
't V

VOCN

N '

Portable lattice QCD software
for massively parallel processor systems

Nicholas Paul Stanford

Doctor of Philosophy

University of Edinburgh

1994

Abstract

Quantum Chromodynamics (QCD), which models the interactions of quarks

and gluons, forms part of the standard model, currently the best theoretical

framework of unified particle interactions. Lattice QCD is a method of simu-

lating the theory of QCD in a discretised form on computers. This approach

to particle physics is vitally important for providing a comparison with exper-

imental measurements -and predicting new particle -properties. To implement ----

lattice QCD we require very high performance computers, the latest genera-

tion of which are known as Massively Parallel Processors (MPPs). These are

available in two main distinct architectures, Multiple Instruction Multiple Data

(MIMD) and Single Instruction Multiple Data (SIMD).

We present a suite of lattice QCD software intended to be portable across

all currently available MPP platforms. This is achieved by utilising emerging

standards in parallel programming languages. We use subset High Performance

Fortran for SIMD machines and the PVM message passing package, with provi-

sion for the forthcoming Message Passing Interface (MPI) standard, for MIMD

machines. Software engineering techniques are used to design and document a

package which delivers a high output of physics results without a large invest-

ment in optimisation for new platforms. This is achieved while still preserving

the major requirements of reducing memory demands and increasing speed and

user understanding. Detailed procedures for testing the package and validat-

ing results are presented, without which there could be little confidence in the

physics generated.

To evaluate the efficiency of the software suite we present timings for important

code sections generated on a range of MPP platforms.

11

Declaration

The work discussed in this thesis was undertaken in collaboration with Stephen

Booth at Edinburgh University under the management of Richard Kenway. I

made a substantial contribution to the work; my responsibility was the intro-

duction and application of software engineering techniques, drafting of most

documentation, co-designing and implementing the top-level message-passing

software, designing and implementing the user interface, and the design and

implementation of all data-parallel software. I was not heavily involved in the

low-level message-passing design and implementation. All test data and per-

formance data was generated by me, except where stated in the text. This

thesis has been wholly composed by me.

111

Acknowledgements

I would like to thank the EPSRC for funding for the duration of my PhD;

Richard Kenway and Stephen Booth for their expertise and hard work which

went into the creation of the MPP software suite; Ken Bowler for his advice on

my thesis content and structure; Hugh, Henning, Nick and John for their shar-

ing of the PhD experience; Mike Peardon for illuminating unwanted 'features'

in my code; Edinburgh Parallel Computing Centre for the use of a Connec-

tion Machine CM200 and Cray T3D; Peer Ueberholtz at Wuppertal University

for the use of a Connection Machine CM5 and advice on its use; Andersen

Consulting for providing me with post-PhD employment and the light at the

end of the tunnel. And finally, my wife Alison for keeping me in high spirits

throughout the final year.

Nick Stanford

IV

Contents

Abstract 	 . H

Declaration iii

Acknowledgementslv

Contents V

List of Abbreviationsix

1 	Lattice QCD for MPP systems 1

1.1 From continuum to lattice 2

1.2 Overview of physics elements 8

1.3 Generating quenched gauge configurations 9

1.4 Generating unquenched gauge
configurations 13

1.5 Generation of quark propagators: the solver 14

1.6 Gauge fixing 15

1.7 Correlators 16

1.8 Quark sources 17

1.9 Analysis 18

1.10 The targeted system: the need for portable lattice QCD software 18

1.11 MPP architectures 19

1.12 Programming environments 20

1.13 Development base 24

1.14 Conclusions: the new software suite 26

2 Design and implementation of the MPP software suite:
global issues 	28

V

2.1 The waterfall method of software
engineering 29

2.2 Global project engineering issues34

2.3 The user interface:
the ECU application52

3 	Design and implementation:
modules common to multiple applications 64

3.1 	Communications 64

3.2 	Parallel I/O 73

3.3 	Parallel I/O performance 75

3.4 	Maths 77

3.5. 	Testing the maths routines 80

3.6 	Maths routine performance 85

3.7 	Random numbers 91

3.8 	Timing 93

4 Generating quenched gauge configurations:
the GAUGE application 94

4.1 	Requirements 94

4.2 	Design and implementation 97

4.3 	Gauge testing 112

4.4 	Gauge performance 123

5 Generation of quark propagators:
the SOLVER application 126

5.1 Requirements 126

5.2 Design and implementation 130

5.3 Solver testing 140

5.4 Solver performance 146

5.5 Quark sources:
the SOURCE application 150

6 	Conclusions151

vi

A Mathematical conventions154

A.1 -y-matrix definitions154

A.2 Cell-Mann matrix definitions155

B Generating quenched gauge configurations:
technical 	details 156

B.1 Heatbath update 156

B.2 Over-relaxed update 161

B.3 Calculation of the staple sum 164

B.4 Calculation of the plaquettes 166

B.5 Reunitarisation 166

C 	Generation of quark propagators: technical details 168

C.1 Hopping term algorithm 168

C.2 Clover term implementation 170

C.3 The in-line pion propagator 173

C.4 Rotations in the Clover action 175

D P90 and HPF: Important language features 178

D.1 Introduction 178

D.2 Relevant Fortran 90 features 178

D.3 Subset High Performance Fortran 186

D.4 Connection Machine Fortran 188

D.5 The x-direction with regard to parity 188

E 	Message passing packages: important features 190

E.1 Header files 190

E.2 Loader program: pvmgrid 	 192

E.3 Initialising the communications system 196

E.4 Global sum 198

E.5 Global set 201.

E.6 Boundary communications 202

vii

E.7 Parallel file I/O support routines205

E.8 Finishing up after the end of the program207

References and bibliography208

viii

List of Abbreviations

ABRC The Advisory Board to the Research Councils.
ANSI 	The American National Standards Institution.
BCs 	Boundary conditions.
CM 	Connection Machine or Cabibbo-Marinari update depending on

context.
DP 	Data-parallel.
DR 	Data repository. A large central data structure used in the ECU

application.
DMA 	Direct Memory Access. A method of inserting/ removing data di-

rectly to/from memory without the central processor being in-
volved.

ECU 	Executive Control Utility. The user interface to the MPP software
suite.

F77 	Fortran 77.
F90 	Fortran 90.
FE 	Front end. The host computer or processor to an MPP system.
HMC 	Hybrid Monte Carlo. The algorithm used to create unquenched

gauge configurations.
HPF 	High Performance Fortran.
CHPF 	Subset High Performance Fortran.
I/O 	Input/Output.
MC 	Monte-Carlo.
MIMD 	Multiple instruction stream, multiple data stream.
MP 	Message-passing.
MPI 	Message-passing interface. A standard message-passing package.

MPP 	Massively-parallel processor.
OR 	Over-relaxed update.
PVM 	Parallel virtual machine. A standard message-passing package.

Q CD 	Quantum Chromodynamics.
RNG 	Random-number generator.
SIMD 	Single instruction stream, multiple data stream.
SPMD 	Single program, multiple data stream.
SW 	Sheikholeslami-Wohlert, or Clover, action.

ix

Chapter 1

Lattice QCD for MPP systems

In this chapter we discuss the physics on which the MPP project is based.

Our starting point is continuum QCD. We then proceed to place the theory on

the lattice and examine the Monte Carlo techniques required to simulate such

a theory. Sections 1.3 and 1.4 look at the mechanisms for generating gauge

configurations in both the quenched and unquenched regimes. The generation

of quark propagators in the background gauge configurations is presented in

section 1.5, with the methods for generating the quark sources discussed in

section 1.8.

In sections 1.6, 1.7 and 1.9 we take a cursory look at the other elements re-

quired to generate useful physics: These elements are not all implemented on

MPP machines, and are therefore outwith the subject of this thesis. However,

provision must be made for them to interface with the existing applications in

the suite. -

Once the physics has been discussed, we examine the motivation for the creation

of a new software suite, the Cray T3D purchased by the ABRC and the need

to run on other platforms, then the two machine architectures on which the

project is implemented, MIMD and SIMD, and the programming environments

available. We finally present the principles guiding the creation of the new suite

of software and the base for its development.

1

Chapter 1. Lattice QCD for MPP systems. 	 2

1.1 From continuum to lattice

Several excellent references for a general introduction to lattice QCD are [1, 2,

3, 4].

1.1.1 Continuum QCD

Quantum Chromodynamics (QCD), part of the standard model of particle

interactions, models the interaction between quarks and gluons. The theory

can be expressed in terms of the QCD Lagrangian £QCD [5] , the fields A.

represent gluons and qk,k represent quarks of fiavour, k.

ni

£QCD = _ Tr FWFMV + 	 - mk)qk
k

F, = ÔM AV - ÔL,A M - ig [A M , A s,]

Dqk = (OM - igA)qk
aAa 8

AM= E 	 (1.1)
a=1

where the)s are Gell-Mann matrices satisfying the SU(3) commutation rela-

tion

[

Aa Ab

--, 	

fabC Ac 	 (1.2)

and normalisation condition

Tr (A-A) = 28 ° 	 (1.3)

The quantum mechanical expectation value of an operator O(, q, A) may be

written as a functional integral in Euclidean spacetime

(0) =
- f d[]d[q]d[A]O(, q, A)e_s 4) 	 (1.4)

where Z is the partition function, defined by the condition (1) = 1,

Z = J d[]d[q]d[A]e 5 " 4 	 (1.5)

Chapter 1. Lattice QCD for MPP systems. 	 3

and S is the action, S = f d4 XCQCD.

Since numerical/ computational treatment of the integrals over the grassman-

nian variables and q is not efficient, we integrate them out. If the form of the

action is

S = SG(A) + M(A)q, 	 (1.6)

where SG is the part of the action depending only on the gauge fields and M

is the fermion matrix, the integrated result is

Z = J d[A] det M(A) e _SO 4) 	 (1.7)

The problem with simulating this on a computer is that det M is highly non-

local and requires enormous amounts of computer time to calculate. We shall

see how to perform this simulation in section 1.4, however a simpler solution

exists. The quenched approximation consists of setting

det M = 1
	

(1.8)

which corresponds physically to the removal of virtual quark loops in the back-

ground gluon fields, or letting the masses of the virtual quarks tend to infinity.

Part of the work of lattice QCD research is to evaluate the effects and signifi-

cance of the quenched approximation.

1.1.2 Lattice QCD

Computers cannot deal with continuous variables so some form of discreti-

sation needs to be effected in order to extract numerical results. Wilson [6]

discovered how to do this by defining a Euclidean 4-D hypercubic lattice i.e.

space and time are treated equally. A natural regularisation is then introduced

which ensures convergence of integrals when calculating physical quantities and

preserves gauge invariance.

Chapter 1. Lattice QCD for MPP systems. 	 4

The gluons are formulated by elements of the gauge group SU(3). One asso-

ciates a gauge variable UM(x) with every link in the lattice connecting the site

x to site x + A. Path ordering of the path integral requires that travelling along

the link in the opposite direction gives

U_,(x + j) = U(x). 	 (1.9)

Fermion fields, situated at the sites of the lattice, carry both colour and spinor

indices; they are represented by 3 x 4 dimensional complex matrices.

We can now approximate the functional integral by multiple integrals over the

group-valued link elements

Z = . f rl dUie-sglul 	 (1.10)

1.1.3 Gauge invariance and the lattice action

1.1.3.1 Gauge invariance

As in the continuum theory gauge invariance dictates the form of the lattice

action. On the lattice the effect of an independent gauge rotation at each site

is

q(x) - V(x)q(x)

(x) - 	(x)V(x)

V(x)U(x)Vt(x+/i)U(x), 	(1.11)

where V(x) is a gauge rotation, V(x) E SU(3), in the same representation as

The only gauge-invariant quantities which can be constructed from gauge fields

alone are Wilson Loops, and are calculated by taking the trace over colour

indices of the product of gauge fields around a closed loop e.g. the 1 x 1 Wilson

Chapter 1. Lattice QCD for MPP systems. 	 5

Loop or plaquette

Tr UM(x)Up(x+/)U,i(x+)UJ(x) = Tr Ucj ,(x) 	(1.12)

To verify the gauge invariance of this and similar objects simply substitute

equation 1.11 into equation 1.12. The comparison of gauge invariant quantities

before and after a gauge rotation provides us with a valuable method for testing

code, as we shall see later.

1.1.3.2 Lattice action

The choice of action is crucial, bringing in such topics as fermion doubling and

the problems associated with it. We shall not discuss them here and merely

present the chosen action.

The action S is composed of gauge and fermion parts

S=SG+SF- 	 (1.13)

The gauge action S0 is given by

SG = PEE (i - ReTr U0(x)) 	 (1.14)
x <L/

where
2N 6

/3 = .- j- = - for SU(3).

The gauge action is equivalent to

= Jd4 x 	+ O(a2)1 	(1.16)

where

= 	- 811 A + ig [A u , A,,] 	 (1.17)

i.e. the continuum Yang-Mills action with a discretisation error of order a2 ,

where a is the lattice spacing. The 8—value (see equation 1.15) is important in

Chapter 1. Lattice QCD for MPP systems. 	 6

lattice gauge theory as it specifies the strength of the coupling in the theory

and hence the strength of the colour force.

The lattice fermion action SF is constructed from the Wilson term [6] and aN

additional term to remove discretisation errors of 0(a), the Sheikholeslami-

Wohiert (SW) term [7, 8, 9]. The action can be written in the bilinear form

SF = (x)Mq(x). 	 (1.18)

where M is the fermion matrix.

The fermion matrix can be written as

M=A — rcL 	 (1.19)

where A is the SW term, and —r.A is the Wilson term. The lattice hopping

parameter ic is related to the quark mass m by

1

'2mq+8 	
(1.20)

The hopping term A is defined by

(zq) (x) = E(1 -)U(x)q(x + j) + (1 + y)U(x - fi)q(x - fi), (1.21)

and is related to the amplitude that a quark will hop between neighbouring

lattice sites.

The SW term A is defined by

A = 1 - KC7 M F v 	 (1.22)

where the coefficient C allows variation of the action from Wilson (C = 0) to

SW (C = 1). Other values can be used, such as 1.4 from mean field improve-

ment to remove tadpole diagrams in [10], but will not be considered here. The

field strength F,, can be written

Q,(x) - Qt(x)
(1.23) F,,(x) =

21

Chapter 1. Lattice QCD for MPP systems. 	 7

where the Q, (see figure 1.1), defined as

Q(x) = 	 (1.24)
4 i=1,4

give this action the name 'Clover'.

To calculate matrix elements under the 0(a)-improvement scheme we must use

rotated quark fields. These are obtained by applying the following transforma-

tion 1

1k—
(x)(1 +

1 -
q(x) -p (1 -],D)q(x) 	 (1.25)

for 0(a) improvement, where

(q) (x) = 	-yU(x)q(x + 2) - y,U(x - ji)q(x - j2) 	(1.26)

This only involves next-to-nearest-neighbour communication and is therefore

V

. 	4 	 1

2

Figure 1.1: Definition of Q , . Point z is at the centre of the Clover-leaf. The sense of

orientation of the plaquettes used for calculating Q4,,, is taken such that the first gauge field

in the plaquette product is leaving point x.

relatively easy to implement on a parallel machine. The c, and -y matrices

used are defined in Appendix A.

'The implementation of the rotations is discussed in more detail in Appendix C.

Chapter 1. Lattice QCD for MPP systems. 	 8

1.1.4 Monte Carlo methods

To calculate the integral in equation 1.10 we need to integrate over several

million variables. This is not possible to do exactly, so we are forced to approx-

imate the integral by a sum over a sample of points in variable space. Further

information about use of Monte Carlo methods in statistical physics can be

found in [11, 12].

If we generate some configurations of the gauge links U with probability distri-

bution oc exp(—S(U)), a method known as importance sampling, then we can

calculate the expectation value of a suitable observable 0 by averaging over

the configurations generated i.e.

(0) = -E0(U). 	 (1.27)

This is explained further in section 1.3.

1.1.4.1 Gauge configurations

Computers cannot simulate a continuous object such as a link, so gauge vari-

ables must be represented at points. A gauge configuration then, is an array of

SU(3) matrices, one for each direction at each site of the lattice.

1.2 Overview of physics elements

The logical order in which the different lattice QCD physics elements in the

MPP software suite fit together is shown in figure 1.2. Only GAUGE, SOLVER

and SOURCE will be discussed in detail as part of this thesis.

Chapter 1. Lattice QCD for MPP systems.

Quenched gauge
configurations

Gauge-fixing of
configurations

GAUGEFIX

Generation of
quark propagators

SOLVER

Generationof 	 Extraction of
particle correlators 	physics results

CORRELATE 	ANALYSE

Unquenched gauge
configurations

HMC
Creation of quark
sources

SOURCE

Figure 1.2: The interconnection of the various physics elements in the MPP software suite.

1.3 Generating quenched gauge configurations

In section 1.1.1 we saw that by setting det M = 1, the quenched approxima-

tion, the amount of computer time required to calculate expectation values is

reduced.

In order to obtain a meaningful average using Monte Carlo methods we need

to sample statistically uncorrelated configurations. This is done by creating a

Markov chain of configurations. The probability distribution generated tends

to that required if the Metropolis algorithm is used [13, 14]:

Propose a random update and evaluate action change SS.

Accept updated configuration with probability

Pacc = min(1, exp(—SS))
	

(1.28)

We are left with choosing the random update method in such a way that

the acceptance rate is sufficiently large. The method used is a combination

of heatbath and over-relaxed updates and will be described in the following

sections.

Chapter 1. Lattice QCD for MPP systems. 	 10

1.3.1 Heatbath update

We successively place each link of the lattice in contact with a 'heat-bath'

which selects a new link variable stochastically with Boltzmann probability

P(U) exp(—SG(U)). This is explored fully in Appendix B.

1.3.2 Over-relaxed update

The heatbath update explores the group manifold at a relatively slow rate if the

configurations are to be accepted with any reasonable probability. The aim of

over-relaxation is to maximise the change in the gauge links while minimising

the change in the action. In practice the action stays constant, removing the

need for an accept/reject stage. This is explained fully in Appendix B.

1.3.3 Lattice decomposition

To update more than one link at a time we use the fact that the gauge action

couples only next-nearest neighbours and can be written as

SG = —ReTr UR, 	 (1.29)

where R is the sum of staples around UM (see figure 1.3). For details of how

to calculate the staple sum see section B.3.

Since the staple links have to be held constant while the chosen link is updated,

the number of links that can be simultaneously updated is restricted to half of

the links in a certain direction (see figure 1.4).

This is a form of red-black (or odd-even) decomposition. In practice this is

achieved by doubling up the lattice in the x-direction'. The two sub-lattices

'The choice of direction is arbitrary, although the t-direction is avoided to aid time-slicing.

Chapter 1. Lattice QCD for MPP systems. 	 11

g]

A C

U

F

E

Figure 1.3: Two staples ABC and DEF in the plane around link U to be updated.

Figure 1.4: Only the thick links in the x-direction may be updated at the same instant. This

leads to the division of the lattice into two sub-lattices of ODD and EVEN parity.

Chapter 1. Lattice QCD for MPP systems. 	 12

thus generated are labelled by pa7ity3 .

So to update all links the procedure is as follows

loop over parity (odd/even)
loop over direction (x,y,z,t)

calculate staple sum R,h (x) for particular UM(x)
update U,(x)

1.3.4 Hybrid update algorithm

The Markov chain of configurations is generated by successive sweeps through

the lattice, each sweep is referred to as a 'hybrid' or 'compound' update'. The

compound update consists of the following

0 A local gauge transformation.

0 One or more update stages, each consisting of...

K> Heatbath (Cabibbo-Marinari) updates.

K> Over-relaxed updates.

0 A unitarisation of the gauge matrices.

The gauge transform is a new element to the update proposed by S. Booth

at Edinburgh. The idea is to remove any bias in the way the unitarisation is

performed.

The unitarisation is performed in order to correct any numerical rounding errors

which creep in while performing the updates. The matrices are forced back onto

the SU(3) manifold. Full details are given in section B.5.

'Parity is always defined in these codes by x + y + z + t MOD 2. Since coordinates start

from zero, the origin is of even parity.

'This update algorithm is similar to that in [15].

Chapter 1. Lattice QCD for MPP systems. 	 13

Since we do not want to correct for numerical errors too often, as a unitarisation

takes time to perform, the Cabibbo-Marinari and over-relaxed update stages

may be performed more than once per hybrid update.

1.3.5 Initialising, thermalising and selecting configura-
tions

We must start off this Markov chain of configurations in some way. There are

two methods supported by our package.

Ordered start. Set all gauge matrices to the unit matrix.

Disordered start. Set all matrices to independent random values such

that U E SU(3).

Before we select any configurations we must allow the chain to become ther-

malised, i.e. the configurations are in equilibrium with the heatbath. Once

thermalised we must select statistically uncorrelated configurations by evolv -

ing the hybrid update for 0(100) iterations. The criterion for this interval

between samples is determined by auto-correlations of an observable [16] 6 has
if

a complicated dependence on lattice size, ,8 and the size of the operator j4 is

left to the user to establish.

1.4 Generating unquenched gauge
configurations

As explained in section 1.1.1 the quenched approximation is used to eliminate

the extensive time required to calculate det M. Although unquenched simu-

lations consume more computer time, they are still performed as they give us

an idea of the effect of quenching on the physics generated. As quenching is

an uncontrolled approximation we must at some point revert to the full theory

Chapter 1. Lattice QCD for MPP systems. 	 14

to extract realistic physics. The most commonly used simulation technique is

'Hybrid Monte Carlo' (HMC) [17] and will be described briefly below.

The HMC algorithm uses molecular dynamics to evolve the system through

a fictitious time variable 'T ' , the simulation time. The molecular dynamics

update introduces systematic errors through the integration of the equations of

motion by finite timesteps. This error is removed by a Metropolis accept/reject

decision based on the change in the Hamiltonian for the configuration.

1.5 Generation of quark propagators: the solver

When considering an operator of the form 0 = r(U)q, the lattice equivalent

of equation 1.4 can be written as

(0) = ffJduM_ 1 r(U)e_sG(U) 	 (1.30)

With a quark source 77 we need to solve the equation

- (Mi
\1

- 	ap) 	1a 	 (1.31)

fora single column of the full quark propagator matrix; we do not usually
16

have sufficient memory space to solve for the full quark propagator. The indices

i, a are the source colour/spin and j, 3 the sink colour/spin. The solution of this

large sparse system of linear equations must be performed using an iterative

scheme as discussed in [16, chapter 2].

1.5.1 Preconditioning

Experience within UKQCD has shown that two types of preconditioning im-

prove convergence of the linear equation solver; our package has both built in

as standard. The first is due to [18] and reduces the off-diagonal elements of

the fermion matrix in the following way.

Chapter 1. Lattice QCD for MPP systems. 	 15

We define

M' = (A—K 2 A 1 f)

77'= (1 + icLA 1)77 	 (1.32)

such that M'.' = ii'. The hopping term A is defined in equation 1.21.

The second method is that of red-black preconditioning. As in section 1.3.3 we

split the lattice into 2 sub-lattices labelled by parity p and P. The Clover term

A connects sites of equal parity and L connects sites of opposite parity. We

can therefore solve

M'cb = lip + A -1 n
= 77; 	 (1.33)

and reconstruct the opposite parity solution from

= A` (,q + ic) 	 (1.34)
FP

This means we can save time and storage space when solving the system. For

more details of the derivation of the above preconditioning see [16].

1.6..Gauge fixing

The action defined in section 1.1.3 contains an inherent degeneracy arising

from its gauge invariant nature. Any term in the action containing a total

derivative of the gauge fields will vanish in the equations of motion. Gauge

fixing introduces a term in the action which breaks this invariance, satisfying

a new gauge fixing condition e.g.

f(A) = (,91.,A ")2 = 0 	(Lorentz gauge) 	 (1.35)

This condition is implemented in practice by iteratively minimising a known

function of the gauge fields.

Chapter 1. Lattice QCD for MPP systems. 	 16

The gauge fixing procedure is not needed for measuring gauge-invariant quan-

tities, e.g. particle correlators, but is essential for measurement of e.g. gluon

propagators [19]. An excellent review of lattice gauge fixing can be found in

[20].

1.7 Correlators

A quark propagator is the correlation function

= (OIq(x,t)(0)I0) 	 (1.36)
Oto

of the quark fields q, where i, j are colour indices and a,,3 are spin indices. A

propagator for a particle such as a meson is given by

C(,) = (o111(, t)111(0)I0) 	 (1.37)

where 11(x) = 4(x)Fq(x) and 1' is one of the 16 linearly independent 7-matrix

combinations 1, 'YM, 'YY, giving the required quantum numbers under

charge conjugation and parity.

It can be shown [16, chapter 4] that inserting a complete set of spatial momenta

and particle states, transforming to momentum space and summing over the

spatial volume gives

C(t) =

	

= 	(Fne' + Bne_mT_t)) 	 (1.38)

M &
for t </2 where F and Bn are the amplitudes of the forward and backward

propagating particles. As t -* oo and T - t -+ oo we are left with the lightest

state with a non-zero overlap with the operator H. The particle mass can then

be extracted.

Chapter 1. Lattice QCD for MPP systems. 	 17

We see therefore that the correlator, C(i), is vital for later analysis. Baryon

correlators are calculated in a similar way using three valence quarks

IIB(x) f'.d e, k (q(x)Pq3 (x))qk(x) 	 (1.39)

1.7.1 Smearing

To improve the overlap of the lightest state, or an excited state, with the

operator we smear the quark source and/or sink [21, 22, 23, 24]. The smearing

procedure effectively extends the quark source or sink over a finite spatial

volume. Many different techniques can be used; see the references for further

details.

1.8 Quark sources

To create quark propagators we solve the equation

Mç&=i
	

(1.40)

for the propagator b. The simplest source, 77, used in practice is the 'point'

source, a local spin/colour source of strength 2r. placed at a single site on the

lattice (usually the origin). We then use the quark propagators generated to

make correlation functions as discussed in section 1.7.

Three-point functions are quantities calculated to determine the matrix ele-

ments of flavour changing currents. In this section we will only present the

algorithmic elements needed to create such functions, for full details of the

technique refer to [25, Chapter 11. To calculate a three-point function we need

to use an 'extended propagator' and a normal propagator as described in the

reference. An extended propagator is calculated by applying the following

steps.

Chapter 1. Lattice QCD for MPP systems. 	 18

Calculate a quark propagator for hopping parameter value icr.

Multiply the propagator by a. plane-wave momentum factor

Multiply the propagator by a r matrix factor defining the interaction.

Use a single time-slice of the above propagator as the source for a new

propagator with hopping parameter 2• This is now an extended propa-

gator.

1.9 Analysis

Analysis is a generic umbrella for all processing of correlators needed to generate

physics results e.g. masses, decay constants and form factors. The theory

of these diverse areas will not be discussed here, for further information see

[1, 2, 3, 4].

1.10 The targeted system: the need for portable
lattice QCD software

The Advisory Board to the Research Councils (ABRC) began a procurement

for an MPP system in September 1992 to be used for Grand Challenge projects.

The system, a Cray T3D 5 , was delivered in April 1994 and UKQCD aimed to

be in a position to have codes ready to run as soon as service began.

As this was such a major purchase a benchmarking exercise was performed

involving real application codes running on as many platforms as possible. In

order to take part in the exercise and to have the ability to run codes on other

available platforms, UKQCD decided to design a new suite of lattice QCD

software.

'This is not surprising as 41.3% of the supercomputers in the world are manufactured
by Cray Research Inc. (Source: The World's Most Powerful Supercomputers 6/6/94,
newsgroup cornp.sys.super on usenet)

Chapter 1. Lattice QCD for MPP systems. 	 19

There is currently a wide variety of both dedicated QCD computers, those

designed specifically for QCD computation, and commercial parallel comput-

ers used for QCD. Dedicated QCD computers usually gain high performance

through finely tuned assembly level code, with little investment in high level

compiler technology, largely precluding portability of software. Commercial

machines, however, must adhere to at least minimal standards in their pro-

gramming environments in order to attract a wide customer base. Although

portability has not been emphasised in past years, emerging standards are be-

ginning to form a wide portability base for applications.

1.11 MPP architectures

There are two main architectures, identified by Flynn's taxonomy [26], used

for MPP systems: SIMD, single instruction stream multiple data stream, and

MIMD, multiple instruction stream multiple data stream.

1.11.1 SIMD: single instruction multiple data

SIMD machines are characterised by a large number (typically up to 64K) of

processing nodes receiving common instructions broadcast from a central host

processor. Synchronism is achieved by utilising a common clocking signal, thus

removing the need for synchronization in the software layer and simplifying user

application software. Examples of SIMD machines are GF11 [27] and APE [28]

(dedicated) or Thinking Machines CM-200 [29] (commercial).

1.11.2 MIMD: multiple instruction multiple data

MIMD machines typically have more powerful node processors with greater

memory capacity than the corresponding SIMD elements. Nodes can run inde-

Chapter 1. Lattice QCD for MPP systems. 	 20

pendent instructions with synchronism implemented through 'message passing'

between them. Memory access is usually private, off-processor data is sent or

received by passing messages. Examples of private memory MIMD machines

are Columbia [30, 31], CP-PACS [32], 0.5 Teraflops [33], Teraflops [34], QCD-

PAX [35, 36] and ACPMAPS [37] (dedicated) or Thinking Machines CM-5

[38], Cray T31) [39], Intel Paragon [40], Fujitsu [41, 42] and Meiko CS-2 (com-

mercial). Shared memory architectures also exist, e.g. KSR [43], but are not

common due to the reduction of speed from memory access conflicts and the

difficulty of designing a communications network to overcome them. They do

however obviate the need for message passing resulting in simpler user software.

Our use of MIMD machines is to run the same program on all processors,

although not all of them will execute the same conditional branches. This

programming model is known as SPMD (single program, multiple data).

1.11.3 Convergence of architectures

The two architectures discussed above are currently distinct, though becoming

less so. Machines like the CM-5 and T3D, although MIMD, support SIMD-style

operation implemented through the improved communications networks used

for synchronisation. This trend is likely to increase as the vendors attempt to

capture the markets for both message passing and data parallel programming

environments as discussed below. Reviews of QCD machines can be found in

[44, 45, 46, 47, 48, 49 7 50].

1.12 Programming environments

For the applications software engineer, programming environments are of far

greater importance than architecture. The environments supplied again fall

into two groups reflecting the underlying architecture: Data Parallel imple-

Chapter 1. Lattice QCD for MPP systems. 	 21

mented on SIMD machines and Message Passing on MIMD machines.

Most MPP platforms support both C and Fortran compilers, but as it is sen-

sible to write codes in only one language we must select either C or Fortran.

There is little published data on the relative performance of C/Fortran gen-

erated code, so our choice must be motivated by other criteria. A look at

published benchmark data [51, 52, 53, 54] shows that nearly all floating point

benchmarks are written in Fortran, while C is primarily reserved for string

and integer applications'. Vectorising compilers, as discussed in [50, section

6.21 and [56], have traditionally been for Fortran because of its prolific use in

numerical simulation and easy analysis of loops compared with C. For these

reasons dialects of Fortran for data parallel and message passing are used.

There will of course be some platforms to which it will be impossible to port

code. For example the APESE environment on the APE100 processor, an

object-oriented programming environment [57]ç,.j 6,e. 4,j ti

W(VWtkko..4 QMn.L€

1.12.1 Data parallel: High Performance Fortran

The data parallel paradigm has been implemented in several dialects, for ex-

ample CM Fortran [58, 59], Fortran D and Vienna Fortran, based on the array

handling constructs of Fortran 90 [60] with added directives for distributing

data objects across processor topologies.

As discussed in [61] a standard, High Performance Fortran (HPF), has emerged

with major vendors pledging support:

0 Announced product: Applied Parallel Research, Kuck and Associates,

PGI, Intel, Meiko, Digital.

0 Announced effort: TMC, IBM, nCube, NEC, PSR, NASoftware, ACE,

6 An exception to this is the NAS parallel benchmarks [55] which are specified in a language
independent way.

Chapter 1. Lattice QCD for MPP systems. 	 22

Lahey, MasPar, Archipel, Convex.

0 Announced interest: Cray, Hewlett-Packard, Fujitsu, Silicon Graphics,

Hitachi, SUN.

Copies of the specification can be obtained by anonymous ftp [62], in published

literature [63, 64, 65] or through the World Wide Web [66].

A subset of the language specification [62, section 8] (CHPF) has been identified

as 'being capable of being implemented more rapidly than the full HPF. . . [and]

is intended to be a minimal requirement'. The elements of full HPF omitted

from cHPF do not impose any restrictions on lattice QCD, resulting in the

adoption of cHPF as our data parallel standard. All mention of 'HPF' from

this point refers to the subset unless 'full' is stated explicitly.

1.12.2 Message passing: PARMACS, PVM and MPI

Where the implicit synchronism of SIMD machines leads to only a few Fortran

dialects (all based on Fortran 90) and a standard language, the wide variety

in the design of MIMD machines has resulted in a plethora of message-passing

systems for different platforms; Express, PVM, NX/2, Vertex, PARMACS,

P4, CHIMP, Zipcode, IBM EUI, CS-tools, LINDA, Canopy and CMMD. A

comparison of some of these packages is presented in [67]. Of these packages

the most highly standardised are PARMACS [68, 69, 70] and PVM [71, 721,

both of which have been ported to a wide range of platforms.

Because of this variety, standardisation has not been as fast as for data par-

allel programming. However a standard has emerged, MPI [73, 74, 751, along

the same lines as HPF and has been implemented by IBM, Argonne National

Laboratory (on top of Chameleon, P4 and PVM) [76], Edinburgh Parallel Com-

puting Centre (on top of CHIMP) [77] and Ohio Supercomputer Centre (on

top of LAM, a UNIX cluster package) [78]. A book, advertising clear examples

Chapter 1. Lattice QCD for MPP systems. 	 23

on the use of MPI, is in the process of being written [79].

Since MPI has not yet been implemented widely, PARMACS was chosen as the

standard for our MPP message-passing layer with Fortran 77 for computation 7 .

However problems have been found porting PARMACS because of licencing

restrictions and differing implementation features. PVM has since become far

more widespread as a standard so we have adopted it also. These changes

illustrate that the message-passing code in the MPP package must be kept as

simple, flexible, contained and low-level as possible to facilitate change. As we

see in Appendix E, which explains the message-passing features used in the

MPP codes in terms of PVM, this containment is relatively easy to achieve.

1.12.3 Shared memory/single processor

Shared memory computers are often programmed in normal Fortran 77. No

message passing is needed as all memory is accessible from all processors. A

'single processor' version of the message-passing codes can therefore be used.

J This requires no,ode other than that used for testing: the single-processor

/ code is vital as a first stage in debugging message-passing code.

1.12.4 Convergence of programming models.. . the future

As mentioned earlier, SIMD and MIMD designs are converging in the Cray T3D

and Thinking Machines CM-5. This convergence is mirrored in the program-

ming environments; CRAFT [81] (Cray Research Adaptive Fortran) currently

supports message passing only but advertises data parallel extensions in the

~itumn of 1994, the CM-5 can be programmed in either data parallel (CM For-

tran [58, 59]) or message passing (CMMD [82]) modes. The HPF specification

7PARMACS has been proposed as a porting standard by other computational physics re-
searchers, e.g.[80] in meteorology.

Chapter 1. Lattice QCD for MPP systems. 	 24

[62] states its aim as being '[to] provide support for high performance program-

ming on a wide variety of machines, including massively parallel SIMD and

MIMD systems and vector processors', so we can once again see convergence.

But what of the relative merits of data parallel and message passing codes?

In data parallel programming, once the arrays have been distributed actual

computation is straightforward, requiring a minimum of code. Communications

are also easily implemented on the periodic lattices required for QCD through

the Fortran 90 'CSHIFT' command, as demonstrated in Appendix D. Both of

these features are in marked contrast to the complicated mechanisms required

for message passing and multiple nested loops of Fortran 77.

HPF is therefore most useful for code development and testing; its simpler

coding style introduces fewer bugs. Message passing is required for the fastest

machines to get high performance; the accuracy of the code can be validated

in a single processor mode and against HPF code.

1.12.5 Parallel 1./0

The main feature of MPP programming which is not discussed in any standards

is that of parallel input and output (I/O). Desirable features and benchmarking

of I/O have been discussed in [83], but we conclude that parallel file access

must of necessity be machine specific because of the varying topologies of MPP

platforms and designs of I/O systems.

1.13 Development base

The UKQCD collaboration has been running lattice QCD codes for several

years now; it would be foolish to ignore the codes and algorithms developed

and implemented. We present a .brief summary of this material in table 1.1.

Chapter 1. Lattice QCD for MPP systems.
	 25

As can be seen, the Maxwell codes are far more efficient than those on the

Connection Machine. This is a necessity; Maxwell is used for production,

whereas the CM is primarily for development work.

Platform
Maxwell Euclid non-MPP

Features
Vendor Meiko Thinking Machines Varied

Model CS-1/860 CM-200 Varied

No. Nodes 64 512 1

Node type i860+2xT800 1x32-bit custom+ Varied
lxWeitek 3132

Topology 4-D hypercube 9-D hypercube Single proc.

Architecture MIMD SIMD Single proc.

Memory (GByte) 1 0.5 Varied

Speed (peak/ 5/2 8/1 Varied

sustained) Gflop/s
Language C, Ass., CS-tools CM Fortran C/Fortran

Application
GAUGE x

SOLVER V X

HMC V x x

GAUGEFIX x •1
SMEAR V .
SOURCE X

CORRELATE x x

ANALYSE 	. x x

Table 1.1: Existing UKQCD codes.

As the codes have been written by many people there is much duplication, with

diverse styles of design and coding used. As algorithms have progressed, codes

have evolved to form a sprawling, tangled maze. Formal documentation has

been extremely limited [84] and is in part responsible for the duplication and

diversity.

Chapter 1. Lattice QCD for MPP systems. 	 26

1.14 Conclusions: the new software suite

Given the need to run lattice QCD codes on the T3D and other platforms, the

creation of a new set of codes is clearly required. These have to adhere to the

following principles:

D The code should be modular in order to minimise redundancy between

applications and incorporate new physics in as short a time as possible.

• The requirement for both message-passing and data-parallel program-

ming models implies that the design should be kept independent of pro-

gramming language as far as possible.

• To improve the learning curve for new personnel all codes should be

accompanied by complete and clearly-written documentation. The codes

should have a common user interface requiring no specialist programming

knowledge.

0 The languages to be used for the MPP codes are

'O Data parallel: CHPF with testing performed in CM Fortran on a

TMC CM-200.
PVH 	PVI-

Message passing: Fortran 77 with ARMAc. The PA-MACS

layer should be isolated for easy conversion toT 	MPJ etc.
i%it1, C

Shared memory/single processor : Fort4n 77. This is the

same as above with 	CS calls replaced\ by local boundary

processing. 	
PVP

El The kernel of codes for benchmarking should be ab1 to be completed

in nine months (assuming two people working full-ti e) including docu-

mentation, testing and operating procedures.

hi?I /ok4 Thrii,

((kJ 	
stA€

Chapter 1. Lattice QCD for MPP systems. 	 27

These criteria are by no means impossible to fulfil... as long as a sensible

method of software engineering commensurate with available resources' is used.

As Loken says [85]

'The real need in software engineering is not for a set of tools or
languages. It is rather for an approach to understanding the soft-
ware problem and developing the optimum solution based on the
best available technology.'

In the next chapter we expound a practical solution to this problem.

'Human, time, financial and equipment.

Chapter 2

Design and implementation of the MPP
software suite: global issues

In the previous chapter we introduced the need for a new set of lattice QCD

codes. The 'waterfall' method of software engineering, as described briefly in

section 2.1, is the canonical software development model for medium to large

scale projects and is used to design the MPP codes.

We consider the global issues, affecting the whole MPP project, in section 2.2

which provides an example of the waterfall method in use. The user interface

to the suite is discussed in section 2.3, of vital importance to the successful

operation of the suite to produce physics results.

28

Chapter 2. Design and implementation: global issues. 	 29

2.1 The waterfall method of software
engineering

2.1.1 Introduction

'Software engineering is the science and art of specifying, designing,
implementing and evolving - with economy, timeliness and ele-
gance - programs, documentation and operating procedures where-
by computers can be made useful to man.'

John A. McDermid
Software Engineer's Reference Book

There are many different software development models described in standard

texts [86, 87, 88]; e.g. prototyping, waterfall, exploration, formal transforma-

tions and reassembly. Of these we will discuss only prototyping and the water-

fall method; the others are either irrelevant or inappropriate.

'Prototyping' is mainly used to establish the requirements of a system through

construction of a prototype code skeleton. The requirements identified by this

process can then be used as the starting point for a more structured method

e.g. waterfall. The use of prototypes in physics packages is common for new

physics, where different algorithms need to be evaluated, but of little relevance

to the MPP codes.

The 'waterfall' method of software engineering [89], the canonical method, is

highly structured while at the same time retaining sufficient flexibility to be

useful for all sizes of project and design team. Documentation is intrinsic to

the method, providing information sharing between team members and a per-

manent record of both concepts and design details. There are several distinct

phases of engineering, as shown in figure 2.1, which can be considered sep-

arately even though they normally overlap in practice. This method is well

suited to academic use as it can be implemented without any special tools 1 : a

'CASE (computer aided software engineering) packages can be used to increase productivity

I

Chapter 2. Design and implementation: global issues. 	 30

drawing package and word-processor are sufficient for the design phases.

As software engineering methods are uncommon in computational physics re-

search we present a brief outline of the waterfall method in the following sec-

tions. For more details and background refer to the references mentioned above.

2.1.2 Requirements analysis and specification

The first stage in a project is to ascertain the users' requirements, often through

a set of brainstorming sessions followed by a rationalisation to formulate achiev-

able elements. The rationale behind concepts should be included; it is par-

ticularly useful in later stages of design and implementation and should be

documented with the requirements in the 'Requirements specification docu-

ment'. This record contains all functionality provided by the system and any

constraints thereon.

2.1.3 Standards

As more than one person will be working on the MPP project we need a c 7nsis-

tent procedure for writing code and documentation. The standards document

covers everything from identifier naming to versions of compilers to be used,

but should be kept as clear and simple as possible.

2.1.4 Design principles

Design is performed in a top-down fashion beginning with the splitting of the

system into major sub-systems, the physics application codes. Once major

applications have been identified they can be further divided into functional

modules and finally units. If the design is documented at all stages with the

but are expensive and non-essential.

Chapter 2. Design and implementation: global issues. 	 31

Figure 2.1: The waterfall method of software engineering.

Chapter 2. Design and implementation: global issues. 	 32

interfaces between applications and modules specified in detail, people can work

on different areas at the same time.

Documentation of the design is achieved through layered dataflow diagrams, as

described in [88], with textual comments where needed. Examples are given in

section 2.2.4. As time is limited, documentation of the lower levels of design,

units within a module, should be kept as brief as possible. An example is shown

in section 4.2.

Since the MPP codes will be implemented in two versions, data-parallel and

message-passing, the design is to be kept free of implementation details as far

as possible, concentrating on the essential physics and algorithms.

2.1.5 Implementation, coding and testing the design

To obtain a working package from our design we must implement it in both

data-parallel and message-passing models. It is vital to document problems

with different versions of the supplied compilers and libraries and iterate design

stages if necessary to cater for these differences.

The testing of the code should focus on the physics required. Lower level

tests, such as validating the operation of the maths routines, are useful before

attempting to test a large complicated module, e.g. the solver.

2.1.6 Operational issues

In order for the MPP codes to be useful, they must be easy to operate in the

real environment of the targeted MPP machine. This environment incorporates

the data storage, batch queuing system and user interface.

Although the data storage and queuing systems will vary across platforms, the

user interface can, and should, be kept simple and consistent for all of the MPP

Chapter 2. Design and implementation: global issues. 	 33

applications. This interface includes file formats for long-term storage, which

should be rigidly defined and documented.

Chapter 2. Design and implementation: global issues. 	 34

2.2 Global project engineering issues

2.2.1 Introduction

In this section we consider engineering issues carried through the entire MPP

project. Standards used to record, implement and test all designs are detailed

in section 2.2.2 followed by requirements on the functionality of the communi-

cation and file systems with necessary constraints in section 2.2.3.

The MPP system is split into major subsystems in section 2.2.4 and the princi-

ples guiding the design and implementation of all subsystems are brought out

in section 2.2.5.

The full design and implementation documentation set, [90, 91, 92, 93], is far

too large (over 1000 pages) to be discussed in detail in this thesis. We therefore

present only the important features of the design and implementation.

2.2.2 Standards2

We have two main types of code: those running on an MPP machine, the pro-

duction physics applications, and those running on a workstation, the analysis

package and the user interface. These will be considered separately.

2.2.2.1 MPP codes

The codes running on the MPP platforms are all written in a Fortran dialect,

either Fortran 77 with PARMACS for message-passing or CHPF for data-

parallel. The motivation for using these languages is discussed in section 1.12.

'The format of the actual standards document is more formal and subdivided than that
given here, but less appropriate for a PhD thesis: the full standards document is [90,

MPP-GEN-0003].

Chapter 2. Design and implementation: global issues. 	 35

2.2.2.2 Workstation codes

The codes running on the workstations are all written in ANSI C. The departure

from Fortran is taken because these codes will need to handle files, strings and

memory more often than numerical data. The 'C' language is well suited to

these tasks and offers a seamless interface with the UNIX operating system

where necessary.

The use of YA CC and LEX 3 when parsing files is not allowed. Although these

extensions to C enable shorter file handling code to be written, therefore less

prone to errors, they reduce the possibility that the codes can be extended

easily, one of the major requirements of the workstation codes.

2.2.2.3 Fortran 77 standard and pre-processing

The message passing MPP codes are implemented in Fortran 77 with PAR-

MACS. This precludes the use of any of the standard military extensions to

the language [94], such as 'ENDDO' and long identifiers. Since short identifiers

lead to incomprehensible code we make use of a pre-processor (written in C by

Stephen Booth) to compress long identifiers to the standard length. Any com-

pilers which allow long identifiers will not need this stage. The C pre-processor

'CPP' is used for all source files, and any of its features may be used. Header

files should only include other header files if absolutely necessary in order to

keep the structure straightforward.

Implicit typing for variables should not be used. All variables should be de-

clared explicitly, with 'IMPLICIT NONE' or its analogue used. As not all

compilers support the use of 'IMPLICIT NONE', a header file should be in-

cluded in all routines to mimic this operation as closely as possible.

ILEX is a lexical analyser and YACC a grammar parser. They are standard packages, often
used to parse text files.

Chapter 2. Design and implementation: global issues. 	 36

2.2.2.4 Identifiers

Identifiers can be up to 31 characters long, and this available length should

be used to construct meaningful names. The standard extended character set

(alphanumeric plus underscore) is used with the following restrictions.

0 Constants, as defined by the Fortran 'PARAMETER' statement, have a

leading capital letter. All other characters are lower case e.g. 'Pi-by-2'.

o Variable and subprogram names are entirely lower case e.g. 'write2col-

umniormat'.

o Language elements are written in capitals e.g. 'SUBROUTINE'.

As Fortran is not case sensitive, care must be taken not to use the same name

for a variable and constant in the same routine e.g. 'Colour' and 'colour'. The

compiler should pick up most instances of this, as their usage would be different,

and multiple definitions are not allowed.

2.2.2.5 Comments and revision control

All source files should have a comment header block at the beginning containing

the name of the source file, its purpose, the author(s), documentation references

and revision information. All subprograms should have a comment header block

summarising the algorithm and parameters, and if possible a reference to the

documentation for further information. The comments within the code should

refer only to algorithm stages defined in the subprogram header and any subtle

implementation points, care should be taken not to use unnecessary comments

which would confuse the code.

2.2.2.6 Numerical precision

Real numbers should be defined as being of either 'Fpoint' (single-precision) or

'Dpoint' (double-precision); two macros defined in a header file. This enables us

to switch precision simply by redefining the macros. Macros are also provided

Chapter 2. Design and implementation: global issues. 	 37

to convert to required types, 'FtypeQ' and 'DtypeQ', and evaluate their storage

requirements in bytes, 'Fsize' and 'Dsize'.

Fortran 77 does not allow double-precision complex numbers, so all complex

numbers in the message-passing codes must use two-component 'Fpoint' or

'Dpoint' arrays. This restriction does not exist in HPF, and the macros 'Cf-

point', 'Cdpoint', 'Cftype', 'Cdtype', 'Cfsize' and 'Cdsize' can be used.

2.2.2.7 Array indexing

Although Fortran 77 arrays are indexed from 1. . . N by default, this can be

changed. C does not allow this flexibility; arrays must be indexed from 0 to

N - 1. For this reason we also force Fortran to adopt this rule: all array

indexing starts from zero.

2.2.3 Requirements 4

There are several requirements on all of the MPP codes which must be incor-

porated from the beginning. These can be split into distinct areas.

Accommodation of lattice in memory

We want to be able to accommodate the whole target lattice size in

memory at the same time. This approach simplifies the code design and

implementation, reducing the need for highly efficient I/O routines to

swap lattice segments.

File system

As discussed in section 1.12.5, parallel file access will be platform specific.

However we can identify a number of common requirements for a file

system.

4 A with the standards section, these requirements are in a slightly less formal style than
would be used in practice. The actual requirements document is [90, MPP-GEN-0002].

Chapter 2. Design and implementation: global issues. 	 38

Only the large datasets, e.g. gauge configurations and quark propagators,

will be stored in a binary format to save space. All other files will use

a text format which, although less economical on space, is easy to read

without using special utilities and avoids problems with floating point

format and byte ordering. The text files can provide information to enable

the physics application to sort out the byte order and float format of the

large binary datasets 5 .

Each binary dataset will have an accompanying textual information file

containing all information relevant to the history, creation and validation

of the dataset. These files will be mainly read and written by the user

interface and must therefore be in a standardised form. The storage of

data in the binary datasets must be arranged so that the data can be

read in both 4-1) and 3-1) formats for timeslicing. Any data files ported

between platforms must be 'flattened', converted from a format contain-

ing machine-specific parallel distribution information to a standard serial

format accessible from any processor topology.

The physics application codes must be kept as small as possible in order

to work on large datasets. One way of achieving this is to ensure that all

files read/written by an application are in a fixed format, requiring no

validation. The user interface can again be used to automate this process.

3. Communications

Communications are only of relevance in the message passing model. We

must test for failures whenever possible; parallel machines are complex

and cannot be assumed to operate without error. Since we cannot re-

cover from communications errors in most circumstances, an error mes-

sage should be generated and program flow aborted.

'An example of this could be to use the value of the gauge configuration checksum to
establish the byte order, and the plaquette average to establish the floating point format.

Chapter 2. Design and implementation: global issues. 	 39

4. Timing and other measurement

Timing should be provided in the form of a single routine 'TIMER' con-

forming to that used in the GENESIS benchmarking suite [95]. Top-level

components, e.g. a compound update or single solver inversion, should

have built-in timing; all other timing should be switchable.

Floating point operation counts (flop counts) should be built into all code,

with the same metric used as [96] and shown in table 2.1. From these

numbers a performance rating can be measured for the timed sections in

units of Gflop/s.

r Operation Count (flop)

Real add, subtract, multiply 1
Real divide, square root 4
Exp, Sine etc. 8
Complex add, subtract 2
Complex multiply 6

Table 2.1: Floating point operation metric.
It is useful to have a means for measuring a high-water mark for the

memory usage. This only needs to be calculated once for each of the

data-parallel and message-passing versions and does not always need to

be included in the code; some compilers supply this capability. If we do

need to perform this operation in the code it is straightforward.

Lattice size

The lattice size must be a factor of two in all dimensions in order to

implement red-black precondititioning.

Random number generators

We require a system for generating pseudorandom numbers uniformly dis-

tributed between 0 and 1 for both lattice arrays and scalar variables. The

actual random number generator (RNG) used should be easily changeable

as different RNGs are suitable for different applications. The RNG used

Chapter 2. Design and implementation: global issues. 	 40

in production should satisfy all of the standard tests discussed in [97,

98, 99, 100]. The design of random number generators is considered in

section 2.2.4.

Random gauge transformation

An excellent method for testing code is to construct gauge invariant quan-

tities, e.g. the plaquette average, and then perform a. gauge transforma-

tion on the fields with a. set of random STJ(3) matrices. If the same answer

is obtained before and after the transformation, we can be fairly confi-

dent that that section of the code is working. We therefore need a module

capable of implementing both local and global gauge transformations.

Error logging

Error messages are to be written to a logfile with as much information as

possible present to facilitate recovery and debugging. No other messages

are to be written to this logfile so that errors can be detected quickly.

The system must indicate that it has terminated with or without an error

condition being generated, e.g. by a non-zero exit code, so that the parent

process can act accordingly.

2.2.4 System context and design

Before discussing the design of the system, we must consider its boundaries.

These are shown in figure 2.2. As can be seen, the codes only need to interact

with the user and data stores.

The physics application codes are identified by main functional blocks. They

interact as shown in figure 2.3. This is an example of a 'dataflow diagram' such

as is used later to represent the essential design. Ovals are the main processes,

parallel lines represent datastores and arrows show data flowing between data

stores and processes.

Chapter 2. Design and implementation: global issues. 	 41

USER

FRONT END I 	I 	M.P.P.

FE CODES 	 MPP CODES

Serial Data Core H 	Paral Data Store

Figure 2.2: View of the MPP codes system boundaries.

Note that code to analyse gauge configurations, e.g. to measure glueball masses,

is expected to constitute a separate application or applications. This may not

be the case in reality if relative computational and I/O speeds promote in-line

computation requiring GAUGE or HMC to be modified.

2.2.5 Design and implementation issues

The main features in the design of the MPP codes are the need for high speed

and as large a lattice as possible. These principles require us to keep memory

usage to a minimum, to maximise the available lattice size, and keep the number

of floating point operations to a minimum, maximising the speed. Of course, life

is rarely simple: in order to reduce computation we often need more workspace;

compromise is clearly required.

Chapter 2. Design and implementation: global issues. 	 42

possible IIII gauge IIIh- 	configurations
analysis

E
ao/

C

	 GAUGEFIX
.) gauge fixing instrs.

	

SOLVER
	

................

augefg history

solver

prop

quark
SOURCE 	 propag

tO

quark
conelators

I5frc. 	Virg, C

Figure 2.3: The physics applications comprising the MPP system and their interrelations;

dotted applications are not considered in this thesis. The user interface ECU and treatment

of messages to the user have been omitted.

Chapter 2. Design and implementation: global issues. 	 43

2.2.5.1 Minimising memory usage and controlling allocation

There are several ways in which memory usage can be minimised.

o By grouping together into one unit only those operations which absolutely

need to be together we keep the unit size small. If a single unit is then

implemented in a single file, only that code needs to be incorporated into

the final application; no wastage occurs.

o By delegating all complicated file handling td the ECU application, the

control utility, we keep the code space required for file handling to a

minimum.

o If we can modify an algorithm to only require temporary workspace for

a single matrix element or single row, we keep heap memory usage, the

most crucial area, to a minimum. We must, however, balance this against

the requirement for high speed.

o Stack' space is not particularly important in an MPP platform as it is a

tiny portion of the available memory. However, we wish to minimise the

depth to which subroutines are nested in order to reduce the overhead

from calling and returning from subroutines; this requirement must be

balanced against the need for a large number of small units to provide

flexibility and a reusable toolkit of operations. If in doubt, keep the unit

size small, code can be optimised for a particular platform later.

Since we have several people working on the codes at the same time, usually on

separate modules, we need to be careful how workspace memory is allocated.

A simple heap-based model is assumed; each routine reserves heap memory

as required and frees it on exiting the routine. All of the compilers we have

''Heap' memory is that used for allocation of temporary (or automatic) variables within a
routine. The memory is usually freed when the routine terminates.

"Stack' memory is that used for passing parameters between subroutines and the return
values from functions.

Chapter 2. Design and implementation: global issues. 	 44

encountered have this model of memory management, which makes it easy for

modules to be implemented independently.

An alternative model which might possibly arise is that of static memory allo-

cation. In this model, the memory is not freed when a routine finishes resulting

in the program running out of memory and crashing. Provision has been made

for this outcome: at the start of the program execution a large block of mem-

ory is reserved and made common to all routines. An internal heap is then set

up to allocate and free the space as required. This method requires a signifi-

cant amount of work to implement as allocation/deallocation calls need to be

made explicitly. For this reason, and also because we hope never to encounter

this type of compiler, the memory management calls have not been inserted

although the routines to implement them have been supplied. This model of

memory management cannot be used in cHPF as we need to know information

about the distribution of arrays over the platform.

Common blocks and global variables

Use of globally-accessed memory space can be useful in reducing the amount

of memory used for both heap and stack variables. However, the code then

becomes far more inter-dependent and less modular. As we want to construct

a range of applications from a common library of modules we need a modular

design and therefore avoid common blocks and global variables as far as possible

outside a particular module.

2.2.5.2 Platform specific variations

For several areas of the MPP codes, the implementation will depend on the

particular platform; these areas can be identified as parallel file I/O, timing,

communications and random number generation. In order to maximise porta-

bility we have to isolate the platform dependent sections. This can be easily

achieved as shown in chapter 3.

Chapter 2. Design and implementation: global issues. 	 45

2.2.5.3 Data distribution in HPF

In CHPF data distribution is straightforward. The lattice indices are dis-

tributed over the abstract processors of the platform, while all matrix in-

dices e.g. spin or colour are local to a. processor. An example is shown in

section 2.2.5.5 where the distribution of gauge and fermion fields is specified.

2.2.5.4 Data distribution in Message passing

For the message-passing mode of operations we assume a regular 4-D problem

distributed over a 4-1) grid of processors, each processor being responsible for

a 4-1) sub-lattice. We make the following restrictions on the communications•

and distribution system:

0 Only nearest-neighbour and global-sum communications are assumed.

These are all we need to implement a local grid-based problem.

• The lattice is assumed to be larger than the grid so that we have no idle

processors. The sub-lattices may be different sizes on different processors

as long as neighbouring processors have the same size for their common

boundaries.

• To implement red-black preconditioning we need the local sub-lattice to

be at least two sites wide in the fastest changing index. We address the

local sites using a parity-site scheme.

• All processors are assumed to be executing the same program with differ-

ent data, the SPMD model. This allows the communications routines to

be called by all processors in the same order at approximately the same

time.

• To simplify the number of parameters characterising the distribution we

require that at least two of the local boundary dimensions are even, so

that both parities of the local lattice have equal lengths. This is a much

simpler situation to handle than if the two parities had different lengths;

Chapter 2. Design and implementation: global issues. 	 46

we would require separate parameters to describe each parity instead of

one for both parities.

C3 One of the local even dimensions should be the fastest changing index,

e.g. the x-direction. This simplifies parallel file access.

The MPP codes should arrange the distribution automatically to satisfy these

requirements.

Communications

To shift arrays one lattice site in any direction we use neighbour tables, gather-

scatter tables and boundary tables.

A neighbour table on a particular processor contains the processor number of

adjoining processors so we know where to send or receive data. An example

2-D array of processors, with periodic boundary conditions, is shown in figure

2.4.

Figure 2.4: An example of neighbour tables in a 2-1) problem. Periodic boundary conditions

are implemented here.

Chapter 2. Design and implementation: global issues. 	 47

When shifting data distributed across processors the boundary sites need to be

moved to an adjoining processor. This can be implemented by 'scattering' the

local data into workspace with a 'tail' region, communicating the tail to the

neighbouring processor in direction p. (and receiving the tail from the neigh-

bouring processor in direction —p.), then copying the data from the received

boundary into the body of the workspace region. The workspace area now

contains the shifted data. The scatter into the workspace moves data which

remains on the processor to the correct array locations, and data to be moved

off-processor into the tail region using the gather-scatter tables. Elements com-

posing the boundary can be found using the boundary tables. An example of

these tables is shown for a single processor of a 2-D problem in figure 2.5.

Compressed gather-scatter tables

Conventional gather-scatter tables will contain long sequences of consecutive

numbers which can be encoded as start and stop indices. The gather-scatter

operations can then be implemented as a pair of nested loops; the outer loop

reads the table to find the loop limits used by the inner loops. Both methods

need to be provided for optimal performance on different architectures and shift

directions.

Single processor code

When the processor grid is only one processor wide in any direction we need

the ability to ignore the tail and implement local periodic boundary conditions

directly using the gather-scatter tables.

2.2.5.5 Data types

The main data types used in the codes are gauge fields and fermion (4-spinor)

fields. To see how to implement them we need to consider all indices required.

Gauge fields

MEMUMUMU

UEflEEItU
IE

EEUEC ILE

Mal MMEBEEME, Ea

8: 0

MEMMMEMB

UEflEIEU

mum UME= IEE
M: mmm mum mamm on

Chapter 2. Design and implementation: global issues.

The gather-scatter table lists the
site indices from which to gather
data in a particular direction. Off-
array elements are mapped into the
tail. Notice that the parity index of
the gather-scatter table matches
that of the source data. This is the
opposite parity to that of the target
array, as moving one lattice site
always involves changing parity.

Gather-scatter for \ 	Boundary
direction x -j 	 table

CLULEJIUII1E
EIMrnEI

1ULELflECILU mmmmm
LLUEEIJUI

I

P

Main data arrays: when performin(
a gather operation, data is gathered
from the source body and tail into
the target body. When performing a
scatter operation, data is scattered
from the source body and tail into
the target body. The relevant
boundary needs to have been copied
into the tail previously.

Target array

Array cell contents

Site index 	Parity index

The boundary table lists the site indices
for those sites on the boundary in a
particular direction. Notice that the
parity index of the boundary table
element matches that of the main array

Boundary boundary site.
table

Uatber-scatter [or 	Boundary
direction x+ .L 	 table

MEMUMEMU
EI

CU1ILflLE IU
EII N mum Emma L
rn

EU
Tail: there is sufficient tail space for
one boundary. The dotted tail is for
visual aid only.

___-N
Source array

V

Gather-scatter for 	Boundary 	 Orientation

direction x- v 	 table

Gather-scatter for
direction x+ V

Figure 2.5: Example gather-scatter and boundary tables in two dimensions.

Chapter 2. Design and implementation: global issues. 	 49

Gauge fields can be written with all indices explicit as UM ,(x), and are complex.

Since the staple sum and other operations need to be red-black decomposed we

need to split the fields into two parities, even and odd. The gauge configuration

can then be written in HPF as

Cfpoint, DIMENSION (0:Nco1our-1,0:Nco1our-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) ::
$ gauge_xevn, gauge_yevn, gauge_zevn, gauge_tevn,

$ gauge_xodd, gauge_yodd, gauge_zodd, gauge_todd
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK',BLOCK) ONTO QCDPROCS
!HPF$$ gauge_xevn, gauge_yevn, gauge_zevn, gauge_tevn,
!HPF$$ gauge_xodd, gauge_yodd, gauge_zodd, gauge_todd

where Ncolour is the number of colour components, i.e. 3, and Nxby2, Ny,

Nz and Nt specify the size of the lattice. The mapping, QCDPROCS, onto the

physical processors must be made for all arrays; for this reason it is stored in

a header file. An example of such a mapping is

!HPF$ PROCESSORS QCDPROCS (4,4,4,8)

which distributes the lattice sizes over the 4 x 4 x 4 x 8 = 256 processors.

We use a different array for each direction and parity because, as discussed in

section D.2.2, Connection Machine Fortran does not let us pass a portion of an

array, as an argument to a subroutine.

The message-passing version of the gauge field declaration is in many ways

simpler. The entire set of gauge fields is declared as

CFTRANS gauge :site :1 :1 :1
Fpoint gauge(O :Max_array-1,

$ O:Ncoinp1ex-1,O:Nco1our-1,O:Nco1our1,O:Npar1, O:Ndim-1)

where the indices are in order; site (the x-index moves fastest, followed by y, z

then finally), complex (real then imaginary), colour-row, colour-column, par-

ity (even then odd) and direction. The CFTRANS line allows our pre-processor,

FTRANS which is also used to compress long identifier names, to rearrange the

indices as needed for optimisation. By default, the site index is always taken to

be fastest changing for efficient vectorisation. On cache-based machines it can

Chapter 2. Design and implementation: global issues. 	 50

be more efficient to make the site index move slowest. The indices are divided

into three types

The site index, as indicated by ':site'.

Indices that may be re-ordered, as indicated by ':1'. These are always

moved together so that the site index is either faster or slower moving

than all of them.

Indices that may not be re-ordered, as indicated by':'. These are usually

used for passing sections of arrays to subroutines, e.g. a single parity or

direction of a gauge field.

The site index for the gauge fields incorporates a tail for communications.

Notice that in HPF we must hard-wire the lattice size into all of the code and

re-build the executable images whenever the size changes. In message passing

we can be more flexible, we specify a maximum size, Max-array, at build-time

and as long as that accommodates the local run-time lattice size we have no

problems. The reason for this inflexibility in HPF is the CSHIFT operation,

which shifts array elements cyclically. If we declared our arrays to be larger

than needed, junk at the unused end of the array would be shifted into the

space we do use during a CSHIFT. The use of gather-scatter and boundary

tables in message passing obviates this problem.

Spinor fields

The fermion 4-spinor fields are declared in much the same way. In HPF we

have

Cfpoint, DIMENSION (0:Nco1our-1,0.:Nspin4-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
$ psi_evn, psi-odd

!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS
!HPF$$ psi_evn, psi-odd

where Nspin4 is defined to be '4' as expected. Because the main 4-spinors

are never used for communication in the message passing codes we do not

Chapter 2. Design and implementation: global issues. 	 51

need a tail space. When we do need to communicate spinors we either use

2-spinors with tails (for the delta-term routine) or temporary 4-spinors with

tails (for the dslash routine as discussed in section 5.2). The main 4-spinors

are therefore

CFTRAMS psi :site :1 :1 :1
Fpoint psi (O:Max_body-1,

$ O:Ncomplex-1,O:Ncolour-1,O:Nspin4-1,0:Npar-1)

All other data types are introduced as needed in the remainder of this chapter.

Chapter 2. Design and implementation: global issues. 	 52

2.3 The user interface:
the ECU application

2.3.1 Introduction

The user interface is one of the most important from the design point of view

because often novice users need to use, extend and modify the package in as

short a time as possible. The design therefore needs to be kept simple while

at the same time remaining flexible. The complexity of the system introduces

a large number of different types of file used for information storage; some for

communicating with the user, some for communicating with the applications

and others for long-term data storage. There will be a large number of data

elements common to several file types; this data needs to be easily accessible

in a variety of formats with strict validation built in for the package to operate

successfully.

2.3.2 Design and implementation

The ECU application is written in ANSI C for portability and strong memory,

string and file handling abilities. As inexperienced programmers need to work

on the code we avoid any complicated language extensions such as LEX, YACC

and C++.

File system: system context

The whole file system is shown in figure 2.6. The detailed file formats are

defined in [90, 93] if required.

The files requiring most parsing are those read/written by the user. To keep

the general format under control we apply the following restrictions.

0 The files are textual with comments (lines beginning with '#') and com-

mand/parameter pairs.

Chapter 2. Design and implementation: global issues. 	 53

.crun>.ere
ECU results file.
Describes operation of
the run and what
occurred.

<r.m>.sig
Sinal file. A mach-

<nipp-path><dataset>
Parallel binary dataset. These files contain

anism for the user to the raw data, e.g. gauge configuration,
interrupt a running from the MPP machine. The dataset name
application in a controlled is created from the relevant physics
way. parameters. Each of these files will have an

accom_panying information file constructed
by ECU when the application terminates.

<run>.ain
Application instructions. Simple
list of instructions indicating
what the application is to do.
Created by ECU and optionally
removed after ECU terminates.

I Random number
I state information.

ECU APPLICATION I This vanes with
I I I G and platform. <run>.are

Application results. Simple coded I I
I list of results from application e.g.I I
I sweep numbers save 	gauge I I
Iconfigurations with plaquette I I I values for validation. Optionally I I removed when ECU terminates. I

.crun>.eri
Run instructions from
User. Text file contain-
ing comments and
command/parameter
pairs.

<dataset>.edi
Data information file,
one accompanies each
parallel data file.
Created by ECU
from application
instructions and histor

<run>.Iog
A logfile containing only error
messages generated by ECU and
the application. Kept small so that
errors are easy to spot.

Figure 2.6: The MPP file system.

Chapter 2. Design and implementation: global issues. 	 54

o There can only be one command with following parameter per line. The

command must be separated from the parameter by one or more tabs or

spaces. Tabs and spaces leading the command or trailing the parameter

are ignored.

C3 Blank lines are legal and are ignored.

• Upper and lower cases are considered identical except within quoted

strings or paths.

• The maximum length of a command is 24 characters. The maximum

length of a line is 80 characters.

o Information from other applications can be included, e.g. a propagator file

will include information about the gauge configuration used to generate

it and the source, and is represented as

<included-app> {
<included-command-i> <included-parameter-i>
<included-command-2> <included-parameter-2>

These included blocks are parsed to check that <included-app> is legal

for the file type and that the commands and parameters are valid. These

blocks cannot be nested.

Overall design of ECU

The design of the ECU application is shown in figure 2.7. Notice that ECU runs

in two modes, before and after the physics application has run.

Routines for reading user text files, one for each application, all make use of

a common routine to parse the files and process the data. The advantages

of this are that the files are constrained to a common format —entirely non-

overlapping routines always result in subtle differences in format— and by

having a common routine we are forced to use some sort of list of legal elements

Chapter 2. Design and implementation: global issues. 	 55

[1niiun I 	 [rcRu1 I

TIME

Figure 2.7: Overall design of ECU.

Chapter 2. Design and implementation: global issues. 	 56

in the files, easy to update and understand. Even when we do not have a

common routine for file I/O with different applications we still use lists of items

to reduce code complexity and improve understanding making extensions easier

to implement.

The data repository

At the heart of ECU is the data repository. This is a single module which

provides a central storage area for all data read from or written to files. Limit

checking, format conversion, default selection and optional arguments are all

implemented for scalar or vector quantities in a highly consistent way. In

addition, automatic consistency checking is built in for when the data structure

is extended or modified.

The data is stored in an array of records, each with the following structure.

name 	A lowercase word (optional '_'s) describing the data element, e.g.

lattice.ic the lattice extent in the x-direction.

type 	An enumerated constant defining the data type. Legal types are

string, path (a string with enforced trailing I), int, float, cho-

ice (different choices e.g. point and loaded for src_type), tsli-

ced_int and tsliced.±loat (time-sliced vector quantities), sct-

sliced_mt and sctsliced.Iloat (spin, colour and time-sliced in-

dexed vector quantities).

index 	An enumerated type used for all references outside of this module.

By including this number in the list we can check that all elements

are in the correct order on first using the DR.

mm

max 	String representations of the lower and upper limits on a quantity.

def it 	The default value to use if we want to read the value of an element

without first having inserted some data.

Chapter 2. Design and implementation: global issues. 	 57

choices If type is set to choice then this element of the record points to a

list of strings that may be used for the field. For example, boolean

variables are represented as a choice between 'no' and 'yes'.

depend

depval 	Some choice elements will require different data for the various

choices, e.g. source type for SOLVER: for a point source we want to

know the location (psrc...x, psrc_y, psrc.z and psrc_t), whereas

for a loaded source we want to know the name (lsrc..naxne) and

the time-slices to use (between tslice..max and tsliceinin). So

in this example, for psrcx we would have depend and depval as

src_type and point respectively.

This facility saves having unnecessary elements in files read/written

by the user, improving clarity.

format 	A normal C format string specifying precision used and type of

output, e.g. pion propagator values have a format of '%13. 10f 1 .

action An enumerated type defining the action to be taken when a value

to be inserted into the DR disagrees (or agrees in a few cases) with

a previous value. Either an error or warning condition is raised.

result The value of the data element stored as a string. By defining this

record element as a 'void *' we can easily implement scalar or

vector quantities.

A single header file containing a list of enumerated indices and prototypes for

functions intended for external use provide the only access to this module. The

use of enumerated types is ideal for validation as most compilers check these

types strictly.

Routines exist for the following

insert 	We can insert a data value by name or index. Insertion can be

Chapter 2. Design and implementation: global issues. 	 58

forced (even if the values disagree) and specify whether data is

coming from the application or user to get the correct format.

read 	We can optionally clear the result after reading a data element and

specify whether the data is going to the application or user.

display 	It is useful to be able to print out all details about an item in the

DR to save time finding the documentation. Higher level routines

can print out all options for a file type or application.

reset 	If needed, all data elements can be reset to empty.

Vector type elements can only be accessed after the relevant DR items source--

spin, source-colour and time_slice have been set to the correct index values.

2.3.3 Operation

Use of the ECU application is usually wrapped up in a shell script as there are

three main stages.

Run ECU in 'before' mode to convert user-style run instructions and

previously written data information files to a form easily understood by

the application; the application instructions file. Full validation takes

place during the conversion. Auxiliary files, binary datasets and RNG

state information, are checked for existence if possible; the ability to

check for their existence depends on the parallel file system in question.

Run the application to generate physics.

Run ECU in 'after' mode to convert the application results log into user-

readable form and write the necessary data information files to accom-

pany the parallel datasets.

Each production run of an application should be uniquely labelled, this run

name is given to ECU and the application as sole input; all filenames are derived

Chapter 2. Design and implementation: global issues. 	 59

from this or the relevant physics parameters.

2.3.4 Operation example: generating a gauge configura-
tion

As an example of the input and output files used, consider the following input

file used to create a gauge configuration.

Example run instruction file 'example.eri' for GAUGE

Set the lattice size to be 164
lattice_x 16
lattice_y 16
lattice_z 16
lattice_t 16

Specify the physics parameters used.
beta 6.0

Specify the starting point and duration of simulation.
* We use a disordered/random start and generate 5 compound

* sweeps through the lattice.
start-type hot
compound-sweeps 5

U Specify algorithmic parameters for a single sweep.

U We use (in order)
* Random gauge transform.
U 3 update sweeps, each consisting of
* 	2 Cabibbo-Marinari updates and
* 	2 Over-Relaxed updates
* A reunitarisation.
gauge-transform yes
update-sweeps 3
cm-sweeps 2
or-sweeps 2
reunitarise yes

* Save the plaquette average on every update sweep.
plaquette_interval 1

Chapter 2. Design and implementation: global issues.

Save the configuration every 5th compound sweep, i.e.
at the end of the simulation for this run.
checkpoint-interval 5

Seed for initialisation of the random number generator
* for the hot-start and updates.
mg-seed 38234765

* Specify where to put the parallel data files.
gauge_mpp_path /scratchl/qcd/npstan/

It Specify where to put the data information files.
gauge_fe_path /home2/npst an/example/data!

To run the application we must first convert the run instructions by issuing the

command

ecu -agauge -rexample -mbef ore

which. produces the file 'example. am' for the GAUGE application. If we then

run GAUGE giving it the run name 'example' the gauge configurations will

be generated. We expect the configuration number generated to be 5 x 3 x

2 x 2 = 60 from the algorithmic parameters and number of compound sweeps

generated. At the end of the run the parallel data files are left in directory

'/scratchl/qcd/npstan/' as required. A file is generated for each time-slice,

i.e.

Q60U000060TOO Q60U000060T04 Q60U000060T08 Q60U000060T12
Q60U000060TO1 Q60U000060T05 Q60U000060T09 Q60U000060T13
Q60U000060T02 Q60U000060T06 Q60U00006OT10 Q60U000060T14

60UO0006OT03 Q 6 OUO 0006 0T07 Q60U00006OT11 Q60U000060T15

and possible the lattice RNG data if using the data-parallel code. To tidy up

after the application we issue the command

ecu -agauge -rexample -mafter

which analyses the application results file 'example. are' and produces data

information files in directory '/home2/npstan!example!data/' as requested.

Again there is one file for each time-sliced data file and a random number state

Chapter 2. Design and implementation: global issues. 	 61

file if using the message-passing codes:-

Q60U000060.rng
Q60U000060T00.edi
Q60U000060TO1 .edi
Q60U000060T02.edi
Q60U000060T03 .edi
Q60U000060T04 . edi

Q60U000060T05.edi
Q60U000060T06.edi
Q60U000060T07.edi
Q60U000060T08 . edi
Q60U000060T09.edi
Q60U00006OT10 . edi

Q60U00006OT11 .edi
Q60U000060T12 . edi
Q60U000060T13.edi
Q60U000060T14.edi
Q60U000060T15 . edi

The data information files will be of the form

latti.ce_x 16

lattice_y 16

lattice_z 16

lattice_t 16

beta 6.0

update-sweeps 3

cm-sweeps 2

or-sweeps 2

reunitarise yes

gauge-transform yes

mg-seed 38234765

swap-row-col no
gauge_mpp_path I scratch 1/qcd/npst an!

gauge_fe_path !home2/npstaxi!example/data!

sweep-number 60
plaquette_real 0.5917322655

plaquette_imag 0.0000462752

gauge-version 1

ecu_version 1

time-slice 0

tplaquette_real 0.5876517477

tplaquette_imag 0.0003444789

gtcsum 42556

i.e. a record of the algorithmic and physics parameters with the average pla-

quette value for the configuration, versions of applications, time-slice data and

checksum. A simple record of what has been written is left in file 'example. ere'

Written gauge configuration Q60U000060

This could be expanded in the future to include other useful information.

Chapter 2. Design and implementation: global issues. 	 62

If we then wanted to use this configuration to generate others, the next run

would have to have a modified run instructions file, 'exainplel . en'

Example run instruction file 'exainplel.eni' for GAUGE

Set the lattice size to be 164
lattice_x 16
lattice_y 16
lattice_z 16
lattice_t 16

Specify the physics parameters used.
beta 6.0

Specify the starting point and duration of simulation.
We use the previously generated configuration, number 60,
and perform 100 sweeps through the lattice.
start-type old
start-sweep 60
compound-sweeps 100

Specify algorithmic parameters for a single sweep.
We use (in order) :-
* Random gauge transform.
#3 update sweeps, each consisting of

* 	2 Cabibbo-Marinari updates and
* 	2 Over-Relaxed updates
* A reunitarisation.
gauge-transform yes
update-sweeps 3
cm-sweeps 2
or-sweeps 2
reunitanise yes

* Save the plaquette average on every update sweep.
plaquette_interval 1

* Save the configuration every 20th compound sweep.
* This run should therefore generate 100/20=5 configurations.
checkpoint-interval 20

Seed for initialisation of the random number generator

Chapter 2. Design and implementation: global issues. 	 63

for the hot-start and updates. The zero means that we
want to use the saved RNG state information.
mg-seed 0

Specify where to read/write parallel data files
gauge_mpp_path /scratchl/qcd/npstan/

Specify where to read/write data information files.
gauge_fe_path /home2/npstan/example/data/

Indicate that we want full validation of input data
files. We check the plaquette average for all time-slices,
and the whole configuration. A checksum for the data
files is calculated and verified against that written in the
edi' files shown above.
validate_plaquettes yes
validate_tplaquettes yes
validate_gtcsum yes

2.3.5 Future extensions

There are several features which could be added to this application to save

space and labour. For example

o The ability to create the next instruction file for the next run, taking

into account anomalous exit via user signals (implemented through the

'sig' file). This is particularly useful for running GAUGE where endless

configurations need to be generated. Automating this stage reduces the

load on the user when starting new runs.

o The ability to compress/ decompress data files as needed for a run and

convert formats if necessary.

Chapter 3

Design and implementation: modules common
to multiple applications

To make the MPP applications easy to implement we use a library of common

routines divided into the following areas

El Communications

o Parallel I/O

o Maths

o Random numbers

o Timing

3.1 Communications

There are two main types of communication used by the MPP codes: local,

shifting whole arrays one lattice site in a particular direction, and global, sum-

ming a quantity over all lattice sites and processors to give a vector or scalar

result. Point-to-point communications are not needed in lattice QCD and will

not be considered.

HPF implementation

The HPF implementations of both communication types are relatively straight-

forward: the global sum is provided by the intrinsic routine 'SUM', e.g.

INTEGER t
Cfpoint psi (0:Nco1our-1,0:Nspin4-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
!HPF$ DISTRIBUTE psi (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS

Cfpoint, DIMENSION tslice_average (O:Nt-1)
!HPF$ ALIGN tslice_average(t) WITH psi(O,O,O,O,O,t)

64

Chapter 3. Design and implementation: common modules. 	 65

C sum over a time-slice.

FORALL (t0:Nt-1)
$ tslice_average(t) = SUM(psi(: ,:,:,: ,: ,t))

calculates a simple time-sliced sum over all other indices.

The local communications in HPF are simple in all directions except the x-

direction because of our parity assignments. Consider figure 3.1 showing both

the 4-parity used to split the lattice and a 3-parity MOD(y + z + i). Notice

Abstract proc. (0,1)

o 	0

	

0 . 	 E•

	

(0,1) 	 (1 1 1)

	

(01 1) 	 (01 1)

y.direction 	E 	E

	

E. 	0•

	

(010) 	 (1 10)

	

(010) 	 (0,0)

Abstract proc. (0,0)

x-direction

Abstract proc. (1,1)

o 	0
0 . 	 E•

(2,1) 	 (3,1)
(1,1) 	 (1,1)

E 	E-3.parity

E. 	O.4parity
coordinates

(2,0) sub-lattice coords
(1,0)

Abstract proc. (1,0)

Figure 3.1: Parity assignments for an xy slice through the origin. The grid lines show the

abstract processor boundaries.

that to go from global coordinates (1,0) to (0, 0) does not require any commu-

nications since the two points are on different parity sub-lattices with the same

sub-lattice coordinates. We can extract a general rule from this diagram if we

calculate the logical quantity 'decision' where

decision = (par .EQ. EvenAND. updown .EQ. Negative)
.OR.(par .E. Odd .AND. updown .EQ. Positive)

= Dl .OR. D2

where 'par' is the parity of the source array and 'updown' indicates the direction

of shifting. The possibilities can be tabulated

Chapter 3. Design and implementation: common modules. 	 66

par updown Dl D2 decision
Even Positive 0 0 0, Odd
Odd Positive 0 1 1, Even

Even Negative 1 0 1, Even
Odd Negative 0 0 0, Odd

From the 3-parity equivalents of 'decision' given in this table we can see from

the first row that if we wish to shift an even 4-parity array in the positive

x-direction we only wish to communicate those elements where the 3-parity is

Odd (i.e. global coordinates (1, 1) or (3, 1)).

To implement these 3-parities we use masks set to '.TRUE. 'on even 3-parity (an

arbitrary but crucial convention). Because of a restriction in the CM compiler

we use a different mask for each associated data type. For example, with gauge

fields we have

LOGICAL gauge-mask (0 :Ncolour-1 ,O :Ncolour-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
!HPF$ DISTRIBUTE gauge_mask (*,* ,BLOCK,BLOCK,BLOCK,BLOCK)
!HPF$$ ONTO QCDPROCS

CALL setup-gauge-mask (gauge-mask)

where the routine 'setup-gauge-mask' must be called before any communica-

tions take place.

To hide all details of the x-direction communications from the user we provide

a set of routines, one for each data type, to perform all shifting operations. For

example, with gauge fields we would use subroutine 'shift..3by3' defined as

SUBROUTINE shift _3by3 (gauge-mask,
$ source, par, dir, updown, dest)

#include
#include
#include
include
#include
#include

"implicit .h"
"build_size .h"
"build_constants .h"
"processors .h"
"precision .h"
"shift .h"

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1,

Chapter 3. Design and implementation: common modules. 	 67

$ O:Nxby2-1,0:Ny-1,O:Nz-1,O:Nt1)

$ source, dest
INTEGER par, dir, updown, shift_dir
LOGICAL decision
LOGICAL gauge-mask (0 :Ncolour-1 ,O :Ncolour-1,

$ O:Nxby2-1,0:Ny-1,O:Nz1,O:Nt1)
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS
IHPF$$ source, dest, gauge-mask

C Convert x,y,z,t into correct indices for shifting arrays.
C X_shift is defined in shift.h to be 3

shift_dir = dir - X_index + X_shift

C move the gauge fields, no matter which direction.
dest = CSHIFT (source, SHIFT=updown, DlMshift_dir)

C check whether to set gauge fields back to what they were
C on certain parities for the x-direction.

IF (shift_dir .EQ. Xshift) THEN
decision = (par.EQ .Even_parity .AND. updown.EQ .Negative)

$.OR. 	(par.EQ.Odd_parity .AND. updown.EQ.Positive)
dest = MERGE (source, dest, gauge-mask .NEQV. decision)

END IF

RETURN
END

As an example of use consider the following equation fragment

res0 (r) = srce (r +)

which would be implemented as

CALL shift_3by3 (gauge_mask, src, Even-parity,

$ X_index, Negative, res)

where all constants are defined in header files for ease of use. Note that for any

other direction than x the parity is ignored as you always change parity.

MP implementation: initialisation

The communications details for MP with PVM are dealt with in Appendix E.

In this section we present a portable interface to the MP communications.

Chapter 3. Design and implementation: common modules. 	 68

Before we can perform any actual communications calls we need to initialise

all data structures and establish which processor is running which segment of

the lattice. A portable interface is provided to implement this

SUBROUTINE init_comius (grid-size, grid_pos,
$ 	 proc_id, boss_proc)

INTEGER grid_size(O:Ndim-1), grid_pos(O:Ndim-1),
$ 	proc_id, boss_proc

where the parameters are shown in table 3.1.

grid-size The size of the processor grid in each direction. A size of 8 pro-
cessors is returned as '8', not '7'.

grid_pos The position of the local processor in the grid. Positions run from
'0'.

proc_id A unique number labelling the local processor.
boss_proc A nominated boss processor. Any operations which should only be

performed by one processor are performed by the boss processor.

Table 3.1: Parameters for the init_conuns routine.

Each process finds the above information from the boss processor. A loader

program, e.g. pvmgrid for PVM as described in Appendix E, spawns the pro-

cesses and sends the necessary information to them.

Once we know the local processor position and ID, the boss processor reads in

the parameters for the application run; F77 file handling is performed by one

processor only. As we have been told the boss processor and local processor

numbers it is trivial to tell whether the local processor is the boss or not.

Parameters are set in other processors .using the routines shown in table 3.2

Routine Data type
ig_set integer
ivg_set vector of integers
ig_set logical
lvg_set vector of logicals
g_set single precision real
vg-set vector of single prec. reals
dg-set double precision real
dvg_set vector of double prec. reals

Table 3.2: Routines to set data elements on all processors.

Chapter 3. Design and implementation: common modules. 	 69

The interfaces to these routines are as straightforward as you would expect,

e.g

Fpoint kappa, v_real(0:9)

CALL g_set (kappa)
CALL vg_set (10, v_real)

Before we make any references to lattice coordinates we need to initialise the

common block containing all information about the decomposition. This is

done by calling routine grid-start with the following interface

SUBROUTINE grid-start (grid-size, grid_pos,

$ global_latt, proc_id, boss_proc)

C extents of the global lattice.
INTEGER global_latt(0 :Ndim-1)

all other parameters are as specified above for init_comms. The grid-start

routine sets up the parameters defined in table 3.3.

Dimension Ndim=4
localJ.att The local lattice size in each direction.
is-local Set to TRUE if the grid is only one processor wide in a particular

dimension.
local-start Global coordinates of the first local lattice point.
local-end Global coordinates of the last local lattice point.
n_bound Number of sites in each boundary.
np_bound Number of boundary sites of each parity.

lAs np..comm np_bound except if is-local is TRUE there is no communica-
tions in this direction so np_comm equals zero.

Dimension Ndim*Max_w idth

grid_latts All local sizes.
gr.starts All local starts.
gr.ends All local ends.

Scalars
base-parity Parity of the first local site.
n_sites Number of local sites.
np_sites Number of local sites of each parity.
g_sites Number of global sites.
gp..sites Number of global sites of each parity.

Table 3.3: Parameters initialised by grid-start.

Now we know the characteristics of the local lattice we can define the shift

Chapter 3. Design and implementation: common modules. 	 70

(gather-scatter) and boundary tables as introduced in section 2.2.5.4. As be-

fore, we have a routine to do this, i.e.

CALL make-table (is-local, shift-table,

$ 	 boundary_table)
CALL cony-shift-tables 0

acting on the common block variables defined in a header file for ease of use.

Routine conv_sh if t _t able s only implements compressed gather-scatter tables

if desired at build-time. Everything is now set up ready for the application.

MP implementation: global sums

Global sums are calculated by passing local values up to the boss processor

creating a cumulative sum. The final value is then broadcast back to the local

processors, either using the _set routines discussed earlier or a package specific

method. We use a different routine for each data type as we did with the global

setting routines, e.g.

Fpoint r, vr(0:9)
INTEGER 1, vi(0:12)

CALL g_surn (r)
CALL vg_sum (10, vr)
CALL ig_sum (i)
CALL ivg_sum (13, vi)

MP implementation: local shift

All processors are running the same program so boundary transfers always

come in pairs; an outgoing send and incoming receive in opposite directions.

For each communication we make two subroutine calls; one to initialise the

communication, fstart_com for reals or istart_com for integers, and one to

end it, fend_corn or iend_com. Between these calls the processor is free to

perform any other work provided the buffers are not disturbed. The call to end

the communication will not return until all data is safely received.

The syntax for these calls is

Chapter 3. Design and implementation: common modules. 	 71

SUBROUTINE fstart_com (len, idir, icmp, ocmp, ilen,

$ 	 f input, olen, foutput)
SUBROUTINE fend-corn 	(len, idir, icrnp, ocrnp, ilen,

$ 	 f input, olen, f output)
SUBROUTINE istart_corn (len, idir, icmp, ocmp, ilen,

$ 	 iinput, olen, ioutput)
SUBROUTINE iend_com 	(len, idir, icrnp, ocmp, ilen,

$ 	 iiñput, olen, ioutput)

INTEGER len, idir, icmp, ocmp, ilen, olen,

$ 	iinput (O:icmp-1,O:ilen-1,0:ocmp-1),

$ 	ioutput(O:icmp-1,0:olen-1,0:ocmp1)
Fpoint finput (O:icrnp-1,0:ilen-1,0:ocrnp-1),

$ 	foutput(O:icmp-1,0:olen-1,0:Ocmp1)

where the parameters are explained in table 3.4.

len The length of the communication will be lenx icmp.
idir Direction of the communication. Values 0, 1, 2, 3 represent a shift

in the positive x, y, z and t directions; values 4, 5, 6, 7 represent
negative shifts.

icmp Number of components inside the length index.
ocnp Number of components outside the length index.
Olen Length of the output array.

I i>output Output array for the send.
ilen I Length of the input array.
<f I i> input Input array for the receive.

Table 3.4: Parameters for the communications routines.

An example of use is

INTEGER length
PARAMETER (length 10)

Fpoint fin_buff (O:length-1), fout_buff(O:length-1)
INTEGER iin_buff(0 :length-1), iout_buff(O:length-1)

C start communication in positive Z-direction
CALL f start_corn (length,2,1,1,length,f, in_buff,

$ 	 length,fout_buff)

C start communication in negative T-direction
CALL istart_corn (length,7,1,1,length,iin_buff,

$ 	 length, iout_buff)

Chapter 3. Design and implementation: common modules. 	 72

C wait for both cornins to end.
CALL fend-corn 	(length,2,1,1,length,f , in_buff,

$ 	 length,fout_buff)
CALL iend_coin 	(length,7,1,1,length,iin_buff,

$ 	 length, iout_buff)

Further examples are shown in the later sections of this chapter..

MP implementation: tidying up

When the application has finished we need to provide a tidy way to terminate

the communications package. The routine provided is finish_cornms, i.e.

CALL finish_cornrns 0

Chapter 3. Design and implementation: common modules. 	 73

3.2 Parallel I/O

As HPF does not define a standard for parallel I/O we cannot discuss porta-

bility; there is none. All of the platform-specific routines for handling parallel

I/O operations are therefore concentrated into a few isolated routines as dis-

cussed for the GAUGE application in figure 4.3. We keep the format for the

large scale data files used on the MPP machines free so that the platform can

use the fastest I/O possible. For example, on the Connection Machine we use

the 'fixed machine size' I/O commands which do not pad out the data files

sis at a premium on most mass-data stores) and allow fast I/O access from

a. DataVault. When the configurations are used on another machine for post-

processing we must convert the format into the standard flat format defined

for all applications in the MPP suite.

We do not have a generic layer of I/O routines in HPF for any data type

because of the strong type checking; it is easier to have a different routine for

each data type. An example of the call structure is given in figure 4.3.

pio_ read _array/
pio_write_array

pio

	

READ 	BOSS: WRITE 	SLAVE: READ SLAVE: WRITE

	

init_buft'_file 	load_buff 	dump_buff
	

file
FILE HANDLING

	

block _push 	 block_pull
MESSAGE PASSING

	

DATA CONVERSION 	
addsum <unjack> 	qiack> addS sum 	<unpack> 	<pack>

Figure 3.2: Call structure of the generic message passing I/O routines.

As the message passing codes use F77 as the Fortran layer, we can use generic

routines for all data types. The structure is shown in figure 3.2. These routines

use normal Fortran I/O on a single nominated node, the boss processor. This

Chapter 3. Design and implementation: common modules. 	 74

approach is portable, and in use on the Cray T3D, but not necessarily efficient

for all machines, especially if they supply routines to perform I/O from multiple

processors simultaneously. Each call to a 'write' routine creates a new file

specified by name. We do not support appending to existing files as this would

again reduce portability. The I/O routines assume that all data associated

with a single lattice site is located in a contiguous section of the data file: an

'atom'. To pull data from memory into this atomic form, or vice-versa, we use

a packing or unpacking routine which is passed down to 'pio_array'. These

(un)packing routines allow for the index swapping needed to optimise code for

vectorisation and are specific to a particular data type. For example, 'pack--

gauge' and 'unpack-gauge' are used to implement the two-row format needed

for a gauge configuration.

The file is opened by the boss processor using routine 'mit_buff_file', a

normal F77 'OPEN' statement together with any platform-specific qualifiers.

Operation then depends on whether the file is being read or written. For

reading files the boss processor loops over the data file indices, reads in a

block of data contiguous to a certain processor using 'load-buff', adds the

contents to the checksum and then either unpacks it (local memory) or sends

the block to a remote processor using 'block-push'. The message passing layer

is implemented directly in terms of the message passing primitives as shown in

Appendix E. The remote processors receive the sent block and then unpack

the contents to local memory. Writing a file is the opposite sequence of events.

The file formats used are straightforward: for gauge configurations the loop

ordering is: Real part of complex (fastest moving), Imaginary part of complex,

Colour row (0-1), Colour column (0-2), Direction a, X, Y, Z (slowest moving).

And for quark propagators: Real part of complex (fastest moving), Imaginary

part of complex, Colour (0-2), Spin (0-3), X, Y, Z (slowest moving).

Chapter 3. Design and implementation: common modules. 	 75

3.3 Parallel I/O performance

We have measured the speed of the I/O systems on various platforms as shown

in table 3.5 1 .

App. Platform Size Precision
12 4

Speed Efficiency
MB/s % peak

 16
Speed Efficiency
MB/s % peak

G CM200 8K D 0.140 0.56 0.127 0.51
G CM200 8K S 0.095 0.38
G CM5 16 D 0.216 0.68 1.144 3.58
G CM5 32 D 0.277 0.87 0.561 1.75

G T3D 8 D 1.62 5.1 2.29 7.2

G T3D 16 D 1.56 4.9 1.97 6.2

S CM200 8K S 0.197

10.355

0.79 0.162 0.65
S CM200 8K D 0.181 0.73
S CM5 16 5 1.11
S CM5 32 S 0.168 0.53
S CM5 32 D 0.322 1.01
S T3D 8 D 1.05 3.28
S T3D 16 D 0.9101 2.84

Table 3.5: Performance data for parallel I/O on various platforms. The top part of the table
shows data from the GAUGE application, the bottom section shows data from the SOLVER

application.

It can immediately be seen that the efficiency of these operations is extremely

low, at most 7% of the peak rate. The main reason for this poor performance is

that the fields are saved in time-sliced form. This increases the number of files

which need to be opened and close, with the opening and closing operations

validated. Our timings are for the whole configuration, not a single read/write

operation so these extra elements become important. The need to increase

the length of single data transfers is shown by the increase in performance for

larger lattices and the reduction in speed for more nodes.

The CM200 (peak I/O rate of 25 MB/s) and CM5 (peak I/O rate of 32 MB/s)

timings use the 'fixed memory size' I/O routines which do not pad out files

to huge lengths, a useful saving in disk space. They can only be read back

'The platforms are discussed in section 3.6.

Chapter 3. Design and implementation: common modules. 	 76

into a machine of the same size as they were written from, usually not too

big a restriction as lattice QCD tends to need the whole machine to get high

performance for computation.

The T3D (peak I/O rate of 32 MB/s) is an factor of 10 better in performance,

although still only 7% of peak at best. This poor performance is due to the

communication between the T3D and its YMP front-end. Test code on the

YMP can achieve almost peak I/O transfers [101]. The I/O is performed in

an asynchronous way, the I/O takes place in the background once started so

that communications with other processors can occur concurrently. This I/O

method has yet to be optimised; applications programmers at Edinburgh Par-

allel Computing Centre expect a large improvement in the near future.

Chapter 3. Design and implementation: common modules. 	 77

3.4 Maths

Throughout the MPP codes we need to perform matrix operations, mainly

multiplication and addition, on a variety of data types. By channeling such

operations through subroutines, rather than performing them in-line, we incur

a slight slowing down through the routine call and return but gain by reducing

code space and providing an easy target area for platform-specific optimisa-

tions. We form the routines into a library as they are not likely to change in

the future, except for optimisations, and should be isolated from the higher-

level routines.

SU(3) matrices

The largest number of routines are associated with the gauge fields used thr-

oughout all codes. In HPF we always operate on a single parity sub-lattice,

the smallest unit passed around the codes, and in MP we use a variable length

vector of SU(3) matrices adaptable to all situations.

There are only two unary operations on gauge fields, taking the trace over colour

indices and daggering (taking the hermitian conjugate). The implementation

and use of these routines is straightforward in either HPF or MP model. For

example in HPF

Cfpoint, DIMENSION (0:Nco1our-1,0:Nco1our-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
$ a, b

!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS

!HPF$$ a, b
Cfpoint, DIMENSION t (

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
!HPF$ DISTRIBUTE t (BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS

C t = Trace (a)
CALL trace_3by3 (a, t)

C b = hermitian conjugate of 'a'

Chapter 3. Design and implementation: common modules. 	 78

CALL dagger_3by3 (a, b)

C a = hermitian conjugate of 'a'
CALL r....dagger_3by3 (a)

Note that we use a convention that the rightmost parameter(s) contain the

results of the operation. The 'r_' prefix denotes a form of in-place operation,

this notation is expanded for binary operations as shown below.

Binary operations on gauge fields are more complicated. Matrix multiplication

can be used to combine daggered or undaggered matrices and the result can

be placed in a new matrix, the left operand or right operand. The various

possibilities are tabulated below.

hh_3by3 a = bt * c
hm_3by3 a = bt * c
mh...3by3 a = b * c
mm_3by3 a = b * c

lrJih_3by3 b = W * c
1rJim_3by3 b = bt * c
1r..inh_3by3 b = b * c
1r.inm_3by3 b = b * c

rriih...3by3 	c = bt * ct
rr...hm_3by3 	c = bt * c
rrmh_3by3 c = b * c
rrinm_3by3 	c = b * c

In the MP approach we have a further complication in the addressing mode.

Routine names are written as

[dest] [operation] [addr mode]_3by3 (n, {T}, 1b, b, l, c, {l a}, {a})

Optional parameters are shown in '{... }'. The 'n.' parameter is the number

of SU(3) matrices to operate on, 'T' is a gather-scatter table and 'l,' is the

length of vector x. The destination for the result, '[dest]' can be any of

'lr_', 'rr_'}, the multiplication operation can be any of {'hh', 'hm', 'mh', 'min'}

and the addressing mode '[addr mode]' can take any of the following values

The result is scattered using table T.

Matrix b is gathered using table T. We cannot use this in conjunc-

tion with destination 'lr_'.

Matrix c is gathered using table T. We cannot use this in conjunc-

tion with destination 'rr_'.

Matrix b is a single matrix rather than a vector and is used for all

Chapter 3. Design and implementation: common modules. 	 79

elements of c. We cannot use this with the destination 'lr_'.

Matrix c is a single matrix rather than a vector and is used for all

elements of c. We cannot use this with the destination 'rr_'.

No indirect addressing.

The are so many possibilities that we only implement those needed according

to the naming scheme above.

In HPF, addition of matrices is trivial since the code

Cfpoint, DIMENSION (0:Nco1our-1 ,O:Ncolour-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) :: a, b, c
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS
!HPF$$ a, b, c

ab+c

operates on all elements of a, b and c. It is more tedious to do this with the

MP code as we have four indices to loop over and the possibilities of gather-

ing/scattering arrays. We therefore use subroutines, extending the previous

naming scheme to incorporate the 'add' operation. An example of such a rou-

tine is '1r_add_rg3by3'.

SU(2) matrices

We perform gauge update algorithms using SU(2) subgroups as described in

Appendix B. To reduce space needed and speed up computation we represent

these complex 2 x 2 matrices as four real Pauli parameters i.e.

M22 = m0 1 + im.o•

e.g. in HPF

C Npauli is defined to be 4
Fpoint, DIMENSION (O:Npauli-1,

$ O:Nxby2-1,O:Ny--1,O:Nz-1,O:Nt-1) :: a
!HPF$ DISTRIBUTE a (*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS

We only need to perform a few operations on these data objects and they are

Chapter 3. Design and implementation: common modules. 	 RIF

all local, i.e. no gather-scatter needed. The routines supplied are

mm_su2 	a = b * c
dagger....su2 a = bt
square_su2 a = b * b

Spinors

The routines which act on 4-spinors form the basic toolkit for constructing

different solver algorithms and, as such, are discussed in section 5.2.

Mixed data-type operations

All operations performed on mixed types are forced to be local, simplifying

their interfaces. We summarise the required operations below; ik is a 4-spinor,

X a 2-spinor and U an SU(3) matrix.

su3Jivv 	Xa Ub * Xc
su3.invv. 	Xa = Ub * Xc

su3Jkv4 	= (4 *
su3mv4 	Oa = Ub * ?I)C

xpgammay Ox = i/ + y&
xmgammay Ox = Ox -
gammax 	Ox =

mm_su2_su3 U = m2X2U

3.5 Testing the maths routines

When testing maths routines we need known results generated in as indepen-

dent a way as possible from the production codes. In practice we use the serial

'gcc' C compiler on a SUN workstation.

Chapter 3. Design and implementation: common modules. 	 81

C ,ç3
3.5.1 	tt('34jmatrix testing

The first routines to test are those which operate on SU(3) matrices. If these

do not work properly, nothing else will. The two matrices

1.2 	1 r 	11 5.6 9.10
3.4i 	II 7.8i 	II 11.12i

13.14 	1 r 	17.18 	1F 21.22
-

A= 15.16i 	I I 	19.20i I 	23.24i D 25.26 	it 29.30 	1 33.34
27.28i 	j [

31.32i 	j
[

35.36i

2.3 	11 6.7 	11 10.11
4.51 I I 	8.9i I I 	12,13i

B= 14.15 	1F 18.19 	1 r 	22.23 (3.1)
- 16.17i I 	20.211 I I 	24.25i

26.27 	1 t 	30.31 	1 t 	34.35
28.291 if 	32.33i if 	36.37i

give the following results when the code works correctly.

1.2 13.14 25.26
-3.4i -15.16i -27.28i

At_ 5.6 17.18 29.30
- -7.81 -19.20i -31.32i

9.10 21.22 33.34
-11.12i -23.24i -35.36i

0.067973 0.317208 0.515463
0.192591i 0.441826i 0.629885i
0.737817 0.118322 -0.305720

Asu(3)= 0.561411i 0.114478i -0.140976i
-0.023573 0.020323 -0.000000
0.313332i -0.822588i 0.473502i

71 A=
:;: 	

]

2.3 14.15 26.27
-4.5i -16.17i -28.291

Bt_- 6.7 18.19 30.31
 -8.9i -20.21i -32.33i

10.11 22.23 34.35
-12.13i -24.251 -36.371

Chapter 3. Design and implementation: common modules. 	 82

-134.954 11 -205.375 11 -281.004 1\
-813.943i Ji -1827.823i II -2863.356i I I

- 	-161.683
A * B

r -230.585 1 F -306.214 1 I
- -996.736i II -2304.147i I L-3642. 1 94ii I

-185.621 1 r -251.066 1 I 	-324.513 	I I
_1172.996ij [-2750.635ij [-4367.200ij)

1884.460 1[11 	1\ 2231.293 	2572.961
-6.5001 	I i 	-32.502i 	I I 	-56.542i 	I 'I

2257.295 1 At B- * F 2708.135 1 I• 3144.305 1 I
- 19.5011 	I I 	-6.500i 	I I 	-31.332i 	J

2623.200 1 3169.334 ii 	3693.449 I I
43.937i ft 	18.727i 	ii 	-6.121i)
351.887 	11 11 	1\ 803.413 	1266.639
6.880i I I 	83.9351 	I I 	161.7451

880.863 	1 * A Bt -
r 2166.895 1 	3489.672 1 I

 -70.966i I 	6.121i 	I 	79.568i 	j I
1421.900 1 F 3563.119 	1 5767.262 I 	I
-148.777i ft -67.327i ft 	6.121i 	j)
-134.954

919.768i 	 1071.063 i 763.703i J 'I
 -205.375 -230.585 	-251.066 i

A*B = 	1854.307i 2305.421i 	2726.152i I
-281.004

	

-161.683 	-185.62 1

	

-306.214 	-324.513

•

I
2965.469i L 3719.098i 	4416.165i)

3.4 \
0.Oi 8.08i I

I

	

(3.2)
 i

 11.48
Ahen

-

[

	

11.48 	19.20 	

1J

	

19.20 	27.28
 0.Oi 0.Oi 	4.04i

19.20 F 	27.28 	
1 	

35.36 I 	I
-8.08i j { 	-4.04i 	0.Oi j)

3.5.2 Spinor testing

The routines at the core of the solver perform the matrix operations

A'=A*D

All = A t * D 	 (3.3)

where A is an SU(3) matrix and D is a 2-spinor. Only the colour indices of

D are involved so if we use our previous definition of A, and define the colour

indices of D to be

Chapter 3. Design and implementation: common modules. 	 83

37.38
39.40i

D 	
I

41.42 1 I
[1\

= 	43.44i 	I I 	 (3.4)

45.46 1 I
47.48i

then we obtain the results

/1-310.2756 1\
I I 1678.2952iI
I I -367.353 •1 I

A*D= 	

4689.9756i1 I
-440.8045 1 I

I. 7775.4854ij)

/1 3825.1992 1 \
I 177.7416i I
14881.34281 I

At * D= 	_152.5320iJ I 	 (3.5)

r 5861.2930 I I
L -122.4120ij)

3.5.3 Gauge update matrix testing

When performing gauge updates we use SU(2) subgroups. To test the SU(2)

maths routines we use the known SU(2) matrices parametrised in terms of Pauli

matrices

E = (1,4,3,2)

F = (5,8,7,6) 	 (3.6)

which multiply to give

E * F = (- 60,-24,30,12) 	 (3.7)

We can then use the previous definition of A to test the multiplication by

subgroups to get SU(3) matrices:

Chapter 3. Design and implementation: common modules. 	 84

-26.82 	11 -35.26 	11 -42.44
103.84i 	I I 	145.32i 	I I 	183.92i '1
26.26 	1 r 	7.58 	1 r 	-4.08 I

- E*A01- -16.52i 	I I 	-16.16i 	ji -16.16i I
25.26 	1 I• 	29.30 	I t 	33.34 I
27.28i 	j [31.32i 	j [35.36i)

1.2 	11 5.6 9.10
3.4i II 	7.8i I 	11.12i 'I

-50.52 	1 F 	-58.60 	1 F 	-66.68 I
- * E Al2- 224.32i 264.72i 305.12i

-20.24 	1 t 	-36.40 r 	-52.56 I
-16.16i 	j -16.16i] -16.16i)
-38.94 	11 -47.38 	11 -54.56 	1 \
188.68i I I 	230.16i I I 	268.761 'I I

-
E * A02-

13.14 	1 r 	17.18 	1 r 	21.22 	1 I (3.8)
 15.16i I I 	19.20i 	j I 	23.24i 	j

62.62 	1 r 1 	32.28

J -28.64i 	j [-28.28i 	j{ -28.281 j

The final test of the gauge update maths routines is to ensure that Ic and Ui

required in section B.1.1 are calculated correctly. If we use a complex 2 x 2

matrix

0.104820 0.314485
0.209657i 0.419314i -
0.684738 0.171185
0.556348i 0.171185i

we should get a resultant SU(2) matrix (Pauli parametrised)

= (0.2555314 1 -0.9032891) 0.3427882, -0.0356182)

(3.9)

(3.10)

and a Ic of 2.7774645 x

Chapter 3. Design and implementation: common modules. 	 85

3.6 Maths routine performance

The performance of the maths routines is easily compared on different MPP

platforms by timing the 'nun_3by3' and 'su3iivv' routines. The first of these,

'xnm_3by3', is heavily used in the GAUGE application code, and multiplies to-

gether two SU(3) matrix arrays over a single-parity sub-lattice, taking 198

floating point operations (flops) per lattice site. The second routine, 'su3Jivv',

forms the core of the SOLVER application, multiplying together a daggered

SU(3) matrix and a two-spinor. This routine takes 132 flops per lattice site

and, again, operates on a single-parity sub-lattice.

Connection Machine CM-200 performance

The Thinking Machines Connection Machine CM-200 is a data-parallel machine

running CM Fortran, similar to HPF as explained in Appendix D. The CM-200

used has 16384 (16K) single-bit processors which are grouped into groups of 32-

bit compound processors. Each of these 32-bit processors has a double-precision

Weitek floating-point-accelerator processor connected to it. The result is, in

effect, a 512 processor SIMD computer with a peak speed of 8 Gflop/s. The

CM-200 can be operated as a single partition of 512 processors or two partitions

of 256 processors (8K single-bit processors) each with a peak speed of 4 Gfiop/s.

The software used was CM Fortran Slicewise version 2.1.1-2 (SPARC).
-

Size
-

Prec.
12 	lattice 16 	lattice

Time Speed Efficiency Time Speed Efficiency
- (secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak)

-

8K D 0.852e-2 0.24 6.0 0.161e-1 0.40 10.1

8K 5 0.674e-2 0.30 7.6
16K S 0.586e-2 0.35 4.4 0.686e-2 0.946 11.8

Table 3.6: Performance data for the 'nuu_3by3' routine on a Thinking Machines CM-200
computer. The CM-200 used to generate this data was clocked at 8MHz for a peak speed

(16K processors) of 8Gflop/s.

In tables 3.6 and 3.7 we present data for the performance of the 'mxn_3by3' and

'su3...hvv' routines on the CM-200 for differing machine sizes and precision.

Chapter 3. Design and implementation: common modules. 	 86

Size Prec.
121 lattice iô 	lattice

Time Speed Efficiency Time Speed Efficiency
- (secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak)

8K S 0.331e-2 0.42 10.4 0.555e-2 0.78 19.5
8K D 0.519e-2 0.26 6.6

16K* S 0.303e-2 0.45 5.6 0.409e-2 1.06 13.2
8K* S .10,. 657e-21 0.66 16.5

Table 3.7: Performance data for the 'su3_hvv' routine on a CM-200 computer. Entries with

a are calculated from code with unrolled serial-index loops.

We can see that the 12 4 lattice does not give as high performance as the 16

lattice. The CM-200 distributes the arrays across its processors so that each

dimension is a power of two. This is straightforward in the 16 4 case, the

decomposition is shown in table 3.8. Note that we are using single-parity sub-

lattices, so the x direction has half the extent of the other directions. The

12 4 lattice however is padded in the z- and t-directions. This padding results

in a direct reduction of perform'ance as the padded elements must be avoided

during computation. The same problem applies to the case of 16K processors.

124 lattice 16 	lattice
Direction Physical Local I Phys .*Local Physical Local Phys .*Local

1 6 6 2 4 8

Y 4 3 12 4 4 16
Z 8 2 16 4 4 16
t 8 2 16 8 2 16

Table 3.8: Decomposition of the lattice onto the CM-200 processor array (8K processors, or
256 compound processing elements). The physical extents are forced to be powers of two; the
product of these must equal the number of compound processing elements (1 x 4 x 8 x 8 = 256).

The fairly low performance on the CM-200 (only 20% of peak at best) is par-

tially due to not being able to perform both an addition and multiplication on

each cycle. There are no communications in these two routines, so that cannot

be reducing performance. Another contributing factor is load on the front-end

from other users. Since the front-end is responsible for broadcasting instruc-

tions to the processor array performance will be degraded if the front-end is

required to perform other operations. The CM-200 used is extremely heavily

'tmed resulting in some loss of performance.

Chapter 3. Design and implementation: common modules. 	 87

The increase in performance for the 'su&hvv' routine over 'min_3by3' is probably

due to the layout of the serial indices in memory. The gauge fields are declared

as

Cfpoint gauge (0:2,0:2,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt1)

and addressed in the order row, column. The two-spinor fields are declared as

Cfpoint chi (0:2,0:1,
$ 0:Nxby2-1,0:Ny-1,0:Nz1,0:Nt1)

where the first index is the colour index and the second is the two-spinor index.

The 'su&.hvv' routine only operates on the colour indices. To obtain a single

element in a gauge field from multiplying two gauge fields together we loop

over the columns in the first field and the rows in the second field as shown

below.
fXXX\fX.

	

L..I=I• 	. 	.IIx..
. 	..) 	. 	. 	.)'\ X..

CM Fortran uses the C convention for fastest-moving index; the column index

moves fastest. When we use the daggered matrix for the 'su3iivv' operation

we are in effect doing

fX.\ fX..*IX.

I. 	.I=Ix..Hx.
. 	 .1 x..)\x.

so the memory is accessed with the same stride for all arrays, a more efficient

operation.

Connection Machine CM-5 performance

The Connection Machine CM-5 is intended for MIMD programming, although

it can run the same data-parallel CM Fortran code as the CM-200; no alter-

ations are necessary. It is in this SIMD mode that we use the platform. Each

node consists of a SPARC processor and 4 vector processors for floating-point

arithmetic. The peak speed of a node is 160 Mflop/s (for a clock speed of

Chapter 3. Design and implementation: common modules. 	 88

8MHz) resulting in a peak speed for the machine used of 5.12 Gfiop/s (32

nodes). The machine can be operated as a single partition of 32 nodes, or two

partitions of 16 nodes each. The software used to create the following data

was CMOST version 7.3 Final 1 Rev 3 and CM Fortran version 2.1.1-2 (CM5

VecUnit).

In tables 3.9 and 3.10 we present data for the two routines under consideration.

We can see that good efficiency is obtained from the vector processors without

any optimisation. The 12 lattice is not as big a problem as it was on the CM-

200, the arrays are distributed as shown in table 3.11. There is no padding,

and therefore no empty elements to worry about.

- -

Size Prec.
121 lattice 16 	lattice

Time Speed Efficiency Time Speed Efficiency
- (secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak)

16 D 0.224e-2 0.92 35.7 0.678e-2 0.96 37.4
16 S 0.496e-2 1.31 51.1
32 D 0.123e-2 1.67 32.6 0.342e-2 1.90 37.1

Table 3.9: Performance data for the 'mm_3by3' routine on a Thinking Machines CM-5 com-
puter. The CM-5 used to generate this data was clocked at 8MHz for a peak speed (32

nodes) of 5.12Gflop/s.

-

Size Prec.
12 	lattice 16 	lattice

Time Speed Efficiency Time Speed Efficiency
- (secs) (Gflop/s) (% peak) (secs) (Gfiop/s) (% peak)

-

32 S 0.815e-3 1.68 32.8 0.203e-2 2.13 41.6
32 D 0.100e-2 1.37 26.7
16 S 0.138e-2 0.99 38.7

16* S 0.123e-2 1.11 43.5 0.354e-2 1.22 47.7

Table 3.10: Performance data for the 'su3..hvv' routine on a CM-5.

Changing from single-precision to double-precision does not halve performance

as the floating-point vector units operate on 64-bit data. The reduction in

performance comes from the increased memory-access time required.

A notable improvement in performance comes from unrolling serial-index loops

in the code, as indicated by the 16* entry in table 3.10. The 'DO' loops over

colour and two-spinor indices are removed completely increasing the code space

Chapter 3. Design and implementation: common modules. 	 89

Direction
12 	lattice 16 	lattice

Physical Local Phys .*Local Physical Local Phys .*Local

X 1 6 6 2 4 8

Y 4 3 12 2 8 16
Z 4 3 12 4 4 16
t 4 3 12 4 4 16

Table 3.11: Decomposition of the lattice onto the CM-5 processor array (16 nodes). The
physical extents are forced to be powers of two; the product of these must equal the number

of vector processors, 4 per node (1 x 4 x 4 x 4 = 64).

required considerably, but at the same time increasing performance by a few

percent. The figures for the 'mm_3by3' code are all calculated from unrolled

code.

Some our our figures are higher than those obtained by the Wuppertal group

using vector unit assembler code on the same CM-5 computer [102]. They

achieve speeds of 1.8 Gflop/s on a single-precision 24 x 48 lattice. One reason

for this is that the compilers have improved over the last few years to the

point where it is as good to program the CM-5 in CM Fortran as it is in

assembler. This is good news for our code portability; we do not have to

sacrifice performance to gain portability if the compiler technology is as good

as this.

Cray T3D performance

The Cray T3D is a MIMD computer, running our message-passing codes under

PVM. Each node consists of two DEC-ALPHA processors running at 150 MHz

with other hardware for communications. The peak speed of a node is 300

Mfiop/s giving a peak speed for the platform of 38.4 Gflop/s (128 nodes or

256 processors). The machine can be operated in a large number of partition

sizes. We use only two sizes, 8 processors and 16 processors. The software used

to generate the following data was UNICOS version 8.0.2.1, UNICOS MAX

version 1.1.0.2 and CF77 version 6.1. The hardware used was a T3D/MC256-8

with a Y-MP4E/264 front-end.

Chapter 3. Design and implementation: common modules. 	 90

In tables 3.12 and 3.13 we present data for the two routines under consideration.

The T3D uses 64-bit words throughout so there is no advantage in using single-

precision; only double-precision data is presented.

- -

Size Prec.
121 lattice 16 4 lattice

Time Speed Efficiency Time Speed Efficiency
- (secs) (Gfiop/s) (% peak) (secs) (Gflop/s) (% peak)

8 D 0.942e-2 0.22 18.2 0.297e-1 0.22 18.3
16 D 0.468e-2 0.44 18.3 0.148e-1 0.44 18.3

Table 3.12: Performance data for the 'nun_3by3' routine on a Cray T3D computer. The T3D

used to generate this data has a peak speed (128 nodes) of 38.4Gflop/s.

-

Size Prec.
12 	lattice 16 4 lattice

Time Speed Efficiency Time Speed Efficiency
- (secs) (Gfiop/s) (% peak) (secs) (Gflop/s) (% peak)

-

8 D 0.642e-2 0.22 18.3 0.195e-1 0.22 18.5
16

1 	
D 0.318e-2 0.43 17.9

Table 3.13: Performance data for the 'su3iivv' routine on a Cray T3D computer. The T3D

used to generate this data has a peak speed (128 nodes) of 38.4Gflop/s.

Overall, efficiency of the code is low at 18% of peak. This is because of the slow

memory access of the ALPHA processor; memory access takes 24 chip cycles

as there is no pipe-lining. This is a feature that Cray aim to improve on with

the T3E computer, but there is little that can be done at present. Because

there is no padding of the arrays for the 12 4 lattice, performance is extremely

steady. There is no improvement obtained from the differing memory access

described above for 'su3hvv' and 'mm_3by3' as the memory-access redundancy

dominates timing.

Chapter 3. Design and implementation: common modules. 	 91

3.7 Random numbers

One of the most controversial questions in lattice simulations is: 'which ran-

dom number generator should I be using?' Monte Carlo simulations require

extremely long period generators with low bit-level and lattice correlations. In

this section we do not attempt to answer the question, but instead accept that

the RNG used by the MPP codes must be easily changeable. In order to keep

the code usable, however, we must maintain a standard interface to the RNGs

in some way.

There are two types of RNG potentially used in the codes; lattice and single

generators. When creating, for example, a local random gauge transformation

we need a different random SU(3) matrix at each lattice site, hence the need

for a lattice generator. If we wanted a global gauge transformation however,

we only need a single SU(3) matrix which is then communicated to all points

on the lattice for use. The distinction is not so great for the message-passing

approach, where we can have the same random number generator running on

all processors with different seeds.

In the 11FF implementation we have several problems to contend with. Firstly,

we do not want to have to run a single generator on the host processor and

then loop over all lattice sites broadcasting numbers as this would be painfully

slow. We do not have a portable access to the physical processors however, so

we cannot run a single generator on each processor as is possible in message

passing. This leaves us two options: we either run a single RNG per lattice site

or use a machine-specific generator and sacrifice portability. The first option

must be exercise with caution, the RANMAR [103] modified lagged-fibonacci

generator used by previous UKQCD message-passing code requires a state table

of 97 words. Since a quark propagator only requires 24 words per lattice site we

can see that using RANMAR in this way is not always possible and certainly

Chapter 3. Design and implementation: common modules. 	 92

not practical. There are some generators which can be used in this way, for

example a simple linear congruential multiplier generator [104, p.2841 which

only requires 1 word per lattice site, but they are not as likely to have a long

period.

A further problem arises in both programming models: how do we initialise

the generator over the lattice to reduce correlations? Obviously we need to

give the generator a different seed on each processor or lattice site to extract

distinct number sequences, but how do we guarantee that the sequences are

not correlated in some way? This problem is more relevant in HPF when

using a different generator on each lattice site. The essence of data-parallel

programming is that all processors execute the same code at the same time; any

correlations in the random number sequences at the beginning of the simulation

will remain for the entirety of the simulation.

We do not have any hard and fast answers to these questions as they vary for

different generators and become an in-depth research subject themselves. In-

stead we present a brief survey of the available literature for more information.

The theory of pseudorandom number generators is best obtained from histor-

ical work by Knuth [105] and Marsaglia [106, 971 or a more recent review by

Vattulainen et. al. [98]. The various portable RNGs in use are discussed by

James [107], Marsaglia [103] (one of the few generators with tests included for

accuracy of implementation), Liischer [108, 109] (implemented on the APE100

but available in portable Fortran), Cray Research [110] (their RANF generator

relies on bit-level operations for portability, fine for HPF but not necessarily

for all F77 implementations) and Vattulainen et. al. (a good review of popular

generators). Tests which can be performed on RNGs are discussed by Vat-

tulainen et. al. [111, 112, 100, 98] (a comprehensive selection from bit-level

to Monte Carlo tests), Marsaglia [97], Coddington [99] and Ferrenberg [113].

Chapter 3. Design and implementation: common modules. 	 93

Random number generators for parallel machines are discussed by Anderson

[114], Deak [115] and Aluru et. al. [116].

Implementation of the module. Since we can pass array sections to sub-

routines in F77, the RNGs are easy to implement for message-passing systems.

A single routine is needed which selects the required generator, either at build-

time or run-time, and fills the offered array with random numbers. Because we

cannot pass such array sections in HPF (due to restrictions from some com-

pilers) we need a separate routine for each type of object we are filling with

random numbers. Seeding the generators is best done through a single com-

mon block variable, used for all generators, so that the driver routine for the

application does not need to be changed for each application. All of the RNG

modules can be made to be self- initialising through use of 'SAVE'ed variables.

3.8 Timing

We use only one timing routine, 'timer', which conforms with the interface

used for GENESIS [95]. The interface is

SUBROUTINE timer (seconds)
Dpoint seconds

i.e. the current time in seconds is returned. We only ever use the timer to

measure time differences so the absolute value is never needed. The insides of

this routine will need changing for different platforms.

Chapter 4

Generating quenched gauge configurations: the
GAUGE application

4.1 Requirements

The pure gauge application, GAUGE, must be able to provide the following

functionality (see figure 4.1)

Figure 4.1: Functionality required from the GAUGE application.

94

Chapter 4. The GAUGE application. 	 95

Initialisation of Markov chain. As discussed in the theory section

1.3.5 we need to be able to initialise the gauge fields with either an ordered

start (unit matrices), disordered start (random SU(3) matrices) or load

a previously saved configuration.

Update algorithm. As specified in section 1.3.4. We require a local

gauge transformation, heatbath and over-relaxed updates, and unitarisa-

tion of gauge fields (also useful for creating random SU(3) matrices in a

disordered start).

Input and output. We need the ability to load and save gauge configu-

rations in time-sliced form and the accompanying random number state

information. To save space we store gauge fields in a two-row format (the

first two rows) and reconstruct the third row on loading.

There are three possible mechanisms for validating gauge configurations:

Calculating a 16-bit checksum on the binary data file. This provides

information on the byte-ordering of the data file if required. It is not

possible to calculate such a checksum on the Thinking Machines CM-

200 or CM-5, but it is possible on the Cray T3D and workstations.

The checksum is calculated to agree with the UNIX 'sum' command.

Calculating a time-sliced plaquette average. This quantity can be

used to detect the floating-point format of the gauge configuration

(although most machines conform to IEEE standards now). We

need a time-sliced average in case any analysis routines need to read

in a single timeslice only, e.g. when smearing.

Calculating a plaquette average on the whole configuration. This

is useful as it is only a single complex number and therefore easy

to compare with a previously calculated value. The average on the

whole configuration also tells us whether the time-slices have been

Chapter 4. The GAUGE application.

read in the correct order.

There is no easy way to validate random number state information in

general. Different random number generators have completely different

sizes and type of state information, and it is not always accessible e.g.

the FAST...RNG generator on the Connection Machine. The only way to

check that the I/O works is to periodically check that restarting from a

loaded configuration yields an identical plaquette average to what would

have been obtained if updating had not been interrupted.

Plaquette value saving. We must be able to save plaquette values by

plane to a separate file. The plaquette is a statistical quantity and can

only be verified using a separate package; to extract them from the logfile

in the correct format would be tedious. Information is given in section 4.3

about testing the plaquette values.

Emergency termination. We require a mechanism to cause the GAUGE

application to terminate operation after the current compound update,

having saved the configuration and random number information. The

need for this function comes from running batch jobs: if we normally

save every 200 compound sweeps for example, and the batch job is only

going to generate 198 sweeps for some unusual reason, then we do not

want to lose the hours of computer time used.

Chapter 4. The GAUGE application. 	 97

4.2 Design and implementation

The design of the GAUGE application can be easily seen to break into modules

on top of underlying common layers (or libraries) as shown in figure 4.2. The

important features of the design are discussed in order of the modules shown

in the figure.

DRIVER

READ
	

GAUGE
	

GAUGE
	

BROOM
PARAMETERS
	

START
	

SAVE
	

UPDATE

ORDERED
START

DISORDERED
START

I REUNITARISE

GAUGE 110

STAPLE/

	

PLAQUE1TE 	
RANDOM I/O

GAUGE 	I I STAPLE/ 	I
TRANSFORM 	PLAQUETFE 	REUNITARISE f CABIBBO-

MARINARI

REUNITARISE I

OVER-
RELAXED

COMMON LIBRARY ROUTINES

Figure 4.2: Overview of GAUGE design structure.

4.2.1 Read parameters

This section of the design is intended to be as sparse and simple as possible

as it is only intended to convert parameters to a useful form, e.g. integer 0/1

to boolean . TRUE./. FALSE.. Only vital parameters such as the lattice size or

beta value are to be validated and displayed. Because Fortran, unlike C, does

Chapter 4. The GAUGE application. 	 98

not provide a standard mechanism for accessing command line arguments, we

use the shell to provide the 'run-name' on the standard input channel from

which all filenames for I/O are derived.

A common block is used to implement the storage of all parameters. We do

this as there are so many parameters in the list a function declaration would

become impossibly long. These common block variables are not guaranteed to

exist outside of 'DRIVER' and 'READ-PARAMETERS' in order to keep the

design localised.

The I/O can be implemented in standard Fortran 77 using 'READ' commands for

both DP and MP approaches. The parameters read in by this module are iden-

tical for both programming environments since the processor decomposition,

of relevance only for MP, is specified prior to execution of the application.

4.2.2 Disordered start

The easiest implementation of this function is to fill the first two rows of all

gauge matrices with random numbers distributed uniformly in [0, 1], then pass

the result to 'REIJNITARISE' to convert to STJ(3).

4.2.3 Gauge I/O

We need to be able to load and save gauge fields in two-row time-sliced form

with validation as described in section 4.1 using checksums and/or plaquette

averages. All primitive I/O operations should be validated since high band-

width data stores can be extremely unreliable. We require timing of the data

rate for loading and saving of gauge fields as this can become an important

statistic if checkpointing is performed often.

When saving a gauge configuration we also write an entry into the gauge 'appli-

cation results file', which records the progress of GAUGE. Information written

Chapter 4. The GAUGE application. 	 99

includes the version of GAUGE, sweep number and configuration validation

data. This can be written in Fortran 77 and used for both MP and DP ap-

proaches without alteration.

Because there is stronger type checking available in HPF than F77 we write

more subroutines, one for each data type. This implies that there is no generic-

type I/O layer and a large GAUGE I/O layer for HPF, and vice-versa for

MP. The implementation outline for both of the programming environments is

shown in figure 4.3.

An operational issue raised by this module is: when is it safe to save a gauge

configuration and guarantee reproducible results? Because we save in two-

row form and reconstruct the third row using the 'reunitarise' module it is

sensible only to save when we have performed a reunitarisation on the whole

configuration. This is guaranteed by the 'driver' and 'broom update' modules

which ensure that the last element of a compound update is a reunitarisation,

and the configuration may only be saved at the end of such a compound update.

We use a machine-specific file format for parallel data storage as this can usually

be implemented with a far higher data bandwidth. We require a separate

utility, easily written in terms of the available library, to transfer files from this

machine-specific format to a portable flat format.

Message-passing features. Because of the requirement for optimisation for

vectorising compilers we need to be able to change the order of the indices

for the gauge fields and hence the internal storage format. Since the external

storage format needs to be held constant we have a set of packing/unpacking

routines to perform conversion. These are discussed in more detail in section 3.2

HPF features. As can be seen in figure 4.3 we have isolated a set of routines

underneath the heading 'gauge-parallel-save'. This is done so that the HMC

application can avoid duplicating code to save its gauge configurations. All

	

Chapter 4 The GAUGE application. 	 100

gauge_data

-

 save

I

construigauge_name 	gau 	
I

name creation 	
ge_paraIeI_save 	I RANDOM 110 I 	gaugeai

	

I 	 11/0 PRIMITIVES
construct_gauge_are_name
name creation 	 P77: open, close, I

	write

construct_gauge_pbd_name 	I 	I 	I name creation
IIJOPRIMITIVES I 	I I STAPLE/
I Machine specific: I 	I 	PLAQUETTE

open, close 	 I gauge_par_ 1ave_single

I I/O PRIMITIVES I
I Machine specific: I

	

write 	 HPF implementation

gauge_dita_save

construct_gau'ge_name I tslice Thrmat 	I 	I RANDOM I/O I I 	 I
name creation 	 I 	name creati

construct_gauge_pM_name 	 + 	i 	I i 	gauge are save

FSTAPLE~
name creation 	 dumpgjuge_liced 	

I

!are_n[0MI
TI

V
QUETFE

i P77: open, close,

	

GENERIC I/O 	 construct gauge LJ
name creation

MP implementation

Figure 4.3: The structure of the gauge I/O routines. Routines labelled 'name creation' are

implemented in F77 and used in identical form for both HPF and MP systems.

Chapter 4. The GAUGE application. 	 101

application specific code, i.e. filenames and 'are' file format, is executed above

this heading. There is an option to swap row and column indices when loading

and saving the gauge fields in HPF for backwards compatibility with earlier

Connection Machine code. This is not required for MP as there are no flat

configurations in that format.

Dataset names are kept as short as possible and reflect the important physics

content. The gauge dataset name is of the format

name root
10

bUuuuuuTtt

where 'Q' represents quenched, 'bb' is INT(/3 x 10), 'Uuuuuuu' is the elemental

update number and 'Ttt' is the time-slice number. All numeric fields are zero

padded.

4.2.4 Reunitarise

The theory of this module is discussed in section B.5 and the structure shown

in figure 4.4. The structure shown is duplicated for routines to handle a sin-

gle SU(3) matrix, rather than a lattice full, as is needed by the global gauge

transform. The module is designed as a set of operations on row vectors so

they can be re-used as necessary. Regeneration of gauge fields is performed by

using 'cross3vec' after loading in the two-row formatted fields.

4.2.5 Staple/plaquette

The staple and plaquette calculation, as discussed in section B.3, forms the core

of the GAUGE update mechanism and contains all of the local communications

used in the application. Although there are several stages to the algorithm,

it is easily built in terms of the maths and communications layers defined

previously. The call structure of the module is shown in figure 4.5. Note that

Chapter 4. The GAUGE application. 	 102

reunitanse_gauge 1.
Operates on whole
configuration (HPF).

reunitarise_3by3
Operates on single parity
sub-lattice (HPF) or
whole configuration (MP).

regenerate_gauge
UP only.

Row I i
Utilities 	norm_3vee 	 orthog3vec cross_3vec

Normalises a 3-vector 	Creates a vector 'v' Creates the third row
as in equation D.10. 	orthogonal to vector u' as the conjugate cross

as in equation D.12. product o the first two
rows as in equation
D.13.

Figure 4.4: Structure of the reunitarise module.

the message-passing version is far more complex due to the need to explicitly

start, wait for, and stop communications. This introduces the need for a wider

range of maths routines to perform in-line gathers of communicated arrays.

The implementation in both DP and MP models is shown below.

One feature of the design of the staple sum is that the plaquette can be cal-

culated from a single parity in-line with the staples. The plaquette value thus

obtained is therefore that at the start of the update, rather than at the end

as would normally be calculated. However if the user does not mind this un-

orthodox method of presentation a large amount of time is saved from having

to recalculate the staple explicitly for the plaquette.

HPF implementation. In HPF this algorithm is easily implemented as fol-

lows (routine any-staple in file staplegun . HPF). We are working in the jt, ii

plane; refer to figure 4.6 for labels used in the following discussion.

Top staple

1. Move 3toA.

CALL shift_3by3 (gauge-mask, u_mu_notpar,
$ notpar, flu, Negative, tempi)

Chapter 4. The GAUGE application. 	 103

• staple sum
control

stapl_gun plaqttette
selects Correct gauge creates plaquetle averages
sub-lattices for the
plane selected

from staples
fields

and gauge

any staple
creates top and MATHS LAYER:
bottom staples hh_3by3, mm_3by3,

I COMMS LAYER: I 	MATHS
shift_3by3 	 hh_3by3,

	

trace_3by3 	 i
LAYER: 	i mm_3by3 	I

HPF implementation

MATHS LAYER: 	I 	
extractJ)laquetta

add_rg_3by3, lr_add_3by3,
rr_mm 3by3, hh_rg_3by3, I lr_add_rg_3by3 	 I MATHS LAYER: 	I COMMS LAYER:

I tre_3by3 	i 	I dvg_sum

copy 	bound! 	queue_gaige_boundI 	t1nish_gaue_bound/ _gaige I MATHS LAYER:
copy_staple)ound 	queue_staple_bound 	finish_stap1e_bound hm_3by3, hh_19_3by3,

I 	 I I rr_ into _lg_3by3

ICOMMS LAYER: 	I
I gather—generic, fstart_com, 	I
I fend_corn 	 I

MP implementation

Figure 4.5: Call structure of the staple sum and plaquette module for both HPF and Message

Passing implementations.

Chapter 4. The GAUGE application. 	 104

B 	 1.-c

TOP
2 	STAPLE

A 	 tD

5
	

7

17
	

P

6

Figure 4.6: Labelling of links as used in the algorithmic description of the creation of the

staples.

Multiply 3t x

CALL hh_3by3 (tempi, u_flu_par, temp2)

Move 4 to A.

CALL shift_3by3 (gauge-mask, u_nu_notpar,

$ notpar, mu, Negative, staple-bottom)

Multiply 4 x (3t x 2t).

CALL min_3by3 (staple-bottom, temp2, staple-top)

Bottom staple

Move 7 to F.

CALL shift_3by3 (gauge-mask, u_flu_par,

$ par, mu, Negative, temp2)

Multiply 7t x

CALL hh_3by3 (temp2, u_mu_flotpar, tempi)

Multiply (7t x 6t) x 5.

CALL miu_3by3 (tempi, u_nu_notpar, temp2)

Move bottom staple to A.

Chapter 4. The GAUGE application. 	 105

CALL shift_3by3 (gauge-mask, temp2, notpar,

$ nu, Positive, staple-bottom)

MP implementation. Using the message-passing model we can overlap com-

munications on one staple with calculation on the other as follows (routine

make-staple-pair in file staple-sum. F).

Send 3 to A.

C set up communications direction (-ye nu)
comdir = nu + Ndim

C .perp is a perpendicular direction to the plaquette
C plane, whose tail is used as workspace.

CALL copy_gauge_bound(perp,mu,notpar,np_comin(flu),

$ 	 boundary_table(0,comdir,notpar) ,u)
CALL queue_gauge_bound(comdir ,perp ,mu ,notpar ,n

$ 	 p_comm(nu) ,u)

Meanwhile, calculate 6t x 5.

CALL hm_3by3(np_sites,
$ 	Max-array, u(0,0,0,0,notpar,mu),

$ 	Max-array, u(O,O,O,O,notpar,nu),

$ 	Max-array, down-staple)

Wait for 3 to finish sending, store the communication number for the

multiply.

CALL finish_gauge_bound(comdir,perp,mu,

$ 	notpar,np_comm(nu) ,u)
lastcom = comdir

Send 7 to F.

comdir = mu + Ndim
CALL copy_gauge_bound(perp,nu,par,np_conun(mu),

$ 	 boundary_table(0,comdir,par) ,u)
CALL queue_gauge_bound(comdir,perp ,nu ,par,

$ 	 np_comm(mu),u)

Meanwhile calculate 3 1 x 2 , gathering 3 as needed.

CALL hh_lg_3by3(np_sites,
$ 	shift_table (O,lastcom,notpar),

$ 	Max-array, u(0,0,0,0,notpar,mu),

$ 	Max_array, u(O,O,O,0,par,nu),

Chapter 4. The GAUGE application. 	 106

$ Max-body, up-staple)

Wait for 7 to finish sending, store the communication number for next

multiply.

CALL finish_gauge_bound(comdir,perp,nu,

$ 	par,np_comm(mu) ,u)
lastcom = comdir

Send 4 to A.

comdir = mu + Ndim
CALL copy_gauge_bound(perp,nu,notpar,np_coinin(mu),

$

	

	 boundary_table(O,comdir,notpar) ,u)
CALL queue_gauge_bound(comdir , , perp , nu , notpar,

$ 	 np_comm(mu),u)

Meanwhile multiply 'if x (6 1 x 5), gathering 7 as needed.

CALL rr_hm_lg_3by3(np_sites,

$ 	shift_table (O,lastcom,par),

$ 	Max-array, u(0,0,0,0,par,nu),

$ 	Max-array, down-staple)

Wait for 4 to finish sending.

CALL finish_gauge_bound(comdir,perp,nU,

$ 	notpar,np_comm(mu) ,u)
lastcom = comdir

Send lower staple to A.

comdir = nu
CALL copy_staple_bound(np_comm(nu),

$ boundary_table(0,comdir,notpar),

$ 	u(0,0,0,0,notpar,perp), down-staple)
CALL queue_staple_bound(np_coinm(nu) ,comdir,

$ 	u(0,0,0,0,notpar,perp),down_staple)

Meanwhile calculate upper staple = 4 x (3t x 2t), gathering 4 as needed.

CALL rr_mm_lg_3by3(np_sites,

$ 	shift_table(0,lastcom,notpar),

$ 	Max-array, u(0,0,0,0,notpar,nu),

$ 	Max-body, up-staple)

Wait for lower staple to finish sending. Leave the routine which uses the

staples to gather in.

Chapter 4. The GAUGE application. 	 107

CALL finish_staple....bound(np_COUUU(flU) ,comdir,

$ 	u(O,O,O,O,notpar,perp) ,down_staple)

4.2.6 Random I/O

The random number I/O is relegated to a separate module from gauge I/O as

there could be several optional RNGs requiring different I/O handling. If we

are using a machine-specific RNG supplied through a library, e.g. 'FASLRNG' on

the Connection Machine, we may have very little control over the I/O, having

to use a couple of supplied functions. If we are using a portable RNG, the state

information data structures still vary enormously. For this reason we provide

a separate implementation of the I/O for each random number generator used.

HPF implementation note. The 'FASL.RNG' generator mentioned above

introduces further subtle problems. In our testing of the HPF codes on the

Connection Machine this has been our chosen generator, for reasons discussed

in section 3.7, but using a larger state table than the default for better perfor-

mance. As we are not using the default sizes we must initialise the generator

before loading the old state tables so the sizes are set correctly as shown in the

following code fragment, otherwise the library assumes you want the default

sizes and gives non-reproducible results. This subtle bug took a long time to

track down! We advise use of portable generators where possible to avoid such

problems.

C initialise the generator with our state table size
CALL cmf_lattice_init_rng 0

C 'path' contains the full path to the saved RNG
C state information. Open the file.

CALL CMF_FILE_OPEN (in_unit, path, ios)
IF (ios .LT. 0) THEN
WRITE (mess_buff,20) in_unit,ios, path

20 	FORMAT ('Unit : 1 ,12,' ios : 1 ,13,' Path : ', A)
CALL status-message (mess-buff, 'cmf_rng_load')

Chapter 4. The GAUGE application. 	 Im

CALL error-message ('Error opening file.',

$ 	'cmf_rng_load', Err-file-error)

END IF

C seek to the beginning of the file and read in the

C data.
CALL CMF_FILE_REWIND (in_unit, ios)
CALL RESTORE_FAST_RNG_TEMPS (in_unit , ios , ier)
IF (ier .NE. 0) THEN

WRITE (mess_buff,30) ios, ier, path

30 	FORMAT ('ios : 1 ,I3,' ier : 1 ,I3,' path 	',A)
CALL status-message (mess-buff, 'cmf_rng_load')
CALL error-message ('Error opening/reading file.',

$ 	'cmf_rng_load', Err_file_error)
ELSE

WRITE (mess_buff,462) ios

462 	FORMAT ('RESTORE_FAST_RNG_TENPS read ',IlO,' bytes')
CALL status-message (mess_buff, 'cmf_rng_load')

END IF

C close the file.
CALL CMF_FILE_CLOSE (in-unit, ios)
IF (ios .LT. 0) THEN

WRITE (mess_buff ,20) in_unit, los ,path
CALL status-message (mess-buff, 'cmf_rng_load')
CALL error-message ('Error closing file.',

$ 	'cmf_rng_load', Err-file-error)

END IF

The initialisation is performed by

C Need to set up the weedy random number generator first to
C put values in the state tables for fast-mg. Important

C that the seed
C for weedy random number generator is reproducible.

dummy = RAND (mg-seed)
CALL CMF_RANDOMIZE(mng_seed)

C Now set up the fast mg.
CALL INITIALIZE_FAST_RNG(

$ 	cmf_rng_table_lag, cmf_mng_short_lag,

$ 	cmf_mng_width, error-code)
init_cmf_rng = .TRUE.

Chapter 4. The GAUGE application. 	 109

4.2.7 Gauge transform: U(x) -* V(x)U, tL (x)Vt(x + j2)

As with the staple sum, this is easy to implement in terms of the maths and

communications layers. In HPF this would be written

C Even parity sub-lattice
CALL shift_3by3 (gauge-mask, trans-odd, Odd-parity,

$ 	mu, Negative, tempi)
CALL mh..3by3 (U_mu_evn, tempi, temp)
CALL mxn_3by3 (V_evn, temp, U_mu_evn)

C Odd parity sub-lattice
CALL shift_3by3 (gauge-mask, V_evn, Even_parity,

$ 	mu, Negative, tempi)
CALL mh_3by3 (U-mu-odd, tempi, temp)
CALL mm_3by3 (V-odd, temp, U_mu_odd)

while in MP we would write

C copy low bound of v(notpar) to v(par) tail.
C dir' is the correct communications direction

CALL copy_t_bound(par, np_comm(mu),

$ boundary_table(0,dir,notpar) , v)

C queue send in -ye mu dir v(par) tail -> v(notpar) tail
CALL queue_t_bound(dir, par, npcomm(mu), v)

C U = v u
CALL rr_inxn_3by3 (np_sites,

$ Max_array, v(0,0,0,0,par), Max-array,

$ u(0,0,0,O,par,mu))

C finish send
CALL finish_t_bound(dir, par, np_comm(mu), v)

C U = u 	v (x+mu)
CALL lr_mh_rg_3by3(np_sites,

$ shift_table(O,dir,notpar), Max-array,

$ u(0,0,0,0,par,mu), Max_array,

$ v(0,0,0,0,notpar))

Chapter 4. The GAUGE application. 	 110

4.2.8 Cabibbp-Marinari update

There are two points of interest in this module.

The creation of the random a 0 lattice, see theory in section B.1.2, can be

performed using only two temporary vectors as shown in the following

HPF code.

C generate R
CALL lattice...fpoint_rng (mg-get-routine,

$ epsilon, tempi)
C generate R'

CALL lattice_fpoint_mng (mg-get-routine,
$ epsilon, temp2)

C X=-ln(R) *alphainv
templ=-LOG(templ)*alphainv

C C = cos - 2 (2*PI*R')
temp2CDS (two_pi*temp2)
temp2temp2*temp2

C A=X*C
tempi = tempi * temp2

C generate R'
CALL lattice_fpoint_rng (mg-get-routine,

$ epsilon, temp2)
C X'-ln(R')*alphainv

temp2 =-LOG(temp2)*alphainv
C delta = X'+A

tempi = tempi + temp2
C generate R''2

CALL lattice_fpoint_rng (mg-get-routine,
$ epsilon, temp2)
temp2 = temp2 * temp2

C T = 1-delta/2
tempi = 1.0-(temp.1*0.5)

When implementing the local Metropolis accept/reject stage in HPF it is

inefficient to loop over the lattice sites as this would happen on the front-

end processor causing a. bottleneck to occur. Instead we create whole

lattices of random numbers at a time and insert new numbers to pass the

accept/reject where failures occur using the 'ANY' and 'WHERE' intrinsics.

Chapter 4. The GAUGE application. 	 111

C Generate the first arrays of random numbers in
C 'dest' and 'compare'..

CALL test_aO (mg_get_routine,

$ alphainv, dest, compare)

C While any sites fail the test generate fresh test
C numbers.

DO WHILE (ANY (compare .GT. dest))

C We need to setup array everywhere for reject because WHERE
C can only have assignment operations inside clause, no
C function calls.

CALL test_aO (mg_get_routine, alphainv,
$ 	temp_aO, temp-compare)

C Replace the failing numbers
WHERE (compare .GT. dest)

compare = temp-compare
dest = temp_aO

END WHERE

C Keep going until all pass.
END DO

Chapter 4. The GAUGE application. 	 112

4.3 Gauge testing

4.3.1 Over-relaxation testing

The over-relaxation algorithm, as described in sections 1.3.2 and B.2, should

preserve the value of (ReTr uOMV) (averaged over all planes jL, ii). This can

be seen clearly in real plaquette data as shown in figure 4.7. Of course, if the

over-relaxed algorithm does nothing at all the same output will be obtained, so

we must examine other quantities as well: the imaginary part of the plaquette

should be randomly distributed around zero as shown in figure 4.8 and the

values of the real part of the plaquette for single planes should fluctuate as

shown in figure 4.9.

0.210

0.208

co

0.206

0.204
a

0.202

0.200
0 100 	 200

Elemental sweep

0.210

0.208

co

0.206

0.204
a

0.202

0.200 .
35 39 40 41 42 43 44 45 46 47 48

Elemental sweep

Figure 4.7: Real part of plaquette averaged over all planes. This data was obtained from a

Thinking Machines CM-5 using one Cabibbo-Marinari (heatbath) elemental sweep and four
over-relaxed elemental sweeps per compound sweep with ,3 = 3.0. The plaquette is conserved

between over-relaxed sweeps as can be seen in the expanded graph on the right hand side.

0.208
a

0.206

0.210

C.,

! 0.204
0.

I..

0.202

0200.
0 100 	 200

Elemental sweep

Chapter 4. The GAUGE application. 	 113

0.002

0.001
C.,

0.000

—0.001

—0.002 L

0 100 	 200
Elemental sweep

Figure 4.8: Imaginary part of plaquette averaged over all planes. This data is from the same

run as that in figure 4.7. The plaquette is not conserved between over-relaxed sweeps.

Figure 4.9: Real part of plaquette for the xy-plane only. This data is from the same run

as that in figure 4.7. Note that the plaquette for the single plane is not conserved between

over-relaxed sweeps.

Chapter 4. The GAUGE application. 	 114

4.3.2 Heatbath testing

The Cabibbo-Marinari heatbath updates are intrinsically difficult to test as

they use random numbers to create the required distribution P(ao)dao as shown

in sections B.1 and B.1.2. We can however easily test that the distribution

generated is correct for a range of parameters. This test is shown in figure 4.10.

L;J

2

0 L1 	I 	I 	I

—1.0 	—0.5 	0.0 	0.5 	1.0
X

Figure 4.10: Random number distribution for Cabibbo-Marinari heatbath update. The

distribution shown is P(x) = N'V'l - x 2e, where the normalisation factor N =
Both the ideal distribution and one generated by the MPP codes are shown.

To test the rest of the heatbath algorithm, we need to examine the plaquette

values as a function of 3. To find data to compare with we examine the strong

coupling expansion, for low 48, and data produced by Lepage and Mackenzie

[10] for high 6. Note that we do not expect to agree exactly with the figures

Chapter 4. The GAUGE application. 	 115

quoted because of differences in lattice size and algorithmic parameters, the

plaquette is a statistical quantity which will fluctuate. However the plaquette

values should agree within errors over the whole range of test data from /3 = 3.0

to /3 = 9.0. If we get good agreement over this wide range we can be certain

that the code is working.

4.3.3 Strong coupling expansion: validation at low 0

The strong coupling expansion is a power series in 8 valid for high values of

the coupling g, hence low values of 6= ±-. The coefficients in the series for

the free energy have been presented by Edgar et. al. [117] (0(13 6)) and Balian

et. al. [118, 119] (Q(/316)) from summation of graphs as

F 	 1 2 113 —6 	1 	133 - _ 	_
d(d-1)

= 	+l3 	1 +(1 d)j3 +(d- 6480)/3

1069 —8 	5 	509 -
+ (d—

51840w
 +(d—

77760w

+ 	
2

d2 	
157

d 	
490757 —io

6561 -
11664+

20995200w
59 	435299 A 11

+ (27d2 - 	
9797760

1775
d2 	

218824907 	1682010779 12

+ 354294 	
7255941120d+

42326323200
440 2 - 13919677 	7603159 —13

+ (59049 d 	604661760d+
440899200

20
d3 	

8377
d2

- 12469727 	14239256399 —14
+

+ 531441 	2125764 	5441955840d 1333279180800w
544

d 3
- 69331

d2
 + 106962409 	3474317893 —15

+ 1594323 	7971615 	2821754880d 79361856000
2323

d3
- 5838272899

d2 +
10597782658021

d
+ 1594323 	220399211520 	123423558451200

6402970751747 P 16
- 82282372300800+0 	 (4.1)

in d dimensions, where =-L. By making the substitution 8 = 6, we can

calculate the average value of the plaquette in 4 dimensions to be

(ReTo) =
1dF(3)
6d/3

Chapter 4. The GAUGE application. 	 116

- 	 2_ 5 	49
16

5

- 18 	216 	93312 	15116544
1309 	6 	2131 	 1091 	8

+ 906992640 + 5441955840 + 43535646720
- 17908109--1277749 	A10

21158324305920 	592433080565760"
- 93151153811+

	
3052831769 	12

11516899086198374400 " 	34550697258595123200"

+ 	
6757393949 	A13

414608367103141478400 ''
— 	1932793007 	A14

3198407403367091404800 ''
— 	16029793987553 	15 +0(,816) A\ 	(4.2)

21761963972509689918259200 k'

This expansion has been plotted in figure 4.11 for various orders in order to

establish a threshold for the accuracy of the expansion. By comparing measured

plaquette values against those obtained from the expansion, we can validate

the software at low values of /3. Suggested 8 values and plaquette averages are

shown in table 4.1.

(ReTr uOM)

2.0 0.12881138(1)
2.5 0.1659980(4)
3.0 0.205047(5)
3.5 0.24629(5)
4.0 0.2907(4)

Table 4.1: Plaquette averages from the strong coupling expansion for several 6 values. The
values presented are calculated from the average of the 14th and 15th order expansions.

Plaquette data measured on different platforms with various algorithms are

shown in figure 4.12. We plot both symmetric and squashed lattice data for

comparison. The squashing should raise the effective /3 value and hence the pla-

quette average over the squashed planes. This gives us information on whether

the individual directions are treated correctly in the code. The x-axis values

have the following meanings

A: Reference data from the strong coupling expansion.

Chapter 4. The GAUGE application. 	 117

1.0

0.6
	

15

0.

[I]
E- 0.4

N=5

0.2

I,

2 	3 	4 	5 	6

Figure 4.11: The strong coupling expansion of the average plaquette plotted against /1 =

where g 2 is the coupling constant for QCD. Plots are shown for the expansions up to order
N-1 It can be seen that the 10th and 15th order expansions are only valid up to i 3 = 4.0.

Chapter 4. The GAUGE application. 	 118

B: Data from the MPP codes with a symmetric lattice.

C-F: Data from the MPP codes on various platforms (both message-passing

and data-parallel) squashed in the x, y, z and t directions respectively.

The crosses show data on a 16 x 2 lattice averaged over those planes

containing the squashed axis. The diamonds are data on the same lattice

averaged over planes not containing the squashed axis. The bursts show

data on a 16 x 4 lattice averaged over squashed planes, and the squares

show the unsquashed planes for the same lattice.

The data for ',3 = 3.0 is not affected by the squashed lattices as would be

expected, whereas for /3 = 4.0 the squashing is changing the effective /3 value.

The deviation of the MPP data for /3 = 4.0 from the strong coupling expansion

could be caused by the breakdown of the expansion at that 3 value. The 15th

order expansion shown in figure 4.11 is higher than the 10th order so this could

explain why the theoretical value shown is higher than the Monte Carlo data.

4.3.4 Lepage and Mackenzie data

In [10] Lepage and Mackenzie discuss lattice perturbation theory and present

Monte Carlo plaquette data to compare with their coupling constants. Their

data is presented in table 4.2.

The data from the MPP codes running both message-passing and data-parallel

on different platforms is presented in figures 4.13 and 4.14. The x-axis is

explained in the previous section.

We can see that the symmetric lattice data from the MPP codes agrees with

the data from Lepage and Mackenzie (both were measured on 16 lattices). On

asymmetric lattices the plaquette values for squashed planes are higher than

the unsquashed planes. The size of this difference increases with 8 and the

Chapter 4. The GAUGE application. 	 119

0.2055

C',

1-11

0.2050

14
A 	B 	C 	D 	E 	F

0.2045

0.2915

	
ublmi

CO

- 0.2910

0.2905

0.2900

A B C

:... ..:. :. ..

Figure 4.12: Plaquette data for 8 = 3.0 and j3 = 4.0. See text for explanation. The data
on these graphs was generated with differing update parameters on different platforms; the

results are consistent within errors indicating that the code is working properly.

Chapter 4. The GAUGE application. 	 120

['I;"

0.59

(Y

0.58

w

0.57

E-
0.56

—A 	B 	C 	D 	E

0.55 	 M --

00

0.54

sxri

0.65

(Y)

0.64

0.63

0)

0.62

- 	 6.4

- 	 x 	x

-A 	B 	C 	D 	E 	F

0.61

Figure 4.13: Plaquette data for /3 of 5.7 and 6.4. See text for explanation.

Chapter 4. The GAUGE application. 	 121

/3 in 	(ReTr UD,LV) (ReTr U0 ,)
5.7 0.5995 0.5491
6.0 0.5214 0.5937
6.1 0.5025 0.6050
6.2 0.4884 0.6136
6.3 0.4740 0.6225
6.4 0.4610 0.6306
9.0 0.2795 0.7562
12 0.1954 0.8225
18 0.1224 0.8848

Table 4.2: Lepage and Mackenzie plaquette data. This was calculated on a 16 lattice.

0.78

0.77

0)

a)

0.76

0.75

0.74

• x x x

A B D E

0 El El

000

Figure 4.14: Plaquette data for /3 of 9.0. See text for explanation.

Chapter 4. The GAUGE application. 	 122

extent of the squashing as expected.

Our simulation data agrees well with Lepage and Mackenzie's numbers for the

unsquashed lattices at all /3 values, indicating that the code is working properly.

The squashed lattice data shows that the expected planes receive the higher

plaquette average so we know that the different directions are treated correctly.

Chapter 4. The GAUGE application. 	 123

4.4 Gauge performance

The performance of the GAUGE application is of great interest as it is used

for long periods of time to generate gauge configurations. Slight increases in

the speed of code can result in a few more configurations being generated. In

this section we present data for the timing and efficiency of different elements

of the update algorithm on the three platforms discussed in section 3.6; the

Cray T3D, Connection Machine CM200 and Connection Machine CM5. We

generated the data at a 8 value of 5.9 with a disordered start on 12 and 16

lattices.

Random Local Gauge Transform
12 	lattice 1 	iô 	lattice

Platform Size Precision Time Speed Efficiency Time Speed Efficiency
(secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak)

CM200 8K D 0.44 0.084 2.1 0.405 0.289 7.3
CM200 8K S 0.25 0.150 3.8

CM5 16 D 0.079 0.466 18.2 0.229 0.511 20.0
CM5 16 S 0.163

10.122
0.718 28.0

CM5 32 D 0.050 0.741 14.5 0.957 18.7
T3D 8 D 0.639 0.058 4.8 1.05 0.111 9.3
T3D 16 D L0.545 0.068 2.8 L0.752 0.156 6.5

Table 4.3:

Cabibbo-Marinari update
12 	lattice 16 	lattice

Platform Size Precision Time Speed Efficiency Time Speed Efficiency
(secs) (Gflop/s) (% peak) (secs) (Gfiop/s) (% peak)

CM200 8K D 5.38 0.0691 1.8 5.64 0.209 5.3
CM200 8K S 3.26 0.114 2.9

CM5 16 D 1.01 0.368 14.4 2.97 0.396 15.5
CM5 16 5 2.19 0.537 21
CM5 32 D 0.64 0.584 11.4 1.61 0.729 14.2
T313 8 D 3.77 0.099 8.3 10.1 0.116 9.7
T3D 16 D 2.32 0.160 6.7 5.52 0.213 8.9

Table 4.4:

Observations about scaling performance with lattice size, machine size and

precision have already been made in section 3.6, they hold for these results as

well

Chapter 4. The GAUGE application. 	 124

Over-relaxed update
121 lattice 16 	lattice

Platform Size Precision Time Speed Efficiency Time Speed Efficiency
(secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak)

CM200 8K D 4.53 0.0686 1.7 3.89 0.252 6.3
CM200 8K S 2.47 0.126 3.2

CM5 16 D 0.667 0.466 18.2 2.03 0.483 18.9
CM5 16 5

10.413
1.36 0.720 28.1

CM5 32 D 0.753 14.7 1.09 0.898 17.5

T3D 8 D 2.17 0.143 11.9 6.74 0.146 12.2

T3D 16 D 1.13 0.275 11.5 343 0.286 11.9

Table 4.5:

Reunitarise
12 	lattice 16 	lattice

Platform Size Precision Time Speed Efficiency Time Speed Efficiency
(secs) (Gflop/s) (% peak) (secs) I(Gflop/s) (% peak)

CM200 8K D 0.0639 0.203 5.1 0.108 0.370 9.3

CM200 8K 5 0.0472 0.275 6.9
CM5 16 D 0.0224 0.580 22.7 0.0651 0.614 24.0
CM5 16 S 0.0627

10.0352,
0.638 24.9

CM5 32 D 0.0123 1.057 20.6 1.136 22.2

T3D 8 D 0.159 0.0818 6.8 0.502 0.080 6.7
T3D 16 D 10.0796, 0.163 6.8 0.251 0.159 6.6

Table 4.6:

Compound update (GT+2CM+20R+RE)
124 lattice 16 	lattice

Platform Size Precision Time Speed Efficiency Time Speed Efficiency
(secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak)

CM200 8K D 21.4 0.0660 1.7 20.2 0.221 5.6
CM200 8K S 12.18 0.115 2.9

CM5 16 D 3.86 0.366 14.3 10.78 0.414 16.2
CM5 16 S 7.81 0.572 22.3

CM5 32 D 2.73 0.524 10.2 5.99 0.745 14.6

T3D 8 D 13.1 0.0992 8.3 35.7 0.115 9.6
T3D 16 D 7.92 0.164 6.8 19.3

1 	
0.213 8.9

Table 4.7:

Chapter 4. The GAUGE application. 	 125

There are several notable features in the performance data shown. The Cab-

ibbo-Marinari update is slower than either the gauge transform or over-relaxed

update on the CM200 and CM5. The reason for this is the need to generate

whole lattices of random numbers to implement the accept/reject stage as

discussed earlier in this chapter. On the T3D the message-passing code need

only generate single random numbers; a far more efficient process. The over-

relaxed update stands out as the most efficient routine for the T3D. The most

likely reason for this is that it is the only routine which does not involve maths

functions (e.g. SIN, COS, LOG, SQRT) to a high degree.

Note that the Cabibbo-Marinari update performance dominates that of the

compound update. This is because over 50% of the time is spent performing the

Cabibbo-Marinari update. This will not necessarily be the case in production,

e.g. a compound update consisting of 1 Cabibbo-Marinari update and 5 over-

relaxed updates has been used over the last few years by UKQCD.

Chapter 5

Generation of quark propagators: the SOLVER
application

5.1 Requirements

The solver application, SOLVER, must be able to provide the following func-

tionality (see figure 5.1).

Figure 5.1: Functionality required from the SOLVER application.

126

Chapter 5. The SOLVER application. 	 127

Gauge field initialisation. Although we only need to initialise the

gauge fields by loading an old configuration (not the RNG information)

in production, for testing we also require the ability to use an ordered,

disordered or crossed start'. These extra starts should be disabled by a

build-time flag when production code is built to minimise code space.

Quark propagator initialisation. The quark propagators are to be

initialised by setting them equal to a point source. This is used as an

initial guess for the solver and is as. good as most other initial guesses

without taking any time to implement and execute.

Linear equation solver. The package must be capable of supporting

more than one linear solver algorithm so that we can re-start a propaga-

tor calculation if convergence fails. The solvers should all be red-black

preconditioned and have a common interface for simplicity. We also re-

quire the ability to swap from red-black to black-red, i.e. solve on either

even or odd parity and regenerate the opposite, in order to validate code

sections as we described fully in section 5.3.1.

Clover terms. The Clover term 'C' is to be adjustable at run-time,

although if a value of 0 ± 0.01' is requested the Clover terms should not

be calculated in order to save time. There should also be a build-time

option to disable the Clover terms (and force C to be zero) in case we

want to use the Wilson action and save space usually used for the Clover

terms.

Only one parity of each term is to be stored, as this is all that is required

for the solvers. The residue calculation (see below) will require both

parities, but time is non-critical here and we can calculate each parity as

needed. The terms are stored in the block form defined in section C.2

'The crossed configuration is used for testing Clover code and is described in section 5.3

'This value is arbitrary.

Chapter 5. The SOLVER application. 	 128

as this takes less memory. We must be must be careful where in the

call-tree we create the Clover terms; their creation takes a large amount

of temporary work space.

Source creation. The SOLVER application should only be able to create

point sources; any other type should be read in from disk and created by

the SOURCE application (see section 5.5) so that we again reduce code

space required in SOLVER.

Residue calculation. Once the propagator has been calculated, the

package should calculate an algorithmically independent measure of the

accuracy of the solution, the residue, which should also be independent

of the source normalisation. We define the residue to be

rI= 	 (5.1)
In

Pion propagator. We require the pion propagator to be calculated for

each source spin/colour of the inversion and also a cumulative sum over

all source spin/colour components. This is used for validating the results

of the solver and quark propagator files. The algorithm to implement

this is given in section C.3.

Input and output. A separate file is to be used for each source spin

and colour component and time-slice of the propagator. When gauge

fields are loaded from disk, we do not need to read the random number

information.

The quark propagator files loaded/saved are to be validated by two pos-

sible methods:

(a) Calculating a 16-bit checksum on the files. This is to be done in the

same ways as for the GAUGE application and is subject to the same

restrictions.

Chapter 5. The SOLVER application. 	 129

(b) Calculating the time-sliced pion propagator summed over space, sink

spin and spin colour, i.e. a value for each timeslice, source spin and

source colour.

Chapter 5. The SOLVER application. 	 130

5.2 Design and implementation

The design of the SOLVER application can be easily seen to break into modules

on top of the underlying libraries as shown in figure 5.2. The important features

of the design are discussed below.

5.2.1 Driver

The necessary gauge and quark propagator (psi) fields are declared here. It is

worth noting that if the Clover action is used, 2.8 times more memory than

the GAUGE application uses is needed. The gauge fields require 72 words per

lattice site, the quark propagator fields are 96 words p.l.s. and the Clover terms

108 words p.i.s.. For this reason the workspace used matters far more than it

did for the GAUGE application.

5.2.2 Gauge start

For production purposes we restrict the types of start to loaded gauge con-

figurations. For testing and debugging purposes the ordered, disordered and

crossed starts can be used. A build-time flag is the simplest way to implement

these two possibilities.

5.2.3 Implement Boundary Conditions

Initially we only intend to implement periodic and anti-periodic boundary con-

ditions (BCs). The periodicity is implemented through the communications

library in the construction of the gather-scatter and neighbour tables or use of

CSHIFT as described previously. Anti-periodic boundary conditions require the

positive boundary in the direction chosen to bring a factor of -1 into calcula-

tions with the fermion fields. Since these fields always occur multiplied by a

	

Chapter 5. The SOLVER application. 	 131

DRIVER

READ 	 I GAUGE
I
 IMPLEMENT I I MAKE CLOVER I I MAKE SOURCE

I PARAMETERS 	START 	BCS 	 AND INVERSE 	
11

POINT
SOURCE

SOLVER

I 	 __ 	 I

MAKE SOURCq I RB SOURCE I I RB MATRIX

Ii... 	I 	I 	I 	M'

LOADED 	ROTATE SOURCE

SOLVER 	 DSLASH
I/O

COMPLETE
SOLUTION

	

II 	 I

I 	 I

I INVERSE 	I DELTA TERM I
I CLOVER 	II A I 	A 	Ii 	I

I DELTA TERM
A

I 	 I

RESIDUE 	I 	I ROTATE...

MAKE SOURCE
MAKE CLOVER

H
DELTA TERM I I INVERSE

CLOVER
A

I 	 I

INVERSE 	I 	CLOVER 	I
CLOVER I 	A 	I

PION

FERMION
MATRIX

M

PROP
SAVE

SOLVER
110

DELTA TERM 	CLOVER 	 PION
A 	 A

......................... 	:.:.:....... ...•.•.••.•.•.•.•.•.••.

Figure 5.2: Overview of SOLVER design structure.

Chapter 5. The SOLVER application. 	 132

gauge field it is easier to throw this factor of -1 onto the gauge configuration;

in practice we do this once after the gauge fields have been initialised. Note

that this does not affect the Clover term constructed from the gauge fields

since they consist of closed plaquette sums; any plaquette extending over the

lattice boundary containing the anti-periodic BCs will have two factors of -1

incorporated, hence no net effect.

In the future, other types of boundary condition may need to be implemented,

e.g. Dirichiet which require no periodicity and off-lattice values of the fermion

fields set to zero. These require such a different implementation that they need

to be applied far lower down the call tree where the fermion fields are evaluated.

For this reason the variable(s) identifying the BCs should be passed down the

tree whether currently used or not.

5.2.4 Clover term construction and application

As we do not need the inverse Clover term in the residue calculation we

must have the ability to create the Clover term separately to save time and

workspace.

We implement the data structures 	L and D defined in section C.2 since they

require less storage space and time to calculate than a more naïve implementa-

tion. The relevant signs, hermicities and i-values needed by equation C.16 to

create UMJ,FM L,
are most easily implemented through three lookup tables. The

plaquettes needed to make up the Clover leaves are calculated using the library

routines discussed in section 4.2 for the staple sum. The most important point

to remember when constructing the plaquettes is the order of multiplication of

the gauge fields, defined in figure 1.1.

The Clover term and its inverse are stored in a common block; specifying them

as explicit parameters passed down through the call tree would mean we must

Chapter 5. The SOLVER application. 	 133

allocate space for them, but we want to avoid this for the Wilson action (no

Clover terms).

It might appear that we need both parities of the Clover term since we use

A and A' in the solver. We can however create A, then A' from it and

finally A. This takes longer but since we only create the Clover terms in non

time-critical sections the memory saving is more important.

5.2.5 Make source

We have two possibilities for the quark source

Point source

We are trying to solve the equation

2,c

for the point source. This is easier to calculate if the normalisation factor

2r. is transferred to the right hand side of the equation. Therefore a

single spin/colour element of the fermion field is set to 2K, the rest of the

fermion field is set to zero.

Loaded source

The loaded sources are implemented with the same routines as are used

to load and save quark propagators for simplicity. This implies a need for

a time-slice range in the I/O routines and a general method for passing

in the source name.

After creating the source we have the possibility to rotate it as defined in

sections 1.1.3.2 and C.4.

Chapter 5. The SOLVER application. 	 134

5.2.6 Rotate and Ds1ash'()

The main problem associated with the rotation is the workspace needed by

both it and DSLASH, where 4-spinors are communicated (we cannot perform

a decomposition to 2-spinors such as is possible for the hopping/delta term i).

This is most apparent in the SOLVER module where the solver workspace also

has to be accommodated. Luckily the source does not need to be created on

every solver iteration, only on entry and when creating the missing parity of the

solution. Since time is not critical in the calls we could sacrifice speed to save

memory in the P . This possibility must be balanced against over complicating

the ?'D to save a few bytes and not giving up too much speed.

The 'D 'operation is very easily implemented in terms of the maths and com-

munication layers discussed already. For example, in HPF the y-direction cal-

culation

2(,)(x) = -y {u,(x)(x + 0 - Ut(x -)&(x - 9)}

is implemented as

CALL shift_4spin (spin4_mask, src, p, Y_index,

$ Negative, tmpl)
CALL su3_mv4 (gauge_ynp, tmpl, tmp2)
CALL xpgainmay (Y-index, tmp2, res)

CALL su3_hv4 (gauge_yp, src, tmpl)
CALL shift_4spin (spin4_mask, tmpl, p. Y_index,

$ Positive, tmp2)
CALL xmgammay (Y-index, tmp2, res)

The message passing version is similar

C copy the source into the workspace vector
CALL copy_generic(np_sites, (Ncomplex*Nco].our*Nspin4),

$ 	O,Max_body,psi, O,Max_array,phil)

C copy the fermion vector from x+mu to phi2

Chapter 5. The SOLVER application. 	 135

CALL grab_generic(Ncmp, (mu+I'Idim), par, phil, phi2)

C perform the Udagger multiplication.
CALL su3_r_hv4(np_sites,

$ 	 Max-array, gauge(O,O,O,O,par,mu),

$ 	 Max-array, phil)

C perform the multiplication of phi2 by U on site notpar
CALL su3_r_mv4(np_sites,

$ 	 Max-array, gauge(O,O,O,O,notpar,mu),

$ 	 Max-array, phi2)

C copy phil from par to notpar
CALL grab_generic(Ncmp, mu, par, phil, phi3)

C contruct the result from phi2, phi3 with the gamma algebra
CALL construct_res(mu, left, phi2, phi3, res)

5.2.7 Solver

Since we need to be able to implement any solver satisfying the requirements

in section 5.1 we cannot be specific about the design or implementation. All of

the solvers considered are constructed from a number of common routines.

The red-black quark source .77 ' , defined by

ii' = (1 + IcLA')?7

To generate this we need both parities of the non-red-black source since

77P = +

The red-black fermion matrix M', defined by

M' = (A - 	 A-1 A
L_lp

_ \
pp-f_' p)

which does not mix parities. This operation contains the major compu-

tational effect in SOLVER as it needs to be performed at least once per

Chapter 5. The SOLVER application. 	 136

iteration. For some solvers, e.g. Conjugate gradient, we need to act with

M't on a 4-spinor. Since A is hermitian we write this as

M't - 1A -)
lip pp pp ppkPP

Once we have solved for a single red-black parity we need to construct

the complete solution by the equation

= A(+ i.czb) TP

Linear algebra routines, e.g.

faxpy: y = ax + y fcaxpy: 	y = ax + y
faxpz: y=ax+z fca.xpz: 	y=ax+z
faypx: y = ay + x fcaypx: 	y = ay + x
fysx: y = y - x f zero: 	y = 0.0 V sites
fmod2: >I:/3,. y (r)2
fcdot:

where a e R, a E C and x, y and z are 4-spinors. Some of these routines

are used in other parts of the solver code and therefore live in the maths

library. They closely mimic the standard BLAS routines so that the

names can be easily changed to use an optimised BLAS package for a

particular platform.

In case the red-black decomposition introduces a small numerical error through

the Clover term or modified source, we allow the solver to restart itself. Most

solver algorithms involve two main steps; an initialisation and then iteration.

The minimal residual algorithm for example

initialisation

ro =

iteration: repeat the following until convergence

s = On

Chapter 5. The SOLVER application. 	 137

=
w(s,r2)

, w is the over-relaxation parameters
(s) s)

?/j41 = i,b+ar

r1 —as

The source is only involved once, in the initialisation. Restarting the solver

with V50 as the tentative solution forces a 'realignment' of the solution with the

source. This normally only needs to be done once but we allow a maximum of

4 restarts for safety.

When we implement the solver algorithms, workspace is one of the major issues.

The minimal residual solver described above requires two workspace vectors r

and .s plus space for the red-black source. This is a small memory requirement;

other solvers such as conjugate gradient least norm and biconjugate gradient

require far more workspace. We reduce this demand in two ways. Firstly the

source storage is written over by the red-black source. Since I/O is assumed

to be fast, loaded sources can be reconstructed quickly when needed. If I/O is

particularly fast in comparison with the calculation it might be better to save

the rotated source the first time it is used (outside solver in the call tree) and

then read it in from disk on successive uses. This removes all of the workspace

associated with source creation and rotation from the solver call tree thereby

reducing overall memory requirements. This method has not yet been tried as

we have not been that short on memory. The second way in which we reduce

workspace is to use the opposite parity of &, i.e. çt', for calculations, e.g. as .s

in the minimal residual algorithm.

5.2.8 Hopping or Delta term (Lx)

The hopping, or delta, term defined by equation (1.21)

(Lq) (x) = 	(1 -)U(x)q(x + %) + (1 + 7)U(x - fi)q(x -

Chapter 5. The SOLVER application. 	 138

forms the core of the solver as it is the only unit requiring local communi-

cations. The decomposition into 2-spinors is well described in section C.1.

The construction of the term is extremely similar to that of the P described

previously in terms of the communications and maths libraries. The subrou-

tines most in need of optimisation if possible are su3.iuvv and su3iivv which

multiply a quark field by U or Ut.

The message-passing implementation allows more possibilities than HPF. If we

have enough memory we can overlap communications in all four directions and

hopefully speed up the solver.

5.2.9 Residue

Because the residue is independent of the solver algorithm we calculate it out-

side the solver module. The creation of the Clover term and source requires a

large amount of workspace which, when added to that needed for the fermion

matrix M and the residue itself, becomes the maximal memory usage in the

SOLVER application.

This can be avoided by introducing a second layer to the residue call structure

'residue-par' as shown below in figure 5.3. The workspace for making the

Clover term is now subtracted from the maximum needed.

residue

make 'clover 	 residue_par

mak_source 	Ier,iiion ' inatrix

Figure 5.3: Call structure of the residue module.

Chapter 5. The SOLVER application. 	 139

5.2.10 Solver I/O

All of the points raised for the gauge field I/O apply to this module. An added

feature is to use limits on the time-slices loaded and saved so that quark sources

can be implemented easily. The dataset names for the propagators reflect the

different sources which may be used and the mode in which the gauge field was

generated. The format

<gauge><source>kkkk< act ion>scTtt

is used. The gauge name <gauge>.is simply passed in to the SOLVER appli-

cation without processing, to simplify the interface. The other elements in

the name are the kappa value kkkk equal to INT(ic x iO) - iO, the action

type <action> which is usually equal to 'W' for the Wilson action or 'C' for the

Clover action, the source spin 's', the source colour 'c' and the time-slice 'tt'.

Chapter 5. The SOLVER application. 	 140

5.3 Solver testing

5.3.1 General tests

There are several general tests (applying to any input parameters) which can

be applied to the SOLVER application.

The pion propagator can be compared with values generated by an ana-

lytic algorithm as shown in section 5.3.2.

The pion propagator should be independent of the solver convergence

parameters as long as sufficient precision is used to compare results.

The pion propagator should be invariant under colour conjugation

U — + U*

Having a non-zero Clover parameter should not affect the results for a

unit gauge configuration or transformed unit gauge configuration. This

is because the plaquettes will all be equal to the identity matrix; when

the trace is subtracted off as is needed in the Clover algorithm we are left

with zero in all elements of the

Solving on the even-parity sub-lattice should give identical results for the

pion propagator as solving on the odd-parity sub-lattice.

The quark propagator should be satisfy the following symmetry condition:

,01 = 751/Vy5.

Tests of more specific input parameters are discussed in section 5.3.3.

5.3.2 Analytic pion

The theory in this section below is taken from the paper by Carpenter and

Baillie [120], with the notation slightly altered.

Chapter 5. The SOLVER application. 	 141

The Euclidean lattice fermion propagator can be written

1111
OW = 	 Ee2 zI.(k) 	 (5.2)

LZLLZLt k

where

V(k)
= rnq +>1 M vy,L sin kM + (1— cos k,,)

(53)
>sin 2 kM + [mg +>(1 —coskM)] 2

The 	matrices are taken to be hermitian (see equation A.1)

and the momentum sum is over

• - 2(nM + M) 	n = 0, 1, ...LM - 1 	 (5.4)

where 6M 	0 for periodic boundary conditions and 8Mfor antiperiodic

boundary conditions in the t-direction.

Once the quark propagator has been calculated, equation (C.23) is used to

calculate the pion propagator.

5.3.3 Crossed configurations

Following [120], the quark propagator with the Clover action can be written in

terms of a Fourier series [121]

euIctt
(t) = >IR (M ± P_etkt + P+e_ikt)' 1?.-- (5.5)

where

	

M = 	 eik

	

r- 	rte
= 1+;:—_ +

= 2 PM
27r (

;i+)1
8 =0
S = 	antiperiodic b.c.

	

k = 	 '
	periodic b.c.

Chapter 5. The SOLVER application. 	 142

Mem = 	+

-

= —U(1+)

= 	—U 11 (1—l $).

Using the same method as section 5.3.2 we can perform the Fourier sum to

obtain an independent measure of the time-sliced pion propagator which can

be compared with values obtained from the MPP SOLVER application.

The crossed configuration, i.e. a constant background chromo-magnetic field,

which we use is defined by the gauge algebra

A 	= (1,3,0,7,0,2 1 2,0)

A 	= (0, 0, 0, 0, 0, 0, 0, 0)

A 	= (0,2,0,0,4,0,5,0)

= (0,0,0,0,0,0,0) 0) 	 (5.6)

or the group elements

= e 4
	

(5.7)

where A a are the Gell-Mann matrices specified in Appendix A and the Aa are

those in equation 5.6. The y and t directions yield the unit matrix, while the

x and z gauge fields are shown in table 5.1.

The time-sliced pion propagator values obtained using this initial configuration

are shown in tables 5.2 (44 lattice) and 5.3 (12 lattice) and figure 5.4.

Chapter 5. The SOLVER application. 	 143

Row,Col Real part 	I 	Imag. part
x-direction

0,0 -0.15014863014 0.22101625075
0,1 0.25635275245 -0.30382781143
0,2 0.25006130338 0.84145614691
1,0 -0.55907303095 0.29258449693
1,1 0.40063261986 0.53186789570
1,2 0.33964949846 -0.20755708838
2,0 0.37136927247 0.62651712892
2,1 -0.38087511063 0.50350385177
2,2 -0.12328124791 0.23617974562

z-direction
0,0 0.96045821905 -0.00000002002
0,1 0.08339362592 0.00000003994
0,2 0.26564168930 -0.00000001131
1,0 -0.16247718036 0.00000003301
1,1 0.94266444445 -0.00000000361
1,2 0.29152178764 0.00000002325
2,0 -0.2260999232.5 -0.00000002516
2,1 -0.32315522432 0.00000000593
2,2 0.91893935204 0.00000001828

Table 5.1: Gauge elements for the crossed configuration used for the analytic pion propagator

with the Clover action. Values are given for the x and z directions only, the y and t directions

are unit matrices.

Timeslice Wilson Clover Clover
Unrotated Rotated

0 0.710589902901e 0 0.711207983145e 0 0.119130162633e 1
1 0.363996054550e-1 0.367609728443e-1 0.254744013994e 0
2 0.105703566630e-1 0.109063074722e-1 0.222617573491e-1
3 0.363996054550e-1 0.367609728443e-1 0.254744013994e 0

Table 5.2: Time-sliced pion propagator summed over all spin/colour indices for 44 lattice,

r. = 0.113636. Boundary conditions are periodic for the spatial directions and antiperiodic

for the i-direction. The target residue was lx 10- 16 and the solver was started three times for

each spin/colour index. These values were first compared with those from the analytic code
of [121] to 4 significant figures. Once the code was validated, these figures were generated.

0.01I 	I

0

1 ____________i___ 10 	i

10 0
12 lattice

2
Timeslice

Chapter 5. The SOLVER application. 	 144

10

44 lattice

0

0

0

tv

1

0.1

-, 	 — 1
U

lr
0 I

co
co

10

r.
0

1

10 -1
0 	2 	4 	6 	8 	10

Time slice

Figure 5.4: The pion propagator for the crossed configuration. Diamonds mark the. Wilson
action, octagons the unrotated Clover action and squares the rotated Clover action.

Chapter 5. The SOLVER application. 	 145

Timeslice Wilson Clover
Unrotated

Clover
Rotated

0 0.718904188921e 0 0.719738715575e 0 0.122801635116e 1
1 0.344682975303e-1 0.347212612766e-1 0.228273178229e 0
2 0.444216279213e-2 0.453409840230e-2 0.182428204944e-1

3 0.858280502130e-3 0.895657737452e-3 0.245341606706e-2
4 0.221687794206e-3 0.238508627968e-3 0.544681966919e-3
5 0.741372603559e-4 0.830073090671e-4 0.176177532160e-3
6 0.444284442156e-4 0.511879553088e-4 0.106104264043e-3
7 0.741372603559e-4 0.830073090671e-4 0.176177532160e-3
8 0.221687794206e-3 0.238508627968e-3 0.544681966919e-3
9 10.858280502130e-3 0.895657737452e-3 0.245341606706e-2
10 0.444216279213e-2 0.453409840230e-2 0.182428204944e-1
11 0.344682975303e-1 0.347212612766e-1 0.228273178229e 0

Table 5.3: Time-sliced pion propagator summed over all spin/colour indices for 12 4 lattice,

r. = 0.113636. Initial conditions were as for table 5.2. These values were obtained from the

MPP codes after they had been validated against analytic values from the 44 lattice.

Chapter 5. The SOLVER application. 	 146

5.4 Solver performance

The best measure of the performance of the SOLVER application is the time

taken per iteration as these iterations dominate all runs of the application.

Timings on the CM200, CM5 and T3D are presented in table 5.4.

12 	lattice 16 	lattice

Platform Size Precision C Time Speed Efficiency Time Speed Efficiency
(secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak)

CM200 8K S 0.0 0.315 0.146 3.7 0.315 0.465 11.7

CM200 8K D 0.0 0.542 0.085 2.1
CM200 8K S 1.0 0.380 0.184 4.6 0.416w 0.518 13.0

CM200 16K S 1.0 0.363 0.188 2.4 0 . 207* 1.04 13.0

CM5 16 S 0.0 0.083 0.538 21.0
CM5 16 S 1.0 0.121 0.562 22.0 0 . 264* 0.815 31.8

CM5 32 S 0.0 0.056 0.796 15.5 0.110 1.28 25.0

CM5 32 D 0.0 0.070 0.638 12.5
CM5 32 5 1.0 0.067 1.01 19.7

T3D 8 D 0.323 0.097 8.1 0.977 0.102 8.5

T3D 16 D
1 0.0 1
0.0 0.173 0.181 7.5

Table 5.4: Timing data for the minimal residual solver on various platforms for Wilson

(C = 0.0) and Clover (C = 1.0) actions. The times shown are for a single iteration of the

solver. Entries with a were generated using code with serial loops unrolled.

From the table we can see that the Clover action is more efficient than Wilson

since the application of the Clover term does not involve any communications.

Efficiency in general is better than that of the GAUGE code for the Connection

Machines because there are no trigonometric maths functions used at all. The

CM5 performance is increased- by a large degree by unrolling serial loops as

explained in section 3.6; an efficiency of 31% for a real application is extremely

good for a parallel processor.

As the solvers are built from a generic toolbox of operations we supply timings

for these lower-level functions in tables 5.5, 5.6 and 5.7. They should be of some

use in predicting the run-time of new solvers and guidance for optimisation.

147 Chapter 5. The SOLVER application.

12 	lattice 	16 	lattice
Operation 	Time 	Efficiency 	Time 	Efficiency I (secs) 	I (% peak) 	(secs) 	(% peak)

8K processors, 	 C = 0.0 _single _precision,
rb_source 0.669 0.7 	0.435 3.7
rb_matrix 0.273 3.7 	0.261 12.0
fermion_matrix 0.394 1.3 	0.293 10.9
fmod2 0.616e-2 4.1 	0.104e-1 7.6
fysx 0.183e-2 3.4 	0.303e-2 6.5
faxpy 0.199e-2 6.3 	0.320e-2 12.3
fcdot 0.106e-1

10.195e-2

2.4 	0.130e-1 6.1
fcaxpy 0.226e-2 11 	0.375e-2 21.0
faypx 6.4 	0.113e-1 3.5
faxpz 0.202e-21 6.2 	0.336e-21 11.7

8K processors, 	 _C = 1.0 _single _precision,
rb_source 0.254 3.1 0.337 k 73
rb_matrix 0.338 4.7 0.360 13.9
fermionmatrix 0.268 3.1 0.172 15.0
make A,A' 4.45 2.4 4.05k 8.3
make A 1.63 3.0 2.04 7.6
make A' 0.112 7.7 0 . 190* 14.3

16K processors, single precision, C = 1.0, unrolled loops
rb_source 1.44 0.3 0.422 2.9
rbmatrix 0.177 4.5 0.193 12.9
fermion_matrix 0.083 4.9 0.091 14.1
make A, A' 3.27 1.6 3.96 4.2
make A 1.20 2.0 2.07 3.7
make A' 0.057 7.6 0.097 14.0
fmod2 0.247e-2 5.0 0.288e-2 17.2
fysx 0.283e-2 1.1 0.251e-2

10.230e-1
3.9

faxpy 0.527e-1 0.1 0.9
fcdot 0.492e-2 2.5 0.635e-2 6.2
fcaxpy 0.261e-2 4.8 0.310e-2 12.7
faypx 0.113e-2 5.5 0.175e-2 11.2

Table 5.5: CM200 solver toolkit performance.

Chapter 5. The SOLVER application. 	 148

12 	lattice 16 	lattice
Operation Time I Efficiency Time Efficiency

(secs) (% peak) (secs) (% peak)

16 nodes, single precision, C = 1.0, unrolled loops
rb_source 0.168 7.2 0.249 15.4
rb_matrix 0.102 24.2 0.251 31.1
fermion_matrix 0.040 31.5 0.116 34.7
make A, A - ' 0.862 19.3 2.02 26.0
make A 0.390 19.6 0.913 26.4
make A' 0.101 13.3 0.186 22.8
fmod2 0.862e-3 45.1 0.222e-2 55.4
fysx 0.689e-3 14.1 0.181e-2 17.0
faxpy 0.809e-3 24.1 0.220e-2 27.9
fcdot 0.213e-2 18.3 0.474e-2 25.9
fcaxpy 0.100e-2 38.9 0.279e-2 44.0
faypx 0.951e-3 20.5 0.231e-2 26.6

32 nodes,single precision, C = 0.0
rb_source 0.136 2.9 0.063 19.7
rb_matrix 0.359e-1 21.7 0.182 13.5
fermion..matrix 0.438e-1 9.0 0.730e-1 17.0
fmod2 0.123e-1 1.6 0.233e-2 26.4
fysx 0.693e-3 7.0 0.115e-2 13.4
faxpy 0.727e-3 13.4 0.134e-2 22.9
fcdot 0.234e2 8.3 0.370e-2 16.6
fcaxpy 0.885e-3 22 0.167e-2 36.8
faypx 0.733e-3 13.3 0.1380e-2 23.6
faxpz 0.818e-3 11.9 0.138e-2 22.3

Table 5.6: CM5 solver toolkit performance.

Chapter 5. The SOLVER application. 	 149

124 lattice 	16 	lattice
Operation Time Efficiency 	Time jEfficiency

(secs) 	I (% peak) 	(secs) 	I (% peak)

8 processors, double precision, C = 0.0
rh_source 0.182 9.2 0.468 11.3
rb_matrix 0.283 11.7 0.853 12.3
fermion_matrix 0.157 10.7 0.466 11.4
fmod2 0.157e-1 5.3 0.316e-1 8.3
fysx 0.160e-1 1.3 0.505e-1 1.3
faxpy 0.179e-1

10.11le-1
2.3 0.563e-1 2.3

fcdot 7.5 0.335e-1 7.8
fcaxpy 0.121e-1 6.9 0.377e-1 7.0
faypx 0.192e-1 2.2 0.607e-1 2.2
faxpz 0.207e-1 2.0 0.655e-1 2.0

16 processors, double precision, C = 0.0
rb_source 0.117 7.2
rb_matrix 0.150 11.1
fermion_matrix 0.851e-1 9.9
fmod2 0.123e-1 3.4
fysx 0.810e-2 1.3
faxpy 0.888e-2 2.3
fcdot 0.613e-2 6.8
fcaxpy 0.602e2 6.9
faxpz 0.104e-1 2.0

Table 5.7: T3D solver toolkit performance.

Chapter 5. The SOLVER application. 	 150

5.5 Quark sources:
the SOURCE application

The source creation application, SOURCE must be able to provide the func-

tionality shown in figure 5.5.

Figure 5.5: Functionality required from the SOURCE application.

Momentum injection. We must be able to inject momentum into the

propagator through the inclusion of a plane-wave factor, e.

Gamma matrices. We require the ability to multiply the propagator

by 'a generic r matrix (one of 1, 'ye, 'y,, 75YL)

Smearing. We require the ability to smear a propagator over a time-slice

as described in section 1.7.1.

The design of this application draws on several of the modules discussed pre-

viously; no new features require discussion.

Chapter 6

Conclusions

In this thesis we have shown that it is possible to design and implement a

suite of lattice QCD software for message-passing and data-parallel massively

parallel processors using software engineering methods. The codes that we

have produced will run on any platform supporting PVM or cHPF with little

or no alteration and in some cases, e.g. 50% of peak speed on the Connection

Machine CM5, produce extremely high performance without optimisation as

shown in chapters 4 and 5. The SOLVER kernel has been recently incorporated

into the PARKBENCH [122] benchmarking suite, a suite of parallel application

kernels from various disciplines requiring high performance computing. As the

kernel has only recently been included, no results are available yet. However,

the codes in this suite will be tested on all parallel platforms supporting PVM

and HPF, the current standards for portability.

The software engineering methods used are not at all common in most physics

research establishments, but have been of enormous aid in structuring and

documenting the design of the software, sharing the work amongst project

members, and detailing the interfaces to the implementation for other members

of the group. Mike Peardon, a research student at Edinburgh, has made use

of the documentation set and software library described in this thesis to write

• Hybrid Monte Carlo simulation code in High Performance/ CM' Fortran in

• short time, less than two months. His project proved valuable for both

field-testing our software and documentation and demonstrating the need for

a library of portable lattice QCD software and relevant background manuals

which are easy to use by people with no previous knowledge of the project.

151

Chapter 6. Conclusions. 	 152

Software engineering does have its negative aspects. Iteration in the design and

implementation phases of the project require the documentation to be kept up

to date so that everyone knows what the others are doing. This requires a high

degree of organisation and discipline which is not usually present in a physics

research department; people usually focus on a narrow area at a time, produce

a minimal amount of documentation in order to extract the maximum yield

of results in the given time and then move on to another area. Researchers

on large software projects need to xa-1y consider how to make their work

easily accessible to people with little specialised knowledge. In our experience

however, the extra time and effort required to keep the documentation up to

date is easily balanced by the time saved by having all relevant information at

hand and the legacy of an easily accessible package.

Some of the portability of the package remains to be tested. The lack of

availability of an HPF compiler means that our code has yet to be testing

with that standard. 11FF compilers are only now emerging on a few platforms

with several more in development. MPI is another such problem. Again, a

few implementations have been developed, as discussed in chapter 1, but these

are mainly built on top of other message-passing systems. The addition of

this further layer is good for distributing the standard as widely as possible,

but sacrifices some performance through an extra set of function calls. Only

once MPI has been implemented as the native message-passing package for a

platform will the desired performance be achieved; until that time it is better

to stick with established packages, e.g. PVM, whose functionality can be easily

converted to MPI at a later date.

Chapter 6. Conclusions. 	 153

The future

There are elements to the MPP codes which have yet to be designed and im-

plemented; gauge-fixing in both message-passing and data-parallel and hybrid

Monte Carlo in message-passing. These elements should be as easy to construct

from the available library as Mike Peardon's data-parallel hybrid Monte Carlo

codes.

Extensions can always be made to existing software to enhance performance on

particular platforms; particularly the Cray T3D, UKQCD's main production

platform for the next few years. Most of these optimisations will be possible

without any re-designing of the software due to the modular construction and

isolation of critical sections of code as described in this thesis.

It would be most useful to port the message-passing layer to MPI when it

becomes widely available. This should only be a matter of a few weeks work

for someone familiar with message-passing systems. So many people use PVM

at present that a guide to conversion from PVM to MPI will no doubt appear

in the near future. New platforms will most likely undertake to implement

MPI or HPF as the standard package as they have become so widely accepted

among the high performance computing community.

Appendix A

Mathematical conventions

A.1 'y-matrix definitions

The 'y-matrices used are

10 0 	0\ /0 00 i

01 I:' 0 0 —
0 	o ,) to

o
OiO

—iool
0 	0 0 	—1 \—i 0 0 0)

/0 	0 0 	1\ / 	0 0 i O\

' 2 	

0-1 Io 	
0—i

00
o) 000

_ioo
—i

ol
1000 OiO oJ

/0 0 1 0
0

.
0 0

0
ii
0 	I 	(A.1)

0 1 0 0)

so that a 1, = fry,, y] is

= all = 22 = O33 = 0

/ 	0 0 0 —1 0 0 0 	i\
0 0 —1 0 0 0 	—i 0 	1

= 0,01 	-0110 ü —1 0 ü
) 	

aO202O

(
0 i ool

—1 0 0 0 0 	0 i —) 0

/ 	0 0 —1 Ø\ I-i 0 0 0\

00 01 01 00
UO3 	0'30 	= 	—1 0 0 	0 C12-021 o 0 —1 0

0 1 0 	0) 0 0 0 1 /

/0 -2, — 0 0
o

/ 0 —1 0 O\
0 (-1 0 0

= 13 =

I:
0 0 —i 23 	32

= f 0 0 0 —1 0
0 Oi 0 0 0-1 o)

(A.2)

154

Appendix A. Mathematical conventions. 	 155

A.2 Gell-Mann matrix definitions

We follow the definitions in [123, Appendix F]. The Gell-Mann matrices A.

satisfy the relation

Tr A aAb = 28ab 	 (A.3)

The definitions are

10 1 0
A1 	= 1 0 0

0 0 0

10 0 1
A4 = 0 0 0

ki 0 0

(0 0 0
A7 = 0 0 —i

'\ 0 *1 0

/0 —i

A2 	7, 	0.0 	3 (010

	

\0 0 0) 	\o 	0 0)

.10

	

X5=(00 0 	A6 =(00

	

0 0) 	\O 10)

	

/1 1 	0\

	

0 1 	0 1 	(A.4)
\0 0 —2)

Appendix B

Generating quenched gauge configurations:
technical details

B.1 Heatbath update

In the heatbath algorithm (see section 1.3.1) the new values of the link vari-

ables are independent of the old ones. The quasi-heatbath method consists

of performing heatbath updates on a sequence (we use 3) of SU(2) subgroups

of the group SU(3). Reference [124] is more general, describing SU(N). The

main reason for using subgroups is that while the sum of SU(2) matrices is

proportional to an SU(2) matrix this does not hold for SU(3) matrices.

We write the Wilson pure gauge action in the form

S = constant - ReTr U.R

where U is the matrix of the link to be updated and R is the sum over staples

(see figure 1.3).

In the following, 3 x 3 matrices are denoted by capital letters (e.g. U, X), and

2 x 2 matrices by lowercase letters (e.g. u, x). So we have

X=UR

x = (U. R) 2 2 a submatrix

One can parametrise the 2 x 2 complex matrix x as (see section B.1.1)

x = ku1 + ik'u 2 	 (B.1)

where .k, k' E 7?. and u1 , u2 are SU(2) matrices. We then use the property that

for any SU(2) matrix h one can write

ReTr (h.x) = IcTr (h.u i)

156

Appendix B. Gauge generation: technical details. 	 157

Remember also that an SU(2) matrix h can be parametrised in terms of Pauli

matrices

0`0 =122 LTI
=(

) 0'2(
_i) 	

3 (01 01 _) 	
(B.2)

h = h0.122 + ih 	 (B.3)

with

h 2 o + h = 1 and h0 , h 12 ,3 E R 	 (B.4)

Now suppose we choose

h=au

with u defined via equation B.1 and a an SU(2) matrix so that h is itself an

SU(2) matrix. Then the configuration probability

dP(hu) c e4 	(hx)dh = 4kTr (hul)dh = e Tr (a)dh

= e cyk. 2aoda (B.5)

since a is SU(2), and we have used the invariance of the SU(2) Haar measure.

The problem is now reduced to generating a0 with the distribution

P(ao)dao o e0dao(1 - a) 2 	 (B.6)

where we used

da = dao d3a6(1 - a 2 -a)

which in polar coordinates is

a2, a3)6(1 - a - da0 drd9dq5
ô(r, 9,)

= (1 - adaodrd9dcbsin 98(r - (1 -

The ai are then generated uniformly on a 2-sphere of radius (1 - a)h/2. The

procedure for generating these random matrices is described in section B.1.2.

Appendix B. Gauge generation: technical details. 	 158

We perform 3 hits of this kind taking 3 different 2 x 2 submatrices of X' = UR,

i = 1,2,3

fx 	x 1 0\ 	(1 0
X1 = x 0 X 1,0 	X2 = 0 x 0

	

0 1) 	 0 X10

and U' denotes

U° =U, U'=hU° , U2 =h

o \ 	fx o
 0 4)(B.7) X01 	 = 	0 1 0

21 	 3 	1) 	3
X11 j 	 \ x10 J 11

2 u1, U' = U3 = h3 U2 	(B.8)

The

h I= (au),

are enlarged to SU(3) matrices by putting a 1 in the diagonal element and 0's in

the off-diagonal elements. The staple sum R,h remains unchanged throughout.

Summary

The Cabibbo-Marinari update of UM(x) can be summarised as follows

loop over hits i from 1 to 3 step +1
let X = Ut.R
choose 2 x 2 complex submatrix to be x 1 ,x2 or x 3

parametrise x i to get k and ut
generate a 0 and aj according to distribution (13.6)

let Ut = (aut)j Ut_ 1

B.1.1 Parametrisation of a complex 2 x 2 (C22) matrix.

Given

x=(a)E c22

we want to write

x = ku1 + ik'u2

Appendix B. Gauge generation: technical details. 	 159

with Ic E R. and u1 € SU(2). We only need to calculate Ic and u1 . So

x = ku1 + ik'u2 = k(eo l22 + ië) + ik'(f0 1 22 +
if. a)

with e + ë2 1 and fo2 + J2 = 1. Then

X = (Iceo + ik'f0)1 22 + i(kê+ ik'f).ó

M.
= XO.12x2 + 	= XO.12x2 +

where x o ,x2 E C for j = 1,2,3. We then have

-

SM =
1

 Tr (x.)

for IL = 0, 1,2,3. This then gives

= (a + d) = keo + ik'fo

= —Tr (x.a)=ke+ik'f

so that

ke 0 = Re(a+d), 1cei =Im(b+c)

Ice 2 = 	Re (b - c), ke 3 = Im (a - d) 	 (B.9)

Use e + ë-'2 = 1 to get

Ic = ~jRe2 (a + d) + Re2 (b - c) + 1m2 (b + c) + 1m2 (a - d)} 	(B.10)

Finally, 	
(eo + ie3 e2 + ie1

) 	 (B.11)
= —e2 + ie1 e0 -

B.1.2 Generating the pseudo-random numbers a0

The full working for this algorithm is shown in [125]. To generate a random

number a0 with the distribution

P(ao) = N1J1 - ao 2 e '0, (-1 < a0 < 1)

Appendix B. Gauge generation: technical details. 	 160

Generate two uniformly distributed pseudo-random numbers R and R' in

the unit interval.

Set X=—,X'=—.
of

Set C = cos 2 (2irR"), with R" another uniform random number in (0, 1].

Let A=XC.

Let S = X'+ A.

If R"2 > 1 - for R" pseudo-random and uniform in (0, 1], go back to

step 1.

Set a0 =1—S.

Note that in step 4 using B = X - A will generate an independent result for

a0

B.1.3 Generating the random numbers a 1 , a2 , a3

Now that the a 0 have been generated we still need to calculate the a 1 , a2 and

a3 on the SU(2) manifold. We require that

a 2 + a
2

+ a 2 = 1— a

The procedure is as follows

Let r1 be Ji - a

Let r" be uniformly distributed random number in [-1, 1]

a3 = rr1

Let r2 be 'i -- r "2

Let r' be uniformly distributed random number in (0, 1]

a1 = r1 r2 cos(27rr')

a2 = r1 r2 sin(27rr')

Appendix B. Gauge generation: technical details. 	 161

B.2 Over-relaxed update

The rationale for using over-relaxed techniques is explained in section 1.3.2.

We shall first explain the method for SU(2). In practice, as with Cabibbo-

Marinari, the hits are performed on SU(2) subgroups of SU(3).

B.2.1 Over-relaxation with SU(2).

We want to update the gauge field U E SU(2). The action is

Su — ReTr (U.R)

In STJ(2) we can write the sum over staples as a multiple of another SU(2)

matrix

R = >(staples)

=k.0

where Ic E R, and U is SU(2).

We then define U0 to be the SU(2) matrix which minimises the action

Su,, = —ReTr (U0 U)

= —Tr (U0 U)

So clearly letting

U0 = 0-1

gives

Su0 = — 2 = —fik

Then let the new link be

U' = U0U1U0

Appendix B. Gauge generation: technical details. 	 162

The new element U' now lies on the opposite side of the group manifold from

element U0 . Note that U0 , whilst minimising the action, does not depend on

U. With this choice

Su, = 	—Tr (U'U)

= —Tr (U-1 U-1)

= —Tr (UtUt)

= —Tr (UU)t

= —Tr (UU)

= Su (B.12)

i.e. the action remains unchanged and the update is always accepted.

B.2.2 Over-relaxation with SU(3).

As in the Cabibbo-Marinari method we perform 3 hits on SU(2) subgroups.

We have

Su—-ReTr (U. R)

and we need to find an element U' such that

Su = Su'

where U and U' differ by a multiple of an STJ(2) subgroup.

With

X=U.R

x = (U.R)22 submatrix E C

= kui+ik'u2

Appendix B. Gauge generation: technical details. 	 163

Let

Uo =v.0

where
(v00 Vol 0

V=I v 1 0 v11 0
0 	01

and v E SU(2). We choose v to minimise the action Su

(v00 Vol 0 \

Smin = - ReTr 	v 10 v 11 0 U.R
0 1)

= —ReTr (v.x)+constarit

Choosing v = u = uj' minimises the action

sinin = = — ReTr (u'(ku i + ik'u2))

= —2.k

So let the new link be

U' = U0 U- 'Uo

vUU -1 vU

=v2 U
/ I t\2 	I t\2
I Ui)oo 	U1j01

= I (u) 	(u) 	0 U

\ 0 	0 	1

(B.13)

This choice leaves the action unchanged and reduces to the SU(2) result if U

is an SU(2) matrix.

The 3 hits are performed with the same subgroups as for the Cabibbo-Marinari

update. And, as can easily be seen, the computation is almost identical as for

the Cabibbo-Marinari update.

Appendix B. Gauge generation: technical details. 	 164

B.3 Calculation of the staple sum

The requirement for the staple sum is explained in section 1.3.3.

B.3.1 Theory

0
X 	

UM(x) 	p x+f

Figure B.1: The two plaquettes containing the link to be updated. The direction of evaluation

of the links is also shown.

The plaquette action in the a,v plane is (see figure B.1)

ReTr IU,,(x)U.(x + ji)Ut(x + 11)UJ(x)} 	 (B.14)

for the top plaquette and

ReTr f U t (x) Uj (X —) U—)U(x _+)} 	(B.15)

for the bottom plaquette. So summing top and bottom plaquettes over all

planes (iw, /p, tr) yields

ReTr UM (x) 	U(x+12)U,i(x+1)U(x)

Appendix B. Gauge generation: technical details. 	 165

+ UJI
 I 	U(x - I)UM(x - I)U(x - +

] } 	
(B.16)

But for any 3 by 3 complex matrix

ReTr U=ReTr UI 	 (B.17)

so that defining the staple sum R M (x) as

RM (x) = 	U(x+)L4)U((x+)Ut (x)+ U(x —+)U(x —x)

(B.18)

the sum of plaquette actions around UM (x) is

ReTr {U(x)R(x)} 	 (B.19)

B.3.2 Algorithm

The algorithm for creating the top and bottom staples is as shown below (see

figure B.2 for labelling of links and points used).

B

TOP
2 	STAPLE

Al 	 JD
5
	BOTTOM 	7

STAPLE

F
6

Figure B.2: Labelling of links as used in the algorithmic description of the creation of the

staples.

Top Staple

Appendix B. Gauge generation: technical details. 	 166

Move 3toA.

Multiply 3t x

Move 4 to A.

Multiply 4 x (3t x 2t)

Bottom Staple

Move 7toF.

Multiply 7t x

Multiply (7t x 6t) x 5.

Move (7t x 6t x 5) to A.

B.4 Calculation of the plaquettes

Plaquettes can be calculated in-line with a staple sum or on a stand-alone basis.

The number returned is obtained in the following way

Multiply gauge link by the staple sum.

Calculate trace of plaquette product at all sites.

Sum over the plane of interest.

Divide by the lattice volume and no. of colours

resulting in a number in the interval [-1, 1].

B.5 Reunitarisation

The requirement for reunitarisation is given in section 1.3.4.

SU(3) matrices can be written in the form

(u
I 	I 	 (B.20)

'¼ (iZ x j7)*

\

)

Appendix B. Gauge generation: technical details. 	 167

where t7, are three-vectors of complex numbers. They obey the constraints

= 1

iZ.i = 0 	 (B.21)

Therefore the method used to reunitarise

fiZ\ 	liz'
IiiI-+ I ii'
\u) 	k'

is

1. Normalise ii - iZ' s.t.

iZ'iZ' = 1 	 (B.22)

z. e.

lul

where

IA = Juui + uu2 + uu3 	 (B.24)

Use the Gram-Schmidt orthogonalisation process to construct a vector iz

orthogonal to iz' i.e.

=,Y 	(ii. iZ*)iZ 	 (B.25)

Normalise iz -* v' as in 1 above.

Construct

= (iZ' x 	 (B.26)

Appendix C

Generation of quark propagators: technical
details

C.1 Hopping term algorithm

C.1.1 Introduction

The hopping, or delta, term arises in the fermion matrix as shown in sec-

tion 1.1.3. The fermion matrix is defined as

M=A — ,cZ 	 (C.1)

where A is the Clover term (see Appendix C) and A is the hopping term.

C.1.2 Non-daggered

The delta term is the most compute-intensive part of the whole propagator code

and is therefore worth spelling out in detail. The operation to be performed is

(4') (x) = >(1 - 	U,(x)b(x + i) + (1 + y,)U(x -)x - p) (C.2)

For gamma matrix definitions refer to equation A.1. This is the lattice differ-

ence operator which corresponds to .D in the continuum limit.

It is possible to perform the gamma matrix algebra and shifts as given i.e. with

as a four-spinor. However this is slow and a faster method has been found

(and used with great effect in the Maxwell code).

Since the y matrices act only on the spin indices we can commute them through

the gauge fields. With the substitutions

x(x+it) = (1--y(x+i)

11411-11

Appendix C. Generation of quark propagators: technical details. 	169

x(x—,i) = (1+'yb(x—) 	 (C.3)

we get the four-spinors ., x' which can be written as

2 	0 	00 2&
0 	2 	0 	0 - 	 - 20

Xo - 	o o o o 	02 	- o
o 	o 	0 	0 	03 0

1 	0 	0 	i
01 - çbi + it'2 -

Xi 	- 	o 	—i 	1 	o 	b2 - 	—i(0 1 + 42)
—i 	0 	0 	1 	03 — 400+43)
1 	0 	0 	1 	/'o I'O+1'3

-
X2 	0 	—1 	1 	0 	02 - 	—(0 1 - 02)

1 	0 	0 	1

1 	0 	i 	0 	00 Oo +i1'2
o 	1 	0 	—i

X3 = = 	
C.4

—i 	o 	1 	o —i(çbo+i&2)
o 	i 	o 	1 - 43)

These four spinors only have two independent components each so therefore

can be written as two-spinors without any loss of information. The two-spinors

can then be sent or received by processors with half of the communication time

(ignoring overheads) and recombined. Since the gamma matrix operations are

simply permuting indices and multiplying by factors of 'i' there is no great

overhead in computation time.

If we write

ll(x) = UM(x)x(x + i)

• l1 a (X) = (C.5)

where IL E 0.3 is the direction index and ce = O..1 is the 2-spinor index, then

the delta term can be written as

/ —ill 1 + II1Xo —ll 	+ '1,ci zll 0 + +ll 	\

L(x) =
2 	+ ri 1 +i-i 	+ +i1I2i + +ri 1

(C.6)
II 	- +11 	- II' +11 	- +11

- ill 0 +ll 	+ ll; +ll 	+ ill 1 +ll 	I

Appendix C. Generation of quark propagators: technical details. 	170

C.1.3 Daggered

The daggered equation is needed for some solvers. It can be written as

	

(t) (x) = 	(1 + 7M)UM (x)b(x +) + (1 - 	- i'(x -
JA

	

= 	AMa+A 	 (0 . 8)JAa
JA

where

AAa = UM(X)X ' a(X +) 	 (0.9)

A' - - U(x - ii)x(x -

The daggered delta term can then be written as

/ 	A0 - iA 1 +A 	- A' yo 	yi +A 0 - iA 1 +A 0

t(x)
=

A1 - iA 0 -i-A1 + A' 0 +A 1 - iA 0 +A 1

) 	

(0.10)
—iA 1 + A 0 —A 1 + A 0 —iA 0 + A 0 +A 0
—iA 0 + A 1 +A0 + A 1 +iA 1 + A 1 +A 1

C.2 Clover term implementation

C.2.1 Introduction

The Clover term in the action is defined in section 1.1.3 to be

A = 1 - ,cCcrM,,FM , 	 (0.11)

where ic is the quark hopping parameter, C is the Clover coefficient for adjusting

the action, 0Mv are defined in Appendix A and FMV is the field strength, defined

by

QM(x) - QMt(x)

-

21

Q M (x) = 	UOAV 	 (0.12)
i=1,4

with the QMV shown in figure 1.1.

W

Appendix C. Generation of quark propagators: technical details. 	171

C.2.2 Matrix definitions

Because all of the plaquettes are calculated in the same direction (see figure

1.1), F has the following anti-symmetry

F, = —F 	 (0.13)

With these definitions we can see that the matrix 	can be written as

	

-F12 	-F23 - iF13

	

- -F23 + iF13 	F12

	

- L03 	-101i.L02

	

—F01 - iF02 	F03

Note that we have only summed over it

counted. By defining the following quanti

	

—F03 	—FO i +iFo2 1
—F01 - iF02 	F03

(0.14)

	

—F12 	—F23 —iF13 I
—F23 +iF1 3 	F12]

< ii so that planes are not double

ties

Wo = F21

W1 = F32+iF31

TilT2 = F30

W3 = F10 +iF02 	 (C.15)

we see that
wo w1 	w2 w3

= 4' 	— WO W —W2
(0.16)

W2 	W3 	WO W1
W3t 	W2 W —W 0

It is the elements of W 	which are stored by the program, this form requires a

quarter of the memory of storing the full Clover term.

C.2.3 The decomposition of A - '

A decomposition of A is performed to make the multiplication by A 1 easier

(and indeed to find A more easily) [126]. The following equation is being

solved

Ax=y

Appendix C. Generation of quark propagators: technical details. 	172

so that by setting

A=LtDL

we ensure that

LDL.x = y

or

x = (L)'.(D)l.(Lt)l. y = A.y

where L is a lower triangular matrix and D is a diagonal matrix. In fact the

matrices L 1 and D 1 are stored. This is simply the action of Clover inverse

on a quark propagator field as required. This decomposition can be performed

because of the hermicity properties of A.

C.2.4 Decomposition algorithm

The decomposition is performed by the following algorithm (in the following

we let i,j stand for both the spin indices cz,,@ and the colour indices a, b, so

that Ndiag is equal to 12).

DO i = Ndiag-1 TO 0 STEP -1
DOj=iTOO STEP -1

LET t=A 3
DO k = 41 TO Ndiag-1 (not for i =Ndiag-1)

LET t = t - L* Dk.Lkj lei

EN D DO
IF(i =j)THEN

LET D=t
ELSE

LET L 1 =t/D
ENDIF

ENDDO
LET Di = 11D (gives us D')

EN D DO

Appendix C. Generation of quark propagators: technical details. 	173

C.2.5 Multiplying by A - '

To multiply a quark propagator field by A 1 the following algorithm is used

First multiply by (Lt)
On entry: x is the vector to be multiplied, y is the result.

LET y = x (Do not do in-place calculation.)
DO i = Ndiag-1 TO 0 STEP -1

DO j = Ndiag-1 TO i+1 STEP -1 (not for i =Ndiag-1)
LET yj = yj -

j i
EN D DO

EN D DO

Now multiply by (DL)'...

DO I = 0 TO Ndiag-1 STEP 1
LET y, = * D
DO j = 0 TO i-i STEP 1 (Do nothing when i = 0)

LET yj =yi - L ij *yj
ENDDO

ENDDO

C.3 The in-line pion propagator

The in-line pion propagator is calculated after the solver has calculated the

quark propagator as a check on a physical quantity. This should be gauge

invariant (a useful check when random gauge transform of unity is applied).

The quark propagator can be written as

=(C.17)

where i,j are colour indices and a, ,8 are spin indices. The quark propagator

is evaluated for different values of the quark mass m q , which is related to the

Appendix C. Generation of quark propagators: technical details. 	174

hopping parameter ic by
1

= 2mq + 8 	
(C.18)

The pion correlation function is the quantity which we wish to measure and is

denoted by

C(,) = (OIir(, t)irt(0)1O) 	 (C.19)

where

irt = ((q t y0) y5q)t = q t y5 .y0q

so that

C(x) =

=

= 	 O)V)j i 	x) 	 (C.20)

The lattice Dirac equation gives

ji
'O; x) = (614(0; x)(ys) 	 (C.21)

so that

C(x) = 	(y5)c43Iy(x;
O)(5)),5(y5)5p/42(O;

)()

= Tr

= Ti' [?k (X; 0).V) t (0; X)]

= t(x;O)I 2 	 (C.22)

What is done in practice is to calculate the modulus squared of the quark

propagator for a particular source spin (8) and colour (j), then sum over sink

spin (a), colour (i) and spatial indices () to get a value for the time-slice, this

is a real number. We finally sum over the source spin and colour to obtain a

single real value for each time-slice.

- pion prop(t) = 	 100ijee (x,t)I 2 	(C.23)
j3 ta

Appendix C. Generation of quark propagators: technical details. 	175

C.3.1 Free field pion

When performing calculations in unit gauge (or gauge transformed unit gauge)

e.g. test code, the full pion (with source summed over all spin and colour)

can be constructed from just one spin and colour using the periodic boundary

conditions and spin symmetry.

C.4 Rotations in the Clover action

As shown in section 1.1.3, we need to rotate the fermion fields according to

1 -+

-

1 -
and i/ -' ii" = (1 + 2 P) = 	 (C.24)

where the lattice covariant derivatives are defined by

-+ 	 1
(D f)(x) = j (U,(x)f(x + j2) - U(x - /2)f(x - 2))

1
and (f D,)(x) = 	(f(x + ui)Ut(x) - f(x - j2)U(x - /2)) (C.25)

If we write these derivatives as full matrices with f a column vector and 1T

the corresponding row vector, then

(D. f)(x) = > 	(x,y)f(y)

and (f T)(x) = 	f(y) B A (y,x) 	 (C.26)

so that we can write

D. (x, Y) = 	 - U(x - / 2) 61hz_il)

I- 	 1
similarly D (y, x) = 	(U(X)S y , z+il - UM (x -

4- 	 1
or D (x, Y) = 	(—U(x)6 y ,x+il+ U(X/2)Sy,z_il)

= - D. (x, Y) 	 (C.27)

Appendix C. Generation of quark propagators: technical details. 	176

i. e. when viewed as full matrices which can act in either direction, we have that

- D,, 	 (0.28)

which implies that

1-i
R1 = (1—D)

1
D))

1+-
= (1+D)

R, =— R 	 (C.29)

i.e. the two rotations are exactly the same matrix.

The Clover action is invariant under the rotation to terms of order a 2 , hence

(y)Mciover(y, x)q(x) - 	(y)RR' McioverR1 Rq(x) + 0(a2)

= q(x)MIqR(x) + 0(a 2) 	 (0.30)

So the improved quark propagator is given by

<qR(x)q(y) >= M71 (x,y) 	 (0.31)

We therefore need to compute

M'(x,y) = RM ver(X,Y)R 	 (0.32)

We cannot compute the whole .propagator matrix since it is too large, so we

fix point y at the origin and restrict ourselves to calculating a single column

of the propagator. So if we let (y) = &,,o be the usual source vector, we can

apply the rotation R to 77 and solve

>Mciover(y,x)çb(x)Rii(y) 	 (0.33)

for 0, i.e.

(C.34)
1/

Appendix C. Generation of quark propagators: technical details. 	177

If we apply the rotation again to the solution 0 , we obtain the required quark

propagator field

(x) = Rçb(x)

= 	RM ver(X,y)Ri7(y)

= RM ver(X,O)R 	 (0.35)

which is the required result.

In summary, the procedure used is

Apply the rotation R to the source q - 	= Ri7.

Solve Mciover4' = i' for q.

Compute çb = Rq.

Appendix D

F90 and HPF: Important language features

D.1 Introduction

In this appendix we explain the most important features of Fortran 90, High

Performance Fortran (HPF) and Connection Machine Fortran (CMF). These

features are related to array handling in Fortran. Only the features used in

this project have been documented-here (a very small subset).

An early description of migration from CM Fortran to HPF is described in

[127]. This has several omissions which have been inserted in this discourse.

D.2 Relevant Fortran 90 features

In this section we present not only the Fortran 90 features which are used

extensively, but also those which have not been used because their use may be

misleading, or lead to problems. For further details of these features, refer to

[60]

D.2.1 Array declarations

Arrays are declared in the following way

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt1)
$
$ gauge_xevn, gauge_xodd

Cfpoint single-gauge (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

178

Appendix D. F90 and HPF: important features. 	 179

which shows the declaration of multiple arrays of the same type (first statement)

or a single array (second statement). The single declaration can be put in the

same form as the multiple with only a single variable name after the ': :' if

desired. Both of the arrays are of type Cfpoint, single precision complex. Note

that CMF allows the use of ARRAY as well as DIMENSION, but HPF does not;

the latter should always be used.

D.2.2 Arithmetic operations on arrays and array sections

When arrays are of the same type, arithmetic operations can be performed on

whole arrays with a simple statement e.g.

INTEGER, DIMENSION (0:4,0:4) :: a, b, c

a= b + c
a= a* 6

adds the elements of b to those of c and places the result in a, and then

multiplies all elements of a by a scalar. If you wish to only do the first element

in the first dimension but all the elements in the second dimension, the

notation can be used e.g.

INTEGER, DIMENSION (0:4,0:4) :: a, b, c

a(0,:) = b(0,:) + c(0,:)

this notation should not be used for local indices, only distributed, as CMF

cannot implement it properly.

Although HPF allows you to pass out sections of arrays to functions, e.g.

INTEGER, DIMENSION (0:9) :: pass-out

CALL operate(pass_out(0:8:2))

which would pass out elements 0, 2, 4, 6, 8 of the array pass-out, CMF does

not; this feature must not be used.

Appendix D. F90 and HPF: important features. 	 180

D.2.3 Index ordering and 'fastest index'

Fortran 90 does not define which index moves fastest i.e. the layout in memory

of the array. In Fortran 77 it is defined to be the leftmost index. This means

that passing an array element to a function (as is done in Fortran 77) to use

as a 'pointer' to the part of the array you are interested in cannot be done.

Subroutines must either be given the whole array and select a section of it, or

a section must be copied into workspace and passed to the subroutine. The

Fortran 77 code

#include "implicit.h"
#include "build_size .h"
#include "build_constants .h'
#include "precision.h"

INTEGER big (O:Ncolour1,0:Ncolour-1,O:Npar-1)

CALL junk(big(0,0,1))

which passes the second parity of the array big to the subroutine junk, would

have to be coded in Fortran 90 as

#include "implicit .h"
#include "build_size. h"
#include "build_constants. h"
#include "precision.h"

INTEGER big (0:Ncolour-1,O:Ncolour1,0:Npar1)
INTEGER temp (O:Ncolour-1,O:Ncolour-1)

INTEGER row,col
DO rowO,Ncolour1

DO colO,Ncolour-1
temp (row,col) = big (row,col,1)

END DO
END DO

CALL junk(temp)

Appendix D. F90 and HPF: important features. 	 181

As we often need to operate on single parities of the fields, we use a separate

array for each parity in order to reduce the amount of copying to temporary

arrays.

D.2.4 Number of indices allowed

Only 7 indices are allowed in HPF to ensure backwards compatibility with

Fortran 77. For this reason a set of gauge fields has to have a separate array

for each direction and parity.

D.2.5 Array intrinsics used in MPP codes

These are operations on arrays. Some result in a derived quantity such as a

sum, others transform the array e.g. CSHIFT. The following intrinsics operate

in the same way on arrays as they do on scalars

• ABS - take the absolute value (modulus) of an array of numbers.

• REAL - take the real part of an array of complex numbers.

• AIMAG - take the imaginary part of an array of complex numbers.

• CONJG - take the complex conjugate of an array of complex numbers.

D.2.5.1 The SUM intrinsic

This intrinsic sums the elements of an array. It can have options specifying a

mask and the dimension to sum over, but we only use a very simple form

#include "implicit .h"
#include "build_size. h"
#include "build_constants .h"
#include "precision.h"

Cfpoint tmp (0:Ncolour-1,0:Ncolour-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
Cfpoint sum_tmp

Appendix D. F90 and HPF: important features. 	 182

sum_tmp SUM (tmp)

which sums every element of tmp.

D.2.5.2 The ANY intrinsic

This intrinsic returns a LOGICAL value, depending on a test e.g.

#include "implicit .h"
#include "build.size.h"
#include "build_constants.h"
#include "precision.h"

Fpoint tmp (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

IF (ANY(tmp .NE. 0.0)) THEN
WRITE (*,*) 'Non-zero element found'

END IF

which displays a message if any element of tmp contains a non-zero value.

D.2.5.3 The CSHIFT intrinsic

This intrinsic is used for moving data in an array by Cyclic SHIFTing, exactly

the operation needed to implement periodic boundary conditions. The syntax

is

<dest> = CSHIFT (<source>, SHIFT=<dir>, DIM<dim>)

where <dest> is the resultant array, <source> is the array to be operated

on, <dir> is the direction and amount to shift the array and <dim> is the

dimension of the array to shift. Note that the CM Fortran version of CSHIFT

reverses the last two arguments if the SHIFT and DIM keywords are not put

in. To be portable you must specify these keywords. The direction and

amount <dir> is only ever set to +1 or —1.

As an example of its use consider the array

(i 23
source =4

5 6

Appendix D. F90 and HPF: important features. 	 183

All arrays are addressed throughout our software as (row,col) so the command

source = CSHIFT (source, SHIFT-1, D1M2)

changes source to
(3 1 2

4 5

i.e. the matrix has been shifted in the increasing column direction. Note that

<dim> starts counting from 1, not 0 as our array indices do.

D.2.5.4 Masks

A mask is simply an array of logicals which indicates where a conditional oper-

ation is to take place. For example with the matrix source above, the matrix

source-mask

source-mask
= (.TRUE. .FALSE. .TRUE.)

.FALSE. 	.TRUE. 	.FALSE.

can be used to enable operations on source only where the mask is .TRUE..

See the sections on MERGE and WHERE for details of use.

D.2.5.5 The MERGE intrinsic

The MERGE intrinsic merges together two arrays depending on the value held in

a mask. The syntax is

<dest>=MERGE(<t source)!, <f source> ,<mask>)

Consider the following example of its use with the matrices tarray, f array,

tfmask.
i 2 3\

tarray=4 5 6)

farray=
(

 10 11 12)

I .TRUE. 	.FALSE. .TRUE.
tfmask= 	

.FALSE. .TRUE. .FALSE.

with the following command

result = MERGE (tarray, f array, tf mask)

Appendix D. F90 and HPF: important features. 	 184

The matrix result would be set to

183
tarray=

(

10 5 12

D.2.5.6 The WHERE statement

The WHERE statement can operate on arrays according to the value of the mask.

It can be used in one of two forms

The WHERE statement.

WHERE (<mask>) <statement>

The WHERE. . . ELSEWHERE... ENDWHERE construct.

WHERE (<mask>)
<statement 1>

ELSEWHERE
<statement2>

END WHERE

The statements enclosed must operate on arrays of the same shape and size as

<mask>. They may not call subroutines or functions (except intrinsics).

Note that on the Connection Machine MERGE is used more often as it is faster

(by a factor of 2!). This may not be true for all compilers and should be

investigated on the machine in question. The following two statements are

equivalent

result = MERGE (tarray,farray,tfmask).

and

WHERE (tfmask)
result = tarray

ELSEWHERE
result = f array

END WHERE

If all matrix shifting is placed in a single subroutine for each matrix type,

switching between MERGE and WHERE is simplified.

Appendix D. F90 and HPF: important features. 	 185

D.2.6 Features not used, or not allowed

D.2.6.1 The INTERFACE block

These blocks (which declare the interface to a subroutine or function and allow

greater type checking within the compiler) are not used. This is because the

source, files become extremely long and the compilers on the Connection Ma-

chine cannot cope. An additional pain is that the interface blocks would have

to be put in header files; if a header file is included but the relevant routine

is not called a whole slew of warning and error messages are generated by the

compiler.

D.2.6.2 The CASE statement

This is disallowed by the CHPF, on the grounds that it is non-essential. The

construct IF.. .THEN. . .ELSE IF; .. must be used.

D.2.6.3 The SYSTEM-CLOCK intrinsic

This intrinsic is not used to perform timing because of the ambiguity in what is

being timed. When time-sharing on machines the system clock on the front-end

bears no relation to the processor time on the machine. Machine-dependent

timing is expected.

D.2.6.4 The RANDOM-NUMBER and RANDOM-SEED intrinsics

The use of these intrinsics is not forced so that users have greater flexibility in

choosing a random number generator. The RNG selected by these defaults is

not a standard across compilers or machines - the performance is an unknown

- so use of these intrinsics is also not encouraged.

Appendix D. F90 and HPF: important features. 	 186

D.3 Subset High Performance Fortran

The use of cHPF requires additions to the Fortran 90 features discussed above,

not changes.

D.3.1 HPF directives

HPF directives start with

!HPF$ <directive>

The only directives we use are

• PROCESSORS

• DISTRIBUTE

which are explained below.

D.3.1.1 The PROCESSORS directive

This directive specifies the mapping of arrays elements (abstract or virtual

processors) onto the physical processors (or processing elements). Since all of

our arrays are distributed on a 4-D lattice, the usage is

'HPF$ PROCESSORS <name> (<x>,<y>,<z>,<t>)

which specifies that the mapping, called <name>, uses (<x>,<y>,<z>,<t>) pro-

cessors along each direction. In practice this should be defined in a header file

which is included by all subroutines.

D.3.1.2 The DISTRIBUTE directive

This directive specifies how the array is laid out on the machine. The usage is

!HPF$ DISTRIBUTE <name> (<layout>,...) ONTO <mapping>

for single arrays, or

!HPF$ DISTRIBUTE (<layout>,...) ONTO <mapping>
!HPF$$ <nainel>,...

for multiple arrays.

Appendix D. F90 and HPF: important features. 	 187

An example of use is

#include "implicit .h"
#include "build_size. h"
#include "build_constants .h"
#include "processors .h"
#include "precision.h"

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1,

$ O:Nxby2-1,0:Ny-1,O:Nz-1,O:Nt-1)

$
$ gauge_evn, gauge-odd

'HPF$ DISTRIBUTE (*,*,BLOcK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS

!HPF$$ gauge_evn, gauge-odd

which will cause all colour components to live on the same abstract processor

(because of the '*'), and the x, y, z and t components to be distributed over

different abstract processors. Each space-time point will have a separate SU(3)

matrix on a separate abstract processor in effect.

D.3.2 The FORALL statement

This allows you to perform several loops simultaneously. The syntax used is

FORALL (<loopvar><lowlim>:<highlim>) <statement>

e.g.

• #include "implicit.h"
#include "build_size.h"
#include "build_constants . li"
#include "precision.h"
#include "processors .h"

INTEGER y, z, t
• LOGICAL spin2_mask (0:Ncolour-1,0:Nspin4-1,

$ O:Nxby21,0:Ny-1,O:Nz-1,O:Nt1)
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS

!HPF$$ spin2_mask

FORALL (y0:Ny-1, z0:Nz-1, tO:Nt1)

$ spin2_mask (:,:,:,y,z,t) = MOD(y+z+t,2) .EQ. 0

Appendix D. F90 and HPF: important features. 	 188

D.4 Connection Machine Fortran

The only differences from the features discussed earlier are those of layout and

common block location. The following code fragment illustrates the differences

(the addition of CMF$ directives). The use of FEONLY specifies that the common

block lives on the front end; if the common block is intended to be on the MPP

machine, omit this line.

#include "implicit .h"
#include "build_size. h"
#include "build_constants. h"
#include "processors . h"
#include "precision.h"

INTEGER common_var
COMMON /var_common/ common_var

CMF$ COMMON FEONLY /var_common/
Cfpoint, DIMENSION (O:Ncolour-1,O:Ncolour-1,

$ O:Nxby2-1,0:Ny-1,O:Nz-1,O:Nt-1)
$
$ gauge_evn, gauge-odd

CMF$ LAYOUT gauge_evn (:SERIAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS)
CMF$ LAYOUT gauge_evn (:SERIAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS)
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS
!HPF$$ gauge_evn, gauge-odd

Note that there is no way of declaring multiple variables in a single CMF

directive. Since directives are legal Fortran comments, the MPP codes have

both sets of directives left in place.

D.5 The x-direction with regard to parity

The layout of the arrays is particularly important when considering which array

elements are on each virtual processor. Note that the important concept in this

section is the virtual processor (VP) - not the processing element (PE). Array

elements from two arrays situated on the same VP involve no inter-processor

Appendix D. F90 and HPF: important features. 	 189

communications by definition. This speeds up the execution of such elements

by an order or so.

This is most useful when considering the splitting up of the lattice into two

sub-lattices labelled by parity. A point on each lattice with the same logical

coordinate is on the same VP.

The x-direction is a special case. Neighbouring points in the x-direction may

or may not need communication e.g. case (1) in figure(D.1) requires communi-

cation whereas case (2) does not. For this reason, all matrix shifting should be

performed using subroutines which check the direction and parity.

P(0):L(0) 	P(1):L(0) 	P(2):L(1) 	P(3):L(1) 	P(4):L(2) 	P(5):L(2)

. 	• 	I 	. 	. 	I 	• 	 -4X

I 	 I 	 I 	 I
case 1 	 case 2

VP1 	 VP2
EVEN 	ODD I EVEN 	ODD 'I EVEN 	ODD

	

J 	 I

Figure D.1: The siting of points on the same or different VPs determines whether commu-

nication is required. Case 1 potentially. requires communication whereas case 2 does not.

Appendix E

Message passing packages: important features

The code presented in this appendix was written by Stephen Booth. We assume

that the reader has some prior knowledge of PVM. We do not aim to explain

all of the structures underlying the code; it is merely included as an example

of implementation of the message-passing layer in PVM.

E. 1 Header files

There are several options which can be implemented throughout the message-

passing code if required. To ease the selection of required options, all relevant

build-time flags are defined in a single file, 'pvm_opt ions. h' as shown below.

C options file for the PVM versions of the comms routines.
C

C
C leave data in place.
C
#undef INPLACE

C put in barriers at the start and end
C of all boundary communications
#undef BOUND-BARRIER
#ifdef INPLACE
C we need the barriers if we are doing in-place pvm
#define BOUND-BARRIER
#endif
C

C Use broadcast or multicast.
C
#undef BCAST

C use the binary tree to return gsum results rather than
C using the set functions
#undef TREE-SEND

190

Appendix E. Message passing packages: important features. 	 191

C
C complete boundary comms in the start call
C instead of waiting for the end call
C
#undef NO-OVERLAP

All constants, common MP variables and data sizes are declared in the header

file 'pvmcomms . h'. This file is included by all communications routines.

C
C Include file for PVM version of the comins
C

C first we need the standard pvm file
#include <fpvm3 .

C position of parameters packed in the initialisation block.
INTEGER Block-size
INTEGER X_size, Y_size, Z_size, T_size
INTEGER X_pos, Y_pos, Z_pos, T_pos
INTEGER Boss_pid, My_pid

PARAMETER(Block_size = 10,
$ 	X._size = 	1, Y_size = 2,
$ 	Z_size = 3, T_size = 4,
$ 	X_pos = 5, Y_pos = 6,
$ 	Z_pos = 7, T_pos = 8,
$ My_pid9, Boss_pidlO)

C 	parameters for the comms.
INTEGER Nbranch, Encoding, Bound-encode
PARAMETER(Nbranch=2, EncodingPVMRAW)

#ifdef INPLACE
PARAMETER (Bound_encodePVMINPLACE)

#else
PARAMETER (Bound_encodePVMRAW)

#endif

CHARACTER*(*) g_group
PARAMETER(g_group = 'ggrp')

C parameters for message tags
INTEGER Fgsum_tag, Dgsum_tag, Igsum_tag
INTEGER Fgset_tag, Dgset_tag, Igset_tag
INTEGER Pio_tag, Pio_req_tag
INTEGER Bound-base, mit_tag

PARAMETER(Bound_base = 10,
$ 	mit_tag = 1,

Appendix E. Message passing packages: important features. 	 192

$ 	Fgsum_tag

$ 	Dgsum_tag

$ 	Igsum_tag

$ 	Fgset_tag

$ 	Dgset_tag

$ 	Igset_tag

$ 	Plo_tag = 8,

$. 	Pio_req_tag=9)

INTEGER tidtable, neighbours, n_proc, myid, dir_tag
LOGICAL send_ok

COMMON /PVMTAB/
$ 	tidtable(O:Max_proc-1),

$ 	neighbours(O:Ndir-1),

$ n_proc, myid,
$ 	dir_tag(O:Ndir-1),

$ 	send_ok(O:Ndir-1)

#ifndef PVMTYPE
#deine PVMTYPE
C declare FTYPE DTYPE ITYPE to match precision.h
#if (Fsize == 4)
#deine FTYPE REAL4
#endif
#if (Fsize == 8)
#define FTYPE REAL8
#endif
#if (Dsize == 4)
#deine DTYPE REAL4
#endif
#if (Dsize == 8)
#define DTYPE REAL8
#endif
#if (Isize == 4)
#define ITYPE INTEGER4
#endif
#if (Isize == 8)
#define ITYPE INTEGER8
#endi
#endif

E.2 Loader program: pvmgrid

To get the application running on the nodes of the MPP we need to spawn the

individual processes in a 4-D torus. We use the model where the host process

Appendix E. Message passing packages: important features. 	 193

plays no part in the calculation so this program only has to fire up the node

programs and tell them their position in the processor array.

C host has to have the same integer format as nodes
#include "precision.

PROGRAM pvmgrid
#include "implicit .h"
#include "build_constants .
#include "build_size .h"
#include "pvmcomms . h"

INTEGER Max-node
PAFtAMETER(Max_node = Max_proc)
CHARACTER*80 name
INTEGER size(0:3)
INTEGER mytid
INTEGER count
INTEGER i,x,y,z,t,bufid,status
INTEGER info(Block_size)

C functions
INTEGER procpos

C macro defs

C check the task ID
CALL pvmfmytid(mytid)
IF (mytid .LT. O)THEN

CALL pvmfperror('pvmgrid' ,status)
CALL pvmfexit(info)
STOP

END IF

C set automatic error printing to ON
CALL pvmfserror(1,

name = SLAVE_PROG
#ifdef AUTO-SIZE
C AUTO-SIZE can be set in the pre-processor flags. If
C set, the user must hard-wire in the processor grid size
C and lattice size.

size(X_index) = X_proc
size(Y_index) = Y...proc
size(Z_index) = Z_proc
size(T_index) = T_proc

#else
C Otherwise we must read in the grid from the user
C at run-time; more flexible, but less efficient in

C some cases.
WRITE(*,*) 'grid size ?'

Appendix E. Message passing packages: important features. 	 194

READ(*,*) (size(i), i=O,Ndim - 1)
#endif

WRITE(*,*) 'loading program ' , name
WRITE(*,2) (size(i), i0,Ndim- 1)

2 	FOFtMAT('onto 1 ,12,' * '12,' * '12,' * '12)
DO 5, i=0,3

IF(size(i) .LT. 1)THEN
WRITE(*,*) 'illegal grid size, size(',i,') = ',

$ 	size(i)
STOP

END IF
5 	CONTINUE

n_proc = size(0) * size(1) * size(2) * size(3)
IF ((n_proc .LT. 1) .OR. (n_proc .GT. Max_node))THEN
WRITE(*,*) 'illegal grid size',size
STOP

END IF
C start the 'n_proc' new processes on any machine (PVMDEFAULT),
C the task ID's are returned in 'tidtable'. 'Count' is the number
C of actual processes started.

CALL pvmfspawn(name ,PVMDEFAULT, ' ',n_proc,tidtable ,count)
IF(n_proc .NE. count)THEN

C couldn't start enough processes.... die
WRITE(*,*) ' error loading program'
DO 6, i=O,n_proc
WRITE(*,*) tidtable(i)
IF (tidtable(i) .LT. O)THEN

CALL pvmfperror('pvmgrid' ,tidtable(i))
END IF

6 	CONTINUE
C leave gracefully after printing error messages...

CALL pvmfexit(status)
STOP

END IF

WRITE(*,*) 'load ok'

C now send id information to each processor.
C

C grid size
info(X_size) = size(X_index)
info(Y_size) = size(Y_index)
info(Z_size) = size(Z_index)
info(T_size) = size(T_index)

C Tell the slave processes who's boss (proc. 0)
info(Boss_pid) = 0

C Generate a unique Processor ID for each grid position,
C info(4y_pid). See subsection on 'Processor layout' for

Appendix E. Message passing packages: important features. 	 195

C algorithm.
DO 70, t0,size(T_index)-1

DO 65, z0,size(Z_index)-1
DO 60, y0,size(Y_index)-1

DO 55, x0,size(X...index)-1
info(X_pos) = x
info(Y_pos) = y
info(Z_pos) = z
info(T_pos) = t
i = proc_pos(x,y,z,t,size)
info(My.pid) = i

C Send info block and task ID's for all processors to
C each processor. Uses the 'raw' transfer, i.e. no
C encoding.

WRITE(*,*) 'starting proc ',i
CALL pvmfinitsend(Encoding,bufid)
IF (bufid .LT. 0)THEN

CALL pvmfperror('pvmgrid' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
CALL pvmfpack(ITYPE,info,Block...SiZe,1,StatUs)
IF (status .LT. 0) THEN

CALL pvmfperror('pvmgrid' ,status)
CALL pvmfexit(status)
STOP

END IF
CALL pvmfpack(ITYPE,tidtable ,n_proc, 1, status)
IF (status .LT. 0) THEN

CALL pvmfperror('pvmgrid' ,status)
CALL pvmfexit(status)
STOP

END IF
WRITE(*,*) 'sending to ',tidtable(i)
CALL pvmfsend(tidtable(i) ,Init_tag,status)
IF (status .LT. 0) THEN

CALL pvmfperror('.pvmgrid' ,status)
CALL pvmfexit(status)
STOP

END IF
55 	 CONTINUE
60 	CONTINUE
65 	CONTINUE
70 	CONTINUE

WRITE(*,*) 'pvmgrid exiting'
CALL pvmfexit(status)

STOP
END

Appendix E. Message passing packages: important features. 	 196

E.2.1 Processor layout

We need to tell the processors how they are arranged in the 4-D torus. This

function, 'proc_pos' does this using a simple algorithm.

INTEGER FUNCTION proc_pos(x, y, z, t, size)
#include "implicit .h"
#inc].ude "build_constants .

INTEGER size(O:Ndim-1), x,y,z,t
INTEGER pos(O:Ndim-1)

pos(X_index) = MOD(size(X_index) + x , size(X_index))
pos(Y_index) = MOD(size(Y_index) + y , size(Y_index))
pos(Z_index) = MOD(size(Z_index) + z , size(Z_index))
pos(T_index) = MOD(size(T_index) + t , size(T_index))

proc_pos = pos(X_index) +
$ 	(size(X_index) * (pos(Y_index) +

$ 	(size(Y_index) * (pos(Z_index) +

$ 	(size(Z_index) * pos(T_index))))))

RETURN
END

E.3 Initialising the communications system

As described in section 3.1 we need to initialise the communications system

and find out where we are using the information sent by the loader program.

SUBROUTINE init_comins(grid_size, grid_pos,
$ proc_id, boss_proc)

#include "implicit .h"
#include "build_constants .h"
#include "build_size .h"
#include "pvmcomius .

INTEGER grid_size(O:Ndim-1)
INTEGER grid_pos(O Ndim- 1)
INTEGER proc_id, boss_proc
INTEGER mess(Block_size)
INTEGER mytid, parent, bufid, stat, myinst
INTEGER count,i, t,z,y,x
INTEGER proc_pos

CALL pvmfmytid(mytid)

Appendix E. Message passing packages: important features. 	 197

C If we were using a machine which did not utilise a
C loader program 'pvmgrid' to spawn the processes, we could
C whether there was a parent process here, and spawn any others
C needed in the same way as 'pvmgrid' does.

C recieve the data from the parent process.

CALL pvmfrecv(parent ,Init_tag,bufid)
IF (bufid .LT. 0) THEN
CALL pvmfperror('init_comms' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
CALL pvmfunpack(ITYPE,mess,Block_size,1,stat)
IF (stat .LT. 0) THEN
CALL pvnifperror('init_comms' ,stat)
CALL pvmfexit(stat)
STOP

END IF

C check where we are, who we are, and who the boss is.
proc_id = mess(My_pid)
myid = proc_id
boss_proc = mess(Boss_pid)
grid_size(X_index) = mess(X_size)
grid_size(Y_index) = mess(Y_size)
grid_size(Z_index) = mess(Z_size)
grid_size(T_index) = mess(T_size)
grid_pos(X_index) = mess(X_pos)
grid_pos(Y_index) = mess(Y_pos)
grid_pos(Z_index) = mess(Z_pos)
grid_pos(T_index) = mess(T_pos)
n_procgrid_size(X_index) * grid_size(Y_index) *

$ 	grid_size(Z_index) * grid_size(T_index)
CALL pvmfunpack(ITYPE,tidtable ,n_proc, 1, stat)
IF (stat .LT. 0) THEN
CALL pvmfperror('init_comms' ,stat)
CALL pvmfexit(stat)
STOP

END IF

C set up the neighbour table (see next code fragment)
CALL init_bound(proc_id,grid_pos ,grid_size)

C wait for everyone to catch up.
CALL pvmfsetopt(PVMFASTBARR, 1, stat)
CALL pvmfbarrier(g_group,n_proc ,stat)
RETURN
END

C111

Appendix E. Message passing packages: important features. 	 198

The neighbour tables are set up so that the torus is implemented in software.

SUBROUTINE init_bound(proc_id, grid_pos, grid...size)
#include "implicit .h"
#include "build_constants .h"
#include "build_size.h"
#include "pvmconuns .

INTEGER proc_id
INTEGER grid_pos(0:Ndim-1)
INTEGER grid_size(0:Ndim-1)
INTEGER i, n

C 	functions
INTEGER proc_pos

DO 15, i=0,Ndir-1
send_ok(i) = .TRUE.
dir_tag(i) = 0

15 	CONTINUE

DO 20, i=0,Ndim-1
C define the neighbour in the positive direction.

grid_pos(i) = grid_pos(i) + 1
n = proc_pos(grid_pos(X_index), grid_pos(Y_index),

$ 	 grid_pos(Z_index), grid_pos(T_index),
$ 	 grid-size)

neighbours(i) = tidtable(n)
C define the neighbour in the negative direction.

grid_pos(i) = grid_pos(i) 	2
n = proc_pos(grid_pos(X_index), grid_pos(Y_index),

$ 	 grid_pos(Z_index), grid_pos(T_index),
$ 	 grid-size) .

neighbours(i+Ndim) = tidtable(n)
grid_pos(i) = grid_pos(i) + 1

20 	CONTINUE

RETURN
END

E.4 Global sum

C{{{ SUBROUTINE g_suin(rval)
C
C -g-sum single precision global sum
C

SUBROUTINE g_suni(rval)
#include "implicit.
#include "messages. h"

Appendix E. Message passing packages: important features. 	 199

#include "build_constants .h"
#include "build_size. h"
#include "pvmcomms .

Fpoint rval
Fpoint sum, tmp
INTEGER i, parent, son, bufid,stat

C If there's only one process, we don't have much to do
IF(n_proc .EQ. 1) RETURN

sum = rval
C{{{ get from Sons - we are using a binary tree,
C (Nbranch2)

DO 10, i1,Nbranch
son= (Nbranch*myid) + i
IF (son .LT. n_proc) THEN

C we do have a son, receive message into tmp
CALL pvmfrecv(tidtable(son) ,Fgsum_tag,bufid)
IF (bufid .LT. 0) THEN

CALL pvmfperror('g_sum' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
CALL pvmfunpack(FTYPE,tmp, 1, 1,stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('g_sum' ,stat)
CALL pvmfexit(stat)
STOP

END IF
C add to cumulative sum

sum = sum + tmp
END IF

10 	CONTINUE
C}}}

C check we are not at the top of the tree, then
C send cumulative sum to the parent.

IF (myid .NE. 0) THEN
parent= (myid-1) /Nbranch

C{{{ send to parent
CALL pvmfinitsend(Encoding,bufid)
IF (bufid .LT. 0) THEN

CALL pvmfperror('g_sum' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
CALL pvmfpack(FTYPE,sum,1,1,stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('g_suxu' ,stat)
CALL pvmfexit(stat)

Appendix E. Message passing packages: important features. 	 200

STOP
END IF
CALL pvmfsend(tidtable(parent) ,Fgsum_tag,stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('g_suln' ,stat)
CALL pvmfexit(stat)
STOP

END IF
c}}}

#ifdef TREE-SEND
C we want to send the final result back down the tree.
c{{{ receive from parent, only executes this bit if
C we are not process 0.

CALL pvmfrecv(tidtable(parent) ,Fgsum_tag,bufid)
IF (bufid .LT. 0) THEN

CALL pvmfperror('g_sum' ,bufid)
CALL pvmf exit (bufid)
STOP

END IF
CALL pvmfunpack(FTYPE, sum, 1,1, stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('g_sum' ,stat)
CALL pvmfexit(stat)
STOP

END IF
C}}}

END IF
c{{{ send back down tree

DO 20, i=1,Nbranch
son (Nbranch*myid) + i

IF (son .LT. n_proc) THEN
C 	send message

CALL pvmfinitsend(Encoding ,bufid)
CALL pvmfpack(FTYPE,sum,1, 1,stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('g_sum' ,stat)
CALL pvmfexit(stat)

STOP
END IF
CALL pvmfsend(tidtable(son),Fgsum_tag,stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('g_sum' ,stat)
CALL pvmfexit(stat)
STOP

END IF
END IF

20 CONTINUE
C}}}
#else
C otherwise use the global set routine to broadcast the

Appendix E. Message passing packages: important features. 	 201

C result.
END IF
CALL g_set(sum)

#endif

rval = sum
RETURN
END

C}}}

E.5 Global set

We often want to set a variable on a processors to the value on the boss proces-

sor, e.g. a global sum result. This is implemented with a suite of functions, as

shown in section 3.1, one of which is 'g_set' which operates on a single-precision

real number.

SUBROUTINE g_s et (rval)
#include "implicit .h"
#include "messages .
#include "build_constants . h"
#include "build_size .h"
#include "grid_def . h"
#include "pvmcoIluuS

Fpoint rval
INTEGER bufid, stat

C only one processor, so not much to do!
IF(n_proc .EQ. 1) RETURN

C 	send message
IF(myid .EQ. O)THEN

CALL pvmfinitsend(Encoding,bufid)
CALL pvmf pack (FTYPE , rval, 1,1, stat)

	

IF (stat L.T.. 	0) THEN
CALL pvmfperror('g_set' ,stat)
CALL pvmfexit(stat)
STOP

END IF
#ifdef BCAST

CALL pvmfbcast(g_group,Fgset_tag, stat)
#else

CALL pvmfmcast(n_proc,tidtable ,Fgset_tag,stat)
#endif

IF (stat .LT. 0) THEN
CALL pvmfperror('g_set' ,stat)

Appendix E. Message passing packages: important features. 	 202

CALL pvmfexit(stat)
STOP

END IF
ELSE

C receive message
CALL pvm:frecv(tidtable(boss_id) ,Fgset_tag,bufid)
IF (bufid .LT. 0) THEN

CALL pvinfperror('g_set' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
CALL pvmfunpack(FTYPE,rval, 1, 1, stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('g_set' ,stat)
CALL pvmfexit(stat)
STOP

END IF
END IF
RETURN
END

E.6 Boundary communications

Most array shifting is implemented through the 'start-corn' and 'end-corn'

routines described in section 3.1. They are implemented in PVM as follows

(only the single-precision real version is shown).

SUBROUTINE fstart_coiu(length, idir, icmp, ocmp)

$ 	 ilen, input, olen, output)
#include "implicit .h"
#include "build_size.h"
#include "build_constants .h"
#include "messages.h"
#include "pvmcomms .

INTEGER length, idir, icmp, ocmp, ilen, olen
Fpoint input(O: (icmp*ilen)-1,O:ocmp-1)
Fpoint output(0:(icmp*olen)-1,0:ocmp1)
INTEGER i, bufid, stat

#ifdef BOUND-BARRIER
CALL pvmfbarrier(g_group,n_proc, stat)

#endif
IF(.NOT. send_ok(idir))THEN

CALL error_message('outstanding comnis not finished',

$ 	 'f start_corn' ,Mess_local,Err_logic_error)
END IF

Appendix E. Message passing packages: important features. 	 203

IF(length .GT. 0)THEN
CALL pvmfinitsend(Bound_encode ,bufid)
IF (bufid .LT. 0) THEN

CALL pvmfperror('f start_corn' ,bufid)
CALL pvrnfexit(bufid)
STOP

END IF
DO 10, i=O,ocrnp-1
CALL pvmfpack(FTYPE,input(0,i),(leflgth*iCmP),1,Stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('fstart_com' ,stat)
CALL pvrnfexit(stat)

	

STOP 	 -
END IF

10 	CONTINUE 	 -
dir_tag(idir)dir_tag(idir)+ 1
CALL pvmfsend(neighbours(idir),

$ 	dir_tag(idir)+Bound_baSe, stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('f start_corn' ,stat)
CALL pvrnfexit(stat)
'STOP

END IF
END IF

#ifdef BOUND-BARRIER
CALL pvmfbarrier(g_group,n_proC ,stat)

#endif

#ifdef NO-OVERLAP
C complete communications in the start call, do not
C wait for the end-corn.

CALL real_f end_corn(length, idir, icmp, ocmp,

$ 	 ilen, input, olen, output)

#endif
RETURN
END

SUBROUTINE fend_com(length, idir, icmp, ocrnp,

$ 	 ilen, input, olen, output)

#ifdef NO-OVERLAP
C complete communications in the start call
C instead of waiting for a separate end call.
#include "implicit .h"

INTEGER length, idir, icmp, ocrnp, ilen, olen
Fpoint input(0: (icmp*ilen)-1,0:ocmp-1)
Fpoint output(0:(icmp*olen)-1,0:ocmp-1)

RETURN
END

Appendix E. Message passing packages: important features. 	 204

SUBROUTINE real_f end_com(length, idir; icmp, oclup,

$ 	 ilen, input, olen, output)

#endif
C11)
#include "implicit .h"
#include "build_size .h"
#include "build_constants . h"
#include "rnessages.h"
#include "pvmconims .h'

INTEGER length, idir, icrnp, ocmp, ilen, olen
INTEGER bufid, stat
Fpoint input(0:(icmp*ilen)-1,0:ocmp-1)
Fpoint output(0:(icmp*olen)-1,0:ocrnp-1)
INTEGER i, rdir

#ifdef BOUND-BARRIER
CALL pvrnfbarrier(g_group,n_proc, stat)

#endif
IF(length .GT. 0)THEN
rdir = MOD(idir + Ndirn, Ndir)
CALL pvmfrecv(neighbours(rdir),

$

	

	dir_tag(idir)+Bound_base ,bufid)
IF (bufid .LT. 0) THEN

CALL pvrnfperror('fend_corn' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
dir_tag(idir) = dir_tag(idir) - 1
DO 10, i0,ocmp-1
CALL pvmfunpack(FTYPE,output(0,i),

$ 	(icmp*length) , 1, stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('fend_corn' ,stat)
CALL pvmfexit(stat)
STOP

END IF
10 	CONTINUE

END IF
C 	once recv is started must flush all outstanding data.

send_ok(idir) = (dir_tag(idir) .EQ. 0)

#ifdef BOUND-BARRIER
CALL pvrnfbarrier(g..group,n_proc ,stat)

#endif
RETURN
END

Appendix E. Message passing packages: important features. 	 205

E.7 Parallel file I/O support routines

When we perform parallel file I/O we have to move blocks of data to the boss

processor, which performs all I/O. The routines to do are 'block-push' and

'block-pull'.

SUBROUTINE block_push(pos ,size,buff)
#include "implicit .h"
#include "build_size .h"
#include "build_constants .h"
#include "messages. h"
#include "pvmcomms . h"

INTEGER p05, size
Fpoint buff(O:size-1)

INTEGER bufid, stat, rsize

C wait for a request for data.
CALL pvmfrecv(tidtable(pos) ,Pio_req_tag,bufid)
IF (bufid .LT. 0) THEN

CALL pvmfperror('block_push' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
CALL pvmfunpack(ITYPE,rsize,1,1, stat)
IF (stat .LT. 0) THEN

CALL pvmfperror ('block_pull' ,stat)
CALL pvmfexit(stat)
STOP

END IF
IF(rsize .NE. size)THEN

CALL error_message('wrong size message requested',

$ 	'block_push' ,Mess_local,Err_logic_error)
END IF
CALL pvmfinitsend(Encoding ,bufid)
IF (bufid .LT. 0) THEN

CALL pvmfperror('block_push' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
CALL pvmfpack(FTYPE,buff,size,1 ,stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('block_push' ,stat)
CALL pvmfexit(stat)
STOP

END IF
CALL pvmfsend(tidtable(pos) ,Pio_tag,stat)
IF (stat .LT. 0) THEN

Appendix E. Message passing packages: important features. 	 206

CALL pvmfperror('f start_corn' ,stat)
CALL pvmfexit(stat)
STOP

END IF

RETURN
END

SUBROUTINE block_pull (pos ,size,buff)
#include "implicit .h"
#include "build_size .h"
#include "build_constants .
#include "messages .h"
#include "pvmcornxus . h"

INTEGER pos, size
Fpoint buff (O:size-1)

INTEGER bufid, stat

C send a request for data
CALL pvmfinitsend(Encoding ,bufid)
IF (bufid .LT. 0) THEN

CALL pvmfperror('block_pull' ,bufid)
CALL pvmfexit(bufid)
STOP

END IF
CALL pvmfpack(ITYPE,size, 1,1,stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('block_push' ,stat)
CALL pvmfexit(stat)
STOP

END IF
CALL pvmfsend(tidtable(pos) ,Pio_req_tag,stat)
IF (stat .LT. 0) THEN

CALL pvrnfperror('f start_corn' ,stat)
CALL pvmfexit(stat)
STOP

END IF
C 	receive the data

CALL pvmfrecv(tidtable(pos) ,Pio_tag,bufid)
IF (bufid .LT. 0) THEN

CALL pvmfperror('b].ock_pull' ,bufid)
CALL pvinfexit(bufid)
STOP

END IF
CALL pvmfunpack(FTYPE,buff ,size, 1,stat)
IF (stat .LT. 0) THEN

CALL pvmfperror('block_pull' ,stat)
CALL pvmfexit(stat)
STOP

END IF

Appendix E. Message passing packages: important features. 	 207

END

E.8 Finishing up after the end of the program

When we have finished, we must tidy up cleanly.

SUBROUTINE finish_conuus()
#include "implicit .h"
#include "build_constants .h"
#include "build_size .h"
#include "pvmconuus .h"

INTEGER code

CALL pvmf exit (code)

RETURN
END

References and bibliography

R. D. Kenway. Non-perturbative calculations in the standard model. Rep.

Prog. Phys., 52, 1989.

A. S. Kronfeld. Lattice QCD. Technical Report Fermilab-conf-92/040-T,

Fermilab preprint, 1992. Introductory lectures given at TASI Summer

School.

H. J. Rothe. Lattice Gauge Theories an introduction. World Scientific,

1992.

C. Rebbi, editor. Lattice Gauge Theories and Monte Carlo Simulations.

World Scientific, 1992.

94-Pei Cheng and i-n-g.Feng Li. Gauge theory of elementary particle

physics. Oxford University Press, 1984.

K. G. Wilson. Confinement of quarks. Phys. Rev. , D10:2445, 1974.

[] B. Sheikholeslami and R. Wohiert. Improved continuum limit lattice

action for QCD with Wilson fermions. Nucl. Phys., B259:572-596, 1985.

G. Heatlie et al. The improvement of hadronic matrix elements in Lattice

QCD. Nuci. Phys., B352:266-288, 1991.

M. Lüscher and P. Weisz. On-shell Improved Lattice Gauge Theories.

Commun. Math. Phys., 97:59-77, 1985.

G. P. Lepage and P. B. Mackenzie. On the viability of lattice perturbation

theory. Phys. Rev., D48:2250-2264, 1'993. HEP-LAT 9209022, Fermilab-

Pub-91/355-T Revised, NSF-ITP-90-227.

K. Binder. Introduction: Theory and "Technical" aspects of Monte Carlo

Simulations. In K. Binder, editor, Monte Carlo Methods in Statistical

Physics, chapter 1, pages 1-45. Springer-Verlag, 1979.

F. James. Monte Carlo in theory and practice. Rep. Prog. Phys., 43:1145-

REFERENCES AND BIBLIOGRAPHY 	 209

1189, 1980.

N. Metropolis et al. Equation of state calculations by fast computing

machines. J. Chem. Phys., 21:1087, 1953.

on-Bhanot. The Metropolis algorithm. Rep. Prog. Phys., 51:429-457,

1988.

A. D. Kennedy. Progress in Lattice field Theory Algorithms. In Proceed-

ings of the 1992 Symposium on Lattice Field Theory. Nuclear Physics B

Proc. Supp., 1992.

A. Simpson. Algorithms for lattice QCD. PhD thesis, Physics Depart-

ment, University of Edinburgh, 1991.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte

Carlo. Phys. Lett., 195(2), 1987.

R. Gupta et al. QCD with dynamical fermions. Phys. Rev, D40:2072,

1989.

C. Bernard, A. Soni, and K. Yee. Introduction to lattice gauge fixing and

effective quark and gluon masses. Technical Report LSUHEP002-1992,

LSU, 1992. Presented at Workshop on QCD Vacuum Structure, Paris,

France.

H. Suman and K. Schilling. A comparative study of gauge fixing proce-

dures on the connection machines CM2 and CM5. Par. Comp., 20:975-

990, 1994.

C. R. Ailton et al. Gauge invariant smearing and matrix correlators using

Wilson fermions at 3 = 6.2. Phys. Rev., D47:5128-5137, 1993.

S. Collins. Gauge invariant smearing and the extraction of excited state

masses using Wilson fermions at /3 = 6.2. Nuci. Phys., B (Proc. Suppl.)

30:393-396, 1993.

C. Michael and M. Teper. The glueball spectrum in SU(3). Nucl. Phys.,

B314:347, 1989.

REFERENCES AND BIBLIOGRAPHY
	

210

S. Güsken. A study of smearing techniques for hadron correlation func-

tions. Nucl. Phys., B (Proc. Suppi.) 17:301, 1990.

H. P. Shanahan. Lattice calculations in heavy hadron physics. PhD thesis,

Department of Physics and Astronomy, University of Edinburgh, 1994.

Miehad J. Flynn. Some computer organisations and their effectiveness.
M.

IEEE Transactions on computers, C-21:948-960, 1972.

M. Kumar, Y. Baransky, and M. Denneau. The GF11 parallel computer.

Parallel Computing, 19:1393-1412, 1993.

A. Bartolini et al. A hardware implementation of the APE100 architec-

ture. mt. Jour. Mod. Phys., C4(5):969, 1993.

Thinking Machines Corporation, Cambridge, Massachusetts. CM User's

Guide, version 6.1 edition, October 1991.

N. Christ and A. Terrano. A very fast parallel processor. IEEE

Trans. Comput., 33:344, 1984.

F. Butler. Status of the Columbia Parallel Processor. Nucl. Phys., B

(Proc. Suppl.) 9:557, 1989.

Y. Oyanagi. New parallel computer project in Japan dedicated to com-

putational physics. Nuci. Phys., B (Proc. Suppl.) 30:299, 1993.

I. Arsenin, D. Chen, N. Christ, R. Edwards, A. Gara, S. Hansen,

A. Kennedy, R. Mawhinney, J. Parsons, and J. Sexton. A 0.5 terafiops

machine optimised for lattice QCD. Nucl. Phys., B (Proc. Suppl.) 34:820-

822, 1994.

J. W. Negele. QCD terafiops computer. Nucl. Phys., B (Proc. Suppl.)

30:295, 1993.

Y. Iwasaki et al. Status of QCDPAX. Nucl. Phys., B (Proc. Suppi.)

17:259, 1990.

Y. Iwasaki et al. QCDPAX: Present status and first physical results.

Nucl. Phys., B (Proc. Suppl.) 20:141, 1991.

REFERENCES AND BIBLIOGRAPHY
	

211

M. Fischler et al. The Fermilab lattice supercomputer project. Nuci.

Phys., B (Proc. Suppl.) 9:571, 1989.

Thinking Machines Corporation. The Connection Machine CM-5 Tech-

nical Summary, January 1992.

Wi14i'ee1 Oed. The Cray Research Massively Parallel Processor System
W.

CRAY TI9D. Cray Research GmbH, November 1993.

Intel. Paragon user's guide. WWW URL http://www.ccsf.caltech.edu/-

paragon/man.html.

K. Akemi et al. QCD on the highly parallel computer AP1000. Nuci.

Phys., B (Proc. Suppl.) 26:644, 1992.

S. Ohta. Towards lattice QCD simulation on AP1000. Nucl. Phys., B

(Proc. Suppl.) 26:647, 1992.

James. Rothnie. Overview of the KSR1 computer system. Technical

Retort TR9202001, Kendall Square Research, March 1992.

Christ. QCD machines. Nucl. Phys., B (Proc. Suppl.) 9:549,

1989.

Nec.i,n-H. Christ. QCD machines - present and future. Nuci. Phys.,

B (Proc. Suppi.) 20:129, 1991.

D. Weingarten. Parallel QCD machines. Nuci. Phys., B (Proc. Suppi.)

26:126, 1992.

E. Marinari. A review talk about computers and theoretic physics. Nucl.

Phys., B (Proc. Suppl.) 30:122, 1993.

Y. Iwasaki. Computers for lattice field theories. Nucl. Phys., B (Proc.

Suppi.) 34:78, 1994.

A. Trew and G. Wilson, editors. Past, Present, Parallel - A survey of

available parallel computing systems. Springer-Verlag, 1991.

Almasi and Gottlieb. Highly Parallel Computing. Benjamin-Cummings,

2nd edition, 1994.

REFERENCES AND BIBLIOGRAPHY
	

212

[5 11 R_hold-P. Weicher. A detailed look at some popular benchmarks. Par-

allel Computing, 17:1153-1172, 1991. Special issue: Benchmarking of

High Performance Supercomputers.

M. Berry, G. Cybenko, and J. Larson. Scientific benchmark characteri-

zations. Parallel Computing, 17:1173-1194, 1991. Special issue: Bench-

marking of High Performance Supercomputers.

Levine, Dctyitl Callahan, and ek Dongarra. A comparative study
Z.

of automatic vectorising compilers. Parallel Computing, 17:1223-1244,

1991. Special issue: Benchmarking of High Performance Supercomputers.

A. J. G. Hey. The Genesis distributed memory benchmarks. Parallel

Computing, 17:1275-1283, 1991. Special issue: Benchmarking of High

Performance Supercomputers.

D. Bailey et al. The NAS parallel benchmarks. WWW URL http://-

www.nas.nasa.gov/RNR/Parallel/NPB/NPBindex.html.

R. W. Hockney and C. R. Jesshope. Parallel Computers 2: Architecture,

Programming and Algorithms. Adam Huger, Bristol and Philadelphia,

1988.

A. Bartolini et al. The software of the APE100 processor. mt. Jour.

Mod. Phys., C4(5):955-967, 1993.

Thinking Machines Corporation, Cambridge, Mass. CM Fortran Pro-

grammers Guide. Version 1.1.

Thinking Machines Corporation, Cambridge, Mass. CM Fortran Refer-

ence Manual. Version 1.0.

Brainerd, Goldberg, and Adams. Programmer's guide to Fortran 90.

McGraw-Hill/Intertext, 1990.

B. J. N. Wylie and M. G. Norman. High Performance Fortran: A perspec-

tive. Technical Report EPCC-TN92-05, Edinburgh Parallel Computing

Centre, 1992.

REFERENCES AND BIBLIOGRAPHY
	

213

HPF Forum. High Performance Fortran Language Specification. Rice

University, Houston Texas, 1993. Version 1.0, May 3. Available by anony-

mous ftp from "titan.cs.rice.edu ".

C. Koelbel and P. Mehrota. An overview of High Performance Fortran.

Fortran Forum, 11(4), December 1992.

B4vi4 B. Loveman. High Performance Fortran. IEEE Parallel and Dis-
t:, .

tributed Technology, 1(1), February 1993.

High Performance Fortran Forum. High Performance Fortran Specifica-

tion. Fortran Forum, 12(4), December 1993.

High Performance Fortran Forum. WWW home page. WWW URL

http://www.erc.msstate.edu/hpff/home.html.

0. A. McBryan. An overview of message passing environments. Parallel

Computing, 20(4):417, April 1994.

R. Hempel, 11.-C. Hoppe, and A. Supalov. A proposal for a PARMACS

library interface. GMD, Postfach 1316, D-5205 Sankt Augustin 1, Ger-

many, October 1992.

R. Hempel. The ANL/GMD Macros (PARMACS) in FORTRAN for

Portable Parallel Programming using the Message Passing Programming

Model - User's Guide and Reference Manual, 1991. Version 5.1.

R. Calkin et al. Portable programming with the PARMACS message-

passing library. Parallel Computing, 20(4):615, April 1994.

A. Beguelin et al. A user's guide to PVM parallel virtual machine. Tech-

nical Report TM-11826, Oak Ridge National Laboratory, July 1991.

V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Mancheck. The PVM

concurrent computing system: evolution, experiences and trends. Parallel

Computing, 20(4):531, April 1994.

[73] D. W. Walker. The design of a standard message passing interface for dis-

tributed memory concurrent computers. Parallel Computing, 20(4):657,

REFERENCES AND BIBLIOGRAPHY
	

214

April 1994.

MPI Forum. Document for a Standard Message-Passing Interface,

November 1993. DRAFT.. Available by sending message "send index

from mpi" to "netlib©ornl.gov".

MPI Forum. Document for a Standard Message-Passing Interface. WWW

TJRL http://www.mcs.anl.gov/mpi/mpi-report.html.

Argonne National Laboratory. ANL MPI implementation. WWW IJRL

http://www.mcs.anl.gov/mpi/index.htn -il.

Edinburgh Parallel Computing Centre. MPI implementation for CHIMP

v2.1. Available by anonymous ftp from host: ftp.epcc.ed.ac.uk , directory:

/pub/chimp/release, file: chimp .tar. Z.

Ohio Supercomputer Centre. MPI implementation for LAM. Available

by anonymous ftp from host: tbag.osc.edu , directory: /pub/lam.

R. Lusk, B. Gropp, and A. Skjellum. Using MPI. MIT Press. To be

released.

U. Gärtel et al. Two strategies in parallel computing: porting exist-

ing software versus developing new parallel algorithms - two examples.

Future Generation Computer Systems (FGCS), 10:257-262, 1994.

D. M. Pase, T. MacDonald, and A. Meltzer. MPP Fortran Programming

Model. Cray Research Inc., October 1993. Available by anonymous ftp

from ftp.cray.com , directory: /pro duct- info/mpp.

L. W. Tucker and A. Mainwaring. CMMD: active messages on the CM-5.

Parallel Computing, 20(4):481, April 1994.

S. Booth. Parallel file access. Internal report, June 1994.

N. Stanford, H. Hoeber, and N. Hazel. Pure Gauge Configuration Gen-

eration on the CM-200, 1992. Version 1.

64ewot C. Loken. Software Engineering: What do experiments need?

In C. Verkerk and W. Wojcik, editors, Proceedings of the International

REFERENCES AND BIBLIOGRAPHY
	

215

Conference on Computing in High Energy Physics, pages 87-89. CERN,

1992. CERN 92-07.

I. Sommerville. Software Engineering. Addison-Wesley, fourth edition,

1992.

J. A. McDermid. Software Engineer's Reference Book Butterworth-

Heinemann, 1991.

E. Yourdon. Modern Structured Analysis. Prentice Hall International,

1989.

W. W. Royce. Managing the development of large software systems. In

WESTCON, 1970.

UKQCD. Massively Parallel Processor (MPP) Project, Volume 1: Gen-

eral Documentation. University of Edinburgh, 1994.

UKQCD. Massively Parallel Processor (MPP) Project, Volume 2: Mes-

sage Passing version. University of Edinburgh, 1994.

UKQCD. Massively Parallel Processor (MPP) Project, Volume 3: High

Performance Fortran (HPF) version. University of Edinburgh, 1994.

UKQCD. Massively Parallel Processor (MPP) Project, Volume .: C

Workstation codes. University of Edinburgh, 1994.

US DoD. Military Standard, Supplement to the American National Stan-

dard X3.9-1978. Technical Report MIL-STD-1753, US Department of

Defense, 1978.

C. A. Addison et al. The GENESIS distributed-memory benchmarks.

Computer Benchmarks, 1993.

R. Hockney. A framework for benchmark performance analysis. Super-

computer, 48:9-22, 1992.

G. Marsaglia. A current view of random number generators. In Computer

Science and Statistics 16th Symposium on the Interface, 1984.

[98] I. Vattula.inen, K. Kankaada, J. Saarinen, and T. Ala-Nissila. A Corn-

REFERENCES AND BIBLIOGRAPHY
	

216

parative Study of Some Pseudorandom Number Generators. Technical

Report HU-TFT-93-22, HEP-LAT 9304008, Research Institute for The-

oretical Physics, University of Helsinki, 1993.

P. D. Coddington. Analysis of random number generators using Monte

Carlo simulation. Technical Report SCCS-526, COND-MAT 930917,

Northeast Parallel Architectures Centre, Syracuse University, September

1993.

I. Vattulainen, T. Ala-Nissila, and K. Kankaala. Physical tests for ran-

dom numbers in simulations. Technical Report HU-TFT-94-2, COND-

MAT 9406054, Research Institute for Theoretical Physics, University of

Helsinki, 1994.

Booth. Private Communication.

Pr Ueberholtz. Private Communication.

G. Marsaglia and A. Zaman. Towards a universal random number gen-

erator. Ann. Appl. Prob., 1:462, 1991.

Press et al. Numerical Recipes in C the art of scientific computing.

Cambridge University Press, second edition, 1992.

D. E. Knuth. The Art of Computer Programming, volume 2: Seminu-

merical Algorithms. Addison-Wesley, 2nd edition, 1981.

G. Marsaglia and L. Tsay. Matrices and the Structure of Random Number

Sequences. Linear Algebra and its Applications, 67:147-158, 1985.

F. James. A review of pseudorandom number generators. Comp. Phys.

Comm., 60, 1990.

M. Lüscher. A portable high-quality random number generator for lattice

field theory simulations. Comput. Phys. Commun., 79(DESY 93-133,

hep-lat 9309020):100-110, 1994.

M. Lüscher. A random number generator for the ape-100 parallel com-

puter. Internal report. Available by anonymous ftp from 141.108.16.27

REFERENCES AND BIBLIOGRAPHY 	 217

in directory "pub/ random"., June 1993.

Cray Research, Inc. CRAY RANF manual page. SR-2138, version 1.0.

K. Kankaala, T. Ala-Nissila, and I. Vattulainen. Bit Level Correlations in

Some Pseudorandom Number Generators. Technical Report HU-TFT-

93-41, HEP-LAT 9308018, Research Institute for Theoretical Physics,

University of Helsinki, 1993.

I. Vattulainen, K. Kankaala, J. Saarinen, and T. Ala-Nissila. Influence of

Implementation on the Properties of Pseudorandom Number Generators

with a Carry Bit. Technical Report HU-TFT-93-33, HEP-LAT 9306008,

Research Institue for Theoretical Physics, University of Helsinki, 1993.

iln M. Ferrenberg, D. P. Landau, and Y. Joanna Wong. Monte carlo

simulations: hidden errors from "good" random number generators.

Phys. Rev. Lett., 69(23), December 1992.

S. L. Anderson. Random number generators on vector supercomputers

and other advanced architectures. SIAM Rev., 32(2):221-251, June 1990.

I. Deak. Uniform random number generators for parallel computers. Par-

allel Computing, 15, 1990.

S. Aluru, G. M. Prabhu, and J. Gustafson. A random number generator

for parallel computers. Parallel Computing, 18:839, 1992.

R. C. Edgar, L. McCrossen, and K. J. M. Moriarty. The specific heat of

SU(3) lattice gauge theory. J. Phys., G: Nuci. Phys. 7:L85—L88, 1981.

R. Balian, J. M. Drouffe, and C. Itzykson. Gauge fields on a lat-

tice. III. strong-coupling expansions and transition points. Phys. Rev.,

D11(8):2104-2119, April 1975.

R. Balian, J. M. Drouffe, and C. Itzykson. Erratum: gauge fields on a

lattice. III. strong-coupling expansions and transition points. Phys. Rev.,

D19(8):2514-2515, April 1979.

[120] D. B. Carpenter and C. F. Baillie. Free fermion propagators and lattice

References and Bibliography
	 218

finite size effects. Nuci. Phys., B260, 1985.

Gaig McNeile and Rpbr Baxter. Private Communication.

R. Hockney and M. Berry.. Public international benchmarks for par-

allel computers: report 1. Technical report, PARKBENCH Commit-

tee, February 1994. Available by rcp from "anonnetlib2.cs.utk.edu:-

parkbench/parkbench.ps".

I. J. R. Aitchison and A. J. G. Hey. Gauge Theories in Particle Physics.

Adam Hilger, 2nd edition, 1989.

N. Cabibbo and E. Marinari. A new method for updating SU(N) matri-

ces in computer simulations of gauge theories. Phys. Lett., B119, 1982.

A. D. Kennedy and B. J. Pendleton. Improved heatbath method for

Monte Carlo calculations in lattice gauge theory. Phys. Lett., B156, 1985.

J. H. Wilkinson and C. Reinsch. Linear Algebra, volume II. Springer-

Verlag, 1971.

Peti€k D. Surrey and B. J. N. Wylie. High Performance Fortran Migra-

tion (11FF and CHPF) via CM-Fortran. Technical Report EPCC-TN -

93-01, Edinburgh Parallel Computing Centre, January 1993. An early

report, has several omissions fixed by private correspondance.

\tJ 	1b4, 	 b 1':;L2(oMCr4.

kat f)
(.cebC.

cm-14) 	- - it lot

