑞1, 𝑞4 = 0; 𝑞2 ̸= 0. A solution could only come from 2 or 4 above.

∙ 𝑞1, 𝑞2 = 0; 𝑞4 ̸= 0. A solution could come from either 3 or 4 above.

∙ 𝑞1, 𝑞2, 𝑞4 = 0. A solution could come from any of 2, 3 or 4 above.

In subsequent sections we will deal with exactly what solutions can be obtained from

cases 2, 3 and 4 in the numbered list. An outline of the algorithmic application for

these cases is provided in Algorithm 4; it essentially duplicates the information in the

previous list, though in more procedural terms.

6.3.5 The case 𝑎 = 0 (implies 𝑞1 = 0, 𝑞4 = 0).

In the first case further column operations can reduce the bottom submatrix (reusing

the variable-name 𝑐) to ⎛
⎝0 0

𝑐 0

⎞
⎠ ,

and the interesting remaining equations are

𝑚12𝑐 = 𝑞2,

𝑚22𝑐 = 𝑞3,

𝑚11𝑚22 −𝑚12𝑚21 = 𝑞5.
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Algorithm 4 Construct viable solutions in 𝑚𝑖𝑗 from 𝑞𝑖
Require: Integers 𝑞1, . . . , 𝑞5 not all zero.
Ensure: 𝑠 is a set of matrices 𝑀 , each satisfying (6.10), and with one from each orbit

of all solutions under 𝑆𝐿(2,Z).
if 𝑞1 ̸= 0 then

𝑠← {solutions from
(︂
𝑎 0
𝑐 𝑑

)︂
according to 6.3.3}

else

𝑠← {solutions from
(︂
𝑎 0
𝑐 0

)︂
according to 6.3.7}

if 𝑞4 = 0 then

𝑠← 𝑠 ∪ {solutions from
(︂

0 0
𝑐 0

)︂
according to 6.3.5}

end if
if 𝑞2 = 0 then

𝑠← 𝑠 ∪ {solutions from
(︂
𝑎 0
0 0

)︂
according to 6.3.6}

end if
end if

The first two permit just finitely many solutions in 𝑚12 and 𝑚22. So we may write

(reusing 𝑎 and 𝑏)

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑚11 𝑎

𝑚21 𝑏

0 0

𝑐 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Now, one of 𝑞2 and 𝑞3 are nonzero (otherwise the solution is again degenerate) so one of

𝑎 and 𝑏 are nonzero. Suppose without loss of generality 𝑞2 ̸= 0. Then 𝑎 ̸= 0 and further

column operations can guarantee 0 ≤ 𝑚11 < |𝑎|. Calling this 𝑑 in line with our finite

conventions, the final equation becomes

𝑑𝑏− 𝑎𝑚21 = 𝑞5,

which uniquely determines 𝑚21 (and may have no solution over Z).

6.3.6 The case 𝑐, 𝑑 = 0 (implies 𝑞1, 𝑞2 = 0).

The bottom submatrix becomes ⎛
⎝𝑎 0

0 0

⎞
⎠ .



Riemann surfaces with symmetry: algorithms and applications 135

Essentially the same argument as above applies to give only finitely many possible

orbits.

6.3.7 The case 𝑎, 𝑐 ̸= 0; 𝑑 = 0 (only guarantees 𝑞1 = 0).

The bottom submatrix now becomes

⎛
⎝𝑎 0

𝑐 0

⎞
⎠ ,

with corresponding equations

𝑚12𝑐 = 𝑞2,

𝑚22𝑐−𝑚12𝑎 = 𝑞3,

𝑚22𝑎 = 𝑞4,

𝑚11𝑚22 −𝑚12𝑚21 = 𝑞5.

If 𝑞2 = 𝑞4 = 0 then these equations are again degenerate. If both 𝑞2 and 𝑞4 are nonzero

then these equations have immediate solution (both 𝑚12 and 𝑚22 also have finitely

many possibilities; column operations then give (say) 𝑚11 finitely many options and

then there is just one variable to be solved for in the 𝑞5 equation).

So without loss of generality assume 𝑞2 ̸= 0, 𝑞4 = 0. Then 𝑚22 = 0 and 𝑚12 is also

limited to finitely many values. The overall matrix becomes

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑢 𝑏

𝑣 0

𝑎 0

𝑐 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

with interesting equation

−𝑏𝑣 = 𝑞5,

which can be solved immediately for 𝑣. One final column operation guarantees 0 ≤ 𝑢 < |𝑏|
and gives finitely many possible orbits.
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6.4 Martens algorithm

Martens algorithm, described in [26], simplifies the next step of converting discovered

solutions in 𝑚𝑖𝑗 into elliptic curves covered by the genus 2 curve.

Following Martens, for each solution 𝑚𝑖𝑗 which we write as the matrix 𝑀 , we know

that

Π̂𝜆 = 𝑀Π (6.14)

for some 2× 1 matrix 𝜆 and period matrix Π. As input to the entire algorithm we know

Π̂ explicitly so our task is simply to compute Π.

Following Martens’ calculation closely we are first provided with a factorisation of

𝑀 as

𝑀 = 𝑇𝑁𝑆 = 𝑇

⎛
⎜⎜⎜⎜⎜⎜⎝

0 𝑥

0 0

−1 0

0 −𝜖

⎞
⎟⎟⎟⎟⎟⎟⎠
𝑆,

where 𝑇 is a symplectic integer matrix (of dimension 4); 𝑆 is a unimodular matrix (of

dimension 2); 𝜖 is either 0 or 1 and 𝑥 ∈ Z.

Substituting this back into (6.14) we obtain

Π̂𝜆 = 𝑇𝑁𝑆Π,

Π̂′𝜆 = 𝑁Π′,
⎛
⎝1

𝜏 ′

⎞
⎠𝜆′ = 𝑁

⎛
⎝ 1

𝜏 ′

⎞
⎠ .

In each case going back and forward between the primed and unprimed version is simple,

being multiplication by an explicitly calculable matrix.

Expanding these equations yields

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜆′1

𝜆′2

𝜏 ′11𝜆
′
1 + 𝜏 ′12𝜆

′
2

𝜏 ′21𝜆
′
1 + 𝜏 ′22𝜆

′
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑥𝜏 ′

0

−1

−𝜖𝜏 ′

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Upon eliminating 𝜆′𝑖 we get

𝜏 ′11𝑥𝜏
′ = −1,

𝜏 ′(𝑥𝜏 ′12 + 𝜖) = 0.

In passing we note that this means 𝑥, 𝜖 ̸= 0 and that in 𝜏 ′ we have produced a neat form

of the genus 2 period matrix that makes explicit its cover of this curve (𝜏 ′12 being rational

leads to splitting of the Θ-functions on the genus 2 curve in terms of the Θ-functions on

the elliptic curve).

But the main point is that

𝜏 ′ = − 1
𝑥𝜏 ′11

,

that is, we have found an algorithm to produce the elliptic period matrix 𝜏 ′ from 𝜏 and

𝑀 .

6.5 Equivalent genus 1 curves

We now have a set of genus 1 period matrices covered by the initial genus 2 curve.

However we have no guarantee that the curves given by these period matrices are distinct.

As a simple change of symplectic basis on the genus 1 curve acts as the modular group,

we can use the well-known fact that the modular group has the following fundamental

domain in the upper half-plane (i.e. the space of period matrices).

𝐷 =
{︂
𝑧 : |𝑧| > 1,−1

2
< Re 𝑧 ≤ 1

2

}︂
∪

{︂
𝑧 : |𝑧| = 1, 0 ≤ Re 𝑧 ≤ 1

2

}︂
,

as in Figure 6.2. Abstractly, we simply put every discovered period matrix into this

domain and remove duplicates.

The one remaining challenge is finding an algorithm to do this that is implementable

and guaranteed to terminate. Algorithms seem to exist for parts of this procedure (see

for example [24]) even in higher dimensions. However, none of the algorithms I have

encountered are suitable for actual implementation. Typically they rely on finding the

optimal transformation to apply at any given step by minimizing a quantity over all

possible modular transformations.

Therefore, we will develop the following algorithm which will terminate. I would be

entirely unsurprised to learn it has been done before.
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D

Figure 6.2: Fundamental domain of the modular group on the upper half-plane.

Given a 𝜏0, assumed without loss of generality to satisfy −1
2 < Re 𝜏0 ≤ 1

2 , we want

an algorithm to map it into 𝐷. Form the sequence defined by iterating the function 𝑓

which inverts 𝜏𝑛 and brings its real part back to near 0

𝜏𝑛+1 = 𝑓(𝜏𝑛) := 𝑘 − 1
𝜏𝑛
,

where 𝑘 ∈ Z is chosen so that −1
2 < Re 𝜏𝑛+1 ≤ 1

2 . We will show that 𝜏𝑛 enters the

fundamental domain after a finite number of steps. Now, 𝜏𝑛 is in the fundamental

domain when |𝜏𝑛| ≥ 1, so we simply need to prove that |𝜏𝑛| ≥ 1 eventually and we will

have an algorithm.

The following, rather technical theorem, gives the required result

Theorem 13. There exists an 𝑛 such that Im 𝜏𝑛 ≥ 5
12 , and hence 𝜏𝑛+1 ∈ 𝐹 .

Proof. Consider how the iteration affects the imaginary parts of the sequence. Let

𝜏𝑛 = 𝛼𝑛 + i𝛽𝑛, then

𝛽𝑛+1 = Im 𝑓(𝛼𝑛 + i𝛽𝑛)

= Im
(︂ −1
𝛼𝑛 + i𝛽𝑛

)︂

=
𝛽𝑛

𝛼2
𝑛 + 𝛽2

𝑛

≥ 𝛽𝑛
1
4 + 𝛽2

𝑛

.

If we let 𝑔(𝑧) = 𝑧
1
4
+𝑧2 then this can be restated as (Im ∘ 𝑓)(𝜏𝑛) ≥ (𝑔 ∘ Im )(𝜏𝑛). Now

consider the associated real sequence

𝑎𝑛 = 𝑔𝑛(𝛽0) = 𝑔𝑛(Im 𝜏0).
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Figure 6.3: 𝑓 sends points with imaginary part above 5
12 to 𝐷 in one step.

Because 𝑔(𝑧) is an increasing function when 𝑧 ≤ 1
2 we can use the following induction

argument to show that provided Im 𝜏𝑛 ≤ 1
2 , the inequality Im 𝜏𝑛 ≥ 𝑎𝑛 is satisfied:

Im 𝜏𝑛+1 = Im 𝑓(𝜏𝑛)

≥ 𝑔(Im 𝜏𝑛)

≥ 𝑔(𝑎𝑛)

= 𝑎𝑛+1.

But given 𝜖 > 0, 𝑎𝑛 eventually exceeds 1
2 − 𝜖 (if not, 𝑎𝑛 would be bounded above

and increasing, hence convergent and could only converge to a fixed point of 𝑔, i.e.
√

3
2 ,

a contradiction). But this means that Im 𝜏𝑛 eventually exceeds 1
2 − 𝜖 too.

Now take 𝜖 = 1
12 (say) and refer to Figure 6.3. Since there is an 𝑁 such that

Im 𝜏𝑁 ≥ 1
2 − 1

12 = 5
12 , 𝜏𝑁 is above the dotted line and in one of the lower shaded regions.

But on the very next iteration of 𝜏𝑁 ↦→ −1
𝜏𝑁

these map to the upper shaded regions which

are sent to the fundamental domain by 𝑓 itself so 𝜏𝑁+1 ∈ 𝐷

A summary of the resulting procedure for arbitrary 𝜏0 is given by Algorithm 5.

Algorithm 5 Perform symplectic transform on 𝜏 ∈ 𝐻 to map it into the fundamental
domain 𝐷 = {𝑧 ∈ 𝐻 : |𝑧| ≥ 1,−1

2 < |Re (𝑧)| ≤ 1
2}.

Ensure: 𝜏 ∈ 𝐷.
Require: 𝜏 ∈ 𝐻 = {𝑧 ∈ C|Im 𝑧 > 0}.
𝜏 ← 𝜏 − 𝑎 where 𝑎 = max{𝑥 ∈ Z : Re 𝜏 − 𝑥 > −1

2}
while |𝜏 | < 1 do
𝜏 ← − 1

𝜏
𝜏 ← 𝜏 − 𝑎 where 𝑎 = max{𝑥 ∈ Z : Re 𝜏 − 𝑥 > −1

2}
end while
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6.6 Generic algorithm

At its most basic, our algorithm now consists of 4 steps.

1. Use Algorithm 3 to solve the equations in 𝑞𝑖 giving each of the subdeterminants

of 𝑀 . A finite set of possible 𝑞𝑖 results for each covering order.

2. Using Algorithm 4, for each solution 𝑞𝑖 above find a representative of each of the

finitely many classes of 𝑀 with those subdeterminants.

3. For each class of 𝑀s discovered, calculate the period matrix of the elliptic curve

corresponding to this solution using Martens’ algorithm (described in [26]).

4. Use Algorithm 5 to map each elliptic period matrix to the canonical one and

eliminate duplicates.

6.7 Numeric extension to algorithm

If a period matrix is given over a field extension of Q with degree more than 2 then

the algorithm presented in 6.2 extracts progressively more information and reduces the

complexity of the inevitable exhaustive search for valid q. However, in practice we often

do not know the period matrix 𝜏 symbolically and only have numeric approximations

to its entries; in these cases the algorithm as presented is inapplicable. But notice that

Theorem 12 actually relies only on splitting 𝜏 into real and imaginary parts. This can

be accomplished just as well in the numeric case.

The linear equations (6.5) can then be solved without regard for integrality and

substituted into (6.6) to obtain a real quadratic equation

(︁
𝑞3 𝑞4 𝑞5

)︁
𝐴

(︁
𝑞3 𝑞4 𝑞5

)︁𝑇
= ℎ2

which we wish to solve in integers 𝑞3, 𝑞4, 𝑞5, ℎ. Theorem 12 applies and puts bounds on

𝑞𝑖 in terms of ℎ so an exhaustive search can be performed, to within a certain tolerance.

With (6.6) solved the final step is to check that the 𝑞1 and 𝑞2 required to satisfy

(6.5) are also integral (to a certain degree of certainty). All other stages of the algorithm

deal with these integers, 𝑞𝑖, as found and follow through without modification.
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6.7.1 Numeric example

Here we present a simple example of the conversion above. The period matrix

𝜏 ∼=

⎛
⎝0.00865693 + 0.34649672i 0.45003704 + 0.12098331i

0.45003704 + 0.12098331i 0.63692830 + 0.22355689i

⎞
⎠

occurred in calculations, with reasons to believe it should cover a curve of genus 1 with

ℎ = 2 in (6.6). We will find out which curve is covered and put 𝜏 into a form making

this manifest.

In this case the linear constraints on 𝑞𝑖 reduce (examining purely real and imaginary

components) to the matrix equation

⎛
⎝1 0.00865693 0.45003704 0.63692830 −0.25984426

0 0.34649672 0.12098331 0.2235569 0.11373494

⎞
⎠q ∼= 0,

which has solution

𝑞1 ∼= −0.44701437𝑞3 − 0.63134291𝑞4 + 0.26268583𝑞5,

𝑞2 ∼= −0.34916150𝑞3 − 0.64519193𝑞4 − 0.32824247𝑞5.

The form associated to the quadratic constraints (6.6) becomes (with x := (𝑞3, 𝑞4, 𝑞5))

x𝑇𝐴x := x𝑇

⎛
⎜⎜⎜⎝

1 0.69832299 −0.89402874

0.69832299 2.58076771 −0.60620089

−0.89402874 −0.60620089 1.05074332

⎞
⎟⎟⎟⎠x ∼= 4,

which has a minimum eigenvalue of about 0.127, so

|x𝑇𝐴x| ≥ 0.127||x||2,

and we only have to search for solutions with

||x||2 ≤ 4
0.127

≤ 32.

Performing this search with very loose bounds (only asking that |x𝑇𝐴x − 4| ≤ 0.01)
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gives 3 possible (essentially distinct) solutions in 𝑞3, 𝑞4, 𝑞5. Of these only

(︁
𝑞1 𝑞2 𝑞3 𝑞4 𝑞5

)︁
∼=

(︁
−1.00000000 −1.99999986 2 1 2

)︁

also has 𝑞1 and 𝑞2 within 0.01 of an integer. We have now essentially confirmed that

the original surface covered one with genus 1, and all that remains is to put 𝜏 into a

form that makes the cover manifest.

To do this we must find the appropriate matrices 𝑀 . The algorithm presented in

Section 6.3 applies directly to any integers q no matter how they were obtained and

gives two classes for 𝑀

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 −2

0 −1

1 0

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 0

−2 −1

1 0

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Choosing the first of these and applying Martens algorithm as in Section 6.4 we obtain

the Poincaré decomposition

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 −2 0

0 1 0 −1

0 0 −1 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 −2

−0 −1

1 0

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2

0 0

−1 0

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Applying this symplectic transformation to 𝜏 yields

𝜏 ′ ∼=

⎛
⎝ 0.34303902 + 0.16638383i −0.49999999 + 0.00000003i

−0.49999999 + 0.00000003i 0.24710783 + 0.43466967i

⎞
⎠ ,

which has the expected − 1
ℎ = −1

2 terms off-diagonal. It follows that the elliptic curve

covered has period matrix

𝜏 ′ = − 1
𝑥𝜏 ′11

∼= −1.179968913 + 0.5723189827i,

which has canonical form

𝜏 ′′ ∼= 0.4999999978 + 1.59004955i
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via the symplectic transformation given by 𝑧 ↦→ −1
𝑧+1 .

An identical argument applied to the second 𝑀 gives us the elliptic period

𝜏 ′′ = 0.49421567 + 0.86933933i.

6.8 Summary

In this chapter we have developed an algorithm which could, in principle, be used to

enumerate all curves covered by an arbitrarily chosen genus 2 curve and give an explicit

relation between their period matrices. Each stage of the process is computationally

feasible, and could quite easily be integrated into some kind of “black box” function for

use when the methods of derivation are not a primary concern.

There are two main open issues with this approach. First, it does not currently

integrate a means of bounding the degree of the cover, ℎ. Thus in principle the search

will never terminate. However, often we have external reasons to either bound the

maximum possible ℎ or only take interest in lower values of ℎ.

The second issue is the repeated appearance of the same elliptic curves due to the

fact that self-covers of elliptic curves exist to arbitrarily high degree. That is, given any

projection 𝜋 : Σ̂→ Σ of degree ℎ, any self-cover 𝜎 : Σ→ Σ will induce infinitely many

“spurious” results

𝜋′ = 𝜎 ∘ 𝜋

𝜋′′ = 𝜎2 ∘ 𝑝𝑖
...

However, any cover derived in this manner (even via different self-covers) will

ultimately be derived from some primitive genus-2 over genus-1 cover. Further work

could involve reducing any cover found to this simplest possible version, probably via a

search of all divisors of the degree of the discovered map.
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The work in this thesis is by no means a complete solution to the issue of finding an

optimal homology basis for arbitrary curves and making use of it. Many interesting

questions remain unanswered, and large steps could be made towards a richer, more

intuitive interface for the calculations enabled by this work.

CyclePainter could benefit from an overhaul of its algorithms. Work was started

based on the existing Maple libraries for dealing with Riemann surfaces but there’s

actually comparatively little use made of those facilities. Decoupling the program from

Maple would at the very least ease installation by not relying on the rather fragile

interface to the Maple external call libraries. Given Maple’s rather lax attitude to

encapsulation and global state, such a move could also improve robustness.

Similarly, the algorithms used by extcurves could be overhauled for large perfor-

mance gains. I believe converting the intersection calculation code to use principles

more similar to those found in CyclePainter (work out whether an intersection is real

by counting cuts crossed rather than by analytic continuation) would yield orders of

magnitude speed increase. This work wasn’t undertaken before now because extcurves

is the classical “fast enough”. However, such a performance improvement would open

up larger problems to analysis and probably new methods too. For example it would be

feasible to iterate computationally through many attempted homologies looking for one

with desired properties.

Another potential direction for CyclePainter and extcurves, and one with rather

more mathematical interest, would be extending their representations to the hyperbolic

models of Riemann surfaces. Some thought would be needed on graphically representing

paths that cross the boundaries of the disc intuitively, particularly while actually being

constructed. But the problems are probably not insurmountable. On the extcurves

side intersection numbers would be easier to calculate but there is more interest in

computing arbitrary period matrices.

The most interesting work to be done following on from the results on Klein’s and

Bring’s curve is probably extending those techniques to general curves. Currently, much

use is made of symmetry. It would be very interesting to discover either methods that

work without such requirements.

In a slightly more limited scope, while answering questions on those two surfaces

shared many techniques, each has its unique challenges and it would be very interesting

to discover a fully unified argument that worked even on this limited sample. Such a

unification could point towards more generally applicable versions of the arguments.
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Looking at depth rather than breadth, the current mapping from hyperbolic to

algebraic representations is rather spartan. It’s fully pinned down only at the vertices of

each polygon and slightly hazily specified along the interesting geodesics of the surfaces.

Discovering fully explicit formulae mapping from every point of the hyperbolic models

to a corresponding algebraic model would be valuable for future interrelations of results.

The work on genus two curves covering elliptic ones could usefully be extended in

multiple directions. Currently we can answer the question of which curves are covered,

but not give an explicit formula for the covering map.

In another direction, the work is rather limited in only dealing with genus at most

two. While there are combinatorial difficulties in answering the general question naively

(as noted, it leads to solving a quadratic diophantine equation in many variables – a

hard problem), in this case we potentially have more information derived from geometric

sources and that may open up more avenues that reduce the problem to one that’s

practically solvable.

The above problems are interesting for their own sake, however potentially the most

useful extension and the original goal of this project was deciding on the optimal basis

for any arbitrarily presented curve. Inroads have been made here, but there’s still a

very large reliance on human effort.

Gilman goes some of the way towards specifying what might be possible in [17].

However her results take as given a covering map from one surface to another, and

only give what I would call an aesthetically pleasing result (in the context of simple

homology bases) if the degree of that map is prime.

The basis proven to exist there may not even be the optimal choice, and computing

which basis is most symmetric (whatever that means) is still very much an open question

and far too reliant on ingenuity in each individual case at the moment.
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Matemàtiques 36 (1992), 111–129.

[27] Rick Miranda, Algebraic curves and riemann surfaces, American Mathematical Society, 1991.

[28] Naoki Murabayashi, The moduli space of curves of genus two covering elliptic curves, Manuscripta

Mathematica 84 (1994), no. 2, 125–133.

[29] Harry E Rauch and J Lewittes, The Riemann surface of Klein with 168 automorphisms, Problems

in analysis. a symposium in honor of Salomon Bochner, 1970, pp. 297–308.
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A.1 Accessing the library

The extcurves routines are compiled into the library extcurves.mla, so it is necessary

to tell Maple where this is in order to access it. The basic commands are

> march(’open’, "./extcurves.mla");

> with(extcurves):

A.2 Design principles

There are two fundamental datatypes introduced by extcurves. The first is mainly

for convenience; we package the conventional first three arguments used by algcurves

routines (a polynomial describing the surface, and the two variables in that polynomial)

into a single Record structure.

For example

> curve := Record(’f’=t^3*s+s^3+t, ’x’=t, ’y’=s):

Note the single quotes around the left hand side of each equation. This is necessary

if any of f, x, y have definitions in Maple and prevents substitution too early, so the

following code would work

> f := x^3 * y + y^3 + x;

> curve := Record(’f’=f, ’x’=x, ’y’=y);

The second, and more important, datatype introduced is called an extpath. It

describes a path on a Riemann surface as a sequence of straight line segments in the x

plane together with a specification of the sheet at the initial point in this projection

(so strictly, it’s only meaningful relative to a given curve object above). This system is

flexible enough to give any path up to homotopy, and simple enough to be amenable to

computation.

When a homology basis is needed, it is simply a list of extpath objects.

A.3 Creating an extpath

There are multiple functions to create extpath objects. In the descriptions there is

always an implicit curve object that projections and sheets are defined relative to.



Riemann surfaces with symmetry: algorithms and applications 153

When the 𝑥 projection is referred to, we mean the projection of curve:-f onto

curve:-x. Similarly the sheet will be defined by the value of curve:-y on curve:-f

at curve:-x

extpath from description(curve, base, basey, descr, how)

curve curve Record.

base Initial point in 𝑥 plane.

basey Initial sheet at base.

descr List of of branch points and number of circuits to make around

each. Each entry consists of a list [branch, N ] which means go

around branch N times anticlockwise.

how Either a table where the entry for branch is the radius of the circle

to use around that point, or a complete list of branch points (from

which appropriate radii will be derived automatically).

description: Creates an extpath from an algebraic description of the path in

terms of the branch points circuited. how is necessary to ensure

that the circular paths around each branch don’t interfere with

nearby ones.

extpath from homology(curve, wanted, hom)

curve curve Record

wanted Token representing the desired homology cycle. For example a[1].

hom (Optional) Homology description in extended algcurves format

description: Extracts an extpath from a homology description conforming to the

output of algcurves’ homology function. By default calls homology

itself to get this information, but could work with a modified

version if needed.

extpath from painter(curve, points, close y)

curve curve Record giving surface

points List of points

close y Specification of sheet at first point in points

description: Creates an extpath consisting of straight-line segments between

given points. This is essentially the same as extpath from points
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except that it makes sure your choice of sheet is consistent with

the curve specified. It chooses the sheet closest to the value given.

return value: extpath again

extpath from parametrised(curve, paths, y0)

curve curve Record

paths List of expressions in 𝑡, each specifying a straight line between

𝑡 = 0 and 𝑡 = 1

y0 Sheet at beginning of path

description: Creates an extpath from the given information, choosing the

sheet closest to guven y0. A slightly different form of

extpath from painter.

extpath from points(points, sheet)

points List consisting of points in 𝑥 plane

sheet Value for 𝑦 at the first point in the list

description: Low level function that simply creates an extpath with straight-

line segments between each point in points. Since it has no

knowledge of the curve you must be wary of floating point er-

rors in specifying the sheet. Consider using the more forgiving

extpath from painter.

return value: extpath

There are also some utility functions for working with extpaths.

all extpaths from homology(curve)

curve curve Record

description: Returns a list of extpaths converted from the output of algcurves’

homology function. This list is suitable for use where a homology

basis is needed.

draw paths(path)

path extpath

description: Plots the segments of path on a graph. Useful for quick visualisa-

tion.

extpath is closed(curve, path)
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curve curve Record

path extpath

description: Checks whether a given extpath forms a closed loop on the given

surface. Essentially checks that the projection to 𝑥 is closed and

that analytically continuing the 𝑦 value along this path gives the

same sheet at the end. Very vulnerable to floating point errors so

beware.

points from extpath(path)

path extpath

description: Essentially the reverse of extpath from points. Returns a list of

the points involved in the given path.

A.4 Automatic PIC handling

There is also an API for writing .pic files back.

read pic(filename)

filename String with name of file to read

description: Reads a .pic file and constructs the necessary expaths.

return value: sequence: first is curve Record, second is list of extpaths and third

is list of names as Maple symbols

write pic(filename, curve, hom, base=0, sheets base=1 + 𝑖, names=null)

filename Name of file to write as .pic

curve curve Record

hom List of extpaths

base Monodromy base to use

sheets base Base for sheets definition

names List of Maple symbols to name each extpath. Default will be

“hom[i]”

description: Outputs a .pic file that can be read in by CyclePainter.
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A.5 Drawing an extpath

CyclePainter is a Java program that interfaces with Maple and can make inputting

these paths far less painful. That said, it does have bugs so be careful.

Effectively you create paths with the buttons and entry boxes on the left, and then

drag them down to the buttons just below that to activate. When there clicking on

the canvas will start (or continue) a path. Right clicking finishes a path. Nodes can

be dragged with the mouse, or deleted by selecting them (a single click) and pressing

“Delete” on the keyboard. There is no ability to insert a node yet.

The sheet for the initial point can be selected just by the drop-down menu on the

left.

Caveats

∙ Adding a path of the same name as an existing one overwrites it with no confir-

mation question.

∙ There may well be many more problems.

It produces a file that can be read directly into Maple, the idiom for converting from

this to an extpath based homology basis called hom is

> curve, hom, names := read_pic("drawn.pic"):

It can also produce graphics usable by metapost for drawing the paths.

A.6 Using extpaths

The fundamental function acting on extpaths is isect.

isect(curve, path1, path2)

curve curve Record

path1 First extpath

path2 Second extpath

description: Calculates the intersection number of path1 and path2.

Using this the following can be defined.

find homology transform(curve, hom1, hom2)
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curve curve Record

hom1 List of extpaths giving a homology basis (not necessarily canonical)

hom2 List of extpaths giving a homology basis (not necessarily canonical)

description: Returns a matrix giving hom2 in terms of hom1. If the paths in

hom1 are 𝛾𝑖 and in hom2 𝛿𝑖 then the return value 𝑀𝑖𝑗 satisfies

𝛿𝑖 = 𝑀𝑖𝑗𝛾𝑗 . If both hom1 and hom2 are canonical bases then 𝑀

will be symplectic.

return value: Matrix

from algcurves homology(curve, hom)

curve curve Record

hom Homology basis

description: Calculates the transformation which takes the homology ba-

sis algcurves chooses to that given by hom. A thin wrapper

around putting the algcurves homology in the hom1 slot of

find homology transform.

return value: Matrix

periodmatrix(curve, hom)

curve curve Record

hom Homology basis

description: Calculates the period matrix by transforming Maple’s version with

appropriate symplectic transform. Thus susceptible to the vagaries

of Maple’s choice of differential – not only arbitrary but not stable

between executions.

return value: Matrix

A.7 Experimental components

Experimental should probably be read as “Broken”, but they exist and can still be

useful occasionally.

transform extpath(initCurve, path, trans, finCurve := initCurve)

initCurve curve Record that path lives on
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path extpath

trans function of two variables returning a list containing two elements.

If (𝑥, 𝑦) lies on initCurve then 𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) = [𝑤, 𝑧] and (𝑤, 𝑧) is

expected to lie on finCurve.

finCurve (Optional) curve Record; image of trans.

description: Not a very reliable function, but can save time even when it fails.

There are three essential cases:

∙ trans acts as a simple linear transformation on the 𝑥 plane

(includes common case of changing sheets, i.e. fixing 𝑥 and

just acting on 𝑦). The routine should work flawlessly here.

∙ trans is a Mobius transformation on the 𝑥 plane. Fairly

reliable. The straight lines forming extpaths get sent to lines

or circles. Probably possible to design input which would fool

it though.

∙ trans is more general. Highly unreliable. Straight lines often

make tiny loops around branch points in the image; these are

rarely detected by the algorithm. Even if extpath is closed

succeeds on the result further tests should be undertaken.

For cases where it fails, the function modifies a global variable tps.

This is a list of functions. Each function [0, 1]→ C and represents

the image of one segment forming the path.

Plotting these with plots[complexplot] allows the path to be

reconstructed manually.

return value: extpath: the push-forward of path by trans from initCurve to

finCurve.

reverse extpath(path)

path Closed extpath.

description: Reverses the direction path is traversed. Assumes path is closed

so that a parameter specifying the curve is not needed.

return value: extpath: path in the opposite direction
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