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Abstract 
 

 

Understanding the resistance to displacement of one fluid by another in multiphase 

transport in a porous medium is very beneficial in hydrocarbon exploration and 

production as well as geological storage of carbon dioxide. Pore resistance behaviour 

of a porous medium controls the fluxes of fluids through the caprocks over the 

geological times and therefore directly determines the volume and localization of the 

hydrocarbons trapped (best locations for exploration) and also the overpressured 

formation (zone of drilling hazard). In the design for enhanced oil recovery and 

geological storage, it sets a limit on both the injection pressure and storage capacity 

of the reservoir to avoid an upward migration of the injected fluid into the overlaying 

formations. Many investigations have been carried out on the resistance to porous 

media flows for decades, yet the understanding of the individual factors affecting it is 

not complete, because most studies were carried out on core samples, whereas flow 

resistance depends on the flow details at the pore scale. For example, two core 

samples may have same porosity but different pore size. 

 

This research focused on advancing the understanding of resistance to multiphase 

displacement in a porous medium, using the pressure profile of interface flow 

through single pores, to measure the resistance to two-phase flow and then link the 

impact of pore geometry, surface tension, fluid properties, and wettability, on the 

pressure profile to the displacement process, in order to fill the noticed gap of 

knowledge. 

  

Experiments conducted in this research using tapered capillaries revealed that the 

resistance to two-phase flow is significantly higher than the single phase resistance 
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and the pore throat of a porous medium is not just determined by a group of smallest 

pore sizes as understood using core samples, but by response of critical effective 

pore diameter to resistance to two-phase interface flow. The initiation of a pore 

throat is characterised by a drastic increase in the resistant pressure at the effective 

pore size. The effective pore diameter is generally less than 500 µm and increases 

with the pore tip diameter and the capillary gradient, interfacial tension, but 

decreased by surfactants. Viscosity does not have any significant effect on the 

effective pore diameter. The study also revealed a relationship between pore contact 

angle and pore throat; pore contact angle is maximum and remains fairly constant at 

the pore throat.  

 

The overall outcome of this research is a significant contribution to the influence of 

pore geometry on the resistance to porous media flows. 
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Lay summary 
 
 

 

Understanding the resistance to flow is very useful because it controls how fluids 

move across caprocks (seals) over time and so determines the volume of oil and gas 

trapped, where in the rocks they are trapped, and also zones of possible danger (too 

much resistance) during drilling. In preparing for enhanced oil recovery and 

underground storage of carbon dioxide this resistance helps us to determine the 

maximum pressure that can be applied and the amount of gas or liquid that can be 

stored in order to avoid leakage of the injected fluid. Many researches have been 

carried out on the resistance to fluid flow in porous media but the effects of each 

factor have not been fully understood, because most of these researches were carried 

out on large rock samples (core samples). As a result, the details of the events 

occurring in the pores which manifest in the properties of the large samples are not 

properly understood. An example is the case where two core samples of same size 

store the same amount of fluids, yet their resistances differ.  

 

In this research, in order to understand better the effect of the factors affecting two-

phase flow resistance, a single capillary is used to represent the single pore and the 

resistant force profile to two-phase flow through this single pore was measured. The 

impact of pore geometry, surface tension, fluid properties, and wettability on the 

force profile was then used to explain their effects on the displacement process. 

 

Results of the experiments conducted with tapered capillaries showed that the 

resistance offered when two immiscible fluids flow is much higher than that by flow 

of single fluid, which remains constant once it reaches its maximum value. The pore 
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throat of a porous medium for two-phase flow is not only determined by a group of 

pores of small sizes, but also by the response of the pore to resistance to flow of the 

two fluids. The beginning of a pore throat is identified by a sharp increase in the 

resistant pressure at the effective pore size. The exact effect of pore geometry, 

interfacial tension, surfactant, viscosity and wettability on the fluid flow resistance is 

now established. In particular, this research has shown the exact impact of pore size 

on the resistance to fluid flow in porous media.  
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Chapter 1: Introduction 
 

 

1.1 General overview  
 

 

Displacement of fluids in pore spaces has its wide applications in many natural and 

industrial processes, such as oil and gas recovery (Kovscek and Cakici, 2005, Chen 

et al., 2012; Dehghan et al., 2009; Shad et al, 2013), geological storage of carbon 

dioxide (Bachu and Bennion, 2009; Juanes et al, 2006; Orr, 2004; Bachu, 2003; 

Wang et al., 2013), underground water remediation (Tsakiroglou and Payatakes, 

2000), filtration (Grismer, 1986; Hammecker et al, 2004), chemical microreactors 

(Juncker et al., 2002),  microfluidic technologies (Yang et al., 2011), nanofluidic 

devices (Wang et al., 2010; Liu et al., 2011), and proton exchange membrane fuel 

cells (He et al., 2000; Qi et al., 2009; Wang et al, 2001, Koido et al, 2008). The basic 

phenomenon is that the multiphase transport involves the displacement of one fluid 

by another. For example, the injection of carbon dioxide for underground storage or 

for enhanced oil recovery, involves the displacement of water and/or oil by CO2 

during injection and the displacement of CO2 by either water or oil after cessation of 

injection by influx of fluids from adjacent aquifers or hydrocarbon sources (Kumar et 

al, 2005; Bennion and Bachu, 2006b). The injection process and its efficiency are 

dependent on the resistance to the flow of the fluids in the porous medium. 

 

Fluid flow in a porous medium is opposed by the resistance of the porous medium 

and the constituent fluids, and this resistance is measured by the pressure drop that 

occurs in the medium (Despois and Mortensen, 2005; Endo et al, 2009). Accurate 

prediction of porous media flows, therefore, crucially depends on the evaluation of 
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flow resistance, defined as the relationship between the driving force and the 

resulting fluid momentum. The lower the resistance, the lesser the energy needed to 

displace the fluid through the porous medium. In many applications this is very 

desirable; for example, in the migration of hydrocarbons to conventional reservoir 

rocks and recovery of the hydrocarbons from the same rocks, the resistance of the 

porous medium should be low enough to store and deliver economic quantities of oil 

and gas. On the other hand, high resistance to flow may also be beneficial. For 

example, to trap the stored fluids in the reservoir rocks the resistance of the seal rock 

should be high enough to block the passage of the fluids (Nelson, 2009). Steam 

foams, as displacing fluids for enhanced oil recovery, improve oil recovery by 

increasing the resistance to flow of the steam through the underground oil-bearing 

porous medium, thus improving mobility control and decreasing gravity override 

(Dilgren and Deemer, 1982; Gauglitz et al, 1987). High resistance to flow in 

compact heat exchangers is known to increase the effectiveness of heat transfer 

between fluid and solid (Kim et al, 2000), and also yields a desirable transition in 

reactant mass transport mode in fuel cells (Kumar and Reddy, 2003). 

 

Flow resistance in a porous medium is usually characterised by bulk flow properties, 

such as permeability, capillary pressure, fluid saturation, resistivity, conductance, but 

the fundamental behaviours of multi-phase porous media systems are governed by 

physical processes acting at the pore scale (Al-Raoush and Wilson, 2005; Celia et al., 

1995; Andrew et al, 2014), so flow resistance depends on the flow details at the 

microscopic scale. These properties are controlled by the interplay of capillary and 

viscous forces (Melrose and Brandner, 1974) and, in some cases, buoyancy and 

inertial forces. Viscous forces are always resistive forces trying to slow down flow, 
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while capillary forces usually dictate the pore-scale distribution of each fluid phase 

(Perkins, 1957; Silina and Patzek, 2006), which eventually dictate the bulk properties 

such as residual saturation and relative permeability. Pore level displacement is 

influenced by the pore structure (pore geometry and distribution, pore topology or 

connectivity, and porosity), fluid properties (surface tension, viscosity), fluid-fluid 

interaction, fluid-solid interaction such as wettability, and porous media conditions 

such as pressure and temperature (Chen et al, 2012; Hammond and Unsal, 2009; 

Jamaloei et al., 2011; Anderson, 1986; Blunt, 1997; Chalbaud et al, 2009; Plug and 

Bruining, 2007). The effects of all of these factors are inter-related. Although porous 

media flows have been investigated for many decades, the exact impact of the 

individual factor on the resistance to displacement is not fully understood, neither is 

their relative importance clearly understood. For example, the detailed flow structure 

at the pore-scale is not fully understood. A proper understanding of the significance 

of these factors could enhance the understanding of the processes that occur in the 

porous medium, such as in geological storage of CO2 and improved oil recovery.  

 

For some decades, studies in understanding the mechanisms of multiphase flow in 

porous media have progressed from macroscopic studies, involving the measurement 

of averaged quantities, such as relative permeability and residual saturations, in 

samples that are large compared with pore scale, to microscopic studies focusing on 

individual pores (Lenormand et al, 1983; Mohanty et al, 1987; Dullien, 1979; 

Payatakes and Dias, 1984; Chen and Koplik, 1985). Until date, studies of transport 

mechanisms (Colombani et al, 2002; Ellis and Bazylak, 2012; Ma et al, 2012) at the 

pore scale have continued to attract attention because of their importance in many 

engineering applications, especially in the energy field where the oil/gas is found in 
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formations which consist of solid matrix and pore space (Joseph et al, 2013). 

Researchers have consistently agreed that the mechanisms involved in transport 

phenomena in porous media are usually described by macroscopic laws applicable to 

systems whose dimensions are large compared with the dimensions of the pores 

(Dullien, 1979; Lin and Miller, 2000). Microscopic studies involved associating a 

description of the fluid behaviour at a pore scale with a representation of the 

structure of the porous medium using an interconnected pore network (Lenormand et 

al, 1983). The bulk behaviour was then determined from the local scales either by 

computer simulations (Fatt, 1956; Dodd and Kiel, 1959; Wardlaw and Taylor, 1976; 

Androutsopoulos and Mann, 1979; Mann et al, 1981) or using a statistical 

‘percolation-type’ approach (Chatzis and Dullien, 1977; Larson et al, 1981). 

 

Unfortunately, because of the complexity of the pore geometry, it is difficult to 

predict macroscopic (effective) properties from microscopic (pore level) properties. 

Generally, no linear or non-linear rule for the use of microscopic physical properties 

to predict the macroscopic scale properties exists. As a result, it becomes essential to 

develop appropriate experimental techniques and theoretical models to describe in 

detail the pore-level flow which occurs through a porous medium (Lin and Miller, 

2000). Researchers have tried to create micromodels (Karadimitriou and 

Hassanizadeh, 2012) which consist of simple and regular geometric features, fractal 

patterns and irregular patterns with characteristic length-scale comparable with the 

average pore diameter, quite different than the pore geometry of a natural porous 

media (Er et al, 2010; Jamaloei and Kharrat, 2010; Wu et al, 2012a). Visual 

micromodels are now used commonly to enhance pore scale studies. As defined by 

Sayegh and Fisher (2008), visual micromodels are flow apparatuses that enable 
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visual observation of multiphase flow behaviour in porous media at the pore level. 

Mattax and Kyte (1962) used chemically etched networks on glass plates to study 

waterflood. These micromodels give clear observations, but the shape of the section 

of the ducts is not well defined. In addition, adhesion between the glass plates poses 

a problem, especially for studies of imbibition; the wetting fluid enters the space 

between the plates (Lenormand et al, 1983). Generally, engineered micromodels 

have proved to be very useful for studying a variety of displacement processes, 

especially in oil recovery processes, such as surfactant floods (Paterson et al, 1984; 

Hornof and Morrow, 1988), foam injection (Owete and Brigham, 1987; Chang et al, 

1994),  immiscible displacements (Wardlaw, 1980; Chatzis and Dullien, 1983; 

Mahers and Dawe, 1985;Touboul et al, 1987), gels or conformance control (Bai et al, 

2007), microbial EOR (Soudmand-Asli et al, 2007), and solution gas drive (Grattoni 

and Dawe, 2003; George et al, 2005). Micromodels have also been used to study 

specific aspects relating to flow in porous media, including wettability (Morrow et 

al, 1986; Romero-Zeron and Kantzas, 2007); capillary pressure (Smith et al, 2005); 

and interfacial tension (Mackay et al, 1998). However, micromodels typically have 

uniform or homogeneous wetting and geometrically simple pore shapes that do not 

represent the multiple solid phases, pore sizes, and pore shapes of the porous medium 

(Heath et al, 2012).  

  

Single glass capillaries of circular cross-sections are among visual micromodels that 

have been used by numerous researchers for experimental (Fairbrother and Stubbs, 

1935; Schwartz et al, 1986; Tzimas et al, 1997, Lucas et al, 2006; Argüelles-Vivas 

and Babadagli, 2014), theoretical (Bretherton, 1961; Cox 1962), and simulation 

(Park and Homsy, 1984; Ratulowski and Chang, 1989; Giavedoni and Saita, 1997) 
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studies at the pore level. Most of these studies were focused on film thickness 

(residual saturation) in the tube, with no significant attention to the resistance to fluid 

flow. From the available literatures, apart from a few experimental studies by 

Goldsmith and Mason (1963), Roof (1970), and Olbricht and Leal (1983) on 

constricted circular capillaries, most other investigations were conducted with 

circular capillary tubes of uniform cross-sections. For the constricted capillaries, the 

diameter of the constriction showed a sharp departure from the other parts of the 

capillary. Lenormand et al (1983) had observed that models for fluid behaviour 

obtained from experiments using circular capillary tubes remained simplistic. Blunt 

et al (1995) and Dong and Chatzis (2004) suggested that circular capillary tubes are 

not the best option to mimic the network of pores in a real reservoir due to their low 

retention power. However, Argüelles-Vivas and Babadagli (2014) used circular 

capillary tubes to study residual oil saturation in gas-oil displacement on the basis of 

their availability for relatively small diameters and ease of use in visualisation, 

especially with heavy crude oil. They suggested that the shape of the capillaries can 

be changed, having made initial attempts using square capillaries (Argüelles-Vivas 

and Babadagli, 2014). 

 

Despite their shortcomings, circular glass capillary tubes still remain good options 

for pore-scale studies, especially if their geometries can be modified, because of ease 

of visualisation and monitoring of the events. Circular glass capillary tubes 

fabricated from borosilicate glass offer a good option as their geometry can be 

modified. Using this type of modified circular single glass capillary tubes, the impact 

of each factor affecting fluid displacement, such as pore geometry, fluid properties 

(surface tension, viscosity) and wettability can be studied at the pore level. For 
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instance, pore contact angle which used to be measured on flat surface can be 

measured in a pore. It is hoped that using these capillary tubes, a lot of useful and 

essential information will be revealed to enhance our understanding of the pore-scale 

processes and also provide fundamental data for designing EOR processes and CO2 

storage. With current research focus on techniques for scale changes, this study in 

single pores will stimulate further interest in pore scale studies and also provide data 

that can be used to develop better network models and enhance our understanding of 

the multiphase flow in porous media. 

 

1.2 Porous medium morphology 
 

 

A porous medium is a material consisting of a solid matrix with interconnected void. 

Porous media in nature are always made up of numerous irregular pores of different 

sizes spanning several orders of magnitude in length scales, such as soil, sandstones 

in oil reservoir, matrix pores in coal, packed beds in chemical engineering, fabrics 

used in liquid composite moulding and wicks in heat pipes (Wang et al, 2014). 

Figure 1.1 shows photomicrographs of some natural porous media, namely, beach 

sand, sandstone, lime stone, rye bread, wood, and the human lung (Dullien, 1992). 

They are called fractal porous media because they possess pore microstructures, 

including both pore sizes and pore interfaces, and exhibit fractal characteristics.  
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Figure 1.1 – Examples of natural porous materials (x 10): (A) beach sand; (B) 
sandstone; (C) limestone; (D) rye bread; (E) wood; (F) human lung (Dullien, 
1992). 
 

The pore spaces are also irregularly multiply connected. Pore throats are 

constrictions or smaller spaces connecting pore bodies which are the larger spaces. 

The pore bodies determine the porosity, while the pore throats control the movement 

of fluids and the permeability.  

 

Scanning electron micrographs of cross sections show the non-uniform curvature and 

roughness of the pore walls. For network modelling, even if it is possible in principle 

to find both the equivalent network and the distribution of a characteristic radii in a 

systematic way (Figure 1.2), there is a degree of arbitrariness in deciding when 

elementary branch points or nodes are close enough together to count as multiple 

branching and when pore bodies are so small as not to warrant counting (Mohanty et 

A B C 

D E F 
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al., 1987). Therefore, for a detailed understanding of the porous medium multiphase 

flow, study at the pore level is very important. 

 

 

 
 

Figure 1.2 – (a) A porous medium and (b) its network analogue (Mohanty, 
1987). 
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1.3 Previous work on pore resistance in porous media 
 
 

Resistance to two-phase flow has been studied extensively in highly porous and 

permeable porous media, such as in coarse-grained sedimentary systems like 

reservoir rocks and unsaturated soils. Pore size distribution by mercury porosimetry, 

using Washburn equation (Washburn, 1921), is a routine experiment on a large 

number of core samples. Thomas et al (1968) performed breakthrough measurements 

on eight samples of sand and limestones using a step-wise increase of nitrogen gas 

pressure until the threshold pressure was reached, characterized by a slow continuous 

flow of water from the core eventually followed by a free gas phase. The average 

water flow from the core was measured after each increment until flow ceased. At 

the threshold pressure, a continuous flow of water resulted, ultimately followed by a 

free gas phase. Schowalter (1979) showed that pore resistance is the main resistant 

force to secondary hydrocarbon migration and the magnitude of this resistance is 

determined by the radius of the pore throats of the rock, hydrocarbon-water 

interfacial tension, and wettability. The hydrocarbon/water/solid rock contact angle 

was assumed to be zero. 

For low-porosity low-permeability porous media, such as fine-grained rocks, 

processes such as pressure-driven volume flow and the molecular diffusion of 

hydrocarbon and non-hydrocarbon gases through water-saturated rocks have been 

investigated (Schlömer and Krooss, 1997). Earlier studies aimed at the assessment of 

the quality of geological barriers for radioactive waste storage were carried out on 

migration mechanisms of gases in fine-grained rocks (Horseman et al, 1999; Gallé, 

2000). Horsemann et al (1999) using helium gas showed that because of high pore 
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resistance, it is impossible for the gas (non-wetting) to breakthrough fully water-

saturated samples of pre-compacted bentonite without increasing pressure.  

 

Recently, the focus of interest has shifted to the sealing efficiency of fine-grained 

sedimentary rocks for the geological storage of carbon dioxide in depleted oil and 

gas reservoirs and deep saline aquifers. The caprock sealing efficiency is often 

measured by the resistance of the pore space to the fluid-fluid interface; the higher 

the resistance the better the sealing efficiency. This resistance has been expressed by 

several authors with terms such as displacement pressure (Hildenbrand et al, 2002), 

capillary entry pressure, threshold pressure (Hildenbrand et al, 2004) and 

breakthrough pressure (Hildenbrand et al, 2004; Li et al, 2005), bubbling pressure or 

sealing pressure (Li et al, 2005), among others. Pore resistance measurements on 

initially water-saturated rock samples have been carried out using either a continuous 

(Rudd et al, 1973; Horseman et al, 1999; Gallé, 2000, Hildenbrand et al, 2002) or 

step-by-step (Thomas et al, 1968; Schowalter, 1979; Al-Bazali et al, 2005; Li et al, 

2005) increase of the gas pressure until breakthrough was observed.  

Hildenbrand et al (2002) performed 28 gas breakthrough experiments on completely 

water-saturated samples by imposing instantaneously a high gas-pressure gradient 

(i.e. exceeding the expected gas breakthrough pressure) across the fine-grained rock 

samples with nitrogen, to obtain capillary displacement pressure, maximum effective 

gas permeability after breakthrough and pore size distribution of the conducting pore 

system. They observed that gas breakthrough and flow in mudrocks can occur at 

pressures much lower than fracture pressure or the minimum principal stress. 

Therefore, using the fracture pressure as the basis for injection may be misleading, 

hence the need for studying the accurate behaviour of the gas. These investigations 
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were extended to carbon dioxide experiments for the purpose of geological storage 

(Hildenbrand et al, 2004), and in order to compare the breakthrough behaviour of N2, 

CO2 and CH4, additional data from CH4 experiments performed by Schlömer (1998) 

(In: Hildenbrand et al, 2004) using the same technique were included. While the 

experiments with N2 and CO2 were performed under the same conditions (controlled 

axial stress) at 50
o
C, the experiments with CH4 were performed under different 

conditions (no controlled axial stress) at 30
o
C. Based on statistics, they concluded 

that the CO2 and CH4 capillary displacement pressures tend to be generally lower 

than the corresponding N2 values. They simply explained that for the same pore size, 

the observed differences in their displacement pressures was attributed to differences 

in the interfacial tension and the wetting angles of the three gases without any 

experimental evidence. Also, a gas-water contact angle of 0
o
 (complete wetting) was 

assumed in comparing the results. This could be correct but need to be further 

investigated by subjecting all the gases to exactly same experimental conditions.  

 

Li et al (2005) measured the breakthrough pressures of N2, CH4 and supercritical 

CO2 in brine-saturated seal rock samples from Midale Evaporite formation using a 

step-wise increase in pressure. All the breakthrough tests were performed at 

Weyburn reservoir temperature of 59
o
C. To compare the breakthrough pressure of N2 

and CO2, measurements were conducted on two separate samples for CO2 after using 

the samples for N2 breakthrough tests. It was observed that the breakthrough 

pressures of CO2 in the two samples were 9.2 MPa and 11.2 MPa while the 

corresponding breakthrough pressures with N2 were 27.9 MPa and 29.7 MPa, 

respectively. In both cases the breakthrough pressure of CO2 was much lower than 

the nitrogen breakthrough pressure. To compare the breakthrough pressure of CH4 
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and CO2, measurements were made on one sample with both gases, without prior 

measurement of N2 breakthrough on the same sample. The breakthrough pressure of 

CO2 was 5 MPa, which was much lower than the breakthrough pressure of CH4 (12.8 

MPa). Again, using statistics of their IFT values they concluded that the ratio of 

measured N2 and CH4 breakthrough pressures to CO2 breakthrough pressure is 

approximately the same as the ratio of their IFTs; the IFTs for N2/brine and 

CH4/brine are about two to three times that of CO2/brine systems. The minor 

difference between these two ratios was attributed to the difference between the 

contact angles of the CO2/water system and the N2 (or CH4)/water systems and 

experimental errors.  

 

This also may be correct but need to be verified. For instance, the contact angles 

need to be measured in pore space instead of on a flat surface, and all experiments 

need to be conducted under the same conditions to give a better insight into the 

breakthrough behaviour of the gases. Furthermore, breakthrough pressure is a 

macroscopic property of the porous medium involving measurement on core 

samples, which may not represent the exact impact of the pore structure. For 

instance, the breakthrough pressure on the core samples measures the resistance of a 

series of largest interconnected pores of the sample and only the effective radius (of 

all the radii of the interconnected pores) will have the significant influence on the 

breakthrough pressure. It is well-known that the continuum properties are controlled 

by the pore level activities, so it is important to measure the resistance to two-phase 

flow at the pore level to have a better understanding of the fluid flow behaviour in 

porous media. We have developed a method to measure pressure resistance to two-

phase flow in single pores and using this method we are able to interpret precisely 
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the impact of parameters such as pore geometry, pore wettability, fluid properties 

and interfacial tension on multiphase flow. 

 

Although it can be seen from the Young-Laplace equation (or capillary pressure 

equation) that the capillary pressure (or resistance to interface) is influenced 

significantly by very small pore throats (permeability) (Al-Bazali et al, 2005), the 

actual impact of the throat size has not been demonstrated experimentally. In most 

investigations the resistance to two-phase flow considered at the pore level is that 

offered by the interconnected largest pore throats, as the nonwetting phase tends to 

displace the wetting phase contained in the largest pore throat within the water-wet 

formation (Hildenbrand et al, 2004; Li et al, 2005). 

 

 

1.4 Motivation and justification 
 

 

In a highly heterogeneous porous medium fluid will normally flow through low 

resistance path (high permeability zones), making it impossible to sweep substantial 

amounts of fluid located in the high resistance (low-permeability) zones. This is the 

so-called conformance problem, which is common in heterogeneous reservoirs (Sang 

et al, 2014). In oil recovery process, for instance, this will lead to a substantial 

amount of the oil being trapped in the high resistance zone, and for the low resistance 

(high permeability) zone, it will lead to water channelling resulting in a high water 

cut, low oil production rate, a rapid reaching of the economic limit, and high residual 

oil saturation. Long-term erosion caused by water injection in the low resistance 

layers after an oil field reaches a high water-cut period also leads to the increased 

heterogeneity of the reservoir. It is estimated that about 65-77% of remaining oil is  
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left in unswept (high resistance) areas and only 23-35% of remaining oil is confined 

in the waterflood area (Liu et al, 2010). Thus, sweeping remaining oil from unswept 

areas is crucial to EOR in heterogeneous reservoirs. 

 

While the global characteristics of the porous medium are very important, a good 

knowledge of their individual elements is very essential to enhance our 

understanding of the multiphase processes. For example, numerous studies have 

revealed that flow and transport properties in each pore are strongly influenced by 

the roughness of the walls and the spatial variations of their local aperture (Keller et 

al., 1999, Matsuki et al., 2006, Méheust and Schmittbuhl, 2000, Boschan et al, 

2011). Owing to the fractal nature of porous media it is essential to devise a method 

to study the processes that occur at the pore level. Studies in single pores will, 

therefore, provide data to interpret the impact of pore size, pore wettability, pore 

surface chemistry, physical and chemical property of pore fluids on fluid transport in 

the pores and provide a clearer understanding of the exact impact of each of these 

factors on multiphase flow in the porous media. This technique can be used not only 

to study the leakage risk of stored carbon dioxide and enhanced oil recovery by 

carbon dioxide flooding, but will provide fundamental data for pore-level modelling. 

 

1.5 Thesis outline 
 

 

This thesis contains seven chapters, the contents of which are described 

subsequently. 

 

Chapter 1 introduces the subject matter by describing the background, motivation 

and justification of the study, as well as, the morphology of the porous medium. The 

relevance and the significance of this study are briefly highlighted. 



Chapter 1: Introduction 

16 

 

Chapter 2 provides the relevant theoretical background and literature review on this 

study. An overview on resistance to multiphase porous media displacement and 

resistant forces to the displacement is presented. Concepts of displacement pressure, 

interfacial phenomenon, flow geometry, wettability and the related empirical 

equations are explained.  

 

Chapter 3 deals on the materials and the main experimental methodologies used, 

including a novel method of measurement of resistant pressure in micron-sized single 

pores developed in this project, in addition to measurement of pore wetting in 

micron-sized pores.  

 

Chapters 4 to 6 form the core of this research, presenting the experimental results and 

discussions on resistant forces to two-phase flow in micron-sized single pores.  

In Chapter 4 the results and discussions on the resistant pressure profiles of air-liquid 

and liquid-liquid interface motions through a single pore are presented, and indicates 

that the characteristics of the resistant pressure profiles are similar for all the 

interfaces. They all show a section of constant pressure followed by a sharp increase 

in resistant force. 

 

Chapter 5 investigates the relationship between the resistant pressure and the pore 

geometry and summarizes that the point of sharp increase in resistant pressure in the 

pore channel corresponds to the effective pore size, from where the pore throat starts. 

This finding elucidates the actual influence of the pore geometry on the resistance to 

displacement. The results of the influence of pore gradient, surface tension and 

constituent components of the interface on the resistant pressure, and consequently 

on the effective pore size are presented. 
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Chapter 6 presents the results and discussions on pore wettability and resistance to 

two-phase flow in micron-sized pores. The results of analyses of contact angles 

measured from various micron-sized pores are presented and linked to the resistant 

pressure profiles. The transitional point on the resistant pressure profile is explained 

using pore wetting. 

 

Finally, Chapter 7 presents the main findings of this research and highlights the 

relevance of this study. The limitations and weaknesses of this work are highlighted 

and future work is recommended. 
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Chapter 2: Theoretical Background 
and Literature Review 

 

 

2.1 Introduction 
 

 

The need for a clearer understanding of the resistance to pore level fluid 

displacement is becoming of increasing importance. This can be attributed to the 

increasing awareness of CO2 geological storage as an option to reduce the 

atmospheric concentration of anthropogenic CO2 (Orr, 2004; Hitchon et al, 1999; 

Bachu, 2000). In addition, in the oil and gas industry, there is the gain in global 

prominence of the recognition of the injection of CO2 for enhanced oil recovery, due 

to its potential for mitigating greenhouse gas emissions (Moritis, 2006), and more 

particularly by the promise of CO2–EOR as a profit–making option (Chiquet et al, 

2007b; Bennion and Bachu, 2006b). Among the target formations for this purpose 

are depleted oil and gas reservoirs (Kovscek and Cakici, 2005; Kovscek and Wang, 

2005), deep saline aquifers (Pruess
 
et al, 2003; Bachu, 2003; International Energy 

Agency, 2004; Socolow, 2005) and unminable coal beds (Bromhal et al, 2005).   

 

Resistance to displacement of fluids is very important in characterisation of a 

caprock for its sealing capacity. Parameters used to characterise the resistance to 

fluid displacement include capillary pressure (breakthrough pressure, etc.), fluid 

saturation, permeability or conductance, and these depend on the pore structure, fluid 

properties and composition, and wettability. All of these factors are interrelated, for 

example, several researchers (Yang et al, 2008a; Chalbaud et al, 2006; Juanes et al, 

2006) have reported that wettability depends on pore geometry, fluid composition 
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and properties, and the interfacial tension, and has strong effect on capillary pressure 

(Yang et al, 2008a; Chalbaud et al, 2006; Juanes et al, 2006), relative permeability 

(Juanes et al, 2006), and fluid saturation (Morrow, 1990). The exact impact of each 

of these factors on resistance to flow needs more experimental work to be verified 

(Lin and Miller, 2000). For instance, both contact angle on a flat surface and in a 

pore were treated as the same, but recently, Li et al (2013, 2014) developed a new 

experimental method to measure the contact angles of fluids in micro-sized pores and 

found out that contact angles on a flat borosilicate glass surfaces are different from 

their contact angles on pore surfaces of same materials. Li et al (2014) observed that 

the contact angle in a pore tends to approach the value measured on a planar 

substrate once the pore size is large enough, approximately 1000 µm (1 mm). Using 

a similar method, pore contact angles will be measured and used to study its impact 

and other factors’ impacts on resistance to displacement.   

 

 

2.2 Fundamentals of Porous Media Resistance 
 

 

2.2.1 Porous media resistant pressures 

 

Pore resistance characterizes the ability of the porous medium saturated with a 

wetting phase to block the flow of a non-wetting phase (Li et al, 2005; Egermann et 

al, 2006). This property has been found to be very important in petroleum and 

natural gas exploration and production, repository for radioactive and non-

radioactive wastes, and more recently for geological CO2 sequestration, which is 

considered to be the most immediately effective and economically viable of the 

various CO2 emission reduction methods so far proposed (Bachu, 2000; Perera et al, 
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2012). The character of the gas/water pore resistance affects relative permeability 

and therefore the way the fluids will flow and distribute in the pores (Pini et al, 

2012). In addition, pore resistance is responsible for the displacement mechanisms at 

the pore-scale that lead to the break-up of the nonwetting phase into bubbles and 

ganglia, which eventually become immobile (Lenormand et al, 1983; Gauglitz et al, 

1987). 

 

Pore resistant pressure is also a key parameter to design enhanced oil recovery and 

geological storage, and avoid an upward migration of the injected fluid (hydrocarbon 

gases and non-hydrocarbon gases) into the overlaying formations (Horsemann et al, 

1999; Marshall et al, 2005), because it sets a limit on both the injection pressure and 

the storage capacity of the reservoir (Li et al, 2006; Chiquet et al, 2007a). For 

example, the sealing capacity of a caprock for hydrocarbon reservoirs and for CO2 

underground storage is provided by the resistance across the interface of the wetting 

phase (usually brine) which saturates the seal rock, and the non-wetting phase (oil or 

gas) which accumulates in the reservoir (Li et al, 2005; Hildenbrand et al, 2002 and 

2004; Li et al, 2006; Andreas and Nadja, 2011; Egermann et al, 2006, Chiquet et al, 

2007a and 2007b). 

 

Vavra et al (1992) defined a seal generally as a sediment, rock or immobile fluid 

with high capillary entry pressure (also known as capillary breakthrough or capillary 

entrance pressure) that acts to stop the flow of hydrocarbon. Some common seal 

lithologies are shales, clays, claystones, mudrocks, siltstones, and anhydrites. The 

ability of caprocks to exhibit good sealing characteristics arises from their small, 

water-wet pores, which are responsible for generating high capillary pressures, which 
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excludes hydrocarbons and stop the flux of CO2 through it (Al-Bazali et al, 2009). 

This ability is complicated by the partial solubility of CO2 in the water. The capillary 

pressure is given by the Young-Laplace equation (Moore and Slobod, 1956; 

Stegemeier, 1974) (Equation 2.1): 

          
      

 
                                                                                (2.1) 

where    is capillary pressure in Pa or N/m
2
,     is the pressure in the nonwetting 

phase in Pa,    is the pressure in wetting phase in Pa,   is the interfacial tension 

between the nonwetting and wetting phase in N/m or dyne/cm,   is the contact angle 

in degrees and   is the pore throat radius (m). The differential pressure between the 

nonwetting phase (hydrocarbon or CO2) and the wetting phase (brine) must exceed 

the minimum capillary entry “threshold” pressure of the caprock in order for the 

nonwetting phase to enter the seal. The minimum capillary entry pressure is the 

capillary pressure at which the non-wetting phase, usually oil, gas, or CO2, starts to 

displace the wetting phase, usually brine, contained in the largest pore throat within a 

water-wet formation. Equation (2.1) shows that the capillary entry pressure can be 

significant, especially for porous media with very small pore throats (low 

permeability). 

 

The height of a hydrocarbon column that can be trapped by a seal rock can be 

estimated using the minimum capillary entry pressure (Figure 2.1). The hydrocarbon 

column height,   (m) (also called the hydrocarbon capacity) at equilibrium, is given 

by Equation (2.2):  

  
     

        
                                                                                              (2.2) 
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where      
 is the minimum capillary entry pressure in Pa,    (kg/m

3
) and    

(kg/m
3
) are the densities of water and oil, respectively and   is the acceleration due 

to gravity in m/s
2
. As shown in Equation (2.1), capillary pressure depends on the 

interfacial tension between the wetting fluid and the non-wetting fluid, the contact 

angle and the pore throat radius, and must be known to estimate the hydrocarbon 

capacity of a seal rock. 

 

 
Figure 2.1: Hydrocarbon column trapped by a shale caprock (Al-Bazali et al., 
2009). 
 

 

 

In basin modelling reliable pore resistance behaviour of a porous medium is 

important because they control the fluxes of fluids through the caprocks over the 

geological times and therefore determine directly the volume and localization of the 

hydrocarbons trapped (best locations for exploration) and also the over-pressured 

formation (Egermann et al, 2006). Formation of overpressure zones in the petroleum 
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reservoir is known to be due to the increased resistance of the reservoir rock pore to 

flow of the reservoir fluids (Hildenbrand et al, 2002). This may constitute a drilling 

hazard during petroleum exploration and production activities, it is therefore very 

useful to locate such resistant zones for proper design of drilling programmes 

(Thomas et al, 1968; Katz and Ibrahim, 1971). Moreover, it is a critical parameter 

for reservoir simulators used to design field-scale injection projects (Doughty, 2007). 

 

Resistance to fluid flow, is a complex interplay of the pore geometry, fluid 

properties, fluid-fluid interaction and fluid-pore surface interaction, but it is 

conventional to consider the pore structure. It is measured by the pressure drop (ΔP) 

that occurs in the medium. This is expressed by Darcy’s law (Endo et al, 2009).  

 

 2.2.2 Trapping of fluids 
 

 

The trapping and storage processes of the reservoir fluids in the reservoir rocks could 

provide more information for understanding the resistance of the porous media for 

fluid flow processes, such as oil recovery and geological storage of carbon dioxide.  

 

 

     2.2.2.1 Oil and gas reservoir rocks 

 

A petroleum reservoir is a trap that contains gas, oil, and water in varying 

proportions, in the pore spaces or fractures of the reservoir rock (Figure 2.2). The 

pore spaces are interconnected so that the fluids can move through the reservoir. 

Accumulation of oil and gas in significant quantities in the reservoir rock, after its 

formation in the source rock, involves migration of the hydrocarbon through water-

filled pores. Migration is promoted by buoyancy forces but it is inhibited by the  
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capillary forces which must be overcome for the oil globule to pass through an 

adjacent pore throat (Berg, 1975; Gluyas and Swarbick, 2004). For a conventional 

reservoir rock (high permeability), the pore body size and pore throats are large 

enough to store and deliver economic quantities of petroleum (Nelson, 2009), while 

unconventional resources, such as tight-gas sandstones and shale gas are low-

permeability systems with small pore body and throat sizes. Both situations pose 

different degree of resistance to the fluid flow through the porous rock. 

Unconventional resources would require fracturing or stimulation to increase their 

pore and throat sizes, as well as their permeability. 

 

 

Figure 2.2: Idealized cross-section through an anticlinal trap formed by a 
porous, permeable, formation surrounded by impermeable rocks. Oil and gas 
are trapped at the top of the anticline (Tiab and Donaldson, 2015). 
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2.2.2.2 Cap rock 
 

Cap rock or seal rock is a formation with extremely low porosity and permeability 

overlaying an oil or gas reservoir, and it constitutes the barrier against the volume 

flow of hydrocarbons into the upper layers. When the capillary pressure is greater 

than or equal to the buoyancy pressure of the migrating hydrocarbons (or CO2) a 

capillary seal is formed. That is, the sealing capacity of the seal rock is provided by 

the capillary forces across the interface of the wetting phase (usually brine), which 

saturates the seal rock, and the nonwetting phase (oil or gas), which accumulates in 

the reservoir (Li et al, 2005). The pore throats in this case are small enough to block 

the passage of petroleum at the applied level of buoyant pressure (Nelson, 2009). 

 

Seals do not allow fluids to migrate across them until their integrity is disrupted, 

causing them to leak. A capillary seal may be a hydraulic seal or a membrane seal 

(Watts, 1987).  

 

2.2.3 Capillary sealing mechanism  
 

  

The membrane seal will leak whenever the pressure differential across the seal 

exceeds the threshold displacement pressure, allowing fluids to migrate through the 

pore spaces in the seal. Ortoleva (1994) showed that the leakage will just be enough 

to reduce the pressure differential lower than the displacement pressure and will 

reseal. This implies that the membrane seal provides a self-pressure maintenance 

mechanism. The hydraulic seal occurs in rocks that have a significantly higher 

displacement pressure such that the pressure required for tension fracturing is 

actually lower than the pressure required for fluid displacement – for example, in 
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evaporates or very tight shales. The rock will fracture when the pore pressure is 

greater than both its minimum stress and its tensile strength, then reseal when the 

pressure reduces and the fractures close. 

 

Krooss et al (1992) have recognised molecular diffusion and slow Darcy flow as two 

main mechanisms responsible for migration of hydrocarbon gases through seal rocks 

into adjacent upper layers. Molecular diffusion is a ubiquitous and slow process that 

involves the diffusion of the hydrocarbon molecules through the water-saturated pore 

space of the seal rock. Slow Darcy flow occurs when the pressure difference across 

the seal rock is sufficiently high to overcome the sealing capacity of the seal rock. It 

depends strongly on the geologic and hydrodynamic conditions of the system, 

including the reservoir, the seal rock, and the overburden formations, as well as the 

properties of the fluids in both the reservoir and the seal rock (Li et al, 2005). 

 

For an oil or gas-water interface in a pore throat adjacent to a pore body, the 

penetration of the nonwetting fluid (oil or gas) into the seal rock by slow Darcy flow 

is prevented by the capillary pressure (Figure 2.3). The nonwetting phase will 

advance along the channel when the pressure difference between the nonwetting and 

the wetting phase, (Pnw - Pw > Pc), exceeds the capillary pressure at the pore throat. 

The displacement will continue until it reaches the next smaller pore throat where the 

capillary pressure is higher. A continuous filament of nonwetting phase will be 

formed when the differential pressure across the seal rock overcomes the capillary 

pressure of a series of interconnected pore throats of arbitrarily large sizes and, 

consequently, a slow Darcy flow will occur. This differential pressure is the 

breakthrough pressure of the seal rock (Berg 1975; Schowalter 1979; Dullien 1992; 
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Figure 2.3: Schematic of capillary sealing mechanism in a pore throat of seal 
rock. (Li et al, 2005) 
 

Pnw = pressure in the nonwetting phase, 
Pw = pressure in the wetting phase, 
Pc = capillary pressure across the nonwetting/wetting meniscus in a pore 
throat. 
 

Hildenbrand et al., 2002). Breakthrough pressure is also referred to as the bubbling 

pressure or sealing pressure, and is an important parameter for assessing the sealing 

capacity of a seal rock of a hydrocarbon trap. It also has its applications in different 

areas, such as oil and gas reservoir evaluation prior to exploitation, basin analysis, 

hydrocarbon secondary migration assessment, as well as the selection of geological 

sites to store natural gas, CO2 or industrial waste gases. The magnitude of the 

breakthrough pressure is determined by the highest capillary pressure of an 

interconnected network of pore throats that are first invaded by the nonwetting phase. 

The capillary pressure    in a pore throat is expressed by the Young-Laplace 

equation (Equation 2.1). Several investigators (Keller et al., 1999, Matsuki et al., 

2006, Méheust and Schmittbuhl, 2000) have observed that for a heterogeneous 
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porous medium it may be misleading to use an equivalent radius as flow and 

transport properties in each pore differ greatly and strongly influenced by spatial 

variations of their local aperture and the roughness of the walls. Boschan et al. 

(2011) concluded that the determination of the geometrical and transport properties 

of individual pores is therefore a key issue in view of practical applications. They 

noted that although elaborate laboratory techniques have been developed to 

characterize the heterogeneity of porous media, methods that allow the 

characterisation of a single pore and then predict accurately the displacement of 

fluids are lacking. In this study we have developed a method to characterise a single 

pore of the porous medium. 

 

2.3 Immiscible Displacement Processes  
 

2.3.1 Drainage and Imbibition 
 

 

The two main processes involved in the immiscible displacement of fluids in porous 

media are drainage and imbibition, and both processes are controlled by the capillary 

pressure, which depends on the surface tension, interface curvature (wettability), and 

capillary radius (Hammond and Unsal, 2009). 

 

 2.3.1.1 Drainage  
 

 

Drainage, which is the displacement of a wetting phase by a nonwetting phase, 

occurs if the pressure in the nonwetting phase is larger than the pressure in the 

wetting phase. The nonwetting phase invades the pore or throat (large) with the 

lowest threshold capillary pressure and it is characterized by a piston-like 
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displacement (Figure 2.4). The nonwetting fluid may only fill pores and throats 

adjacent to pores already occupied by wetting fluid.  

 

 
 

Figure 2.4: Piston-like displacement in a pore of radius    with contact angle 
  between the phases (Fenwick and Blunt, 1998). 
 

 

The pressure difference between the invading (nonwetting) phase and invaded 

(wetting) phase is the capillary pressure given by the Young-Laplace equation. 

 

 2.3.1.2 Imbibition 
 

 

Imbibition is the displacement/invasion of a nonwetting phase by a wetting phase. In 

this case, the wetting fluid fills pores or throats (small) with the highest threshold 

capillary pressure. Previous studies by Fairbrother and Stubbs (1935), Bretherton 

(1961), Tzimas et al (1997) and Argüelles-Vivas and Babadagli (2014) have shown 

that the wetting phase is connected throughout the pore space by thin films or layers. 

The presence of these connected thin films in the pores makes it possible for the 

wetting fluid to displace the nonwetting fluid in every pore or throat. As the wetting 

fluid invades the smaller pore throats more easily than it does the larger pore bodies, 

this process is controlled by the connected small pores. Using the mechanism of 

snap-off, where the wetting fluid in films and wedges may coalesce to fill the narrow 

throats, Lenormand et al (1983) have shown that pore throats influence imbibition 
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strongly. Hysteresis between drainage and imbibition arises naturally from the size 

differences between pore bodies and pore throats, because pore-body radii influence 

imbibition while pore throats control drainage (Celia et al, 1995). 

 

If the pressure at the inlet and outlet ends of the capillary is the same, primary 

(spontaneous) imbibition will occur.  The driving force for displacing the non-

wetting phase is the capillary pressure, which depends on the surface tension, 

interface curvature, and capillary radius. Spontaneous imbibition will occur only if 

the contact angle, θ, between the wetting phase and capillary surface is less than 90º 

(water wet). In cases where the pressure at both ends of the capillary is different, 

imbibition will be forced (forced imbibition), in which the displacement of the 

nonwetting phase by the wetting phase from the capillary tube or porous medium 

occurs under an externally applied pressure difference. 

 

For oil recovery from naturally fractured reservoirs by spontaneous imbibition of 

water in strongly water-wet rock, the capillary forces allow water to imbibe and push 

the oil out of the rock pores. However, in a mixed- or oil-wet reservoir the capillary 

forces are weak or act in wrong direction. The rate of recovery from such reservoirs 

can be improved by dissolving low concentrations of surfactants in the injected water 

to alter the wettability of the reservoir rock to be more water-wet. The surfactant 

lowers the oil-water interfacial tension and alters the wettability of the rock surfaces.  

In the displacement of oil by water or a surfactant solution for oil recovery, the water 

or surfactant solution is applied under a force (injection), which gives rise to a 

pressure gradient. Forced imbibition is potentially much faster than the spontaneous 

case, particularly when the applied pressure is large enough to overcome the 
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capillary pressure threshold for entrance into the oil-wet capillary. If the applied 

pressure is less than the threshold pressure for entry, penetration of the meniscus is 

only possible if the surfactant acts to change the contact angle. It is worthy of note 

here that both diffusion and adsorption of surfactant molecules are very slow 

processes and cannot be made faster by the applied differential pressure; it only 

speeds up the meniscus. The surfactant might lag behind the moving meniscus under 

very high differential pressures, and as a consequence may not have the desired 

effects on wettability alteration (Hammond and Unsal, 2009). 

 

2.3.2 Displacement Mechanisms  
 

 

The two main mechanisms that characterise the displacement of two immiscible 

fluids by imbibition are snap-off or choke-off and piston-like motion.  

 

2.3.2.1 Snap-off or Choke-off  
 

 

Snap-off will occur at a critical capillary pressure and curvature which are dependent 

on throat size and wettability. In snap-off the fluid interface ruptures at the pore 

throat due to the increase in the radius of curvature of the fluid interface up to a point 

of instability, arising from decrease in capillary pressure. Chatzis et al (1983) and 

Lenormand et al (1983) have applied this mechanism to events during imbibition, 

and described by Li and Wardlaw (1986). During the displacement of nonwetting 

fluid by wetting fluid collars of wetting fluid may form at the pore throat, with 

interfaces having elements of negative as well as positive curvature. That is, the 

interface is selloidal or saddle-shaped with the radii of curvature occurring on both 

sides of the interface as shown in Figure 2.5. The curvature of the collar changes to a 
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critical value as capillary pressure is lowered causing the fluid-fluid interface to 

become unstable and suddenly rupture. Before it ruptures, the interface is stable and 

can advance or retreat in response to small decreases or increases of capillary 

pressure.  

   

Figure 2.5: Two pore bodies with connecting throat to illustrate nonwetting 
phase bridge (shaded) and wetting phase collar (plain) in the throat. Interface 
is selloidal. (Thickness of the continuous wetting film is greatly exaggerated) 
(Li and Wardlaw, 1986). 
 

It is important to note that the difference between smooth circular capillaries and 

those of rectangular cross section is that the former only have a thin film of wetting 

fluid separating the nonwetting fluid from the solid over the entire surface whereas, 

in the latter case, there are larger wedges of wetting fluid associated with the corners 

of the rectangle as well as thin films elsewhere (Figure 2.6). Li and Wardlaw (1986) 

suggest that since sediments and rocks typically have spaces defined by irregular 

surfaces, a rectangular section, or better still, a triangular or star shape section, 

provides a more realistic model than a cylindrical tube. 
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Figure 2.6: Conduits of circular and square cross section to illustrate 
positions of thin films and wedges of wetting phase (Li and Wardlaw, 1986). 
 

 

The critical capillary pressure at which snap-off occurs for a throat of square cross-

section and inscribed radius  , is (Lenormand and Zarcone, 1984; Fenwick and 

Blunt, 1998): 

   
            

 
                                                                                    (2.3) 

Snap-off results in a sudden invasion of the throat by the wetting fluid leading to the 

discontinuity of the nonwetting phase. If the nonwetting phase is completely 

surrounded by wetting fluid, it is trapped in the pore body and in this case, no further 

displacement is possible. These trapped or isolated nonwetting blobs are said to be at 

residual saturation (Mayer and Miller, 1992; Al-Raoush and Wilson, 2005; Li and 

Wardlaw, 1986; Roof, 1970). At residual saturation, the shapes assumed by the 

nonwetting blobs are influenced by the pore geometry and topology, and their sizes 

can range over several orders of magnitude.  The viscous force required to remove 

the blob is directly related to the blob size. The mass transfer characteristics of the 

system are affected by the blob volume and surface (Al-Raoush and Wilson, 2005). 
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The term snap-off has also been used by Pickell et al (1966) and Roof (1970) to 

apply to events during drainage. 

 
 
2.3.2.2 Piston-like motion 
 

 

Convex interfaces with only positive elements of curvature also occur, apart from 

selloidal interfaces (Figure 2.7a and Figure 2.7b). The advance or retreat of a convex 

interface in a pore body or throat is referred to as "piston-type" motion (Lenormand 

et al, 1983). It can only occur if an adjacent pore body or pore throat is already 

completely filled with wetting phase. 

 

 
Figure 2.7a: Selloidal interface (left) and convex interfaces (right) in 
cylindrical tube with horizontal axis. Two convex interfaces indicate the 
advancing and retreating positions with contact angle hysteresis (θA>θR) 
(piston-type motion) (Li and Wardlaw, 1986). 
 

 

 

Piston-like invasion has a higher capillary pressure (Equation 2.1) than snap-off, for 

a given throat, and so is favoured. Because snap-off occurs when the pressure 

difference between the nonwetting phase and wetting phase is decreased. The critical 

pressure for piston-like pore filling depends on the number of adjacent throats that 

are completely filled with wetting fluid (Fenwick and Blunt, 1998). Since pore 
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bodies are always larger than the adjacent throats, piston-like advance in pore bodies 

is always favoured over snap-off.  

Chen and Koplik (1985) identified piston-like displacement, Haines' jumps, bubble 

displacement, and the spreading, rupture, and coalescence of thin films as 

microscopic displacement mechanisms which can occur in a random pore space and 

contribute to the flow. The relative importance of these various possibilities will 

depend on the external boundary conditions (e.g., flow rate), the microscopic 

geometry of the porous medium, and the physical properties of the fluids and solids 

present. They observed that for two-phase flow studies of imbibition, pistonlike 

effect dominate at high flow rates and in low aspect ratio systems, while thin film or 

interfacial displacement dominate at low flow rates and in high aspect ratio systems. 

The aspect ratio is defined as the ratio of pore body size to pore throat size. Motion at 

very low flow rates is controlled by the local geometry, so that motion occurs at the 

point of least capillary resistance. At low flow rates capillary forces are dominant 

while at high flow rates viscous forces are dominant. 
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Figure 2.7b: Convex interfaces (convex to nonwetting phase): (A) with a 
contact angle; (B) with thin film. Selloidal interfaces: (C) with a contact 
angle;(D) with thin film (Li and Wardlaw, 1986). 
 

 

 

2.4 Enhanced Oil Recovery and CO2 Storage 
 
 

2.4.1 Enhanced Oil Recovery 
 

 

Enhanced oil recovery processes influence the resistance to flow commonly through 

one of the following mechanisms: (i) reduce interfacial tension and/or modify 

wettability to increase capillary number and mobilise residual oil, (ii) increase the 

viscosity of water by adding polymer, thus decreasing the mobility ratio, (iii) reduce 

the permeability of high permeability zones or streaks and improve conformance in 

heterogeneous reservoirs for better sweep efficiency (Almohsin et al., 2014; Hite et 

al., 2005; Fletcher and Davis, 2010), and (iv) reduce oil viscosity, such as in thermal 
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recovery. Initial recovery of oil from a porous medium such as an oil reservoir, 

referred to as primary recovery), involves flowing the oil under the natural reservoir 

pressure or by assisted flow, such as artificial lift or the use of pumping devices. This 

reservoir pressure is in the form of the energy stored in the reservoir in the form of 

gas or water. Gas in solution lowers the viscosity of the oil, making it easier to 

displace to the wellbore under the natural reservoir pressure. After a period of 

production, the natural reservoir pressure decreases, and vast amounts of the 

hydrocarbons remain unrecovered. Stosur (2003) estimated that only less than 30% 

of oil-originally-in-place (OOIP) can be recovered by primary recovery leaving 70% 

unrecovered. 

 

Secondary oil recovery involves immiscible gas or water injection into the reservoir 

to improve the natural gas or water to drive oil out. Water flooding is the most 

common method of secondary recovery, in which large quantities of water is injected 

into the reservoir to displace additional oil in front of it to the wellbores where it can 

be recovered.  Water flooding is inefficient because of conformance problem, a 

situation in a highly heterogeneous porous medium in which fluids flow through the 

low resistance path (high permeability zones) and make it impossible to sweep 

substantial amounts of fluid located in the high resistance (low-permeability) zones. 

This results in substantial amounts of oil unswept in the low-permeability zones 

(Sang et al, 2014), as well as water channelling and its associated problems for the 

high-permeability zones. 

It is estimated that about 65–77% of remaining oil is left in unswept areas and only 

23–35% of remaining oil is confined in the waterflooded area (Liu et al, 2010). Thus, 

sweeping remaining oil from unswept areas is crucial to enhanced oil recovery  
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About 30-40% (one-third) of the OOIP is generally recovered after secondary 

recovery, leaving a substantial amount of about 60-70% (two-third) as a target for 

EOR (Stosur, 2003; Kokal and Al-Kaabi, 2010). 

 

 Enhanced oil recovery (tertiary recovery) is the additional recovery over and above 

what could be recovered by secondary recovery methods. It involves methods 

designed to displace residual oil (immobile oil) trapped in the pores of the reservoir 

after both primary and secondary recovery methods have become ineffective. EOR 

methods include thermal recovery (steam, hot water, combustion), gas injection 

(carbon dioxide, hydrocarbon, nitrogen/flue gas), chemical flooding (surfactant, 

alkali, polymer). “Water Alternating Gas” (WAG) is a commonly used flood method 

that has volumes of water injected between volumes of CO2 to displace the oil more 

uniformly out of reservoir (Sweatman et al, 2011). Injecting water alternately with 

gas affects the gas/oil relative permeability and reduces gas mobility, while 

improving oil mobility. Recent study shows that EOR contributes about 3 million 

barrels (about 3.5%) of world oil per day, compared to about 85 million barrels of the 

daily production (Moritis, 2010). The bulk of this production comes from thermal 

recovery, contributing about 2 million barrels of oil per day. EOR by CO2 injection 

contributes to about a third of a million barrels of oil produced per day, and this is 

expected to rise with the increasing awareness of sequestering CO2 and at the same 

time producing incremental oil. Most of the current CO2-EOR productions are from 

the Permian basin in the US and the Weyburn field in Canada. Hydrocarbon gas 

injection is employed where the gas supply cannot be monetised, and contributes 

another one third of a million of barrels per day. Production from chemical EOR 
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contributes to total worldwide production of another third of a million barrels per day 

with China practically contributing all. 

 

Mobilization of oil on a microscopic scale is affected by the geometric and 

topological properties of the pores, by fluid properties, and by properties related to 

fluid-rock interaction such as wettability (Wardlaw, 1980). The capillary forces 

which act on this microscopic scale control the distribution of oil and water under 

static equilibrium conditions. Even during flow the capillary forces continue to 

control the microscopic distribution of oil and water within the pores of a porous 

material for all practical reservoir and laboratory flow rates (Moore and Slobod, 

1955). Because of the microscopic nature of the displacement of oil by water, it is 

necessary to consider the flow and the fluid distribution in individual pores (Perkins, 

1957). Using individual micron-sized pores (pore diameter < 1000 µm) provide 

suitable examples of micro level displacements. Hammond and Unsal (2009) also 

agree that better insight into displacement processes is required than is afforded by 

experiments such as tests in rock cores, where it is impossible to see individual 

pores. It is therefore necessary to carry out laboratory experiments concerned with 

specified system parameters and to link the results of these experiments with 

displacement tests. This study is focused on the relationship between pore geometry, 

interfacial tension, interface composition, and contact angle and the resistance to 

displacement. A better understanding of the displacement phenomena in the pores 

will help to improve the average worldwide recovery factor from hydrocarbon 

reservoirs beyond current limits and ultimately alleviate a number of issues related to 

global energy supply. 
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2.4.2 CO2 Storage 
 

 

CO2 geological storage has been proposed as a long-term solution to limiting the 

emission of anthropogenic CO2 to the atmosphere (Lackner, 2003). The increasing 

concentration of atmospheric CO2 attributed mainly to the combustion of fossil fuels 

for power generation (Kovscek and Cakici, 2005; Herzog et al., 2000), has received 

attention because of the well documented fact that carbon dioxide is a greenhouse 

gas, and one of the major contributors to global warming (Ghedan, 2009; Cox et al., 

2000). As fossil fuel presently supplies 85% of primary power, a drastic reduction in 

CO2 emissions represents a major challenge (Orr, 2004).  

 

Achieving CCS by injecting CO2 into saline formations or for EOR in mature oil 

reservoirs (Figure 2.8) is considered to be a safe and effective method to reduce 

greenhouse gas (GHG) emissions (Sweatman et al, 2011). The most significant 

anthropogenic CO2-EOR is at Weyburn in south eastern Saskatchewan, Canada 

which uses approximately 1 MtCO2/year, pipelined from the North Dakota Coal 

Gasification Plant in Beulah, North Dakota. A much smaller operation at Joffre in 

Alberta uses CO2 produced at a nearby petrochemical plant. Since 2005 several oil 

producers in Alberta have started CO2-EOR pilot operations using CO2 from gas 

plants (Bennion and Bachu, 2006a). 

 

In both miscible and immiscible form CO2 can improve oil production. Injected CO2 

under miscible and near-miscible pressure and temperature conditions dissolves in 

oil, thins and expands oil to help displace oil out of reservoirs and pushes oil to 

producing wells through use of injection flow pressure (Figure 2.9). 
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Figure 2.8: CCS process combined with enhanced hydrocarbon recovery 
(Sweatman et al., 2011). 
 

The displacement mechanism of gas is also a non-wetting phase displacement, 

similar to oil. Under the immiscible pressure and temperature conditions, injected 

CO2 floats above the oil due to its lighter density, supporting gas assisted gravity 

displacement (GAGD) of oil out of lower depths, helps improve oil production when 

GAGD (Figure 2.10) is combined with horizontal wells (Rao et al., 2004), pushes oil 

down to producing depths in the lower sections of reservoirs using gas injection flow 

pressure. It is therefore very crucial to study the characteristics of the displacement 

process involving the injected gas and in-situ fluids (Bennion and Bachu, 2008; 

Kumar et al., 2005). These characteristics affect injectivity, and flow rate, spread of 
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the plume of the injected gas, and residual trapping of gas in the pore space (Kumar 

et al, 2005). 

The injected CO2 can be stored securely by a number of mechanisms, namely 

structural/stratigraphic or hydrodynamic trapping, capillary or pore-level trapping, 

solution trapping and mineral trapping. The importance of each storage mode 

depends on the characteristics of the formation, injected fluid and time period after 

injection (Shah et al., 2008). The residence time of CO2 in aquifers for sequestration 

applications is of the order of 10,000 years and different time scales for the different 

processes must be considered. CO2 has a critical temperature of 31 
o
C (88 

o
F) and a 

critical pressure of 7.38 MPa (1070 psia). Therefore, at typical reservoir pressures 

and temperatures carbon dioxide will behave as a supercritical fluid. At injection 

depths greater than ~800 m, assuming a geothermal gradient of 30
o
C/km and a 

pressure gradient of 10.5 MPa/km, CO2 can be stored as a supercritical fluid (Bruant 

et al, 2002; Bachu and Gunter, 1994; Bachu, 2002; Holloway and van der Straaten, 

1995). The density of supercritical CO2 at 800 m depth is approximately 260 kg/m
3
 

and this permits far greater quantities of CO2 to be stored per unit volume than as a 

gas at shallower depths (Bruant et al, 2002). At this depth, the density of water with 

15% total dissolved solids by mass is ~1100 kg/m
3
 (McCain, 1991; Bachu and 

Gunter,1994). This density difference generates buoyancy forces that drive injected 

CO2 upward.  
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Figure 2.9: CO2 EOR process and downhole mechanisms (NETL, 2010 – In: 
Sweatman et al., 2011). 
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Figure 2.10: Horizontal well at a lower depth provides best oil drainage for 
gravity displacement by immiscible CO2 (Sweatman et al., 2011). 
 

 

 

In hydrodynamic trapping the buoyant CO2 is trapped under impermeable caprock. 

During and shortly after the injection period, a significant fraction of the injected gas 

rises buoyantly and accumulates beneath the geological seal (caprock), a low-

permeable (most often clayey or evaporite) porous medium usually saturated with 

water. This process relies on an intact barrier to upward flows (Bachu et al, 1994; 

van der Meer, 1995; Shah et al., 2008).  
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Capillary trapping is the form in which the residual part of the gas phase is stored as 

disconnected gas droplets; the CO2 is stranded in pore-space bubbles surrounded by 

water (Shah et al., 2008; Juanes et al., 2006; Al-Mansoori et al., 2010). It is the 

fastest and secure way to immobilise the CO2 in porous media without relying on 

sealing caprock. A way of maximizing the trapped CO2 by this method is to engineer 

the process, by the injection of additional brine into the formation after CO2 injection 

(Juanes et al, 2006; Qi et al, 2009). During the injection period, the less wetting CO2 

displaces the more wetting brine in a drainage-like process. However, after injection, 

the buoyant CO2 migrates laterally and upward, and water displaces CO2 at the 

trailing edge of the plume in an imbibition-like process. This leads to disconnection 

of the once-continuous plume into blobs and ganglia, which are effectively 

immobile.  

 

Solution trapping is the dissolution of CO2 in the formation water (aquifer brine) or 

residual oil. This fraction is stored permanently, as the injected CO2 will not reach 

the surface any sooner than the other fluid species originally present in the formation 

(Shah et al, 2008). The CO2 saturated brine is denser than the surrounding brine 

leading to convective mixing where the denser brine migrates deeper into the 

formation over hundreds of thousands of years (Lindeberg and Wessel-Berg, 1997; 

Ennis-King and Paterson, 2005). The solubility of CO2 decreases with increasing 

temperature and salinity, and increases with increasing pressure. 

 

CO2 and its aqueous derivatives on reaction with aquifer solids may be stored as 

precipitated and adsorbed phases. This is known as mineral trapping (Bachu et al, 

1994; Gunter et al, 2000). An example is the precipitation of calcium, magnesium, 
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and iron carbonate on reaction with silicate minerals. This process is a method of 

permanently sequestering the CO2 injected into the formation. This is the ultimate 

desirable form of sequestration, because once geochemical equilibrium is reached, it 

is unlikely that mineralised CO2 will be able to leak into the atmosphere. For long-

term CO2 storage, these slow reactions may proceed to an appreciable extent (Gunter 

et al, 2000; Lin et al, 2008). 

 

A major issue in CO2 geological storage is to ensure that the CO2 will remain stored 

in the geological formation where it is injected (Chiquet et al, 2007a; Li et al, 2006).  

For optimization of the CO2 storage efficiency, reservoirs are commonly selected to 

ensure that CO2 will be injected and stored as a dense phase. In most cases this dense 

phase, being lighter than the formation brine and most oils, will rise buoyantly to the 

top of the reservoir structure and accumulate beneath the seal rock (or caprock), a 

low permeability (usually shale) porous medium saturated with brine (salted water) 

(Chiquet et al, 2007b). The caprock is susceptible to capillary failure, and storage 

safety is therefore dependent on the caprock ability to prevent or seriously hinder 

CO2 leakage. Study on leakage of seals for CO2 geological storage has consequently 

become a recent focus of research interest on the porous media. In the presence of 

two or more immiscible fluid phases in the caprock rock, multiphase flow will occur, 

which is associated with capillary effects. Fluid transport is then controlled by the 

interfacial tension of the fluids involved, the wettability of the solid surface with 

respect to the fluids, and the structure of the pore system (Hildenbrand et al, 2002). 

A clearer understanding of this pore-level event will be needful in making accurate 

assessments of the leakage risks of stored CO2. Although a lot of investigations have 

been carried out on the sealing integrity of caprocks (Hildenbrand et al, 2004; 
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Chiquet et al, 2007; Li et al, 2005; Chalbaud et al, 2009), the results so far suggest 

that some fundamental data for accurate interpretation of seal leakage are still 

lacking. For example, the contact angle used in estimating the capillary resistance are 

measured on flat surface and most times assumed to be constant. Also, the exact 

impact of the pore geometry is not fully understood. This may be due to the fact that 

the measurement of petrophysical and fluid transport properties of fine-grained rocks 

is time consuming and the corresponding data base is relatively small (Hildenbrand 

et al, 2002). In this study we have developed a method to measure contact angle in a 

pore and also measure the resistance to two-phase flow in the single pore.  

 

2.5 Characterisation of Porous Media Resistance 
 

 

2.5.1 Permeability 
 

 

Resistance to flow in porous media is usually measured by its permeability, a 

measure of the capacity of the porous medium to transmit fluid (API Code 27, 1952). 

It is one of the most important parameters in reservoir studies, and a measure of the 

fluid conductivity of the particular material. It is a complex interplay of porosity, 

pore connectivity, grain packing, grain size, pore size, and rock diagenesis (Rezaee et 

al, 2012). 

 Permeability of petroleum reservoir rocks may range from 0.1 to 1000 or more 

millidarcy as shown in Table 2.1.  
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Table 2.1: Permeability and Porosity of Selected Oil Sands (Tiab and 
Donaldson, 2015) 
 

 

 

 

Conventional petroleum reservoirs have permeability more than 1 md, near tight 

reservoirs have permeability between 1 and 0.1 md and tight reservoirs have 

permeability less the 0.1 md, based on the in-situ permeability values (Figure 2.11). 

 

Permeability may be absolute, effective or relative. Absolute permeability is the 

capacity of a porous medium to conduct fluid when saturated with a single fluid 

(permeability of a fluid at 100% saturation). Effective permeability is the capacity of 

the porous medium to conduct a fluid in the presence of other fluids. Relative 

permeability is the ratio of the effective permeability of a given fluid at a partial 

saturation to the permeability at 100% saturation. That is, the ratio of effective 

permeability to absolute permeability. By analogy with electrical conductors, 

permeability represents the reciprocal of the resistance which the porous medium 

permits flow. 
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Figure 2.11: Conventional, near tight and tight gas sand definition based on 
the in-situ permeability. The tight sand matrix is primarily composed of micro-
pores where average pore throat aperture might be less than 1 μm in 
diameter (Rezaee et al., 2012). 
 

 

Rezaee (2012) stated that one of the main controlling parameters for permeability, in 

addition to pore connectivity, is the pore throat which is a very tiny element in the 

rock, and any reduction in the pore throat size will affect the permeability 

significantly. Thompson et al (1987) had suggested earlier that permeability can be 

expressed in terms of a single effective pore diameter measured from mercury 

injection capillary pressure and this permeability relation is valid for essentially all 

porous rock and for a broad class of porous media. 

 
 
 
 



Chapter 2: Theoretical Background and Literature Review 

60 

 

2.5.1.1 Permeability from pore throat parameter and porosity 
 

 

Permeability of porous media is usually expressed to depend on some physical 

properties of the interconnected pore system such as porosity and tortuosity. The 

natural assumption would be that permeability depends on porosity, but it is not 

simple to determine appropriate permeability-porosity relationship (Costa, 2006). For 

example, two porous systems can have same porosity but different permeability.  

Many investigations have established that permeability of the porous media is mainly 

dependent on the pore throat radius, with the pore space contributing a little. 

One of the most widely accepted and simplest model for the permeability-porosity 

relationship is the Kozeny-Carman (KC) model (Kozeny, 1927; Carman, 1937), 

which provides a link between media properties and flow resistance in pore channels 

(Costa, 2006). The starting point of the KC equation is the comparison between the 

average fluid velocity as given by Darcy’s law and that obtained from the Poiseuille 

formula for capillary tube. The capillary tube model considers the porous medium as 

consisting of straight cylindrical capillary tubes with an average inside diameter.  

 

The Kozeny-Carman (1937) equation is expressed as: 

 

  
 

 

  

  
                                                                                                  (2.4) 

 

where k is absolute permeability (cm²),   is porosity (%), τ is tortuosity 

(dimensionless), and   is radius (cm) of capillary tube. 

Equation (2.4) shows the dependence of permeability on both of the pore geometry 

segments; pore spaces and pore throats. For constant porosity, permeability is 

directly proportional to pore throat radius. 

 



Chapter 2: Theoretical Background and Literature Review 

61 

 

Salah (2011) made a porosity-permeability plot of 219 samples of sandstones and 

carbonates studied and observed that the regression coefficient was very low (R
2
 = 

0.376) (Figure 2.12). For better accuracy, the permeability was plotted against 

porosity and pore throat from R35, and the regression coefficient increased from 

0.376 to 0.9469 (Figure 2.13). R35 was chosen to represent the pore throat as most 

studies had shown that R35 dominate the flow within the measured sample and it is 

commonly used to predict the flow units of reservoir rocks. This increase of 

regression coefficient on introduction of R35 confirms that the pore throat is the 

main effective parameter in the fluid flow through the reservoir rock pore space 

configuration.  

. 

 

 

 
Figure 2.12: Permeability vs Porosity (Salah, 2011) 
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Figure 2.13: Permeability vs Porosity and R35 (Salah, 2011) 
 
 

 

 

 

 
 

Figure 2.14: Permeability prediction from pore throat parameters (Salah, 
2011) 
 

 

 

Scheidegger (1974) expressed a relationship between permeability and pore throat 

diameter based on the capillary tube model, from Hagen-Poiseuille and Darcy laws. 
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The flow rate for a bundle of straight parallel capillaries is given by Hagen-Poiseuille 

equation as: 

  
     

   
                                                                                          (2.5) 

 

where   is the flow rate (m
3
),   is the radius of the capillary (m),    is length of 

capillary (m),    is the fluid viscosity (Pa.s or N.s/m
2
), and     is the pressure drop 

across the capillary (Pa). 

The total area, , available to flow is 

 

                                                                                                  (2.6) 

 

So that Equation 2.5 reduces to 

 

   
  

 

  

  
                                                                                        (2.7) 

 

It is known from Darcy’s law that 

 

    
  

  
                                                                                          (2.8) 

 

where   is the permeability of the medium (m
2
). Therefore, equating Darcy’s and 

Poiseuille’s equations for fluid flow in a uniform and smooth-walled tube (Amyx et 

al, 1960; Oritz-Arango and Kantzas, 2011; Salah, 2011),
 

  
  

 
                                                                                                 (2.9) 

 

where   and   are in consistent units (  in m
2
 for   in m). 

 

Equation (2.9) shows also that permeability is mainly a function of the tube radius 

which is represented by the pore throat radius in reservoir rocks. This again shows 

the principal role of pore throat size in permeability estimation. Salah (2011) also 

attempted to establish the relationship between pore throat diameter and permeability 

using pore throat radius corresponding to a mercury saturation of 25% (R25), 35% 

(R35), 50% (R50) and 75% (R75) for the mixed suite of sandstones (179 samples) 
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and carbonates (40 samples) (Figure 2.14). The regression coefficients using the four 

different mercury saturations were 0.92, 0.92, 0.91 and 0.83 for R25, R35, R50 and 

R75, respectively. These are excellent demonstrating the high dependence of the 

measured permeability on pore throat size. However, it should be noted from Figure 

2.14 that the pore throat size correlation has very high uncertainty, 5 orders 

magnitude variance. This implies that pore topology is the first order control. Salah 

(2011) suggested that any of the four equations can be used to estimate permeability 

from pore throat size. This could be very useful for uncored wells where the pore 

throat size can be measured on cutting samples to estimate permeability, especially in 

tight reservoir rocks. 

 

Scheidegger (1974) also expressed permeability as: 

 

  
    

  
                                                                                                (2.10) 

 

where k is permeability in cm
2
 and    is the average diameter of the capillary in cm. 

For    in microns, porosity   in fraction, and permeability   in md (Permadi and 

Susilo, 2009), Eq. (2.10) becomes: 

                                                                                              (2.11) 

 

This is similar to a correlation (practical) obtained for sandstone samples: 

 

           
                                                                                   (2.12) 

 

where    is effective (mean) hydraulic diameter in microns. 

 

They suggested that the power for    in Eq. (2.12) is less than 2.0, probably due to 

irregular shape of the pore throats. According to fractal theory, a plane with a 

perfectly smooth, regular shape must have a fractal dimension of less than 2.0. The 

cross-sectional area of rock pores, from investigation, ranges from 1.5800 to 1.8120, 
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with the fractal dimension increasing with the permeability. For tortuous capillary 

tubes with tortuosity τ, Eq. (2.11) may be written as (Scheidegger, 1974): 

                                                                                                    (2.13) 

 

where       ,    is the actual distance travelled by the fluid through the tubes 

from the inlet to the outlet, and   is the straight length of the medium. As natural 

porous rocks have τ mostly greater than 1.0, the constant in Eq. (2.13) should be less 

than 31.6875. 

  

Porosity for the capillary tube model (Scheidegger, 1974) is: 

 

  
         

   
                                                                                       (2.14) 

 

where n is the number of capillaries in the bundle,    is the pore length, and    is 

mean effective pore radius. For a uniform capillary,    , and 

                                                                                                            (2.15)    

 

or      

 

    
 

 
                                                                                                     (2.16)                     

 

The parallel type model (Scheidegger, 1974) in which the permeability is lowered by 

a factor of 3 gives permeability as: 

  
    

  
                                                                                                        (2.17) 

 

For    in microns, porosity   in fraction, and permeability   in md (Permadi and 

Susilo, 2009), Eq. (108) becomes: 

 

                                                                                                      (2.18) 

 

 

 
 
 
 



Chapter 2: Theoretical Background and Literature Review 

66 

 

2.5.1.2 Permeability from Mercury Injection Capillary Pressure (MICP)  
Methods 

 

 

Permeability has been determined using a number of empirical correlations from 

mercury injection capillary pressure (MICP) measurements based on Washburn 

equation (see 2.5.3.1). As these correlations are based on Washburn equation, they 

may apply strictly to single phase flow (displacement of air by mercury in the pore 

space of reservoir rocks) (Rezaee et al, 2012). However, they are often applied to the 

case of two-phase flow.  

 

Purcell (1949) using the graphical integral of the curve of mercury saturation versus 

reciprocal capillary pressure squared related capillary pressure empirically to air 

permeability. Swanson (1981) empirically expressed the relationship between 

permeability and the hyperbola of the log–log mercury injection capillary pressures 

curve, having observed earlier (Swanson, 1977) that the complete saturation of 

effectively interconnected pore spaces with a non-wetting phase (Wood's metal) 

corresponded to the apex of the hyperbola of a log–log mercury injection capillary 

pressures curve (Eq. 2.19). 

         
   

  
 
    

     

                                                                             (2.19) 

                                                                         

where      is air permeability (md),    is the mercury saturation (%) corresponding 

to the apex of the hyperbola and     is capillary pressure (psi).  

 

Katz and Thompson (1986) reported a relationship between permeability and 

conductivity at a threshold pressure (Eq. 2.20). 

 

  
 

   
   

   
  

  
                                                                                    (2.20) 
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where    is the characteristic pore size (e.g. the calculated pore size (mm) for the 

threshold pressure at which mercury forms a connected pathway through the 

sample), and       is the ratio of rock conductivity to the conductivity of the 

formation water. 

 

An empirical relationship between permeability, porosity, and throat size 

corresponding to a mercury saturation of 35%       was developed by Winland (in 

Kolodzie, 1980) (Eq. 2.21). 

                                                                  (2.21) 

                                    

Pitman (1992) using multi-regression analyses of mercury injection, permeability 

and porosity data for sandstone samples extended Windland’s work to obtain the 

following correlation: 

                                                                 (2.22) 

or 

                                                                    (2.23) 

 

To obtain the pore throat diameter from permeability and porosity, Equation 2.23 can 

be expressed as: 

   
              

 

                                                                              (2.24) 

   

Rezaee et al (2006) using regression analysis also developed a set of relationships 

between permeability, porosity and pore throat size for 144 carbonate samples (Eq. 

2.25). They indicated that pore throat radii corresponding to a mercury saturation of 

50%       is the best permeability predictor for carbonates with complex pore 

networks. 

 

                                                                  (2.25) 

or 

   
              

 

      
                                                                        (2.26) 
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All the correlations above are for conventional reservoirs, and in all of the equations 

   is the pore throat corresponding to ith percentile,   is uncorrected air permeability 

(md) and   is porosity (%). For tight gas sand reservoirs from MICP, Rezaee et al. 

(2012) used multi-regression analysis to develop an empirical equation for 

calculating permeability from porosity and pore throat radius (Eq. 2.27). They 

concluded that pore-throat radii corresponding to a mercury saturation of 10% is the 

best permeability predictor of MICP for tight gas sands. Equation 2.27 is the 

corresponding equation that uses    . 

                                                                      (2.27) 

or 

   
            

 

      
                                                                             (2.28) 

 

where k is the dry gas permeability (md),   is porosity (%) and     is the pore throat 

size (micron) corresponding to the 10
th

 percentile of mercury saturation on a 

cumulative mercury injection plot. 

Rezaee (2012) concluded that while Winland, Pittman and Rezaee’s equations (Eqs. 

2.21 – 2.26) overestimate permeability, permeability obtained from Equation 2.27 

shows a relatively good agreement with the measured permeability for tight gas 

reservoirs. 

 

2.5.1.2.1 Pore throat in permeability estimation 

 

Pore throat is a critical element for fluid flow in porous medium, because it controls 

fluid movements and influences the hydraulic properties such as permeability, 

capillary pressure, fluid saturation, as well as, the displacement mechanisms of two 

immiscible fluids (Gunter et al, 2014; Li and Wardlaw, 1986; Mayer and Miller, 



Chapter 2: Theoretical Background and Literature Review 

69 

 

1992; Al-Raoush and Wilson, 2005; Roof, 1970). It is therefore of importance in 

many fields of applied science and technology, including fluid flow in porous media 

such as in the extraction of oil, gas and groundwater (Zhang et al, 2015), geological 

storage of waste product, as well as in fine particle filtration (Lin and Miller, 2000). 

It is also being used by exploration geologists to evaluate the sealing capacity of cap 

rocks, as the pore throat size that corresponds to displacement pressure can be 

determined from a mercury injection test. 

 

Pore throats are constrictions in the pore space of a porous medium and as such 

modulate flow and offer hydraulic resistance to flow (Hammecker et al, 2004; 

Nelson, 2009). The ease with which the porous medium transmits fluids is measured 

by the permeability of the medium (Zou et al., 2012; Rezaee et al., 2012), which by 

analogy with electrical conductors represents the reciprocal of the resistance which 

the porous medium offers to flow. This indicates the relevance of the pore throat in 

studying the resistance to fluid flow in the porous medium. 

 

Numerous studies have shown the relevance of the pore throat size in determining 

the permeability of a porous medium. Thompson et al (1987) expressed permeability 

in terms of a single effective pore diameter measured from mercury injection 

capillary pressure, and stated that this permeability relation is valid for essentially all 

porous rocks and for a broad class of porous media. Andersson et al (2011) using 

Katz–Thompson model (Katz & Thompson, 1986, 1987) accurately predicted the 

permeability for macroporous alumina materials with porosities of 46–76% and 

suggested that the permeability to fluid flow in these materials is governed by the 

smallest constrictions between connected pores: the critical pore throat diameter. Zou 
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et al. (2012) observed that the permeability of the tight gas sandstone is heavily 

affected by the pore throat connectivity. Amaefule et al (1993) using Poiseuille’s and 

Kozeny-Carman’s equations showed that permeability is not only a function of 

pore/pore-throat radius, but also depends on porosity, surface area, and tortuosity. 

For constant porosity, the Kozeny-Carman equation shows that permeability is 

directly proportional to pore throat radius (Salah, 2011).  Swanson (1981), Pittman 

(1992) and Bryant et al (1993) observed that in many cases, pore/pore throat radius 

have an effect on permeability higher than that of porosity. Salah (2011) also 

recently showed experimentally the significant role of pore throat size in 

permeability estimation based on Hagen-Poiseuille and Darcy laws. With 219 

sandstone and limestone samples a relationship of each pore throat size obtained for 

25% (R25), 35% (R35), 50% (R50) and 75% (R75) mercury saturation, with 

permeability was established. The regression coefficients obtained in each case was 

excellent, demonstrating the high dependence of the permeability on pore throat size. 

It was therefore suggested that any of the four equations (Equations 2.29 to 2.32) 

obtained could be used to estimate permeability from pore throat size.  

 

                                                                                                                       (2.29) 

R
2
 = 0.9241 (R25) 

 

                                                                                                                       (2.30)   

R
2
 = 0.9207 (R35) 

 

                                                                                                                        (2.31) 

R
2
 = 0.9085 (R50) 

 

                                                                                                                       (2.32)   

R
2
 = 0.827 (R75)     
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where,   is the permeability in millidarcy (md), and   is the effective radius in microns (µm) 

for the given mercury saturation. He suggested that this can also be extended to uncored 

wells, especially in tight rocks, by measuring the pore throat size on cutting samples to 

estimate permeability. We need to investigate further if this could be applicable in case of a 

highly porous medium. 

 

The importance of the dominating influence of the pore throat on permeability has been 

accounted for by the preferential occurrence of cementation at pore throats instead of within 

pore bodies. Neasham (1977) and Wilson and Pittman (1977) observed that the presence of 

pore lining and/or pore-bridging clays may reduce permeability significantly by affecting 

pore/pore throat radius and surface area. Beard and Weyl (1973) believe that surface area, 

pore size, and shape (tortuosity) are strongly correlated with permeability because they are 

dependent on grain size and grain packing. 

 

2.5.1.2.1.1 Pore throat identification 

 

Pore throats of porous media are usually identified and defined in terms of the pore 

size, the pore throat being considered to have smaller pore diameter than the pore 

body. Martin et al (1997) classified the pores of the producing zones of reservoirs 

based on their pore throat sizes; megaports have throat sizes greater than 10 µm, 

macroports throat sizes range from 2.5 - 10 µm, mesoports have throat sizes of 0.5 - 

2.5 µm, microports have throat sizes in the range of 0.01 – 0.5 µm and nanoports 

have throat sizes less than 0.01 µm. For conventional sandstones, Nelson (2009) 

defined pore throat size as pore sizes greater than 2 µm, tight gas sandstone pore 

throats range from 0.03 – 2 µm, while shales pore throat is in the range of 0.005 – 0.1 

µm. Zou et al (2012) defined the pore throat of tight gas sandstone reservoirs to be 
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pore sizes less than 1 µm. These definitions based on pore size are dependent directly 

or indirectly on mercury injection capillary pressure measurements. Mercury 

injection porosimetry, which is the usual experimental method to determine pore 

throat size, actually measures the pore size distribution of a reservoir rock in which 

pores with similar pore sizes are grouped together. Based on the pore size 

distribution, the pore throat is then assigned to a group of pores with the smallest 

effective pore sizes. 

 

 

2.5.1.3 Permeability from displacement pressure 
 

 

Displacement pressure is that pressure which must be applied to a pore system before 

the nonwetting phase starts to displace the wetting phase. This technique is derived 

from the combination of work by Wyllie & Rose (1950) and Rose & Bruce (1949). 

From Wyllie and Rose,   

  
  

  
 

  

 
  

 

                                                                                              (2.33) 

where   is the resistivity factor of the porous medium,    is the resistivity of the 

porous material saturated with brine, and    is the resistivity of the brine. 

From Rose and Bruce, 

  
 

   
 

  

  
                                                                                                      (2.34) 

where,   is tortuosity,   is porosity,   is permeability,    is a shape factor,   is 

interfacial tension, and    is displacement pressure. Combining Equations 2.33 and 

2.34 give the permeability (Eq. 2.35). 

  
      

    
                                                                                                          (2.35) 
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where,    is permeability in md,    is displacement pressure in psi,   is surface 

tension in dynes/cm,     is a pore shape constant (usually about 2.25), and   is 

porosity (fractional). The displacement pressure is the capillary pressure 

corresponding to about 95 percent water saturation (Raymer and Freeman, 1984).  

 

2.5.2 Fluid Saturation 
 

 

Several macroscopic transport properties such as relative permeability, capillary 

pressure and dispersivity, which are used traditionally to characterize multiphase 

transport in porous medium are found experimentally to depend on fluid saturations, 

saturation history, and fluid properties as well as pore space morphology (Mohanty 

and Salter, 1982). Fluid saturation of a porous medium is dependent on the fluid 

distribution in individual pores, which is controlled by the capillary forces acting on 

this microscopic scale.  

 

The nonwetting phase saturation is a function of the capillary pressure between the 

nonwetting phase and the wetting phase in a two-phase fluid system in a porous 

medium.  

If the capillary pressure (Eq. 2.36) between the two immiscible fluids is decreased, a 

portion of the nonwetting fluid may be mobilized and extracted from the system. 

                                                                                                           (2.36)           

where,     is the pressure in the nonwetting phase and    is the wetting phase 

pressure. This is the basis of EOR by surfactant flooding.  No matter how small the 

capillary pressure between the two fluids, the wetting phase does not replace 

completely the nonwetting phase. As the saturation of the nonwetting phase 
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decreases, capillary forces tend to pinch off isolated blobs of the nonwetting fluid in 

the pore spaces. The discontinuous nonwetting fluid becomes entrapped and is said 

to be in a state of residual saturation (Mayer and Miller, 1992). The nonwetting 

blobs, which are in a state of residual saturation, assume shapes that are influenced 

by the pore geometry. The blob sizes vary over several orders of magnitude and this 

size distribution can have significant effects on the transport properties of the 

nonwetting phase. For example, for liquid-liquid interface, such as in oil recovery, 

the viscous forces required to remove a blob are related to the blob length, blob 

volume, and the surface area distributions of the oil blob will determine, at least 

partially, the rate of nonwetting fluid dissolution into the aqueous phase (wetting 

fluid). Wardlaw and McKellar (1985) showed that if the liquid-phase properties are 

held constant, given a constant capillary number and constant density forces, then 

maximum stable blob length is dependent on the porous medium properties of 

permeability,   and pore throat,   . 

 

Many investigations have been carried out on the influence of fluid saturation on 

resistance to fluid displacement in single pores. Most of them focus on the 

relationship between film thickness or residual saturation and the correlation group 

known as the capillary number, defined as the ratio of viscous force to capillary force 

(interfacial force). One of the most common forms of capillary number is that by 

Saffman and Taylor (1958) (Equation 2.37). 

   
  

 
                                                                                                          (2.37) 

 

where   is the velocity of displacing phase (Darcy velocity) (ms
-1

)   is the viscosity 

(Pa.s), and   is the interfacial tension between the displacing phase and the displaced 

phase (Nm
-1

).   is defined as      , with    being the cross-sectional area, m
2
. 
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Another form of the capillary number is defined by Taber (1969) in terms of pressure 

drop between two points, the flow length, and the interfacial tension (Equation 2.38). 

   
  

  
                                                                                                           (2.38) 

 

where,    is the pressure drop (Pa),   is the flow length of the porous medium (m), 

and   is the interfacial tension (Nm
-1

).  

The range of the flow velocities (from 0.26 to 1.29 m/day) used in calculations for 

storage sites is assumed to be the same as in the laboratory experiments (Polaka et 

al., 2011). 

 

Fairbrother and Stubbs (1935), in their pioneering work, found that in a capillary 

tube, an air bubble moves faster than the liquid being displaced due to the adhesion 

of a thin film on the walls of the tube. The magnitude of the residual liquid left 

behind was found to be a function of the balance between the viscous forces and the 

capillary forces. This was expressed through the capillary number   , as follows: 

   
   

 
                                                                                                         (2.39) 

where, μ is the viscosity of the displaced fluid,    is the bubble velocity and σ is the 

surface tension of air–liquid. They introduced an empirical equation to determine the 

fraction of the liquid supported on the surface of the tube and was related to the 

capillary number as follows: 

 

  
     

  
                                                                                               (2.40) 

 

where, νm is the average velocity of the liquid. This correlation is useful for 1.0E-

3<Ca<1.0E-2. Taylor (1961) found that Eq. (2.40) can be extended to Ca=0.09 and 

W approaches an asymptotic value of 0.56. 
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Bretherton (1961) studied the motion of an inviscid bubble in a straight capillary 

tube. His results show that there is a thin film with constant thickness between the 

bubble and the tube wall, and the thickness of the film is a function of Ca. He 

proposed an equation to predict the film thickness, assuming that the bubble profile 

is of constant curvature except very near the wall, where the meniscus is deformed 

by viscous forces: 

 

 
                                                                                                        (2.41) 

where,   is the film thickness and,   is the radius of the tube. Bretherton also carried 

out experiments to check the theory and found that the theory underpredicts the 

measured values of film thickness as Ca becomes small. He found that Eq. (2.41) is 

applicable for Ca>1.0E-4. Similar conclusions are reported from the experimental 

investigations of Schwartz, Princen & Kiss (1986). To follow up the work of 

Bretherton, Cox (1962) presented experimental results indicating that the ultimate 

value of W was about 0.6. Chen (1986) found that the film thickness decreased as the 

capillary number decreased until it approaches a constant value at low capillary 

number, from the measurement of the film thickness through a conductimetric 

technique. His results showed a deviation from Bretherton theory and he argued that 

such deviation was due to the roughness of the tube wall.  

 

Recently, Lucas et al (2006) observed from experimental studies that in immiscible 

displacement of a non-wetting fluid by a wetting fluid in a capillary a thin precursor 

wetting film exists, which enables a piston-like motion of the meniscus (Figure 2.13). 
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Figure 2.15: Model of interface displacement in circular capillary: ε tends to 
zero (Lucas et al, 2006). S and Γf – boundaries of thin film; ε – thickness of 
thin film; Γm – meniscus; I – wetting fluid; II – nonwetting fluid. 
 

 

 

Gutenev et al (2003) suggested that the thin film thickness ɛ is given by: 

                                                                                                            (2.42) 

where R is the mean meniscus curvature and    is the capillary number. When 

       capillary effect is important, and then the film thickness is negligible in 

front of the meniscus. That is,       . As the film thickness is negligible at the 

front, the phenomenon can be described as a displacement in a capillary whose pores 

are parallel. Argüelles-Vivas and Babadagli (2014) experimented and quantitatively 

analysed film thickness (residual oil saturation) development in gas-oil 

displacements at low capillary numbers, for gas injection (isothermal) and steam 

assisted gravity drainage (SAGD) or steam injection  (non-isothermal) oil or heavy-

oil recovery processes in thick reservoirs using circular capillary tubes. The effects of 

injection (or flow) rate and temperature on the film development were investigated 

for temperatures between ambient (23.5
o
C) and 85

o
C. For horizontal displacement of 

kerosene by air at 23.5
o
C and 85

o
C they found that for Ca<1.0E-3, the film thickness 

(residual oil saturation) is practically independent of the temperature of the system, 

but depends on the capillary forces. For higher capillary number, the residual oil 



Chapter 2: Theoretical Background and Literature Review 

78 

 

saturation is predominantly dependent on the temperature and highly dependent on 

the gas injection rate. Initial water saturation resulted in increase in residual oil 

saturation, especially at high temperatures.  

For air-heavy oil horizontal displacements at 55
o
C and 85

o
C, for low capillary 

numbers (Ca<1.0E-2), in the region for fluid flow in oil reservoirs, the residual oil 

saturation is not practically affected by temperature and gas flow rate, but just 

depends on the capillary forces. At higher capillary numbers, in the middle region 

zone (Ca>1.0E-2), the residual oil saturation is dependent of the temperature and gas 

flow rate, and therefore of the competition between capillary and viscous forces. This 

is also similar to the results obtained for air-kerosene displacement. 

 

The investigation of Giavedoni and Saita (1997) covered the widest capillary number 

range, 5.0E-5<Ca<10, and found an excellent agreement with the Bretherton's theory 

for Ca≤1.0E-3. Modelling the low velocity region is still a challenge due to the 

complexity of solving the thin-film region (Dong and Chatzis, 2004). Low capillary 

numbers (Ca<1.0E-4) are characteristic of oil reservoirs (Schwartz et al., 1986; 

Dullien, 1992). Bergslien and Fountain (2006) suggest that for capillary forces to 

dominate flow, the capillary number needs to be less than 10
-4

. They defined 

capillary number, Nc, as: 

   
    

       
                                                                                                    (2.43) 

where,     is the water velocity,     is the viscosity of water,     is the interfacial 

tension between the fluids and θ is the contact angle. 

 

Although considerable investigations on the impact of capillary number on fluid 

saturation have been carried out we do not understand fully its impact on resistance 
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to displacement in the pores. For example, parameter such as contact angle were 

measured on flat surfaces and in most cases assumed to be constant, and the actual 

impact of pore structure is not clear. We need to investigate further on this. 

 

 

2.5.3 Capillary or Displacement Pressure 
 

 

Capillary pressure is the pressure difference existing across the interface holding 

movement of the interface of two immiscible fluids. It is expressed by the Young-

Laplace equation (Equation 2.1). 

The capillary pressure is described by Purcell (1949) as displacement pressure, 

which is analogous to injection pressure as described by Berg (1975).  The 

displacement pressure is that force required in displacing the wetting phase (water) 

from the cylindrical pore and forcing the non-wetting phase (oil) filament through 

the pore. A change in any of the variables in Equation 2.1 will change the 

displacement pressure or the resistant force to displacement. The displacement 

pressure will increase with decrease in pore radius, increase in interfacial tension and 

decrease in contact angle. For non-cylindrical pores Smith (1966) defined the 

displacement pressure or breakthrough pressure as the minimum pressure required to 

establish a connected hydrocarbon filament through the largest interconnected water-

saturated pore throats of the rock. 

 

In order to determine the displacement or breakthrough pressure for a given 

nonwetting-wetting-solid system, the interfacial tension, wettability and radius of the 

largest connected pore throats must be measured or estimated. 
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The Young-Laplace equation assumes constancy of contact angle and must be 

applied with caution since contact angle is a function of capillary pressure as well as 

of interface type (Li and Wardlaw, 1986). 

 

Reservoir initial fluid distribution and hydrocarbon recovery during primary or 

enhanced production are affected by capillary pressure. Fluids distribution in 

reservoir pores is a function of capillary forces, which in turn are related to pore 

geometry, system wettability, and fluid property. Capillary pressures data are used 

primarily to evaluate reservoir rock quality calculate the height of oil columns or 

estimate relative permeability characteristics (Rezaee et al, 2012). One of the most 

important and frequently used applications is to derive absolute permeability from 

some MICP data (as discussed in previous sections). 

 

Understanding of the capillary pressure behaviour is also very essential in assessing 

the injectivity of CO2 into hydrocarbon reservoirs (Bennion and Bachu, 2006a) or 

suitability and potential of CO2 sequestration in deep saline aquifers (Plug and 

Bruining, 2007; Kumar et al, 2004; Shah et al, 2008). Capillary pressure behaviour 

has also been shown to be very important in mechanisms such as capillary trapping 

of CO2 for underground storage (Kumar et al, 2005) and the alternate imbibition and 

drainage processes in heterogeneous media which results in capillary hysteresis. In 

addition, capillary pressure is a direct measure of wetting effects (Anderson, 1987a, 

van Lingen et al, 1996). This wetting behaviour is relevant for the integrity of the 

caprock as a geological seal (Kumar et al, 2005), and the seal capacity of the caprock 

is a measure of the sustainability of CO2 sequestration. Furthermore, capillary 

pressure, interfacial tension and relative permeability have been shown to affect the 
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flow and storage of CO2 as an immobile phase in the pore space at irreducible 

saturation (Kumar et al, 2004; Hassanizadeh and Gray, 1993; Reeves and Celia, 

1996). 

 

A number of techniques for measurement of capillary pressure at relevant pressure 

and temperature conditions are described in literature. Most techniques are based on 

the porous plate technique (Christoffersen and Whitson, 1995), the micro-pore 

membrane technique (Jennings et al, 1988), mercury drainage experiments 

(Anderson,1987a) and the centrifuge method (Newsham et al, 2004). 

 

 

 2.5.3.1 Measurement of Capillary Pressure – Mercury Porosimetry 
 
 
Mercury Injection Capillary Pressure (MICP) measurement or Mercury Porosimetry 

is the most rapid method for measuring capillary pressure as a function of water 

saturation in rocks, and still remains as one of the standard petrophysical tests. Any 

sample shape can be used. The method also increases the range of pressure 

investigation; pores between 3 nm and 500 µm can be investigated (Amyx et al, 

1960; Giesche, 2006). It also has an advantage of providing a wide range of 

information. Apart from measuring directly pore-throat size distribution (PSD) and 

the total pore volume or porosity, it can also indirectly evaluate other pore 

characteristics, such as total pore surface area and median pore diameter (Giesche, 

2006). 

 

The mercury capillary apparatus is as shown in Figure 2.16. The essential 

components of the apparatus are well described by Purcell (1949). 
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Figure 2.16: Equipment for mercury injection capillary pressure measurement 
(Tiab and Donaldson, 2015). 
 

 

To conduct a test, a core is cleaned, dried, inserted in the sample chamber and 

evacuated. Incremental quantities of mercury are injected while the pressure required 

for injection of each increment is recorded. The volume of mercury injected at each 

pressure determines the nonwetting-phase saturation, because mercury is a non-

wetting fluid, whereas the mercury vapour corresponds to a wetting phase. This 

procedure is continued until the core sample is filled with mercury or the injection 

pressure reaches some predetermined value. Each incremental pressure increase (Pc) 

is plotted versus the corresponding wetting-phase saturation to produce a curve of 

injection pressure versus fluid saturation from which a number of parameters can be 

extracted (Mian, 1992). Injection pressure values are directly converted into 
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corresponding pore size by using a modified Young-Laplace equation, which is most 

of the time referred to as the Washburn equation (1921). 

A typical capillary pressure curve for tight gas sands is shown in Figure 2.17 and the 

pore throat size distribution from the mercury injection data is shown in Figure 2.18. 

Figure 2.16 shows that the dominant pore throat sizes for these sands range between 

0.1 and 1 µm.  

 

One of the most important limitations is the fact that it measures the largest entrance 

towards a pore, but not the actual inner size of a pore (Giesche, 2006). Other 

disadvantages are that, the core cannot be used for other tests after injection of 

mercury because the mercury cannot be removed safely from the rock, and mercury 

vapour is toxic, so strict safety precautions must be followed when using mercury.  

In addition, the mercury injection curve does not yield data on capillary hysteresis 

(Tiab and Donaldson, 2015).  
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Figure 2.17: Mercury saturation versus injection pressure for tight gas sands 
(Rezaee et al, 2012). 
 

 

 

 

 

 
Figure 2.18: Pore throat size distribution (Rezaee et al, 2012). 
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2.5.4 Wettability 
 

 

Wettability is the tendency of one fluid to adhere to a solid surface in the presence of 

other immiscible fluids (Anderson, 1986b and Buckley et al, 1997). It may also be 

defined as the work necessary to separate a wetting fluid from a solid. At the pore 

scale, it is determined by the local contact angle. Complete analysis of wettability 

provides a good insight into the multiphase flow in oil reservoirs (Maghzi et al, 

2012). 

 

The wettability of a porous medium such as a reservoir rock is dynamic and history- 

dependent. Most reservoir rocks are neither completely water-wet nor oil-wet. It has 

been observed from measurements of oil/water contact angle that most mineral 

surfaces, which were initially water-wet, become oil-wet after prolonged contact 

with crude oil (Wilhite, 1986; Dullien, 1992; Craig, 1993; Blunt, 1997), through the 

deposition of surface active components in the crude called asphaltenes (Buckley and 

Liu, 1998; Hui and Blunt, 2000). Craig (1993) showed that if crude oil and brine are 

left to age on a solid surface, the contact angle changes typically from a value much 

less than 90
o
 (water-wet) to about 150

o
 (oil-wet) after aging for 100 – 1000 hours. 

 

Oil and gas recovery, geological CO2 storage (Chalbaud et al, 2010; Plug and 

Bruining, 2007; Chalbaud et al, 2009; Chiquet et al, 2007; Hildenbrand et al, 2004) 

and methane production from hydrate bearing sediments (Seo et al, 2002; Sun et al, 

2004; Watanabe et al, 2005) are influenced by macroscopic parameters, such as 

capillary pressure and relative permeability, which are controlled by wettability.  

Many authors have documented that successful CO2 EOR and CO2 storage processes 

largely depend on the wettability of the CO2-crude oil-reservoir brine-reservoir rock 
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system (Andreas and Nadja, 2011; Yang et al, 2008b; Emberly et al, 2004; Buckley 

and Liu, 1998). Wettability, on the other hand, depends on pore geometry, fluid 

composition and properties, and the interfacial tension among the reservoir brine, 

CO2 and the reservoir minerals (Yang et al, 2008a; Chalbaud et al, 2006; Juanes et 

al, 2006) and has strong effect on capillary pressure (Yang et al, 2008a; Chalbaud et 

al, 2006, 2010; Juanes et al, 2006), relative permeability (Plug and Bruining, 2007; 

Juanes et al, 2006; Gaus, 2010), and phase distribution (Wu and Firoozabadi, 2010; 

Agbalaka et al, 2008; Drummond and Israelachvili, 2002; Van Oss and Giese, 1995; 

Morrow, 1990). The exact impact of each of these factors on pore wettability is yet to 

be fully understood because, to date, no relevant data on a single pore is available. 

Also, there are no data available regarding the change in pore wettability in non-flat 

surfaces caused by corrosive CO2 (Li et al, 2005; Hildenbrand et al, 2002). It is 

therefore very difficult to accurately predict the displacement behaviour of CO2 for 

geological storage and EOR. In order to facilitate the design of the CO2 EOR and 

CO2 storage processes it is pertinent to determine wettability in true geometry of the 

pore space and to determine the precise impact of the parameters on each pore. 

 

 

2.5.4.1 Contact angle 
 

 

Contact angle is the angle that the interface between two fluid phases makes with the 

solid surface. It is determined by the interactions across the three interfaces namely, 

solid/liquid, solid/gas and liquid/gas, and it is usually measured through the denser 

phase (Yuan and Lee, 2013; Miller and Neogi, 2008). Theoretically, it is expected to 

be characteristic for a given solid-liquid system in a specific environment (Snoeijer 

and Andreotti, 2008).  
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Contact angle is influenced by the surface energy of the solid surface, which varies 

greatly for different materials. The type and the intensity of the intermolecular forces 

acting inside the solid determine the surface energy of the solid surface. As a general 

rule, liquids with surface tension lower than the surface energy of the solid wet the 

substrate. Most metals and surfaces similar to silica have high surface energies and 

are therefore wetted by most liquids (Israelachvili, 1991), while polymers and waxes 

have low surface energies and their degree of wetting primarily depends on the 

surface tension of the liquid (Brandrup et al., 1999). 

 

The contact angle is usually measured on flat surfaces and for such surfaces it is 

measured from a drop of a suitable liquid resting on the surface. The droplet will 

completely spread out on the solid surface if the liquid is strongly attracted to the 

surface, and the contact angle will be close to zero degree. For example, a solid 

surface on which water droplet spreads easily is said to be hydrophilic. Less strongly 

hydrophilic solids will have a contact angle up to 90
o
. Hydrophobic surfaces will 

have the contact angle greater than 90
o
. When the contact angle is greater than 150

o
 

the surface is said to be super hydrophobic. On such surfaces the water droplet 

simply rests on the surface without any significant wetting. Therefore, the contact 

angle directly provides information on the interaction energy between the surface and 

the liquid. In practice, external forces such as gravity deform the droplet; 

consequently, the contact angle is determined by a combination of surface tension 

and external forces (usually gravity). In capillaries the effect of gravity is negligible; 

as such contact angle is determined by surface tension. 

A schematic of wettability levels on surfaces measured by contact angle is shown in 

Figure 2.19 
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Figure 2.19: Schematic of different levels of wettability of surfaces (Förch et 
al., 2009) 
 
 

Thermodynamically, contact angle is related to the interfacial tension of the three 

interfaces namely, solid-gas (nonwetting) interfacial tension, γSG; solid-liquid 

(wetting) interfacial tension, γSL; and liquid (wetting)-gas (nonwetting) interfacial 

tension, γLG by Young’s equation (Young, 1805; Chow, 1998): 

                                                                                              (2.44) 

where   is the equilibrium contact angle. The interfaces are shown in Figure 2.20. 

The interface where solid, liquid, and vapour co-exist is referred to as the “three-

phase contact line”. The contact angle can also be related to the work of adhesion by 

the Young-Dupré equation: 

                                                                                               (2.45) 

where       is the solid-liquid adhesion energy per unit area when in the medium 

V. 
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Figure 2.20: Schematic of a liquid drop showing the quantities in Young’s 
equation 
 
 

 

Young’s equation assumes a perfectly flat surface but in many cases surface 

roughness and impurities cause a deviation in the equilibrium contact angle from the 

contact angle predicted by Young’s equation. A drop will assume a wide spectrum of 

contact angles between the highest (advancing) contact angle, θA, and the lowest 

(receding) contact angle, θB, even in a perfectly smooth surface. 

 

2.5.5 Pore Structure 
 

 

The geometric and topological properties of the pores influence fluid transport on a 

microscopic scale (Silina et al, 2006; Sehbi et al, 2001; Wardlaw, 1980). Topology 

of the rock structure is concerned with the way the pores are connected together 

(pore connectivity). A reservoir rock contains pores connected by pore throats. As 

shown in Young-Laplace equation (Equation 2.1), the radius of the largest connected 

pore throats in the rock is a critical factor in estimating the displacement pressure of 

a given water-rock system. From the equation, the smaller the radius of the 

connected pore throats in a rock the grater the displacement pressure. The sizes and 
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arrangements of these pores and throats also strongly affect a wide range of reservoir 

properties such as permeability and formation factor, which represent the net effect 

of fluid interactions involving millions of pores and throats. The final geometry 

(sizes and shapes) of the pore, grain orientation and packing, and the degree of 

cementation and clay filling of pore spaces are controlled by diagenesis.  

 

Heath et al (2012) observed that pore size and shape affect the magnitudes of 

capillary breakthrough pressures and permeability. Wardlaw (1980) showed 

experimentally how pore geometry may influence multiphase flow and recovery 

efficiency during immiscible displacements in pore casts. He reported that the non-

wetting phase trapping caused by capillary forces is strongly dependent on the 

characteristics of the pore system of a reservoir rock, and that these characteristics 

can be identified quickly by visual observation of thin sections and pore casts. The 

characteristics of the pore system identified by Wardlaw are discussed in the 

following sections. 

 

2.5.5.1 Pore system characteristics  
 

 

As observed by Wardlaw (1980), the most important characteristics of the pore 

systems influencing fluid displacement are pore-throat size ratio, throat-to-pore 

coordination number, in addition to the type and degree of non-random heterogeneity 

and properties of pore surface. 

 

2.5.5.1.1 Pore-throat size ratio 
 

Pore-throat size ratio is defined as the ratio of the size of a pore body to the size of 

the pore throat connected to it. Dehghan et al (2009) showed that for all values of 
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coordination numbers, higher oil recovery is achieved at higher pore-throat size ratio. 

This is expected because higher pore-throat size ratio will lead to increased 

permeability. Wardlaw (1980) explained that decreasing microscopic displacement 

efficiency observed with decreasing porosity is due to increasing pore-to-throat size 

contrast. Increasing pore-to-throat size contrast accompanies decreasing porosity. 

 

Chatzis et al (1983, 1984) in their pore network studies gave experimental evidence 

that increases in the pore aspect ratio (pore body size/pore throat size ratio) produced 

smaller blob sizes. Similarly, the theoretical studies of Mohanty et al (1987) and the 

experimental studies of Wardlaw and Yu (1988) found that the aspect ratio influence 

the formation of blobs. The blob sizes are found to have significant effects on the 

transport properties of the nonwetting phase. For high aspect ratios, the primary 

control on the trapping of blobs in the pore spaces was provided by the pore throat 

size. (More on blob sizes are discussed in section 2.5.5.2). 

 

2.5.5.1.2 Coordination number or pore connectivity 
 

 

The coordination number of a pore system is defined as the average number of 

throats which connect with each pore. It determines the connectivity of the network 

of throats and pores, as well as, the number of different pathways or access routes 

between pores. Researches have suggested that at low porosity, the effective 

coordination number of the pore space is low, giving rise to high residual non-

wetting phase saturations and, therefore, lower microscopic displacement efficiency 

(Sehbi et al, 2001). Dehghan et al (2009) showed that final recovery efficiency is 

strongly affected by the coordination number of the pores, and increasing the 

coordination number value improves the final oil recovery.  
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The effect of pore coordination number on blob size distributions has been addressed 

by researchers. Chatzis et al (1983) observed that blob size was a relatively 

insensitive, inverse proportion of pore coordination number in experimental, etched-

glass pore network studies. Larson et al (1981) had earlier established that the pore 

coordination and dimensionality used in percolation model did not significantly 

affect blob size. 

 

 

2.5.5.1.3 Random and non-random heterogeneity 
 

 

The types and degrees of heterogeneity in the arrangement of pores also affect the 

fluid displacement. Pores and throats of differing sizes may be distributed randomly 

in a porous medium (randomly heterogeneous) or they may be distributed non-

randomly. In the non-random distribution, the larger pores may be clustered together 

in a section of the porous medium while the smaller pores may be clustered together 

in another section. Experimental investigations by Wardlaw and McKellar (1981) in 

glass micromodels showed that the amount of residual mercury following withdrawal 

is sensitive to the presence of certain types of non-random heterogeneity.  

 

2.5.5.1.4 Properties of pore surfaces 
 

 

Properties of the pore surfaces include composition and degree of roughness. The 

surfaces of pores in reservoir rocks may be smooth as commonly found in crystal 

surfaces of some dolomites or rough as in the commonly pitted or clay coated 

surfaces of many sandstones. Surface roughness affects advancing and receding 

contact angles.  
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2.5.6 Surface tension 
 
 
Surface tension is caused by the imbalance of molecular force at the interface 

between two immiscible fluids. When two immiscible fluids are in contact, 

molecular attractions between similar molecules in each fluid are greater than the 

attractions between the different molecules of the two fluids. The boundary between 

the fluids has a region having properties different from those in the fluids farther 

from the boundary. Molecular attraction is greater on the side of the more dense 

fluid, and the surface of contact is drawn into a curvature which is convex toward the 

more dense fluid. This intermolecular force acting on the contact surface is called 

surface tension in the case of a gas in contact with a liquid or interfacial tension in 

the case of two liquids.  The result of this force is to produce a pressure difference, 

called capillary pressure, across the contact surface. When an immiscible fluid is 

completely immersed in another fluid, it assumes a spherical shape of minimum 

surface area. 

 

Figure 2.19 is an illustration of the intermolecular forces acting in a pure liquid. 

While each molecule in the bulk of the liquid is pulled equally in every direction by 

neighbouring liquid molecules, resulting in a net force of zero, the molecules 

exposed at the surface do not have neighbouring molecules in all directions to 

provide a balanced net force. They are rather pulled inward by the neighbouring 

molecules creating an internal pressure. Consequently, the liquid voluntarily 

contracts its surface area to maintain the lowest surface free energy. The surface 

tension forces acting on a droplet on a flat surface have been illustrated in Figure 

2.21. 
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Figure 2.21: Unbalanced forces of liquid molecules at the surface causing 
surface tension (Yuan and Lee, 2013). 

 

 

 

Interfacial tension can be defined as the work required per unit area to enlarge the 

interface between two immiscible fluids. Oil-water interfacial depends on the 

chemical composition of the oil, amount and type of surface-active agents, types and 

quantities of gas in solution, pH of the water, temperature, and pressure. Livingston 

(1938) observed that oil-water interfacial tension generally tends to decrease with 

increasing API gravity and decreasing viscosity.  The effect of increasing 

temperature on oil-water interfacial tension is complex, but the general trend is for 

oil-water interfacial tension to decrease as temperature increases. Livingston (1938) 

reported that crude oil and formation water interfacial tension decreases between 0.1 

and 0.2 mN/m/
o
F. A decrease in interfacial tension of approximately 0.1 to 0.15 

mN/m/
o
F for crude oils between temperatures of 130 and 170 

o
F is documented by 

Hocott (1938). The effect of increasing pressure on oil-water interfacial tension is 

also complex, but in summary Schowalter (1979) concludes that the effect of 

pressure on crude oil-formation water interfacial appears small enough that it can be 

neglected. 
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Gas-water interfacial tension also varies with the amount of surface-active agents in 

the water, the amount of heavy hydrocarbons in solution in the gas, temperature, and 

pressure. At atmospheric pressure and temperature, methane gas-formation water 

interfacial tension is about 70 mN/m (Schowalter, 1979). Hough et al (1951) reported 

that gas-water interfacial tension decreases 5 to 10 mN/m/6.89-MPa pressure 

increase depending on the temperature and decreases with increasing temperature 

from 0.1 to 1.0 mN/m/
o
F depending on the pressure. Estimates of methane-water 

interfacial tension, based on the effects of temperature and pressure from Hough et al 

(1951), and sufficiently accurate for exploration application to gas-water-rock 

displacement pressures, are available in nomographs. Excessive amounts of ethane, 

propane, and other heavy gases in the gas phase will decrease interfacial tension 

from that of the pure methane-water systems. Presently, a number of methods are 

available to measure surface tension. 

 

 

2.5.6.1 Measurement of surface tension 
 
 

Among the various ways to determine surface tension, Du Noüy ring method and 

Wilhelmy slide method are based on the separation of a solid object from the liquid 

surface, and Pendant drop method and Sessile drop or bubble method depend on the 

deformation of the spherical shape of a liquid drop  . 
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2.5.6.1.1 Maximum Bubble Pressure Method (Bubble Pressure Method) 
 

 

This is a useful method to measure dynamic surface tension of a system containing 

surfactants or other impurities. It depends on the deformation of the spherical shape 

of a liquid drop (Adamson and Gast, 1997). 

The method involves the production of gas bubbles (e.g. air) at a constant rate from a 

bubble pressure tensiometer through a capillary of known radius immersed in a 

sample liquid. The gas bubbles within the liquids are compressed due to internal 

attractive forces of a liquid. The resulting pressure (bubble pressure) rises at a 

decreasing bubble radius (sita-process.com). The bubble pressure (P) increases 

continuously and the maximum value obtained is when the bubble has the 

completely hemispherical shape whose radius exactly corresponds to the radius of 

the capillary (krussUSA.com; sita-process.com).  

 

A typical pressure profile from the experiment is as shown in Figure 2.22. At A 

bubble appears on the end of the capillary. As the bubble grows, its radius of 

curvature decreases as shown in B, while the pressure increases. C is the point of the 

maximum bubble pressure, Pmax. At this point the bubble has a complete 

hemispherical shape with a radius identical to the radius of the capillary denoted by 

Rcap.   

 

The surface tension can be determined using the reduced form of the Young–Laplace 

equation (Eq.2.46) for spherical bubble shape within the liquid (krussUSA). 

  
          

 
                                                                                           (2.46) 

 

where,   is the surface tension (N/m),       is the maximum pressure drop (Pa), and 

     is radius of the capillary (m).  
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Figure 2.22: Change of pressure during bubble formation plotted as a 
function of time (krussUSA.com) 
 

 

 

The pressure of the bubble decreases after the maximum pressure, and the radius 

increases as shown at D, until the bubble is detached from the end of the capillary 

(position E) and a new cycle begins. Section DE is not relevant to determine the 

surface tension (krussUSA). 

 

Commercial tensiometers are available, that monitor the pressure needed to form a 

bubble, the pressure difference between inside and outside the bubble, as well as, the 

radius of the bubble. The surface tension of the sample is then calculated from these 

data. 

 

Bubble pressure method does not require contact angle measurement and has high 

accuracy even though the measurement is done rapidly (Adamson and Gast, 1997; 

krussUSA).  
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This method is suitable for cases where a large amount of liquid sample is not 

required for measurement, such as in biological fluids like serum (Hubbard, 2002). 

 
 

2.6 Summary 
 

 

The analysis of literature on resistance to fluid displacement in porous medium 

reveals that it is very useful in processes such as oil recovery and geological storage 

of carbon dioxide. These processes occur in high permeability (low resistance) 

porous media such as conventional oil reservoirs and in low-permeability (high 

resistance) systems such as unconventional resources namely tight gas sandstones 

and shale gas.  

It is of importance in trapping of fluids in oil and gas reservoirs for oil recovery, and 

in effectiveness of caprocks as seals for oil reservoirs and CO2 storage. The storage 

safety is dependent on the caprock ability to prevent or seriously hinder CO2 storage. 

 

Resistance to fluid displacement is influenced by factors such as pore structure, fluid 

properties, fluid composition and wettability. These factors are interrelated and can 

be expressed by a simple equation such as the Young-Laplace equation.  

Many researches have revealed the influence of the factors which affect resistance to 

displacement and conclude that the determination of the geometrical and transport 

properties of individual pores is therefore a key issue in view of practical 

applications. This is very necessary because the capillary forces which are known to 

control these processes act on the microscopic scale. 
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In order to understand better the impact of the factors affecting the resistance to fluid 

displacement this study proposes to carry out studies on single pores at different 

sizes. 
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Chapter 3: Materials and methods 
 

 

3.1 Experimental method  
 

 

3.1.1 Measurement of resistance of flow path to fluid interface 
in a single pore 
 

 

Enhanced oil recovery and CO2 storage are geological scale engineering, but 

controlled by the displacement of pore fluids (oil or saline water) at pore scale. 

Understanding the influence of flow path resistance in the displacement process in 

the porous medium is very crucial in determining the efficiency of the displacement, 

because it affects both the microscopic and macroscopic displacement efficiency 

(Green and Willhite, 1998). In this study, a method was developed to measure the 

resistance pressure profiles to multiphase flows, including the resistance to single 

phase flow, and to interfaces, in a single tapered pore or capillary, and to image the 

fluid movement, particularly the interfaces. The impact of each parameter such as 

pore geometry, interfacial tension, viscosity, fluids/gas composition and contact 

angle, on the resistance to the displacement can be studied using this method. The 

experimental data obtained may be very useful in gaining a better insight into 

microscopic displacement.  

 

The experimental setup (Figure 3.1) includes a liquid delivery pump (LC-20 AD, 

Shimadzu), which can deliver liquids over flow rates from 0.00010 ml/min to 10 

ml/min, a digital pressure transducer (DPI 280, Druck) with a resolution of 0.01 

mbar to measure resistance pressure, a long working distance microscope (Brunel 

Microscopes Ltd, 10x objective) fitted with a digital camera (AM7023 Dino-Eye, 
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Dino-Lite Digital Microscope) to record fluid motion in the capillaries, particularly 

the motion of gas-water and liquid-liquid interfaces. The elapsed time and the 

pressure transducer outputs are displayed directly on the computer using LabView 

software. Figure 3.2 clearly shows the capillary exiting into the atmosphere. 

 

 

 
 

Figure 3.1: Experimental setup for measurement of resistance to flow path in 
a capillary: (1) water reservoir (2) pump, (3) digital pressure display, (4) 
stainless steel cylinder, (5) transducer, (6) glass tube with tapered capillary at 
the end under a travelling microscope, (7) digital camera, (8) computer with 
LabView.  
 

 

 

The displacing liquid (water) is delivered from a reservoir by means of a tube with a 

filter to ensure that the solvent flow line is not contaminated with any solid particle 

that may block the flow line. The pump delivers the liquid at a set flow rate to a 
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stainless steel cylinder containing water and fitted with the micropipette (tapered 

single pore or capillary) (Figure 3.3). The pressure transducer is fitted between the 

cylinder and the capillary, which is positioned between a light source and the long 

working distance microscope. The computer is used to acquire the digital image 

(micrographs) of the interface inside the capillary. The interface is curved to the 

capillary radius and the computer is able to process the photographic data.  

 

 

 

Figure 3.2: Experimental setup showing the tip of a tapered capillary with a 
gas bubble in the glass tube: (1) glass tube, (2) gas bubble, (3) tapered 
capillary, (4) capillary tip, (5) digital camera, (6) travelling microscope  
 

 

Figure 3.3 shows a tapered glass capillary filled with deionised water only (no gas 

phase); the pore size decreases towards the capillary tip. The illumination of the glass 

capillary wall appears as three distinct shades of colour, with the external wall being 
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dark and fades gradually to white in the internal wall. The internal capillary wall is 

therefore clearly defined by a white line. This is the same observation for all the 

hundreds of glass capillaries used. Borosilicate glass used in fabricating these 

capillaries is hydrophilic, so water is in direct contact with the glass wall. When a gas 

phase displaces water, it also makes a direct contact with the glass wall, as shown in 

Figures 4.4a-g and 4.5. Similar images have been published in previous publications 

as shown in Figure 3.4 (Li et al, 2013; Li et al, 2014). There may be nanometer film 

of water on the glass wall in contact with the gas phase, but this can not be observed 

visually. 

 

 

Figure 3.3:  A tapered capillary filled with water and showing decreasing pore 
size towards the tip (diameter = 100 µm); (d1= 506±30 µm; d2= 430±30 µm; 
d3= 355±30 µm; d4= 304±30 µm; d5= 279±30 µm). 
 

 Capillary wall 
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Figure 3.4: Meniscus movements in the measurement of air-glass contact 
angles in a glass capillary, showing a direct contact of the gas phase with the 
glass wall. (a) Microscopic imaging of contact angle of liquids in a pore (the 
vector ḡ shows the direction of gravity; (b) Dynamic contact angles under a 
microscope equipped with a camera (Li et al, 2013). 
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The diffraction at the walls of the capillary and the curvature of the glass itself 

introduce potential errors in the measurements of the curvature of the interface (Lee 

et al, 2001; Cheong et al, 2011). A LED white light source above and below the 

glass capillary and the high numerical aperture objective were used to optimize the 

digital image and minimize the optical diffraction at the interface. The entire 

experimental setup was mounted on a vibration-free horizontal workstation to 

minimize positional oscillations generated by vibration from external sources (Lee et 

al, 2001). 

 

To measure the pore resistance to two-phase flow, the stainless steel cylinder was 

washed with hot detergent solution, rinsed thoroughly with tap water, and finally 

washed with deionised water (Fisher and Lark, 1979). It was then completely filled 

with the deionised water. First, the capillary was marked (Figure 3.5) at different 

intervals with an indelible marker pen to have suitable reference points for the 

interface position, and the micropipette was completely filled with deionised water, 

followed by an introduction of 0.1 ml of gas to create a gas-liquid interface. 

 

The resistance to the fluid movement through the capillary is a combination of the 

resistance from capillary force and viscosity force (Chatzis and Dullien, 1983, Løvoll 

et al, 2005), and even in very slow displacements the displacement is controlled by 

the heterogeneity of the capillary force along the interface (Løvoll et al, 2005). The 

external force for driving the flow is provided by the liquid delivery pump, which is 

set at a slow flow rate to remove the effect of viscous force (Løvoll et al, 2005). The 

resistant pressure through the capillary was measured by the pressure transducer, and 

the LabView software recorded the variation of resistance pressure with time. 
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Figure 3.5: Posterior section of the tapered capillary filled with water, shown 
in Figure 3.3, marked with indelible ink (d6= 253±30 µm; d7= 228±30 µm; d8= 
203±30 µm; d9= 177±30 µm; d10= 165±30 µm). 
 

 

The motion of the interface front was observed by viewing it horizontally with the 

optical microscope. The images and position of the interface before and after each 

marked position were captured with the digital camera attached to the microscope, 

and then recorded by the computer. When the interface moved out of the capillary 

the LabView output was analysed to obtain the resistant pressure.  

 

To measure the resistance to gas-water interfaces, the resistance to the water single 

phase flow through the capillary and the resistance to gas-water two-phase flow were 

measured, respectively. The resistance to interface was then obtained by subtracting 

Capillary wall 

d6 d7 d8 d9 d10 
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the resistant pressure to the single phase water flow from the resistant pressure to 

gas-water flow.  

 

3.1.2 Contact angle measurement in a micron-sized pore 
 

 

A novel method developed in our laboratory, based on microscopic imaging 

technique, was used in this study to measure directly the contact angles of various 

interfaces in capillaries, by considering the effects of pore geometry, surface tension, 

viscosity (liquid’s physical properties), its chemical structure and interface 

composition. This is similar to the method used by Li et al (2013 & 2014) to study 

pore static contact angle and pore dynamic contact angle.  

 

The apparatus used in this study to measure contact angle in a non-uniform (tapered) 

capillary is shown in Figure 3.6. A long working distance microscope (Brunel 

Microscopes Ltd, 10x objective) equipped with a digital camera (AM7023 Dino-Eye, 

Dino-Lite Digital Microscope) was used to image the gas-liquid or liquid-liquid 

interface at different positions as it moves through the capillary, as shown in Figure 

3.6.  
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Figure 3.6: Measurement of pore contact angle in a tapered capillary: (1) 
glass tube with tapered capillary at the end, (2) gas-water interface, (3) 
capillary tip, (4) digital camera, (5) travelling microscope. 
 

 

The use of glass material causes diffraction at the walls of the capillary, and as the 

capillary is cylindrical, the curvature of the glass is also a potential source of errors 

in the measurements of the curvature of the interface, as both may cause the image to 

be distorted (Lee et al, 2001; Cheong et al, 2011, Danişman et al, 2008). 

 

As a caution by Cheong et al, the quality of the interface image of a small volume of 

liquid in a capillary depends strongly on the measurement method and illumination 

used. LED white light sources located below and above the glass capillary were used 

to illuminate the interface adequately to overcome the degree of image distortion, 

and thus improve and facilitate the contact angle measurements in a small pore. The 

principle used here is similar to the principle used by, Fan et al (2003) to measure 

5 

4 
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2 

3 



Chapter 3: Materials and methods 

126 

 

micron ice crystal size in aqueous solution, Fan et al (2004) to measure micron air-

bubble size and Rosiñski et al (2002) to measure the size of a microcapsule or plant 

cell under a microscope, Kohonen (2006) to measure contact angle in water-

conducting capillaries (tracheids) of plants, and Danişman et al (2008) to measure 

contact angle in micron-sized capillaries. The outermost boundary of the two-phase 

interface was lighted sufficiently and focused to obtain a clear two-phase interfacial 

line.  

 

To initiate the contact angle measurement, a freshly fabricated tapered capillary is 

filled with deionised water and 0.1 ml of fluid (gas or liquid) is introduced into the 

uniform diameter (unstretched) section of the micropipette to create the gas/water or 

liquid/water interface. The interface front at this position is focused with the 

microscope and the image is taken. The contact angle obtained in this section should 

be fairly constant for all the capillaries since this section of the tube has a uniform 

diameter. A slight pressure was then applied temporarily by means of the liquid 

delivery pump to cause the interface to move. When the interface motion stops 

completely the meniscus is focused with the microscope to obtain the clear two-

phase interfacial line and the image (micrograph) at this position is taken with the 

digital camera. This process is repeated until images of the interface are obtained at 

different sections of the tapered capillary, and the interface leaves the capillary. As 

the capillary is not uniform and tapers towards the tip, the distance between the 

microscope and the capillary is adjusted at every position of the interface to obtain a 

clear and focused image. 
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Figure 3.7: Measurement of contact angle of small liquid volume in a circular 
capillary (r = 2.015±0.03 mm). 
 

To determine the contact angle of the interface, the micrographs obtained were 

analysed using the method proposed recently by Cheong et al (2011) to measure 

small liquid volumes in circular capillaries, which neglects gravity, and commercial 

software (FTA 32). Cheong et al method uses only the capillary radius,   and 

meniscus height,   (Figure 3.6) to obtain the contact angle, which is given by 

equation 3.1. 

 

        
     

   
                                                                                                (3.1) 

 

where 

  = height of the meniscus, mm 

  = inner radius of the capillary, mm 

  = contact angle, rad 
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The assumptions in deriving this equation are that there is no effect of gravity and the 

volume of liquid involved is small (Cheong et al, 2011; Zheng et al, 2005). This is 

very true for our experiment where the flow is horizontal and the size of the 

capillaries used is very small. The effect of image distortion on contact angle 

estimation by this method can be minimized since the effect of image distortion on 

meniscus height is not significant (Cheong et al, 2011). 

The error in measurement can be estimated by rearranging Equation 3.1 and 

differentiating into Equation 3.2 

 

     
     

            
     

  

                                                                 (3.2) 

 

Knowing that                 , Equation 3.2 can be written as 

 

   
   

 
    where   

      

 
                                                                      (3.3) 

 

 

Equation 3.3 shows that the sources of error are from the dimension of the capillary, 

 , the wetting characteristics of the liquid,  , and the imaging spatial resolution of 

the microscope system,     This implies that using larger radius will improve the 

accuracy of measuring the contact angle (Cheong et al, 2011), although there is a 

limit to increasing the radius at the expense of losing the capillary effect (Barr, 1923) 

and the ability to sustain small liquid volumes. The error in the measurement of 

contact angles in the pore sizes considered in this work (< 1000 µm to 100 µm) is 

±0.003 to 0.03º. 
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3.2 Materials 
 

  

3.2.1 Glass capillaries 
 

 

Tapered capillaries with varying capillary tip sizes and gradients were made from 

standard glass tubes (borosilicate, bore size 3 mm, 0.5m long, 6 mm (ext.) diameter; 

FB51467 Fisher Scientific, UK). The standard glass tubes were cut into lengths of 

approximately 12 cm, and were washed by using hot 6 M NaOH and 6M HCl. 

The tubes were then washed thoroughly using tap water until the washing water 

reached the natural water pH, and then rinsed with deionised water (C540 Deioniser, 

Veolia Water Solutions Technologies). The cleaned glass tubes were then heated 

under a 550
o
C flame to remove any residue of organic contamination and kept in a 

dust-proof enclosure (Fisher and Lark, 1979). Single capillaries of various sizes were 

obtained by melting a middle section of the clean, dry glass tubes in a butane flame 

(Butane Battery, D2-BS 0167) and pulling it to create a suitable taper (Lee et al, 

2001). This is similar to the technique used by Fisher and Lark (1979) to study liquid 

flow in fine capillaries and by Li et al (2013) to study dynamic pore wettability. By 

controlling the heat setting and pulling speed applied, capillaries with varying 

gradients and tip diameters can be obtained.   

 

In this study, the minimum capillary tip size used was 100 µm, so as to obtain a good 

focus of the interface in all sections of the tapered capillary. With better focusing 

microscopes the tip size of the capillaries could be reduced to less than 100 µm. 

However, if the tip size becomes too small the resistant pressure to the interface 

motion may be too high and cause damage to the equipment, apart from the inherent 

elongation of the duration of each experiment. It is also important to note that it was 
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not possible to make, in a reproducible manner, series of capillaries of identical pore 

tip size and different gradients. This was due to the inability, to maintain the same 

degree of melting of the glass each time before pulling to make the capillaries and, to 

pull at a uniform speed, even for same degree of melting. The result is that capillaries 

of the same tip size but with differing pore gradient are obtained. As a result, it is 

difficult to compare accurately the impact of parameters on the resistance to flow. 

For example, to compare the impact of pore gradient on the resistant pressure it is 

necessary to obtain capillaries with same tip size but with varying pore gradient.  

For a single uniform capillary with one diameter only one equilibrium point can 

exist. However, in a tapered capillary with varying gradients several equilibrium 

points can be obtained with applied pressure as the interface moves to a new 

position. The length of all the capillaries was fixed at about 2 cm to minimise any 

effect of capillary length on the resistant pressure (Li and Fan, 2013).  

Borosilicate glass is strongly hydrophilic, so the glass capillaries used are water-wet.  

 

 

3.2.2 Liquids 
 

   

3.2.2.1 Fluids 
 

The common reservoir liquids are saline water and crude oil. In this study, deionized 

water, silicone oil, n-decane and crude oil are used to represent the common reservoir 

liquids or saline aquifer. Silicone oil is used to investigate the effect of fluid viscosity 

on fluid displacement. The deionised water was obtained from (C540 Deioniser, 

Veolia Water Solutions Technologies).  N-Decane was purchased from ACROS 

Organics (analytic grade, 99+% pure). Crude oil was sourced from MAPLLC 
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Petroleum Crude Oil (density: 659~818 kg/m3; surface tension: 20.0 mN/m; 

viscosity: 6.14×10-3 Pa·s). 

 

3.2.1.2 Chemicals 
 

 

Displacement in porous media is greatly influenced by liquid properties such as 

surface tension and viscosity, as both properties influence the dynamic contact angle 

which is related to the capillary number and the static contact angle (Li, 2015). The 

effect of surface tension on resistance to displacement and contact angle was studied 

using various concentrations of 1-propanol (99
+
 %, extra pure, ACROS Organics, 

New Jersey, U.S.A). 1-Propanol and its aqueous solutions and water give a good 

contrast in surface tension, with their surface tensions ranging from 24.4 mN/m for 

1-propanol to 72.0 mN/m for water. However, their viscosities are very close, 

ranging from 8.94×10ˉ
4
 Pa.s (water) to 1.94×10ˉ

3
 Pa.s (1-propanol), so viscosity 

effect can be neglected to study the effect of surface tension on resistance. Their 

physical properties are shown in Table 3.1. 

 
To investigate the effect of liquid viscosity on resistance to displacement, silicone 

oils with varying viscosities are used as shown in Table 3.2. These silicone oils have 

very close surface tensions ranging from 20.1 mN/m (10 cst) to 21.2 mN/m (1000 

cst). 
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Table 3.1: Physical Properties of Aqueous Solutions of 1- propanol and de-
ionised water 
 

Mass 
fraction 

Density Viscosity Surface tension 

  (kg/m³) (Pa.s) (mN/m) 

0*  998.2 8.94 × 10¯⁴ 72 

0.05 987.9 1.10 × 10¯³ 42.51 

0.1 976.1 1.34 × 10¯³ 34.86 

0.2 953.3 1.84 × 10¯³ 28.31 

0.3 932 2.14 × 10¯³ 26.41 

0.7 854.2 2.54 × 10¯³ 24.47 

1 803.4 1.94 × 10¯³ 23.69 

0* Deionised water 
Source: Li, 2015. 
 

 

Table 3.2 Physical Properties of Oils 
 

Name Density Viscosity 
Surface 
tension 

  (kg/m³) (Pa.s) (mN/m) 

Silicone oil (10 cst) 930 9.30 × 10¯³ 19.4 

Silicone oil (50 cst) 960 4.80 × 10¯² 20.8 

Silicone oil (100 cst) 960 9.60 × 10¯² 20.9 

Silicone oil (500 cst) 970 4.85 × 10¯¹ 21.1 

Silicone oil (1000 cst) 970 9.70 × 10¯¹ 21.2 

Crude oil 659-818 6.14 × 10¯³ 20 

n-Decane 730 9.20 × 10¯⁴ 23.8 

Source: Li, 2015. 
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3.2.3 Gases 
 

 

3.2.3.1 Carbon dioxide (CO2) 
 

 

Apart from the growing need of CO2 for geological storage in climate change 

mitigation, CO2 is used for EOR (tertiary recovery). CO2 injection for EOR is 

expected to rise with the increasing awareness of sequestering CO2 and at the same 

time producing incremental oil. 

CO2 is a gas with a density of 1.8 kg/m
3
 (air = 1.2 kg/m

3
) at ambient surface 

temperature (25 
o
C) and pressure (0.1 MPa = 1 bar). It can be stored as a supercritical 

fluid at injection depths greater than ~800 m, assuming a geothermal gradient of 30 

o
C/km and a pressure gradient of 10.5 MPa/km (Bruant et al, 2002; Bachu and 

Gunter, 1994; Bachu, 2002; Holloway and van der Straaten, 1995). At 800 m depth, 

the density of supercritical CO2 is approximately 260 kg/m
3
 and this permits far 

greater quantities of CO2 to be stored per unit volume than as a gas at shallower 

depths (Bruant et al, 2002). At this depth, the density of water with 15% total 

dissolved solids by mass is ~1100 kg/m
3
 (McCain, 1991; Bachu and Gunter, 1994). 

This density difference generates buoyancy forces that drive injected CO2 upward.  

 

When CO2 is dissolved in formation waters it is not subject to upward buoyant 

migration, and it is said to be trapped. The solubility of CO2 decreases with 

increasing temperature and salinity, and increases with increasing pressure. At the 

surface conditions, the solubility of CO2 in pure water is 1.3-1.7 kg/m
3
 and at the 

higher temperature and pressure conditions at the depth of 800 m, the solubility of 

CO2 in formation waters with 15% total dissolved solids by mass is ~35 kg/m
3
 

(Bruant et al, 2002). 
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In about 60% of the reservoirs in which CO2 is injected the salinity of the aquifers 

ranges from 20,000 to 340,000 ppm (Bennion and Bachu, 2008). Usually, injection is 

into reservoirs (carbonate and sandstone formations) with porosity generally less 

than 12% and permeability on the order of millidarcy to tens of millidarcy. 

 

CO2 used in this study was purchased from C40-VB, BOC, Manchester. It has a 

purity of 100% and was supplied in a gas bottle (Figure 3.8). It was used to create 

interfaces of CO2-water/aqueous solution in this study. 

 

3.2.3.2 Methane (CH4) 
 

 

Methane is the simplest member of the alkane family and it is the major component 

of natural gas. It is considered to be an important greenhouse gas with a global 

warming potential of 34 compared to CO2 over a 100-year period. 

It is a colourless, odourless gas at room temperature and standard pressure. Its 

boiling point is −161 °C (−257.8 °F) at a pressure of one atmosphere and it is highly 

flammable over a range of concentrations in air at standard pressure. It is insoluble in 

water. It is lighter than air at ambient temperature. 
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                   Figure 3.8: Liquefied carbon dioxide and methane gases in bottles 
 
 
 
CH4 is a major component of natural gas. In shale gas recovery, water flooding is 

used to displace natural gas from porous rocks. Depleted gas/oil reservoirs have been 

seen as a place to store CO2. The typical opinion is that the gas/oil reservoirs have 

sealed natural gas for million years; it should be able to store CO2 gas. In this study, 

CH4 was used to investigate the resistance to CH4-water interface for advancing the 

understanding of water-natural gas displacement.  
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CH4 (CP Grad (100%), BOC, Surrey) used in this study has a purity of 100% and 

was supplied in gas bottles (Figure 3.7). 

 

3.2.3.3 Air 
 

 

Air is a mixture of gases composed mainly of nitrogen (78 %), followed by oxygen 

(21 %) and others in trace amounts. Air is used for combustion processes in thermal 

oil recovery (tertiary recovery). 

Atmospheric air obtained in syringes was used for this study. 

 

3.3 Summary 
 

 

A method developed to measure the resistant pressure to single phase flow in tapered 

pores, as well as, the resistance to two-phase flows, while imaging the fluid interface 

movement has been described. The method of determining contact angles of imaged 

interfaces was also described. The gas-water interface is in direct contact with the 

glass capillary wall, so the displacement is piston-like. 

In the following chapters, the results, discussions and conclusions of the most 

important findings obtained in this experimental research are presented. 
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Chapter 4: Pore resistant pressure 
                       profiles 
 
4.1 Introduction 
 

 

Although the profusion of experimental work pertaining to resistance to fluid flow in 

porous media has revealed many details of the mechanism of multiphase flow, there 

appear to be a few gaps to justify further experimental work. In particular, limited 

attempts have been made to study the exact impact of pore geometry on the resistant 

pressure (pressure drop) at the pore level and to determine the relationship between 

resistant pressure and factors that influence the fluid displacement. In this study, we 

have developed an experimental technique for measuring the resistant pressure 

profiles and pressure drop of fluid flow through single pores and then use the 

information to study the exact impact of factors such as pore geometry, surface 

tension, fluid properties, and wettability on the displacement. 

 

 
4.2 Resistant pressure profiles for single phase flow 
and interface flow 
 

 

To obtain the pressure profile of single phase flow and investigate the pore resistance 

to its flow, a micropipette was filled with deionised water and the water was allowed 

to flow through the capillary for a period of time, using the external force from the 

liquid delivery pump. The resistant pressure profile of the flow of water alone was 

measured. After the initial experiment, the micropipette was thoroughly rinsed with 

deionized water, dried, and re-used for the two-phase flow experiment. In order to 
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obtain the resistant pressure profile and investigate the pore resistance to two-phase 

flow, the micropipette was filled with deionized water and a gas-liquid interface was 

created by introducing 0.1 ml of the gas into the micropipette, and the resistant 

pressure profile through the capillary was measured. The motion of the interface 

front was observed by viewing it horizontally with the optical microscope. 

  

Figures 4.1 and 4.2 show the pressure profiles for driving water, and CO2-water, and 

CH4-water, interfaces through two capillaries of tip sizes 150 µm (pore gradient = 

4.762 × 10
-3

) and 113 µm (pore gradient = 7.885 × 10
-3

), respectively.  The pore 

gradient or capillary gradient is defined as the pore diameter per unit length, 

determined between the effective pore diameter and pore tip diameter. 

Mathematically, it is the ratio of the difference between the effective pore diameter 

and pore tip diameter to the distance between them (Figure 4.3). 

 
 

Figure 4.1a: Pressure profile for driving only water phase through a capillary 
of tip size 150 µm (capillary gradient: 4.762 × 10-3). 
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Figure 4.1b: Pressure profile for driving CO2-water interface through a 
capillary of tip size 150 µm (capillary gradient: 4.762 × 10-3). 
 

 

 

Figure 4.1a is the pressure profile for driving water phase only through the 150-µm 

capillary for about 1 hr and Figure 4.1b is the pressure profile for driving the CO2-

water interface through the same capillary for the same duration. Figures 4.1a and 

4.1b are similar to the profiles in 113-µm capillary for water only, and CH4-water 

interface, respectively (Figures 4.2a and 4.2b). 
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Figure 4.2a: Pressure profile for driving only water phase through a capillary 
of tip size 113 µm (capillary gradient: 7.885 × 10-3). 
 

 

 

 

 

 
 

Figure 4.2b: Pressure profile for driving CH4-water interface through a 
capillary of tip size 113 µm (capillary gradient: 7.885 × 10-3). 
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Figure 4.3: Tapered capillary illustrating the pore length, effective pore size 
and pore throat (d1 ˂ 1000 µm; ɭ = pore throat length (mm); L = pore length 
(mm); d2 = effective pore diameter (µm); d3 = tip diameter (µm)). 
 

 

Figures 4.1a and 4.2a show similar trends for flow of water through the two 

capillaries, while Figures 4.1b and 4.2b also show similar profiles for gas-water two-

phase flow through the two capillaries. 

 

Figure 4.1a shows that the pressure profile for driving water phase only has two 

sections, 0A and AB. The resistant pressure builds up from 0 mbar as the pump is 

started and increases linearly initially up to about 9.5 mbar at which the discharge of 

water from the capillary starts. Once water starts flowing out from the capillary, the 

increase in resistant pressure becomes non-linear until about 12.3 mbar, at which the 

pressure becomes constant. Section AB is the constant pressure (balanced pressure) 

section and the pressure remains the same irrespective of the duration of water flow 

through the capillary. The balanced pressure indicates that the rate of delivery of 

water by the pump is equal to the rate of discharge of water from the capillary. We 
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believe this is the maximum resistant pressure to water flow through this capillary at 

that condition.  

 

The resistant pressure profile for CO2-water flow in the same capillary (Figure 4.1b) 

is different from the resistant pressure profile for single phase water; the pressure 

profile has 6 sections. At the start of the pump, the resistant pressure increased 

linearly until water starts flowing out from the capillary. The increase continued, 

though not linear until point A (section 0A), from which the pressure becomes 

constant at about 12.3 mbar. Section AB is the constant (balanced) pressure section 

analogous with the case of single phase water flow (Figure 4.1a). In this section, the 

pore resistance to the flow is balanced by the pump driving force. At position B, the 

resistant pressure increased suddenly and this increase is linear up to position C, 

corresponding to the tip of the capillary. Position C is the maximum resistance to the 

interface flow, just before it comes out from the capillary. This drastic increase in the 

resistant pressure to interface flow is observed to occur only from a certain point in 

the tapered capillary, for a particular tip size and pore gradient. This point (B in 

Figures 4.1b and 4.2b) is the beginning of the pore throat effect, and the pore 

diameter corresponding to this point is the effective pore diameter. It is the pore size 

at which the pore has a dramatic effect on the pore resistance; the pore resistance 

increases rapidly from the effective pore size. The pore throat is the region of the 

pore from the effective pore diameter to the capillary tip. The rapid increase in 

pressure is observed in the entire pore throat. When the pore size is larger than the 

effective size, there is no throat effect, but when the pore size is less than the 

effective size, the resistant pressure will increase significantly. There is no smooth 

connection between these two regions. This observation is different from previous 
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theory. However, several hundreds of experiments have been conducted and this has 

been the observation in every experiment. This observation cannot be explained 

based on current theory, but it is a fact, so effective pore size is used to explain it and 

distinguish it with the traditional pore throat. 

 

In a natural porous medium where the constriction of the pore occurs at one point, 

the effective pore size is same as the pore throat. Where the constriction occurs over 

a length of the pore, the pore throat extends from the effective size to the end of the 

constriction. This is the case with tapered capillaries. Therefore, in practical terms, 

the effective size is synonymous with the pore throat. 

The next chapter will be devoted to discussions on the pore throat phenomenon. At 

position C, the CO2-water interface started coming out of the capillary and the 

resistant pressure dropped suddenly to position D, as the interface leaves the 

capillary completely. The reduction in pressure occurs because of a sudden reduction 

of the excess pressure in the nonwetting phase as the interface leaves the capillary. 

Also, section CD shows the resistant pressure just before the interface leaves the 

capillary, when it starts leaving the capillary, and when it completely leaves the 

capillary. The resistant pressure starts dropping because the capillary which was 

occupied by the interface is now being taken over by the displacing water as the 

interface leaves. This indicates also that the resistance offered by the interface is 

higher than the resistance offered by either water or gas alone. From position D, the 

resistant pressure starts building up again as the water single phase flows out again, 

and this increase continues until the water single phase pressure attains the minimum 

resistant pressure at E. Section EF is a section of constant pressure value for the 

single phase water flow.  
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These results using tapered capillaries appear to be similar to the reverse of the result 

obtained in the Maximum Bubble Pressure Method (MBPM) to determine dynamic 

surface tension (see 2.5.6.1.1). In the Maximum Bubble Pressure Method, when a 

bubble grows at the tip of a uniform capillary, its radius of curvature decreases with a 

corresponding increase in bubble pressure up to a maximum pressure when its radius 

of curvature is same as the radius of the capillary (hemisphere).  The radius then 

increases again accompanied with a pressure decrease (Figure 2.22). In the reverse 

MBP experiment, the bubble size in the uniform capillary decreases with a 

corresponding gradual increase in bubble pressure until the maximum bubble 

pressure is reached, at which the radius of the bubble equals the radius of the uniform 

capillary. The bubble pressure starts to decrease as the bubble radius becomes bigger 

than the uniform capillary radius until the bubble disappears (Figure 2.22). 

 

In our tapered capillary experiment, although the capillary diameter decreases 

(decreasing interface radius) the interface pressure does not increase 

correspondingly. As observed in all the experiments, in the beginning section of the 

capillary where the size decreases appreciably, the resistant pressure remains fairly 

constant up till the effective pore size. At the effective pore size there is a dramatic 

increase in resistant pressure, which is linear up to the maximum pressure at the 

capillary tip. Once the maximum pressure is reached, the pressure drops drastically 

from maximum to about 0 mbar, as the interface exits the capillary (Figures 4.1b and 

4.2b).  

 

Comparing Figures 2.22 and 4.1b or 4.2b, it is observed that the pressure drop in 

reverse Figure 2.22 is not as drastic as the pressure drop in forward Figures 4.1b and 
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4.2b, neither are their pressure build-ups the same. The pressure build-up in the 

reverse MBP experiment is hemispherical, while in our tapered capillary experiment 

there are two distinct sections of constant pressure and linear increase in pressure. It 

should be noted also that there is no effect of contact angle on the bubble pressure in 

MBP experiment, whereas contact angle has a significant influence on the interface 

pressure in the tapered capillary. 

 

Figure 4.2b shows a similar pressure profile for the CH4-water interface. The 

different pressure profile observed for gas-water flow (as compared to single phase 

water flow) is attributed to the existence of the gas-water interface. The first two 

sections (0A and AB) are the same as what was measured when the single water 

phase moved in the capillary. In these first two sections, the gas-water interface was 

in the larger diameter section of the capillary (Figures 4.4a-f), and the resistant 

pressure to the flow was the same as what was measured for water flow (Figures 4.1a 

and 4.2a). The resistance to the gas-water phase was very small in this section and 

could not affect the overall profile. This may be the reason for wrongly applying the 

single phase pressure for two-phase pressure. However, when the gas-water interface 

reached point B (Figures 4.1b and 4.2b) where the pore diameter has reduced 

considerably (Figure 4.4g), about 206 µm for CO2-water and 190 µm for the CH4-

water, the resistant pressure increased significantly. This is very different from the 

pore resistance to single water phase. We can conclude that the pore resistance to 

single water phase flow is quite small and that the resistance to interface is 

significantly higher than the resistance to single phase. 
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a                                           b                                          c 
                                                                  

       
d                                            e                                          f 
 

 
g 
                                          

Figure 4.4: Approximate positions in micropipette of the initiation of the 
phenomenon shown in Figures 4.1b and 4.2b (tube internal diameter at inlet 
= 4.0 mm; interface diameter at inlet= 4.0 mm; W = water). 
  a) Start of displacement: gas-water interface is in the unstretched section of the tube 
(Position 0).  
  b) Motion of interface has started with the discharge of water after initial pressure build-up 
(0A). Interface is at the neck of the tube. 
  c) Interface has advanced further into the constricted section of the tube and interface 
motion has started to maintain a constant pressure from about this position (AB). 
  d) Interface just leaving the tube neck. Interface motion continues with constant pressure 
(AB). 
  e) Interface approaching start of capillary. Interface motion continues with constant 
pressure (AB)      
  f) Interface now moving in the capillary and has continued to maintain a constant pressure 
(AB).  
 g) Interface at the effective pore size. Sudden increase in pore resistant pressure begins 
(start of section BC).  
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The resistance to the interface movement through the capillary,  , is the algebraic 

sum of the capillary resistance and the resistance from the viscosity force (Chatzis 

and Dullien, 1983). 

                                                                                                (4.1) 

where     is the capillary pressure drop and     is the viscous pressure drop. The 

magnitude of the viscous pressure drop is given by the application of the Hagen-

Poiseuille (H-P) equation (Stegemeier, 1974): 

    
      

   
                                                                                            (4.2) 

where D is the diameter of the capillary,   is the length of the flow path,   is the 

viscosity of the fluid, and   is the volume flow rate. 

For laminar flow, the viscosity   of the fluid is defined as: 

         Viscosity = Shear stress/Strain rate 

  
   

   
                                                                                                   (4.3) 

Rearranging Eq. 4.3, 

            F =  A
l

v
                                                                          (4.4) 

Therefore, from Eq. 4.4 the force required for the motion is directly proportional to 

the viscosity of the fluid and velocity. The viscosities of water, air, CO2, and CH4 at 

ambient conditions are 1 cp (1 mPa.s), 18.27 μPa.s, 14.8 μPa.s, and 10.27 μPa.s, 

respectively, and are very small and negligible. Also, for very slow rate of 

displacement the velocity of the interface is very small. Therefore, the contribution 

of the viscosity force to the resistance to the motion of the interface is very small and 

negligible compared to the contribution by capillary resistance. Capillary force, 

therefore, is the main force responsible for the movement of the interface through the 
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capillary. The measured pressure, therefore, is equivalent to the capillary resistance 

to the two-phase flow. The magnitude of the capillary pressure across the interface 

boundary is given by the Young-Laplace equation (Equation 2.1). 

 

As described by Li et al (2005), as the external force from the delivery pump is 

increased the pressure equilibrium across the gas-liquid interface is broken. That is, 

the differential pressure (Pnw – Pw) exceeds the resistance of the capillary, hence the 

nonwetting phase (gas) advances until it reaches a smaller section of the capillary 

where the differential pressure is balanced by a larger resistance (Figure 4.5).  

 

 

 
 
        Pnw = pressure in the nonwetting phase 
         Pw = pressure in the wetting phase 
         Pc = capillary resistance across the nonwetting/wetting meniscus in the pore 

 

Figure 4.5: Forces acting on an interface as it moves through a capillary                   
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At this point the movement of the nonwetting phase is slowed down. This process is 

repeated as the pressure from the pump is increased until the interface is able to 

move through the smallest section of the capillary and the interface comes out. There 

is always a trace of water production at the capillary end, for each advancement of 

the interface. For larger capillary sizes the water production could easily be observed 

but for smaller capillaries it may not be observed since the amount of water in the 

pore space is small. 

In the reservoir rock where there are interconnected pores of varying sizes, the same 

process takes place until the interface breaks through the smallest interconnected 

channel and then the gas begins to escape. This pressure is known as the 

breakthrough pressure. 

 

4.2.1 Effect of gas type on the resistant pressure profile 
 

 

In order to study the effect on pressure profile of the gas type used to create an 

interface, a micropipette was used to displace the air-water, CO2-water, and CH4-

water interfaces, one after the other, respectively. A starting point of the 

displacements was marked on the micropipette and after each displacement the 

micropipette was thoroughly cleaned with deionized water and dried before re-use. It 

was important to use the same capillary so as to ensure that all the displacements 

took place in exactly same geometry. (Capillaries of same tip size may have different 

gradients and alter the geometry) 

The resistant pressure profiles for air-water, CO2-water, and CH4-water, interface 

motion through a micropipette of tip size 105 µm (capillary gradient: 8.25 × 10
-3

) are 

shown in Figure 4.6. All the interfaces show similar profiles as in Figures 4.1b and 
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4.2b, but their maximum resistant pressures are different and the positions of their 

effective pore diameter are slightly different. The air-water interface maximum 

resistant pressure was 49.7 mbar, while CO2-water interface maximum pressure was 

40.1 mbar, and CH4-water maximum was 50.1 mbar. The results show that the 

resistant pressure varies slightly with the gas applied. 

 

Hildenbrand et al (2004) observed differences in the breakthrough pressures of N2, 

CO2, and CH4, in cylindrical sample plugs and attributed the differences to both, 

differences in the interfacial tension and contact angle of the three gases. Nitrogen 

had the highest displacement pressure with N2-water interfacial tension of 110-135 

mN/m, followed by CH4 with CH4-water interfacial tension of 66 mN/m, and the 

lowest displacement pressure was exhibited by CO2 with CO2-water interfacial 

tension of 42 mN/m, under the experimental conditions. They argued that for 

measurements performed on the same rock sample with different gases, it is implied 

from the Washburn equation that the observation of a lower capillary entry pressure 

for a certain gas is a result of a lower interfacial tension and/or a lower cos (θ) value. 

Although the experiments were performed under slightly different conditions, using 

statistical analyses and assuming a contact angle of zero (complete wetting) they 

concluded that the observed differences was due to the differences in their interfacial 

tension. Li et al (2005) also illustrated that the change of breakthrough pressure for 

N2/water, CO2/water and CH4/water is nearly proportional to the change in their 

interfacial tensions. 
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Figure 4.6: Resistant pressure profiles for air-water, CO2-water, and CH4-
water interfaces in a tapered capillary (tip size: 105 µm; pore gradient: 8.25 × 
10-3). 
 

 

The air-water interfacial tension is 72 mN/m at ambient conditions (23 
o
C, 1 atm), 

CO2-water interfacial tension is 65 mN/m (Espinoza and Santamarina, 2010) and that 

of CH4-water is 72-75.5 mN/m (Jennings and Newman, 1971; Hough et al, 1951). 

CH4-water interfacial tension is higher than air-water and CO2-water interfacial 

tensions under ambient conditions; the breakthrough pressure is therefore highest. 

This result supports experimentally the earlier observations by Hildenbrand et al 

(2004) and Li et al (2005). The influence of the gas type on the pore throat 

phenomenon will be investigated in the next chapter. 

 

  

 4.2.2 Effect of pore tip size and capillary gradient on 
resistant pressure profile 
 

 

The effects of pore tip size and capillary gradient on the pressure profiles were 

studied by measuring the pressure profiles of the interface displacement through 

-5 

5 

15 

25 

35 

45 

55 

0 500 1000 1500 

R
e

si
st

an
t 

p
re

ss
u

re
 (

m
b

ar
) 

Time (sec) 

air/w 

CO2/w 

CH4/w 



Chapter 4: Pore resistant pressure profiles 

154 

 

tapered capillaries of varying tip sizes of about 100 µm to 300 µm with varying 

capillary gradient for the three gas-water interfaces. The capillary gradient of the 

tapered capillaries used varied between 6.89 × 10
-3

 and 1.65 × 10
-2

.  

  

Figures 4.7 to 4.9 show the resistant pressure profiles for air-water, CO2-water, and 

CH4-water. Each profile shows a section of constant resistant pressure (balanced 

pressure), a point of sharp departure from the constant pressure and a linear increase 

in pressure, a point of maximum resistant pressure followed by a sharp decline in 

resistant pressure. 

 

 

 
 

Figure 4.7: Resistant pressure profile for air-water displacement through 
capillaries of different tip sizes/capillary gradients (105 µm/8.25 × 10ˉ³; 125 
µm/9.69 × 10ˉ³; 140 µm/1.16 × 10ˉ²; 203 µm/1.63 × 10ˉ²). 
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Figure 4.8: Resistant pressure profile for CO2-water displacement through 
capillaries of different tip sizes/capillary gradients (134 µm/6.89 × 10ˉ³; 200 
µm/1.35 × 10ˉ²; 230 µm/1.36 × 10ˉ²; 266 µm/1.52 × 10ˉ²; 287 µm/1.65 × 
10ˉ²). 
 

 

 
 

Figure 4.9: Resistant pressure profile for CH4-water displacement through 
capillaries of different tip sizes/capillary gradients (120 µm/8.21 × 10ˉ³; 140 
µm/9.05 × 10ˉ³; 190 µm/1.46 × 10ˉ²). 
 

 

Our pressure profiles show a similar trend with the profiles obtained by conventional 

continuous injection approach method for measuring threshold capillary pressure of 
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heterogeneous rocks at in situ conditions (Figure 4.10) (Egermann et al, 2006; Rudd 

and Pandey, 1973). Pressure increased as the injection fluid moved from the coarse 

sandstone segment (Sample 1) to a finer grained siltstone (Sample 2) in an artificially 

laminated core sample and then decreased in the coarser sandstone segment (Sample 

3).  

 

 

Figure 4.10: Pressure evolution as a function of time with continuous injection 
approach for a composite laminated core (Rudd et al., 1973). 
 

 

Rose and Bruce (1949), McCreesh et al (1991), and Nelson (2009) have observed 

that the shape of the mercury injection curve (capillary pressure curve) may be 

primarily affected by the pore size. Chains of pores connected by the largest throats 

are penetrated first (at lower pressures), being the path of least resistance, followed 

by pores with smaller throats at higher pressures and then the pores with the smallest 

throats are filled with mercury at highest pressures. Nuclear Magnetic Resonance 
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(NMR) on samples of sandstones also show that macro pores fill at lower pressures 

(200-1000 psi), but the micro pores fill at very high pressures (1000 psi or greater) 

(Bowers et al, 1995).  These indicate that pore size influence hydraulic resistance to 

flow and the pressure profile. Brown (1989) also made a similar observation of 

increased resistance to flow at reduced aperture by showing that the electrical 

resistance of a fracture saturated by a single conducting fluid is determined by the 

geometrical structure of the aperture field. He showed that the electrical aperture of 

fractures with fractal wall surfaces was lower than that for parallel plane walls of 

comparable size and distance, leading to a decrease in electrical resistance. This 

results from the increased tortuosity of the iso potential lines through the fractal wall 

surfaces (Boschan et al, 2011). Wenzel (1936) is of the view that the increase in the 

resistant pressure at the effective pore size could be attributed to increase in the 

roughness of the surface caused by thin film of liquid (water) on the walls of the 

capillary. The increased surface area to flow in this section coupled with the imposed 

roughness increase the surface energy, the contact angle, and hence the resistant 

pressure. The relationship between resistant pressure, surface energy and contact 

angle will be investigated further in Chapter 6. 

 

 4.3 Resistance to single phase flow and two-phase flow 
 

 

Comparing the sections of the tapered capillary (micropipette) before and after the 

effective pore diameter, we have observed that the resistant pressure of the interface 

before the effective size is similar to the resistant pressure due to single phase water 

flow. However, in contrast to the single phase water flow, after the effective pore 

diameter the resistant pressure of the interface departs remarkably. This indicates that 
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pore size has a significant effect on the resistance to the interface compared to the 

resistance to the single phase.  

 

 4.4 Effect of pore size on resistant pressure in a tapered 
capillary 
 

 

To study the variation of resistant pressure with the interface motion in a tapered 

capillary, the motion of the interface front was observed by viewing it horizontally 

with the optical microscope. The positions of the interface along the capillary were 

captured with the digital camera and the images were processed to obtain the 

corresponding diameter and pressure. 

Figure 4.11 shows the variation of resistant pressure with pore size for an interface 

motion through a tapered capillary, for four different capillaries of pore tip sizes 115 

µm, 140 µm, 190 µm, and 220 µm. 

 

 
 

Figure 4.11: Change of resistant pressure with pore size in a tapered 
capillary for CH4-water displacement. 
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It can be observed that for all the capillaries the resistant pressure (pressure across 

the interface of two immiscible fluids) is inversely proportional to the pore radius 

according to the Young-Laplace equation (Li et al, 2006). However, we observed 

that the resistance to single phase and interface is the same before the effective pore 

diameter but differ remarkably after the effective pore diameter. At the effective pore 

size the resistant pressure to interface is much higher than the resistant pressure to 

the single phase. The implication of this is that the Young-Laplace equation may not 

be applicable below the effective pore size for a two-phase flow. 

 

In order to compare our measured single and two-phase resistances with theoretical 

two-phase resistance, the theoretical resistant pressures for air-water, CO2-water, and 

CH4-water interfaces in different pore sizes and capillary gradients were calculated 

using the Young-Laplace equation (Eq.2.1) (Tables 4.1 to 4.3). Figures 4.12 to 4.14 

show comparisons between the theoretical resistant pressure and experimental 

resistant pressures for air-water, CO2-water, and CH4-water, interfaces, respectively. 
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Table 4.1: Resistant pressure from Young-Laplace equation for air-water interface 
 

    Measured Measured Measured Pore length from   Calculated 

Pore tip 
Pore 
tip 

effective 
pore  two-phase 

single 
phase 

effective 
diameter Capillary  

interface 
pressure 

diameter, 
d 

radius, 
R diameter pressure pressure to pore tip gradient (Young-Laplace) 

(µm) (µm) dexp (µm) 
Pmax 

(mbar) 
Pbal 

(mbar) ɭ, (mm) (dimensionless) Pcal (mbar) 

105 52.5 180 49.7 23.04 9.09 0.008250825 24.49371429 

111 55.5 205 46.5 21.98 13.12 0.007164634 23.16972973 

125 62.5 226 45 20.65 10.42 0.009692898 20.57472 

128 64 243 42.3 18.07 13.94 0.008249641 20.0925 

140 70 278 39.6 17.95 11.85 0.01164557 18.37028571 

157 78.5 305 31 15.7 13.61 0.010874357 16.3811465 

167 83.5 320 27.6 11.57 16.3 0.009386503 15.40023952 

170 85 338 27.5 11.2 15.12 0.011111111 15.12847059 

184 92 368 27.2 10.73 13.7 0.013430657 13.9773913 

203 101.5 442 26.3 10.13 14.64 0.016325137 12.66916256 

216 108 453 24.9 9.89 17.09 0.013867759 11.90666667 

230 115 486 23.9 8.09 17.06 0.015005862 11.18191304 
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Table 4.2: Resistant pressure from Young-Laplace equation for CO2-water interface 
 

    Measured Measured Measured Pore length from   Calculated 

Pore tip 
Pore 
tip 

effective 
pore  two-phase 

single 
phase 

effective 
diameter Capillary  

interface 
pressure 

diameter, 
d 

radius, 
R diameter pressure pressure to pore tip gradient (Young-Laplace) 

(µm) (µm) dexp (µm) 
Pmax 

(mbar) 
Pbal 

(mbar) ɭ, (mm) (dimensionless) Pcal (mbar) 

105 52.5 171 45.1 20.85 8.06 0.008188586 22.23619048 

111 55.5 198 43.7 19.6 12.61 0.006899286 21.03423423 

125 62.5 223 43 18.27 10.18 0.009626719 18.6784 

128 64 241 42 17.76 13.45 0.008401487 18.240625 

140 70 264 39 15.1 11.24 0.011032028 16.67714286 

157 78.5 292 28.9 10.59 12.21 0.011056511 14.87133758 

167 83.5 293 26.6 8.71 15.51 0.008123791 13.98083832 

170 85 314 25.6 8.3 14.45 0.009965398 13.73411765 

180 90 358 25.1 8.25 14.09 0.012633073 12.97111111 

184 92 355 24.9 8.2 12.97 0.013184271 12.68913043 

203 101.5 398 24.3 8.1 14.48 0.013466851 11.50147783 

230 115 450 22.5 8 16.21 0.013571869 10.15130435 
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Table 4.3: Resistant pressure from Young-Laplace equation for CH4-water interface 
 

    Measured Measured Measured Pore length from   Calculated 

Pore tip 
Pore 
tip 

effective 
pore  two-phase 

single 
phase 

effective 
diameter Capillary  

interface 
pressure 

diameter, 
d 

radius, 
R diameter pressure pressure to pore tip gradient (Young-Laplace) 

(µm) (µm) dexp (µm) 
Pmax 

(mbar) 
Pbal 

(mbar) ɭ, (mm) (dimensionless) Pcal (mbar) 

105 52.5 191 50.1 25.08 11.12 0.007733813 24.90780952 

111 55.5 200 47.1 22.8 12.85 0.00692607 23.56144144 

125 62.5 228 45.8 19.44 10.67 0.009653233 20.92256 

128 64 248 43.6 18.92 14.6 0.008219178 20.4321875 

140 70 253 40.5 16.8 12.48 0.009054487 18.68085714 

157 78.5 283 31.2 16.6 14.36 0.008774373 16.65808917 

167 83.5 295 28.8 13.3 16.3 0.007852761 15.6605988 

170 85 338 28.2 12.1 15.12 0.011111111 15.38423529 

184 92 389 27.9 10.83 14.06 0.01458037 14.21369565 

203 101.5 447 27.7 10.26 14.82 0.016464238 12.88334975 
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                                                    (a) 

 

 

 

 
                                                  

                                                     (b) 

Figure 4.12: Comparison of measured resistant pressures with theoretical 
resistant pressure for air-water interface at ambient conditions 
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                                                        (a) 

 

 
                                                   (b) 

 

Figure 4.13: Comparison of measured resistant pressures with theoretical 
resistant pressure for CO2-water interface at ambient conditions 
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                                          (a) 

 

 

 
 

                                           (b) 

 

Figure 4.14: Comparison of measured resistant pressures with theoretical 
resistant pressure for CH4-water interface at ambient conditions. 
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figures. We have shown experimentally that when the single phase moves through 

the capillary, the resistant pressure remains constant, and does not increase. 

However, the resistance to the interface is very different from the single phase 

resistance; it increases significantly when the interface reaches the effective pore 

diameter. It is, therefore, difficult to predict the interface resistance in capillaries by 

Young-Laplace equation. It becomes very important to clearly understand the factors 

that influence the resistance and the effective pore diameter. 

 

The difference in the measured two-phase resistance and the theoretical Young-

Laplace two-phase resistance generally increases as the pore diameter or capillary 

gradient decreases. This indicates that as capillary effect becomes significant the 

Young-Laplace equation becomes weaker in the prediction of resistance to two-

phase flow. Our results also indicate that the resistances calculated for multiphase 

flow in capillaries in literature may not be true in all cases; they may have been over-

simplified by using the resistances for single phase flow. This needs to be further 

investigated. This study has shown that for the tapered capillaries considered the 

effective pore size lies below 500 µm, approximately 300 µm, irrespective of the 

pore tip size (Figure 4.11). This diameter corresponds to the pore size about which 

the contact angle becomes fairly constant as reported by Li et al (2013, 2014). 

  

 4.5 Summary 
 

 

In this chapter the resistant pressure profiles for gas-water interfaces have been 

presented and explained.  The measured resistant pressures have been compared with 

the theoretical resistant pressures using the Young-Laplace equation. The results 

indicate the following: 
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1. A drastic increase in resistant pressure occurs at the effective pore size which 

marks the beginning of the pore throat effect. When the pore size is less than the 

effective size, no throat effect occurs, but when pore size is less than the effective 

size there is throat effect characterised by the increased resistance. This observation 

cannot be explained based on current theory, but this is true for several hundreds of 

experiments conducted. 

 

2. The pressure profiles for single phase flow and interface flow are similar for 

higher tube sizes but are significantly different as the tube sizes decreases to 

approximately 500 to 300 µm. Similarly, the pressure drop for larger diameter tubes 

are similar for both cases but are completely different for smaller diameters where 

capillary effects become prominent. 

 

3. Measured resistance to single phase flow is different from resistance to two-phase 

flow. Both resistances are same before the effective diameter, but differ remarkably 

at the effective pore size; the two-phase resistance becomes much higher than the 

single phase pressure. 

 

4. The maximum resistance to interface (breakthrough pressure) depends on the type 

of gas used and varies with the interfacial tension of the gas. Resistance increases 

with increase in interfacial tension of the gas. 

 

5. Young-Laplace equation may not be sufficient to account for two-phase resistant 

pressure in smaller tube sizes where capillary effect becomes significant. 
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Chapter 5: Pore throat and flow 
                   resistance 
 

 

5.1 Introduction 
 

 

Pore throat in conventional, tight, and shale gas reservoirs, is a term used to identify 

hydraulic flow units (Ziarani and Aguilera, 2012). A hydraulic flow unit is the 

representative elementary volume of the total reservoir rock in which the geological 

and petrophysical properties that affect fluid flow are internally consistent and 

predictably different from the properties of other rock volumes (Hearn, 1984; 

Ebanks, 1987; Amaefule et al, 1993; Tiab and Donaldson, 2004). Each hydraulic 

flow unit can be characterized by an approximate range of pore throat (port) size, so 

that fluid flow properties are uniform. 

 

Many studies of the porous media fluid displacement on core samples have not been 

able to unravel completely the mechanisms involved, because the fundamental 

behaviours of multiphase porous media systems are governed by the physical 

processes acting at the pore scale (Al-Raoush and Wilson, 2005). With the current 

research focus on pore level displacements, the definition and interpretation of the 

pore throat seem not to be clear.  It is believed that a clearer definition and a better 

understanding of the displacement phenomena in a pore will help to improve the 

understanding of pore level processes such as in enhanced oil recovery beyond 

current limits. This will ultimately alleviate a number of issues related to global 

energy supply, and also help in making accurate assessments of the leakage risks of 
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stored CO2. In this study we try to give a clearer understanding of the definition of 

the pore throat based on hydraulic resistance to fluid flow in a pore.  

 
5.2 Effective pore size identification  
 

 

Pore throat definition by mercury injection porosimetry, which is the usual 

experimental method to determine pore throat size, has a wide range of sizes for the 

pore throat. Although the significant effect of pore structure and pore geometry on 

fluid displacement is recognised by this method, it does not include the exact 

influence of the internal structure of the pore in the identification and estimation of 

the pore throat. In order to include the internal geometry of a pore and have a unified 

definition, we propose to define the pore throat based on the pore resistance to fluid 

displacement. 

 

In a single pore we define the effective pore size as the pore size at which a sudden 

increase in resistance to interface motion occurs, marking the beginning of the pore 

throat. The pore throat starts from the effective pore size and ends at the narrowest 

section of the pore (that is, pore size less than the effective pore size). The pore 

throat is then defined to be the region of increased hydraulic resistance to interface 

motion through the pore. In this chapter we demonstrate experimentally that force 

resistance measurements may provide useful information in identifying the effective 

pore size and consequently the pore throat, estimating it, and predict its impact on 

fluid displacement. The pore throat diameters of single tapered capillaries 

(micropipettes) are identified and measured by using the resistance to interface flow 

measurement technique described earlier in Chapter 4. The effects of pore tip 
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size/pore gradient, surface tension, and viscosity on the pore throat diameter are 

investigated.  

 

To identify the effective pore size, the resistant pressure profile of gas-water 

interface displacement through a single tapered capillary (micropipette) was 

measured for a period of time. The gas-water interface was created by introducing 

0.1 ml of the gas into the micropipette already filled with deionized water.  

Figure 5.1 is a typical pressure profile for driving a gas-water interface through a 

tapered capillary. This is a case of CO2-water in a tapered capillary with a tip size of 

150 µm (capillary gradient = 4.762 × 10
-3

). It shows that the resistant pressure profile 

is completely different from the profile when only single phase water flows through 

the same capillary as shown in Chapter 4.  

  

 

 

 

 

 

 

 

 

 

  

Figure 5.1: Resistant pressure profile of CO2-water interface flow through a 
tapered capillary with a tip size of 150 µm (capillary gradient:  4.762 × 10-3). 
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It is observed that the pressure increased initially from 0 to about 12 mbar at position 

A and remains approximately constant at this pressure up to position B. At position B 

the resistant pressure increased suddenly indicating an increase in hydraulic 

resistance to flow. 

 

Position B is the position of the effective size of the capillary and the starting point 

of the pore throat. As the capillary is tapered with a gradient, and the hydraulic 

diameter decreases towards the tip, the resistant pressure continues to increase 

linearly up to position C, the tip of the capillary. BC corresponds to the distance from 

the effective size to the capillary tip, which is the pore throat length.  CD is the 

section of the pore indicating a divergence in the pore size after the pore throat. The 

resistant pressure drops drastically because of this divergence in pore size. There is 

no further pore throat phenomenon from this section and the system attains the single 

phase resistant pressure profile in section EF. The phenomenon responsible for the 

resistance pressure profile is thought of as being the reverse of maximum surface 

pressure phenomenon in the determination of dynamic surface tension. However, 

both phenomena are slightly different because of the difference in the geometry of 

both systems as explained earlier (sec 4.2). 

 

Figure 5.2 shows a comparison pressure profile for air-water, CO2-water, and CH4-

water interface motions through a tapered capillary with a tip size of 105 µm and a 

gradient of 8.25 × 10
-3

. The displacements of all the interfaces were started at a 

marked position in the micropipette, one after the other. All the interfaces show a 

similar profile; there is always a point of initiation of a marked increase in resistant 

pressure, which is the effective size and beginning of the pore throat. Figure 5.2 
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shows that the beginning of the pore throat phenomenon is slightly different for the 

three interfaces, suggesting that the composition of the interface can influence the 

effective pore size. Pore throat phenomenon sets off with CH4-water interface 

earliest in the tapered capillary, followed by air-water interface and then the CO2-

water interface. 

 

The Young-Laplace equation (Eq. 2.1) shows that the parameters influencing the 

resistant force to interface displacement are interfacial tension, contact angle and 

effective pore radius. The difference in the effective pore size (initiation of the pore 

throat phenomenon) exhibited by the three interfaces can be accounted for by the 

difference in their interfacial tensions. The interfacial tension of CH4-water at 

ambient conditions is highest and that of CO2-water is least. Therefore, the resistance 

to interface displacement is highest with CH4-water interface, while that of the CO2-

water system is lowest in the same tapered capillary (Figure 5.2), according to the 

Young-Laplace equation. In the flat region of Figure 5.2 (section preceding the 

effective pore size) the contact angle is increasing (as will be shown in Chapter 6) 

and this is balanced by the decreasing pore size, hence, the resistant pressure remains 

constant in this region. From the effective pore size and through the entire pore 

throat, the contact angle remains fairly constant and the dominant factors on the 

resistance are the interfacial tension and pore size. 
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Figure 5.2: Pressure profiles for gas-water interfaces through a tapered 
capillary with a tip size of 105 µm and capillary gradient of 8.25 × 10-3. 
 

 
 
The pressure profiles when the interface moved through tapered capillaries with tip 

sizes ranging from 100 µm to 300 µm and capillary gradient from 6.89×10
-3

 to 

1.65×10
-2

 were measured for three gas-water interfaces and oil-water interface to 

identify their effective pore sizes and estimate them. Air-water, CO2-water, and CH4- 

water and silicone oil-water interfaces were studied. The silicone oil-water interface 

was created by introducing about 0.3 ml of silicone oil into a tapered capillary 

already filled with distilled water. The motion of the interface front was observed by 

viewing it horizontally with the optical microscope, and the positions of the interface 

as it moved through the capillary were captured with the digital camera. The flow 

rate from the pump used to drive the fluids was 0.01 ml/min to minimize the effect of 

viscous force (Løvoll et al, 2005). 
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Figures 5.3 to 5.6 show the resistance pressure profile for air-water, CO2-water, CH4-

water and silicone oil-water interfaces. Each pressure profile shows that as the  

 

 
Figure 5.3: Resistant pressure profile for air-water interface displacement 
through capillaries with different tip sizes/capillary gradients (105 µm/8.25 × 
10ˉ³; 125 µm/9.69 × 10ˉ³; 140 µm/1.16 × 10ˉ²; 203 µm/1.63 × 10ˉ²). 
. 
 

 
 

Figure 5.4: Resistant pressure profile for CO2-water interface displacement 
through capillaries with different tip sizes/capillary gradients (134 µm/6.89 × 
10ˉ³; 200 µm/1.35 × 10ˉ²; 230 µm/1.36 × 10ˉ²; 266 µm/1.52 × 10ˉ²; 287 
µm/1.65 × 10ˉ²). 
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Figure 5.5: Resistant pressure profile for CH4-water interface displacement 
through capillaries with different tip sizes/capillary gradients (120 µm/8.21 × 
10ˉ³; 140 µm/9.05 × 10ˉ³; 190 µm/1.46 × 10ˉ²). 
 
 
 

 
 

Figure 5.6: Resistant pressure profile of silicone oil-water interface 
displacement through two capillaries of different tip sizes/capillary gradients 
(180 µm/7.36 × 10ˉ³; 246 µm/1.63 × 10ˉ²). Oil viscosity: 500 cst 
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interface moves through the tapered capillary (micropipette) there is always an 

effective size; the point of a sudden increased resistance to the interface motion.  

 

As the effective pore size is very significant in the control of fluid displacement in 

the porous medium its quantitative estimate was made, and the factors that may 

influence it were studied. The permeability of the medium was then estimated from 

the effective pore diameter obtained. 

 

 

5.3 Estimation of the effective pore size 
 

In order to quantify the effective pore diameter, the motion of the interface front was 

observed by viewing it horizontally with the optical microscope and the images of 

the front were taken at various positions until the interface exited the capillary. To 

obtain the effective pore diameter, the micrographs are processed to obtain the 

pressure, time and diameter corresponding to each position. The pressure-time 

profile is then converted to pressure-diameter profile and the effective pore diameter 

is obtained as the point of intersection of the constant pressure-diameter line and the 

linearly increasing pressure-diameter line.  

 

As an illustration, a typical profile of a gas-water interface motion through a tapered 

capillary is as shown in Figure 5.7. In the pressure-time profile the effective pore 

diameter corresponds to position T, at which the resistant pressure to the interface 

suddenly increases and the pore at this point is acting as a throat to the interface. The 

balanced pressure section is AT, which is followed immediately by the pore throat 

section, TP.  
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A plot of pressure-diameter for sections AT and TP only of the pressure-time profile 

in Figure 5.7 is shown in Figure 5.8, from which the effective pore diameter is 

obtained. The effective pore diameter is obtained by intersection of AT and PT. The 

effective pore diameter in Figure 5.8 is at T, which is approximately 0.34 mm (340 

µm).  

 
                

 Figure 5.7: Pressure-time profile of a CO2-water interface through a capillary 
with pore tip size of 134 µm and a gradient of 6.726 × 10-3. 
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Figure 5.8: Pressure-diameter profile for sections AT and TP (refer to Fig. 
5.7) 
 

 

 

Another method of estimating the effective pore diameter is by solving the two 

simultaneous linear equations obtained from the pressure-diameter profile. Equations 

5.1 and 5.2 are the two equations for lines AT and TP, respectively (Figure 5.8). 

 

                                                                                                    (5.1) 

 

                                                                                                     (5.2) 

 

 

The value of    in Eq. 5.1 can be neglected because it is small compared to its value 

in Eq. 5.2. Therefore, equating the values of   from the two equations gives Equation 

5.3. 

 

                                                                                                (5.3) 

 

 

Solution of Eq. 5.3 gives the value of   as 0.338 mm (338 µm). This value is similar 

to the effective pore diameter obtained by intersection of sections AT and TP, and 

corresponds to the point T in Fig. 5.7.  
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The use of the simultaneous equations to estimate the pore throat diameter appears to 

be easier and less cumbersome, so it is the method adopted for our estimation of the 

pore throat diameters. 

 

It should be noted that the value of   in Eq. 5.1 is the approximate value of the 

balanced pressure AT, which is equal to the resistant pressure to single phase flow.  

Instead of making a pressure-diameter plot for this section, we can obtain it from the 

original value of balanced pressure in the pressure-time plot (Figure 5.7).  

 

In summary, to determine the effective pore diameter, the following steps are 

followed: 

(i) Plot the pressure-time profile from the LabVIEW data. A plot of pressure 

(mbar) vs time (sec) is usually made. 

(ii) Identify the balanced pressure section from the pressure-time profile. 

(iii) Determine the balanced pressure by obtaining the average pressure for the 

balanced pressure section, if necessary. 

(iv) From the micrographs, obtain the pressure, time and diameter 

corresponding to each position of the interface. 

(v) Make a plot of pressure vs diameter for the pore throat section and obtain 

the linear equation for the section. 

(vi) Using the balanced pressure obtained in (iii) above and the equation 

obtained in (v), solve for   to obtain the pore throat diameter.  

 
 
The effective pore diameters were determined for air-water, CO2-water, CH4-water, 

silicone oil-water and crude oil-water interfaces in various tapered capillaries with 
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pore tip sizes varying from about 100 µm to 300 µm and capillary gradients varying 

from 6.901 × 10
-3

 to 2.153 × 10
-2

. The results obtained are presented in Tables 5.1 to 

5.3. 
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Table 5.1: Effective pore diameter for gas-water interfaces in glass capillaries 

 

Capillary Air-water CO₂-water CH₄-water 

pore tip Capillary 
Effective pore 

Capillary 
Effective pore 

Capillary 

Effective 
pore 

size 
(µm)±7.0 gradient* 

diameter 
(µm)±7.0 gradient* 

diameter 
(µm)±7.0 gradient* 

diameter 
(µm)±7.0 

105 8.250 × 10¯³ 180 8.188 × 10¯³ 171 7.733 × 10¯³ 191 

111 7.163 × 10¯³ 205 6.901 × 10¯³ 198 7.705 × 10¯³ 210 

125 9.688 × 10¯³ 226 9.625 × 10¯³ 223 1.031 × 10¯² 235 

128 8.250 × 10¯³ 243 8.398 × 10¯³ 241 8.215 × 10¯³ 248 

140 1.164 × 10¯² 278 1.102 × 10¯² 264 1.209 × 10¯² 291 

170 1.111 × 10¯² 338 1.038 × 10¯² 320 1.170 × 10¯² 347 

180   1.242 × 10¯² 355   

184 1.343 × 10¯² 368 1.342 × 10¯² 358 1.457 × 10¯² 389 

203 1.483 × 10¯² 420 1.346 × 10¯² 398 1.646 × 10¯² 447 

216 1.386 × 10¯² 453     

230 1.500 × 10¯² 486      

 
                      * (dimensionless) 
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Table 5.2: Effective pore diameter for silicone oil-water interfaces in glass 

capillaries (Oil viscosity = 100 cst) 

 

Capillary 
Silicone oil-water 

pore tip Capillary 

Effective 
pore 

diameter 
(µm)±7.0 gradient* 

diameter 
(µm)±7.0 

150 3.233 × 10¯³ 210 

180 7.355 × 10¯³ 254 

207 1.271 × 10¯² 301 

230 1.478 × 10¯² 359 

246 1.633 × 10¯² 399 

269 2.153 × 10¯² 483 

 
                  * (dimensionless)  

 

 

 

 

Table 5.3: Effective pore diameter for crude oil-water interfaces in glass 

capillaries  

 

Capillary Silicone oil-water 

pore tip Capillary 

Effective 
pore  

diameter 
(µm)±7.0 gradient* 

diameter 
(µm)±7.0 

109 3.796 × 10¯³ 148 

128 4.440 × 10¯³ 165 

142 1.245 × 10¯² 310 

 
                       * (dimensionless)  
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In order to compare the measured effective pore diameter with existing correlation, 

theoretical effective pore diameters were calculated. Many correlations exist for 

estimating pore throat size, but they include bulk property of the porous medium 

such as porosity and permeability, which are routine parameters determined on core 

samples. As this is pore-level estimation, those correlations are not easily applicable.  

Theoretical effective pore diameters were calculated using the Young-Laplace 

equation (Eq. 2.1). The measured pressure corresponding to the effective pore size 

(point T in Figure 5.8) was used to calculate R in the Young-Laplace equation.  

Figures 5.9 to 5.13 show the comparison between the effective pore diameters 

obtained from our experiments with the theoretical effective pore diameter obtained 

using the Young-Laplace equation for air-water, CO2-water, CH4-water, silicone oil-

water and crude oil-water, interfaces, respectively.  
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(a)Capillary tip size effect 

 
 
 
 
 
 

 
 
                                         (b)Capillary gradient effect 

 
Figure 5.9: Air-water interface – Comparison of experimental effective pore 
diameter with theoretical effective pore diameter using Young-Laplace 
equation 
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(a) Capillary tip size effect 

 
 
 
 
 
 

 
(b)  Capillary gradient effect 

 
Figure 5.10: CO2-water interface – Comparison of experimental effective 
pore diameter with theoretical effective pore diameter using Young-Laplace 
equation. 
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(a) Capillary tip size effect 

 
 
 
 
 

 

 
 
(b)Capillary gradient effect 

 
Figure 5.11: CH4-water interface – Comparison of experimental effective pore 
diameter with theoretical effective pore diameter using Young-Laplace 
equation. 
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Capillary tip size effect 

 
Figure 5.12: Silicone oil-water interface – Comparison of experimental 
effective pore diameter with theoretical effective pore diameter using Young-
Laplace equation 

 

 
                        Capillary gradient effect 

 
Figure 5.13: Crude oil-water interface – Comparison of experimental effective 
pore diameter with theoretical effective pore diameter using Young-Laplace 
equation 
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within the limits of experimental errors. Our results suggest that the Young-Laplace 

equation underpredicts the effective pore diameter for two-phase flow in a porous 

medium. The effective pore size is defined based mainly on the pore resistance to 

interface. We have shown previously (Chapter 4) that pore resistance to single phase 

is much smaller than the resistance to interface. The reason for the calculated 

effective pore diameter being lower than the measured value is because Young-

Laplace equation does not consider the resistance to interface, but rather the 

resistance to single phase. Therefore, our experimental effective pore diameters are 

higher than the calculated effective pore diameter. This also confirms our previous 

finding (Chapter 4) that the theoretical resistant pressure obtained using the Young-

Laplace equation may be applicable to single phase, and not for two-phase, 

displacements. As stated earlier, the equation was developed for single phase flow 

based on the capillary tube model and neglects the influence of conical flow in 

constrictions and expansions of flow channels (Scheidegger, 1974).  

 

  5.3.1 Effect of pore tip size and pore gradient on effective 
pore diameter 
 

 

Pore tip size is important in determination of aspect ratio, which is defined as the 

ratio 

 

of pore body size to pore throat size. It has been found that high aspect ratio favours 

oil recovery (Dehghan et al, 2009) and trapping under water-wet conditions 

(Wardlaw, 1982). Pore gradient is dependent on the length of the throat, and in a 

pore-throat system the length of a throat is important in causing trapping, as well as, 

the contrast in size between pores and throats (Wardlaw, 1982). 
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To study the effect of pore tip size (capillary pore tip) and pore gradient (capillary 

pore gradient) of different tapered capillaries with tip sizes ranging from 105 µm to 

230 µm and with pore gradient of 6.901 × 10
-3 

to 2.153 × 10
-2

 were used for the 

motion of gas-liquid and liquid-liquid interfaces, as described in Chapter 3. Air-

water, CO2-water and CH4-water were used to represent gas-liquid interface while 

silicone oil-water was used to represent liquid-liquid interface.  

 

Figures 5.14 and 5.15 show the effects of pore tip size and capillary gradient, 

respectively on the effective pore diameter. For the pore tip sizes and capillary 

gradient considered, both figures show a linear relationship between the effective 

pore diameter and pore tip size, and capillary gradient; effective pore diameter 

increases with pore tip size and pore gradient for both the gas-liquid and liquid-liquid 

interfaces. However, it is observed that the gradient of the regression analysis for the 

effective pore diameter - capillary gradient relationship is far higher than that 

obtained for the effective pore diameter - pore tip diameter plot. We conclude that 

capillary gradient has a more dominant effect on the effective pore size than the pore 

tip size. This is true because we observed that two tapered capillaries may have same 

tip size but different capillary gradients and, as such offer different resistances to 

interface motion. It should be noted from our previous finding (Chapter 4) that for 

capillary effects to be significant the effective pore size should be less than 500 µm. 

Our effective pore sizes in these cases are therefore between 170 µm and 500 µm. 

This means that the pore within this size range will significantly affect the two-phase 

flow. The resistance of a pore with a size less than the effective diameter will 

become significant.  
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  air/w: y = 2.3938x – 67.694, R2 = 0.996;   CO2/w: y = 2.1874x – 48.169, R2 = 0.993;   CH4/w: y = 2.516x – 

73.681, R2 = 0.9918;   Si oil/w: y = 2.4503x – 194.39, R2 = 0.9871 

 

Figure 5.14: Effect of pore tip size on effective pore diameter for gas-liquid 
and liquid-liquid interfaces. 
 

 

 

 

 
 
air/water: y = 33904x – 58.692, R2 = 0.8474;   CO2/water: y = 33025x – 52.81, R2 = 0.794;   CH4/water: y = 

26356x – 10.219, R2 = 0.8601;   Si oil/water: y = 16364x + 122, R2 = 0.9796 

 
Figure 5.15: Effect of capillary gradient on effective pore diameter for gas-
liquid and liquid-liquid interfaces. 
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The regression coefficients for the four interfaces are excellent and demonstrate the 

high dependence of the effective pore size on the tip size of the tapered capillary and 

the capillary gradient. The coefficients obtained for effective pore diameter – pore tip 

diameter relationship are 0.996, 0.993, 0.9918, and 0.9871 for air-water, CO2-water, 

CH4-water and silicone oil-water interfaces, respectively, while for effective pore 

diameter – capillary gradient relationship, the coefficients are found to be 0.8474, 

0.794, 0.8601, and 0.9796 for air-water, CO2-water, CH4-water and silicone oil-water 

interfaces, respectively. For a tapered capillary of a known gradient the effective 

pore diameter can be estimated using any of the appropriate equations in Figure 5.15. 

The permeability of the porous medium can then be estimated using Equation 2.29. 

 

Our results show that the effective pore size affects two-phase fluid flow 

significantly and supports Windland’s observation. Winland recognized that 

“effective pore size” controls fluid movements in the reservoir and influences 

permeability measurements. Winland used the term “effective” pore size rather than 

“pore throat” size as measured by capillary pressure experiments. The effective pore 

size was defined as the pore size that effectively interconnects the pore system. 

(Gunter et al, 2014). Winland documented that in many cases, pore size is a function 

of crystal size, and large crystals were connected by large pores, and small crystals 

were connected by small pores. He noted that a more important observation is that 

even though larger intergranular and solution pores may be included within the 

intercrystalline storage system, the flow into and out of these larger pores is 

controlled mainly by the finer pore system. Winland’s equation for calculation of 

average pore throat size shows that at a given porosity, larger pore throats in the pore 

result in greater flow-through and a larger permeability (Kolodzie, 1980). This 
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indicates that for a tapered capillary, larger pore tip size will give larger pore throat 

size (Ehrlich et al., 1991a, Ehrlich et al., 1991b; and McCreesh et al., 1991) have 

shown that in sandstones the larger pores are commonly associated with larger pore 

throats. 

 

Figure 5.14 shows clearly that the effective pore diameter of silicone oil-water 

interface is always smaller than the effective pore diameter of a gas-water interface 

through a capillary of the same size. This suggests that viscosity may not have any 

significant influence on the effective pore diameter. Washburn (1921) and Young-

Laplace equations show that the radius of a pore is a direct function of the interfacial 

tension and the contact angle. The surface tension at ambient conditions of the 

silicone oil-water used is 20.9 mN/m and the air-water, CO2-water and CH4-water 

interfacial tensions are 72 mN/m, 65 mN/m and 75 mN/m, respectively (Li et al, 

2013; Espinoza and Santamarina, 2010, Hough et al, 1951; Jennings and Newman, 

1971). The interfacial tensions of the gas-water interfaces are higher than that of the 

silicone oil-water, leading to higher resistance to interface motion. This may be a 

possible reason for the higher pore throat diameter of the gas-water interfaces than 

that of the silicone oil-water interface for a corresponding pore tip diameter.  

 

  5.3.2 Effect of gas type on the effective pore diameter 
 

 

The effect of gas type on the effective pore diameter was studied by using air, CO2, 

and CH4 to create interfaces with deionized water in capillaries with tip sizes of 100 

– 300 µm and gradient of 6.901 × 10
-3 

to 1.646 × 10
-2

. To obtain comparable results a 

tapered capillary of same tip size and gradient was used to study each of the three 
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interfaces, ensuring that the capillary was cleaned properly and dried before the next 

use. 

 

Figure 5.16 shows the effect of the type of gas-water interface on the effective pore  

diameter. Figure 5.16a is the effective pore diameter – pore tip diameter plot and 

Figure 5.16b is the effective pore diameter – pore gradient plot for air-water, CO2-

water and CH4-water interfaces. From Figure 5.16(a) it is seen that the effective pore 

diameter varies slightly with the gas applied. CH4-water has the highest interfacial 

tension, and the effective pore size is larger than that in air-water and CO2-water 

systems, while the effective pore size of air-water system with higher interfacial 

tension is larger than in CO2-water system. Larger effective pore size (R), using 

tapered capillary of same capillary gradient for the different gas-water interfaces 

implies that the pore throat length is longer. Under the same conditions of pressure 

and temperature the resistance to interface will be higher. Our result implies that the 

resistance of a porous medium to CO2-water interface is the least (lowest effective 

pore size) compared to CH4-water and air-water systems. This confirms our finding 

in Chapter 4 that CH4-water interface resistance is higher than air-water and CO2-

water systems. This may have serious implications on the geological storage of CO2 

in a depleted oil or gas reservoir. The common opinion is that the same reservoir that 

stored natural gas or oil could also store CO2, after depletion of the hydrocarbon. Our 

finding shows that the depleted oil/gas reservoir may have lower pore resistance to 

CO2 than to natural gas; the stored CO2 could therefore escape. As a result, it is 

important to assess the integrity of a caprock that stored hydrocarbon before storing 

CO2 in the same reservoir. The effect of interfacial tension on effective pore diameter 

will be investigated later. 
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                                          (a) 

 

                                          (b) 

Figure 5.16: Effect of gas type on effective pore diameter 
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5.3.3 Effect of viscosity on effective pore diameter 
 

 

To study the effect of viscosity on the pore throat diameter, the pore tip, pore 

gradient and surface tension were fixed. Silicone oil with viscosities ranging from 50 

cst to 1000 cst and with surface tension from 20.1 to 21.2 mN/m was used to create 

interfaces with water.  Two capillaries with pore tip sizes of 180 µm (capillary 

gradient: 7.355 × 10
-3

) and 246 µm (capillary gradient: 1.634 × 10
-2

) were used. The 

results are presented in Figure 5.17. The highest effective pore diameters were 

approximately 250 µm and 400 µm for the 180 µm and 246 µm capillaries, 

respectively and these remain fairly constant for the range of viscosities used, 

indicating that viscosity has a negligible influence on the effective pore diameter. 

This is in agreement with the Young-Laplace and Washburn equations. The 

difference in the effective pore diameter of the two capillaries at the same viscosity 

could be attributed to pore geometry effect as explained in the previous section. The 

surface tension difference between the various oil viscosities used is small, ranging 

from 0.1 mN/m to 0.5 mN/m. This may be the reason for slight variation in the 

effective pore diameter obtained for both pore sizes and pore gradient. This also 

gives an indication that surface tension may have a great influence on the pore throat 

diameter. This will be investigated further. The data from Figure 5.17 indicate that 

the effective size of the pore is controlled mainly by pore size and interfacial tension. 

Liquid viscosity does not affect the effective pore size significantly. 
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Fig. 5.17: Variation of effective pore diameter with silicone oil of different 
viscosities in the same capillary 
 

 

  5.3.4 Effect of surface tension on effective pore diameter 
 

 

The effective pore diameter is the pore size that marks the beginning of the pore 

throat. It is characterised by a sudden increase in the resistance to two-phase 

displacement in a pore. To study the effect of surface tension on effective pore 

diameter, gas-water interface was created by using 0 %, 0.05 %, 0.1 %, and 0.2 % 1-

propanol solution in deionized water.  Their measured interfacial tensions are 72.0 

mN/m, 42.51 mN/m, 34.86 mN/m, and 28.31 mN/m, respectively. For each tapered 

capillary, gas-0 % 1-propanol (water) interface was displaced first, followed by the 

gas-0.05 % 1-propanol, gas-0.1 % 1-propanol, and finally gas-0.2 % 1-propanol to 

obtain comparable results. Figure 5.18 shows the results for air-water interface. The 

figure shows an appreciable reduction in the effective pore diameter as the surface 

tension is reduced. This indicates that interfacial tension has a significant influence 

on the effective pore diameter. 
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Figure 5.18: Effect of surface tension on effective pore diameter for 
air/propanol interface 
 

 

 

5.4 Permeability prediction from pore throat diameter 
 

Permeability of the porous media has been established to be mainly dependent on the 

pore throat radius, with the pore body contributing a little. For steady laminar flow in 

a uniform and smooth-walled tube of radius r, the permeability from the Hagen-

Poiseuille and Darcy’s laws is given by (Amyx et al, 1960; Oritz-Arango and 

Kantzas, 2011; Salah, 2011): 

 

  
  

 
                                                                                             (5.21) 

 

This was also expressed by Scheidegger (1974) as: 
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Absolute permeability was estimated from Equation 5.21 using the effective pore 

radius obtained for the different interfaces in different capillaries. Permeability were 

calculated using the effective pore radius (initiation of the pore throat) and the 

effective radius at the capillary tip (end of the pore throat). 

  

Figures 5.19 to 5.21 show the variation of permeability from the beginning of the 

pore throat radius to the end of pore throat radius (capillary tip) for air-water, CO2-

water and CH4-water systems. The permeability at the effective pore radius 

(initiation of the pore throat) is always higher (bigger radius) than the permeability at 

the termination of the pore throat (capillary tip - smaller radius). For such systems 

the permeability will lie between the initiation of the pore throat and the termination 

of the pore throat 

 

 

 

 
 

Figure 5.19: Permeability limits in tapered capillaries for air-water system 
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Figure 5.20: Permeability limits in tapered capillaries for CO2-water system  
 

 

 

 

 

 

 
 

Figure 5.21: Permeability limits in tapered capillaries for CH4-water system 
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5.5 Summary  
 

 

The experimental results reported here demonstrate that the variation of the overall 

pressure resistance with pore size during an immiscible displacement experiment 

provides quantitative information about the aperture of the porous medium. 

 

Effective pore size of a single pore has been identified and estimated using the 

resistance to two-phase flow. Effective pore diameter for air/water, CO2/water, and 

CH4/water interfaces are similar for a given pore tip size and pore gradient, 

especially at smaller pore tip sizes of about 100 to 140 microns. However, the 

effective pore size for CH4/water is slightly higher than that of air/water, which in 

turn is higher than that of CO2/water. This indicates that the energy needed to 

displace an interface through a pore space of the same size decreases in the order: 

CH4/water > air/water > CO2/water. It follows that CO2 will break through more 

easily than methane or air.  

 

For a given capillary size and gradient the effective pore diameter of a gas-water 

interface is always higher than that of silicone oil-water interface. 

Effective pore diameter increases with the pore tip size and the pore gradient. 

However, the effect of the pore gradient is more dominant.  

 

The effective pore diameter is influenced greatly by interfacial tension; it increases 

with interfacial tension. Surfactants lower the interfacial tension and consequently 

decrease the effective pore diameter. Viscosity does not have any significant effect 

on the effective pore diameter. 
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Effective pore diameter is very significant in determining the permeability of a 

porous medium. Absolute permeability for a single pore has been estimated based on 

pore throat size.  
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Chapter 6: Pore wettability and flow 
                   resistance 
 

 

6.1 Introduction 
 

 

Wetting describes the contact between a liquid and a solid surface, which results 

from intermolecular interactions when the two are brought together. The wetting 

phase adheres more readily to the surface, while the non-wetting phase adheres less 

readily to the surface. The wetting phase occupies the smallest areas of the pore-

space such as small pores, the corners of larger pores and as connected thin films 

residing on the walls of the solid surface (Schowalter, 1979). The non-wetting phase 

occupies the largest areas of the pore-space, principally in the centres of large pores.  

 

As a thermodynamic process, whether or not wetting will proceed spontaneously, the 

rate, and the extent it can progress against the external forces that may be brought 

into play to resist it, or alternatively, how large an external force may be needed to 

overcome the initial resistance to wetting, is determined by the magnitude of the free 

energy change involved. As observed by Wenzel (1936), wetting replaces an area of 

the solid-gas interface by an equal area of solid-liquid interface and is generally also 

accompanied by an extension of the liquid-gas interface. Each interface has its own 

specific surface energy content, and as such, wetting, with its accompanying change 

in the extent of each interface, results in a net decrease or increase in total surface 

energy.  
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6.2 Contact angle and flow resistance in pores 
 

 

Capillary force is negligible in two-phase flows in macrochannels while the inertia 

and viscous forces dominate, but as the tube diameter becomes smaller capillary 

forces become significant, and in that case the surface forces become very prominent 

(Lee and Lee, 2008). David and Neumann (2014) and Cubaud and Ho (2004) have 

also reported that in microfluidic and nanofluidic devices where the surface forces 

become dominant, the flow characteristics such as pressure drop, heat transfer, and 

mass transfer depend upon how the two fluids are distributed (flow pattern or 

regime), which ultimately depends on contact angle (Barajas and Panton, 1993). 

Several works have been reported on the effect of tube materials on the flow pattern 

of two-phase mixtures (Barajas and Panton (1993), Iguchi and Terauchi (2000, 

2001a, b), Lee and Lee (2008), and Rapolu and Son (2007) and consequently on the 

pressure drop. All these are reported based on measurement of contact angles on the 

flat surface of the tube material in an open space. Data on the influence of geometry 

of wall materials of a pore space are still lacking. 

 

Studies on contact angle have been limited to mainly observations on flat surfaces 

due to lack of a technique for measuring the contact angle in a small pore. Recent 

studies by Li et al (2013), Li et al (2014), and Li and Fan (2013), have revealed that 

contact angles in glass pores differ largely from the contact angles measured on flat 

glass surfaces. For various liquids studied, they observed that the contact angle of a 

liquid in a uniform glass pore increases as the pore size decreases from 1000 µm to 

about 300 µm. However, for pores of diameter from 300 µm to 100 µm investigated, 

the contact angle is fairly constant and there is no significant inconsistency regarding 
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the dependence of contact angle on glass pore size within this size range. We need to 

investigate further the effect of contact angle on the resistance to two-phase flow in 

pores of micron sizes. 

 

6.3 Pore contact angle in tapered capillaries 
 

 

In order to investigate the effect of contact angle on resistance to interface 

displacement, the static contact angles of the interface were measured in different 

sections of a tapered capillary. In this study, owing to the limitation of the optical 

microscope used it is difficult to obtain a clear image of the liquid meniscus in the 

tapered capillary for pore size less than 100 µm. Figures 6.1 to 6.3 show the variation 

of contact angle with pore size in various tapered capillaries for air-water, CO2-

water, and CH4-water, interfaces, respectively.  

 

All the figures show that generally, contact angle increases as the pore size decreases 

along the tapered capillary but tends to remain fairly constant from a pore size of 

about 300 µm. For the air-water interface (Figure 6.1), the contact angle increases 

from approximately 22
o 

± 0.003º to 29.7
o 

±
 
0.03º, while for CH4-water interface 

(Figure 6.3) it increases from about 23
o 

± 0.003º to 30
o 

±
 
0.03º, as the glass pore size 

decreases from 1000 to 300 µm. The contact angle of the CO2-water interface 

(Figure 6.2) increases from approximately 21
o 

± 0.003º to 29
o 

±
 
0.03º as the glass 

pore size decreases from 1000 to 300. From about 300 µm to 100 µm the change in 

contact angle is not significant and remains at approximately 29°±
 
0.03º, 29.7

o
±

 

0.03º, and 30°±
 
0.03º for CO2-water, air-water, and CH4-water systems, respectively.  
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Figure 6.1: Effect of pore size on air/water contact angle in tapered capillaries 
with varying tip sizes/capillary gradient of 115 µm/7.155 × 10ˉ³, 138 µm/1.16 
× 10ˉ², 148 µm/1.09 × 10ˉ², 170 µm/1.11 × 10ˉ², 195 µm/1.63 × 10ˉ², and 215 
µm/1.39 × 10ˉ². 
 
 
 

 
 

Figure 6.2: Effect of pore size on CO2/water contact angle in tapered 
capillaries with varying tip sizes/capillary gradients of 107 µm/8.10 × 10ˉ³, 
133 µm/8.40 × 10ˉ³, 170 µm/9.96 × 10ˉ³, 184 µm/1.31 × 10ˉ², and 236 
µm/1.36 × 10ˉ². 
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Figure 6.3: Effect of pore size on CH4/water contact angle in tapered 
capillaries with varying tip sizes/capillary gradients of 128 µm/8.22 × 10ˉ³, 
143 µm/9.05 × 10ˉ³, 183 µm/1.46 × 10ˉ², 205 µm/1.65 × 10ˉ².   
 

 

The difference in the contact angle of the different interfaces could be attributed to 

the differences in their interfacial tensions. The CH4-water interfacial tension is 

slightly higher than air-water interfacial tension, which in turn is higher than the 

CO2-water. Wu et al (2007) have shown that as the interfacial tension increases the 

pressure at the three-phase contact line is increased, resulting to increased contact 

angle. 

 

These results are similar to the results obtained by Li et al (2014), Li and Fan (2013, 

2014) and Li et al (2013).  Li and Fan (2013, 2014) and Li et al (2014) observed that 

for all liquids studied (water, 1-propanol, n-decane and crude oil), the static contact 

angle in uniform glass capillaries of various sizes increased as the glass pore size 

decreased from 1000 to 300 µm, but for pore size of roughly between 300 and 100 

µm, the change of pore contact angle with pore size, though consistent, is not 
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remarkable. A similar observation was made by Li et al (2013) on the effect of pore 

size on dynamic contact angle in uniform glass capillaries.  

 They related the apparent dependence of contact angle on glass pore size within the 

size range of about 300 to 1000 µm to the effect of curvature of three-phase line. 

They concluded that, although there is no significant inconsistency regarding the 

dependence of contact angle on glass pore size range from 100 to 300 µm, the effect 

of curvature of three-phase line cannot support the results for the pore contact angles 

within this glass pore size range. 

 

In this section of the capillary (that is approximately 300 µm and less) where the 

contact angle is highest and remain fairly constant, we have also observed a 

corresponding sudden increased resistance to the gas-liquid interface motion. This 

point of the beginning of the peak in the contact angle in the tapered capillary 

corresponds to the effective pore size of the tapered capillary. We have also shown in 

the previous chapter (Chapter 4) that the effective pore diameter in our tapered 

capillary lies somewhere less than 500 µm.  

 

The magnitude of the resistant force to interface displacement in a cylindrical pore as 

expressed by the Young-Laplace equation is determined by the radius of the rock 

pore, the gas-water interfacial tension (surface energy), and wettability as expressed 

by the contact angle of the interface against the solid pore walls, measured through 

the water phase. As the gas-water contact angle is greater than zero, it is expected 

that the resistant pressure should theoretically decrease for the system. We have 

observed in this study that the interface pressure in tapered capillaries remains 

constant as the interface moves in a certain section of the capillary (the section just 
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before the effective pore radius - start of pore throat), but in the pore throat where the 

pore size is further reduced the interface pressure increases drastically. We suggest 

that this resistant pressure trend could be attributed to the trend of change of contact 

angle in the tapered capillary. In the section of the capillary preceding the effective 

pore radius (constant pressure section), the contact angle keeps increasing (that is, 

decreasing cos θ in Young-Laplace equation). The decrease in cos θ is balanced by 

the corresponding decrease in the pore size. Therefore, the interface pressure, ∆P, 

remains constant.  At the effective pore radius, we observe that the interface pressure 

increases suddenly. The contact angle, which is at its peak at this point, remains 

fairly constant (cos θ constant) until the interface moves out of the capillary.  The 

sudden increase in interface pressure from the effective pore radius is therefore not 

influenced by the contact angle but can be attributed to the effect of the decreasing 

pore size alone for a constant interfacial tension. The observed trend of contact angle 

and resistant pressure in the tapered capillary will be elucidated further in the next 

section. 

 

For all the capillary tip sizes used, the variation of contact angle with pore size in a 

tapered capillary from a size of about 300 µm and less is very small. This suggests 

that the capillary tip size does not have a significant influence on the contact angle 

variation in the tapered capillary. 
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6.4 Effect of pore size on pore contact angle and 
resistant pressure  
 

 

The effect of pore size on contact angle and resistant pressure in the tapered capillary 

was studied by measuring the contact angle of the interface in various sections of the 

capillary, up to the capillary tip. The capillary was then rinsed with deionised water, 

dried, and used to measure the resistant pressure to interface displacement through it. 

Figures 6.4 to 6.6 show the change in contact angle and resistant pressure for air-

water, CO2-water and CH4-water interfaces in tapered capillaries of tip sizes 115 µm, 

107 µm, and 128 µm, respectively. The capillary gradients of the capillaries are 

7.155 × 10
-3

, 8.180 × 10
-3

, and 8.220 × 10
-3

, and their corresponding effective pore 

diameters are 203 µm, 170 µm, and 250 µm, respectively. 

 

The contact angle of air-water interface (Figure 6.4) increased from approximately 

22
o
 at the capillary size of 1000 µm (1 mm) to about 29.8

o
 at the effective pore size 

of about 200 µm. It remains fairly constant at this angle until the interface leaves the 

capillary. The resistant pressure is fairly constant at about 16 mbar from the pore size 

of 1000 µm and at the effective pore diameter of about 200 µm it increases rapidly to 

a maximum of 35 mbar at the capillary tip. Similarly, for CO2-water interface (Figure 

6.5) the contact angle increased from approximately 21
o
 at the capillary size of 1000 

µm to about 29
o
 at the effective pore size of about 170 µm, and remains fairly 

constant at this angle until the interface leaves the capillary. The resistant pressure is 

fairly constant at about 15 mbar from the pore size of 1000 µm and at the effective 

pore diameter of about 170 µm it increases rapidly to a maximum of 40 mbar at the 

capillary tip. Figure 6.6 shows that for CH4-water interface, its contact angle 

increased from approximately 23
o
 at the capillary size of 1000 µm to about 30.2

o
 at 
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the effective pore size of about 250 µm, and remains fairly constant at this angle until 

the interface leaves the capillary. Its resistant pressure is fairly constant at about 18 

mbar from the pore size of 1000 µm and at the effective pore diameter of 250 µm it 

increases rapidly to a maximum of about 44 mbar at the capillary tip. 

 

 

 
 

Figure 6.4: Air/water interface - Effect of pore size on contact angle and 
resistant pressure in a tapered capillary of tip size 115 µm and capillary 
gradient 7.155 × 10-3. 
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Figure 6.5: CO2/water interface - Effect of pore size on contact angle and 
resistant pressure in a tapered capillary of tip size 107 µm and capillary 
gradient 8.180 × 10-3. 
 

 

 

 
 

Figure 6.6: CH4/water interface - Effect of pore size on contact angle and 
resistant pressure in a tapered capillary of tip size 128 µm and capillary 
gradient 8.220 × 10-3 
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may relate to the energy accumulation in the interface. When the contact angle 

remains constant the gas-water interface does not change, so energy does not 

accumulate in the interface, and the resistant pressure increases. Increasing contact 

angle means that the interfacial area of gas-water interface is increasing, 

consequently more energy is stored, so that the pressure does not increase. 

 

 

6.5 Effect of surface tension on pore contact angle in 
a tapered capillary 
 

 

To investigate the effect of surface tension of a liquid on the pore contact angle in a 

tapered capillary the effect of liquid viscosity should be minimized. In this study, 

water and aqueous solutions of 1-propanol are used. The surface tension of water is 

72 mN/m while that of 5% wt 1-propanol is 42.51 mN/m, but their viscosities are 

small and close at 8.94 × 10
-4

 Pa.s and 1.10 × 10
-3

 Pa.s, respectively. The contact 

angles from about the effective pore radius to the tip of the capillary were focused on 

to understand more clearly the influence of surface tension on contact angle in the 

pore throat of a tapered capillary. Figure 6.7 illustrates the effect of surface tension 

of a liquid on the pore contact angle in a tapered capillary. It indicates that the 

contact angle for gas/water system is higher than that for the corresponding gas/5 

wt% 1-propanol system. Within the pore size range considered the contact angles of 

the air/water systems were between 29.6
o
 and 29.8

o
 while those for corresponding 

air/5 wt% 1-propanol system lie between 22.9
o
 and 23.4

o
, the contact angles of the 

CO2/water system were between 28.8
o
 and 29

o
 and those of the corresponding CO2/5 

wt% 1-propanol were between 22.1
o
 and 22.6

o
, and the contact angles of CH4/water 
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system were between 29.9
o
 and 30.2

o
 while those of the corresponding CH4/5 wt% 1-

propanol system lie between 23.5
o
 and 24

o
. 

 

 

 
 

Figure 6.7: Surface tension effect on contact angle in a tapered capillary 
(water; γ = 72 mN/m, η = 8.94 × 10-4 Pa.s; 5 wt% propanol; γ = 42.51 mN/m, 
η = 1.10 × 10-3 Pa.s) 
 

 

The difference in the contact angle between the gas/water system and the 

corresponding gas/5 wt% 1-propanol system is due to the difference in the surface 

tension of the liquids used in both systems. The surface tension of water was 72 

mN/m while the surface tension of the aqueous solution of 1-propanol used was 

42.51 mN/m. The effect of decreasing interfacial tension in the gas/aqueous 1-

propanol systems is to decrease the contact angle (Shafrin and Zisman, 1960; Wu et 

al, 2007; Duzyol and Ozkan, 2014). 

 

From Figure 6.4 the pore size range considered is within the pore throat of the 

tapered capillaries and the contact angles for the gas/water systems is fairly constant, 

as shown also previously in Figures 6.1 to 6.3. It is observed that in the gas/aqueous 
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1-propanol systems the contact angles also remained fairly constant from a pore size 

of about 150 µm. This indicates that apart from decreasing the contact angles, the 

decrease in surface tension of the liquid used also reduced the effective pore size. 

The implication of this is that the pore throat length will be reduced, with the 

resultant effect of reduced resistant pressure to interface motion. 

 

6.6 Energy at interfaces between different phases 
 

 

When gas forms an interface with water, for example air bubble trapped in water or 

water droplet in air, the water molecules at the air-water interface must be at a higher 

energy level than those in the bulk water. Water molecules in the bulk fluid can 

associate with other water molecules through hydrogen bonding and are therefore at 

a lower energy level. Molecules at the gas-water interface are at a higher energy state 

because they bind to fewer water molecules. The total energy at the interface is a 

product of the total surface area, A, and the surface tension, γ, between the two 

phases, as given in Equation 6.1 (Logan, 2012). 

 

                                                                                                           (6.1) 

 

where     is the gas-water interfacial tension (N/m) (air-water = 72 mN/m);   is in 

m
2
. 

The contribution to surface area by the interface curvature is small and can be 

ignored. 

But, Energy (Work) = Force x distance 

                   

                                                                                     (6.2) 

    

where   is in Joules,    is the pressure (N/m
2
) exerted by the system and   (m

3
) is 

the  
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volume of the system. 

 

 

The capillaries used in this experiment can be simulated as a frustum of a right 

circular cone, as the capillaries are not uniform and are tapered towards the tip as 

shown in Figure 6.8. 

 

 

 

 

 

 

   

 

 

 

  - radius of the smaller end of the capillary 

     - radius of the larger end of the capillary                            

     - capillary horizontal length from larger to smaller radius 

     - slant length of capillary from larger to smaller radius  

 

                     Figure 6.8: Enlarged tapered capillary simulated as a frustum 
 

 

 

The volume of the frustum is given by 

 

           
 

 
                                                                                       (6.3) 

 

But, 

 

            
 

 
                                                                                 (6.4) 

 

So, 

 

            
 

 
 
  

 
                                                                      (6.5) 

 

   
 

 
                                                                                      (6.6) 

 

where   is in m
3
,  ,  , and   are in m 

 

Substituting for   in Equation (6.6) into Equation (6.2) yields 
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                                                                                  (6.7) 

 

The lateral surface area,    

 

                                                                                                  (6.8) 

 

or 

 

                                                                                   (6.9)                                                                                                                           

                                        

 

The total surface area,   

 

                 
                                                                 (6.10)  

 

or 

 

                  +                                                (6.11) 

 

where   is in m
2
,  ,  , and   are in m 

 

Substituting for A in Equation (6.11) into Equation (6.1) yields: 

 

                                                           (6.12) 

 

where   is stored energy (Joules) and     is gas-water interfacial tension in N/m.  

The experimental stored energy can be obtained using Equation (6.7), while the 

theoretical stored energy in interface can be obtained from Equation (6.12).  

 

The energy stored in the interface was obtained by measuring the distance between 

two successive marked positions on the tapered capillary. The diameter and the 

corresponding pressure to the marked positions were measured as the interface 

moved. Owing to the difficulty of capturing distinct interface fronts in the entire 

capillary, measurements were focused from about the effective pore diameter to the 

capillary tip.  
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Figures 6.9 to 6.11 show plots of experimental stored energy in interface at each 

position in the capillary and the cumulative stored energy of the interface for air-

water, CO2-water, CH4-water systems, respectively.  All the figures show that the 

energy of the interface at every position is fairly constant for all the systems, while 

the cumulative stored energy increases as the interface advances towards the 

capillary tip. The increase in cumulative stored energy is as theoretically expected, 

because it is the addition of all the energies at the previous positions up to the current 

position. 

 

 

 
 

Figure 6.9: Experimental stored energy for air-water system 
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Figure 6.10: Experimental stored energy for CO2-water system 
 

 

 

 

 
 

 Figure 6.11: Experimental stored energy for CH4-water system 
                                       

 

 

Figures 6.12 – 6.14 show the comparison between the experimental and calculated 

cumulative stored energy in the interface for air-water, CO2-water, CH4-water 
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macroscopic scale displacement may not be suitable in the case of microscopic 

displacement. In addition, the experimentally measured energy is always higher than 

the calculated energy. 

 

 

 

 

 
Figure 6.12: Cumulative experimental and calculated stored energy for air-
water system 
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Figure 6.13: Cumulative experimental and calculated stored energy for CO2-
water system 
 

 

 

 

 

 
 

 

Figure 6.14: Cumulative experimental and calculated stored energy for CH4-
water system 
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6.7 Summary 
                                     

               

The static contact angles of gas-liquid interfaces were measured in tapered capillaries 

to study the effect of contact angle on interface displacement by linking the measured 

contact angles to the resistant pressure to the displacement and stored energy in the 

interface. The results obtained indicate the following: 

 

Pore contact angle has a significant influence on the resistant force to interface 

displacement in a porous medium and needs to be accurately determined rather than 

assuming it to be zero or constant value as had been done in many previous studies. 

 

Contact angle increases with the decrease in the pore size, for all the systems studied 

but remains fairly constant after a certain pore size. It increases drastically about the 

effective pore size of the capillary and remains fairly constant after this point (that is, 

in the entire pore throat). 

 

The section of the capillary where the contact angle is increasing corresponds to the 

section of constant resistant pressure while the section where the contact angle is 

constant corresponds to the section of rapid increase in the resistant pressure. 

 

Contact angle in the tapered capillary decreases with decreasing interfacial tension. 

As the interfacial tension results in the decrease of the effective pore size it shifts the 

position of constant contact angle further towards the capillary tip, thus reducing the 

resistant pressure. 

 

The tip size of a tapered capillary does not influence greatly the measured contact 

angle for any given interface. The contact angle depends largely on the pore size. 
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Energy stored at every position of the interface motion is fairly constant and does not 

depend on the contact angle, but the cumulative stored energy increases steadily 

throughout the interface displacement in the tapered capillary.  

 

There seems to be no good agreement between the experimental and theoretical 

cumulative stored energy for the gas-water systems, especially at smaller pore sizes. 

This may also be an indication that the model for stored energy of a macroscopic 

displacement may not be suitable for microscopic displacement. 
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Chapter 7: Conclusion and 
recommendation for future work 
 

 

7.1 Conclusion 
 

 

This research is predicated on the premise that the fundamental behaviours of 

multiphase porous media systems are governed by the physical processes acting at 

the pore scale and that the flow and transport properties in each pore are strongly 

influenced by the roughness of the walls and spatial variations of their local aperture, 

in addition to the fractal nature of the porous medium. 

The goal of this research, ultimately, is to advance the understanding of the 

resistance to multiphase fluid flow at the pore level using micron-sized pores, by 

providing data to interpret the impact of pore size, pore wettability, fluid properties 

and surface chemistry on fluid transport in the pores and give a clearer understanding 

of the exact impact of these factors on multiphase flow. The results obtained are of 

fundamental importance in the study of the leakage risk of stored carbon dioxide and 

enhanced oil recovery processes, and in addition provide fundamental data for pore-

level modelling.  

 

 A novel technique is therefore developed for the measurement of resistant pressure 

profile in a single micron-sized pore, ensuring the ease of visualisation and 

monitoring of events. In addition, a novel technique to directly measure the contact 

angles of the interfaces (gas-liquid and liquid-liquid) in the micron-sized pore instead 

of the conventional contact angle measurements on a planar surface is employed. The 
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impact of each factor affecting fluid displacement such as pore geometry, fluid 

properties and wettability are studied at the pore level. 

 

The resistant pressure profiles of gas-lquid and liquid-liquid interfaces were 

measuerd in various micron-sized tapered capillaries. The effective pore size of the 

single pores were identified and estimated for gas-liquid and liquid-liquid interfaces 

using the hydraulic resistance to flow, and the influence of pore geometry, gas type 

in the interface, interfacial tension and viscosity were investigated. Absolute 

permeability of the single pore was estimated from the pore throat radius. The pore 

contact angles of air-water, CO2-water, and CH4-water systems in micron-sized 

capillaries were measured and linked to the resistant pressure profiles and energy 

stored in the sytem. 

 

The key conclusions resulting from this study are summarised as follows: 

 

 

1. Glass capillaries are good options for pore-scale studies because of their ease of 

visualisation and monitoring of events in them. The optical effect on the glass 

capillary wall illuminated with white light clearly defines the internal capillary wall 

as a white line, while the outer wall is dark. This internal wall may appear visually as 

a thin water film, but this is deceptive. Any water film, if present, is infinitesimally 

small to be observed visually, and the gas phase being displaced by water is in direct 

contact with the capillary wall. 

 

2. The resistant pressure profiles for all gas-lquid and liquid-liquid interfaces exhibit 

a similar pattern in single pores and this is completely different from the single phase 

resistant pressure profile. For the interface displacement, there is always a section of 



Chapter 7: Conclusion and recommendation for future work 

233 

 

constant pressure and a pore size of drastic increase in resistant pressure known as 

the effective pore size. Resistant pressure is influenced significantly by the pore 

geometry (pore tip size and pore gradient) and interfacial tension. 

 

3. The effective pore size is the boundary between throat effect and non-throat effect. 

When the pore size is bigger than the effective size, no throat effect occurs and the 

resistant pressure remains constant, but when the pore size is less than the effective 

size, there is throat effect in which the resistant pressure increases significantly. 

There is no smooth connection between these two regions, so this observation is 

different from previous theory. This interesting observation is made in all the several 

hundreds of experiments conducted. This observation cannot be explained based on 

current theory, but it remains a fact. Therefore, effective pore size is used to explain 

this and distinguish it with the traditional pore throat. 

 

4. The difference between the resistant pressure of single phase flow and two-phase 

flow in a single pore is observed at the effective pore size. While the resistant 

pressure to the single phase flow still remains constant at the effective radius and the 

entire pore throat, the resistant pressure to two-phase flow increases rapidly from the 

effective pore radius and the entire pore throat. Pore resistance to single phase flow is 

therefore much smaller than the resistance to two-phase flow.  

 

5. Both the pore tip size and pore gradient influence the effective pore size but the 

influence of pore gradient is more dominant. Effective pore size is influenced 

significantly by interfacial tension; it increases with the interfacial tension. The 

influence of viscosity is not significant. The gas type used in the interface also 
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influences the effective pore size. The effective pore size of methane-water interface 

is highest, followed by air-water interface and then carbon dioxide-water interface. 

 

6. Permeability of a porous medium is dependent on the pore throat diameter and its 

value lies between the effective pore radius and the pore tip diameter. The larger the 

pore throat diameter the higher the permeability. 

 

7. Pore contact angle increases with the decrease in pore size and it is found to 

remain constant from the effective pore size to the pore tip. The region of constant 

contact angle coincides with the region of drastic increase in resistant pressure, while 

the region of constant pressure in the resistant profile coincides with the region of 

increasing contact angle. The stored energy increases steadily until the interface 

leaves the pore tip.  

 

8. The difference in the contact angles of the air-water, CO2-water and CH4-water 

systems is not much. The difference in their observed resistant pressure is accounted 

for primarily by the differences in their interfacial tensions and the effective pore 

size. 

 

9. Surfactants lower the resistant pressure and contact angle of the interface and shift 

the effective pore radius forward (decreasing effective radius). 

 

Finally, this study has increased scientific knowledge and improved understanding of 

the multiphase processes in the porous medium. 
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7.2 Future work 
 

 

A major limitation of this study is the lack of commercial micron-sized tapered glass 

capillaries. Use of standardized capillaries will make reproducibility and comparison 

of results easier and better. All the capillaries used were fabricated manually and it 

was difficult to obtain capillaries of exactly same geometry. For instance, two 

capillaries may have same tip size but different pore gradient and this difference will 

alter the results obtained and make comparison and interpretation of results difficult. 

It is suggested that standardized capillaries be used for future work outlined below. 

 

1. It has been established that both pore tip size and pore gradient influence the 

effective pore diameter, and that the influence of the pore gradient is more dominant. 

However, the exact influence of pore gradient on the effective diameter has not been 

established because the capillaries used are not standardized. To establish the exact 

impact, standard tapered capillaries with same tip size but with varying gradients 

should be used. This was not possible to manufacture manually.  

 

2. All the experiments so far are conducted at ambient conditions. Experimentation at 

higher pressures and temperatures are yet to be explored and these open up new 

directions of research. This will be applicable to specific cases of flow in porous 

medium such as the geological CO2 storage and enhanced oil recovery. 

A method needs to be devised to carry out the experiments in tapered capillaries at 

elevated temperatures and pressures to reflect the reservoir rock conditions. 

  

3. A key success and better improvement on the result is to obtain a better camera. A 

high resolution camera should be used to measure clearer interface fronts as the 
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interface moves. The camera should be such that will have a self-adjusting 

mechanism to respond to the changes in the focused distance between the camera and 

the tapered capillary. This is very important because the size of the tapered capillary 

decreases towards the tip, thereby causing changes in the focused distance between 

the camera and the capillary. This will enable measurement of resistant pressure and 

dynamic contact angle at the same time. The camera used so far can only capture 

static contact angle after measurement of the resistant pressure. 

 

4. The surfaces used for this study are high energy surfaces (water wetting). Low 

energy surfaces (oil wetting) should also be studied. 

 

5. Due to the limitation of the magnification of microscope, the pore sizes used are 

large. A new system with high magnification to investigate pores with a size down to 

several microns and sub-microns would be the next stage of this research.   
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