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Abstract 

Named entity extraction is a field that has generated much interest over recent years 
with the explosion of the World Wide Web and the necessity for accurate information 
retrieval. Named entity extraction, the task of finding specific entities within documents, 
has proven of great benefit for numerous information extraction and information retrieval 
tasks. 

As well as multiple language evaluations, named entity extraction has been investi­
gated on a variety of media forms with varying success. In general, these media forms 
have all been based upon standard text and assumed that any variation from standard 
text constitutes noise. 

We investigate how it is possible to find named entities in speech data.. Where 
others have focussed on applying named entity extraction techniques to transcriptions 
of speech, we investigate a method for finding the named entities direct from the word 
lattices associated with the speech signal. The results show that it is possible to improve 
named entity recognition at the expense of word error rate (WER) in contrast to the 
general view that F -score is directly proportional to WER. 

We use a. Hidden Markov Model {HMM) style approach to the task of named en­
tity extraction and show how it is possible to utilise a HMM to find named entities 
within speech lattices. We further investigate how it is possible to improve results by 
considering an alternative derivation of the joint probability of words and entities than 
is traditionally used. This new derivation is particularly appropriate to speech lattices 
as no presumptions are made about the sequence of words. 

The HMM style approach that we use requires using a number of language models 
in parallel. We have developed a system for discriminately retraining these language 
models based upon the results of the output, and we show how it is possible to improve 
named entity recognition by iterations over both training data and development data. 

We also consider how part-of-speech (POS) can be used within word lattices. We 
devise a method of labelling a word lattice with POS tags and adapt the model to make 
use of these POS tags when producing the best path through the lattice. The resulting 
path provides the most likely sequence of words, entities and POS tags and we show 
how this new path is better than the previous path which ignored the POS tags. 
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0.1 Notation 

Throughout this thesis the notation adopted is that set out in table l. 

L The length of the word sequence 
w A word 
Wi The specific word at position i in the word sequence 
w/ The word sequence from wi through Wj 

W The word sequence W f 
e Ane~ily 
ei The entity corresponding to the word Wi 

E{ The entity sequence from ei through ej 

E The entity sequence Ef 
t A part of speech tag 
t i The part of speech tag corresponding to the word Wi 

T/ The part of speech tag sequence from ti through tj 
T The part of speech tag sequence Tf 

Table 1: The notation used throughout this thesis. 

The main focus of this thesis is named entity extraction from American broadcast 
news speech word lattices. For this reason when referring to words within the lattices, 
they will be referred to as they are within the lattice. Therefore words which would 
normally start with a capital letter in written text will not, for example "january", 
"peter" and "london"; similarly, words will be spelled in American English, for example 
"labor" , "savor", and "savior". 

Throughout the thesis we refer to seven types of named entities, an example of each 
is given in table 2. In some places in the thesis these will be abbreviated to those in 
table 3, to aid clarity. When eight types of named entities are referred to, this is to 
include a not-an-entity named entity which carries no ma.rkup. 

Words Markup 
James Horlock <ENAMEX TYPE="PERSON">James Horlock</ENAMEX> 
Edinburgh <ENAMEX TYPE="LOCATION">Edinburgh</ENAMEX> 
Edinburgh University <ENAMEX TYPE="ORGANIZATION">Edinburgh University</ENAMEX> 
Three thirty <TIMEX TYPE="TIME">Three thirty</TIMEX> 
Thirtieth June <TIMEX T YPE="DATE">Thirtieth June</TIMEX> 
Five percent <NUMEX TYPE="PERCENTAGE">Five percent</NUMEX> 
Five million dollars <NUMEX TYPE="MONEY">Five million dollars</NUMEX> 

Table 2: Examples of named entity markup. 
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Words Abbreviated markup 
James Horlock <PERSON>James Horlock</PERSON> 
Edinburgh <PLACE> Edinburgh </PLACE> 
Edinburgh University <ORG>Edinburgh University</ORG> 
Three thirty <TIME>Three thirty</TIME> 
Thirtieth June <DATE>Thirtieth June</DATE> 
Five percent <PERCENT>Five percent</PERCENT> 
Five million dollars <MONEY>Five million dollars</MONEY> 

Table 3: Abbreviated examples of named entity markup. 



Chapter 1 

Introduction 

1.1 Preamble 

Over the past decade information extraction has been a particularly hot issue. Since the 

formation of the World Wide Web in 1989, its growth has been phenomenal. Terabytes 

of information have become available; the problem which remains is how to index and 

search this rapidly extending information source to obtain required information. Ini­

tially, the World Wide Web primarily contained text information, but with its growth it 

has evolved to be a multimedia source, containing not just text but pictures, sound, video 

and more. The resulting web is vast and uncharted and extracting desired information 

is non-trivial. 

The World Wide Web is not the only source of vast amounts of data. According 

to (National Association of Broadcasters Information Resource Center 2000) there were 

over 44,000 radio stations broadcasting in the year 2000 and that number is on the 

increase. The information contained in these broadcasts, for the most part , is lost 

immediately after broadcast. 

The task of information extraction is to extract information from a source that is 

relevant to some specific need. It is based on the assumption that the source contains 

both information and noise, and that the noise may be regarded as redundant. 

Information extraction is often perceived as a means rather than an end, and is 

used in other tasks such as information retrieval. The distinction between these tasks 

1 



CHAPTER l. INTRODUCTION 2 

is often unclear and hazy. Theoretically, information extraction is about locating the 

information, whilst information retrieval is about returning the information that has 

been found. Information extraction is about finding and labelling information (thus ef­

fectively adding to the size of the source), whilst information retrieval is about returning 

a subset of the source (and is therefore smaller than the source) . Named entity extrac­

tion is the information extraction task of finding and labelling specific entities (such as 

monetary expressions) within a source. 

1.2 Formulat ion of the problem 

Although much work has gone into the task of information extraction, and indeed into 

named entity extraction, this work has primarily been focused on electronic text data. 

Unsurprisingly, named entity extraction from hypertext markup language (HTML) doc­

uments has received the greatest attention because HTML constitutes the primary for­

mat of documents on the World Wide Web. Some work, however, has been directed 

to other formats of information - such as optical character recognition (OCR) (Cheung, 

Pang, Lyu, Ng & King 2000), speech (Kim & Woodland 2000) and video (Wactlar 1999) . 

The main concern of this thesis is how to extract named entities from speech data. 

For the purpose of this thesis we have investigated how to find standard named entities, 

although the principles apply to non-standard named entities. The standard named 

entities are people's names, place names, organizations, times, dates, monetary expres­

sions and percentages. These fit into three broad categories: ENAMEX - referring to 

names (people's names, place names, organizations), NUMEX - referring to numerical 

expressions (monetary expressions, percentages) and TIMEX - referring to temporal 

expressions (times, dates) . In this thesis we focus on finding these within speech data, 

and marking up the speech data to reflect the discoveries. 

Since speech data is essentially a digital representation of speech waves, it is diffi­

cult to find and mark up named entities within this data source. Previously, all named 

entity extraction from speech has been conducted on transcripts, either manual or auto­

matically recognised. Standard generalised markup language (SGML), or, more latterly, 

extensible markup language (XML) markup, has been added to the transcript to indicate 
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the locations of named entities. 

F\-om the point of view of text, transcriptions of speech are generally noisy. This 

noise is partly due to the original source and partly due to the transcription of the 

source. These two distinct causes of noise are illustrated in the following examples: 

"Peter Piper picked a peck of pickled pepper" and "Let us hear the prayer he taught 

us". The first is a difficult thing to say (thus noise occurs in the production of the 

speech); the second is potentially a difficult thing to hear (the noise occurs during the 

transcription of the speech) - where children are reported to have thought the vicar said 

"Let us hear the prairie tortoise" (and could even have mistaken the phrase for "Lettuce 

here - the prairie tortoise"). There may a lso be other problems such as background 

noise in the recording, badly positioned microphones, or non-recorded visual stimulii 

that may add to the confusion. Many of these phenomena - disfluencies, coarticulations, 

etc have been investigated separately but from the point of view of trying to generate 

standard text, they are all essentially noise. 

A typical transcription of speech is shown in figure 1.1, whereas the substance of the 

conversation is shown in figure 1.2. It is possible that person 1 in the conversation did 

not articulate all of the words shown in figure 1.2, making the automatic transcription 

more difficult. 

SHOE ME I YOU HAVE UH TIME SORRY 
TIME YEAH IS FOUR THIRTY SEVEN 

Figure 1. 1: Corrupt transcript of a conversation concerning the current time. 

Person I: Excuse me, do you have the time? 
Person 2 : Sorry? 

Person I : The time? 
Person 2: Yeah. it's 4:37 

Figure 1.2: Explanation of the conversation concerning the current time. 

The transcription, figure 1.1, is almost incomprehensible without the realisation that 

it is a transcription of speech. By reading the corrupt transcription aloud, however, the 

mind is possibly able to convert back to the original conversation. 
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A number of things are apparent from the transcription which are important to note 

about general transcriptions of speech. 

• The text is case insensitive 

• There is a noticable lack of punctuation 

• There are no indications of speaker changes 

• People often use a different vocabulary when speaking than when writing e.g. use 

of "Yeah" (McCarthy 1999) 

• Formatting changes; e.g. 4:37 becomes four thirty seven, just as $1,500,000 would 

become one point five million dollars 

• Gramatical structures are not as carefully adhered to. Sentences may contain 

repeated words or part words, and may include corrections; e.g. "Pete Peter 

Pan", "Yeah I mean no". 

Ji-Hwan Kim, in his thesis (Kim 2001) , addresses some of the issues raised in the 

above list, and shows innovative methods for finding and adding some of these missing 

features back into the transcription. He also shows that by adding these features to the 

transcriptions it is possible to improve named entity recognition. 

In this thesis the primary focus is on the use of speech word lattices, as described 

in chapter 3. We will use speech transcripts to provide comparisons with our results 

based on word lattices. The fundamental hypothesis of this thesis is that it is possible 

to obtain better named entity extraction from word lattices than from transcriptions. 

1.3 Scope of this thesis 

The objective of this thesis is show that it is possible to perform named entity extrac­

tion on word lattices as well as on transcriptions and to present a comparison of the 

corresponding results. In the thesis we will introduce the standard way that statistical 

systems evaluate named entity sequences on text data. Using this methodology as a 

base we will devolop a system that can extract a named entity sequence together with a 
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word sequence from a word lattice. We will show that it is possible to get better results 

from the word lattice than are achieved by finding the 1-best transcription of the word 

lattice and using named entity extraction on that transcription. 

Having established a method for named entity extraction from word lattices we will 

investigate methods that can be applied to the lattices to improve F-score results. The 

first method we investigate is to reconsider the definition of joint probability that is 

traditionally used in these problems and show that there is a better method - "better" 

in that it requires fewer independence assumptions. Building on this, we produce a 

similar model, which makes fewer independence assumptions, and show how this new 

model yields better F-scores. We also investigate how POS can be used to improve 

the F-score in lattices that do not contain POS information. We provide a method of 

POS tagging the lattices and show how these new lattices can be used to provide better 

results than the originals. We describe a method for discrirninately training language 

models in such a way as to discriminate against words which occur in different language 

models, in an attempt to show that, although the presence of a word in training data 

generally suggests that it is more likely to recur than a word which does not occur in 

the training data, this is not always the case. If common words are found once or twice 

in a particular data, we regard them as less likely to be correct than less common words. 

In all cases we use the same underlying model architecture and show how we are able 

to gain better F-scores with these alterations to the model. 

1.4 Organization of this thesis 

The thesis consists of eight chapters: chapter 2 introduces previous work in the subject 

area. Chapter 3 introduces the data that we use throughout the thesis for our evalua­

tions. Chapter 4 offers a detailed description of a standard statistical model that has 

been used for the task of named entity extraction from speech transcripts, together with 

differences between the systems that have used this standard model. In chapter 5 we 

describe our extensions to the standard model, such as explaining the adaptation to use 

speech word lattices instead of text and an alternative to the traditional mathematical 

breakdown of the problem. In chapter 6 we introduce the concept of using discrim-
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inative training of the language models used by the system to improve named entity 

extraction results. In chapter 7 we show how it is possible to label word lattices with 

part of speech tags, and use these to improve the named entity F-scores. Finally, we 

conclude the thesis, with suggesting further possible work which could improve upon 

our findings, in chapter 8. 



Chapter 2 

Literature Review 

We begin with a definition of a named entity. A named entity is any word or phrase 

that corresponds to an item in exactly one predetermined category (named entity class) . 

The categories can comprise any collection of items; examples include people's names, 

computer processors, job titles, proteins, and so on. 

Although any new category can become a named entity class, over time standards 

have been formed to aid comparison of results in research. Although the standards are 

evolving and more standards are emerging, the fundamental standard that has generally 

been adopted is to use ENAMEX, NUMEX and TIMEX; covering respectively names, 

numbers and temporal expressions. 

We now provide a brief history of named entity extraction together with some of the 

uses of named entity extraction and, in particular, references to named entities within 

speech. We also briefly comment on part-of -speech (POS) tagging because in chapter 

7 we show how POS information can be used to enhance named entity extraction from 

speech data. 

2.1 A brief history of named entity extraction 

The task of named entity recognition was first given a formal introduction in the Message 

Understanding Conferences (MUC) (Chinchor 1997). Since that time it has grown to 

become a well formulated and understood task. 

7 
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2.1.1 Three approaches to extracting named entities 

There are three basic approaches to named entity extraction: Rule-based, Stochastic and 

Hybrid systems. Here we detail examples of all three types of named entity extraction 

from text systems. In section 2.3 we return to the differing types of systems and focus 

on named entity extraction from speech data. We give details of Rule-based systems for 

named entity extraction from speech in section 2.3.1 and stochastic systems for speech 

in section 2.3.2. There have not to date been any Hybrid systems used for information 

extraction from speech. 

Rule-based 

An example of a Rule-based system that was used for named entity extraction is de­

scribed in (Farmakiotou, Karkaletsis, Koutsias, Sigletos, Spyropoulos & Stamatopoulos 

2000). This system is designed to find named entities within Greek financial texts. 

The system is broadly divided into three main components: Linguistic Preprocessing, 

Named Entity Identification, and Named Entity Classification. As these names suggest, 

this system classifies the named entities after finding them, rather than simultaneously 

as most statistical systems do. 

Linguistic Preprocessing essentially involves tokenisation of the input text stream, 

sentence splitting, part of speech (POS) tagging followed by stemming, and gazetteer 

lookup. The idea behind stemming after POS tagging is that the word is essentially the 

combination of the POS and the stem. If a word is uncommon then its information has 

effectively been split between the POS and the stem so it may be compared with other 

words which have either the same P OS or the same stem. The gazetteer lookup allows 

well-known named entities to be established at this early stage in the process. 

Named Entity Identification involves detection of the boundaries, and is subdivided 

into three further elements: initial delimitation, separation and exclusion. The intial 

delimitation uses very general patterns to find likely named entities. This delimitation 

process may well result in some distinct named entit ies being grouped into single entities 

and even the classification of non-entities as entities. The separation stage deals with 

breaking the incorrectly grouped entities. Greek, like English, suffers from the difficulty 
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of dealing with 'and ' within entities (for example: "Marks and Spencer" is one entity 

whilst "Microsoft and AOL" is two) . The exclusion stage excludes known pitfalls by 

making use of a "killer" list, effectively a gazetteer of non-entity words. 

Named Entity Classification again is subdivided into three elements; namely, ap­

plication of rules, gazetteer-based classification, and partial matching. The rules take 

into account both internal and external evidence, such as a company designator - e.g. 

Ltd - or a preceeding title - e.g. "Mr" respectively. The gazetteer-based classification 

is carried out in preferencial order; that is, organisations are classified first as they can 

include people or place names. Finally the partial matching works by looking for entities 

which are similar to those already classified. 

Stochastic 

An example of a stochastic system is the maximum entropy (Max Ent) named entity 

system, appropriately named MENE, developed at New York University (Borthwick 

1999). This system, which was built from a combination of knowledge sources, initially 

contained no handcrafted rules; however in later experiments such rules were used to 

improve the results. The system visualises the named entity task as associating a tag 

with each word. For the standard named entities this corresponds to associating one of 

twenty nine possible tags (in general 4.#entities + 1 tags); entity _start, entity _continue, 

entity_end, entity_unique or not-an-entity. These twenty nine tags form the space of 

"futures" for the Max Ent formulation. 

MENE incorporates solely binary-valued features from a number of sources. These 

sources can be classified as binary features, lexical features, section features, dictionary 

features and external systems features. Whereas all of the features have binary output, 

the "binary" features are features which are binary without modification; for example, 

"the previous word starts with a capital letter" . The lexical features are where most of 

the power of this method comes from. By considering the current word w0 , and looking 

at the context w_2 ... w2, lexical features can be formed; for example, "if preceeding 

word is ' Mr' and the tag is person..start" . Section features make predictions based on 

the particular section of the article; for example, "is this word within the preamble to 

the text" . The dictionary features correspond to one of five tags for each of the eight 
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dictionaries used; namely start, continue, end, unique or not-in-dictionary. Finally, 

the external systems features made use of the output of other named entity systems. In 

particular they made use of systems from the University of Manitoba (Lin 1998) - a finite 

state pattern matcher which gives special attention to collocations ( words in context), 

and IsoQuest (Krupka & Hausman 1998) - a commercial Rule-based system capable of 

an F-score of 81.96 on single case MUC 7 data. An example of one such feature would 

be "if IsoQuest tagged this word as person..start and the tag is person..start". 

The features which were selected were chosen by simply creating a pool of features 

and then selecting all features which fired at least three times on the training data. 

Having selected the features, it was simply a matter of training the weights of a Max 

Ent model. Having trained, decoding involved running the Max Ent model on the new 

text. 

Hybrid 

An example of a hybrid system is that used by Edinburgh University's Language Tech­

nology Group to win the competition at the 7th Message Understanding Conference 

(Mikheev, Moens & Grover 1998). This system consisted of a pipeline of tools from 

the freely available Text Tokenisation Toolkit (TTT) (Grover, Matheson, Mikheev & 

Moens 2000). Each tool from the toolkit either removes markup or adds new markup 

without damaging previous markup. The toolkit works on XML text. 

Although TIMEX and NUMEX were regarded as trivial, were found by creating a 

grammar, and only required a single tool to identify them, a pipeline of processes was 

needed to mark up the ENAMEX expressions. The pipeline consisted of five steps: 

Sum-fire rules, Partial Match 1, Relaxed rules, Partial Match 2, and Title Assignment. 

Sure-fire rules are used to mark up expressions which are not only likely on the basis 

of lexicons and gazetteers but which also have context that justifies the markup. Thus, 

although in general "Washington" will not be marked up as a place at this stage, when 

found in the context "Washington area" it will be marked up as such. Similarly "Gates" 

would not be marked up as a person but within the context "Founder Bill Gates" it 

would be so marked up. 

Partial Match 1: using the information already found in the Sure-fire rules , partial 
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matches of those expressions already found are marked as possible entities. If "Lockheed 

Martin Production" has been labelled as an organization, and later in the text the 

expression "Lockheed Martin" occurs, it will be marked as a possible organisation. The 

second step in this partial match stage uses a Max Ent model to decide whether the 

context is supportive of the possible markup. If the Max Ent model decides that it is 

supportive, the markup is added. 

Relaxed rules are used to mark up expressions that have not been classified. At this 

stage 'Washington' would be classified as a location unless it had already been classified 

as a person in step 1. 

Partial Match 2 uses exactly the same principles as Partial Match 1 to find, for 

example, references to 'White' after identifying that 'John White' is indeed a person. 

Title Assignment deals with case insensitive titles of newswire text, by attempting 

to find partial matches within the full body text. The Max Ent model is used again to 

make the final decision. 

2.1.2 Non-standard and Non-English named entities 

Although much of the research that has gone into named entity extraction has been fo­

cused on standard named entities in English, a number of groups have focused attention 

on the detection of non-standard named entities and on the detection of named entities 

in other langauges. Much of this work has been based on the most successful methods 

found when investigating the standard named entities. 

The GENIA project (Collier, Park, Ogata, Takeishi, Nobata & Ohta 1999) has led a 

number of groups to focus on named entity extraction of DNA structures, finding genes, 

proteins, DNA sequences etc within biology/medical documents (Sun, J , Zhang, Zhou 

& Huang 2000) , (Henderson, Salzberg & Fasman 1997). 

Non-English named entity extraction has also been considered: Japanese (Sekine & 

Eriguchi 2000) , Mandarin Chinese (Sun, J , Zhang, Zhou & Huang 2002), Arabic, French, 

German, Finnish, Malagasy, Persian, Polish, Russian, Spanish and Swedish (Poibeau, 

Acoulon, Avaux, Beroff-Bnat, Cadeau, Ca.Iberg, Dela.le, De Temmerman, Guenet, Ruis, 

Jamalpour, Krul, Marcus, Picoli & Plancq 2003). 
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Cross-Lingual Multi-Agent Retail Comparison (CROSSMARC) (Karkaletsis, Spy­

ropoulos, Souflis, Hachey, Pazienza, Vindigni, Cartier & Coch 2003) , a European project 

with partners in France, Greece, Italy and the United Kingdom, has been focussing on 

general information extraction in each of the respective languages. The project initially 

considered a laptop domain - finding laptops for sale on the internet. T he named en­

tities included laptop manufacturers, processor speeds, and hard disk capacities, and 

the project sought to show the ease of portability to a completely different domain - job 

vacancies in the IT /Telecom industry - with named entities including job title, program­

ming languages, area. The t ransition was possible, although not as trivial as may have 

been expected (Farmakiotou, Karkaletsis, Samaritakis, Petasis & Spyropoulos 2002). 

2.1.3 Competitions 

A number of competitions, generally sponsored by DARPA, have been run in the field of 

named ent ity extraction. The most well known of these conference competitions is the 

Text Retrieval Conference (TREC) (Harman 1993). The first of these conferences were 

the Message Understanding Conferences (MUC) (Chinchor 1997) , with other notable 

conferences being Automatic Content Extraction (ACE) (Chinchor, Brown, Ferro & 

Robinson 1999) , and National Institu te of Standards (NIST) Hub - tasks aimed at 

spoken data (Pallett 1997). 

Notable benefits arising from the strong conference competition approach included: 

agreed standards for defining named entity classes, standard data sets, comparable re­

sults from different communities and different methods, and readily available tools for 

scor ing. There were, however, drawbacks caused by the conference competition ap­

proach, including: difficulty in new groups competing against groups that were better 

informed, the lack of diversity in tasks attempted, and the fact that systems get fine­

tuned to maximise a particular 'score' - in the named entity case the F-score defined in 

section 3.4. 

Competition results have tended to follow a certain trend (figure 2.1), with results 

showing initial rapid improvement but with the improvement then tailing off in accor­

dance with the law of diminishing returns (Malthus 1798). Once the improvements have 
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tailed off, a new task is designed to be harder than the previous task and the trend is 

then repeated. 

SCORES 

TIME 

Figure 2.1: Graph of typical learning curve for three successive competitions. 

2.2 The uses of named entity extraction 

Named entity extraction is important not only in its own right, but also because of its 

application to other fields. By extracting what are essentially the most important words 

of a document and correctly identifying their class we can: 

• search more effectively, whether by way of an internet search or an offiine search 

(Mihalcea & Moldovan 2001) 

• enable the automatic indexing of books (Tulic 2002) 

• take a step towards producing good summarization (Nobata, Sekine, !sahara & 

Grishman 2002) 

• help in the task of question answering (Srihari & Li 1999) 

• aid in the process of machine translation (Babych & Hartley 2003) 

• add an essential component to the more advanced stages of information extrac­

tion e.g. database construction (Grover, McDonald, NicGearailt, Karkaletsis, Far­

makiotou, Samaritakis, Petasis, Pazienza, Vindigni, Vichot & Wolinski 2002) 
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2.3 Named entities in speech 

14 

The most prominent source of information extraction systems from speech was the 1998 

Hub4 evaluation (Przybocki, Fiscus, Garofolo & Pallett 1999). In this evaluation, five 

systems (each provided with identical training material) had their results compared on 

the same test set. BBN Technologies entered one system (Kubala, Schwartz, Stone 

& Weishedel 1998), the MITRE Corporation entered one system (Palmer, Burger & 

Ostendorf 1999), the University of Sheffield Department of Computer Science entered 

two systems (Renals, Gotoh, Gaizauskas & Stevenson 1999) and SRl International Ar­

tificial Intelligence Center entered one system (Appelt & Martin 1999). 

Two of the five systems that entered the Hub4 named entity evaluation were rule­

based, the remainder used statistical methods. All five systems took as input the single 

most likely word sequence produced by a speech recogniser. Some systems used multiple 

transcriptions, but the use of the multiple transcriptions was to compare final output, 

rather than to try and improve final output. 

2.3.1 Rule-based 

The rule-based systems were SPRACH-R (Renals et al. 1999) entered by Sheffield Uni­

versity and TextPro (Appelt & Martin 1999) entered by SRl International. 

SPRACH-R uses a rule-based approach that was ported from the rule-based sys­

tem used in the MUC7 competition (Humphreys, Gaizauskas, Azzam, Huyck, Mitchell, 

Cunningham & Wilks 1998). The rule-based approach relied upon finite state matching 

against lists of single or multi-word names and named entity cue words, part of speech 

(POS) tagging, and specialised named entity parsing based on phrasal grammars for the 

named entity classes. 

The SPRACH-R process consisted of a pipeline of components to produce: pseudo 

sentences, lookup in gazetteers, POS tags and finally a named entity parse. Each of the 

components is described below. 

The pseudo-sentence segmenter split the speech transcripts into suitable length 

phrases. Typically, phrases needed to be no more than 40 words in duration due to 

efficiency constraints of the POS tagger and the parsing components of the pipeline. 
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The pseudo sentence segmenter was not required to find actual sentence breaks but 

simply to break the text into suitable size chunks without splitting any named entities; 

clearly it would be impossible to correctly identify a named entity split over multiple 

pseudo sentences. 

The gazetteer comparison stage involved the lookup of typical single and multiword 

names. The gazetteers included Christian names, personal titles, common locations 

and organisations, location cue words such as "quay" and company designators such as 

"corporation" . The SPRACH-R system used the Tipster architecture (Grishman 1995) 

which allowed multiple tags to be assigned per word by the gazetteers. (XML would 

not have allowed the overlap of markup in the same way.) 

The POS tagger was a version of the Brill transformation-based tagger (Brill 1995) 

retrained on a single case version of the Penn Treebank. 

The named entity parsing was performed initally by a bottom-up partial chart parse 

based on a number of regular grammars. The rules were based upon the already as­

sociated markup from gazetteers and POS tags, whereby named entities are associated 

to parts of sequences of markup. Due to the non-uniqueness of previous markup, it is 

possible for multiple named entity sequences to be generated by the initial parsing. It is 

therefore necessary to have a best parse selected by a (<best-parse,, algorithm. Full details 

of the named entity parsing component are given in (Wakao, Gaizauskas & Wilks 1996). 

TextPro, the system used by SRI in the Hub4 evaluation, is a lightweight interpreter 

of cascaded finite-state transducers. This system also uses the Tipster architecture 

(Grishman 1995) that SPRACH-R used. TextPro was developed for standard text 

documents and was adapted to use the "noisy text" of speech transcriptions. 

TextPro, rather than FASTUS (Hobbs, Appelt, Bear, Israel, Kameyama, Stickel 

& Tyson 1996), SRI's earlier named entity extraction system, was adopted due to its 

effectiveness for the task, together with its comparative size and speed of operation. 

The grammar used, however, was adapted from the FASTUS grammar used in the 1996 

Message Understanding Conference. The adaptation was necessary due its optimisation 

on mixed case text. To help the system deal with single case text, an additional four 

lexicons were added to those of the FASTUS system: a list of US place names with 

some manually selected non-US place names added; a list of person names from many 
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nationalities; a list of multi-national companies; a list of US government agencies and 

departments. 

One significantly valuable rule was the use of identifying people names when, for 

example, only the Christian name was present. By means of the context, from which 

the full name could be identified, it was possible to check for the presence of any part of 

the name. It was also important, however, to be able to avoid this happening in the case 

of name fragments or repairs due to the speaker's error. The rules therefore took into 

account both immediate and surrounding context. Rules were tweaked by iteratively 

testing the system output against the training data. 

2.3.2 Stochastic 

The remaining three systems that were entered into the 1998 Hub4 competition were all 

stochastic. BBN entered IdentiFinder (Miller, Schwartz, Weischedel & Stone 1999), a 

system previously designed for text, adapted to work on speech transcripts. T he MITRE 

Corporation entered NYMBLE (Palmer et al. 1999), a similar system based roughly on 

the design of IdentiFinder with a few differences. Sheffield University entered SPRACH­

S (Renals et al. 1999). 

All three of these systems were based on a stochastic finite state machine structure 

making use of multiple language models to predict the named entity sequence. The 

general topology of the systems is described in detail in chapter 4, where we also detail 

what distinguishes the three systems from each other. In this thesis we adopt the general 

structure of these three systems, as described in chapter 5. 

A further notable statistical system which has been designed for speech which was 

not entered into the Hub4 competition was Ji-Hwan Kim's system (Kim 2001) . This 

system, unlike the others, was based on more advanced transcriptions of speech data. 

The input to this system was still speech transcripts, but whereas the other systems 

assumed that speech transcripts were noisy text, Ji-Hwan Kim's system showed how it 

was possible to convert the noisy text to less noisy text. Where other systems argued that 

the reasons for lower F-score on speech transcripts included lack of punctuation, lack of 

capitalisation etc. this system focussed on adding this information to the transcripts. By 
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the examination of pauses and prosody, this information was added into the transcripts. 

The named entity extraction was performed by rules which were automatically gen­

erated from training material. All rules fitted one of the 53 templates shown in table 2.1. 

The approach for generating and selecting rules was similar in style to the generation of 

rules for Eric Brill's Transformation-Based POS tagger discussed below (Brill 1995). 

The final aim of the named entity extraction was to further improve the noisy text by 

correctly dealing with named entities; that is, for example, having decided that "marks 

and Spencer" is an organisation, altering the transcription to present it as "Marks and 

Spencer" as would appear in written text. 

2.4 P art of speech tagging 

POS tagging is the process of assigning the correct selection, from prespecified syntactic 

groupings (eg. NNl , DET), to a word. POS tagging is essentially a form of shallow 

parsing. Accuracy for automatic POS tagging on text documents is exceptionally high 

(with error rate comparable to human error rate). 

POS tagging has value both in its own right and also as a pre-processing step in 

many other technologies, such as parsing. Indeed, many of the named entity extraction 

systems for text data make use of the POS in a variety of ways. 

A great number of POS tagging systems have been implemented, as the task is 

not a new one. The most famous POS tagging system being the Brill (Brill 1995) 

Transformation-Based POS tagger, which compared favourably with another stochastic 

POS tagger in (Brill 1994) where the Brill tagger used only 267 simple, learned rules 

compared with approximately 10,000 learned probabilities of the other system. 

Another notable tagger is Trigrams'n'Tags (TnT) (Brants 2000) which has been used 

extensively due to its portability to new domains, ease of use, speed and availability; 

for example, (Tufis, Dienes, Oravecz & Varadi 2000) , (van Eynde, Zavrel & Daelemans 

2000) and (Dzeroski, Erjavec & Zavrel 2000) make use of this tagger for a variety of 

lang;uages and tasks. TnT is not optimized for any particular language and incorporates 

several methods for smoothing and handling unknown words. TnT is an implementation 

of the Viterbi algorithm, detecting weights for linear interpolation by using deleted 
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Rule & Range 

wofo[O, 0), wof-d-1,0J, wofi[O, l] 

wowi[O, lJ , wow_i[-1, OJ, woti[O, l J 

woLi[-1, OJ, w1to[O, l ], w_1to[-l, OJ 

tot1[0, l], toLi[-1,0], wof- 1[-l,OJ 

wofi[O, l J 

wow-1 w-2[-2, O], wow1w2[O, 2], wow-1w1[-l, lJ 

woti[O, lJ, woLi[-1,0J w1to[O, lJ 

w_1 to[-l,O], wow1t2[O, 2J , wow1Li[-l, l] 

wot1w2[0, 2] 

wofobo[O, O], wofobob1 [O, O] 

wow-1t0Li[O, O], wow1toti[O, OJ 

wofo[O, OJ 

wotoLi[-1, OJ, w0t0ti[O, 1 J 

w_1w- 2tofo[O, OJ, w1w2to[O,OJ, w_1to[O, OJ 

w1to[O, OJ 

w_1f- ifo[-l,O), wififo[O, lJ, wofoL1[-l, O] 

wofot1 [O, 1 J 

w- if- ifo[O, OJ, w1hfo[O, OJ, wofoL1[0, OJ 

wofot1[0, OJ 

woL1tifo[-l, l ], wof-ifi!o[-1, l J, wofiw2[0,0J 

w_if-1 W-2[0, O], w1hf t2[0, OJ, wof-1L2[0,0J 

wow- 1 [O, OJ, wow1[0, O], W0W-1 W-2[0, OJ 

wow1 w2[0, O] , wow-1wi[O, OJ 

Table 2.1: Templates of rules for Kim 's rule induction (w:words; f:wor-d features; t:named 

entity classes). Subscripts define the distance from the current word and bracketed num­

bers indicate the range of rule application. 



CHAPTER 2. LITERATURE REVIEW 19 

interpolation (Brown, Pietra, deSouza, Lai & R 1992). More recent POS tagging systems 

(e.g. (Curran & Clark 2003)) have effectively used Max Ent for POS identification. 

In (Spilker, Weber & Gorz 1999) POS has been used for the correction of speech 

repairs within word lattices. The paper describes a method for finding potential speech 

repairs within word lattices using only acoustic level features. Then, having detected 

potential positions of speech repairs, the POS tags associated with reparandum and 

reparans are compared. Provided the POS tags match, the "repair" is considered plau­

sible. This method doesn't require the tagging of whole lattices, but rather the tagging 

of n-best lists corresponding to subsections of the lattices. 

In (Beeman & Allen 1997) POS has also been used in conjunction with word lattices. 

This paper focuses on speech recognition directly rather than on improving the lattices. 

The paper describes a method for reducing the perplexity of the speech recogniser. 

Instead of using the standard approach of finding the word sequence which maximises 

the probability of the words given the acoustic evidence (arg max P(WIA)), an approach 
w 

which maximises the probability of the words and POS tags given the acoustic evidence 

(arg Wr~;P(W, TIA)) was considered. Classification and regression trees (CART) are 

then used to model the probabilities and thus generate the best sequence of words and 

POS tags for the given speech. 

2.5 Summary 

In this chapter we have been concerned with the methods that have been used for the 

extraction of named entities. We have briefly considered research which has used rules, 

statistics or a combination of these to identify named entities. We have explained that 

previous named entity work on speech data has focussed entirely on transcripts of the 

data (both manual and automatic), and we have discussed briefly the systems that have 

been used on speech transcripts. 

Finally we have discussed POS tagging and in particular the ways in which POS 

tagging has been used in connection with named entity extraction and separately used 

in connection with word lattices. 



Chapter 3 

Data preparation and evaluation 

methods 

In this chapter we introduce the data used throughout this thesis and then describe 

the evaluation metrics that are used to score the named entity extracted data. Most of 

the data used in this thesis is availa ble to the public from the Linguistic Data Consor­

tium; some, however, was obtained from Cambridge University Engineering Department 

(CUED) and is not available publicly. 

There are essentially two distinct formats of data used in this thesis: text and lattices. 

At its simplest, text refers to sequences of words, whilst lattices (word-lattices) contain 

information with respect to time (in particular possible words at particular times) . 

Within this broad categorisation, text may be coherent, may contain xml markup, may 

be single case, and may have punctuation, but for this general categorisation none are 

required. Similarly, lattices may offer only a single path, may contain part-of-speech 

information, and may contain accurate time stamps or may not. Examples of a lattice 

and some text are given in figures 3.1 and 3.2 respectively. 

There are three distinct sets of data; namely training data, development data and test 

data. The training data is used to produce language models and to observe any patterns. 

The development data is a held-out set of data, which is not used for the purpose of 

training - but rather as a means of testing any named entity extraction system. The 

development data is effectively a data set on which named entity extraction systems are 

20 
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N=lO 

J=0 

J=l 

J=2 

J=3 

J =4 

J=5 

J=6 

J=7 

J=8 

J=9 

J=l0 

L=ll 

8=0 E=l W = !8ENT _8TART a=-129.05 

8=1 E=2 W=TO a=-3036.62 

8=2 E=3 W=WRECK a=-3046.72 

8=2 E=5 W=RECOGNI8E a=-4032.03 

8=3 E=4 W=A a=-636.12 

8=4 E=5 W=NICE a=-1298.77 

8=5 E=6 W=8PEECH a=-1083.14 

8=5 E=7 W=BEACH a=-1071.32 

8=6 E=8 W=!8ENT..END a=-1424.97 

8=7 E=8 W=!SENT..END a=-1424.97 

8=8 E=9 W=!NULL a=0.0 

Figure 3.1: An example speech word-lattice. 

'Twas brillig, and the slithy toves 

Did gyre and gimble in the wabe; 

All mimsy were the borogoves, 

And the mome raths outgrabe. 

"Beware the Jabberwock, my son! 

The jaws that bite, the claws that catch! 

Beware the Jubjub bird, and shun 

The frumious Bandersnatch!?" 

1=0.00 

l= -5.622 

l=-9.542 

l=-15.219 

1=-6.408 

l=-4.815 

l=-5.312 

l=-5.567 

l=-1.092 

l=-1.854 

1=0.0 

Figure 3.2: An example of text {from Lewis Carroll's Jabberwocky). 
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optimised before finally being tested on the test set. After testing on the test set, results 

are recorded - the models are not re-adjusted. This systematic approach, illustrated in 

figure 3.3, is followed throughout the thesis. The precise details about each data set are 

given in section 3.3. 

3 .1 General data preparation 

The two sources of data, the Linguistic Data Consortium (LDC) and Cambridge Univer­

sity, provided data in different formats. The LDC provided transcripts of broadcast news 

in Universal Transcription Format (UTF); an example of UTF format broadcast news is 

given in appendix C, together with the sgml document type definition. The Cambridge 

data were word-lattices and were in the HTK binary lattice format. A HTK-based tool 

was built to convert between HTK binary format and HTK ascii format lattices. 

The data in UTF format was corrected for consistency of abbreviations both in­

ternally and also for consistency with the HTK lattices. For example, the one source 

used the format J _B _M whereas the other used I. B. M. The UTF data then had all 

non-entity specific markup removed. All word fragments, background noise, non-speech 

( e.g. %breath), and punctuation were also removed. Finally the case of the data was 

changed to uppercase. These changes were to facilite consistency with the word-lattices 

- since word-lattices do not contain background noise, non-speech or punctuation. 

Some repeat files existed in the training data; the purpose of these was presumably 

inter-annotator comparison. In such cases the decision was made to use those files 

annotated by BBN rather than those annotated by NIST; duplicate NIST files were 

ignored. 

The document that remained was effectively a key, a manual transcription of the 

speech with manual named entity markup, suitable for scoring the system output against. 

The next stage was the removal of the named entity markup, whjcb in turn produced 

a document which could be used as input to our named entity extraction system. The 

output of the system, the hypothesis, could be scored against the document with manual 

named entity markup, the key. 
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Decision to rebuild the named entity system 

Named entity extraction 
system is built using the 
training data only 

Decision to change constraints 
{> 

Named entity extraction 
system is tested, using 
predetermined optimisation 
constraints, on the 
development data. 

Named entity extraction 
system is tested, using 
predetermined optimisation - :: 

constraints, on the test data 

Results are recorded. 

TRAINING 
DATA 

DEVELOP­
MENT 
DATA 

TEST 
DATA 

Figure 3.3: The systematic approach to training, re-training and testing any system 

using the relevant data sets. 
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3.2 Converting between lattices and text 

Throughout the thesis there is a reliance upon maps from text to lattices and vice versa. 

The following subsections set out a number of maps for both of these. 

3.2.1 Text to Lattices 

We use an intuitive method for converting from a general text to a general lattice. 

Om method adds ''non-information", ie content that carries no information. There is 

therefore no real significance to the t ime stamps or to the acoustic and language model 

probabilities. We simply map the first word of the text to start at time stamp O of the 

lattice and end at time stamp 1, the second word to star t at t ime stamp 1 and end at 

time stamp 2, the nth word to start at time stamp n-1 and end at time stamp n. We 

add a null word to the end of the lattice for compatibility with the other lattices. We 

also add any necessary word features even if the values are irrelevant - the lattices that 

we use require acoustic and language model log probablit ies and so these are added. 

The log probabilities for words we associate with -1 allow us to keep t rack of how many 

words have been processed. There is, however, no mathematical significance to these 

numbers ( and consequently the value is irrelevant) . 

For example, the sentence: 

!SENT ..START THE GOVERNMENT REPORTED SOME NEWS THAT 

SUGGESTS LOWER INFLATION AHEAD !SENT-END 

becomes: 
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N=14 1=13 

J=0 S=0 E=l W=!SENT_START a=-1 1=0.00 

J=l S=l E=2 W=THE a=-1 l= -1 

J=2 S=2 E= 3 W=GOVERNMENT a=-1 l=-1 

J=3 S=3 E=4 W=REPORTED a=-1 l=-1 

J=4 S=4 E=5 W=SOME a=-1 l=-1 

J = 5 S=5 E=6 W=NEWS a=-1 l=-1 

J=6 S= 6 E=7 W=THAT a=-1 l= -1 

J=7 S=7 E=8 W=SUGGESTS a=-1 l=-1 

J=8 S=8 E= 9 W=LOWER a= -1 l=-1 

J = 9 S=9 E=lO W=INFLATION a=-1 l=-1 

J=lO S=l0 E=ll W=AHEAD a=-1 l=-1 

J=ll S=ll E= 12 W=!SENT ..END a= -1 l=-1 

J=12 S=12 E=13 W=!NULL a=0.0 1=0.0 

In a general lattice: N is the total number of nodes; L is the total number of links 

between nodes; J refers to a specific link; S refers to the start time stamp of link J; 

E refers to the end time stamp of link J; W refers to the word that is associated with 

link J; a is the accoustic likelihood, and l is the language model log probability of the 

word as calculated by the speech recogniser (or, in the above example, simply added for 

completeness). 

3.2.2 Lattices to Text 

Conversions from lattices to text are not as trivial as conversion from text to lattices. 

This is because it is not always possible to represent all the information of a lattice 

within a text . Not only is there additional information (for example in the form of log 

probabilities) to be dealt with, but, as can be seen from the example in figure 3.1, it is 

not possible to convert the lattice into a single text while maintaining all of the word 

information. This is because there is no unique ordering of the words which is in keeping 

with the lattice: for example, both 'beach' and 'speech' should start simultaneously. 

It is possible to visualise a lattice pictorally. Figure 3.4 sets out the the pictoral 
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~ I RECOGNISE I I SPEECH 11 1 !SENT _END I 
I !SENT START , ~ ,------, I I ,--------, I 

- I WRECK I GJ I NICE 11 BEACH 1 1 !SENT_END I 

0 l 2 3 4 5 6 7 8 

Figure 3.4: Pictoral representation of the lattice in figure 3.1. Vertical bars represent 

time stamps. 

representation of figme 3.1. It is not possible, however, to represent it in standard text. 

Consequently a number of methods are used to convert from lattice to text. 

Trivial Lattices to Text 

These refer to lattices with a unique path through them, as in the example in subsection 

3.2.l. The solution is simply to take the words in the order that they occur within the 

lattice. 

Lattices to Text by Probability (1-best) 

This is the process that speech recognisers use to find the 1-best path through the lattice. 

Essentially, a weighted log-likelihood of the acoustic likelihoods and the language model 

likelihoods, together with a fixed penalty per word, is used to generate a likelihood 

associated with each path through the lattice. The possible path with the maximum 

likelihood is selected. The lattices supplied by Cambridge University came with the best 

relative weightings: 1 and 14 respectively for acoustic likelihoods and language model 

likelihoods, and a word insertion penalty of 10. 

By using a Viterbi search (Viterbi 1967) , it is possible to efficiently find the 1-best 

path through each of the lattices. Having found the 1-best path, it was stored for later 

experiments. 

For the lattice in figure 3.1 the 1-best path is "TO RECOGNISE SPEECH" with a 

log probability of -10137.234 = -129.05 + -3036.62 + -4032.03 + -1083.14 + -1424.97 + 
14x(-l.092 + -5.312 + -15.219 + -5.622) + -10x5. 
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Lattices to Text by Reference (lattice-best) 

Another way of creating a text from the lattice is to compare the lattice with the key text, 

the idea being to see how close a transcription (path through the lattice) is possible to 

the text of the key. The lattice-best path is useful as it provides an absolute lower bound 

on the word error rate (WER) for any text generated by the lattice. Correspondingly, 

the best named entity marked up version of this lattice-best text provides an absolute 

upper bound on the F-measure possible from the lattice. 

An example, using the lattice in figure 3.1 would be to identify the closest text 

possible to the text "TO WRECK THE NICE BEACH"; the correct output would be 

"TO WRECK A NICE BEACH". 

The process is similar to the dynamic alignment of two texts to compare the differ­

ences between them. The difference is that there may now be multiple ways of getting 

a correct match, and correspondingly far more ways of getting an incorrect match. 

The method relies on the use of an N x n grid, where 'N' refers to the number of 

nodes in the lattice, and 'n' refers to the number of words in the manual transcription. 

Starting at the bottom left corner of the grid and propagating through the end nodes 

of words in the lattice it is possible to keep track of insertion errors, deletion errors and 

substitution errors. Deletion errors work horizontally, insertion errors work vertically 

and substitution errors work diagonally. 

This is illustrated for our toy example in figure 3.5: an 8 x 7 grid. There a.re multiple 

word alternatives where multiple words end at the same time stamp. The dynamic 

alignment is always the path with the least errors. A maximum of two alternative ways 

of reaching any given square has been shown to aid clarity in the diagram. In a number 

of places there are a number of alternative ways which have not been shown. The 

algorithm ensures that only one hypothesis needs to be stored for ea.eh square in the 

grid. 

In practice, after the dynamic alignment, all squares in the grid will contain tokens, 

ea.eh of which points back in the direction of the best path through the grid (that is, the 

best path through the lattice), rather than just those illustrated. 

Similarly each of those illustrated will contain only a single token, although there 
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!NULL 

!SENT_END 

!SENT_END 

BEACH 

SPEECH 

NICE/ 
RECOGNISE 

A 

WRECK 

TO 

!SENT_START 

~ 
I Ins I Sub/ 

ILl Del I Ins ,, 
I Ins 0 Err I Del I 

V 
2 Del I Ins ,, 

0 Err I Del 2 Del 

I.::: , 
0 Err 

!SENT ST ART TO WRECK THE 

1 Sub 

'ttl 

' 1 Sub 

I 
I 

I Sub/ 

i 2 Sub 

' l Sub 

I 

/2 Sub 

i 

' I Sub/ 
J_ Del l Ins 

3 Del 

NICE BEACH !SENT END 

Figure 3.5: Illustration of the dynamic alignment of a lattice with a text. 'Ins ' represents 

insertion errors, 'Del' represents deletion errors, 'Sub ' represents substitution errors, 'O 

Err ' represents perfect match. The best path can be traced by following the arrows. 
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may be many alternatives. For example: 

• It is possible to have 1 insertion error and 1 deletion error where the word WRECK 

matches the word WRECK; in practice only the O error would be stored. 

• It is possible to have 3 insertion errors or just 1 insertion error where the word 

NICE/RECOGNISE matches the word TO; in practice only the 1 insertion error 

would be stored. 

Finding the dynamic alignment, and thus the corresponding text, is simply a case of 

tracing the path backwards from the top right hand corner of the grid. It is also possible 

to find the best path to any node in the lattice (with respect to the key text) simply by 

finding the least number of errors in the respective row of the grid and tracing the path 

backwards. Similarly, it is possible to find the best path corresponding to any section of 

the key text by finding the least number of errors in the respective column of the grid 

and tracing the path backwards. In this thesis we only find complete paths. Appendix 

B shows, step by step, the dynamic alignment of the example lattice and text. 

Having found the lattice-best transcript of test data, when scored against the key, 

the word error rate (WER) was found to be 5.4%. 

3.3 Data sets 

3.3.1 Training data 

The training data we used were the utf transcripts of broadcast news available from 

the Linguistic Data Consortium with catalogue references LDC98E10 and LDC98Ell. 

There were 53 files which contained named entity markup in LDC98E10 and 114 files 

in LDC98Ell. There were 12 duplicate files, which were ignored, 7 were used for devel­

opment data, leaving a total of 148 files. Each file contained a broadcast news program 

transcript, each program having a duration of between 30 minutes and 1 hour. These 

were all preprocessed, as described in section 3.1 (general data preparation), to produce 

keys and input texts. Lattices were also produced from the input texts using the method 

described in section 3.2.l. 
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In total the training data contained just over one million words; within these words 

were almost fifty thousand named entities. 

3.3.2 D evelopment data 

The data refered to as the development data is simply a held-out subset of the training 

data. A random sample of 7 files (approximately 10% of the training data - 10 hours) 

was held out for this purpose; the exact files were a960624_.ref. utf d960604a.ref. utf 

ea980120. bbn. utf eh971017. bbn. utf f960603b.ref. utf i960604_.ref. utf k960524_.ref. utf. This 

data was processed in an identical manner to the training data. As already explained 

this data was not used when training the system. Again, lattices were produced from 

the input texts using the method described in section 3.2.l. 

3.3.3 Testing data 

A number of test sets have been used in various tests on named entity extraction from 

speech. The main test set used was h4e_97.ref.utf, which was available within the distri­

bution of LDC98E10 from the LDC. The principal reason for treating this as the main 

test set was that this data corresponded with the word-lattices offered by Cambridge 

University. 

Processing of the test set h4e_97.ref.utf yielded our evaluation material, and also a 

manual transcription of the speech in the form of a lattice. We also had the HTK lattices 

corresponding to this file. This test set comprised four 30-minute news programmes, two 

from television and two from radio. The test data was d istinct from the training and 

development data, but had been recorded at a similar time. The test data contained 

just under 35,000 words, and a target of 1,905 named entities. 

By evaluation of the HTK lattices, using the accoustic and language model likeli­

hoods, we were able to determine the 1-best transcription of the speech data according 

to HTK. Then by the text-to-lattice processing we produced the lattices corresponding 

to the 1-best transcription. The reason for converting this to a lattice was to enable 

the 1-best transcription to be handled by the system for named entity extraction from 

lattices once this system was built. 
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Words Entities ENAMEX TIMEX NUMEX Duration 

Training 989258 46504 40851 3508 2145 :::::; 90 hours 

Development 105267 2749 2334 320 95 :::::; 10 hours 

Testing 33582 1905 1694 138 73 4 hours 

Table 3.1: Frequency of words and entities within the data. 

By dynamic alignment of the HTK lattices with the manual transcription we were 

also able to ascertain a theoretical best possible path through the lattices (lattice-best) 

and generate the simplified lattices corresponding to this best possible path through the 

lattices. 

Table 3.1 shows the exact frequency of words and named entities for each of the data 

sets. 

For the purpose of the thesis each data set has been named to reflect its content and 

type. Table 3.2 summarises the names used for each data set and details briefly how 

each set was obtained and prepared. 

3.4 Evaluation measures 

We have already referred to F-scores, the most common score for evaluating named 

entity extraction. We now introduce F-scores more formally, together with an alternative 

measure, a slot error rate (SER), akin to a WER. 

The task of scoring the output of a named entity recognition system against a key 

or reference transcript is a fairly simple process for text documents. A comparison is 

made between which named entities have been found correctly and which have not. For 

recognised speech input the task is more difficult because there is no simple one-to­

one correspondence between hypothesis and key. In order to obtain a fair comparison 

between the hypothesis and the key a dynamic alignment of the two texts is necessary 

to match corresponding words within the transcripts. 

Once the alignment has been completed, comparisons between the individual named 

entity slots (that is each individual piece of markup) are made. There are essentially 

four possible outcomes for any given slot: (i) the markup can be correct; (ii) the markup 
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I Type I Name I Description 

Text Training Key The text that corresponds to the 148 files that 

contained markup. (155 - 7 development files) 

Development Key The text that corresponds to the 7 files that 

contained markup. 

Manual Key The text that contains a manual transcription 

of what was said with named entity markup. 

1-Best Text The text that corresponds to decoding the word 

lattices from Cambridge. 

Lattice-Best Text The text that corresponds to finding the best 

possible path through the lattice by dynamic 

alignment with the manual transcription. 

Training Text The text that corresponds to Training Text 

with the named entities removed - used to find 

word error rate (WER). 

Development Text The text that corresponds to Development Text 

with the named entities removed - used to find 

WER. 

Testing Text The text that corresponds to Testing Text with 

the named entities removed - used to find WER. 

Lattice Tr aining Lattice The lattices that correspond to Training Text. 

Development Lattice The lattices that correspond to Development Text. 

Manual Lattice The lattices that correspond to Testing Text. 

Speech Lattice The lattices that were received from Cambridge 

University. 

1-Best Lattice The lattices that correspond to 1-Best Text. 

Lattice-Best Lattice The lattices that correspond to Lattice-Best Text. 

Table 3.2: A summary of the data used throughout the thesis 
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can be incorrect - eg the wrong type, the wrong duration or the wrong words inside the 

markup; (iii) the markup can be missing or (iv) the markup can be spurious - ie not in 

the key. 

We made use of the scoring software that was developed by the National Institute of 

Standards and Technology (NIST ) (Fisher 1998) for the purpose of scoring the data in 

the HUB4 named entity task. In order to explain the method of calculation of F-scores 

and SER, the notation used by the scoring software to refer to the relative frequencies 

of these types of data has been adopted: 

car # of correct slots 

inc = # of incorrect slots 

mis # of missing slots 

spu = # of spurious slots 

act = # of slots in the hypothesis 

pos = # of slots in the key 
By simple mathematics, act = cor + inc + spu and pos = cor + inc + mis. Two 

values which are often referred to in the literature are the precision of the system (pre) 

- how accurate any slot is likely to be - and the recall of the system (rec) - the ratio of 

how many of the actual slots the system is likely to find. These values are calculated 

respectively by equations 3.1 and 3.2. 

cor 
pre=­

act 

cor 
rec=­

pos 

(3.1) 

(3 .2) 

The F-score which we will be referring to throughout the thesis is the uniformly 

weighted harmonic mean of precision and recall; as set out in equation 3.3. The F-score 

is the primary figure that is used to evaluate named entity extraction systems. The 

greater this value the better the system. Although it is possible to gain improvement in 

'rec' at the expense of 'pre', and vice versa, F-score tends to decrease at such attempts. 

F-score is therefore a reliable estimate of how well the system performs. 
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F 
2 x pre x rec 

- score = ----- = 
pre+ rec 

2 x cor 

act+ pos 

34 

(3.3) 

There is another fairly standard metric for evaluating named entity extraction - the 

SER. The SER, which is not unlike the WER in definition, is defined in equation 3.4. 

SER= inc + mis + spu 
pos 

(3.4) 

Throughout the thesis we refer to the F-score, this is the more generally accepted 

metric and has the added advantage that the function is symmetrical. It is symmetrical 

because, if a hypothesised document is scored against a reference document with the 

result that the F-score equals f, then, if the roles are reversed ( the hypothesised document 

becomes the reference document and the reference document becomes the hypothesised 

document), the new F-score also equals f. 

Evaluation metrics by example 

In order to illustrate the evaluation metrics, a piece of text from the Bible1 has been 

used. Figure 3.6 shows the Bible text in it's original format; figure 3. 7 shows the bible 

text correctly marked with named entities (punctuation has been maintained to aid 

clarity); figure 3.8 shows an incorrect transcript - with incorrect markup. 

The scoring software provides two separate output files when used to compare two 

documents. These files are a "tag-by-tag" explanation of how the scores are obtained 

and a table of calculated scores. The "tag-by-tag" breakdown for the comparison of 

figure 3.7 (the reference file) and figure 3.8 (the hypothesised file) is shown in table 3.3. 

The final score file for the comparison is shown in table 3.4; with scores per paragraph 

given in tables 3.5, 3.6, and 3. 7 respectively. 

The first paragraph contains no named entity information and consequently bears no 

impact on the score; indeed the scoring software completely ignores the paragraph and 

numbers the paragraphs commencing at the second paragraph. In this way the system 

1Scripture taken from the HOLY BIBLE, NEW INTERNATIONAL VERSION@. Copyright @1973, 

1978, 1984 International Bible Society. Used by permission of Zondervan. All rights reserved. 
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<DOC> 
<DOCNO> OUTl <IDOCNO> 
<section id=l>''You should not be surprised at my sayi11g, 
'You must be born again.' The wind blows wherever it 
pleases. You hear its sound, but you cannot tell where it 
comes from or where it is going. So it is with everyone 
born of the Spirit." <!section> 
<section id=2>"How can this be?" Nicodemus asked.<lsedion> 
<section ic:h=3> "You are Israel's teacher," said Jesus, "arid 
do you not understand t hese Lhi.ngs?' I teJI you the truth ~ 
we speak of what we know, and we tes.tify to what we have 
seen, but stiU you people do not accept our testimony. I 
t1ave spoken to you of earl.My things and you do not believe; 
how Lhen will you believ,e ifl speak of heavenly things? No 
one has ever gone .ir\to heaven except the one who came from 
heaven--t..he Son of Man. Just as Moses lifted up the snake in 
the desert, so the Son of Man must be Lifted up, that 
cver)rone who believes in Jum rna_y have eternal life.<lsection> 
<section id;;;.4>Fo1· God so loved Lhe world that he gave h is one 
and only Son, that whoever believes in him shall not pe rjsh 
but have eternaJ life. For God did not send his. Son into the 
world lo condemn the world, but to save lhe world through him. 
Whoever believes in him is not condemned, but whoever does 
not believe stands condemned already because he l1as not 
believed in Lhe name of God's one and on.Ly Son."<lsection> 
<!DOC> . 

Figure 3.6: John 3:7-18 (NIV) 
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<DOC> 
<DOCNO> OUTl <IDOCNO> 
<section id=l>"You sl1ould not be surprised at roy saying, 
'You must be born again.' 'fhe wi11d blows wherever it 
pleases. You hear its soun.d, bul you cannol teU where it. 
comes from or where it is going. So it is Vlith everyone 
born of t he S pfrit." <!section> 
<sectionid=2>.'How can this be?" <b_ENAMEX TYPE::''PERSONH> 
Nkodemus<c ENAMEX> as.ked.</section> 
<section id-3>''You are <b ENAMEX 'l''YPE-"LOCA'fION">Israel 
<e_ENAMEX>'s leacher,"said <b_ENAMEX TYPE='1 PERSON">Jesus 
<e_ENA.MEX>; "and do you not understand these things? I t,ell 
you the truth, we speak ofwl1aL we know, and we testi(y to 
what.. we have seen, but still you people do not accept our 
testimony. I have spoken to you of earthly things and you 
do not beli.eve; how then will you believe ifl speak of 
heavenly things? No one has ever gone .into <b_ENA.MEX 
TYPE=''LOCATION">he.aven<e_ENAMEX> except the one who can\c fron\ 
<b ENA1-IBX TYPE;"LOCATION">heaven<e ENAMEX>--the <b ENAMEX 
T't1?E=''PERSON">Son of Man<e_ENAMEX>:-Just as <b_ENAMEX 
TY1)E=''PERSON":>Moses<e_ENAMEX.> lifted up the snake in the 
desert, so the <b_ENAMEX TYPE-="PERSON">Son of Man<e_ENAMEX> 
must be lifted up, that everyone who believes in him may have 
eternal life.</section> 
<section id=4>For God so loved the <b ENAMEX TYPE;;"LOCATfON"> 
world<e_ENA.M:EX> that he gave his one and onJy Son, that whoever 
believes :iJ1 hirr'l shaU not perish but have eternal life. For 
God did not send his Son into the <b ENAM'EX TYPE-="LOCATION "> 
world<e_ENA1fEX> to condemn the-wor]d, but to save the <b_ENAMEX 
TYPE--''LOCATION">wodd<e_ENAMEX> through him. Whoever believes 
in him is not condemned, but whoever does not believe s tands 
condemned already because he has not beli.eved in the name of 
God's one and only Son." <!section> 
<1'DOC> 

Figure 3.7: John 3:7-18 (NIV) with named entity markup for scoring software 
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<DOC> 
<DOCNO>OUTldDOCNO> 
<S(;.'Ctfon id::] > ''You should not be surprised at .my saying, 
'You must, be born again.' 'I'he wind bJows wherever it 
pleases. You hear H's sound, but you cannot tell whe re it 
comes Crorn or where it is going. So it is vt':ith every one 
born or the Spirit."<lsection.> 
<sect.ion id=2>"How can this be?'' <ENAMEXTYPE="PERSON">Nick 
<IENAMEX> oh dea:u must ask.dsectio.11> 
<section id:::3>"You are <ENA.tvIBXTYPE="LOCATION">lsrael's 
<IENAMEX> teacJ,er," said Jesus, "and do you not understand 
these thin.gs? I tell you the truth, we speak of what we 
know, and we testify to what we have seen, but still you 
people do not accept our testimony. I have spoken to you of 
earthly things and you do not beUeve; how then will you 
believe ifl speak of <ENAMEX TYPE="LOCATION">heaven<IENAMEX> 
things? No one has ever gone into <ENAMEX TYPE="LOCATION''> 
heavcn<IENAfi-fEX> except. the one who ea.me from <ENAfiEX 
TYPE="LOCA'I'ION">heave11dENAMEX>--lhe Son of Man. Just as 
<ENAMEX TYPE="PERSON''>Moe<IENA.MEX> says Ufted up the snak.e 
jn the deserL, so the Son of Man. must be Jilted up, that 
everyone who believes in hjm may have eternal tile. <I section> 
<section id=4>For God so loved the <ENAMEXTYPE=''LOCATION"> 
wodd<lENAMEX> that he gave ~tis one and onJy Son, thaL whoever 
believes in him shall not perish but ha,,e eternal life. For 
God did not send his Son into the <ENANIBX TYPE="LOCATION"> 
worJd</ENAMEX> to condemn the world, but to save the <ENAMEX 
TYPE="ORGANIZATION">worlddENAMEX> through him. Whoever 
beUeves in tti.m is not condemned, but whoever does not believe 
stands condemned aJready because he has not, be]jeved in the 
name of God's one and only Son."<lsection> 
<!DOC> 

Figure 3.8: John 3:7-18 with imperfections and incorrect markup 
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Story ' .001' 

SUBTASK TYPE XTNT CONT KEY-TYPE RSP-TYPE KEY-CONT RSP-CONT 

ENAMEX cor cor inc PERSON PERSON "Nicodernus" "Nick" 

Story ' .002' 

SUBTASK TYPE XTNT CONT KEY-TYPE RSP-TYPE l< EY-CONT RSP-CONT 

ENAMEX cor cor cor LOCATION LOCATION 11 fsrael 11 " Israel ' s " 

ENAMEX spu Spu spu LOCATION "" "heaven" 

ENAMEX mis mis m is PERSON "Jesus " "" 
ENAMEX cor cor cor LOCATION LOCATION "heaven" "hcavenu 

ENAMEX cor cor cor LOCATION LOCATION t
1 hea.ven11 "heaven'' 

ENAMEX mis mis m is PERSON ''Son of Man" on 

ENAMEX cor cor inc PERSON PERSON '' Moses" "Moe'' 

ENAMEX mis mis mis PERSON ''Son of Mattu !Ill 

Story '.003' 

SUBTASK TYPE XTNT CONT KEY-TYPE RSP-TYPE KEY-CONT RSP-CONT 

ENAMEX cor cor cor LOCATION LOCATION "world" "wodd" 

ENAMEX cor c.or cor LOCATION LOCATION "world" ''world,., 

ENAMEX inc cor cor LOCATION ORGANIZATION "world" 11 ,,·orld" 

Table 3.3: The "tag-by-tag" output from comparing figure 3. 7 with figure 3.8. 

all-"Jtories cor inc m is Spu pos act pre rec f ser 

all-entities 

T Y PE 7 I 3 I 11 9 77.78 63.64 70.00 45 .45 

XTNT 8 0 3 l 11 9 88.89 72.73 80.00 36.36 

CONT 6 2 3 I 1 1 9 66.67 M.55 60.00 54.55 

XTNT+CONT+TYPE 21 3 9 3 33 27 77.78 63.64 70.00 45.45 

enamex 

TYPE 7 I 3 I II 9 77.78 63.64 70.00 45.45 

XTNT 8 0 3 l l l 9 88.89 72.73 80.00 36.36 

CONT 6 2 3 I I I 9 66.67 54.55 60.00 54 .55 

XTNT+CONT+TYPE 2 1 3 9 3 33 27 77.78 63.64 70.00 45.45 

location 

TYPE 5 I 0 I 6 7 71.43 83.33 76.92 33.33 

XTNT 6 0 0 I 6 7 85.71 100.00 92.31 16.67 

CONT 6 0 0 I. 6 7 85.71 100.00 92.31 16.67 

XTNT+CONT+TYPE 17 I 0 3 18 21 80.95 94.44 87.18 22.22 

person 

TYPE 2 0 3 0 5 2 100.00 40.00 57.14 60.00 

XTNT 2 0 3 0 5 2 100 .00 40.00 57.14 60.00 

CONT 0 2 3 0 5 2 o.oo 0.00 o.oo 100.00 

XTNT+CONT+TYPE 4 2 9 0 15 6 66.67 26.67 38.10 73.33 

Table 3.4: The scores from comparing figure 3. 7 with figure 3.8. 
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.001 cor inc mis s pu pos act pre rec ( ser 

alLent itics 

TYPE I 0 0 0 I I 100.00 100.00 100.00 0.00 

XTNT 1 0 0 0 1 I 100.00 100.00 100.00 o.oo 
CONT 0 1 0 0 1 I 0.00 0.00 o.oo 100.00 

XTNT+CONT+TYPE 2 1 0 0 3 3 66.67 66.67 66.67 33.33 

enamex 

T YPE I 0 0 0 1 1 100.00 100.00 100.00 0.00 

XTNT l 0 0 0 I I 100.00 100.00 100.00 o.oo 
CONT 0 1 0 0 I I o.oo 0.00 0.00 100.00 

XTNT+ CONT+TYPE 2 1 0 0 3 3 66.67 66.67 66 .67 33.33 

person 

TYPE 1 0 0 0 l 1 100.00 100.00 100.00 0 .00 

XTNT 1 0 0 0 1 1 100.00 100.00 100.00 0.00 

CONT 0 I 0 0 l I 0.00 0.00 o.oo 100.00 

XTNT+CONT+TYPE 2 I 0 0 3 3 66.67 66.67 66.67 33.33 

Table 3.5: The scores from comparing the second paragraph of figure 3. 1 with figure 3.8. 

.002 cor inc mis spu pos act p re rec ser 

alL.cnt.ities 

TYPE 4 0 3 I 7 5 80.00 57.14 66.67 57.14 

XTNT 4 0 3 l 7 5 80.00 57.14 66.67 57.14 

CONT 3 I 3 I 7 5 60.00 42.86 50.00 71 .43 

XTNT+CON'l'+TYPE ll I 9 3 2 1 15 73 .33 52.38 61.1 I 61.90 

enamex 

TYPE 4 0 3 l 7 5 80.00 57.14 66.67 57.14 

XTNT 4 0 3 I 7 5 80.00 57.14 66.67 57.14 

CONT 3 I 3 I 7 5 60.00 42.86 50.00 71.43 

XTNT+CONT+TYPE 11 1 9 3 21 1.5 73 .33 52.38 61.1 1 61.90 

location 

T YPE 3 0 0 I 3 4 75.00 100.00 85.7 1 33,33 

XTNT 3 0 0 I 3 4 75.00 100.00 85.71 33.33 

CONT 3 0 0 I 3 4 75.00 100.00 85.71 33.33 

XTNT+CONT+TYPE 9 0 0 3 9 12 75.00 100.00 85.71 33.33 

person 

TYPE I 0 3 0 4 I J00.00 25.00 40.00 75 .00 

XTNT I 0 3 0 4 I 100.00 25.00 40.00 75.00 

CONT 0 I 3 0 4 I o.oo o.oo 0.00 100.00 

XTNT+CONT+TYPE 2 I 9 0 12 3 66.67 16.67 26.67 83 .33 

.002 cor inc m is Spu pos act p re rec f ser 

Table 3.6: The scores from com paring the third paragraph of figure 3. 1 with figure 3.8. 
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.003 cor inc mis spo pos act pre rec f ser 

all-entities 

TYPE 2 I 0 0 3 3 66.67 66.67 66.67 33.33 

XTNT 3 0 0 0 3 3 100,00 100.00 100.00 0.00 

CONT 3 0 0 0 3 3 100.00 100.00 100.00 o.oo 
enamex 

T YPE 2 I 0 0 3 3 66.67 66.67 66.67 33.33 

X'.r NT 3 0 0 0 3 3 100.00 100.00 100.00 0.00 

CONT 3 0 0 0 3 3 100.00 100.00 100.00 o.oo 
XTNT+CONT+TYPE 8 1 0 0 9 9 88.89 88.89 88.89 11.1 1 

location 

TYPE 2 I 0 0 3 3 66.67 66.67 66.67 33.33 

XTNT 3 0 0 0 3 3 100.00 100.00 100.00 o.oo 
CONT 3 0 0 0 3 3 100.00 100.00 100.00 0.00 

XTNT+CONT+TYPE 8 l 0 0 9 9 88.89 88.89 88.89 11.11 

Table 3.7: The scores from comparing the fourth paragraph of figure 3. 7 with figure 3.8. 

ignores all speech recognition errors outside of named entity markup, since in this case 

the first paragraphs are non-identical. 

The second paragraph contains one named entity. The data is collected from the 

relevant line within table 3.3. 

ENAMEX cor cor me PERSON PERSON "Nicodemus" "Nick" 

The line tells us the entity being referred to - in this case "ENAMEX"; whether the 

type of entity in the hypothesis and the type of entity in the key matched - in this case 

"correct" ; whether the boundaries of the named entity have not been crossed - in this 

case "correct"; whether the text within the named entity is the same in the hypothesis 

and the key - in this case "incorrect"; the type of named entity in the key - in this case 

"PERSON"; the type of named entity in the hypothesis - in this case also "PERSON"; 

the text within the markup in the key - in this case "Nicodemus"; and finally the text 

within the markup of the hypthesis - in this case "Nick" . We are able to confirm that 

this line has been genuinely evaluated as the type (TYPE) of named entity is correct; 

a person has been labelled as a person. The extent (XTNT) of the named entity is 

correct; the named entity is one word long and has been labelled as one word long. The 

content (CONT) of the named entity is incorrect, however, Nick has been found in place 

of Nicodemus; there is therefore a content error. The respective precision, recall and 

F-measure for type, extent and content are calculated using equations 3.1, 3.2, 3.3 and 

3.4. 
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It is important to note that the extent was marked correct because the boundaries 

occurred in a potentially correct place; the criteria for checking is that the words inside 

should not have occurred outside the boundaries - it does not involve a word count. 

Each of the following examples would therefore have been marked as correct boundaries 

because there are no forbidden words inside the named entity markup. 

<ENAMEX TYPE="PERSON">Nick<ENAMEX> oh dean must ask 

<ENAMEX TYPE="PERSON">Nick oh<ENAMEX> dean must ask 

<ENAMEX TYPE="PERSON">Nick oh dean<ENAMEX> must ask 

<ENAMEX TYPE="PERSON">Nick oh dean must<ENAMEX> ask 

<ENAMEX TYPE="PERSON">Nick oh dean must ask<ENAMEX> 
Both of the following examples would have been marked as incorrect, however , as 

far as extent is concerned, since in each case they contain a forbidden word. 

<ENAMEX TYPE="PERSON">Be?' Nick<ENAMEX> oh dean must ask 

<ENAMEX TYPE="PERSON">Nick asked<ENAMEX> 
The software then uses this information to fill in table 3.5. For each line in table 3.3, 

there is a single count for each of TYPE, XTNT and CONT, which will occur in one of 

the columns cor, inc, mis or spu. Having found the individual scores for type, extent and 

content, the totals are found (referred to by the software as XTNT+CONT+TYPE). 

The respective precision, recall and F-measure for each row is then calculated. For this 

first paragraph there is only one named entity, and therefore the total for the type of 

named entity (PERSON), the total for the group of named entities (ENAMEX) and the 

total for all entities are identical. In general this is not the case, as can be seen in the 

next paragraph. When multiple different types of entity and groups of entity occur, the 

table becomes more specific deeper into the table. 

The third paragraph contains a number of named entities; the scores are shown in 

table 3.6. Each named entity corresponds to one line from table 3.3. Addressing each 

line individually: 

ENAMEX cor cor cor LOCATION LOCATION "Israel " "Israel's" 

The first named entity is marked as correct. This is the only exception to the extent 

boundary which allows "'s" to be either inside or outside of the markup. 

EN AMEX spu spu spu LOCATION 
,,,, 

" heaven" 
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An incorrect recognition of a word as a location results in a spurious error. All 

spmious errors incur a full penalty as it is not possible to have the correct word in 

spurious markup. 

ENAMEX mis mis mis PERSON "Jesus" "" 

Failing to identify an entity results in a similar error, and full penalty always results. 

In terms of F-score, the insertion errors and deletion errors carry the same overall penalty 

as each other. 

ENAMEX cor cor cor LOCATION LOCATION "heaven" "heaven" 

Totally correct markup. Scores correct for type, extent and content. 

ENAMEX mis mis mis PERSON "Son of Man" '"' 

Another omission shows that the penalty is the same irrespective of length of the 

named entity. 

ENAMEX cor cor inc PERSON PERSON "Moses" "Moe" 

A further example of only falling short on the content . Had the hypothesised text 

read: 

<ENAMEX TYPE="PERSON">Moses lifted<ENAMEX> 

the type would have still been correct1 but the extent and content would have been 

reversed . T he content would have been correct because the word markup contains 

the desired "Moses" . However the extent would have been wrong because the markup 

contains the word 'lifted '. 

Finally, the scores for the fourth paragraph are shown in table 3.7, which shows how 

it is possible to obtain an error in the type of entity while still achieving the correct 

extent and content. If the word had been marked incorrectly: 

<NUMEX TYPE="MONEY">world</NUMEX> , 

rather than incurring a single type error, it would have incurred a full inser tion error 

plus a full deletion error. 

Having calculated scores for each of the paragraphs in the document, table 3.4 is 

produced by tallying up the individual section scores. 



Chapter 4 

Description of the standard 

statistical model 

4.1 Introduction 

In this chapter we introduce the standard statistical model that is used for the extraction 

of named entities from speech. A number of statistical attempts have been made at 

named entity recognition from speech (Robinson, Brown, Burger, Chinchor, Douthat, 

Ferro & Hirschman 1999). It is, however, notable how many of these have revolved 

around a single type of model, namely a Hidden Markov Model (HMM). 

In the 1998 Hub-4 named entity evaluation, four sites submitted systems capable of 

named entity extraction from speech. These sites were: 

• GTE Internetworking's BBN Technologies (BBN) 

• A collaborative effort involving Cambridge University's Engineering Department, 

Sheffield University, and the International Computer Science Institute. (SPRACH) 

• SRI International (SRI) 

• A collaborative effort involving Boston University and MITRE Corporation. (MITRE) 

With the exception of SPRACH, each site provided a single system for the extrac­

tion of named entities. BBN supplied a statistical system, SRI supplied a rule-based 

43 
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system, and MITRE supplied a statistical system. SPRACH supplied two separate sys­

tems: SPRACH-R a rule-based system and SPRACH-S a statistical system. All three 

statistical systems used as their basis what is referred to here as the standard statistical 

model. 

In this chapter we introduce this model both graphically and mathematically. In 

the first part of this chapter we introduce the standard model that the BBN, MITRE 

and SPRACH-S systems have in common. In section 4.5 we describe the differences 

between the systems. In section 4.6 we describe om implementation of this standard 

model, which we later amend in subsequent chapters. Finally in section 4. 7 we record 

our baseline experiment using the system described in section 4.6 which in turn is used 

for comparison purposes throughout the remainder of the thesis. 

4. 2 The mathematical approach 

In the task of named entity extraction, finding which words correspond to named enti­

ties is equivalent to finding the sequence of named entities (Ef) corresponding to the 

sequence of words (Wf). We use a maximum likelihood approach to solve the problem. 

The task of named entity extraction is therefore formulated as finding the sequence of 

entities Ef which maximises P(Ef IWf). 

P(ELIWL) = P(Ef' Wh 
1 I P(Wf) 

( 4.1) 

Since P(Wf) is constant for any given word sequence, without loss of generality, the 

task is to find the sequence of entities (Ef) which maximises P(Ef, W f). 

(4.2) 

Although there are minor variations between systems, the problem is generally solved 

by splitting the joint probability of entit ies and words - P(Ef, w/~) - into the product 

of the probability of the entit ies and the probability of the words given those entit ies 

using Bayes' theorem (Kim 2001) . 

The task of named entity extraction therefore becomes that of finding the entities 

which maximise the product of the component probabilities. 
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P(Ef, Wf) = P(Ef).P(Wf JEf) (4.3) 

It is possible to break down further the component probabilities of equation 4.3 thus: 

P(WflEf) 

P(Ef) 

L 

P(e1).P(e2Jei).P(e3Je1, e2) ..... P (eL IEf - 1
) 

L 

II P(ei lEt 1
) 

i= l 

= II P(wi1wt-1
, Ef) 

i = l 

(4.4) 

(4.5) 

These probabilities can be estimated from data, provided certain independence as­

sumptions are made. It is apparent that P(wLJwf-1
, E f ) cannot be estimated from 

data without making some independence assumptions since it is not possible for the 

training data to contain every possible sequence W f , Ef VL. If, however, indepen­

dence assumptions are made (for example independence over w;-2 and Ef ), it is not 

umeasonable to estimate from data P(wilwi- 1) . 

Kim details these standard assumptions (Kim 2001): equation 4.6 uses a bigrarn 

assumption, where independance over El-2 is assumed; similarly equation 4.7 uses a 

crude approximation, where independence over w:-1
, Ef-1 and Ef+-1 is assumed. 

P(Wfl E f) 

P(Ef) 

L 

P(e1 ).P(e2 Jei).P(e3 Je1, e2) ... .. P(eL IEf- 1
) 

L 

e1 II P(ei lei_ i) 
i=2 

~ II P( Wi Jei) 
i= l 

(4.6) 

(4.7) 

It is concluded that equation 4.3 may be approximated by equation 4.8 and hence the 

named entity sequence is found by finding the sequence of entities (Ef) which maximise 

the right hand side of equation 4.8 



CHAPTER 4. DESCRIPTION OF THE STANDARD STATISTICAL MODEL 46 

w 6 
l W1 w2 W3 W4 W5 W6 

peter attended a conference in mexico 

E6 
l e1 e2 e3 e4 es e5 

<PERSON> not-an-entity not-an-entity not-an-entity not-an-entity <PLACE> 

Table 4.1: The phrase 'peter attended a conference in mexico' in mathematical notation. 

L L 

P(Ef, Wf) ~ II P(eilei- d- II P(wilei) (4.8) 
i=l i=l 

In practice, both the MITRE (Palmer et al. 1999) and BBN (Bike!, Schwartz & 

Weischedel 1999) systems made fewer independence assumptions than those of equation 

4.7 and used P(wdwi- 1, ei), rather than P(wilei) as in equation 4.7. This is discussed 

later in this chapter. 

4.2.1 Example 

Having detailed the mathematical theory above, we now work through an example: 

'peter attended a conference in mexico' 

The correct markup for this text is: 

'<PERS0N> peter</PERS0N> attended a conference in <PLACE>mexicO</PLACE>' 

In the mathematical notation described above, this phrase would correspond to table 

4.1, which also has the correct markup associated with it. The probabilities correspond­

ing to this entity sequence are given in table 4.2. For the statistical model to correctly 

mark up the text, the product of the sequence of probabilities shown in table 4.2 is 

required to be the largest of any possible sequence of entities - that is, that there is 
6 6 

no sequence of entities (E~) for which [l P(eilei_1 ). IT P(wilei) is higher than for the 
i =l i=l 

sequence given in table 4.1. 
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L L 
IT P(eilei- d IT P(wilei) 
i-1 i- 1 

P (e1) P( <PERSON>) P(w1le1) P(peter[ <PERSON>) 

P(e2Je1) P(not-an-entityl <PERSON>) P(w2le2) P ( attendedlnot-an-enti ty) 

P(e3Je2) P(not-an-entityJnot-an-entity) P(w3le3) P ( al not-an-entity) 

P(e4 [e3) P (not-an-entity [not-an-entity) P(w4le4) P ( conferenceJnot-an-entity) 

P(e5[e4) P(not-an-entity[not-an-entity) P(wsles) P ( in I not-an-entity 

P(e5les) P( <PLACE> [not-an-entity) P(w5Je5) P(mexicol <PLACE>) 

Table 4.2: The probabilities associated with the correct markup of the sentence 'peter 

attended a conference in mexico '. 

4 .3 The graphical approach 

We have in the previous section given mathematical justification for named entity ex­

traction being equivalent to solving equation 4.9. 

L L 

Ef = argm'},x II P(eilei- 1)- II P(wilei) 
E1 i = l i=l 

(4.9) 

In this section we show how this is equivalent to a finite state machine. The method 

of solving equation 4.9 is that of a Viterbi search through the finite state machine in 

much the same way as a standard Hidden Markov Model (HMM) functions in speech 

recognition. Initially we introduce the simplest finite state automaton capable of gener­

ating our example and then we extend this model to deal with the general case of any 

sequence of words. 

Figure 4.1 shows a concise finite state machine (FSM) which would allow the gen­

eration of the example phrase "<PERSON>peter</PERSON> attended a conference 

in <PLACE>mexico</PLACE>". To understand this finite state machine we consider 

transitions between states to be associated with the probabilities of the entities, i.e. 

transitions correspond to P(eilei- i); whereas the states themselves represent entities 

and are where the words are generated - thus states compute P(wilei)-

In figure 4.2 we make a few minor improvements to the FSM of figure 4.1. Al­

though figure 4.1 would generate the phrase "<PERSON>peter</PERSON> attended 
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Figure 4.1: A simple FSM which allows the generation of "<PERSON>peter</PERSON> 

attended a conference in <PLACE>mexico</PLACE> ". Transistions represent 

P( entity! context); states represent named entities - which generate the corresponding 

words. 

a conference in <PLACE>mexico</PLACE>", it would be unable to generate the phrase 

"<PERSON> peter irvine</PERSON> attended a conference in <PLACE>mexico city</PLACE>". 

The changes to accept this sentence are clearly trivial (adding self-transitions to both 

the <PERSON> state and also the <PLACE> state). The other main difference is in 

the layout of the FSM, which otherwise is identical to that of figure 4.1. 

By extending the finite state machine of figure 4.1 to figure 4.2 we have made one 

important change. The new model is no longer deterministic with respect to the input 

sequence. The FSM in figure 4.1 was deterministic and had only one possible outcome 

for strings of length 3 or more; the first word would be a person and the last word 

would be a place. The FSM in figure 4.2, although deterministic when the input string 

contains only 3 words, is not deterministic if the input is longer than 3 words. The final 

decision between which path to take can be found by a Viterbi search through the FSM. 

There is still a fundamental flaw in the automaton shown in figure 4.2; this au­

tomaton only allows phrases of the form <PERSON> ( <PERSON> )*not-an-entity(not­

an-entity)*<PLACES> (<PLACES>)*. We, however, require the ability to generate 

phrases of the form (( <PERSON> )*(not-an-entity)*( <PLACES>)* ... )*. This is because 

it is clearly the case that not all word sequences start with a person and end with a 

place. Our model should be capable of generating "mexico has had a huge tourist trade 

a friend was there last year peter", and indeed any sequence of entities must be possible. 

Expanding to such a model is again trivial. All that is required is to add transitions 

from the end of all states (excluding the final end state) to the start of all other states 

(excluding the initial start state). This fully connected FSM is shown in figure 4.3. 
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Figure 4.2: Improved FSM which allows the generation of both 

"<PERSON>peter</PERSON> attended a conference in <PLACE>mexico</PLACE>" 

and "<PERSON>peter irvine</PERSON> attended a conference in <PLACE>mexico 

city</PLACE> ". 

Figure 4.3: Fully connected FSM which allows the generation of all word sequences 

containing people and places. 
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----t>-- ---<l- ----t>--

END 

Figure 4.4: Final topology used in the standard statistical model for the extraction of 

named entities. This topology allows for the markup of all sequences of words where 

words can either be from the same named entity class as the previous or in any of the 

alternative named entity classes. The arrows above each transition correspond to the 

direction that the transition takes. 

In order to produce the full FSM required, states for each of the named entities need 

to be created rather than just for people and places. Figure 4.4 is a simplified version 

of this final FSM topology. It is simplified to show only connections between the start 

state, the <PERSON> state, the not-an-entity state, the <PLACE> state, and the end 

state to avoid confusion caused by 8x9+8=80 (number of entity states multiplied by the 

number of input transitions to them plus the number of input transitions to the end 

state) transitions. Additional states have been indicated with fainter lines as have some 

starts and ends of transitions to and from these states. To further aid clarity the arrows 

on each transition have been removed from the transitions and three arrows showing 

the direction of transitions added physically allow them in the diagram - essentially the 

direction of the arrow runs from the output (right hand) side of a state to the input 

(left hand) side of a state. 
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in a turn of events <ENAMEX TYPE='PERSON'>john gillan<IENAMEX> originally from 

<ENAMEX TYPE='LOCATION'>northern ireland<IENAMEX> was recently involved ... 

Figure 4.5: Example of some marked up text. 

Although the models of both figure 4.2 and figure 4.4 are non-deterministic, it is ap­

parent that the Viterbi search space is considerably larger for figure 4.4. More precisely 

there are (i-iyL- 2) possible solutions to Wf in figure 4.2, but there are gL possible 

solutions to figure 4.4. 

4.4 Generating Markup 

In chapter 1 we introduced the type of markup t hat is required a.s output from the 

named entity extraction system. Figure 4.5 shows an example of correctly marked up 

output. 

The model, described in sections 4.2 and 4.3, produces output of the form Wf , Pf; 

ie the output corresponding to the text in figure 4.5 would be a.s shown in figure 4.6. 

The specific systems use different methods for generating the markup. In general, 

however, the method is to insert the particular xml sequence which corresponds to 

the start of the entity (e.g. <NUMEX TYPE='MONEY'> for monetry expressions) 

wherever ei =/- ei-l; and to insert the particular xml sequence1 which corresponds to the 

end of the entity (e.g. </TIMEX> for dates) wherever ei =I- ei+l · 

This may be done efficiently at process time, rather than post-processing, by adding 

the start of entity markup every time a token is passed into a new state, and end of 

entity every time a token is passed out of any state. Markup is not generated within 

any state. 

1 the particular xml sequence which corresponds to both the start and end of the not-an-entity entity 

is the null or empty string ". 
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14 14 
wl E 

w, in e1 NOT-AN-ENTITY 

w2 a e2 NOT-AN-ENTITY 

W3 turn e3 NOT-AN-ENTITY 

w4 of e. NOT-AN-ENTITY 

w s events es NOT-AN-ENTITY 

w 6 john e6 <PERSON> 

w 1 gillan e1 <PERSON> 

ws originally es NOT-AN-ENTITY 

w 9 from e9 NOT-AN-ENTITY 

W 10 northern e 10 <PLACE> 

w1, ireland e11 <PLACE> 

W 12 was e 12 NOT-AN-ENTITY 

W 13 recently e 13 NOT-AN-ENTITY 

W 14 involved e 14 NOT-AN-ENTITY 

Figure 4.6: Example of the system output corresponding to figure 4.5. 
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4.5 Specific Systems 

We now introduce the specific systems used in the IE-NE subtask of HUB 4 in 1998. The 

most simple, and correspondingly the worst performing, statistical system implemented 

for the HUB 4 task was SPRACH-S described in (Gotoh & Renals 1999) based on the 

mathematics detailed in (Gotoh, Renals & Williams 1999). The results of this system 

are presented in (Renals et al. 1999). 

This system used equation 4.10 to solve for the best word and entity path. There 

are a few minor differences between this and equation 4.9. The first and most important 

is the difference of notation. SPRACH-S uses t to refer to entities (tags) and e to refer 

to combinations of words and tags. More explicitly a unique tag-word token e is defined 

in 4.11. 

T,·w = argmaxf(elef- 1).J(wle) 
T,W 

(4.10) 

ei = { < t, w >i if < t, w >i E vocabulary } (4.ll) 

ti otherwise 

The advantage of the definition of e in 4.11 is that it provides a means of estimating 

the probability of infrequently occurring words (and words that did not occur at all) 

within certain entities. No mathematical justification for this smoothing is given. The 

danger of smoothing lies in the information which is discarded, or, equivalently, the 

information which is assumed. 

The system developed by MITRE obtained scores comparable to (though slightly 

lower than) that developed by BBN. We address them in that order. T he MITRE 

system (Palmer, Ostendorf & Burger 2000) decomposes the probabilities in the fairly 

t raditional method into state transit ion probabilities (the probabilities of entities given 

the context) and state dependent models (the probabilities of words given the context). 

What makes this system unique is the use of class-based smoothing, over classes Ck, in 

the estimation of probabilities. The principles described in (Iyer & Ostendorf 1997), 

namely equation 4.12, are used with automatically transcribed part of speech (POS) 

tags used as the classes. For textual data, other classes (such as capitalised word) were 
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used, but for speech, since this information is not available, POS alone was used. Results 

of this system are presented in (Palmer et al. 1999). 

P(wi lwi- 1, ei) = L P(wilwi- 1, ck, ei)P(cklwi- 1, ei) (4.12) 
k 

Finally in this section we deal with BBN (Miller et al. 1999), whose complete system 

is detailed in (Bikel et al. 1999). This was the highest scoring system (it produced the 

best F-measure) in the 1998 HUB 4 IE-NE task. This system was very similar to the 

MITRE system detailed above. 

This system was able to deal with the "Simi Valley California" problem2 by us­

ing separate statistical models for dealing with the first word in each entity and with 

subsequent words in each entity. 

In terms of the FSM this equates to having two separate states for each named entity. 

The ffrst of these states allows transitions from all other states, whereas the second state 

has only two possible transitions into it - from itself or from the first state. The BBN 

system therefore splits P( Wil wf-1
, Ef) into two cases: (i) The case of the first word 

of an entity in which case the approximation P(wilei, ei-1) is used, and (ii) the case of 

non-first word of an entity when P(wilwi- 1, ei) is used. No mathematical justification 

is given for this, although an intuitive argument is given in (Bikel et al. 1999). 

The use of the two separate states enables more advanced markup generation. Es­

sentially markup is still generated in the same way as described in section 4.4. Now, 

however, it is possible to enter the second state without generating markup (equivalent 

to a self-transition previously) or to re-enter the first state generating mark up - thus 

facilitating the correct markup of Simi Valley California. 

The second important feature of this model is the back-off strategy. BBN have a 

sophisticated back-off strategy for all the probabilities that require estimating. The 

back-off strategy involves the use of word features. Details of the features used are given 

in (Bikel et al. 1999), together with an ordering for specifying priority of one feature 

2The "Simi Valley California" problem is the difficulty of giving "Simi Valley California" the correct 

markup. (The same applies to numerous similar phrases). The problem stems from the fact that labelling 

the phrase as a single location named entity is wrong, but equally marking up t he individual words as 

individual location named entities is also wrong. See (Gotoh & Renals 1999) for further detai ls. 
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Information First-word Predictions Non-first-word Predictions 

Most known P(< w,f >i Jei ,ei_i) P( < w, f >i I < w, f >i-1, ei) 

P( < w, f >i lei , < Not - Entity>) P( < w, f >i lei) 

P( < w, f >i lei) P(wlei).P(flei) 

P(wlei).P (fjei) 1 1 
Jvj ·14 

Nothing known l l 
Tv1·IT 

Table 4.3: The back-off strategy used by BEN to estimate the probability of words given 

context. 

over another. 

BBN group words and features together in a similar way to SP RACH-S and then 

estimate P(< w,f >i Jei,ei-1) and P(< w,J >i I < w,J >i-1,ei)- The advantage of 

this added complexity is that it provides flexibility for the back-off strategy given in 

table 4.3. 

4.6 Implem enting a nam ed ent ity recogniser 

Having decribed systems based on this standard model, we now introduce our imple­

mentation of this Markov model approach. Initially we explain the theory behind our 

system and then briefly cover the technical details. 

4.6 .1 T he the ory 

Equation 4.9 has shown that there are two distinct probabilit ies that need to be calcu­

lated, namely P(wi lei) and P(eilei-1) . The methods for calculating each of these within 

the named entity recognit ion system are dealt with individually. 

In order to estimate P(wi lei), language models were created using the Carnegie Mellon 

University (CMU) statistical language modelling toolkit (Rosenfeld 1994). It was nec­

essary for the training data to be reformatted into a form suitable for eight separate 
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!SENT_START this is <ENAMEX TYPE="ORGANIZATION">a. b. c. news</ENAMEX> 

it's <NUMEX TYPE="DATE" />tuesday the fifth of january</NUMEX> i'm 

<ENAMEX TYPE="PERSON">ted kopek/ENAMEX> reporting from 

<ENAMEX TYPE="LOCATION>new york city</ENAMEX> !SENT_END 

Figure 4.7: A example of the Training Key. 

language models to be trained on entity-specific data. An example of the 'n·aining Key 

in its original format is shown in figure 4. 7. 

This data needed to be converted to produce training material suitable for single 

entity language models. To do this, all named entity markup and the corresponding 

named entities were replaced within the text by an appropriate pseudo-word3 . The 

remaining data was suitable for training the not-an-entity language model. The not-an­

entity data correspondingly becomes: 

!SENT-START this is <org/> it's <dat/> i'm <peo/> reporting from <pla/> !SENT_END 

The training data for each respective entity language model is then created by treating 

each named entity as a sentence within the training data of that model. Each sentence 

uses <s> and </s> to delimit the start and end of the sentence. Taking the example 

set out in figure 4.7, we now add one sentence to each of: the organisation training data, 

the date training data, the person training data, and the place training data. These 

sentence are respectively as follows: 

<s> a. b. c. news </s> - in the organisation data 

<s> tuesday the fifth of january </s> - in the date data 

3 <s>, </s>, <org/>, <dat/>, <peo/>, <pla/>, and also <tim/>, <mon/>, and <per/> are 

pseudo-words; that is, they are not part of the original training material but are rather words that are 

added to the training material so that probabilities associated with these pseudo-words can be estimated. 

Standard XML style notation is used so that the document remains xml compliant; and the removal 

of the XML tags results in the words of the original document. These pseudo-words represent start 

of string tag, end of string tag, organisation tag, date tag, people tag, place tag, time tag, monetry 

expression tag and percentage tag respectively. The purpose of the tags is to allow, for example: the 

language models trained on the date data to predict P(thel < s > , tuesday) , and the language trained 

on the organisation data to predict P( < / s > jc., news). 
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<s> ted kopel </s> - in the person data 

<s> new york city </s> - in the place data 

No data is added to percentage, monetary-expression, or time training data as there was 

no information about percentages, times are money within the original sentence. 

The new data was used by the CMU toolkit to create eight individual language 

models. These were in tmn used to generate the probabilities of words (ie the P(wilei) 

from equation 4.9). Trigram language models were created, rather than simply unigram 

language models, which provided us with a means of generating probabilities of the form 

P(wilei, W/~n, thereby enabling us to make fewer independence assumptions than Kim. 

Not all required probabilities will exist within these eight language models. In some 

instances, named entity specific language models will not contain the full trigram prob­

abilities. This is due in part to the sparseness of the data, and in part to the fact 

that some sequences cannot occur (for example, the word "James" will not occur in 

the percentage language model; nor would P( sleepjgreen, ideas) occur in any language 

model). In these instances the language models use a standard back-off procedure, where 

the back-off weights were calculated by the CMU toolkit at the time of training. The 

language models also deal with out of vocabulary (OOV) words at this time. 

The disadvantage of training by this method is that there is would be no accurate 

way of predicting the probability of a word in a new entity given the word in the previous 

entity, since the training data does not contain the words from previous entities. For 

example, the organization language model will not be able to predict the P(a.lthis 

is, organization) - the language model simply calculates the approximate probability 

based on the contextual word <s>, so the language model simply predicts the probability 

of P(a. 1 < s >, organisation). 

A transition matrix of probabilities of transitioning between named entities was also 

constructed. To produce this transition matrix a count of transitions was taken for a 

pass through the training data. Using the data above we find that the first transition 

is for "!SENT _START" and "that" and the corresponding states are start and not­

an-entity; the first word-word transition is for the words "this" and "is" where the 
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From \ To start not-an-entity location person organ ization t ime date percentage money end 

st art. I 0 0 0 0 0 0 0 

not-an- e11tity 2 I I I 0 I 0 0 I 

location I 2 0 0 0 0 0 0 0 

per son I 0 I 0 0 0 0 0 0 

organization I 0 0 3 0 0 0 0 0 

tim e 0 0 0 0 0 0 0 0 0 

d ate I 0 0 0 0 4 0 0 0 

percentage 0 0 0 0 0 0 0 0 0 

money - 0 0 0 0 0 0 0 0 0 

end 0 - - - - -

Table 4.4: Frequency counts for named entity state transitions. 

From\ To start not- an-entity locatio n person orga n ization t im e date pe1·centagc money end 

sta.rt. - '.tf: = 0.048 0 0 0 0 0 0 0 -
not-an -entity - 0 .095 0 .048 0.048 0 .048 0 0 .048 0 0 0.048 

location 0.048 0 .095 0 0 0 0 0 0 0 

person - 0.048 0 0.048 0 0 0 0 0 0 

o rganizat ion - 0.048 0 0 0 .143 0 0 0 0 0 

t ime . 0 0 0 0 0 0 0 0 0 

d a.tc - 0.048 0 0 0 0 0.190 0 0 0 

percentage - 0 0 0 0 0 0 0 0 0 

money 0 0 0 0 0 0 0 0 0 

cud 0 - - - - -

Table 4.5: Transition Matrix for named entity state transitions. 

transition is from the not-an-entity entity to the not-an-entity entity; the second word­

word transition is from the not-an-entity entity to the organization entity, the third is 

from the organization entity to the organization entity, and so on. Table 4.4 shows the 

complete counts for all transitions for the example text . 

From the count matrix, the transit ion matrix is calculated by simply dividing each 

figure by the grand total of all counts. The actual transition matrix used for the named 

entity extraction system based on table 4.4 is shown in table 4.5. In practice when 

counting the transitions of the million-word training data, all counts were increased by 

1 to ensure that no theoretically possible transitions were completely ruled out due to 

lack of evidence in t raining data. 

The named entity recogniser used the probabilities from the transit ion ma trix to 

predict the P(eilei_ i) from equation 4.9. 
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4.6.2 The technical details 

The named entity recogniser was built in C++, and relies heavily on the use of library 

classes from the Edinburgh Speech Tools4 (Taylor, Caley, Black & King 1999). There 

is also a small dependence on library classes from Espresso (King, Frankel & Richmond 

2003) which is currently not available for public use. 

Our statistical named entity recogniser uses the token passing algorithm (Young, 

Russell & Thornton 1989) to pass tokens around ten states corresponding to a start 

state, an end state, a state for each of the named entit ies, and a state for not-an­

entity. Each token stores a triplet of information: the word that it represents, the total 

probability associated with the token being in that state (accumulated as the token has 

been passed from previous states), and a pointer back to where the token came from. By 

examining any token, it is possible to establish its current condition; that is, the word to 

which the token corresponds and the entity that the word is classified as (known because 

the state itself is known). It is also possible to trace the entire history of the token by 

considering the link back to its preceeding condition, to the condition before that, and 

so on right back to the start state. 

Each of the named entity states, together with the not-an-entity state, house a named 

entity specific language model trained as per section 4.6.1 which is used to predict the 

probability of the word occurring within that state. Consequently, when a language 

model predicts the probability of a word occurring within the state, this corresponds 

mathematically to the probability of the word given the entity that the state represents. 

The language models are standard back-off trigram language models, which are trained 

using the CMU toolkit with its default settings.5 

In our implementation of the named entity recogniser, as tokens pass along tran­

sitions between states, these transitions are weighted with the respective probabilities 

from the transition matrix, and the token's probability is updated to reflect this transi­

tion (P(eilei_ i)) . Once the token reaches the new state, the language model within the 

state generates the probability of the word given the state, and the token's probability 

4F'l·eely available on the internet at http://www.cstr.ed.ac.uk/projects/festival/download.html. 
5Witten Bell discounting was used rather than the default linear discounting method after a com-

parision revealed better results using this discounting strategy. 
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solo artist neil alton was yesterday reunited with fellow former nervous 

passenger band members jamie wilson and stuart cockburn to ... 

Figure 4.8: A piece of text to be classified by the named entity extraction system 

solo artist < ENAMEX TYPE=''PERSON'' >neil alton< ENAMEX> was yesterday 

reunited with fellow former < ENAMEX TYPE=''ORGANIZATION'' >nervous 

passenger< ENAMEX > band members <ENAMEX TYPE=''PERSON'' > jamie 

wilson<ENAMEX> and < ENAMEX TYPE=' 'PERSON' ' >stuart cockburn< ENAMEX > 

to ... 

Figure 4.9: A correctly classified piece of text 

is again updated to reflect this (P(wilei, wf_=-])). 

By the time a token reaches the end state, the probability stored in the token has 
L . 

effectively accumulated IT P(eilei-i-P(wilei , Wi1~1). By comparing the probabilities of 
i= l 

all tokens at the end state, it is possible to find the token which is most likely, and 

then, by examination of this token, it is possible to find the path that the token has 

taken as described above. Our system therefore finds the arguments which maximise 
L . 
IT P(eilei-1 -P(wilei, W/~i) and solves the problem defined in equation 4.9. 

i=l 

4.6.3 Example 

In order to named entity classify the text shown in figure 4.8 and correctly produce 

the text shown in figure 4.9 we need to calculate the named entity sequence Ef that 
L L 

minimises the overall probability Il P(ei lei- d - Il P(wile,;). The model described above 
i = l i=l 

in section 4.6. l enables us to calculate each individual probability and therefore the 

combined probability. 

If we consider the input document (figure 4.8) , the output document (figure 4.9) and 

the simplified model topology - showing only the states for person, not-an-entity, and 

organisation (figure 4.10) , we are able to infer the path through the FSM that needed to 

be taken by the winning token. Using the labels on figure 4.9, the winning token would 

have taken route EDBACDDDDDGHFDBACBAC ... 

Each letter on the route refers to a t ransition probability calculated from the transi-
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Figure 4.10: Simplified model topology - showing only the states for person, not-an-entity, 

and organization. 
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Letter Probability 

A P(ei = people lei- 1 = people) 

B P(ei = people lei-1 = not-an-entity) 

C P(ei = not-an-entity lei-1 = people) 

D P(ei = not-an-entity lei- 1 = not-an-entity) 

E P(ei = not-an-entity lei- 1 = star t) 

F P (ei = not-an-entity lei-1 = organization) 

G P(ei = organization lei-1 = not-an-entity) 

H P(ei = organization lei-I = organization) 

Table 4.6: K ey to the letters on figure 4- 10. 

tion matrix according to table 4.6 which enables the calculation of ITf=1 P(eilei-1) from 

equation 4.9. 

The word probabilities are calculated by the state-internal language models depen­

dent on where the token is when words are generated. Table 4. 7 summarizes which 

probabilities are calculated in which state-internal language model. ITi=i P(wi lei, wt,:":}) 
is calculated by taking the product of the probabilities within table 4. 7. 

In addition to the correct path through the FSM there will be 8L - 1 = 820 - 1 > 1018 

incorrect paths through this FSM, using a Viterbi search enables an efficient search of 

these paths. The path with the maximum combined probability is chosen - hopefully 

the path which results in figure 4.9. 

4. 7 Baseline experiment 

As a baseline for later work in this thesis, an experiment was conducted using the system 

described in section 4.6 with the language models trained on the complete set (almost one 

million words) of training data described in chapter 3. The language models were trained 

using the Witten Bell discounting strategy - the discounting strategy that produced the 

highest results, and the system run at optimum configuration fo r the development data. 

The results of this experiment produced an F-score of 79.8. The full output file is 

shown in table 4.8. 
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Word State Probability calculated 

!SENT _START start -

Solo not-an-entity P(Solol!SENTsTART) 

artist not-an-entity P(artistj!SENTsTART, Solo) 

Neil people P(Neill < s >) 

Alton people P(Altonf < s >, Neil) 

was not-an-entity P(wasl < peo/ > 

yesterday not-an-entity P(yesterdayf < peo/ >,was) 

reunited not-an-entity P( reunitedjwas , yesterday) 

with not-an-entity P( withiyesterday, reunited) 

fellow not-an-entity P(f ellowlreunited, with) 

former not-an-entity P(formerlwith, fellow) 

Nervous organization P(Nervousf < s > 

Passenger organization P(Passengerl < s >, Nervous) 

band not-an-entity P(bandl < org/ > 

members not-an-entity P(membersl < org/ >, band) 

Jamie people P(Jamiel < s >) 

Wilson people P(Wilsonl < s >, Jamie) 

and not-an-entity P(andl < peo/ > 

Stuart people P(Stuartl < s >) 

Cockburn people P(Cockburnl < s >, Stuart) 

to not-an-entity P(tol < /peo > 

... . .. ... 

Table 4. 7: The word probabilities calculated by the state-internal language models. 
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all....st..ories cor inc mi.s spu pos act pre rcc f Ser 

al L.ent.ities 

TYPE 1419 52 434 120 1905 1591 89.19 74.49 81.18 31 .81 

XTNT 1299 172 434 120 1905 1591 81.65 68. 19 74.31 38.1 1 

CONT 1468 3 43,1 ]20 1905 1591 92.27 77.06 83.98 29.24 

XTNT+CONT+TYPE 4186 227 1302 360 5715 4773 87.70 73.25 79.82 33.05 

enamex 

TYPE 1247 52 395 88 1694 1387 89.91 73.61 80.95 31.58 

XTNT 1135 164 395 88 1694 1387 81.83 67.00 73.68 38.19 

CONT 1296 3 395 88 1694 1387 93.44 76.51 84.13 28.69 

XTNT+CONT+TYPE 3678 219 1185 264 5082 4161 88.39 72.37 79.58 32.82 

numex 

TYPE 66 0 7 23 73 89 74.16 90.41 81.48 4 1. 10 

XTNT 62 4 7 23 73 89 69.66 84.93 76.54 46.58 

CONT 66 0 7 23 73 89 74. 16 90.41 81.48 41.JO 

XTNT+ CONT+TYPE 194 4 2 1 69 219 267 72 .66 88.58 79.84 42 .92 

t.imex 

TYPE 106 0 32 9 138 115 92. 17 76.81 83.79 29.71 

XTNT 102 4 32 9 138 115 88.70 73.91 80.63 32.61 

CONT 106 0 32 9 138 115 92 .17 76.81 83.79 29.71 

XTNT+CONT+TYPE 3)4 4 96 27 414 345 91.01 75.85 82.74 30.68 

date 

TYPE 93 0 20 9 113 102 91.18 82.30 86.51 25.66 

XTNT 90 3 20 9 113 102 88.24 79.65 83.72 28.32 

CONT 93 0 20 9 113 102 91. 18 82.30 86.51 25.66 

XTNT+CONT+TYPE 276 3 60 27 339 306 90.20 81.42 85 .58 26.55 

lo cat.ion 

TYPE 531 24 176 25 731 580 91.55 72.64 81.01 30.78 

XTNT 490 65 176 25 731 580 84.48 67 .03 74.75 36.39 

CONT 555 0 176 25 731 580 95.69 75 .92 84 .67 27.50 

XTNT+CONT+TYPE 1576 89 528 75 2193 1740 90.57 71.87 80.14 31.55 

money 

TYPE 21 0 2 10 23 31 67.74 91 .30 77.78 52.17 

XTNT 21 0 2 10 23 3 1 67.74 91.30 77.78 52.17 

CONT 21 0 2 10 23 3 1 67.74 91.30 77.78 52.17 

XTNT+CONT+TYPE 63 0 6 30 69 93 67.74 91.30 77.78 52.17 

orgarii-zati on 

TYPE 261 23 139 48 423 332 78.61 61.70 69.14 49.65 

XTNT 220 64 139 48 423 332 66.27 52.01 58.28 59.34 

CONT 284 0 139 48 423 332 85.54 67. 14 75.23 44 .21 

XTNT+CONT+TYPE 765 87 417 144 1269 996 76.81 60.28 67.55 51.06 

percent 

TYPE 45 0 5 13 50 58 77.59 90.00 83.33 36.00 

XTNT 41 4 5 13 50 58 70.69 82.00 75.93 44.00 

CONT 45 0 5 13 50 58 77.59 90.00 83.33 36.00 

XTNT+CONT+TYPE 131 4 15 39 150 174 75.29 87.33 80.86 38.67 

person 

TYPE 455 5 80 15 540 475 95.79 84.26 89.66 18.52 

X'rNT 425 35 80 15 540 475 89.47 78.70 83.74 24.07 

CONT 457 3 80 15 540 475 96.21 84.63 90.05 18.15 

XTNT+CON'r+TYPE 1337 43 240 45 1620 1425 93.82 82.53 87.82 20.25 

t ime 

TYPE 13 0 12 0 25 13 100.00 52.00 68.42 •18.00 

XTNT 12 I 12 0 25 13 92.31 48.00 63.16 52.00 

CONT 13 0 12 0 25 13 100.00 52.00 68.'12 ,18.00 

XTNT+CONT+TYPE 38 I 36 0 75 39 97.44 50.67 66.67 49.33 

Table 4.8: The fttll scores from the baseline experiment using the full named entity 

extraction system trained on the training data alone. 



Chapter 5 

Extension of the standard model 

5.1 Preamb le 

In the previous chapter we introduced a standard statistical model that has proven ef­

fective for named entity extraction tasks. It has been successfully used both on written 

text and on transcribed speech (1-best recogniser output and manual transcriptions). 

In this chapter we introduce some improvements to the standard model and also some 

adaptations to make the model more portable to the general speech domain; in partic­

ular we use classification and regression trees ( CART) rather than standard language 

model probabilities, and we add some simple rules to produce a basic hybrid system. 

We suggest an improvement to the traditional method of defining a joint probability -

showing that the new derivation is not only better mathematically1 but, as would be 

expected, it also leads to better named entity extraction. Having found this approach 

effective we continue to use it for the remainder of the thesis. Finally, we extend the 

model to work with word lattices rather than text (and from then on we always use 

the word lattices rather than speech transcript), and we identity a method to deal with 

out-of-vocabulary (OOV) words which occur as a result of using speech lattices. 

1 In that it requires fewer independence assumptions. 

65 
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5.2 The CART before the horse 

66 

We ran one early experiment that used CART to predict P(ei) instead of using transition 

matrix P(ei lei_i). The main reason for attempting to use CART was that it allowed 

more features to be used than solely the previous entity. 

The full set of features that we used were: 

• Whether the word had occurred before. 

• The most common entity matched by the word. 

• The second most common entity matched by the word. 

• The third most common entity matched by the word. 

• How many different entities the word corresponded to in the training data. 

• What the previous word was classified as. 

• \II/hat the second previous word was classified as. 

• What the third previous word was classified as. 

• Whether the word was a stop word. 

• What the word was classified as the previous time. 

• Whether the word occurred within the last 200 words. 

• Whether the word occurred within the last 500 words. 

• Whether the word has had multiple classifications since the start of the document. 

• Whether the word was ever classified as Person in the training data. 

• Whether the word was ever classified as Location in the training data. 

• Whether the word was ever classified as Organization in the training data. 

• Whether the word was ever classified as Time in the training data. 

• Whether the word was ever classified as Date in the training data. 
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• Whether the word was ever classified as Percent in the training data. 

• Whether the word was ever classified as Monetary expression in the training data. 

• Whether the word was ever classified as not-an-entity in the training data. 

• The frequency of the word in the training data. 

• The entity that most frequently followed the word. 

• The entity that was the second most frequent to follow the word. 

Results from this experiment were disappointing. There was only a slight improve­

ment in results over the previous model. There were a variety of reasons for the poor 

results which we discuss below. 

5.2.1 Reasons for the failure 

The first reason for the failure was a flaw in the mathematics. The mathematics involved 

the estimation of P(ei lEf- 1 ). The CART used other information relating to the word 

itself; for example, e.g. its frequency. Thus the mathematics was unjustified. 

The second reason for the failure was the use of the feature, "What the word was 

classified as the previous time" . Whilst the feature is intuitively good, the problem lay 

with a misclassification, and more specifically the misclassification of the first occurence 

of the word. Intuitively, if the word under consideration is 'clinton', then the fact that 

the last time this word was classified it was classified as Person is a very good indication 

that this occurence also refers to a person. For this reason the CART placed high 

emphasis on the word's previous classification. 

When the word was being classified for the first time, this feature was not available. 

The CART was therefore not well equipped to classify the word correctly - the word 

might have been incorrectly classified from the outset. When the word recurred, later 

classifications were based on its earlier classification and, if the earlier classification was 

wrong, the later classifications would likely be wrong also. 

With poor results, we decided not to use CART, but instead to focus effort entirely 

on improving n-gram language models and the methods for using them. 
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5.3 A hybrid approach 

In this section we describe a hybrid approach to detecting named entities from speech 

transcripts. The approach is based on a few basic rules and the HMM style statistical 

model described in chapter 4. The system consists of three component parts. 

• Pre-Statistical Rules 

• The Statistical Model 

• Post-Statistical Rules 

In order to obtain the final marked up data, the data is piped through all three as 

illustrated in figure 5.1. 

Pre-Stats 
Rules 

Statistical 
Model 

Figure 5.1: Diagram of pipeline 

5.3.1 Pre-Statistical Rules 

Post-Stats 
Rules 

Each unit in the system takes XML as input and yields XML as output2
. Thus the test 

data needed to be converted to XML prior to input to the Pre-Statistical Rules. The 

transformation was simple: a document type definition (DTD) describing the document 

was created and <DOC> markup and an attribute declaration to show the location of 

the XML DTD was added to the top of the text, and </DOC> markup was added to 

the bottom of the text. 

The Pre-Statistical rules were written in XML, and the Text Tokenisation Toolkit 

(Grover et al. 2000) was used to parse them. There are two types of rules: those that 

mark up ENAMEX entities, and those that mark up NUMEX entities - the former being 

the simplest. 

2 Valid XML is required by the tools used for the rules. 
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The ENAMEX rules involve simple lookup in a lexicon. At this stage, '-u ...s navy' 

would be marked up as Organisation, 'new york' would be marked up as Location and 

'david' would be marked up as Person. 

The NUMEX rules are also relatively simple. They involve the lookup of different 

currencies in a lexicon, and then a logical method of ensuring that all numbers, decimals, 

fractions, and even nonsense numbers such as 'million million' which are followed by a 

currency or 'percent' get correctly marked up as NUMEX. 

Extra rules needed to be added to allow for the general case of 'three or four percent' 

and 'one point five to two million dollars' where the NUMEX ent ities do not contain 

key units. An example additional rule is given in figure 5.2. 

<RULE name="money" match="SEQ" targ_sg="NUMEX[TYPE='MONEY')"> 
<REL type="REF" match="number"><IREL> 
<REL type="REF" match="to" m_mod="TEST"><IREL> 
<REL match="NUMEX[TYPE='MONEY'J" m_mod="TEST"><IREL> 

<!RULE> 

Figure 5.2: An example additional rule for the Pre-Stats Rules 

5.3.2 Statistical Mod el 

The standard statistical model described in chapter 4 is used here. Where the input text 

to the statistical model contained XML markup from the Pre-Statistical Rules, however, 

this information is used by the statistical model. The mark up is effectively used to adjust 

the probabilities on transitions in the statistical model. Thus the probabilities which 

correspond to a markup different to that already created by the Pre-Statistical rules are 

regarded as impossible and are multiplied by zero. For example, if 'three' has Percent 

markup when input to the statistical model, then the transition from state not-an­

entity to state not-an-entity for the word 'three' will become zero; indeed all transitions 

to state not-an-entity from any entity for the word three will become zero. Similarly all 

transitions leading to any state other than the Percent state will also become ½ero. 

Using this method, NUMEX entities which are classified by the Pre-Statistical rules 

are assumed to be completely correct. There is, however, a problem with using this 
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method for ENAMEX. For example, "david" would be marked as Person, yet it could 

refer to a Location or Organization - as in the case where "david morgan" refers to 

the name of a department store, and should therefore be marked as an Organization. 

Similarly "new york" would be marked up as a Location, whereas "new york athletic 

commission" if it exists would actually be an Organization. For this reason a three-tier 

structure for ENAMEX is used in the Statistical Model. 

• Organization is assumed to be Organization. 

• Location is assumed to be Location or Organization. 

• Person is assumed to be Person, Location or Organization. 

Using this three-tier structure, an entity that has been marked as person, will have 

transitions entering the Monetary expression, Percentage, Time and Date states set to 

zero, while the probabilities of entering an ENAMEX state are allowed. Similarly if 

an entity has been marked as a Location, all entry to states other than Location and 

Organization are set to zero. 

5.3.3 Post-Statistical Rules 

Due to the simple nature of the statistical model there is no indication of length of 

individual entities within entity types. Thus the incorrect A in figure 5.3 would be 

obtained instead of the correct B. Although we address this issue properly in section 

5.5, we need at this stage to set out the rules required to make the necessary adjustments 

A <ENAMEX TYPE='LOCATION'>edinburgh great britain</ENAMEX> 

B <ENAMEX TYPE='LOCATION'>edinburgh</ENAMEX> 
<ENAMEX TYPE='LOCATION'>great britain</ENAMEX> 

Figure 5.3: Example: actual ( A} and correct {B) markup of locations by Statistical Model 

It is clear from the example that the solution is not as simple as splitting all the 

words with the named entity tags into separate named entities because this would cause 

multi-word entities to be incorrectly separated; for example, "great britian" would be 

split into two entit ies. It was therefore necessary to have lexical lookup of the locations 
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within Location tags after the statistical model had completed. If any part of a tag 

matched a location in a lexicon, this part was separated from the remainder into a new 

tag. In this way Location named entities were corrected. This problem, as a general 

rule, only occurred for Locations and the method was therefore only used for Location 

tags. 

5.3.4 Experiments 

Experiment 1 

The first experiment consisted of simply piping the test data through the three stages 

outlined in the description of the system. The F-scores of the results after each stage in 

the progression are outlined in table 5.1. As is clear from the results, each progressive 

step improves the overall result. 

Stage I F-score 

Pre-Stats 66.64 

Stats 80.78 

Post-Stats 83.17 

Table 5.1: R esults at various stages in pipeline 

Experiment 2 

The second experiment was designed to estimate the effectiveness of the initial markup 

stage. The method was to vary t,he certainty of the markup in the Pre-Statistical rules 

globally prior to the statistical model. 

By regarding the certainty that the data was correct (i.e. the confidence C in the 

rules) as a real number in the range [0,1], we calculated a factor U equal to one minus 

the confidence. 3 

In the previous experiment , the Statistical Model acted definitively by multiplying 

the probabilities along all paths, other than those arriving at allowed states, by zero. In 

3 U effectively is a measure of uncertainty about the rules. 
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this experiment, the paths were instead multiplied by U. Thus the Statistical Model was 

able to overrule the decision made by the Pre-Statistical rules if the probability of an 

alternative was high enough. The new markup was therefore accepted if it was chosen 

by the Statistical Model after the weighting was applied. 

U was kept constant throughout individual runs of the experiment, but was varied 

between zero and one in successive runs. It is important to note that during this stage the 

only varying factor between runs was U. The XML documents going into the Statistical 

Model were identical. 

During this experiment, the markup of NUMEX entities was still assumed to be 

correct. The factor U was therefore only used in the case of ENAMEX markup. Rep­

resentative results a.re shown in table 5.2 below. T hese, together with some additional 

points, have been plotted on the graph in figure 5.4. 

I C-level I U-level I F-measure 

0.0 1.0 80.07 

0.9 0.1 82.35 

0.99 0.01 83.28 

0.999 0.001 83.46 

0.9999 0.0001 83.37 

0.99999 0.00001 83.23 

1.0 0.0 83.17 

Table 5.2: Results at various confidence levels 

The graph shows the predictable steep growth as confidence is increased from zero 

( U decreases), reflecting the clear advantage of having already marked up certain of 

the ENAMEX entities. As would be expected, as the confidence continues to grow the 

steepness of the increase decreases as we approach total confidence. 

The graph then peaks (at U=0.001) and begins a steady but slow decline until 

plateauing out . The plateau has not been plotted on the graph, but the final point 

actually continues indefinitely. This decline indicates that the lexical markup was im­

perfect. This was not necessarily made clear by the low F-score of the Pre-Statistical 
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Graph of F-measure with different confidence levels of Pre-Stat Rules 
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rules, since the presence of spurious markup (especially in the case of Person entities) 

could be explained by single name markup (as illustrated in figure 5.5) and the fact that 

a Location which is marked up as Person could still be correct. 

A <ENAMEX TYPE=' PERSON'>james</ENAMEX> 
<ENAMEX TYPE='PERSON'>horlock</ENAMEX> 

B <ENAMEX TYPE='PERSON'>james horlock</ENAMEX> 

Figure 5.5: Example: actual A and correct B markup of people by Pre-Stats Rules 

The results show that although using the output from the Pre-Stats Rules is ben­

eficial, the inaccuracies mean that the results are not definitive. This suggests that 

higher results could be achieved if the individual markup contained probabilities that 

the Statistical Model could take into account. 
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Experiment 3 

The third experiment was designed to prove the benefit of associating probabilities with 

the markup of the first rules. 

Probabilities for each phrase in the Organization lexicon were calculated by reading 

through the Organization lexicon phrase by phrase and counting the number of times 

that each phrase occurs within Organization markup of the training data (plus one 

- to avoid zero probabilities) and dividing by the total number of times the phrase 

occurs in the document (plus two - to avoid infinite probabilities) . Thus a phrase that 

did not occur at all, but had been placed in the Organization lexicon, would have a 

probability of 0.5, one that occurred mostly outside of Organization markup would have 

a probability in the range (0,0.5); and one that occurred mainly inside markup would 

have a probability in the range (0.5,1). By storing these probabilities in the lexicon only 

one calculation was needed per lexical entry. 

The new markup of Organization entities after the Pre-Statistical rules now con­

tained probabilities as in figure 5.6. 

<ENAMEX TYPE="ORGANIZATION">washington post</ENAMEX> 
<ENAMEX PROB="0 . 9729" TYPE="ORGANIZATION">washington 

post</ENAMEX> 

Figure 5.6: Pre-Stats R-ules output in experiment 3 distinct from experiments 1 e32 

The statistical system then used these probabilities, together with the general mea­

sure of certainty (necessary as not only the Organization entities needed to be treated as 

uncertain) , to update the probabilities on the transitions between states in the model. 

The results of this experiment are shown in table 5.3 and have been plotted in figure 

5.7 together with the results from experiment 2 to provide a baseline. 

As can be seen from the graph, there is a slight improvement in the results because 

actual probability association is used instead of a single confidence measure. 

In our view, the use of a more appropriate function of the probability would lead 

to further improvements in the critical places. We hypothesise that we would get even 

better results if the probabilities were associated wit,h all ENAMEX rules rather than 

just organization rules. 
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C-level U-level I F-measure 

0.0 1.0 81.35 

0.9 0.1 82.91 

0.99 0.01 83.47 

0.999 0.001 83.49 

0.9999 0.0001 83.38 

0.99999 0.00001 83.23 

1.0 0.0 83.18 

Table 5.3: Results at various confidence levels 

We further conjecture that, as probabilities are now being associated individually 

with Organization entities, organisations which previously had been removed from the 

Organization lexicons (such as 'shell' and ' labor') because they were regarded as uncer­

tain, could be returned. We predict that this addition would further improve results. 

5.3.5 Conclusion 

By combining several theories we have been able to present a hybrid system which 

shows reasonable performance on the test data. It is apparent that there are benefits 

from combining both statistical and rule-based approaches to the named entity task. 

The hybrid system is portable to other domains such as other languages because it does 

not rely on manually configured rules, but simply on lexical lookup. 

At an early stage in the lexicon-making process, certain single word organizations 

were removed from the Organization lexicon. Words such as "labor" and "shell" were 

removed due to their ambiguity. It can be shown, however, that with the introduction 

of the probabilities associated with the markup at Pre-Statistical rule stage, by simply 

adding the Organization markup to each mention of "labor" with probability 0.34 (the 

calculated probability) , the overall score is slightly increased. 
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Graph of F- measure comparing a constant certainty with rule based probabilities 
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5.4 What is the probability of A intersection B? 

I 

~ 

b 

In chapter 4 we explored a generalisation of the most common statistical model used in 

the extraction of named entities. We noted that we were required to find the sequence 

which maximises P(E, W); and subsequently that 

P(E, W) = P(E).P(WIE) (5.1) 

or more explicitly 

P(Ef, W[' ) = P(Ef) .P(Wf lEf) (5.2) 

Thus 
L L 

P(Ef, Wf ) = IT P(ei lE:1- 1
). rr P(wi1w 1- 1,Ef) (5.3) 

i= l i = l 
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We were then able to approximate this probability to 

L L 

P(Ef, wf) ~ II P(eil-Ef.=~) -II P(wi lWl.=tEI-1) (5.4) 
i=l i=l 

by making the following assumptions: 

P( lwi-1 EL) P( 1wi-1 Ei ) . . . d d t f w i-3 Ei-2 EL • Wi l , 1 = Wi i-2, i-1 ; i.e. Wi IS m epen en O l , l , i+l · 

5.4.1 An alternative definition 

T here is an alternative way of viewing P(E, W) which is equally valid, but does not 

require such strong independence assumptions for n-gram estimation. 

Thus 

P(Ef , Wf) = P(e1).P(Et, Wfle1) 

P(ei) .P(w1le1).P(Bf, Wfle1, wi) 

P(e1).P(w1 le1).P(e2le1, wi) .P(Ef, Wf lei, w1, e2) 

L 

= II P(ei lEt-1
, w;-1).P(wilEL w;-1

) 

i= l 

L L 
P(Ef , Wf) = II P(ei lEf-1

, w;-1
). II P(wilEL wf-1

) 

i=l i=l 

We are then able to approximate this probability to 

L L 

(5.5) 

(5.6) 

P(Ef, Wf) ~ II P(et1E1.="ii w/.=-J ). II P(wilEJ_2, W/-=-J ) (5.7) 
i=l i = l 

5.4.2 The differing n-gram assumptions 

The assumptions required to use an n-gram language model to estimate the probabilities 

in equation 5.3 are 
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The assumptions required to use an n-gTam language model to estimate the proba­

bilities in equation 5.6 are only 

P ( IEi-1 w i -1) P( 
1 
r.n-1 wi-1 ) 

• ei 1 , 1 = ei Dl+i-n> I+i-n 

Both methods assume independence over wf-n and Ei- n. The first method , how­

ever, also assumes independence over Ef+1 . It would therefore appear that the second 

method assumes less and is, therefore, a more accurate method of estimating the prob­

abilities. 

5.4.3 A backoff strategy 

A suitable backoff strategy for the estimation of P (wi lE~+i-n, Wf,tl..=-~) has been dis­

cussed at the end of section 4.6 in chapter 4. We now need a suitable strategy for the 

t . t· f P( IEi-1 w i-1 ) es 1ma 1011 o ei 1 +i-n, 1 +i-n · 

A bottom-up strategy was used to solve this problem by examining the language 

models t hat had already been constructed. It became apparent that these probabilities 

were already known without any need for development of additional language models. In 

the previous method a transition matrix (a simplified language model) was required. As 

is shown below, this is not necessary for the new method; the original language models 

which after being trained as per section 4.6 already contain trigrams containing the 

information required. For example, the not-an-entity language model already contains 

P( < org\ > lyou1re watching) - which is clearly a better predictor of the probability 

of transitioning into the organization state (given the context "you're watching") than 

the probability stored in the transition matrix. 

The "Simi Valley California" problem revisited 

In general, there are two possible ways for each ei to be an assigned entity e. It can 

either be the same e as ei- l, or it can be a different e than ei-l · To illustrate, consider 
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the following two examples. 

1. < PLACE> Edinburgh< / PLACE>< PLACE> Scotland< /PLACE> 

2. <PERSON> James Horlock </PERSON> 

Using our notation these would be described: 

1. 
w1 = Edinburgh e 1 = Location 

w2 = Scotland e2 = Location 

2. 
w1 = James e1 = Person 

w2 = Horlock e2 = Person 

In both cases it is clear that the second entity e2 is of the same type as the first 

entity e1 . However , only in the second case are the first and second entities contained 

within the same named entity tag. We can therefore write 

P(eil-E1+Ln, wf+Ln) = P (ei[same]IEi+Ln, w f+Ln)+P(ei[dif I erent] IEi+!-n, wf+Ln) 

(5.8) 

Equation 5.8 does not apply when ~ # ei- l, or in the special case when ei is not­

an-entity. Alternatively, the formula may be considered to apply in these cases if it is 

assumed that in these cases P(ei[same]IEf.=~, w /=-~) = 0. 

The language models that we have built already contain enough information to 

calculate all these probabilities, since the probability of the entity being the same as the 

previous entity is simply one minus the probability of it not being the same, and the 

relevant language model contains the probability of the entity not being the same. The 

probability of it not being the same is simply P(< /s > IW1 + i - n). The language 

model can therefore predict P(ei [same]IEJ=!, w/_::-~) as per equation 5.9. 

P(ei[same]J.Ef.=~, w/_::-~) = 0 in the special cases 

1-P(< /s > IEf-=~, W /_::-~) otherwise 

(5.9) 
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Similarly, the probability of the entity being of the same type, but being a different 

entity, is simply the probability of not being the same entity (P( < / s > IW1 + i -

n) - calculated as above) multiplied by the probability of entering in the particular 

entity state (P( < ei > IEf=-~, w/.=-~) - calculated the same way that any new entity is 

calculated, from the not-an-entity language model) . 

Where P( < ei > 1£1=~• w /.=-~ ) = 1 - ~ P( < e > 1£1=~• w /.=-~) if ei is not-an-entity, 
e 

and similarly P( < / s > IEt=:i, w/.=-~) = 1 if ei is not-an-entity, the language models can 

therefore predict P(ei[dif f erent]IEf="1~, wf_::-~) as per equation 5.10. 

P(ei[dif ferent] IEf=~, w f_::-~ ) = P( < /s > IEf=~, w f.=-~) .P( < ei > IEf=~, Wl.=-~) (5.10) 

There are only two probabilities that we need to obtain from our language models 

to solve equation 5.10; namely probabilities 5.11 and 5.12. 

P( I 'Ei - 1 wi- 1 ) < S > l + i - n > l+i- n 

P( 'Ei-1 wi-1 ) < ei > I+i-n, l+i-n 

(5.11) 

(5.12) 

Probability 5.11 is estimable when el+i- n = .. = ei- L by finding the (possibly 

backed-off) P( < / s > IWl.=-~) in the ei-l language model. When this is not the case, 

we back off equation 5.11 to P( < / s > I < s > , WL:]) for maximal j such that ei-j = .. 

Probability 5.12 is estimable when el+i-n = .. = ei-1 is not-an-entity by finding 

the (possibly backed-off) P( < ei > IWl.=-~ ) in the not-an-entity language model. In the 

other cases 5.12 is estimated by P( < ei > l[E V W]t;) in the not-an-entity language 

model; where ei V Wi = Wi if ei is not-an-entity and = ei otherwise, and [E V W]j is the 

sequence ej V Wj .. ek V wk following the usual notation. 

5.4.4 Graphical interpretation 

We now present the graphical interpretation of the mathematics described above. The 

improved model topology is shown in figure 5.8. Although the new topology bears 
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some resemblance to the old topology, there are some important distinctions. The first 

distinction is that, where originally there were simple states for each of the entities, these 

have been replaced by more complex objects comprising two separate states (nodes). In 

order to continue the terminology of the previous chapters we refer to these two states 

as "nodes" , and to the objects containing the two nodes as "states". According to 

our terminology, each entity has a single "state", but that "state" is comprised of two 

"nodes". 

The second distinction is that, where previously all states were inter-connected (apart 

from start and end states), this is no longer the case. 

In this new topology ( figure 5.8), the probabilities of words are still generated within 

states. However , they are not generated within nodes. 

In the new topology there is no single transition between two different entity states. 

In order to transit from one entity state to another entity state it is necessary to pass 

tluough the not-an-entity state. Consequently the new model topology contains far 

fewer transitions than the old model topology did. The old model topology contained 8 

states each with 9 transitions entering them and 1 end state with 8 transitions entering 

it; i.e. (8 x 9) + 8 = 80 transitions in total. The new model contains 7 states with 1 

transition entering them, 1 state with 8 transitions entering it, and 1 end state with 

1 transition entering it. Eight of the states in the new model, however, have a more 

complex structure than the old model, requiring two additional transitions internal to 

each entity state; i.e. (7 x 1) + (1 x 8) + 1 + (8 x 2) = 32 t ransitions in total. 

Figure 5.8 shows a variety of arrows. We deal with these arrows in three stages: 

firstly, the probabilities associated with each type of arrow, secondly, what the arrows 

require as input, and thirdly, the output associated with each type of arrow. There are 

three types of arrows shown on the diagram: vertical arrows on curved lines (hereafter 

VC), horizontal arrows on curved transitions (hereafter HC), and horizontal arrows on 

horizontal transitions (hereafter HH). 

Firstly, the probabilities associated with each type of arrow. VC are the probabilities 

a5sociated with entering and leaving entities; that is, they are either P(eilEl+Ln) or 

P( < / s > IE~+Ln)- HC are the probabilities within states; that is, those generated 

by the state specific language models P(wiJE1-:;_L11) . HH are generally the probabilities 
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Figure 5.8: Topology of the model: vertical arrows generate mark up; horizontal arrows 

on curved transitions generate words from respective language models; horizontal arrows 

on horizontal transitions generate nothing, but are possible transitions. 
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associated with remaining in the current entity. In the entity state, the HH probabilities 

are simply found by subtraction. In the not-an-entity state, the probability is binary 

because there are only two possible transitions and one can only be taken when the end 

of the sentence has been reached4 - and so generally the probability of the horizontal 

arrow in the not-an-entity state is l. The probability of HH between the start state 

and the not-an-entity state is always 1, and between the end state and the not-an-entity 

state is binary. 

Secondly, what the arrows require as input. VC require no input; that is, these 

t ransitions occur between words. HC require words as input. HH require no input. lt is 

therefore possible for multiple transitions of type VC and HH to occur without requiring 

any words. By this means it is possible to transit from one entity state to another entity 

state between words - as is often required. It is also worth not ing that HH are required 

between every pair of HC. 

Thirdly, the output generated by each type of arrow. VC generate markup; that 

is, each VC will generate some markup: VC transitioning from the not-an-entity state 

will generate opening markup ( eg < TIMEX TYPE= "DATE">) and VC transitioning 

to the non-an-entity state will generate closing markup (eg </NUMEX> ). HC generate 

words. HH generate nothing. 

This can be illustrated if we consider the sentence 

the man from del monte he say no 

which when correctly marked up looks like 

the man from < ENAMEX TYPE=' 'LOCATION'' > del monte< /ENAMEX> he say no 

We are able to determine the types of arrows that need to be followed from comparison 

between the input and the output. T hese are HC, HC, HC, VC, HC, HC, VC, HC, HC, 

HC. As noted above, and made clear by figure 5.8, this sequence is impossible without 

having a single HH between each HC. 

The correct sequence of arrows which should be followed to produce this output, 

using the labels from figure 5.8, is FEGEGEGCABADGEGEGEH . It is clear that this 

sequence is HH, HC, HH, HC, HH, HC, HH, VC, HC, HH, HC, VC, HH, HC, HH, HC, 
4 More specifically, if the !SENT..END word has been reached, as we are now working with lattices, 

but the model holds for text. 
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HH, HC, HH as expected. 

Finally in this example, from this sequence we can see the probabilities that were 

used to generate the output. They are shown in table 5.4. 

5.4.5 Examples 

Having presented the mathematics together with the graphical interpretation, we now 

present some examples to complete our description of the model. We consider the fol­

lowing part of a named entity marked-up sentence: 

.. the stock market rose by <NUMEX TYPE="PERCENT">fifteen percent</NUMEX> 

the <ENAMEX TYPE="ORGANIZATION">dow</ENAMEX> .. 

We will consider both the actual markup and some possible alternatives to illustrate 

the probabilities used. We start by considering the probabilities associated with the 

word "rose" and the not-an-entity entity associated with the word "rose" . 

In the cases where a word does not occur in the vocabulary, the unknown word 

<UNK> is used to replace the word, and, if the probability needs to be backed-off, it 

is backed-off in the usual manner. 

The correct trigram probability for the entity of "rose" (namely, not-an-entity) is 

P(not-an-entitylnot-an-entity, stock, not-an-entity, market) . There are seven alterna­

tives to this probability as shown in equation 5.13, all of which are considered as the 

token transits from the not-an-entity state to the 7 respective entity states. 

P( <PEOPLE> lnot - an - entity, stock, not - an - entity, market) 

P( <PLACE> lnot - an - entity, stock, not - an - entity, market) 

P( <ORGANIZATION> lnot - an - entity, stock, not - an - entity, market) 

P(< T11vlE > lnot - an - entity,stock,not- an- entity,market) 

P(< DATE> lnot - an - entity,stock,not - an - entity,market) 

P( < MONEY> lnot - an - entity, stock, not - an - entity, market) 
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I Arrow I Type I Probability 

F HH 1 

E HC P(thelnot - an - entity, !SENT_ST ART) 

G HH 1 

E HC P(manlnot - an - entity, !SENT START, the) 

G HH 1 

E HC P(f romlnot - an - entity, the, man) 

G HH 1 

C vc P( < P LA/ > !not - an - entity, man, from) 

A HC P(del llocation, < s > )P(ts llocation, < s >) 

B HH (1 - P(< /s >!location,< s >, del ) 

A HC P(montellocation, < s >, del) 

D vc P( < / s > I location, del , monte) 

G HH 1 

E HC P(hellocation, not - an - entity, from, < PLA/ >) 

G HH 1 

E HC P(saylnot - an - entity,< PLA/ >, he) 

G HH 1 

E HC P(nolnot - an - entity, he, say) 

H HH P(!SENT _EN Dlnot - an - entit y, say, no) 

Table 5.4: The probabilities associated with the arrows in figure 5.8. 
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P(< PERCENT> lnot - an - entity, stock,not- an - entity,market) 

(5.13) 

Each of the probabilities in 5.13 is estimated in the not-an-entity language model. 

Since the not-an-entity language model contains P( < tim/ > !stock, market) for exam­

ple, we know the P( < TIME > !not-an-entity, stock, not-an-entity, market), because 

the nature of the not-an-entity language requires that the words "stock" and "market" 

are of the not-an-entity 'entity'. 

It is therefore a very simple process to deduce the P(not-an-entitylnot-an-entity, stock, not­

an-entity, market) since the probabilities must sum to unity. 

P(not - an - entityjnot - an - entity, stock, not - an - entity, market) 

= 1 - L P(elnot - an - entity, stock, not - an - entity, market) 
e 

(5.14) 

The next stage is to approximate P(rose jnot-an-entity, stock, not-an-entity, market). 

When dealing with a best possible path there is only one possibility for what the word 

may be. However, in the lattice cases, there may well be other possibilities. For ex­

ample, the lattice may offer an alternative of "rows" to the word "rose" , in which case 

the P(rowslnot-an-entity, stock, not-an-entity, market, not-an-entity) also needs to be 

found. 

Evaluating these probabilities is even simpler than that of evaluating the correspond­

ing entity because, within the not-an-entity language model, P(rosejstock, market) is 

equal to P(rose!not-an-entity, stock, not-an-entity, market) , and P(rowslstock, market) 

is equal to P(rowslnot-an-entity, stock, not-an-entity, market). 

We have therefore described the simplest set of probabilities - the probabilities of 

not-an-entity words given not-an-entity context. These are the simplest because they 

require no back-off strategy. 

Finding the probability of the word and the entity for 'by' in the phrase we are 

examining is an identical process. That is , we simply evaluate P(byjmarket , rose) 

directly from the not-an-entity language model and P(not-an-entitylmarket , rose) by 

1 - I: P(elmarket , rose) respectively. 
e 
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The probability of the entity for the word 'fifteen ' is straightforward as it simply 

requires the P( < per/ > Jrose, by) from the not-an-entity language model. 

However, P(Jijteenjnot-an-entity, rose, not-an-entity, by,< PERCENT > ), re­

quires back-off. In this instance, we would back-off to P(Jif teen I < s >) within the 

Percent language model, as the Percent language model has been trained on examples 

of percentages in this format. 

The probability of the entity for the word 'percent' is reasonably straightforward 

again in the instance shown. We should however notice first that there are eight alter­

natives for this markup, as shown in 5.15. 

P(not - an - entityjnot - an - entity, by,< PERCENT>, fifteen) 

P( <PEOPLE> Jnot - an - entity, by,< PERCENT>, fifteen) 

P( <PLACE> jnot - an - entity, by,< PERCENT>, fifteen) 

P( <ORGANIZATION> Jnot - an - entity, by,< PERCENT>, fifteen) 

P ( <TIME> Jnot - an - entity, by,< P ERCENT>, fifteen) 

P(< DATE> !not - an - entity, by,< PERCENT>, fifteen) 

P( < MONEY > !not - an - entity, by,< PERCENT>, fifteen) 

P( <PERCENT> Jnot - an - entity, by,< PERCENT>, fifteen) 

(5.15) 

The probabilities in 5.15 break down into three categories: P(not - an - entity) , 

P(< PERCENT>) and P('the rest') . 

We start with P( < PEOPLE > Jnot-an-entity, by,< PERCENT >, fifteen). 

This probability is in effect a combination of two probabilities, namely the probability 

that the token is no longer in the Percent state, and that the token is now in the People 

state. The probability is given in equation 5.16 and calculated by P( < / s > I < s > 

, fifteen) (from the Percent language model) x P( < pea/ > Jby , < per/ >) (from the 

not-an-entity language model). 

P(< PEOPLE > lnot-an- entity,by, < PERCENT >,fifteen)= 
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P(< /s > !not - an - entity,by, < PERCENT > , fifteen) x 

P(< PEOPLE> !not - an- entity,by, < PERCENT > , fifteen) 

88 

(5.16) 

The second possibility we consider is the P(< PERCENT >). There are two 

possible ways that the word could be marked up as Percent. First, it could be in the 

same entity as the previous entity (which in this example is correct) and the probability 

of this happening is simply 1 - P( < / s > I < s >, f ifteen) from within the Percent 

language model. Second, it could be a new entity, in which case the probability of Percent 

is calculated in the same way as the P( < PEOPLE >) (i.e. P( < / s > I < s >, fifteen) 

(from the Percent language model) times P( < per/ > lby, < per/ >) (from the not-an­

entity language model) . 

The third and final possibility which we consider is the P(not-an-entity). There 

is only one way in which this can happen and that is if it stops being a Percent, 

and doesn't start being anything else. The P( not-an-entity) is therefore calculated 

by 1- EP(elby, <PERCENT>) (each probability calculated from the not-an-entity 
e 

language model) times P(< /s >I< s > , fifteen) (from the Percent language model). 

These are examples of every probability that will be calculated by the language 

models (excluding the back-off done within the language models, which was dealt with 

in chapter 4). 

5.4.6 Experiment 

Having devised a way to find the named entity sequence by making less independence 

assumptions than are usually made, the next stage was to implement the changes. As 

we have already shown, the probabilities necessary to make the changes were already 

available from the language models, and so the code only required minor changes to 

remove the use of probabilities from the transition matrix and to add the use of additional 

probabilities from the language models. 

Prior to the changes, the results on the test data were those of our baseline in section 

4.7 with an F-scores of 79.82. Having implemented the changes, the new results - based 

on identical language models, identical weightings of probabilities and the same word 

lattices - produced an F-score of 83.21. 
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We conclude from this investigation that this alternative method of estimating the 

probability of P(Er, WI') is both theoretically and experimentally an improvement on 

the traditional method of estimating probabilities. 

Experimentally we have shown that a gain of over 3% absolute in F-score is obtained 

by this alternative method. Consequently we use this method of estimation in all future 

experiments detailed in this thesis. 

5.5 Using lattices not text 

The idea of using word lattices rather than text was inspired primarily by the statements 

of (Kubala et al. 1998) and (Kim 2001) that Slot Error Rate (SER) and (100 - F-score) 

were directly proportional to Word Error Rate (WER). 

We considered the above statements to be true in a general sense, but also believed 

that there were other factors which needed to be considered before concluding that the 

only way to improve F-measure and SER was to improve WER. Indeed, we wanted 

to test the hypothesis that it was possible to obtain a t rade-off between WER and 

SER/F-measure. 

Word lattices are used in speech recognition prior to obtaining the final 1-best tran­

scription of the speech. A small fraction of a speech lattice from the test set is shown 

in table 5.5. The lattice contains possible word matches to the speech signal for various 

times in chronological order, keeping a record both of language model probabilities and 

acoustic probabilities of the given word. In general the use of "word" here can refer to 

any unit: a phone, syllable, English word etc. In our case, t he lattices contained English 

language words from an unknown fixed vocabulary. The vocabularly was clearly finite 

and was known by Cambridge University when the lattices were compiled; the informa­

tion was not, however, conveyed with the lattices. Fortunately, as we explain in section 

5.6, it was not required. 

Obtaining t he 1-best path from a speech lattice is a fairly simple process - it is 

simply a matter of generating all paths, together with their respective probabilities, and 

selecting the most probable one, as described in section 3.2.2. The Viterbi algorithm 

(Viterbi 1967) exploits recursion to reduce computational load. We were able to use 
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J=15337 8=6322 E=6324 W= JONE8 a=-2133.28 l=-1.115 

J=15342 8= 6323 E=6326 W= JONE8 a=-2133.28 l=-2.495 

J=15346 8=6324 E=6330 W = IND U8TRIAL a=-3698.22 l= -0.585 

J=15347 8= 6325 E=6330 W = INDU8TRIAL a=-3698.22 l=-1.492 

J=15348 8=6326 E=6330 W=INDU8TRIAL a= -3698.22 l= -0.779 

J=15349 8= 6327 E=6330 W = INDU8TRIAL a=-3698.22 l=-1.298 

J=15350 8=6328 E=6330 W=INDU8TRIAL a=-3698.22 l=-2.072 

J=15351 8=6329 E=6330 W=INDU8TRIAL a=-3698.22 l= -1.202 

J=15352 8= 6330 E=6331 W =AVERAGE a=-2521.04 l=-0.032 

J=15353 8= 6330 E=6332 W =AVERAGE a=-2579.44 l=-0.032 

J=15354 8=6330 E=6333 W=AVERAGE a= -2603.15 l= -0.032 

J= l5355 8= 6330 E=6334 W=AVERAGE a=-2579.44 l=-0.032 

J=15356 8=6330 E=6335 W= AVERAGE a= -2697.81 l=-0.032 

J=15357 8=6330 E=6336 W= AVERAGE a=-2651.82 l=-0.032 

J=15358 8=6330 E=6337 W=AVERAGE a=-2734.74 l=-0.032 

J=15359 8= 6330 E= 6338 W=AVERAGE a=-2861.92 l= -0.032 

J = 15360 8= 6330 E=6339 W=AVERAGE a= -2822.07 l=-0.032 

J=15361 8=6330 E=6340 W= AVERAGE a=-2911.29 l=-0.032 

J= 15362 8= 6330 E=6341 W=AVERAGE a= -2911.29 l=-0.032 

J=15363 8=6330 E=6342 W=AVERAGE a=-2911.29 l=-0.032 

J=15364 8= 6330 E=6343 W=AVERAGE a=-2911.29 l=-0.032 

J =15365 8=6331 E=6344 W= A a=-445.94 l=-7.589 

J= 15429 8=6332 E=6391 W=CA8H a=-1552.63 l=-10.460 

J=15442 8= 6332 E=6400 W = CAP a=-1530.17 l=-13.817 

J = 15443 8= 6332 E= 6401 W=CAP a=-1562.18 l=-13.817 

J = 15418 8= 6333 E=6381 W=TEN a=-1429.67 l=-8.263 

J = 15419 8= 6334 E=6382 W=PATH a=-1392.95 l=-14.275 

Table 5.5: Subsection of the first lattice corresponding to the first paragraph of the test 

data. 
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Viterbi search techniques to find the best path efficiently, without the need to evaluate 

all paths, since the language model probabilities within the word lattices have been 

generated by n-gram models. Once two paths have overlapped for n words and are in 

the same state (i.e. have the same immediate history) the one with the lower probability 

can be discarded because it can never become more probable than a more probable path 

following the same route to the end of the lattice. 

We also implemented some pruning because we would not expect that paths which 

star t with very low probability to end more probable than paths which start with high 

probability. Although using no pruning gave best results, the system became too in­

efficient. For example, we investigated paths corresponding to phrases containing only 

the word "a" . We found that there are 512 permutations of the 3 word sequence "a a 

a"5; and consequently 512 possibilities were being calculated for every trigram within 

the lattice. By fixing a beam (a value within which the probability of the word sequence 

must fall, compared to the current best for that state), efficiency was increased con­

siderably. We experimented with various beam sizes and found that a beam width of 

60 consistently showed identical results to results with an infinite beam - and a beam 

width of 20 offered comparable results. We therefore adopted 60 as a fixed beam for 

final results and 20 for comparisons requiring efficiency. 

The task of named entity recognition of a single best path is easily scaled up to that 

for a speech lattice. In the previous chapter we showed that the named entity search 

was fini te state and therefore we can use the Viterbi algorithm. The search for the best 

path through the lattice is also finite state thereby enabling the use of Viterbi. It is 

straightforward to combine these two searches. The task is simply to select the most 

probable path which corresponds to a single pass through both processes simultaneously. 

As our method for the single best path for named entity tagging uses the token 

passing algorithm (Young et al. 1989), the increased complexity simply resulted in more 

tokens to pass around the FSM. 

If we view the task as extending the model of the previous chapter, all we do is 

5 Any single word has 8 permutations (people, places, organizations, times, dates, percentages, money, 

or not-an-entity). Any pair of words therefore has 82, and any word triplet has 83 = 512 permutations. 

Fortunately, the Markov assumption renders an sn limit for n-grams. 
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propagate each node in the lattice through the statistical model in the same way as 

previously we had propogated each word instance in a text through the statistical model. 

That is, previously we treated words as tokens and propogated them through the FSM 

using the token passing algorithm; now we treat lattice nodes (which are instances 

of words) as tokens and propogate these through the FSM using the token passing 

algorithm. 

Since the lattice is ordered, provided the nodes are propogated sequentially, tokens 

are guaranteed to store the best path6 to that token. Since each state contains the 

optimum token we can safely propogate as in the case of text. Essentially the only 

difference between the text FSM and the lattice FSM is that all tokens arriving at any 

one state had the same word history in their path in the text FSM, whereas tokens arrive 

at a state from multiple lattice nodes, and thus have different nodes (and correspondingly 

different words) in their history. This doesn't affect what happens at the state, where 

essentially the probability of new tokens that arrive are compared with the probability 

of the current token in the state (if one exists) . The new token replaces the current one 

only if the probability is greater than that of the current token; otherwise the token is 

deleted. 

If we want to estimate the added complexity of using lattices rather than text, we 

simply need to compare the number of tokens for each. For example, if we consider a 

30 second utterance of 75 words, it is not unreasonable for this utterance to produce 

a word lattice of 270,000 nodes.7 The FSM therefore takes the same amount of time 

to process this 30 second utterance in lattice mode as to process a 1-best utterance 

of 270,000 words (equivalent in time to approximately 30 hours of spoken speech). It 

therefore takes the equivalent of one hour of text processing t ime to process 1 second of 

lattice based speech. 

6 In practice, as already explained, tokens do not store paths, they simply store pointers back to 

where they came from. This is, however, equivalent to storing the path. 
7Such as the 74th utterance in the test data. 
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5.5.1 The Mathematics 

It is evident that the new task of named entity extraction has changed somewhat from 

the old task. Previously the named entity extraction task was to find a suitable entity 

sequence which mapped to a known word sequence. In the new task there is no known 

word sequence and the task is therefore to find a sequence of words and the corresponding 

sequence of entities. Mathematically speaking it is no longer necessary to find the 

arg max P(Ef jWf); instead we require the arg max P(Ef, W f ), or, more explicitly, 
~ ~.wt 

the arg max P(Ef, Wf jlattice). 
Ef,Wf 

When using a speech lattice instead of a single transcript, it is no longer possible to 

treat the probability of a word sequence, P(Wf) as a constant, as is assumed between 

equations 4.1 and 4.3 in the previous chapter. We are not, however, required to make 

this assumption because in the case of word lattices we are not trying to maximise 

P(EflWf); we are rather trying to maximise P(Ef, Wt). That is, we are seeking to 

maximise the joint probability of words and entities. 

We are therefore required to find the word sequence and corresponding entity se­

quence which maximises P(Ef, Wf) and can therefore follow the mathematics of the 

previous section (equations 5.5, 5.6, and 5.7) to arrive at equation 5.17. A more precise 

description of the calculation that we are performing is given in equation 5.18. We 

will use the shorter form ( equation 5.17) for the remainder of this thesis since the lat­

tice is always assumed. Equation 5.18 is introduced to demonstrate that the lattice is 

not ignored - in particular the lattice contains acoustic probabilities which need to be 

taken into account when making calculations. These lattice probabilities are taken into 

account in the ratio, stated within the lattices; language model log likelihoods are to 

be weighted 14 times as highly as acoustic likelihoods. These likelihoods are simply 

incorporated into the probabilities stored within the tokens as each lattice node gets 

propagated through the statistical model. 

L L 
P(Ef, wf) == IT P(ei lEf=~, w /:i )- IT P(wJEI-2, Wl:i ) (5.17) 

i=l i = l 
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L £ 

P(Ef, wf I lattice) '.:::' II P(eilEf='J. wt_:,J , lattice). II P(wilEf_2 , wt::,J , lattice) 
i = l i= l 

(5.18) 

We are therefore able to use the same approach we used in section 5.4.6 (to estimate 

the sequence of entities), to estimate the sequence of words and entities from a speech 

lattice. A trivial example is shown in appendix A. 

5.5.2 Efficient Viterbi Decoding of Lattices 

Similar to decoding named entities in ordinary text, speech lattice decoding does not 

require all possible paths to be evaluated. The word lattices from Cambridge University 

are n-gram lattices; that is, once a context of n words is established for any given time 

stamp, only the most probable sequence needs to be stored, or passed onwards in the 

token passing algorithm. If paths through a 3-gram word lattice were being examined 

and, at a particular time stamp, the following starts of sentence were possible: 

• so he said to them (log prob = -14.2) 

• so they said to them (log prob = -14.2) 

• and he said to them (log prob = -14.3) 

• and harryPERSON said to them (log prob = -14.3) 

• so he said to them (log prob = -14.1) 

• so he said to it (log prob = -17.9) 

then only the last two sentences 

• so he said to them (log prob = -14.1) 

• so he said to it (log prob = -17.9) 

need to be propogated. As illustrated, it is possible to have multiple sentences with 

exactly the same history, but for those with differing histories only those which differ 

in the immediate context need to be propogated. In the lattice FSM system that we 
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are using, uniqueness is essential. If therefore the immediate context contains differing 

entities but the same words, both examples need to be propagated. 

In practice, we also pruned if there was a large difference between the log probabili­

ties. This was purely for time and memory efficiency to prevent strings like "aPERSON 

aPLACE aoRGANIZATION a aPERSON aPLACE" being propogated. The 3-gram na­

ture would have only discarded those sequences that would have ended "a aPERSON 

aPLACE" , which were less likely than this. If, however, the sequence is possible in the 

lattice, without pruning, the sequence will be followed to completion. Sequences like 

"aPERSON aPLACE aoRGANI ZATION a aPERSON aPLACE" can safely be pruned away, 

without any harm to the overall output of the lattice. 

5.5.3 Experiment 

An experiment was conducted to compare the results of a Viterbi search over named 

entity classes for a 1-best path through the lattice, with a Viterbi search over both 

named entity classes and all lattice paths to see if it was possible to improve named 

entity scores over those obtained on a 1-best path. 

The experiment was also designed to establish whether the added named entity 

lang;uage models would improve the WER of the best transcript from the speech lattice. 

The three data sets that were used for this experiment were Lattice-Best Lattice, 1-Best 

Lattice and Speech Lattice as defined in table 3.2 in chapter 3. 

The data set Lattice-Best Lattice was used as an upper bound on possible perfor­

mance. Whereas the other two data sets were used for straightforward comparision of 

output. 

All three data sets were used separately as input for the named entity recognition 

system, and three marked up texts were produced. For this experiment both F-scores 

and WER were recorded for each named entity transcription. F-scores and WER were 

calculated by comparison with the manual transcript (Manual Key). The best possible 

path, Lattice-Best Lattice, did not have a WER of 0%. 
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Data Set F-Score WER 

Lattice-Best Lattice 78.87 5.4 

1-Best Lattice 74.04 19.7 

Speech Lattice 74.34 20.1 

Table 5.6: Results of experiment comparing named entity recognition from word lattices 

and 1-best transcripts. 

Results 

The results for the thrne named entity evaluations are shown in table 5.6. Figure 5.9 

shows the improvement in F-Scores a.c; a result of using the word lattices rather than the 

1-Best transcription of the lattict>,s. 

From figure 5.10 we can see how the WER is affected by this improvement in F­

Score. The rf'Ac; ult confirms the hypothesis that named entity F-Scores can be improved 

without improving WER, and shows how a trade-off between F-Score and WER may 

he possible. 
.., _________________ _ 

Figm e 5.9: Bar chart comparing the F-Scores for named entity recognition from word 

lattices and 1-best transcripts. 
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Figure 5.10: Graph comparing the F-Scores for named entity recognition with the WER 

of the text generated by word lattices and 1-best transcripts. 

5.5.4 Conclusion 

By a Viterbi search for words and named entities using word lattices, it has been shown 

that it is possible to obtain an improvement in named entity F-scores compared with a 

1-best transcription of the same word lattices. We have also seen that this improvement 

in F-scores has corresponded with a decline in WER. 

It follows that, although there is a general correlation between F-score and WER, 

it is possible to improve the one at the expense of the other. This is not to argue that 

degrading the quality of recognition is a sensible way of improving F-score but rather 

that the relationship between WER and F-score is not necessarily linear. We would 

suggest that the strong general correlation between F-score and WER does not imply 

that the only way to improve in F-score is to improve in WER. 

The results suggest that there are limits on bow far it is possible to improve F-score 

by trading the WER off in exchange for F-score. 

Our conclusion that the relationship between F-score and WER is not necessarily 

linear is similar to the case of precision and recall. Although a comparison of systems 
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presenting results in F-score would undoubtedly show that generally precision and recall 

have similar values, and one might be tempted to conclude therefore that there is a 

linear relationship (with unit gradient) between them, there is a known trade-off curve 

between precision and recall (figure 5.11) which has been shown to exist in almost all 

cases (Buckland & Gey 1994). We have shown that a trade off is similarly seen between 

WER and F-score, when the priority is F-score rather than WER. 

100 ..... 

' ' ' ' ' \ 

Recall 

0 

\ 
\ 

\ 

' 

Precision 

' ' ' ' ' ' ' ...... 
..... 

100 

Figure 5.11: Graph of the relationship between Recall and Precision, reproduced from 

( Cleverdon 1912). 

Contrary to the general trend of information extraction from speech, we conclude 

that it may be possible for named entity recognition to improve while WER increases -

as a result of using speech rather than transcripts of speech. 
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5.6 Recognition and vocabulary errors 

99 

In chapter 3 we noted that not all correct paths were possible with the given lattices -

hence the calculation of Lattice-Best lattices with a 5.4% WER. There are two reasons 

for this deficiency: "recognition" and vocabulary. 

By "recognition" we refer to standard errors relating to insertion, deletion and sub­

stitution. The cause of these errors may lie in a fault of the speaker (mispronouncing 

words, etc), in a fault of the recording (background noise, etc) or, more often, in the a 

fault of the speech recogniser. 

The effect of a vocabulary error will be the same as a standard "recognition" error 

(i.e. insertion, deletion, substitution or any combination), but the cause is different. 

A vocabulary error is caused by the speaker using a word that the speech recogniser 

doesn't know. For example if the speaker was quoting a verse from the Bible - Isaiah 

8:1 (NIV) 

The Lord said to me, "Take a large scroll and write on it with an ordinary 

pen: Maher-Shalal-Hash-Baz." 

The speech recogniser could not get the name "Maher-Shalal-Hash-Baz" correct. 

Instead, there would be something wrong with all sentence possibilities within the word 

lattice. 

As previously stated, the size and content of the speech recogniser vocabulary used 

to generate the word lattices was unknown. We explain below that the vocabulary was 

not required. 

The language models that we generated from the training data (in order to predict 

P(wJ.) and P(eil --)) also required a vocabulary. There were a number of possibilities 

for selecting this vocabulary: 

• use the vocabulary of the speech recogniser - this was not available because the 

vocabulary was unknown; 

• generate a vocabulary of all words that occurred in the lattices, and use this; 

• generate a list of all words that occurred in the training data, and use this; or 
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• generate a list of the most common words in the training data, and use this. 

The first method was impossible since the speech recogniser vocabulary was un­

known. The second method was possible and was essentially equivalent to the first 

method since it enabled the prediction of all the words in the unknown vocabulary that 

were required. There was, however, a fundamental flaw with this method in that some 

of the words in the lattices did not occur in the training data. Therefore, when the 

language models were t rained with this vocabulary, those words which did not occur in 

the training data received extremely low likelihoods in the language models. 

The third method proved satisfactory for the training data - but using this vocabulary 

did not allow the language models to predict the probability of those words which 

occurred within the lattices but not within the training data (or of entities given words 

which occurred within the lattices but not within the training data). 

The final method proved the best because, although some words which occurred in 

the training data were no longer predicted, it was possible to generate probabilities of 

unknown words. Wherever the word in the lattice was not in this vocabulary, the prob­

ability of the unknown word (labelled <UNK>) was used instead. Therefore, although 

the lattice words were known in advance (equivalent to knowing the speech recogniser 

vocabulary), results showed that it was far better to ignore this information when t rain­

ing the language models, in order to obtain a reasonable estimation of an unknown 

word. 

5. 7 Conclusions 

In this chapter we have first investigated the use of CART to replace the P(eilEf+Ln) 

and found that, although there was an improvement, the improvement was small for the 

amount of work required. Using CART required not only a lot of training, but having 

trained the trees, there was still a large computational overhead per experiment which 

was avoided without it. We therefore decided to abandon CART. (We return to it briefly 

in section 8.2.2 when discussing possible future work.) 

Second, we introduced the idea of using a hybrid approach. Although results using 

the hybrid approach are good, there is no easy way of converting the hybrid approach 
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to work with word lattices. Whilst writing rules for text is an established task, writing 

rules for word lattices is not - even the mark up of word lattices is non-trivial. 

We have considered the traditional method of estimating a joint probability of two 

sequences and have developed a different method, which requires fewer independence as­

sumptions. We have shown that this method provides better results than the traditional 

method. 

Finally we have adjusted the system so that it is suitable for use with word lattices. 

Although the rule-based element of the hybrid system could not easily be converted to 

work on word lattices, we showed how the statistical component could be converted, 

and furthermore showed how the statistical component produced better results on word 

lattices than it did on the single best transcription of the lattice. One of the issues with 

which we were faced when moving from transcriptions to word lattices was the issue of 

vocabulary size - there will always be a far greater number and variety of words in a 

lattice than there will be in the relevant transcript. We addressed a number of issues 

relating to the vocabulary size in section 5.6. 

The different method of estimating the joint probability has been shown to be ap­

plicable to both text and word lattices, but particularly to word lattices - where it 

is clear that the task is to find the joint probability of two sequences. (For words, 

the original task is to find the conditional probability of one sequence given another -

although finding the conditional probability is generally still regarded as a joint proba­

bility calculation.) The improved statistical system for lattices is not only better than 

the original statistical system based on lattices; it is also better than the old statistical 

system based on automatic speech recognised transcripts and the new statistical system 

based on automatic speech recognised transcripts. Furthermore, when the improved 

statistical system is run on the manual lattices, it provides a better F-score than the 

hybrid system provided on manual speech transcripts. 



Chapter 6 

Discriminative Language Models 

In this chapter we introduce the concept of discriminative language models and their 

application to the thesis. In the earlier chapters we described the eight language models: 

People, Place, Organization, Time, Date, Percent, Monetary expression and not-an­

entity. Each language model was trained on named entity specific training data using 

the Carnegie Mellon University (CMU) language modelling toolkit (Rosenfeld 1994). 

Thus the probabilities of 'James' and 'October' were highest in the People and Dates 

language models respectively. 

In this chapter we propose a method for iteratively making the language models 

discriminate against all data that occurs within the training material of any other 

language model in order that frequently occurring words within one language model 

become less likely in another language model. For example if the name "James" oc­

curs 67 times in the People training data, 4 times in the Organisation training data, 

and nowhere else; we would not want the not-an-entity language model to predict 

P(James j .. ) = P(< UNK >) = P(singleton) , since P(< UNK >) may be quite 

high in the not-an-entity language model. Having described a way of discriminately 

training the data, we provide our results on a test corpus having trained our discrimina­

tive language models both on the original training data and on the held-out development 

set. 

102 
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6.1 Method 

In order to develop the discriminative language models we require manually marked up 

data. Two separate experiments were conducted: experiment 1 (section 6.3) on the 

original training data and experiment 2 (section 6.4) on a held out development set. 

We first strip all markup from the data (either training or development) and then 

use the current models to predict the best transcription of the data. We then take 

advantage of the fact that there is a one-to-one mapping from final transcriptions1 to 

the probabilities used in the generation of the final transcriptions to create the list of 

probabilities used. In a similar way we treat the manual text as if it had been generated 

from the statistical model and calculate the probabilities that would have been used to 

produce the manual transcription. Having created two separate lists of probabilities, one 

corresponding to the manual transcript and the other corresponding to the hypothesised 

transcript, we compare the lists of probabilities. 

If a probability occurs in the list corresponding to the manual transcription (hereafter 

'manual probabilities') which does not occur in the same place2 in the list corresponding 

to the hypothesised transcription (hereafter 'hypothesised probabilities'), it is assumed 

that the language models do not estimate this probability as highly as they should. 

Similarly, if a probability occurs in the hypothesised probabilities but does not occur 

in the same place in the manual probabilities, it is assumed that the language models 

are over-estimating this probability. By comparing the complete lists we are able to 

establish a superset of the set of incorrect probabilities.3 We then adjust the language 

model probabilities listed in the superset by a predetermined amount and renormalise 

the language models. The process is repeated until a predetermined condition is met. 

The process is illustrated in figure 6.1. An explanation is given by way of example in 

section 6.1.1. 
1F inal transcriptions refer to the output of model 
2The same place once the two lists have been dynamically aligned. 
3T he mathematical definition of 'superset' is used , referring to a set which contains a set. Mathe-

matically, therefore, all sets are supersets of themselves since they contain themselves, and all sets are 

supersets of cp the empty set. 
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Figure 6. 1: Schematic diagram of language model iteration. 

6.1.1 Example 
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We consider two transcriptions: (i) a manual transcription, and (ii) a hypothesised 

transcription to compare with the manual transcr ipt ion. 

(i) The manual transcription: 

.. the stock market rose by <nurnex type='percent'>fifteen percent</nurnex> 

the <enamex type='organisation'>dow</enamex> . . 

(ii) The hypothesised transcription: 

.. that stock market rose by <numex type='percent'>fifty percent</numex> 
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Estimating Proba bility Language Model 

Word P(the l .. ) not-an-entity 

Entity 1 - I: P(el .. , the) not-an-entity 
e 

Word P(stockl .. , the) not-an-entity 

Entity 1 - I: P(elthe, stock) not-an-entity 
e 

Word P(marketlthe, stock) not-an-entity 

Entity 1 - I: P(elstock, market) not-an-entity 
e 

Word P(roselstock, market) not - an- entity 

Entity 1 - I: P(elmarket, rose) not-an-entity 
e 

Word P (bylmarket, rose) not-an-entity 

Ent ity P( < per/ > !rose, by) not-an-entity 

Word P(fifteenl< s >) percent 

Entity 1 - P( < / s > I< s > , fifteen) percent 

Word P (percent l< s >, fifteen) percent 

Entity P ( < / s >lfifteen,percent) percent 

Word P (thelby, < per/ >) not-an-entity 

Entity P( < ORGANIZATION >I< per/>, the) not-an-entity 

Word P(dowl< s > ) <ORGANIZATION> 

Entity P( < / s >I< s >, dow) <ORGANIZATION> 

Table 6. 1: The probabilities associated with the manual transcription. 

<enamex type='person'>dow</enamex> .. 

Since there is a bijection from transcriptions to paths through the statistical model 

it is possible to determine the probabilit ies which correspond to any given transcription. 

The probabilities that correspond to the manual transcription above are shown in table 

6.1 and the probabilities used to generate the hypothesised transcription are shown in 

table 6.2. 

It is therefore a simple task to obtain a superset of which probabilities are too high 

and which are too low. By subtraction of the hypothesised transcription probabilit ies 

(table 6.2) from the manual probabilities (table 6.1), we obtain a superset of the list of 
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Estimating Probability Language Model 

Word P(thatl .. ) not-an-entity 

E ntity 1 - I: P(el .. , that) not-an-entity 
e 

Word P(stockl .. , that) not-an-entity 

Entity 1 - I: P( elthat, stock) not-an-entity 
e 

Word P(marketlthat, stock) not-an-entity 

Entity 1 - I: P(elstock, market) not-an-entity 
e 

Word P(roselstock, market) not-an-entity 

Entity 1 - I: P(elemarket, rose) not-an-entity 
e 

Word P(bylmarket, rose) not-an-entity 

Entity P( < per/ > !rose, by) not-an-entity 

Word P(fiftyl< s >) percent 

Entity 1 - P( < /s >I< s >, fifty) percent 

Word P(percentl< s >,fifty) percent 

Entity P( < /s >lfifty,percent).P( < PEOPLE >lby, <per/>) percent, not-an-entity 

Word P(dowl< s >) <PEOPLE> 

Entity P( < /s >I< s >, dow) <PEOPLE> 

Table 6.2: The probabilities associated with the hypothesised transcription. 
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probabilities required to be altered together with a direction ( either increase or decrease) 

as shown in table 6.3. 

This method allows us to find a superset of the probabilities that are incorrect. 

Possibly all of the probabilities within this superset are incorrect, but potentially only 

some of the probabilities are incorrect. It is hoped that, by iteratively repeating the 

process, those probabilities which are altered in the wrong direction will be corrected. 

To illustrate this point we can consider the latter part of the sentence. If the only 

problem that caused the generation of e=Person to correspond to w=dow is that the 

P( < org / > I < per/ >,the) was too low, then, when we updated the language models 

to correct this, a superset of this probability4 would be updated; in particular, the 

superset contained in table 6.4. It is hoped, however, that by iteratively calling the 

process the probabilities which should not have been updated ( those in the superset 

which were already correct) will be returned to their correct values. As soon as one of 

these now-incorrect probabilities cause the model to make an incorrect decision, they 

will appear in either one or the other of the hypthesised probability list and the manual 

probability list, and should therefore be updated back to the original probability. 

6.2 Factors to be considered 

There were a number of factors which needed particular attention during these experi­

ments. These are dealt with in the following subsections. 

6 .2 .1 Dealing with new probabilities 

In the language models, there are some probabilities which are calculated by backoff 

procedures. Consequently, not all trigrams which will occur in a new data set will exist 

within the language models. It is possible for the language model to estimate all trigram 

probabilities by using the backoff strategy, but, having estimated the probability, the 

language model does not store this number for future reference, so it cannot be updated. 

But, if a probability is not explicitly defined within a language model, how can this 

4Technically, a superset of the set containing only this probability. 
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Probability Language Model Direction 

P(thel .. ) not-an-entit y Increase 

P(thatl--) not-an-entity Decrease 

1 - I: P(el -- , the) not-an-entity Increase 
e 

1 - I: P(el- -, that) not-an-entity Decrease 
e 

P(stockJ .. , the) not- an- entity Increase 

P(stockJ .. , that) not-an-entity Decrease 

1 - I: P(elthe, stock) not-an-entity Increase 
e 

1 - I: P(elthat, stock) not-an-entity Decrease 
e 

P(marketithe, stock) not-an-entity Increase 

P( marketJthat, stock) not-an-entity Decrease 

P(Jifteenl< s >) percent Increase 

P(JiftyJ< s >) percent Decrease 

1 -P(< / s >I< s >, fifteen) percent Increase 

1 - P( < / s >I< s >, fifty) percent Decrease 

P(percentl< s >, fifteen) percent Increase 

P(percentl < s >, fifty) percent Decrease 

P( < / s >lfifteen,percent) percent Increase 

P(thelby, <per/>) not-an- entity Increase 

P( < org/ > I< per/ >, the) not-an-entity Increase 

P( < / s >lfifty,percent).P( < PEOPLE >Jby, < per/ >) percent, not-an-entity Decrease 

P(dowl< s >) organisation Increase 

P(dowl< s >) people Decrease 

P( < /s >I< s >, dow) organisation Increase 

P( < /s >I< s >, dow) people Decrease 

Table 6.3: The probabilities to alter, together with the direction in which the probabilities 

need to be altered. 
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Probability Language Model Direction 

P ( < org/ >I< per/ >, the) not-an-entity Increase 

P(< /s >lfifty,percent).P(< peo/ >lby,< per/>) percent, not-an-entity Decrease 

P(dowl< s >) organisation Increase 

P(dowl< s >) people Decrease 

P( < / s > I< s >, dow) organi sation Increase 

P(< / s >I< s >,dow) people Decrease 

Table 6.4: The superset of P(< org/ >I< per/ >,the) . 

probability be updated within the language model? We illustrate this problem with a 

fictional example. We consider t he sentence 

... farmers have been having difficulties with wild cats in mozambique ... 

The markup is incorrect because 'mozambique' has not been labelled as a location. 

By using the method described in section 6.1 , a superset of the set of incorrect 

probabilities will be generated. One of the probabilities within that superset would be 

P( < pla/ > !cats, in) within the not-an-entity language model and it would be labelled 

that we should increase this probability. The problem only arises when P( < pla/ > 

!cats, in) is not explicitly in the not-an-entity language model and instead is calculated 

by backing-off. How do we alter the probability of the trigram "cats in <pla/>", if the 

trigram doesn't exist within the not-an-ent ity language model? 

One possibility is simply to add the probability to the language model. This method 

would certainly address the immediate problem that "cats in <PLACE>" had too low 

a probability. It would, however, probably lead to an overtrained language model which 

would not generalise well to new data. Indeed , the reason that many trigrams do not 

explicity occur within the language models is that including them at training time leads 

to bad generalisation later. 

An alternative method would be to update the constituent probabilities that the 

language model uses to predict the probability of the trigram; for example, to update 

back-off weight(cats, in) (hereafter bo(cats, in)) and the P( < pla/ > lin), if these n­

grams exist within the language model. If these n-grams do not exist within the language 
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model, it will be necessary to back-off further until we identify the n-grams which are 

used by the language model to estimate the trigram. Having found the component 

probabilities, these may be updated. 

The question then arises, by how much should we update the component probabil­

ities? We have been considering the case where P( < pla/ > I cats, in) is not in the 

not-an-entity language model, but both P( < pla/ > lin) and bo(cats , in) are, with the 

back-off approximation that P( < pla/ > I cats, in) = P( < pla/ > lin) x bo(cats, in) . 

If we have been updating trigram probabilities that do occur in the language models 

by o, one possibility is to update P( < pla/ > lin) x bo(cats, in) by o. There are still 

infinite possibilities for how to update the component parts; these are demonstrated by 

equations 6.1 and 6.2, since µ can take any value. The obvious value for µ is .,JJ since 

this will update the back-off weight and back-off probability equally. 

bonew(cats, in) = ~ x bOotd(cats , in) 
µ 

Pnew( < pla/ > lin) = µ X Potd( < pla/ > lin) 

(6.1) 

(6.2) 

We also need to decide what to do if P( < pla/ > lin) is also not in the not-an-entity 

language model. We would simply proceed as before and split the unknown probability, 

as in equation 6.3. 

P( < pla/ > lin) = bo(in) x P( < pla/ >) (6.3) 

The new component parts are updated similarly to those in equations 6.1 and 6.2. 

These updates are shown in equations 6.4 and 6.5. Using the previous logic, the ideal 

value for I/ is fa. 

bOnew(in) = f:!.boold(in) 
V 

Pnew( < pla/ >) = v X Potd( < pla/ >) 

(6.4) 

(6.5) 

By using these weights, it is possible to update the language model probabilities 

such that any trigram probability, requested after an update of the language model 
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with respect to that trigram probability, will have the desired output. This method will 

effectively update all component probabilities in such a way that the new probability will 

be equivalent to adding the new updated probability, while in practise all probabilities 

that depend on any of the constituent values will also have been updated. Equations 

6.1, 6.2, 6.4 and 6.5 are all summarised in the derivation shown in equation 6.6. 

P( < pla/ > !cats, in) = ~.bo01d(cats, in).~bo0 1d(in).v.P0 1d( < pla/ >) 
µ V 

= ~.bo01d(cats , in). ';,,.bo0 1d(in).fo,.P0 1d( < pla/ >) 
µ y µ 
8 

= - .bootd(cats, in) .fo, .bo01d(in).fo,.P01d( < pla/ >) 
µ 

= :a.bo0 td(cats, in). M.bootd(in) . /.:a.P01d( < pla/ >) 

= ./J.bootd(cats,in).v'o.bo0 1d(in).\t'8.P0 1d(< pla/ >) 

= 8.bo01d(cats, in).bo0 1d(in).Po1d( < pla/ >) 

= o.bOoid(cats, in).Potd( < pla/ > lin) 

= o.Potd( < pla/ > !cats, in) 

(6.6) 

Another alternative would be to use both of the previous methods to update the 

probabilities; that is, to add the probability to the language model, but also update the 

constituent parts of the probability - although to a lesser degree. 

6.2.2 D ealing with unknown words 

It is important to be able to deal with unknown words as many of the words which 

appear in new data will be regarded as unknown by the system. When the system 

has, for example "james horlock spoke" as input, although "james" and "spoke" will 

be in-vocabulary words, "horlock" will undoubtedly be out-of-vocabulary (OOV). If the 

system correctly classifies the named entity of OOV words, there is no problem, but if 

they are misclassified an issue arises as to what probabilities to adjust. 

If the OOV word 'horlock' was misclassified and we want to increase P(horlockJ < 

s >, james) within the Person language model, we are able to approximate P(horlockl < 
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s >,james) by P(< UNK >I< s >,james). We therefore know what Potd(horlockl < 

s >,james) was and what Pnew(horlockl < s >,james) should be. 

We are therefore faced with two alternatives. The first was to add ~iew(horlockl < 

s >, james) to the language model. 5 This would have the desired result when this 

specific probability was required again, but would be bad for generalisation. The reason 

that this probability is not in the language model is due to the infrequency of the word. 

The second alternative was to update the probabilities referring to <UNK>; in this 

case, change P( < UN K > I < s >, james). In cases where the n-gram is not in the 

language model, it is possible to use the method of section 6.2.1 above. This second 

approach is the one we used. 

6.2.3 Dealing with repeated incorrect probabilit ies 

If a probability is in the superset of those probabilities which are incorrect within the 

language model, we update the probability. If, however, the probability is truely wrong, 

we may expect the probability to occur multiple times within the list of probabilities 

to update per iteration of the process. We have to decide by how much to update a 

probability that occurs multiple times in this list. 

By way of an example, suppose that "england" is so highly predictive of the lo­

cation named entity tag, and that mentions of the "england cricket team" are in­

correctly marked up as "<PLACE>england</PLACE> cricket team", instead of the 

correct markup "<ORGANIZATION>england cricket team</ORGANIZATION>. If 

this happens on only one occasion, we know how to deal with it. But in the case 

where a whole article is about the England cricket team, and therefore "england cricket 

team" occurs multiple times, we need to know how to update the respective probabil­

ities. If the phrase occms five times, we have five instances where we should reduce 

P(teaml < pla/ >, cricket) . Should the probability be reduced each of the five t imes? 

Additionally, what should be done when the list of update probabilities requires both 

an increase and a decrease of a particular probability? 

A preliminary experiment showed that updating the probabilities each time a mistake 

5If probabilities are added to language models the language models need to be renormalised to ensure 

that probabilities sum to 1. 
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Data set for test Original First Second Third Fourth 

iteration iteration iteration iteration 

Training 97.77 98.35 98.50 98.86 98.79 

Testing 74.34 74.10 74.42 74.32 74.42 

Table 6.5: F-scores when the language models are updated iteratively by log probability 

0.05. 

occured resulted in very poor results. As an alternative to this scheme of equal addition 

per count, we used a tally scheme whereby, if the sum over a ll instances claiming that 

the probability should be increased, minus the sum over all instances claiming that the 

probability should be decreased, was positive then the probability was increased and, 

conversely, if it were negative the probability was decreased. This new scheme effectively 

counted multiple occurences the same as single occurences. 

6 .3 E x periment 1 

The first experiment reused the training data to readjust the language model probabil­

ities. 

6.3.1 Exp erime nt 1.1 (M ultiple iterations) 

In the first experiment, five iterations were made and the probabilities were adjusted by 

multiplying the probabilities by 1.12 and 0.89 respectively6 for increasing and decreasing 

the probability. Table 6.5 shows the results on the test data, together with the changes 

in the accuracy on the training data. The results are plotted on the graph in figure 6.2. 

In each of these cases, the language models were retrained on the training data only. 

It is possible to draw a number of conclusions from this initial experiment: 

• Apart from improvements in the training data, the results show very slight im­

provement as a direct result of increased discriminative language model training 

on the training data. 

61.12 and 0.89 correspond to ±0.05 in the log domain. 
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• Improvements in results show fluctuations - in particular the second iteration re­

sults in a decrease in F-score for the development set . 

• Improvements within one experiment are not necessarily reflected by improvements 

in the other experiments - in particular a decrease in the fourth iteration on the 

training data still produces an increase in F-score on the test set. 

6.3.2 Experiment 1.2 (Comparing update weights) 

A second experiment was conducted to see the effect of greater and lesser weighting of 

the changes to the la nguage models. In this experiment, the amount that the prob­

abilities were increased and decreased was varied from 1.58 to 1.06 and from 0.63 to 

0.94 respectively, corresponding to variation in log probabilities from 0.2 to 0.025. In 

each case, the experiment was conducted with five iterations and results were noted for 

the training and test sets. The language models were adapted solely on the training 

material. 
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Data set Adjustment Log Original First Second Third Fourth 

factor factor iteration iteration iteration iteration 

TI.·aining 1.58 0.63 ± 0.2 97.77 97.98 98.47 97.72 

1.26 0.79 ±0.l 97.77 98.45 98.86 98.79 98.63 

1.12 0.89 ±0.05 97.77 98.35 98.50 98.86 98.79 

1.06 0.94 ±0.025 97.77 98.11 98.36 98.51 98.55 

Testing 1.58 0.63 ±0.2 74.34 74.30 74.27 72.26 69.72 

1.26 0.79 ±0.l 74.34 74.27 74.30 74.02 74.17 

1.12 0.89 ± 0.05 74.34 74.10 74.42 74.32 74.42 

1.06 0.94 ±0.025 74.34 74.44 74.23 74.41 74.21 

Table 6.6: F-Scores when the language models are updated iteratively by varying log 

probabilities. 

The results for this experiment are shown in table 6.6 and plotted on the graphs in 

figures 6.3 and 6.4. It is possible to make some observations from this experiment: 

• It is possible to give too much weighting to the discriminative probabilities, which 

is evidenced by the adjustment of 0.2 showing far lower increase in F-score on the 

training data than smaller adjustment factors. This maximum weighting was to 

be expected, since, if the current estimation of a probability is E from the correct 

probability, there is clearly a maximum weighting (2E) - such that subtracting more 

than this amount leaves the approximation worse than the original approximation. 

Also due to the relative instability of the model, once a probability is adjusted too 

far from the correct probability, it will have a knock-on effect on other probabilities 

which occur in close proximity to it in the data. 

• There is a general trend for lower adjustment factor updates to give better increases 

in F-score on the test set, independent of the number of iterations. 

• Improvement on the training data appears to follow parabolic graphs for each of the 

adjustment factors. The lower the adjustment factor, the more iterations before 

finding the global maximum - which is in keeping with expectations, providing no 
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Table 6. 7 shows how the size of the log probability used for the discriminative updates 

affects the number of probability updates in the following iteration. The figures in 

brackets show the difference from the previous iteration. 

These results confirm how badly the high adjustment factor works by causing an 

increase in errors on the training data. They also show that the relative decline in the 

high probability updates is more serious than the F-scores reflected. It is interesting to 

note that the optimum F-score on the test set occurs when there are still a large number 

of probabilities to be updated. 

6.4 Experiment 2 

The second experiment used the development data to adjust the probabilities associated 

with n-grams. Although, in experiment 1.2, the F-score values for log factor ±0.05 were 

marginally better than those for the other log factors, the application of this to the 
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development data produced better results with log factor ±0.25. The probabilities were 

therefore adjusted by 1.06 and 0.94 (equivalent to adjusting the log probabilities by 

±0.025). We used the tally scheme used in experiment 1 for deciding how many times 

to adjust probabilities that occurred multiple times in the data and we ran only a single 

iteration, as that was the most effective for experiment l. The results are presented in 

table 6.8. 

The results of this experiment show that the decrease in F -score on the training 

data, which was to be expected since previously the models had been trained on this 

data alone, was negligible. The increase, however, on the development data, which 

was also to be expected, was large. The most important improvement to note was the 

increase in F-score on the test set. We are therefore able to conclude that this method 

improves named entity extraction on a test set when a development set is used for the 

discriminative training process. 

Having run the system with these new language models on the testing set, a final 

evaluation of the system on the Manual Lattice was run. Our system was designed to 
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Log probs Original First Second Third Fourth 

0.2 8168 5689 (2497) 5261 (428) 7976 (-2715) 

0.1 8168 5286 (2882) 3899 (1387) 3770 (129) 3703 (67) 

0.05 8168 5903 (2265) 5231 (672) 4105 (1126) 3852 (253) 

0.025 8168 6690 (1478) 5911 (779) 5261 (650) 5137 (124) 

Table 6.7: Number of changes required for each iteration with the respective log proba­

bilities. 

Training Development Testing 

Before discriminative training 97.77 83.65 74.34 

After discriminative training 97.76 85.29 74.59 

Table 6.8: Table of results for experiment 2. 

be run on speech word lattices, so it was not expected that the system would do as 

well as systems designed to be run on manual transcripts. The Manual Lattice did not 

contain any contextual clues (punctuation, capital letters, etc); each lattice was simply 

a lattice of width 1 containing a string of single case text, unlike the input used for the 

systems in the comparison (as explained in table 3.2). When using the discriminatively 

trained language models, the system produced an F-score of 84.01, in comparision with 

the basic system (without discriminative training) which produced an F-score 83.21; see 

section 5.4.6. It has therefore been shown that using discriminative training has further 

improved the system that had already improved on the baseline system, despite the 

developments being targeted at speech data rather than text. 

These results are shown in the bar chart of figure 6.5, where it is clear that as 

well as seeing an improvement against the F-score of the system without discriminative 

training, there is a large improvement on both manual and speech transcripts of this 

method compared with both SPRACH-S and SPRACH-R (Renals et al. 1999). 
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Figure 6.5: Bar chart of results from experiment 2. 

6 .5 Conclusions 
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We conclude that it is possible to use data to improve trained language models for the 

purpose of named entity extraction. We have shown that both the original training data 

and also a held-out development set can be used for this purpose. 

The fact that the training data can be used to improve the results on the test set 

shows that the language models had not been trained to a point of over-fitting the data 

prior to the discriminative training. 

It is likely that there is further room for improvement in these results. We have 

shown that a linear relation between the frequency of the probabilities to be updated and 

the amount by which this was updated was disadvantageous, but that always updating 

probabilities by the same amount, irrespective of the relevant frequencies of the evidence 

of probability being incorrect, proved succeA'lsful. There may well be better formulae for 
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deciding by how much to update; for example, a function of the log frequency or a 

sigmoidal function. A further experiment would be to discard any probabilities that 

only occur once in the list of probabilities to update - on the grounds that, if the 

probability were truly incorrect, we would expect it to appear in multiple contexts. 



Chapter 7 

Using part-of-speech in word 

lattices 

In this chapter we show a method for using part-of-speech (POS) tags to improve named 

entity recognition within word lattices. We present a method for POS tagging a word 

lattice and then a means of utilising the POS tags within the lattice to improve named 

entity F-scores. This chapter is split into five sections. Section 7.1 gives a brief justifica­

t ion for an expectation of positive results. Section 7.2 details a mathematical derivation, 

showing a method for finding the named entity sequence. Section 7.3 describes how we 

assigned the POS tags to the lattices. Section 7.4 explains the method for generating 

the probabilities required by section 7.2 and relates the overall model back to the stan­

dard model used throughout the thesis. Finally, section 7.5 details the experiment and 

results, showing a small improvement in F-score by using POS information. 

7.1 Why should POS tags help? 

There were three main reasons why we might expect an increase in F-score as a result 

of using POS information. 

Firstly, POS tags have been used in numerous named entity systems for text data over 

the years. In some instances there has been considerable value in using POS information, 

reflected in the F-scores of the respective systems, as we discussed in chapter 2. The 

121 
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successful use in other similar projects suggests a potential for use in this thesis. 

Secondly, we ran the TnT (Brants 2000) POS tagger, trained on the standard 

Suzanne Corpus (Sampson 1995), over the training data and compared the distribu­

tions of POS tags over each of the named entity classes. The distributions are shown 

in figure 7.1, from which it is apparent that there is great variation over the different 

classes, even if some classes show resemblances to others. The differing distributions of 

POS tags over the different named entity classes provides evidence that both P( elt) and 

P(tle) are non-uniform . 

..__._._. ... u..J,_.__.~ _ ___, 

h • I I 

Figure 7.1: Graphs comparing the distribution of POS tags over the different named 

entity data sets. 
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Finally, the mathematics (with which we deal in the next section) shows how POS 

information can be used in the generation of the entity sequence. The existence of 

definitive mathematics is in itself supporting evidence, particularly since the new method 

makes use of additional information. 

7.2 The mathematics 

In the progression from text to word lattices in section 5.5, we noted the need for a joint 

probability over words and named entities. Since there was no fixed word sequence, 

it was incorrect to attempt to calculate P(EflWf). This is similarly true for adding 

POS information. We are not able to assume any single POS sequence - any more than 

we were able to assume a single word sequence. We are therefore left with the task of 

calculating the joint probability of entities, words and POS tags; namely P(Ef , Wf, Tf ). 

In chapters 5 and 6 we considered arg max P(Ef , Wf) . In this chapter we need to 
Ef,Wf 

focus on arg max P(Ef , W f, Tf ). In equation 7.1, we break down P(Ef, Wf, Tf) 
Ef,W1L ,Tf 

step by step using a similar derivation to that previously used in equation 5.5. 

P(Ef , Wf, Tf) = P(e1) .P(Ef, Wf, Tfle1) 

= P(e1).P(w1,t1 Je1 ).P(Ef, Wf,Tflei,w1,t1) 

P(e1 ).P(w1, t1le1).P(e2le1 , w1, t1).P(Ef , Wf , Tf lei, w1, t1, ez) 

P(e1) .P(w1, t1le1).P(e2le1, w1, t1) .P(wz, t2le1, w1, t1) 

= P (e1 ).P( w1, t1 le1).P(e2 lei, w1, t1).P( w2, t2le1, w1, ti) 

.P(ea lEr , Wl ,Tf) .P(Ef, wf ,T:flEf, Wf ,Tf) 

= P(e1) .P(w1 , t1le1) .P(e2le1, w1, t1) .P(w2, t2 le1, w1, t1) 

.P(e3!Ei, Wf, Tf).P(wa, t31Er, Wf, Tf).P(Ef, Wf, Tf !Er, W f, T() 

L 

= II P( I r;,i- 1 w i - 1 y i - 1) P( t I r;,i w i- 1 y i - 1) ei Dl , 1 , I · Wi, i D 1 > 1 , 1 (7.1) 
i= l 
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By making the n-gram assumpt ions that we have been making throughout, we are 

able to approximate equation 7.1 with equation 7.2 

L 

P(Ef , Wf , T{) II P ( I Di- 1 wi- 1 rni-1) P( t IE i wi-1 Ti-1) ei ..c,i - 2> i - 2 , ..L i - 2 · Wi, i i-1• i - 2, i - 2 
i = l 
L L 

II P( I 'C'Yi-1 wi-1 Ti- 1) II P( IEj w j-1 Tj- 1) 
ei ..c,i-2• i-2, i-2 · Wj, tj j-1• j-2, j-2 

i=l j=l 

(7.2) 

The new task has therefore been simplified to solving equation 7.3. 

L L 
EL wL fL - - . II P( ·IEi-1 wi-1 rni- 1) II P( . t ·IEj wj-1 rj- 1) 1, 1 , 1 - arg , Lmazc ,£ ei i-2 > i-2, ..L i-2 · W;, J j-1> j-2, j-2 

E1,W1,1 1i=l j=l 

(7.3) 

To solve equation 7.3 it is necessary to estimate both P(wj, tj1Ef_1 , wJ~i, TJ~i) 
d P( IEi-1 w i-1 T i-1) f d t an ei i - 2 , i-2 , i-2 rom a a. 

The training data did not contain any POS tags and therefore needed adapting 

to allow estimates of these probabilities. After adapting the data and training new 

language models, as described below in section 7.3, it was still not possible to estimate 

the necessary probabilities directly. Approximations of these probabilities were therefore 

necessary. 

A number of different approximations were available. We discuss the details of these 

possibilities later in the experiment reported in section 7.5. Essentially, however, we 

chose to take the average of two approximations to estimate P(ei lEf=t wti, TtJ) 
as per equation 7.4, and chose to approximate P(wj ,tj1Ef_1 , wJ~i,TJ~i) by making 

independence assumptions from two derivations of this probability as per equation 7.5. 

(7.4) 

P(wj , ti1Ef_1 , wj~,J, Tj~.J) = P(wjlEJ_ 1 , wJ~,J, Tj~,J ).P(tjlEJ_1 , wJ_2 , Tj~.J) 

P(tj1Ef_ 1 , w j~2
1

, Tj~,J).P(wj 1EJ_1 , wj~.J, Tj_2 ) 

P(wjJEf_p WJ~.J).P(tj1EJ_1 ,TJ~.J ) (7.5) 
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The final approximation of equation 7.1 is given in equation 7.6; and the task be-
t . . 

comes that of finding the sequences Ef, Wf, Tf that maximise TT (½P(ei[Et=J , W/_=-i) + 
i=l 

½P(eilEf=J, T/,:-i)). TTJ=l P(wj [EJ- 1, wJ~;). TTf=l P(tk[Et- 1, Tf,:-:J.). 

l 

P(EL wL rL) IT lP( I r.ii - 1 w i-1) lP( IEi- 1 Ti- 1) 1 , 1 , 1 '.::::'. . 2 ei ..c,i- 2 , i-2 + 2 ei i-2, i-2 
t = l 

L L 

· II P(wjlEJ-1, wJ~i)- II P(tk[EL1 ,Tf~i) 
j=l k= l 

7.3 Data preparation 

(7.6) 

Having established which probabilities are required, it is necessary to estimate them. 

There is no problem in estimating P(ei lEf=i, Wl.:-d-) or P(wj[E3_1, wJ~i), since these 

were the probabilities that we have been estimating throughout. The problem is in 

estimating P(eil-EI-::t Tl.:-i) and P(tk1EL1 , Tf-=-i)-

There is considerable similarity between these two pairs of probabilities in that 

P( IEi- 1 wi- 1) . . ·1 . P( IEi-1 Ti- 1) d P( IEi wi- 1) . ei i - 2 , i-2 1s s1m1 ar m structure to ei i - 2 , i - 2 , an Wj j - i , j-2 1s 

similar in structure to P(tk1EL1,Tf~J). It is clearly possible to estimate the unknown 

probabilities by creating an additional finite state machine (FSM), identical in structure 

to the old one, where POS tags are used instead of words. In order for such a second 

FSM to be created, training data will be required. This is addressed in section 7.3.1. 

In order to use the second FSM after training the models it will be necessary to have 

appropriate testing data. This is dealt with in section 7.3.2. 

7.3.1 Training data 

The original FSM was created by building eight separate language models correspond­

ing respectively to the eight separate sets of training data - one for each named en­

tity and one for the not-an-entity data. The training data consisted of strings such 

as "!SENT ..START this is <org/> it's <dat/> i'm <peo/> reporting from <pla/> 

!SENT ..END" in the not-an-entity data, "<s> a. b. c. news </s>" in the organisation 

data, "<s> tuesday the fifth of january </s>" in the date data, "<s> ted kopel </s>" 
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in the person data, and "<s> new york city </s>" in the location data1 . 

To produce the necessary language models for the estimation of probabilities related 

to POS tags, it was similarly necessary to produce eight language models, trained re­

spectively from POS data. As explained in chapter 2, POS taggers have accuracies close 

to human precision. It was therefore possible to automatically tag each respective set 

of training data with POS tags. T hen, by removing the original words from the sets of 

tagged training data, the desired sets of data could be generated. The corresponding 

new data was in the format "STA t2 t3 <org/> ts <dat/> t14 </peo> t17 </pla> 

END" in the not-an-entity data, "<s> t4 t5 t5 t1 </s>" in the organization data, "<s> 

tg t10 tu t 12 t13 </s>" in the date data, "<s> t15 t15 </s>" in the person data, and 

"<s> t18 t19 </s>" in the location data. 

In order to tag the training data, we used TnT (Brants 2000) described in chapter 

2, trained on a modified version of the Suzanne corpus (Sampson 1995). To make 

it comparable in format to the input training data the Suzanne corpus needed to be 

modified prior to training the TnT tagger. That is, the Suzanne corpus was modified 

to make it lower case, punctuation was removed, sentence boundaries were replaced 

with !SENT _START and !SENT ..END etc. We chose TnT due to it's availability and 

suitability for retraining on a modified corpus (speed and flexibility). 

Having produced new POS training data, it was then possible to train new language 

models on it. These language models were able to predict the required P(eJBt:=t Tt:I) 
and P(tk1EL1 , r;~i)-

7 .3.2 Testing data 

Having generated the language models which are capable of estimating P(eilEf=~,T/:}) 

and P(tklEL1 ,T;~,J), it was necessary to know the POS tags for the testing data. The 

Cambridge University lattices did not contain POS tags and without this information 

1The data contained pseudo-words, namely 3-character abbreviations of the named entities, plus 

additional tags to mark start and end of phrases. The purpose of the pseudo-words is to allow, for 

example: the language models trained on the date data to predict P(thel < s >, tuesday), the language 

models trained on organisation data to predict P( < / s > le., news), and the language model trained on 

the not-an-entity data to predict P( < pla/ > lre1Jorting, from). 
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the new machine was useless. It was therefore necessary to POS tag the lattices. 

There were two issues that needed addressing when it came to POS tagging the 

lattices. The first issue was that of finding a source of POS tagged data suitable for 

training a POS tagger such that it could be used to label word lattices. The second 

issue was how to assign POS tags to a lattice. 

The most logical material to be used was clearly the training material that was 

used to train the eight language models for the new FSM. This is because the training 

material was suitably tagged with the same tag set as was required, and was also the 

same type of data (broadcast news) - even though it was a manual transcript rather than 

the error-prone data of the lattices. We address the issue of formatting this training 

data suitably for training the POS tagger after dealing with the question of how to 

assign POS tags to a word lattice. 

The task of assigning POS tags to a word lattice is non trivial. One possibility 

would be to generate all possible paths through the lattice, generate an M-best list of 

potential paths where M is the greatest possible for the given lattice, and then POS 

tag the paths. This method would allow all words to be POS-tagged as accurately as 

possible, and a new lattice could be generated from the POS-tagged paths. Although 

this method would generate the best sequence of POS tags for any given path, it would 

not guarantee that each word in the current lattice would receive only one POS tag. 

The only way for this method to generate a correct POS-tagged lattice would therefore 

be to expand the lattice so that only unique sequences of word-POS pairs exist. Two 

examples of this are given in figure 7.2 to illustrate how a new lattice may need to be 

expanded. 

The problem with this method of POS tagging the lattice is one of efficiency. Even 

relatively small lattices would generate vast numbers of potential paths; that is, M is 

enormous. For large lattices, M would be so large that the sentences would not fit 

on disks, and the computing time for tagging would run into years even for a fast POS 

tagger like TnT. The new lattices would also be significantly larger than the old lattices. 

Selecting a smaller M than the largest possible would not guarantee POS tags for all 

words in the lattice. 

The alternative method that we adopted was to consider m-grams from within the 
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A 

IF IF 

HE 

INSIDE 

OVER-VERB 

OVER-NOUN 

FIT-VERB 

FIT-NOUN 

HERE 

HE 

A 

HEALS 

Figure 7.2: Two examples of lattices which should be expanded when POS is added. The 

words 'over' and 'fit ' have different POS tags {noun or verb) according to the context in 

which they are found. 
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Step l 

The original lattice. The difference between this 
and the earlier similar lattice is that this lattice 
is a trigram lattice. A II u·igram paths to any node 
are unique! Note: necessity of exactly 2 !NULL. 

N=l4 L=l5 

J=0 S=0 E=l W=!SENT_START 
J=l S=l E=2 W=TO 
J=2 S=2 E=3 W=WRECK 
J=3 S=2 E=5 W=RECOGN1SE 
J=4 S=3 E=4 W=A 
J=5 S=4 E-=6 W=NlCE 
J=6 S=5 E=7 W=SPEECH 
J=7 S=6 E=8 W=SPEECH 
J=8 S=6 E=9 W=BEACH 
1=9 S=7 E=I0 W=!SENT_END 
J= 10 S=8 E=I0 W=!SENT_END 
J= l l S=9 E= l l W=!SENT_END 
J= l2S=I0E=l2 W=!NULL 
J=l3 S=I I E=l2 W=!NULL 

Step 3 

POS tag the n-gram paths. Note: There is no 
need to POS tag paths ending with "!" words. 

Step 2 

The N (14) 3-grams are all enumerated. 

!SENT_START 

!SENT_START TO 
!SENT_START TO WRECK 
!SENT_START TO RECOGN1SE 
TO WRECK A 
WRECK A NlCE 
TO RECOGN1SE SPEECH 
A NICE SPEECH 
A NICE BEACH 

RECOGNISE SPEECH !SENT_END 
NICE SPEECH !SENT _END 
NICE BEACH !SENT_END 
SPEECH!SENT_END!NULL 
BEACH!SENT_END!NULL 

Step 4 

Add the POS tags associated with the last word 
of each n-gram in step 3 to the original lattice. 

129 

Figure 7.3: An illustration of the method for generating the POS tags of any lattice. 

lattices. Since the lattices are n-gram based, by selecting m=n we can be certain that 

for every node in the lattice all paths of length n-1 leading to it are the same. We can 

therefore view the lattice as N n-grams2 (where N is the number of nodes in the lattice 

- see section 3.2.1). 

Whilst N is still large for large lattices, many of these n-grams are duplicates. By 

sorting the n-grams alphabetically we are able to remove duplicates and therefore POS 

tags only need to be assigned to unique n-grams. In each instance we are only interested 

in the POS tag associated with the final word of the n-gram. Having obtained a POS 

tag for each final word of the n-gram, a POS tag has been found for each node of the 

lattice, and the lattice can therefore have the respective POS tags added as features. 

This is illustrated in figure 7.3. 

2T his is not strictly correct because the first node of any lattice is a unigram, and the children of the 

first node are bigrams, etc. Once enough children have been reached the remainder of the lattice can be 

composed of u-grams. 
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Using these methods we are able to generate first the training data, and then the test 

data for the experiment. Using the training data we are able to train a set of language 

models for predicting the probabilities of POS given the history, and for predicting the 

probabilities of entities given POS histories. 

The Cambridge University word lattices were trigram based (n=3). We therefore 

selected m=n and produced N 5-grams (the trigram plus a start and end word) per 

lattice for both the training and the test data for TnT. TnT is a trigram-based part­

of-speech tagger, and was therefore suitable for the task. The only problem with this 

method was that TnT by default uses the probability of singletons3 to estimate the 

probability of unknown words. Since the training data had been modified into trigram 

form, each word from the training data occurred three times ( once as the first word of a 

trigram, once as the second word of a trigram and once as the final word of the trigram) 

and so there were no singletons. This problem was solved by using TnT's sparse data 

mode which simply replaced zero frequencies by a constant. 

7.4 The topology 

As already indicated, it is possible to build two machines, one for words and one for 

POS. These machines would require very little adaptation and it would then be possible 

to find the best path through the two machines. Essentially, it would simply be a matter 

of having two machines operating in parallel. Since both are finite state, the combined 

machine would also be finite state. It is possible to visualise as per figure 7.4. 

Having established that a single FSM offers a solution to the problem, we opted for 

using a single machine rather than a combined one. We now show one way in which 

it is possible to do this. Again we use the standard topology (figure 7.5) and simply 

reconsider what needs to happen on the transition paths and what needs to happen 

within the states. Previously (section 5.4.4), transitions were associated with P(eil, .) , 

required no input and were where markup was generated; whilst states were associated 

with P(wiJ .. ), required words as input, and generated words as output. In the old model, 

an entity specific language model was stored within each state for the calculation of the 

3\Vords which occur only once in the training material. 
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speech 
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START 
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Words 
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END 

/ 

/ 
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/ 

Figure 7.4: An illustration of a method for generating the named entity-POS-word se­

quence from a lattice. 
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START 

F igure 7.5: Simplified Topology of the model. 

necessary probabilities. 

In the new topology, there are slightly different probabilities to deal with; namely 

P(ei JE{- 1
, wt 1,Tf- 1

) and P(wi ,ti lEf, wf-1 ,Tf-1
). Comparison with the previous 

topology simply makes transitions correspond to P(ei[Ef- 1
, wf-1

, Tf-1
), whereas states 

correspond to P( Wi, til Ef , wl-1
, Tf- 1). Having established this relationship, it is possi­

ble to see that transitions correspond to ½P(eil.Ef=J, w/_::-J-) + ½P(eiJE;=i,T/..::-:I) (from 

equation 7.5), whilst states correspond to P(wjlEJ_1, wJ~J).P(tj lEJ_1,TJ~i) (from 

equation 7.4) . Thus, instead of a single probability being evaluated at all transitions, 

each probability now needs to be calculated from two distinct probabilities. This is also 

true within states, where the probability needs to be calculated from two others. 

The new transitions are still associated with P(eil, .) , however, this probability is cal­

culated by averaging two probabilities (namely ½P(eilEf=i, Wl_::-J-) + ½P(eil.Ef.=t Tl_::-J-)); 

still require no input and still generate markup. 

The new states are still associated with P(wi[ .. ), however, this probability is calcu­

lated by a product of two probabilities (namely P(wjJEJ_1 , wJ~J).P(tj[Ef_1 ,TJ~i)); 

still require words as input and still generate words as output. 
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In the new model, each state is required to store two language models, the original 

entity specific language model stored by the state (used to predict probabilities involving 

words) and the new entity specific model (used to predict probabilities involving entities) . 

Returning to the accurate diagram of the topology (figure 7.6) used since section 

5.4, which allows multi-word named entities, we are able to see how the phrase 

!SENT_START the man from <ENAMEX TYPE='LOCATION'>del monte</ENAMEX> 

he say no !SENT _END !NULL 

may be generated from the lattice 

N=12 1=11 

J=0 S=0 E=l W =!SENT _START P=STA 

J=l 8=1 E=2 W=the P=t2 

J=2 8=2 E=3 W=man P=t3 

J=3 S=3 E=4 W=from P=t4 

J=4 8=4 E=5 W=del P=t5 

J=5 8=5 E=6 W=monte P=t6 

J = 6 8= 6 E= 7 W=he P=t1 

J=7 8= 7 E=8 W=say P=ts 

J=8 8=8 E=9 W=no P=t9 

J =9 8=9 E=lO W=!SENT--END P=END 

J=lO 8=10 E=ll W=!NULL 
The path to follow in figure 7.6 is clearly the sequence of arrows FEGEGEG-

CABADGEGEGEH. This path corresponds to the sequence of probabilities and the 

generation of the sequence of text shown in table 7 .1. The text generated is the desired 

text. The PO8 tag sequence is also generated but this is discarded as it not required4. 

7.5 The ex periment 

In this chapter we have shown that it is mathematically possible to predict the named 

entity sequence from a word lattice using PO8 data. We have found a means of calcu-

4 If the named entity extraction system was part of a larger system, such as an information extraction 

system, it is likely that the POS tags would not be discarded at this time. For the purpose of this thesis 

they may be discarded. 
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Figure 7.6: Topology of the POS system allowing multi-word named entities. 
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I Arrow I Probability I Text(POS) 

F 1 !SENT .BTART (STA) 

E P(thelnot - an - entity, !SENT_START) . the ( t2) 

P(t2jnot - an - entity, ST A) 

G 1 

E P(manjnot - an - entity, !SENT_START, the). man (t3) 

P(t3 jnot - an - entity, ST A, t2) 

G 1 

E P(fromjnot - an - entity, the, man). from (t4) 

P(t4jnot - an - entity, t2 , t3) 

G 1 

C ½P( < PLA/ > jnot - an - entity, man, from)+ <EN AlVIEX TYPE 

½P(< PLA/ > jnot - an -entity, t3, t4) ='LOCATION'> 

A P(deljlocation, < s > ).P(ts[location, < s >) del (t5) 

B ½(1 - P(< /s >!location,< s >,del)+ 

½(1 - P( < /s >!location,< s >, t5) 

A P( montejlocation, < s >, del). monte (t5) 

P(t5 llocation, < s >, del) 

D ½P( < / s > [location, del, monte)+ </ENAMEX> 

½P( < / s > jlocation, ts, t6) 

G 1 

E P(hejlocation, not - an - entity, f rorn, < P LA/ > ). he (t1) 

P(t1llocation, not - an - entity, t4, < P LA/ >) 

G 1 

E P(say[not - an - entity,< PLA/ >, he) . say (ts) 

P(ts [not - an - entity,< PLA/ >, t1) 

G 1 

E P(nojnot - an - entity, he, say). no (tg) 

P(t - 9jnot - an - entity, t1, ts) 

H P(!SENT J3N D[not - an - entity, say, no). !SENT.END (END) 

P(ENDjnot - an - entity, t8 , t9 ) 

Table 7 .1: The probabilities and output relating to figure 1. 6. 
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lating the relevant probabilities and shown that the overall model structlll'e is similar to 

the structure in previous chapters (without using the POS data). We have successfully 

labelled the word lattices with the respective POS tags for all the nodes within the lat­

tices. All that remains is to test whether or not the new system works more effectively 

than the old system. 

In section 7.2, equations 7.4 and 7.5 were used to approximate the desired probabil­

ities. The experiment we conduct uses these, together with other valid approximations, 

to find possible word-POS-entity sequences. Having found the sequences we then discard 

the POS tags (as already mentioned at the end of section 7.4) , since the task at hand 

is to find the best sequence of words and entities, and not to find the POS sequence. 

F-score calculation is not affected by POS, and the scoring software would be unable to 

deal with it. 

Speech recognisers perform calculations based on the weighted sums of log probabil­

itities and likelihoods. The model that has been used in chapters 5 and 6 has similarly 

used weights as discussed in chapter 5. The best transcripts were the result of the 

following weightings: 28 for the language model log probabilities within the lattices, 

2 for the acoustic model log probabilities within the lattices, 14 for the P(ei l--) from 

the named entity model and 14 for the P(wil --)- The experiment we now conduct is to 

decide how the probabilities relating to POS should be weighted. We use as our figure 

for comparison an F-score of 74.09 - which is the figure we obtain when we do not use 

POS data and use the original system detailed in the previous chapters. 

We would not expect an equal weighting for POS probabilities and word probabilities 

to render good results, since we would expect that POS probabilities are far worse 

predictors for cases where the words are common and where we have accurate predictors. 

Indeed, when equal weightings were used, experimental results showed an F-score of 

67.21, a relative drop of almost 7 points of F-score - which supported our hypothesis. 

Our next experiment involved weighting the combined probabilities in favour of 

probabilities based on words. Instead of treating P(wj, tj1Ej_1, wJ~,J., TJ~i ) as the 
. . 1 · . . 1 

product P(wj1Ej_1, Wj~2 ).P(tj1Ej_1 , Tj~2 ) , we rather treated it as a weighted prod-

uct5. Similarly, instead of treating P(eilEf=J, w/~i, TtJ) as ½P(eilEf=J, wtd) + 
5 Weights are applied in the log domain. 
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½ P ( ei I Ef.:::t 1t::--J), which we had done in the previous experiment, we weighted this 

sum as in equation 7.7 or equivalently in equation 7.8. 

P( IE i-1 wi-1 r i-1) (l 1 )P( IE i-1 wi-1) 1 P( IEi-1 r i -1) ei i-2, i-2, i-2 '.:::'. - • 1 ei i-2, i-2 + • h ei i-2, i-2 weig it wezg t 
(7.8) 

We considered a number of possible weightings which gave F-scores in the range 

[72.83, 72.96]. Results were improving but the F-score was still lower than the original 

F-scores without using POS. 

Finally, we conducted an experiment to find out what would happen if we considered 

P( IEi-1 wi-1 Ti- 1) P( IEi-1 wi-1) h" h . . l t t h . . fi 't ei i-2 , i-2 , i-2 '.:::'. ei i-2 , i-2 , w 1c 1s eqmva en o avmg an m m e 

weight for this probability, but allowing P( Wj, ti1E;_1 , wj_:,J , Tj_:,J) still to be treated 

as a weighted probability. Again we compared the weightings of 7 and 14. This time 

the results were respectively 74.37 and 74.80. Both results showing an improvement in 

F-score over the original result of 74.09. 

7.5.1 Conclusions 

We have shown that it is possible to gain improvement in F-score by using POS infor­

mation within word lattices. We have demonstrated that it is critically important which 

approximations of probabilities are used and that sometimes the most obvious do not 

produce the best results. Our experiment has shown that P(eil-El:::-J, T/::·J) should not 

be used as an approximation for P(eil.Bt::t W/~J, T/~i) . 

There are, of course, other approximations for these probabilities which have not 

been considered. Potentially, the estimation of P(eilEf.=t wtJ, TtJ) is one of the 

places where using a CART tree might prove effective since this would allow the use of 

more information in the calculation. 

In all likelihood, there is further room for improvement by using more accurate POS 

tagging. Such a POS tagger could be trained on a larger corpus than the Suzanne corpus, 
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or on a more appropriate corpus - possibly the Christine corpus designed by G Sampson 

of the University of Sussex, which extends the Suzanne corpus to the domain of spoken 

English (Sampson 2000). One could also expect further improvement by finding a way 

of POS tagging the lattice nodes based on more context than this method has allowed. 



Chapter 8 

Conclusions and future work 

8.1 Conclusions and contribut ions 

This thesis has focused on named entity extraction from speech. Prior to this thesis all 

work on information extraction from speech had been based on transcriptions of speech; 

some of these these transcriptions have been manual and some the result of automatic 

speech recognition (ASR). The primary contribut ion of this thesis has been in moving 

from speech transcriptions to word lattices. Whereas others have used transcripts, 

we have progressed towards information extraction from the original speech signal by 

using word lattices. We have taken a fairly standard statistical model for named entity 

extraction from transcripts and shown that, not only is it possible to make the transition 

to a model using word lattices, with only minor adaptations to the overall topology of 

a model, but that, in doing so, it is possible to improve the resulting F-score. 

When evaluating the impact of named entity extraction direct from the word lattices, 

the resulting transcript, containing named entities, has a higher word error rate (WER) 

than when the named entity extraction was based on a corresponding ASR transcript; 

that is, the named entity extraction component has had a negative impact on WER. 

This result shows an improvement in F -score working perpendicular to the general trend 

between WER and F-score (Horlock & King 2003b). 

We also presented an alternative approach to finding the joint probability of words 

and entities. We showed that it was possible to estimate the joint probability of events 

139 
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without making as many independence assumptions as were previously being made. We 

were able to demonstrate how this new approach was still in keeping with the standard 

model topology, and how it was possible to predict the required probabilities using 

the old language models. This new method, which reduced independence assumptions, 

yielded an absolute improvement of over 3% in F-score. 

In chapter 6 we introduced the idea of discriminatively training each of the language 

models involved in the standard model. The idea was to improve the results of the system 

without altering the overall system at all, but simply by improving each of the language 

models corresponding to the named entities. We described a method which allowed us 

to bias each of the language models against the data on which each of the other language 

models were trained. The new language models were trained by iteratively adjusting 

the probabilities which were thought to be incorrect (a superset of the probabilities that 

were incorrect). Small improvements in the overall F-scores were noted as a result of 

the discriminative language model training (Horlock & King 2003a). 

Finally, in chapter 7 we added part of speech (POS) data to our model. We found a 

method for POS tagging the word lattices, and a method for finding the named entities 

based on the POS tags within the word lattices. We showed how it was possible to 

adapt the standard model topology that we had already been using to incorporate POS. 

Having made the adaptation to the standard model, the model remained similar in 

structure to its original format , but the resulting named entity tagged transcripts from 

the word lattices produced higher F-scores. 

We have introduced a method for extracting named entities from word lattices. We 

have shown how this method gives a higher F-score than the same method applied to 

ASR transcripts of the speech data. Furthermore, we have shown how these results 

can be improved further by a variety of methods, including adjusting the estimates 

of the required probabilities, adjusting the method of training the language models 

that generate these probabilities, and using additional language models based on extra 

information (namely POS) to estimate probabilities. 

A summary of all experimental results from the thesis is shown in table 8.1 and 

relevant bar charts plotted in figures 8.1 and 8.2. 
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Experiments using the manual transcript 

Experiment Description F-Score 

SPRACH-R Sheffield and Cambridge rule-based system 69 

SPRACH-S Sheffield and Cambridge statistical system 80 

Baseline The original model 79.82 

Pre-Stats Rules & Model Using lexical lookup & the model 80.78 

Full Rules & Model Lexical lookup, model & splitting entities 83.46 

Redefining P(A n B) Statistical model after re-estimating P(A n B) 83.21 

Discriminative Retraining Statistical model after discriminative retraining 84.01 

Experiments using the speech lattices 

Experiment Description F-Score 

SPRACH-R Sheffield and Cambridge rule-based system 59 

SPRACH-S Sheffield and Cambridge statistical system 68 

First Experiment Statistical model after re-estimating P (A n B) 74.34 

1-Best Experiment Statistical model on 1-Best transcript 74.04 

Lattice-Best Experiment Statistical model on Lattice-Best Experiment 78.87 

Discriminative Retraining Statistical model after discriminative retraining 74.59 

Using POS information Statistical model using additional POS information 74.80 

Table 8.1: A table summarizing results throughout the thesis. 
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as~--~---~--~~----.----~--~-----.---~ 
Discnminative 

65 

Figure 8.1: Bar chart stLmmarizin_q results for manual transcripts. 

ao~----.----~---.-----r---,-La_tt..,.ic-e..--Be=--s-t -----.-----r------. 

Figure 8.2: Bar chart summarizing results for speech lattices. 
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8.2 Future Work 

8.2.1 Simplification of the model 

143 

Throughout this thesis a fairly standard model topology for named entity extraction 

has been adopted. We have, in general, made use of eight separate language models 

within this topology. In chapter 6 of the thesis we have focused in some depth on 

discriminatively adjusting probabilities within the separate language models. In chapter 

7 we used pairs of language models, rather than single language models, but the topology 

remained constant. 

An interesting simplification for future work would be to condense the language 

models into a single language model trained on a single pass of the training data. It 

would be possible simply to use an off-the-shelf POS tagger, where the tags that are 

used for training and testing are the named entity classes. This method would not 

differentiate between multiword named entities and sequential named entities. It would, 

however, be interesting to see how advantageous the more complex model proved over 

a simple model - if at all. 

8.2.2 Extension of the model 

Class-based smoothing 

In (Palmer et al. 2000) it was shown that by using class-based smoothing it was possible 

to improve the F-measure obtained on a similar named entity extraction task. It is at 

least possible that the improvement would also apply to the model described within this 

thesis. 

There are a number of classes which potentially lend themselves to the task of named 

entity recognition. The most obvious of these classes would be the class of numbers 

(one, two, etc) and the subsidiary classes of fractions (half, quarter, etc) and ordinals 

(first, fourth, etc). The classes might need to be split up into subclasses e.g. num­

berJess_than_l0, etc. 

Some other classes which could be made the subject of experiment include: the 

months of the year (january, february, etc), various t ime zones (est, gmt, etc), famous 
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people ( wins ton churchill, martin luther king, etc), known Christian names (james, peter, 

etc), known smnames (brown, davies, etc). 

One final class that could be considered would be that of POS. Although we have 

already shown improvement by using POS, if a general method for smoothing were 

found, a comparison between the approaches could be made. 

We would expect there to be advantages from smoothing; in particular, we would 

hope smoothing would help generalise named entities. For example, we could find general 

dates even if the training data was broadcast on an uneventful date such as 17th February 

and the training data therefore contained many references to this date, but very few to 

other dates. In this case, the current method would always classify 17th February as a 

date, althought it may well not correctly mark 18th March as a date. 

There are, however, also potential disadvantages with such classes. For example, 

certain dates occur with much greater frequency than others (contrast 4th July and 

llth September with 29th February, etc) . It may be necessary to obtain more accurate 

distribution statistics of the contents of the classes. This should not be difficult, however, 

as it simply requires large corpora which already exist; i.e. it does not require the corpora 

to contain named entity mark up. Finding how to combine the distribution with the 

classes would be a matter for research. Another potential difficulty is using classes which 

contain ambiguous words such as 'march'. If 'march' is classified as a month, even with 

an extra distribution factor as suggested in the previous paragraph, problems may occur 

when trying to clarify its meaning. 

A dding CART 

In chapter 5 we gave a brief description of some preliminary studies using classification 

and regression trees (CART). We found that CART did not give us any substantial 

improvement in results to those obtained without the added computational overhead 

involved with CART - both at train time and run time. 

There are several possible reasons for the lack of improvement. These include: (i) 

CART may not help in named entity recognition, (ii) we might have been using the 

wrong features for CART, (iii) we could have been weighting CART incorrectly against 

n-gram language model probabilities. 
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CART were discarded at an early stage because it was clear that a large improve­

ment in overall results was required and CART were not providing it. A substantial 

improvement has been made since the early stages, with results well in excess of seventy 

percent on word lattices, and it is possible that CART could now be used to improve 

results further. 

One of the features which we were using in CART was, 'how was this word classified 

last time it was classified?' Although this field was a strong and accurate predictor of the 

next occurrence, a problem arose if the previous classification was incorrect (which was 

particularly likely for the first classification where there was no previous classification 

to enable the judgement). Consequently, if the previous classification was a strong 

predictor of the current word, and the first occurrence was incorrectly classified, there 

would be adverse knock-on effects. 

We believe that there is still potential for improving the results using CART to pre­

dict the current entity and that 'how was this word classified last time it was classified?' 

is a good predictor of the current entity. Finding how to use this best is a matter for 

future research. 

H ybrid system - adding rules 

The 1998 Message Understanding Conference (Chinchor 1997) showed the benefits of 

having a hybrid system consisting of both rules and statistics to find named entities 

within text, the hybrid system winning the competition. 

Early in the thesis we investigated the possibility of using rules both as precursors 

and as postscripts to the statistical model used for named entity extraction. Specifically 

we used lexicons to mark up certain words as certain entities - as a precursor to the 

statistical system. We also used rules to change multiple entities which had been grouped 

into a single entity by the early system - which was unable to determine the difference 

between< PLACE> EDINBURGH< /PLACE>< PLACE> SCOTLAND< 

/PLACE> and <PLACE> EDINBURGH SCOTLAND < /PLACE>. We 

showed how these extra rules improved overall F-measure of the then system. 

With the introduction of the use of word lattices, precursor rules were removed from 

the system because the markup of word lattices seemed impractical. Fig 8.3 illustrates 
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1=48 S=l2 E=13 W=christopber a=-715.32 l=-8.145 
1=50 S=13 E=15 W=brown a=-418.17 1=-2.988 
1=54 S=15 E=18 W=with a=-647.29 l=-7.167 
1=55 S=15 E=l9 W=went a=-634.12 l=-6.890 
1=58 S=18 E=24 W=robin a=-897.09 l=-9.123 
1=60 S=l9 E=24 W=robbing a=-912.34 l=-9.345 
1=65 S=24 E=27 W=banks a=-642.89 l=-7.645 

Figure 8.3: Problems with marking up word lattices, especially the word banks. 

this. Not only is it difficult to make clear that 'Brown' and 'Christopher' are part of 

a single named entity (potentially an avoidable problem), but some clever presentation 

would be required to indicate the markup of 'banks' if the chosen path through the 

lattice should indicate the markup of 'banks'. It would be possible to expand the lattice 

to make a larger lattice with such conflicts resolved. This task is, however, non-trivial. 

T he post-processing part of the rules was also removed from the pipeline once the 

statistical model was capable of distinction between repeated entities and multiword 

entities, since this was the sole purpose of the post-processing rules. 

It is generally accepted that a few simple rules go a long way in named entity recog­

nition, although the acceptance of the use of these rules varies. Statistically speaking, 

provided these rules are to be dealt with a priori, fur ther statistical analysis is still 

legitimate. 

One of the places we envisage a gain from rules is in cases where the task definit ion 

(Chinchor et al. 1998) is not obvious; i.e. cases where people who have not read the task 

definition carefully may well disagree. An example of this is shown in figure 8.4 where 

the correct markup may not be obvious. T his situation, although not typical, is not 

uncommon in speech data. It is imperative that the system classifies these non-obvious 

cases correctly, since any alternative markup to the stated correct markup ( the markup 

in figure 8.4) will obviously result in a reduction of F-score, even though the system may 

have made the same judgement that a human would have made. 

If the system attempts to mark up the text in figure 8.4, where the trigram language 

model attempted to evaluate the probabilities associated with the first 'john', it will first 

consider the probability of a Person entity given the history (which will clearly be very 
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SPEECH: i went to hamilton with john john gillan 

CORRECT: i went to <PLACE>hamilton<IPLACE> 

with john <PERSON>john gillan<IPERSON> 
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Figure 8.4: A sentence together with the correct markup of the sentence according to the 

task definition { Chinchor et al. 1998). 

high as that is what was intended) and then consider the probability of the word 'john', 

given that it is the start of a name (which similarly will be high). To expect a statistical 

named entity extractor to come to a decision to classify the first 'john' other than as a 

person, irrespective of what the task definition states, is fundamentally wrong, since the 

entity is predicted by these two probabilities - both of which are high. 

This is one instance where it may be expected that the use of rules may aid named 

entity recognition. There are three ways that this could be attempted. The first and 

simplest would be to add a post-processing rule which looks for repeated names and 

changes the markup. A more advanced way would be to look for repeated names within 

the training data, to adjust the training data markup to reflect the more logical output 

(in our example "<PERSON>john john gillan</PERSON>"), and then add a post­

processing rule to adjust the output from the statistical component to what the task 

definition requires. The third alternative, would be to find a way of spotting the repeated 

name situation prior to named entity tagging and adjust the input correspondingly. 

In our case this would involve adjusting the lattices to remove speech repairs, as was 

attempted in (Spilker et al. 1999). 

There are almost certainly other occasions where the actual task definition may not 

be intuitive. In these cases using rules to 'correct' the output could be a very useful 

process. There still remains the possibility of using rules to improve named entity 

extraction even when using word lattices. Such rules would not be trivial and are not 

covered in this thesis. 

Discriminative training based on unlabe lled dat a 

We have shown that it is possible to improve the language models, and consequently the 

named entity recognition, by discriminative training. We have seen a small improvement 
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when using the training data, and a larger improvement when using a held-out set. 

An experiment for future consideration would be to see if techniques which have been 

developed for learning from unlabelled data could be applied to improve the language 

models. An example of a method that could be attempted relies on the knowledge of 

optimum weights for our system. The first stage would be to use the current system 

weighted optimally to mark up some unlabelled data. Then, by incorrectly weighting 

the system in a rerun over the same data, a separate set of marked up data would be 

generated. The first set of labelled data would be more reliable than the second set of 

labelled data. By comparison of the two data sets it would be possible to detect which 

probabilities, when adjusted, would give improvement in the incorrectly weighted sys­

tem. By improving the incorrectly weighted system, we would effectively be increasing 

the stability of the system; that is, making it more robust against changes in weights. 

In other words, a model with good estimates of language model probabilities would be 

robust to small perturbations in the weights (Ostendorf 1998). If there is a direct rela­

tionship between stability and correctness, which would need to be proved emperically, 

it might result in the system with the new language models being more effective when 

correctly weighted (as well as when incorrectly weighted). 

What is the difference between an aardvark and a zywiec? 

One question that may be worth considering is whether there is more than one type 

of unknown word. To the reader the word 'aaron' almost certainly refers to a person, 

whereas the word 'zygote' clearly doesn't refer to any entity that we are now investi­

gating. It would be interesting to investigate whether there are any clues beyond the 

immediate context to tell us that some unknown words are People named entities but 

that other unknowns are not. In particular, it might be advantageous to consider the 

frequency of the individual unknown word within the immediate context. The reason 

being that if, within a certain context, the unknown word 'floccinaucinihilipilification' 

appears, it is very unlikely to recur within close proximity; whereas, if an unknown name 

such as 'horlock' appears, it may very likely reappear shortly afterwards. It would be 

interesting to investigate whether this phenomenon is true or not, and, if it is true, can 

the information be utilised to aid named entity extraction from speech. 
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8.2 .3 Application of the model 

There is potential to use the model defined in this thesis as part of a larger system. 

Named entity extraction from word lattices may well prove to be a fundamental com­

ponent in information extraction from speech/information retrieval from speech. In 

this thesis it has been treated purely as a task in its own right and consequently can 

only be compared with other methods of named entity extraction from speech or, more 

particularly, named entity extraction from speech t ranscripts. 

In the future , the application of the model could be an essential part of research. 

It would be necessary to investigate how named entity extraction from word lattices fit 

within the larger tasks of information extraction from speech and information retrieval 

from speech. 

Integration with speech recognition 

It would be useful to integrate the named entity component into the speech recognition 

end of the process. Although for the purpose of this thesis, the use of Cambridge 

University word lattices was sufficient, in practical applications it would be necessary to 

generate new word lattices, which requires a speech recognizer. Three experiments for 

integration with a speech recognizer are suggested: 

• An experiment to determine how broad the lattices need to be. The broader 

the lattice, the lower the lattice error rate, and potentially the higher the F-score of 

the named entity component. However the broader the lattice, the slower the process. 

There is clearly a lattice size such that a broader lattice cannot improve the named 

entity recognition. An experiment to determine the optimum would be required. 

• An experiment to see the effects of a known vocabulary for the speech recognizer 

on the named entity extraction task. In our experiments the vocabulary of the speech 

recognizer used to generate the lattices was unknown, as discussed in section 5.6. It 

would be interesting to investigate whether knowledge of the vocabulary would enable 

a more closely related vocabulary for the named entity component - for example, the 

most common 10,000 words from the recognizer's vocabulary. 

• An equally interesting, and possibly more productive experiment, would be to 
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change the vocabulary of the speech recognizer to be consistent with the vocabulary of 

the named entity recognizer. This might be more productive, because the vocabulary of 

the named entity recognizer is far more constrained than that of the speech recognizer 

and therefore words in the vocabulary of the named entity recognizer couJd be predicted 

accurately in the speech recognizer. The reverse, however, is not likely to be true. 

Integration with information extract ion/ information retrieval 

At the other end of the spectrum, it is important to integrate the named entity compo­

nent into an information extraction/information retrieval process. 

Named entity extraction is a small subsection of information extraction. Many infor­

mation extraction systems (eg (Karkaletsis et al. 2003) and (Sekine & Nobata 2003)) use 

named entity extraction as a preliminary stage of the process. Similarly, information re­

trieval techniques often use named entities, since important sections of documents tend 

to be those containing named entities. Named entities are therefore often appropriate 

for queries to information retrieval systems. 

Integration with either system would show the experimental value of improved named 

entity recognition by the methods outlined in this thesis. 



Appendix A 

The extra confusion caused by 

lattices 

In the following example all probabilities are fictional and for simplicity log probabilities 

are used rather than real probabilities. 

Assume the following subset of a speech lattice. 

J=927 S=365 E=845 W=RECORDS a=-3113.81 l=-10.605 

J = 937 8=365 E=855 W=RECORD a=-3345.31 l=-10.723 

J = 2489 8= 845 E=l245 W=OF a=-466.25 l=-2.988 

J =4915 8= 855 E= 2083 W=FOR a=-793.03 l=-4.642 

J=6028 8=1245 E=2309 W=THAT a=-647.29 l=-5.563 

J =7541 8=2083 E=2834 W=THE a=-825.86 l=-1.406 

J=7554 S=2309 E=2834 W=THE a=-710.44 l=-4.795 

To find the best path through this lattice ( assuming equal unit weighting of the 

acoustic and language model probabilities) we simply calculate all paths through this 

lattice and find the most likely . 

... RECORDS OF THAT THE ... log probability = -4961. 74 

... RECORD FOR THE ... log probability= -4980.97 
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Thus in this instance the selection would be: 

... RECORDS OF THAT THE ... 

To add the named entity recognition component we require the following probabili­

ties: 

P( < OTHER> 1 ... ) = -2 P( <PERSON> 1 . . . ) = -4 

P( < ORGANIZATION> 1 ... ) = -5 P( <MONEY> 1 . . . ) = -3.55 

P ( <PERCENT> 1 .. . ) = -8 P( <LOCATION! ... ) = -3.5 

P ( <TIME> 1 ... ) = -6.58 P( < DATE> 1 . . . ) = -9 

to find the probability of the entity of the first word (P (e1 1 .. ) and P(e21 . . )); 

P(RECORDSI <OTHER>, ... ) = -1.8 P(RECORDSI <PERSON>, ... ) = -4 

P(RECORDSI < ORGANIZATION>, ... ) = -5 P(RECORDSI <MONEY>, ... ) = -3.41 

P(RECORDSI <PERCENT>, ... ) = -12 

P(RECORDSI <TIME>, ... ) = -7.95 

P(RECORDSI <LOCATION, .. . ) = -2.5 

P(RECORDSI <DATE>, ... ) = -16 

to find the probability of 'RECORDS' given an entity (P(w1 1 .. )); 

P(RECORDI <OTHER>, ... ) = -2 P(RECORDI <PERSON>, ... ) = -3.2 

P(RECORDI < ORGANIZATION>, ... ) = -5.1 P (RECORDI <MONEY>, ... ) = -3.55 

P(RECORDI <PERCENT>, ... ) = -13 

P(RECORDI <TIME> , ... ) = -6.58 

P(RECORDI <LOCATION, ... ) = -3.01 

P(RECORDI < DATE>, ... ) = -14.7 

to find the probability of 'RECORD' given an entity (P(w2I --) ); 

P( < OT HER> IRECORDS,<OTHER>, ... ) = -1.8 

P( < OTHER> IRECORDS,<PERSON>, ... ) = -4 

P( < OTHER> IRECORDS,<ORGANIZATION>, ... ) = -5 

P( < OTHER> IRECORDS,<MONEY>, ... ) = -3.41 

P( < OT HER> IRECORDS,<PERCENT>, ... ) = -12 

P ( <OTHER> IRECORDS,<LOCATION, ... ) = -2.5 

P(<OTHER> IRECORDS,<TIME>, ... ) = -7.95 

P ( < OTHER> IRECORDS,<DATE>, .. . ) = -16 
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P( <PERSON> jRECORDS,<OTHER>, ... ) = -1.8 

P( <PERSON> IRECORDS,<PERSON>, ... ) = -4 

P( <PERSON> jRECORDS,<ORGANIZATION> , .. . ) = -5 

P( <PERSON> jRECORDS,<MONEY>, ... ) = -3.41 

P( <PERSON> jRECORDS,<PERCENT>, ... ) = -12 

P( <PERSON> IRECORDS,<LOCATION, ... ) = -2.5 

P( <PERSON> jRECORDS,<TIME> , ... ) = -7.95 

P( <PERSON> jRECORDS,<DATE>, ... ) = -16 

P( <ORGANIZATION> IRECORDS,<OTHER>, ... ) = -1.3 

P( <ORGANIZATION> IRECORDS,<PERSON>, ... ) = -4.3 

P( <ORGANIZATION> IRECORDS,<ORGANIZATION> , ... ) = -4.99 

P( <ORGANIZATION> IRECORDS,<MONEY>, ... ) = -6.41 

P( <ORGANIZATION> IRECORDS,<PERCENT>, .. . ) = -12.75 

P( <ORGANIZATION> IRECORDS,<LOCATION, ... ) = -2 

P( <ORGANIZATION> IRECORDS,<TIME>, ... ) = -7.67 

P( <ORGANIZATION> IRECORDS,<DATE>, ... ) = -14.3 

etc 

to find the probability of the entity after 'RECORDS' (P(e3 j .. )); 

P( <OTHER> IRECORD,<OTHER>, ... ) = -2 

P( <OTHER> IRECORD,<PERSON>, ... ) = -3.2 

P( <OTHER> IRECORD,<ORGANIZATION>, .. . ) = -5.1 

P( <OTHER> IRECORD,<MONEY>, .. . ) = -3.35 

P( <OTHER> IRECORD,<PERCENT>, ... ) = -11.72 

P( <OTHER> IRECORD,<LOCATION, ... ) = -3.01 

P( <OTHER> IRECORD,<TIME> , ... ) = -6.58 

P( <OTHER> IRECORD,<DATE>, ... ) = -18.71 
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P( <PERSON> IRECORD,<OTHER>, ... ) = -2 

P( <PERSON> IRECORD,<PERSON>, ... ) = -3.7 

P( <PERSON> IRECORD,<ORGANIZATION>, ... ) = -5.l 

P( <PERSON> IRECORD,<MONEY>, .. . ) = -3.53 

P( <PERSON> IRECORD,<PERCENT>, ... ) = -13 

P( <PERSON> IRECORD,<LOCATION, ... ) = -3.01 

P( <PERSON> IRECORD,<TIME>, .. . ) = -4.58 

P( <PERSON> IRECORD,<DATE> , ... ) = -4.7 

P( <ORGANIZATION> IRECORD,<OTHER>, ... ) = -2 

P( <ORGANIZATION> IRECORD,<PERSON>, ... ) = -4.12 

P( <ORGANIZATION> !RECORD,<ORGANIZATION> , ... ) = -5.1 

P( <ORGANIZATION> IRECORD,<MONEY>, .. . ) = -3.75 

P( <ORGANIZATION> !RECORD,<PERCENT> , .. . ) = -13 

P( <ORGANIZATION> !RECORD,<LOCATION, ... ) = -3.01 

P( <ORGANIZATION> IRECORD,<TIME>, ... ) = -6.59 

P(<ORGANIZATION> !RECORD,<DATE> , ... ) = -14.7 

etc 

to find the probability of the entity after 'RECORD' (P(e4! .. )) . 

and so on. 

These probabilities are not immediately available to us in this format, however, they 

are calculable by the method described in section 5.4 of the thesis. 

We thus build up all of our possible transcriptions . 

.. . RECORDS log probability = -3730.81 (<OTHER>) 

... RECORDS log probability = -3732.36 (<MONEY> ) 

etc 

Finally when we have a completed list, from which we select the best named entity 

marked up path through the lattice. 



Appendix B 

Dynamic Alignment of Lattices 

with Text 

In this appendix we detail a step by step explanation of dynamic alignment of lattices 

with text as per chapter 3. We consider the lattice in table B. l and the text in table 

B.2. 

The first stage is to create them x n grid (where m = L-1 from the lattice and n is 

the length of the sentence. Along the x-axis we label the words from the text B.2 and 

along the y-axis the words from the lattice B.l - the lattice words are associated with 

the node at which they end (in our example both "RECOGNISE" and "NICE" end at 

the same node). The bottom left hand corner is marked as containing zero errors. We 

thus have the grid in figure B.l. 

Working left to right, and bottom to top we take the token in each grid space and 

propagate it to all possible locations (generally three) . If the new location is either empty 

or has a worse count of errors the new token is held in the new location, otherwise it is 

discarded. 

The first token that we propagate then is the only one available. There are three 

possible ways that we can move the first token as per figure B.2. 

• We can move it vertically, corresponding to reading one word in the lattice but no 

words from the text; ie an insertion error. 
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N=lO L=ll 

J=0 S=0 E=l W=!SENT ..START a=-129.05 1=0.00 

.J=l S=l E=2 W=TO a=-3036.62 l=-5.622 

J=2 S=2 E=3 W=WRECK a=-3046.72 l=-9.542 

.1=3 S=2 E=5 W=RECOGNISE a=-4032.03 l=-15.219 

J=4 S=3 E=4 W=A a=-636.12 l=-6.408 

.1=5 S=4 E=5 W=NICE a=-1298.77 l=-4.815 

.1=6 S=5 E=6 W=SPEECH a=-1083.14 l=-5.312 

J=7 S=5 E=7 W=BEACH a=-1071.32 l=-5.567 

J=8 S=6 E=8 W=!SENT..END a=-1424.97 l=-1.092 

J=9 S=7 E=8 W=!SENT ..END a=-1424.97 l=-1.854 

.J=lO S=8 E=9 W=!NULL a=0.0 1=0.0 

Table B.1: An example speech word lattice. 

I !SENT_START TO WRECK THE NICE BEACH !SENT_END I 

Table B.2: An example text for comparison with the lattice. 
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!NULL 

!SENT_END 

!SENT_END 

BEACH 

SPEECH 

NICE / 
RECOGNISE 

A 

WRECK 

TO 

!SENT_START 

1NULL 

!SENT_END 

!SENT_END 

BEACH 

SPEECH 

NICE/ 
RECOGNISE 

A 

WRECK 

TO 

!SENT _ST ART 

TARGET 

0 Err 

!SENT START TO WRECK THE NICE BEACH !SENT END 

Figure B.1: Blank grid before any propogation. 

TARGET 

j~ ~ 
~~ 0 Err ~ ... ..lll - -
•SENT START TO WRECK THE NICE BEACH !SENT END 

Figure B.2: Blank grid showing propogation from the first token. 
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• We can move it horizontally, corresponding to reading one word in the text but 

no words in the lattice; ie a deletion error. 

• We can move it diagonally. In this instance, because the word "TO" in the lattice 

matches the word "TO" in the text, no errors occur. If "TO" had not occurred in 

both lattice and text a substitution error would have occurred here. 

We now move to the right and propogate the token there. 

• We can move it vertically, corresponding to reading one word in the lattice but 

no words from the text; ie an insertion error. In this instance there is already a 

token in place. The current token has zero errors, the new token has 1 deletion 

error plus the new insertion error. Therefore the new token is destroyed and the 

old token kept. This token now has O errors. 

• We can move it horizontally, corresponding to reading one word in the text but 

no words in the lattice; ie a deletion error. This token now has 2 deletion errors. 

• We can move it diagonally. In this instance as the word "TO" in the lattice 

matches the word "WRECK" in the text, 1 substitution error occurs. This token 

now has 1 deletion and 1 substitution error. 

This process continues until the final square of the bottom row has been propogated. 

There is no need to propogate f mther to the right as we have already reached the worst 

possible senario - no words have matched. 

We now move up one level and again commence on the left hand side of the grid. 

This time there are five possible choices as per figure B.3, which shows the current state 

of all tokens. The additional possibilities are caused by the division of the lattice at 

node 2. 

• We can move it vertically with the word "WRECK" , corresponding to reading 

one word in the lattice but no words from the textt; ie an insertion error. In this 

instance there are no tokens in place. The new token has 1 insertion error, plus 

the new insertion error leaving 2 insertion errors. 
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!NULL 

!SENT_END 

!SENT_END 

BEACH 

SPEECH 

NICE/ 
RECOGNISE 

A 

WRECK 

TO 

!SENT_STAR1 

TARGET 

74 .j,. 
( 

I , 
\' l Ins ...._ n.Jlllr l Del& 2Del& 3Del & 4 Del & 5 Del & --~ 1 Sub I Sub l Sub l Sub I Sub 

/ 
0 Err 1 Del 2 Del 3 Del 4Del 5 Del 6 Del 

!SENT START TO WRECK THE NICE BEACH !SENT END 

Figure B.3: Grid after propagation of the first row. 

• We can move it vertically with the word "RECOGNISE" 1 corresponding to reading 

one word in the lattice but no words from the text; ie an insertion error. In this 

instance there are no tokens in place. The new token has 1 insertion error, plus 

the new insertion error leaving two insertion errors. 

• We can move it horizontally, corresponding to reading one word in the text but no 

words in the lattice; ie a deletion error. In this instance there is already a token 

with O errors, thus we keep the zero error token. 

• We can move it diagonally with the word "WRECK" . In this instance because the 

word "TO" in the text matches the word "WRECK" in the lattice, 1 substitution 

error occurs. This token now has 1 insertion and 1 substitution error. 

• We can move it diagonally with the word "RECOGNISE" . In this instance as 

the word "TO" in the text matches the word "RECOGNISE" in the lattice, 1 

substitution error occurs. This token now has 1 insertion and 1 substitution error. 
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Progressing to the right again there are 5 possibilities. 

• We can rnove it vertically with the word "WRECK", corresponding to reading 

one word in the lattice but no words from the text; ie an insertion error. In this 

instance there is a token containing 1 insertion and 1 substitution. The new token 

has only the new insertion error, thus the old token is replaced with this new 

token. 

• We can rnove it vertically with the word "RECOGNISE", corresponding to reading 

one word in the lattice but no words from the text; ie an insertion error. In this 

instance there is a token containing 1 insertion and 1 substitution. The new token 

has only the new insertion error, thus the old token is replaced with this new 

token. 

• We can move it horizontally, corresponding to reading one word in the text but no 

words in the lattice; ie a deletion error. In this instance there is already a token 

with 1 deletion and 1 substitution error, thus we keep the new token with only 1 

deletion error. 

• We can move it diagonally with the word "WRECK". In this instance because the 

word "WRECK" in the text matches the word "WRECK" in the lattice, no errors 

occur. This token now has zero errors. 

• We can move it diagonally with the word "RECOGNISE". In this instance as the 

word "WRECK" in the text matches the word "RECOGNISE" in the lattice, 1 

substitution error occurs. This token now has 1 substitution error. 

Progressing one step to the right until the row is completed there are five possibilities 

each time, until the grid looks like figure B.4. 

The process is repeated row by row in figure B.5 through B.10. It is important that 

all rows are completely evaluated and the process is not stopped as soon as the target 

is reached. In this instance the target is reached by the row below the row with least 

errors. 

It is then possible to trace back from the target the best path, since each token has 
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!NULL 

•SENT_END 

!SENT_END 

BEACH 

SPEECH 

NICE/ 
RECOGNISE 

A 

WRECK 

TO 

!SENT_START 

2 Ins I Ins I Sub 

2 Ins 1 Ins 0 Err 

I Ins 0 Err 1 Del 

/ 
0 Err I Del 2 Del 

!SE NT START TO WRECK 

TARGET 

1 Del& 2Del& 3Del& 4Del& 

1 Sub I Sub I Sub 1 Sub 

I Del. & 2Del & 3 Del & 4Del& 

2Sub 1 Sub 1 Sub 1 Sub 

2 Del 3 Del 4 Del 5 Del 

3 Del 4 Del 5 Del 6Del 

THE NICE BEACH !SENT END 

Figure B.4: Grid after propogation of the second row. 

!NULL 

1SENT_END 

1SENT_END 

BEACH 

SPEECH 

NICE/ 
RECOGNISE 

A 

WRECK 

TO 

!SENT_START 

2 Ins I Ins 1 Sub 

3 Ins 2 Ins I Ins 

2 Ins 1 Ins 0 Err 

I Ins 0 Err I Del 

/ 
0 Err I Del 2Del 

!SENT START TO WRECK 

TARGET 

1 Del& 2Del& 3 Del & 4 Del & 
I Sub 1 Sub 1 Sub I Sub 

I Sub I Del& 2Del& 3 Del & 
I Sub I Sub 1 Sub 

1 Del 2 Del 3 Del 4 Del 

2 Del 3 Del 4 Del 5 Del 

3 Del 4 Del 5 Del 6 Del 

THE NICE BEACH !SENT END 

Figure B.5: Grid after propogation of the third row. 
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!NULL 

!SENT_END 

!SENT_END 

BEACH 

SPEECH 

NICE/ 
RECOGNISE 

A 

WRECK 

TO 

!SENT_START 

2 Ins I Ins l Sub 

3 Ins 2 Ins I Ins 

2 Ins I Ins 0 Err 

I Ins 0 Err I Del 

/ 
0 Err I Del 2 Del 

!SENT START TO WRECK 

TARGET 

I Del & I Sub I Del & 3 Del & 
I Sub 2 Sub 2 Sub 

I Sub I Del & 2 Del & 3 Del & 
I Sub I Sub I Sub 

I Del 2 Del 3 Del 4 Del 

2 Del 3 Del 4 Del 5 Del 

3 Del 4 Del 5 Del 6Del 

THE NICE BEACH !SENT END 

Figure B.6: Grid after propagation of the fourth row. 
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Figure B. 7: Grid after propagation of the fifth row. 
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!NULL 

!SENT_END 

!SENT_END 
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NICE/ 
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I Sub 
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I Sub 
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!SENT START TO WRECK 

TARGET 

2 Sub I Sub & I Sub 2Sub& 
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Figure B.8: Grid after propogation of the sixth row. 
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THE NICE BEACH !SENT END 

Figure B.9: Grid after propogation of the seventh row. 
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!NULL 
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Figure B.10: Grid after propagation of the eighth row. 

kept a record of where it was propagated from, as illustrated in figure B.11. The correct 

solution to our example in reverse order reads: 

Target, !SENT .END, BEACH, NICE, A, WRECK, TO, !SENT -8TART 

This sentence is chosen as it contains only 1 substitution error. 
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Figure B.11: Completed grid showing the origin of tokens - effectively showing best path. 
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Universal Transcription Format 

C.1 Fragment of Universal 'Iranscription Format training 

data 

<utf dtd_version="utf-1.0" audio_filename="a960521.sph" language="english" versi 

on="5" version_date="980817" scribe="obert_markoff"> 

<bn_episode_trans program="ABC_Nightline" air_date=""> 

<!-- History: Version 1: initial release; Version 2: Reformatted to be in spe 

c. --> 

<!-- This DTT file was automatically generated by bn_filt.pl Version: 1.12 on 'M 

on May 18 08:13:57 EDT 1998' --> 

<section type="filler" startTime="0 .000" endTime="61.320" id="a960521.1"> 

<background startTime="0.000" type="Music" level="High"> 

<background startTime="l.765" type="Music" level="Low"> 

<turn speaker="Ted_Koppel" spkrtype="male" dialect="native" startTime="l.765" en 

dTime="5.074" mode="planned" fidelity="high"> 

It's a question that will make a lot of Americans think 

</turn> 

<turn speaker="a960521_M_US_003" spkrtype="male" dialect="native" startTime="6.8 

59" endTime="7.363" mode="spontaneous" fidelity="medium"> 

Damn 

</turn> 

<turn speaker="Ted_Koppel" spkrtype="male" dialect="native" startTime="7.910" en 

dTime="13.120" mode="planned" fidelity="medium"> 

You think you 're white 

<time sec="9.711"> 

you're not 
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<time sec="11.743"> 

you're black 

</turn> 
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<turn speaker="Ted_Koppel" spkrtype="male" dialect="native" startTime="15.200" e 

ndTime="18.634" mode="planned" fidelity="high"> 

It's a question that will make a lot of Americans angry 

</turn> 

<turn speaker="Ted_Koppel" spkrtype="male" dialect="native" startTime="20.336" e 

ndTime="31.267" mode="planned" fidelity="medium"> 

In order for you to be black 

<time sec="22.599"> 

for the rest of your life 

<time sec="24 .817"> 

what would it take to compensate you for that 

<time sec="29 . 179"> 

How much do you want 

</turn> 

<turn speaker="a960521_M_US_003" spkrtype="male" dialect="native" startTime="31. 

645" endTime="32 .402" mode="spontaneous" fidelity="medium"> 

How much do I want 

</turn> 

<turn speaker="Ted_Koppel" spkrtype="male" dialect="native" startTime="32 .402" e 

ndTime="36 . 110" mode="planned" fidelity="medium"> 

How much would it take {breath 

</turn> 

<turn speaker="Ted_Koppel" spkrtype="male" dialect="native" startTime="36.110" e 

ndTime="44.019" mode="planned" fidelity="high"> 

We continue our series 

<time sec="38.116"> 

America in black and white 

<time sec="40.358"> 

Tonight how much is white skin worth 

</turn> 

C.2 UTF D ocument Type Definition (DTD) 

<!SGML "ISO 8879:1986" 
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File: ©(#)utf.dtd v2 Aug 17, 1998 

Authors: Paul Morgovsky and Milan Young 

Linguistic Data Consortium, 

University of Pennsylvania. 

Henry S. Thompson, 

Language Technology Group 

University of Edinburgh 

Jon Fiscus 

Spoken Natural Language Processing Group 

NIST 

Desc: SGML and DTD declaration for the new specifications for the 

Transcription of Spoken Language. 

Numerous changes were made to enable named entity tagging 

and ASR tagging to co-exist. This dtd is also annotated 

with comments, which when ran through the appropriate PERL 

script, will result is a DTD without active shortrefs. 

Revision History: 

- nothing yet 

Usage: 

nsgmls utf.dtd filename 

CHARSET BASESET "ISO 646- 1983//CHARSET 

International Reference Version (IRV)//ESC 2/5 4/0" 

DESCSET O 9 UNUSED -- NUL,SOH,STX,ETX,ETO,ENQ,ACK,BEL,BS --

9 2 9 

11 2 UNUSED -- VT,FF --

13 1 13 

14 18 UNUSED -- SO,SI,DLE,DC1,DC2 --

32 95 32 
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127 1 UNUSED -- del character -­

BASESET "ISO Registration Number 109//CHARSET 
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ECMA-94 Right Part of Latin-1 Alphabet Nr.3//ESC 2/9 4/3" 

DESCSET 128 32 UNUSED no such characters 

160 1 UNUSED nbs character --

161 95 161 161 through 255 inclusive 

CAPACITY PUBLIC "ISO 8879:1986//CAPACITY Reference/JEN" 

SCOPE DOCUMENT 

SYNTAX SHUNCHAR CONTROLS O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 127 160 

BASESET "ISO 646-1983//CHARSET International Reference 

Version (IRV)//ESC 2/5 4/0" 

DESCSET O 128 0 

FUNCTION RE 13 

10 

32 

9 

NAMING 

DELIM 

RS 

SPACE 

TAB 

LCNMSTRT 

SEPCHAR 
1111 

UCNMSTRT 1111 

LCNMCHAR II II 

UCNMCHAR "_-." 

NAMECASE GENERAL YES 

ENTITY NO 

GENERAL SGMLREF 

SHORTREF NONE"*" 

"&#RE; II 

"&#RE;&#RS;" 

"&#RE;&#RS;B" 

"&#RE;B" 

"&#RE;B&#RS;" 

"&#RS; II 

"&#RS;&#RE;" 

"&#RS;&#RE;B" 

"&#RS;B" 

"&#RS;B&#RE;" 

"B" 

II It 

' 
II tl 11 711 11{11 It II 11 [" 
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NAMES SGMLREF 

QUANTITY SGMLREF 

"B&#RE; II 

"B&#RE;&#RS;" 

"B&#RS;" 

"B&#RS;&#RE;" 

NAMELEN 99999999 
PI LEN 24000 

TAG LEN 99999999 

TAGLVL 99999999 

FEATURES MINIMIZE DATATAG NO 

OMITTAG YES 
RANK YES 

SHORTTAG YES 

LINK SIMPLE YES 1000 

IMPLICIT YES 

EXPLICIT YES 1 

OTHER 

APPINFO NONE> 

CONCUR 

SUBDOC 

NO 

YES 99999999 

FORMAL YES 
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< ' -- This dtd has bee augmented with comments, which, after applying the followin 

filter will dissable shortrefs in the DTD. Thus, text tokens are not parsed 

sgml but is instead left to the application. 

perl -pe 'if (/DELETE TO DISABLE SHORTREF /) { ($_ = "\n") } elsif (/BEGIN COMMEN· 

--> 

<!DOCTYPE utf [ 

<'-- Quick Substitution Entities--> 

<!-- BEGIN COMMENT TO DISABLE SHORTREF --> 

<!ENTITY% textTokens "(separator I pName I mispronounced I misspelling. 
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<!-- END COMMENT TO DISABLE SHORTREF --> 

<!-- DELETE TO DISABLE SHORTREF 

<!ENTITY 1/. textTokens "(#PCDATA I contraction I fragment I hyphen I wti 

DELETE TO DISABLE SHORTREF --> 

<!ENTITY 1/, ne_bound 

<!ENTITY 1/. asr_bound 

<!ENTITY NONSPEECH 

<!ENTITY ACOUSTICNOISE 

<!ENTITY SEP 

<!ENTITY PNAME 

<!ENTITY MISPRONOUNCED 

<!ENTITY MISSPELLING 

<!ENTITY ACRONYM 

<!ENTITY IDIOSYNCRATIC 

<!ENTITY NONLEXEME 

< ! ENTITY PERIOD 

<!ENTITY QMARK 

<!ENTITY COMMA 

<!ENTITY IGNORE 

"( b_enamex I e_enamex I b_timex I e_timex I b_numex 

"( b_foreign I e_foreign I b_unclear I e_unclear I b_ 

"<nonSpeech>" > 

"<acousticnoise>" > 

"<separator>"> 

"<pName>" > 

"<mispronounced>"> 

"<misspelling>"> 

"<acronym>"> 

"<idiosyncratic>"> 

"<nonlexeme>" > 

"<period>"> 

"<qmark>" > 

"<comma>"> 

""> 

<!-- Document Grammar Specifications--> 

<!-- Structural definition--> 

<!ELEMENT utf ( bn_episode_trans conversation_trans) > 

<!ELEMENT bn_episode_trans 

(section I recording_change I background)+> 

<!ELEMENT section (turn I background)*> 

<!ELEMENT conversation_trans (turn I background)*> 

<!ELEMENT recording_change - D EMPTY> 

<!ELEMENT turn 

<!ELEMENT separator - 0 

( 1/.textTokens; 

EMPTY> 

time I background I 1/.ne_bound; I 
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<!-- Floating elements --> 

<!ELEMENT background - 0 EMPTY> 

<!ELEMENT time - 0 EMPTY> 

<!ELEMENT wtime - 0 EMPTY> 

<!-- Bouunding tags made explicitly--> 
<!ELEMENT b_foreign - 0 

<!ELEMENT b_unclear - 0 

<!ELEMENT b_overlap - 0 

<!ELEMENT b_noscore - 0 

<!ELEMENT b_aside - 0 

<!ELEMENT e_foreign - 0 

<!ELEMENT e_unclear - 0 

<!ELEMENT e_overlap - 0 

<!ELEMENT e_noscore - 0 

<!ELEMENT e_aside - 0 

<!ELEMENT b_enamex - 0 

<!ELEMENT b_timex - 0 

<!ELEMENT b_numex - 0 

<!ELEMENT e_enamex - 0 

<!ELEMENT e_timex - 0 

<!ELEMENT e_numex - 0 

<!-- Applied word tags--> 

<!ELEMENT fragment - 0 

<!ELEMENT contraction 0 

<!-- Shortref elements--> 

<!ELEMENT pName - 0 

<!ELEMENT mispronounced - 0 

<!ELEMENT misspelling - 0 

<!ELEMENT acronym - 0 

<!ELEMENT idiosyncratic - 0 

<!ELEMENT nonlexeme - 0 

<!ELEMENT nonSpeech - 0 

<!ELEMENT acousticnoise - 0 

<!ELEMENT period - 0 

EMPTY> 

EMPTY> 

EMPTY> 

EMPTY> 

EMPTY> 
EMPTY> 

EMPTY> 

EMPTY> 
EMPTY> 

EMPTY> 

EMPTY> 

EMPTY> 

EMPTY> 
EMPTY> 

EMPTY> 
EMPTY> 

EMPTY> 

EMPTY> 

EMPTY> 
EMPTY> 

EMPTY> 
EMPTY> 

EMPTY> 

EMPTY> 

EMPTY> 
EMPTY> 

EMPTY> 

172 
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<!ELEMENT qmark 

<!ELEMENT comma 
<!ELEMENT hyphen 

- 0 

- 0 

- 0 

EMPTY> 

EMPTY> 

EMPTY> 

<!-- Attributes of the Tags--> 

<!ATTLIST utf dtd_version (utf-1.0) #REQUIRED 

audio_filename CDATA #REQUIRED 

language CDATA #REQUIRED 

scribe CDATA #IMPLIED 

version NUMBER #IMPLIED 

version_date CDATA #IMPLIED> 

<!ATTLIST bn_episode_trans 

program 

air_date 

CDATA #REQUIRED 

CDATA #IMPLIED> 

<!ATTLIST conversation_trans 

recording_date CDATA #IMPLIED> 

<!ATTLIST secti on type (report lfillerlnontrans) #REQUIRED 

startTime CDATA #REQUIRED 

endTime 

id 

topic 

CDATA #REQUIRED 

CDATA #I MPLIED 

CDATA #IMPLIED> 

<!ATTLIST recording_change show CDATA #REQUIRED 

date CDATA #REQUIRED 

sec CDATA #REQUIRED> 

<!ATTLIST turn speaker CDATA #REQUIRED 

spkrtype (malelfemalelchildlunknown) #REQUIRED 

dialect CDATA #IMPLIED 

start Time CDATA #REQUIRED 

endTime CDATA #REQUIRED 

mode (plannedlspontaneous) #IMPLIED 

channel CDATA #IMPLIED 

fidelity (lowlmediumlhigh) #IMPLIED> 

173 
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<!ATTLIST b_noscore 

<!ATTLIST b_foreign 

start Time 

endTime 

reason 

CDATA #REQUIRED 

CDATA #REQUIRED 

CDATA CDATA > 

language CDATA #REQUIRED> 

<!ATTLIST contraction e_form CDATA #REQUIRED> 

<!ATTLIST b_overlap 

<!ATTLIST time 

<!ATTLIST wtime 

<!ATTLIST background 

startTime CDATA #IMPLIED 

endTime CDATA #IMPLIED> 

sec CDATA #REQUIRED> 

startTime CDATA #REQUIRED 

endTime CDATA #REQUIRED 

clust 

conf 

CDATA #IMPLIED 
CDATA #IMPLIED> 

start Time CDATA #REQUIRED 
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type (music l speechlother) #REQUIRED 
level (offJlowlhigh) #REQUIRED> 

<!ATTLIST b_enamex type CDATA #REQUIRED 

status (opt) #IMPLIED 

alt CDATA #IMPLIED> 

<!ATTLIST b_timex type CDATA #REQUIRED 

status (opt) #IMPLIED 

alt CDATA #IMPLIED > 

<!ATTLIST b_numex type CDATA #REQUIRED 

status (opt) #IMPLIED 

alt CDATA #IMPLIED> 

<!-- Short Refference Mappings --> 

< 1-- BEGIN COMMENT TO DISABLE SHORTREF --> 
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<!SHORTREF TURN ' ' PERIOD 

'?' QMARK 

' ' COMMA 
' 

'+' MISPRONOUNCED 

'©' MISSPELLING 

' ' ACRONYM 

' - ' PNAME 

'*' IDIOSYNCRATIC 
, i., NONLEXEME 

' {' NONSPEECH 

' [' ACOUSTICNOISE 

'&#RS;B&#RE;' IGNORE 

'&#RS;&#RE;' IGNORE 

'&#RE;&#RS;' SEP 

'&#RE;&#RS;B' SEP 

'&#RE;' SEP 

'&#RE;B&#RS;' SEP 

'&#RE;B' SEP 
'&#RS;&#RE;B' SEP 

'&#RS;' SEP 

'&#RS;B' SEP 

'B&#RE;&#RS;' SEP 

'B&#RE;' SEP 

'B&#RS; &#RE; ' SEP 

'B&#RS;' SEP 

'B' SEP > 

<!USEMAP TURN turn> 

<!-- END COMMENT TO DISABLE SHORTREF --> 

]> 
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