L= B\ A
= =0
= =
AN = 7 ¢
FEYES

Portable lattice QCD software
for massively parallel processor systems

Nicholas Paul Stanford

Doctor of Philosophy
University of Edinburgh
1994

~\

Abstract

Quantum Chrémodynamics (QCD), which models the interactions of quarks
and gluons, forms part of the standard model, currently the best theoretical
framework of unified particle interactions. Lattice QCD is a method of simu-
lating the theory of QCD in a discretised form on computers. This approach

to particle physics is vitally important for providing a comparison with exper-

imental measurements -and predicting new particle properties. To implement— ~- -

lattice QCD we require very high performance computers, the latest genera-
tion of which are known as Massively Parallel Processors (MPPs). These are

available in two main distinct architectures, Multiple Instruction Multiple Data

(MIMD) and Single Instruction Multiple Data (SIMD).

We present a suite of lattice QCD software intended to be portable across
all currently available MPP platforms. This is achieved by utilising emerging
standards in parallel programming languages. We use subset High Performance
Fortran for SIMD machines and the PVM message passing package, with provi-
sion for the forthcoming Message Passing Interface (MPI) standard, for MIMD
>ma,chines. Software engineering techniques are used to design and document a »
package which delivers a high output of physics results without a large invest-
ment in optimisation for new platforms. This is achieved while still preserving
the major requirements of reducing memory demands and increasing speed and
user understanding. Detailed procedures for testing the package and validat-

ing results are presented, without which there could be little confidence in the

physics generated.

To evaluate the efficiency of the software suite we present timings for important

code sections generated on a range of MPP platforms.

i

Declaration

The work discussed in this thesis was undertaken in collaboration with Stephen
Booth at Edinburgh University under the management of Richard Kenway. I
made a substantial contribution to the work; my responsibility was the intro-
duction and application of software engineering techniques, drafting of most
documentation, co-designing and implementing the top-level message-passing
software, designing and implementing the user interface, and the design and
implementation of all data-parallel software. I was not heavily involved in the
low-level message-passing design and implementation. All test data and per-
formance data was generated by me, except where stated in the text. This

thesis has been wholly composed by me.

il

Acknowledgements

I would like to thank the EPSRC for funding for the duration of my PhD;
Richafd Kenway and Stephen Booth for their expertise and hard work which
went into the creation of the MPP software suite; Ken Bowler for his advice on
my thesis content and structure; Hugh, Henning, Nick and John for their shar-
ing of the PhD experience; Mike Peardon for illuminating unwanted ‘features’
in my code; Edinburgh Parallel Computing Centre for the use of a Connec-
tion Machine CM200 and Cray T3D; Peer Ueberholtz at Wuppertal University
for the use of a Connection Machine CM5 and advice on its use; Andersen
Consulting for providing me with post-PhD employment and the light at the
end of the tunnel. And finally, my wife Alison fo£ keeping me in high spirits

throughout the final year.
Nick Stanford

v

Contents

CAbstract e e e e e e i
Declaration S 111
Acknowledgements oL iv
Contents e e e e e e e e e e v
List of Abbreviations e ix
1 Lattice QCD for MPP systems 1

1.1 From continuum to lattice 2
1.2 Overview of physicselements 8
1.3 GQGenerating quenched gauge configurations 9

1.4 Generating unquenched gauge

configurations e e 13
1.5 Generation of quark propagators: thesolver 14
1.6 Ga.ugé fixing e e e e e 15
1.7 Correlators o i e e e e e e 16
1.8 Quark sources e 17
1.9 Analysis . . . vt v i 18
1.10 The targeted system: the need for portable lattice QCD software 18
1.11 MPP architectures S 19
1.12 Programming environments 20
1.13 Development base 24
1.14 Conclusions: the new software suite 26

2 Design and implementation of the MPP software suite:
global issues-. e 28

4

)

" 2.1 The waterfall method of software

ENEINEETING . .+« « . o v i e e e e e e e e e e e 29
2.2 Global project engineering issues 34
2.3 The user interface: |

the ECU application. . . : 52

3 Design and implementation:

modules common to multiple applications 64
3.1 Communications 64
3.2 ParallelI/O e L 73
3.3 Parallel I/O performance 75
3.4 Maths e 77
3.5. Testing the mathsroutines 80
3.6 Maths routine performance.o 85
3.7 Randomnumbers L0
3.8 TIMIng . . .« v v v v vt e e 93

4 Generating quenched gauge configurations:

the GAUGE application 94
4.1 Requirements e e 94
4.2 Design and implementation e e e e e e e 97
4.3 Gauge testing e e e e e e e e 112
4.4 Gauge performance 123

5 Generation of quark propagators:

the SOLVER application 126
5.1 Requirements 126
5.2 Design and implementation 130
53 Solvertesting, 140
5.4 Solver performance 146
5.5 Quark sources:
the SOURCE application 150
6 Conclusions [151

vi

A Mathematical conventions 154
A.1 y-matrix definitions 154
A.2 QGell-Mann matrix definitions « . . v v v oo .. 155

B Generating quenched gauge configurations:

technical details 156
B.1 Heatbath update IR 156
B.2 Over-relaxedupdate 161
B.3 Calculation of the staplesum 164
B.4 Calculation of the plaquettes IR 166
B.5 Reunitarisation o 166
C Generation of quark propagators: technical details 168
C.1 Hopping term algorithm 168
C.2 Clover term implementation 170
C.3 Thein-line pion propagator 173
C.4 Rotations in the Clover action e e e e e e 175
D F90 and HPF: Important language features 178
D.1 Introduction e e e e e e 178
D.2 Relevant Fortran 90 features 178
D.3 Subset High Performance Fortran 186
D.4 Connection Machine Fortran 188
D.5 The z-direction with regard to parity 188
E Message passing packages: important features 190
E.1 Headerfiles 190
E.2 Loader program: pvmgrid. 192
E.3 Initialising the communications system 196
E.4 Globalsum S T I 198
E5 Globalset e 201.
E.6 Boundary communications oo 202

vil

E.7 Parallel file I/O support routines
E.8 Finishing up after the end of the program

References and bibliography

viii

List. of Abbreviations

ABRC
ANSI
BCs
CcCM

DP
DR

DMA

ECU

F77
Fo0
FE
HMC

HPF
CHPF
I/O
MC
MIMD
MP
MPI
MPP
OR
PVM
QCD
RNG
SIMD
SPMD
SW

The Advisory Board to the Research Councils.

The American National Standards Institution.

Boundary conditions.

Connection Machine or Cabibbo-Marinari update depending on
context. -

Data-parallel.

Data repository. A large central data structure used in the ECU
application.

Direct Memory Access. A method of inserting/removing data di-
rectly to/from memory without the central processor being in-
volved. _ '

Executive Control Utility. The user interface to the MPP software
suite.

Fortran 77.

Fortran 90.

Front end. The host computer or processor to an MPP system.
Hybrid Monte Carlo. The algorithm used to create unquenched
gauge configurations.

High Performance Fortran.

Subset High Performance Fortran.

Input/Output.

Monte-Carlo.

Multiple instruction stream, multiple data stream.
Message-passing. ,

Message-passing interface. A standard message-passing package.
Massively-parallel processor.

Over-relaxed update.

Parallel virtual machine. A standard message-passing package.
Quantum Chromodynamics.

Random-number generator.

Single instruction stream, multiple data stream.

Single program, multiple data stream.

Sheikholeslami-Wohlert, or Clover, action.

1x

Chapter 1

Lattice QCD for MPP systems

In this chapter we discuss the physics on which the MPP project is based.
Our starting point is continuum QCD. We then proceed to place the theory on
the la.tfice and examine the Monte Carlo techniques required to simulate such
a theory. Sections 1.3 and 1.4 look at the mechanisms for generating gauge
configurations in both the quehched and unquenched regimes. The generation
of quark propagators in the background gauge configurations is presented in
section 1.5, with the methods for generating the quark sources discussed in

section 1.8.

In sections 1.6, 1.7 and 1.9 we take a cursory look at the other elements re-
quired to generate useful physics. These elements are not all implemented on
MPP machines, and are therefore outwith the subject of this thesis. However,
provision must be made for them to interface with the existing applications in

the suite.

Once the physics has been discussed, we examine the motivation for the creation
of a new software suite, the Cray T3D purchased by the ABRC and the need
to run on other platforms, then the two machine architectures on which the
project is implemented, MIMD and SIMD, and the programming environments
available. We finally present the principles guiding the creation of the new suite

of software and the base for its development.

Chapter 1. Lattice QCD for MPP éystems. 2

1.1 From continuurh to lattice

Several excellent references for a general introduction to lattice QCD are 1,2,

3, 4].

1.1.1 Continuum QCD

Quantum Chromodynamics (QCD), part of the standard model of particle
interactions, models the interaction between quarks and gluons. The theory
can be expressed in terms of the QCD Lagrangian Lqcp [5] , the fields A,

represent gluons and gk, g, represent quarks of flavour k.

. 1 no
Loco = —3Tr FuF™ + > (" Dy — mi)
k
F., = 8,A, —0,A, —ig[A, Al

D.gr = (au - igAu)qk
8 Aa.)‘a
A, = ';2 (1.1)

a=1

where the A°s are Gell-Mann matrices satisfying the SU(3) commutation rela-

tion
Aa Aol o cabe A
and normalisation condition
Tr (A)t) = 26 (1.3)

The quantum mechanical expectation value of an operator 0(q,q, A) may be

written as a functional integral in Euclidean spacetime
1 ' _
(0) = - [digldiald[A10(, g, A)e~ @+ (1.4)
where 7 is the partition function, defined by the condition (1) = 1,

2 = [digldlaldA)e 5@ (1.5)

Chapter 1. Lattice QCD for MPP systems. 3

and S is the action, S = [d*zLqcD-

Since numerical/computational treatment of the integrals over the grassman-
nian variables g and ¢ is not efficient, we integrate them out. If the form of the
action is

S = Sc(A) +3M(A)g, (1.6)

where Sg is the part of the action depending only on the gauge fields and M

is the fermion matriz, the integrated result is

Z = / d[A] det M(A)e~So(4) (1.7)

The problem with simulating this on a computer is that det M is highly non-
local and requires enormous amounts of computer time to calculate. We shall
see how to perform this simulation in section 1.4, however a simpler solution

exists. The quenched approzimation consists of setting
det M =1 (1.8)

which corresponds physically to the removal of virtual quark loops in the back-
ground gluon fields, or letting the masses of the virtual quarks tend to infinity.
Part of the work of lattice QCD research is to evaluate the effects and signifi-

cance of the quenched approximation.

1.1.2 Lattice QCD

Computers cannot deal with continuous variables so some form of discreti-
sation needs to be effected in order to extract numerical results. Wilson [6]
discoveréd how to do this by defining a Euclidean 4-D hypercubic lattice i.e.
space and time are treated equally. A natural regularisation is then introduced
which ensures cénvergence of integrals when calculating physical quantities and

preserves gauge invariance.

Chapter 1. Lattice QCD for MPP systems. 4

The gluons are formulated by elements of the gauge group SU(3). One asso-
ciates a gauge variable U,(z) with every link in the lattice connecting the site
« to site z + fi. Path ordering of the path integral requires that travelling along

the link in the opposite direction gives
Uola +) = Ul(e). | (19)

Fermion fields, situated at the sites of the lattice, carry both colour and spinor

indices; they are represented by 3 x 4 dimensional complex matrices.

We can now approximate the functional integral by multiple integrals over the

group-valued link elements

7= / [] dUie=5e! (1.10)

1.1.3 Gauge invariance and the lattice action

1.1.3.1 Gauge invariance

As in the continuum theory gauge invariance dictates the form of the lattice
action. On the lattice the effect of an independent gauge rotation at each site
is

q(z) — V(z)q(2)

1) — V()
Uu(z) — V(@)Uu)Vi(z+p)=Ul(e), (1.11)

where V(z) is a gauge rotation, V(z) € SU(3), in the same representation as

U.(z).

The only gauge-invariant quantities which can be constructed from gauge fields
alone are Wilson Loops, and are calculated by taking the trace over colour

indices of the product of gauge fields around a closed loop e.g. the 1 x 1 Wilson

Chapter 1. Lattice QCD for MPP systems. 5

Loop or plaquette

Tr Un(2)U,(c + 2)UL (2 + 9)Ud () = Tr Uou(z) (1.12)

To verify the gauge invariance of this and similar objects simply substitute
equation 1.11 into equation 1.12. The comparison of gauge invariant quantities
before and after a gauge rotation provides us with a valuable method for testing

code, as we shall see later.
1.1.3.2 Lattice action

The choice of action is crucial, bringing in such topics as fermion doubling and
the problems associated with it. ‘We shall not discuss them here and merely

present the chosen action.

The action S is composed of gauge and fermion parts

S =S¢+ Sr. (1.13)

The gauge action Sg is given by

Se=pY T (1 - %ReTr Ugw(m)) (1.14)
z u<lv .
where
2 6
B = FoF for SU(3). (1.15)

The gauge action is equivalent to

So = [d*z {%Fj +0(e)} (1.16)
where
Fup = 8,4, — 8, A, +39[A,, A)) (1.17)

i.e. the continuum Yang-Mills action with a discretisation error of order a?,

where a is the lattice spacing. The B-value (see equation 1.15) is important in

Chapter 1. Lattice QCD for MPP systems. 6

lattice gauge theory as it specifies the strength of the coupling in the theory

and hence the strength of the colour force.

The lattice fermion action Sr is constructed from the Wilson term {6] and aksk
additional term to remove discretisation errors of O(a), the Sheikholeslami-

Wohlert (SW) term [7, 8, 9]. The action can be written in the bilinear form
Sr = g(z)Mq(z). (1.18)
where M is the fermion matriz.

The fermion matrix can be written as
M=A—-cA (1.19)

where A is the SW term, and —«A is the Wilson term. The lattice hopping
parameter & is related to the quark mass my by

1

K = m. (1.20)

The hopping term A is defined by

(Ag)(2) = 2o(1 = 1)Uu(2)a(z +) + (1 + 1)Ul(z — f)a(e — A1), (1.21)

and is related to the amplitude that a quark will hop between neighbouring

lattice sites.

The SW term A is defined by
A=1-«Co,F, (1.22)

where the coefficient C allows variation of the action from Wilson (C = 0) to
SW (C =1). Other values can be used, such as 1.4 from mean field improve-
ment to remove tadpole diagrams'in [10], but will not be considered here. The

field strength F),, can be written

Qu () -'quf(x)

Fﬂ-"(m) = 2‘L

(1.23)

Chapter 1. Lattice QCD for MPP systems. 7

where the Q,, (see figure 1.1), defined as

Qul@) =7 3 Ubla), (124)

1=1,4
give this action the name ‘Clover’.

To calculate matrix elements under the O(a)-improvement scheme we must use

rotated quark fields. These are obtained by applying the following transforma-

tion !

2(x) — A=)1+ 3 P)

o(2) — (1= 3Ph(@) (1.29)

for O(a) improvement, where
(Pa) (@) = 3 Swulu(elae +) - 7Ul(e - ae —) (126)

This only involves next-to-nearest-neighbour communication and is therefore

v
[) [J @
4 1
° > =
/
3 2
[) ® ®

- p

Figure 1.1: Definition of Q,,. Point z is at the centre of the Clover-leaf. The sense of
orientation of the plaquettes used for calculating @, is taken such that the first gauge field
in the plaquette product is leaving point z.

relatively easy to implement on a parallel machine. The o,, and v matrices

used are defined in Appendix A.

1The implementation of the rotations is discussed in more detail in Appendix C.

Chapter 1. Lattice QCD for MPP systems. 8

1.1.4 Monte Carlo methods

To calculate the integral in equation 1.10 we need to integrate over several
million variables. This is not possible to do exactly, so we are forced to approx-
imate the integral by a sum over a sample of points in variable space. Further

information about use of Monte Carlo methods in statistical physics can be

found in [11, 12].

If we generate some configurations of the gauge links U; with probability distri-
bution « exp(—S(U;)), a method known as importance sampling, then we can
calculate the expectation value of a suitable observable O by averaging over

the configurations generated i.e.

1 '
(0) = i S o). (1.27)
=1
This is explained further in se'ction 1.3.

1.1.4.1 Gauge configurations

Computers cannot simulate a continuous object such as a link, so gauge vari-
ables must be represented at points. A gauge configuration then, is an array of

SU(3) matrices, one for each direction at each site of the lattice.

1.2 Overview of physics elements

The logical order in which the different lattice QCD physics elements in the
MPP software suite fit together is shown in figure 1.2. Only GAUGE, SOLVER
and SOURCE will be discussed in detail as part of this thesis.

Chapter 1. Lattice QCD for MPP systems.

Quenched gauge
configurations
GAUGE
Gauge-fixing of - Generation of Generation of Extraction of
configurations quark propagators particle correlators physics results
GAUGEFIX SOLVER CORRELATE ANALYSE
Ungquenched gauge
configurations
HMC Creation of quark
sources
SOURCE

Figure 1.2: The interconnection of the various physics elements in the MPP software suite.

1.3 Generating quenched gauge configurations

In section 1.1.1 we saw that by setting det M = 1, the quenched approxima-
tion, the amount of computer time required to calculate expectation values is

reduced.

In order to obtain a meaningful average using Monte Carlo methods we need
to sample statistically uncorrelated configurations. This is done by creating a
Markov chain of configurations. The probability distribution generated tends
to that required if the Metropolis algorithm is used {13, 14]:

1. Propose a random update and evaluate action change 6S.

2. Accept updated configuration with probability

Pace = min(1, exp(—65)) (1.28)

We are left with choosing the random update method in such a way that
the acceptance rate is sufficiently large. The method used is a combination
of heatbath and over-relaxed updates and will be described in the following

sections.

Chapter 1. Lattice QCD for MPP systems. : 10

1.3.1 Heatbath update

We successively place each link of the lattice in contact with a ‘heat-bath’

which selects a new link variable stochastically with Boltzmann probability

P(U) ~ exp(—Sg(U)). This is explored fully in Appendix B.

1.3.2 Over-relaxed update

The heatbath update explores the group manifold at a relatively slow rate if the
configurations are to be accepted with any reasonable probability. The aim of
over-relaxation is to maximise the change in the gauge links while minimising
the change in the action. In practice the action stays constant, removing the

need for an accept/reject stage. This is explained fully in Appendix B.

1.3.3 Lattice decomposition

To update more than one link at a time we use the fact that the gauge action

couples only next-nearest neighbours and can be written as
__B
Se = —NReTr U.R, (1.29)
where R, is the sum of staples around U, (see figure 1.3). For details of how

to calculate the staple sum see section B.3.

Since the staple links have to be held constant while the chosen link is updated,
the number of links that can be simultaneously updated is restricted to half of

the links in a certain direction (see figure 1.4).

This is a form of red-black (or odd-even) decomposition. In practice this is

achieved by doubling up the lattice in the z-direction®. The two sub-lattices

2The choice of direction is arbitrary, although the t-direction is avoided to aid time-slicing.

Chapter 1. Lattice QCD for MPP systems. 11

B
0 e

A C
v >

D F
E >

Figure 1.3: Two staples ABC and DEF in the plane around link U to be updated.

P
L e EEE——
— E—
——d;——_
I

Figure 1.4: Only the thick links in the z-direction may be updated at the same instant. This
leads to the division of the lattice into two sub-lattices of ODD and EVEN parity.

Chapter 1. Lattice QCD for MPP systems. ‘ 12

thus generated are labelled by parity®.

So to update all links the procedure is as follows

loop over parity (odd/even)
loop over direction (x,y,z,t)
calculate staple sum R,(z) for particular U,(z)
update U,(z) '

1.3.4 Hybrid update algorithm

The Markov chain of configurations is generated by successive sweeps through
the lattice, each sweep is referred to as a ‘hybrid’ or ‘compound’ update®. The
compound update consists of the following

O A local gauge transformation.

O One or more update stages, each consisting of ...

& Heatbath (Cabibbo-Marinari) updates.
¢ Over-relaxed updates.

O A unitarisation of the gauge matrices.

The gauge transform is a new element to the update proposed by S. Booth
at Edinburgh. The idea is to remove any bias in the way the unitarisation 1s

performed.

The unitarisation is performed in order to correct any numerical rounding errors
which creep in while performing the updates. The matrices are forced back onto

the SU(3) manifold. Full details are given in section B.5.

3Parity is always defined in these codes by = +y + z +t MOD 2. Since coordinates start
from zero, the origin is of even parity.

4This update algorithm is similar to that in [15].

Chapter 1. Lattice QCD for MPP systems. 13

Since we do not want to correct for numerical errors too often, as a unitarisation
takes time to berform, the Cabibbo-Marinari and over-relaxed update stages

may be performed more than once per hybrid update.

1.3.5 Initialising, thermalising and selecting configura-
tions

We must start off this Markov chain of configurations in some way. There are
two methods supported by our package.

1. Ordered start. Set all gauge matrices to the unit matrix.

2. Disordered start. Set all matrices to independent random values such

that U € SU(3).

Before we select any configurations we must allow the chain to become ther-
malised, i.e. the configurations are in equilibrium with the heatbath. Once
thermalised we must select statistically uncorrelated configurations by evolv-
ing the hybrid update for O(100) iterations. The criterion for this interval
between samples is determined by auto-correlations of an observable [16]9l}has
a complicated dependence on lattice size, § and the size of the operator J“a':Q is
left to the user to establish.

1.4 Generating unquenched gauge
configurations

As explained in section 1.1.1 the quenched approximation is used to eliminate
the extensive time required to calculate det M. Although unquenched simu-
lations consume more computer time, they are still performed as they give us
an idea of the effect of quenching on the physics generated. As quenching is

an uncontrolled approximation we must at some point revert to the full theory

Chapter 1. Lattice QCD for MPP systems. 14

to extract realistic physics. The most commonly used simulation technique 1s

‘Hybrid Monte Carlo’ (HMC) [17] and will be described briefly below.

The HMC algorithm uses molecular dynamics to evolve the system through
a fictitious time variable ‘7’, the simulation time. The molecular dynamics
update introduces systematic errors through the integration of the equations of
motion by finite timesteps. This error is removed by a Metropolis accept/reject

decision based on the change in the Hamiltonian for the configuration.

1.5 Generation of quark propagators: the solver

When considering an operator of the form O = gI'(U)g, the lattice equivalent

of equation 1.4 can be written as

(0) = / []dU:M T (U)e5e®) (1.30)

With a quark source 7 we need to solve the equation
. G \-1
¥h = (M) ni (1.31)
for 1,&;, a single column of the full quark propagator matrix; we do not usually
have sufficient memory space to solve for the full quark propagator. The indices
i, a are the source colour/spin and j, 3 the sink colour/spin. The solution of this

large sparse system of linear equations must be performed using an iterative

scheme as discussed in [16, chapter 2].

1.5.1 Preconditioning

Experience within UKQCD has shown that two types of preconditioning im-
prove convergence of the linear equation solver; our package has both built in
as standard. The first is due to [18] and reduces the off-diagonal elements of

the fermion matrix in the following way.

Chapter 1. Lattice QCD for MPP systems. 15

We define
M = (A-Kk’AAT'A)
7 = (1+xAA)y (1.32)
such that M’ = n'. The hopping term A is defined in equation 1.21.

The second method is that of red-black preconditioning. As in section 1.3.3 we
split the lattice into 2 sub-lattices labelled by parity p and p. The Clover term
A connects sites of equal parity and A connects sites of opposite parity. We

can therefore solve
M,I,p";bp = np+ “ApiA% Ui
= 7, (1.33)

and reconstruct the opposite parity solution from
Y5 = Ai:_—pl M5 + K5 Pp) (1.34)

This means we can save time and storage space when solving the system. For

more details of the derivation of the above preconditioning see [16].

1.6 Gauge fixing

The action defined in section 1.1.3 contains an inherent degeneracy arising
from its gauge invariant nature. Any term in the action containing a total
derivative of the gauge fields will vanish in the equations of motion. Gauge
fizing introduces a term in the action which breaks this invariance, satisfying

a new gauge fixing condition e.g.

f(A) = (8,A*)* =0 (Lorentz gauge) (1.35)

This condition is implemented in practice by iteratively minimising a known

function of the gauge fields.

Chapter 1. Lattice QCD for MPP systems. 16

The gauge fixing procedure is not needed for measuring gauge-invariant quan-
tities, e.g. particle correlators, but is essential for measurement of e.g. gluon
propagators [19]. An excellent review of lattice gauge fixing can be found in

[20].

1.7 Correlators

A quark propagator is the correlation function
$I(&,:0) = (0lgi(Z, t)a5(0)[0) (1.36)

of the qua,rk fields ¢, where 1, ; are colour indices and ¢, 8 are spin indices. A

propagator for a particle such as a meson is given by
C(,t) = (0|I(,t)IT'(0)|0) (1.37)

where II(z) = g(z)T'q(z) and T is one of the 16 linearly independent y-matrix
combinations 1, ¥s, Yu, V57Vu, O giving the required quantum numbers under

charge conjugation and parity.

It can be shown [16, chapter 4] that inserting a complete set of spatial momenta
and particle states, transforming to momentum space and summing over the

spatial volume gives

ct) = LCOE)

= 3 (Fae™* + Bpe™(T1) (1.38)
g e —Twme Goude & B e .

for t <@/ 2 where F, and B, are the amplitudes of the forward and backward
propagating particles. As t — oo and T' —t — co we are left with the lightest
state with a non-zero overlap with the operator II. The particle mass can then

be extracted.

Chapter 1. Lattice QCD for MPP systems. 17

We see therefore that the correlator, C(t), is vital for later analysis. Baryon

correlators are calculated in a similar way using three valence quarks
Ip(z) ~ eie(q:i(z)Tq;(z))qu(z) (1.39)
1.7.1 Smearing

To improve the overlap of the lightest state, or an excited state, with the
operator we smear the quark source and/or sink [21, 22, 23, 24]. The smearing
procedure effectively extends the quark source or sink over a finite spatial
volume. Many different techniques can be used; see the references for further

details.

1.8 Quark sources

To create quark propagators we solve the equation
My =q (1.40)

for the propagator . The simplest source, 7, used in practice is the ‘point’
source, a local spin/colour source of strength 2« placed at a single site on the
lattice (usually the origin). We then use the quark propagators generated to

make correlation functions as discussed in section 1.7.

- Three-point functions are quantities calculated to determine the matrix ele-
ments of flavour changing currents. In this section we will only present the
algorithmic elements needed to create such functions, for full details of the
technique refer to [25, Chapter 1]. To calculate a three-point function we need
to use an ‘extended propagator’ and a normal propagator as described in the
reference. An extended propagator is calculated by applying the following
steps.

Chapter 1. Lattice QCD for MPP systems. 18

Calculate a quark propagator for hopping parameter value «;.

Multiply the propagator by a plane-wave momentum factor e?Z,

Multiply the propagator by a I' matrix factor defining the interaction.

Ll L

Use a single time-slice of the above propagator as the source for a new
propagator with hopping parameter «2. This is now an extended propa-

gator.

1.9 Analysis

Analysis is a generic umbrella for all processing of correlators needed to generate
physics results e.g. masses, decay constants and form factors. The theory

of these diverse areas will not be discussed here, for further information see

1, 2,3, 4]

1.10 The targeted system: the need for portable
lattice QCD software

The Advisory Board to the Research Councils (ABRC) began a procurement
for an MPP system in September 1992 to be used for Grand Challenge projects.
The system, a Cray T3D®, was delivered in April 1994 and UKQCD aimed to

be in a position to have codes ready to run as soon as service began.

As this was such a major purchase a benchmarking exercise was performed
_involving real application codes running on as many platforms as possible. In
order to take part in the exercise and to have the ability to run codes on other
available platforms, UKQCD decided to design a new suite of lattice QCD

- software.

5This is not surprising as 41.3% of the supercomputers in the world are manufactured
by Cray Research Inc. (Source: The World’s Most Powerful Supercomputers 6/6/94,
newsgroup comp.sys.super on usenet)

Chapter 1. Lattice QCD for MPP systems. 19

There is currently a wide variety of both dedicated QCD computers, those
designed specifically for QCD computation, and commercial parallel comput-
ers used for QCD. Dedicated QCD computers usually gain high performance
through finely tuned assembly level code, with little investment in high level
compiler technology, largely precluding portability of software. Commercial
machines, however, must adhere to at least minimal standards in their pro-
gramming environments in order to attract a wide customer base. Although
portability has not been emphasised in past years, emerging standards are be-

ginning to form a wide portability base for applications.

1.11 MPP architectures

There are two main architectures, identified by Flynn’s taxonomy [26], used
for MPP systems: SIMD, single instruction stream multiple data stream, and

MIMD, multiple instruction stream multiple data stream.

1.11.1 SIMD: single instruction multiple data

SIMD machines are characterised by a large number (typically up to 64K) of
proceséing nodes receiving common instructions broadcast from a central host
processor. Synchronism is achieved by utilising a common clocking signal, thus
removing the need for synchronization in the software layer and simplifying user
application software. Examples of SIMD machines are GF11 [27] and APE [28]
(dedicated) or Thinking Machines CM-200 [29] (commercial).

1.11.2 MIMD: multiple instruction multiple data

MIMD machines typically have more powerful node processors with greater

memory capacity than the corresponding SIMD elements. Nodes can run inde-

Chapter 1. Lattice QCD for MPP systems. 20

pendent instructions with synchronism implemented through ‘message passing’
between them. Memory access is u.sually private, off-processor data is sent or
received by passing messages. Examples of private memory MIMD machines
are Columbia [30, 31], CP-PACS l[32], 0.5 Teraflops [33], Teraflops {34], QCD-
PAX [35, 36] and ACPMAPS [37] (dedicated) or Thinking Machines CM-5
[38], Cray T3D [39), Intel Paragon [40], Fujitsu [41, 42] and Meiko CS-2 (com-
mercial). Shared memory architectures also exist, e.g. KSR [43], but are not
common due to the reduction of speed from memory access conflicts and the
difﬁcuity of designing a communications network to overcome them. They do

however obviate the need for message passing resulting in simpler user software.

Our use of MIMD machines is to run the same program on all processors,
although not all of them will execute the same conditional branches. This

programming model is known as SPMD (single program, multiple data).

1.11.3 Convergence of architectures

The two architectures discussed above are currently distinct, though becoming
less so. Machines like the CM-5 and T3D, although MIMD, support SIMD-style
operation implemented through the improved communications networks used
for synchronisation. This trend is likely to increase as the vendors attempt to
capture the markets for both message passing and data parallel programming

environments as discussed below. Reviews of QCD machines can be found in

[44, 45, 46, 47, 48, 49, 50].

1.12 Programming environments

For the applications software engineer, programming environments are of far
greater importance than architecture. The environments supplied again fall

into two groups reflecting the uﬁderlying architecture: Data Parallel imple-

Chapter 1. Lattice QCD for MPP systems. 21

mented on SIMD machines and Message Passing on MIMD machines.

Most MPP platforms support both C and Fortran compilers, but as it is sen-
sible to write codes in only one language we must select either C or Fortran.
There is little published data on the relative performance of C/Fortran gen-
erated code, so our choice must be motivated by other criteria. A look at
published benchmark data [51, 52, 53, 54] shows that nearly all floating point
benchmarks are written in Fortran, while C is primarily reserved for string
and integer applications®. Vectorising compilers, as discussed in [50, section
6.2] and [56], have traditionally been for Fortran because of its prolific use in
numerical simulation and easy analysis of loops compared with C. For these

reasons dialects of Fortran for data parallel and message passing are used.

There will of course be some platforms to which it will be impossible to port
code. For example the APESE environment on the APE100 processor, an
object-oriented programming environment [57]camndt ke wicwded witim

our)VMQ-U@J wmvvonmenks |
1.12.1 Data parallel: High Performance Fortran

The data parallel paradigm has been implemented in several dialects, for ex-
ample CM Fortran [58, 59], Fortran D and Vienna Fortran, based on the array
handling constructs of Fortran 90 [60] with added directives for distributing

data objects across processor topologies.

As discussed in [61] a standard, High Performance Fortran (HPF), has emerged
with major vendors pledging support:
] Announced product: Applied Parallel Research, Kuck and Associates,
PGI, Intel, Meiko, Digital.
O Announced effort: TMC, IBM, nCube, NEC, PSR, NASoftware, ACE,

6 An exception to this is the NAS parallel benchmarks [55] which are specified in a language
independent way.

Chapter 1. Lattice QCD for MPP systems. : 22

Lahey, MasPar, Archipel, Convex.
O Announced interest: Cray, Hewlett-Packard, Fujitsu, Silicon Graphics,

Hitachi, SUN.

Copies of the specification can be obtained by anonymous ftp [62], in published
literature [63, 64, 65] or through the World Wide Web [66].

A subset of the language specification [62, section 8] (CHPF) has been identified
as ‘being capable of being implemeﬁted more rapidly than the full HPF...[and]
is intended to be a minimal requirement’. The elements of full HPF omitted
from CHPF do not impose any restrictions on lattice QCD, resulting in the
adoption of CHPF as our data parallel standard. All mention of ‘HPF’ from

this point refers to the subset unless ‘full’ is stated explicitly.

1.12.2 Message passing: PARMACS, PVM and MPI

Where the implicit synchronism of SIMD machines leads to only a few Fortran
dialects (all based on Fortran 90) and a standard language, the wide variety
in the design of MIMD machines has resulted in a plethora of message-passing
systems for different platforms; Express, PVM, NX/2, Vertex, PARMACS,
P4, CHIMP, Zipcode, IBM EUI, CS-tools, LINDA, Canopy and CMMD. A
comparison of some of these packages is presented in‘ [67]. Of these packages

the most highly standardised are PARMACS (68, 69, 70] and PVM ([71, 72],

both of which have been ported to a wide range of platforms.

Because of this variety, standardisation has not been as fast as for data par-
allel programming. However a standard has emerged, MPI (73, 74, 75}, along
the same lines as HPF and has been implemented by IBM, Argonne National
Laboratory (on top of Chameleon, P4 and PVM) [76], Edinburgh Parallel Com-
puting Centre (on top of CHIMP) [77] and Ohio Supercomputer Centre (on
top of LAM, a UNIX cluster package) [78]. A book, advertising clear examples

Chapter 1. Lattice QCD for MPP systems. 23

on the use of MPI, is in the process of being written [79].

Since MPI has not yet been implemented widely, PARMACS was chosen as the
standard for our MPP message-passing layer with Fortran 77 for computation’.
However problems have been found porting PARMACS because of licencing
restrictions and differing implementation features. PVM has since become far
more widespread as a standard so we have adopted it also. These changes
illustrate that the message-passing éode in the MPP package must be kept as
simple, flexible, contained and low-level as possible to facilitate change. As we
see in Appendix E, which explains the message-passing features used in the

MPP codes in terms of PVM, this containment is relatively easy to achieve.

1.12.3 Shared memory/single processor

Shared memory computers are often programmed in normal Fortran 77. No
message passing is needed as all memory is accessible from all processors. A
‘single processor’ version of the message-passing codes can therefore be used.
This requires no,code other than that used for testing: the single-processor

code is vital as a first stage in debugging message-passing code.

1.12.4 Convergence of programming models...the future

As mentioned earlier, SIMD and MIMD designs are converging in the Cray T3D
and Thinking Machines CM-5. This convergence is mirrored in the program-
ming environments; CRAFT [81] (Cray Research Adaptive Fortran) currently
supports message passing only but advertises data parallel extensions in the
q@xtumn of 1994, the CM-5 can be programmed in either data parallel (CM For-
tran [58, 59]) or message passing (CMMD [82]) modes. The HPF specification

7PARMACS has been proposed as a porting standard by other computational physics re-
searchers, e.g.[80] in meteorology.

Chapter 1. Lattice QCD for MPP systems. 24

[62] states its aim as being ‘[to] provide support for high performance program-
ming on a wide variety of machines, including massively parallel SIMD and

MIMD systems and vector processors’, so we can once again see convergence.

But what of the relative merits of data parallel and message passing codes?
In data parallel programming, once the arrays have been distributed actual
computation is straightforward, requiring a minimum of code. Communications
are also easily implemented on the periodic lattices required for QCD through
the Fortran 90 ‘CSHIFT’ command, as demonstrated in Appendix D. Both of
these features are in marked contrast to the complicated mechanisms required

for message passing and multiple nested loops of Fortran 77.

HPF is therefore most useful for code development and testing; its simpler
coding style introduces fewer bugs. Message passing is required for the fastest
machines to get high performance; the accuracy of the code can be validated

in a single processor mode and against HPF code.

1.12.5 Parallel I/0

The main feature of MPP programming which is not discussed in any standards
is that of parallel input and output (I/O). Desirable features and benchmarking
of I/O have been discussed in [83], but we conclude that parallel file access
must of necessity be machine specific because of the varying topologies of MPP

platforms and designs of I/O systems.

1.13 Development base

The UKQCD collaboration has been running lattice QCD codes for several
years now; it would be foolish to ignore the codes and algorithms developed

and implemented. We present a brief summary of this material in table 1.1.

Chapter 1. Lattice QCD for MPP systems.

25

As can be seen, the Maxwell codes are far more efficient than those on the

Connection Machine. This is a necessity; Maxwell is used for production,

whereas the CM is primarily for development work.

Platform
Maxwell Euclid non-MPP

Features

- Vendor Meiko Thinking Machines Varied
Model CS-1/860 CM-200 Varied
No. Nodes 64 512 1
Node type 1860+2x T'800 1x32-bit custom+ Varied

' 1x Weitek 3132

Topology 4-D hypercube 9-D hypercube Single proc.
Architecture MIMD SIMD Single proc.
Memory (GByte) 1 0.5 Varied
‘Speed (peak/ 5/2 8/1 Varied
sustained) Gflop/s
Language C, Ass., CS-tools CM Fortran C/Fortran
Application
GAUGE N Vv X
SOLVER N4 Vv X
HMC V4 X X
GAUGEFIX X Vv Vv
SMEAR Vv V4 Vv
SOURCE Vv N4 X
CORRELATE X X Vv

~ ANALYSE X X i

Table 1.1: Existing UKQCD codes.

As the codes have been written by many people there is much duplication, with

diverse styles of design and coding used. As algorithms have progressed, codes

have evolved to form a sprawling, tangled maze. Formal documentation has

been extremely limited [84] and is in part responsible for the duplication and

diversity.

Chapter 1. Lattice QCD for MPP systems. 26

1.14 Conclusions: the new software suite

Given the need to run lattice QCD codes on the T3D and other platforms, the
creation of a new set of codes is clearly required. These have to adhere to the
followi.ng principles:

O The code should be modular in order to minimise redundancy between
applications and incorporate new physics in as short a time as possible.

O The requirement for both message-passing and data-parallel program-
ming models implies that the design should be kept independent of pro-
gramming language as far as possible.

O To improve the learning curve for new personnel all codes should be
accompanied by complete and clearly-written documentation. The codes
should have a common user interface requiring no specialist programming
knowledge.

O The languages to be used for the MPP codes are

O Data parallel: CHPF with testing performed in CM Fortran on a

TMC CM-200.
PVM 4z

O Message passing: Fortran 77 with 'PA—RM& The PARMAGCS

layer should be isolated for easy conversion to% MPI etc.’

TN
¢ Shared memory/single processor : Fortran 77. This is the

same as above with CS calls replaced| by local boundary

PV

processing.

O The kernel of codes for benchmarking should be able to be completed
in nine months (assuming two people working full-time) including docu-

mentation, testing and operating procedures.

The m?im;/’ plee hat o ug, Prampcs

,:f«f ;Z o peage. bncre, oy
g R ndat i o p
S r bltge g8 b . % e

Chapter 1. Lattice QCD for MPP systems. 27

These criteria are by no means impossible to fulfil...as long as a sensible

8

method of software engineering commensurate with available resources® is used.

As Loken says [85]

“The real need in software engineering is not for a set of tools or
languages. It is rather for an approach to understanding the soft-
ware problem and developing the optimum solution based on the
best available technology.’

In the next chapter we expound a practical solution to this problem.

8Human, time, financial and equipment.

Chapter 2

Design and implementation of the MPP
- software suite: global issues

In the previous chapter we introduced the need for a new set of lattice QCD
codes. The ‘waterfall’ method of software engineering, as described briefly in
section 2.1, is the canonical software development model for medium to large

scale projects and is used to design the MPP codes.

We consider the global issues, affecting the whole MPP project, in section 2.2
which provides an example of the waterfall method in use. The user interface
to the suite is discussed in section 2.3, of vital importance to the successful

operation of the suite to produce physics results.

28

Chapter 2. Design and implementation: global issues. : 29

2.1 The waterfall method of softwa,re
engineering

2.1.1 Introduction

‘Software engineering is the science and art of specifying, designing,
implementing and evolving — with economy, timeliness and ele-
gance — programs, documentation and operating procedures where-
by computers can be made useful to man.’

John A. McDermid
Software Engineer’s Reference Book

There are many different software development models described in standard
texts [86, 87, 88]; e.g. prototyping, waterfall, exploration, formal transforma-
tions and reassembly. Of these we will discuss only prototyping and the water-

fall method; the others are either irrelevant or inappropriate.

‘Prototyping’ is mainly used to establish the requirements of a system through
construction of a prototype code skeleton. The requirements identified by this
process can then be used as the starting point for a more structured method
e.g. waterfall. The use of prototypes in physics packages is common for new

physics, where different algorithmé need to be evaluated, but of little relevance

to the MPP codes.

The ‘waterfall’ method of software engineering [89], the canonical method, is
highly structured while at the same time retaining sufficient flexibility to be
useful for all sizes of project and design team. Documentation is intrinsic to
the method, providing information sharing between team members and a per-
manent record of both concepts and design details. There are several distinct
phases of engineering, as shown in figure 2.1, which can be considered sep-
‘arately even though they normally overlap in practice. This method is well

suited to academic use as it can be implemented without any special tools!: a

LCASE (computer aided software engineering) packages can be used to increase productivity

.

Chapter 2. Design and implementation: global issues. 30

drawing package and word-processor are sufficient for the design phases.

As software engineering methods are uncommon in computational physics re-
search we present a brief outline of the waterfall method in the following sec-

tions. For more details and background refer to the references mentioned above.

2.1.2 Requirements analysis and specification

The first stage in a project is to ascertain the users’ requirements, often through
a set of brainstorming sessions followed by a rationalisation to formulate achiev-
able elements. The rationale behind concepts should be included; it is par-
ticularly useful in later stages of design and implementation and should be
documented with the requirements in the ‘Requirements specification docu-
ment;. This record contains all functionality provided by the system and any

constraints thereon.

2.1.3 Standards

As more than one person will be working on the MPP project we need a consis-
tent procedure for writing code and documentation. The standards document
covers everything from identifier naming to versions of compilers to be used,

but should be kept as clear and simple as possible.

2.1.4 Design principles

Design is performed in a top-down fashion beginning with the splitting of the
system into major sub-systems, the physics application codes. Once major
applications have been identified they can be further divided into functional

modules and finally units. If the design is documented at all stages with the

but are expensive and non-essential.

Chapter 2. Design and implementation: global issues. 31

REQUIREMENTS
ANALYSIS

REQUIREMENTS
SPECIFICATION

SPECIFICATION

Figure 2.1: The waterfall method of software engineering.

Chapter 2. Design and implementation: global issues. 32

interfaces between applications and modules specified in detail, people can work

on different areas at the same time.

Documentation of the design is achieved through layered dataflow diagrams, as
_ described in [88], with textual comments where needed. Examples are given in
section 2.2.4. As time is limited, documentation of the lower levels of design,
units within a module, should be kept as brief as possible. An example is shown

in section 4.2.

Since the MPP codes will be implemented in two versions, data-parallel and
message-passing, the design is to be kept free of implementation details as far

as possible, concéntrating on the essential physics and algorithms.

2.1.5 Implementation, coding and testing the design

To obtain a working package from our design we must implement it in both
data-parallel and message-passing models. It is vital to document problems
with different versions of the supplied compilers and libraries and iterate design

stages if necessary to cater for these differences.

The testing of the code should focus on the physics required. Lower level
tests, such as validating the operation of the maths routines, are useful before

attempting to test a large complicated module, e.g. the solver.

2.1.6 Operational issues

In order for the MPP codes to be useful, they must be easy to operate in the
real environment of the targeted MPP machine. This environment incorporates

the data storage, batch queuing system and user interface.

Although the data storage and queuing systems will vary across platforms, the

user interface can, and should, be kept simple and consistent for all of the MPP

Chapter 2. Design and implementation: global issues. 33

applications. This interface includes file formats for long-term storage, which

should be rigidly defined and documented.

Chapter 2. Design and implementation: global issues. 34

2.2 Global project engineering issues

2.2.1 Introduction

In this section we consider engineering issues carried through the entire MPP
project. Standards used to record, implement and test all designs are detailed
in section 2.2.2 followed by requirements on the functionality of the communi-

cation and file systems with necessary constraints in section 2.2.3.

The MPP system is split into major subsystems in section 2.2.4 and the princi-
ples guiding the design and implementation of all subsystems are brought out

in section 2.2.5.

The full design and implementation documentation set, [90, 91, 92, 93], is far
too large (over 1000 pages) to be discussed in detail in this thesis. We therefore

present only the important features of the design and implementation.

2.2.2 Standards?

We have two main types of code: those running on an MPP machine, the pro-
duction physics applications, and those running on a workstation, the analysis

package and the user interface. These will be considered separately.
2.2.2.1 MPP codes

The codes running on the MPP platforms are all written in a Fortran dialect,
either Fortran 77 with PARMACS for message-passing or CHPF for data-

parallel. The motivation for using these languages is discussed in section 1.12.

2The format of the actual standards document is more formal and subdivided than that
given here, but less appropriate for a PhD thesis: the full standards document is {90,
MPP-GEN-0003].

Chapter 2. Design and implementation: global issues. 35

2.2.2.2 Workstation codes

The codes running on the workstations are all written in ANSI C. The departure
from Fortran is taken because these codes will need to handle files, strings and
memory more often than numerical data. The ‘C’ language is well suited to
these tasks and offers a seamlesé interface with the UNIX operating system

where necessary.

The use of YACC and LEX? when parsing files is not allowed. Although these
extensions to C enable shorter file handling code to be written, therefore less
prone to errors, they reduce the possibility that the codes can be extended

easily, one of the major requirements of the workstation codes.
2.2.2.3 Fortran 77 standard and pre-processing

The message passing MPP codes are implemented in Fortran 77 with PAR-
MACS. This precludes the use of any of the standard military extensions to
the language [94], such as ‘ENDDO’ and long identifiers. Since short identifiers
lead to incomprehensible code we make use ofu a pre-processor (written in C by
Stephen Booth) to compress long identifiers to the standard length. Any com-
pilers which allow long identifiers will not need this stage. The C pre-processor
‘CPP’ is used for all source files, and any of its features may be used. Header
files should only include other header files if absolutely necessary in order to

keep the structure straightforward.

Implicit typing for variables should not be used. All variables should be de-
clared explicitly, with ‘IMPLICIT NONE’ or its analogue used. As not all
compilers support the use of ‘IMPLICIT NONE’, a header file should be in-

cluded in all routines to mimic this operation as closely as possible.

3LEX is a lexical analyser and YACC a grammar parser. They are standard packages, often
used to parse text files.

Chapter 2. Design and implementation: global issues. 36

2.2.2.4 Identifiers

Identifiers can be up to 31 characters long, and this available length should
be used to construct meaningful names. The standard extended character set
(alphanumeric plus underscore) is used with the following restrictions.
O Constants, as defined by the Fortran ‘PARAMETER’ statement, have a
leading capital letter. All other characters are lower case e. g ‘Pi_by_2".
O Variable and subprogram names are entirely lower case e.g. ‘write_2col-
umn_format’.

O Language elements are written in capitals e.g. ‘SUBROUTINE’.

As Fortran is not case sensitive, care must be taken not to use the same name
for a variable and constant in the same routine e.g. ‘Colour’ and ‘colour’. The
compiler should pick up most instances of this, as their usage would be different,

and multiple definitions are not allowed.
2.2.2.5 Comments and revision control

All source files should have a comment header block at the beginning containing
the name of the source file, its purpose, the author(s), documentation references
and revision information. All subprograms should have a comment header block
summarising the algorithm and parameters, and if possible a reference to the
documentation for further information. The comments within the code should
refer only to algorithm stages defined in the subprogram header and any subtle
implementation points, care should be taken not to use unnecessary comments

which would confuse the code.
2.2.2.6 Numerical precision

Real numbers should be defined as being of either ‘Fpoint’ (single-precision) or
‘Dpoint’ (double-precision); two macros defined in a header file. This enables us

to switch precision simply by redefining the macros. Macros are also provided

Chapter 2. Design and implementation: global issues. 37

to convert to required types, ‘Ftype()’ and ‘Dtype()’, and evaluate their storage

requirements in bytes, ‘Fsize’ and ‘Dsize’.

Fortran 77 does not allow double-precision complex numbers, so all complex
numbers in the message-passing codes must use two-component ‘Fpoint’ or
‘Dpoint’ arrays. This restriction does not exist in HPF, and the macros ‘Cf-

point’, ‘Cdpoint’, ‘Cftype’, ‘Cdtype’, ‘Cfsize’ and ‘Cdsize’ can be used.
2.2.2.7 Array indexing

Although Fortran 77 arrays are indexed from 1...N by default, this can be
changed. C does not allow this flexibility; arrays must be indexed from 0 to
N — 1. For this reason we also force Fortran to adopt this rule: all array

indexing starts from zero.

2.2.3 Requirements*

‘There are several requirements on all of the MPP codes which must be incor-
porated from the beginning. These can be split into distinct areas.

1. Accommodation of lattice in memory

We want to be able to accommodate the whole target lattice size in
memory at the same time. This approach simplifies the code design and
implementation, reducing the need for highly efficient I/O routines to
swap lattice segments.

2. File system

As discussed in section 1.12.5, parallel file access will be platform specific.
However we can identify a number of common requirements for a file

system.

4As with the standards section, these requirements are in a slightly less formal style than
would be used in practice. The actual requirements document is [90, MPP-GEN-0002}.

Chapter 2. Design and imi)lementation: global issues. 38

Only the large datasets, e.g. gauge configurations and quark propagators,
will be stored in a binary format to save space. All other files will use
a text format which, although less economical on space, is easy to read
without using special utilities and avoids problerhs with floating point
format and byte ordering. The text files can provide information to enable
the physics application to sort out the byte order and float format of the

large binary datasets®.

Each binary dataset will have an accompanying textual information file
containing all information relevant to the history, creation and validation
of the dataset. These files will be mainly read and written by the user
interface and must therefore be in a standardised form. The storage of
data in the binary datasets must be arranged so that the data can be
read in both 4-D and 3-D formats for timeslicing. Any data files ported
between platforms must be ‘lattened’, converted from a format contain-
ing machine-specific parallel distribution information to a standard serial

format accessible from any processor topology.

The physics application codes must be kept as small as possible in order
to work on large datasets. One way of achieving this is to ensure that all
files read/written by an application are in a fixed format, requiring no
validation. The user iﬁterface'ca.n again be used to automate this process.

3. Communications

Communications are only of relevance in the message passing model. We
must test for failures whenever possible; 'para,llel machines are complex
and cannot be assumed to operate without error. Since we cannot re-
cover from communications errors in most circumstances, an error mes-

sage should be generated and program flow aborted.

5An example of this could be to use the value of the gauge configuration checksum to
establish the byte order, and the plaquette average to establish the floating point format.

Chapter 2. Design and imp]ementa.tibn: global issues. . 39

4. Timing and other measurement

Timing should be provided in the form of a single routine ‘TIMER’ con-
forming to that used in the GENESIS benchmarking suite [95]. Top-level
components, e.g. a compound update or single solver inversion, should

have built-in timing; all other timing should be switchable.

Floating point operation counts (lopcounts) should be built into all code,
with the same metric used as [96] and shown in table 2.1. From these
numbers a performance rating can be measured for the timed sections in

units of Gflop/s.

Operation Count (flop)

Real add, subtract, multiply
Real divide, square root
Exp, Sine etc.

Complex add, subtract
Complex multiply

D N 00 >

Table 2.1: Floating point operation metric.
It is useful to have a means for measuring a high-water mark for the

memory usage. This only needs to be calculated once for each of the
data-parallel and message-passing versions and does not always need to
be included in the code; some compilers supply this capability. If we do
need to perform this operation in the code it is straightforward.

5. Lattice size

The lattice size must be a factor of two in all dimensions in order to
implement red-black precondititioning.

6. Random number generators

We require a system for generating pseudorandom numbers uniformly dis-
tributed between 0 and 1 for both lattice arrays and scalar variables. The
actual random number generator (RNG) used should be easily changeable

as different RNGs are suitable for different applications. The RNG used

Chapter 2. Design and implementation: global issues. 40

in production should satisfy all of the standard tests discussed in [97,
98, 99, 100). The design of random number generators is considered in
section 2.2.4.

7. Random gauge transformation

An excellent method for testing code is to construct gauge invariant quan-
tities, e.g. the plaquette average, and then perform a gauge transforma-
tion on the fields with a set of random SU(3) matrices. If the same answer
is obtained before and after the transformation, we can be fairly confi-
dent that that section of the code is working. We therefore need a module
capable of implementing both local and global gauge transformations.

8. Error logging

Error messages are to be written to a logfile with as much information as
possible present to facilitate recovery and debugging. No other messages

are to be written to this logfile so that errors can be detected quickly.

The system must indicate that it has terminated with or without an error
condition being generated, e.g. by a non-zero exit code, so that the parent

process can act accordingly.

2.2.4 System context and design

Before discussing the design of the system, we must consider its boundaries.
These are shown in figure 2.2. As can be seen, the codes only need to interact

with the user and data stores.

The physics application codes are identified by main functional blocks. They
interact as shown in figure 2.3. This is an example of a ‘dataflow diagram’ such
as is used later to represent the essential design. Ovals are the main processes,
parallel lines represent datastores and arrows show data flowing between data

stores and processes.

Chapter 2. Design and implementation: global issues. 41

USER
FRONT END M.P.P
| FE CODES } { MPP CODES
—

Serial Data Sgr

Data Store

Figure 2.2: View of the MPP codes system boundaries.

Note that code to analyse gauge configurations, e.g. to measure glueball masses,
is expected to constitute a separate application or applications. This may not
be the case in reality if relative computational and I/O speeds promote in-line

computation requiring GAUGE or HMC to be modified.

2.2.5 Design and implementation issues

The main features in the design of the MPP codes are the need for high speed
and as large a lattice as possible. These principles require us to keep memory
usage to a minimum, to maximise the available lattice size, and keep the number
of floating point operations to a minimum, maximising the speed. Of course, life
is rarely simple: in order to reduce computation we often need more workspace;

compromise is clearly required.

Chapter 2. Design and implementation: global issues.

N .
-~ T,

:

) /B
hme history J 1Y
H HMC }
3 y /
gauge
possnble gauge config
analysis -
0 4 E RN
Solyg, . i
iy,

GAUGEFIX }
gauge fixing instrs.
‘...___—

Y
kY

e 8auge ﬁ;ung hlstory
solver history {
gauge fixing
configurations
source
Rouree instry, .
\ quark
propagators
st e A .
o SOF __sﬂlﬁ—“i“—-
CORRELATE
K ‘elato,\
quark
corrclators

mskrs = mstruchang

Figure 2.3: The physics applications comprising the MPP system and their interrelations;

dotted applications are not considered in this thesis. The user interface ECU and treatment

of messages to the user have been omitted

Chapter 2. Design and implementation: global issues. 43

2.2.5.1 Minimising memory usage and controlling allocation

There are several ways in which memory usage can be minimised.

O By grouping together into one unit only those operations which absolutely
need to be together we keep the unit size small. If a single unit is then
implemented in a single file, oﬁly that code needs to be incorporated into
the final application; no wastage occurs.

O By delegating all complica.téd file handling to the ECU application, the
control utility, we keep the code space required for file handling to a
minimum.

O If we can modify an algorithm to only require temporary workspace for
a single matrix element or single row, we keep heap® memory usage, the
fnost crucial area, to a minimum. We must, however, balance this against
the requirement for high speed.

O Stack? space is not particularly important in an MPP platform as itisa
tiny portion of the available memory. However, we wish to minimise the
depth to which subroutines are nested in order to reduce the overhead
from calling and returning from subroutines; this requirement must be
balanced against the need for a large number of small units to provide
ﬂexibilify and a reusable toolkit of operations. If in doubt, keep the unit

size small, code can be optimised for a particular p]étforrn later.

Since we have several people working on the codes at the same time, usually on
separate modules, we need to be careful how workspace memory is allocated.
A simple heap-based model is assumed; each routine reserves heap memory

as required and frees it on exiting the routine. All of the compilers we have

6‘Heap’ memory is that used for allocation of temporary (or automatic) variables within a
routine. The memory is usually freed when the routine terminates.

7¢Stack’ memory is that used for passing parameters between subroutines and the return
values from functions.

Chapter 2. Design and implementation: global issues. 44

encountered have this model of memory management, which makes it easy for

modules to be implemented independently.

An alternative model which might possibly arise is that of static memory allo-
cation. In this model, the memory is not freed when a routine finishes resulting
in the program running out of memory and crashing. Provision has been made
for this outcome: at the start of the program execution a large block of mem-
ory is reserved and made common to all routines. An internal heap is then set
up to allocate and free the space as required. This method requires a signifi-
cant amount of work to implement as allocation/deallocation calls need to be
made explicitly. For this reason, and also because we hope never to encounter
this type of compiler, the memory management calls have not been inserted
although the routines to implement them have been supplied. This model of
memory management cannot be used in CHPF as we need to know information

about the distribution of arrays over the platform.
Common blocks and global variables

Use of globally-accessed memory space can be useful in reducing the amount
of memory used’ for both heap and stack variables. However, the code then
becomes far more inter-dependent and less modular. As we want to construct
a range of applications from a common library of modules we need a modular
design and therefore avoid common blocks and global variables as far as possible

outside a particular module.
2.2.5.2 Platform specific variations

For several areas of the MPP codes, the implementation will depend on the
particular platform; these areas can be identified as parallel file I/O, timing,
communications and random number generation. In order to maximise porta-
bility we have to isolate the platform dependent sections. This can be easily

achieved as shown in chapter 3.

Chapter 2. Design and implementation: global issues. 45

2.2.5.3 Data distribution in HPF

In CHPF data distribution is straightforward. The lattice indices are dis-
tributed over the abstract processors of the platform, while all matrix in-
dices e.g. spin or colour are local to a processor. An example is shown in

section 2.2.5.5 where the distribution of gauge and fermion fields is specified.
2.2.5.4 Data distribution in Message passing

For the message-passing mode of operations we assume a regular 4-D problem
distributed over a 4-D grid of processors, each processor being responsible for
a 4-D sub-lattice. We make the following restrictions on the communications-
and distribution system:

O Only nearest-neighbour and global-sum communications are assumed.
These are all we need to implement a local grid-based problem.

O The lattice is assumed to be larger than the grid so that we have no idle
processors. The sub-lattices may be different sizes on different processors
as long as neighbouring processors have the same size for their common
Boundaries.

O To implement red-black preconditioning we need the local sub-lattice to
be at least two sites wide in the fastest changing index. We address the
local sites using a parity-site scheme.

O All processors are assumed to be executing the same program with differ-
ent data, the SPMD model. This allows the communications routines to
be called by all processors in the same order at approximately the same
time.

O To simplify the number of parameters characterising the distribution we
require that at least two of the local boundary dimensions are even, so
that both parities of the local lattice have equal lengths. This is a much
simpler situation to handle than if the two parities had different lengths;

Chapter 2. Design and implementation: global issues. 46

we would require separate parameters to describe each parity instead of
one for both parities.
O One of the local even dimensions should be the fastest changing index,
e.g. the z-direction. This simplifies parallel file access.
The MPP codes should arrange the distribution automatically to satisfy these

requirements.
Communications

To shift arrays one lattice site in any direction we use neighbour tables, gather-

scatter tables and boundary tables.

A neighbour table on a particular processor contains the processor number of
adjoining processors so we know where to send or receive data. An example

2-D array of processors, with periodic boundary conditions, is shown in figure

2.4.
(\ 12 13 14
EEED
8
[[«[5h2]
4
quet)

15] 8]13] o]
) 10
6

[s]2]7]10 [6] 314 |u1]
2

15
a1z
11
7
7
3
3
7

Figure 2.4: An example of neighbour tables in a 2-D problem. Periodic boundary conditions
are implemented here.

Chapter 2. Design and implementation: global issues. 47

When shifting data distributed across processors the boundary sites need to be
moved to an adjoining processor. This can be implemented by ‘scattering’ the
local data into workspace with a ‘tail’ region, communicating the tail to the
neighbouring processor in direction g (and receiving the tail from the neigh-
bouring processor in direction —g), then copying the data from the received
boundéry into the body of the workspace region. The workspace area now
contains the shifted data. The scatter into the workspace moves data which
remains on the processor to the correct array locations, and data to be moved
off-processor into the tail region using the gather-scatter tables. Elements com-
posing the boundary can be found using the boundary tables. An example of

these tables is shown for a single processor of a 2-D problem in figure 2.5.
Compressed gather-scatter tables

Conventional gather-scatter tables will contain long sequences of consecutive
numbers which can be encoded as start and stop indices. The gather-scatter
operations can then be implemented as a pair of nested loops; the outer loop
reads the table to find the loop limits used by the inner loops. Both methods |
need to be provided for optimal performance on different architectures and shift

directions.
Single processor code

When the processor grid is only one processor wide in any direction we need
the ability to ignore the tail and implement local periodic boundary conditions

directly using the gather-scatter tables.
2.2.5.5 Data types

The main data types used in the codes are gauge fields and fermion (4-spinor)

fields. To see how to implement them we need to consider all indices required.

Gauge fields

Chapter 2. Design and implementation: global issues.

The gather-scatter table lists the
site indices from which to gather
data in a particular direction. Off-
array elements are mapped into the

48

The boundary table lists the site indices
for those sites on the boundary in a
particular direction. Notice that the
parity index of the boundary table
element matches that of the main array

tail. Notice that the parity index of gathfir-scausr for a(:;:dary boundary site.
the gather-scatter table matches irection x+
that of the source data. This is the 3 8 9 9 7
opposite parity to that of the target
array, as moving one lattice site e[o] [l 7[o] 7[E]| tfO
always involves changing parity. 6 6 7 2 7
4] el 4] o] s[e| slo|[i E
4 4 5 5 6
2[o] 2] e{ 3] o] 3| E| | of O
2 2 3 3 6
o] E] of o] i[E] 1[o] [o] E
Gather-scatter for Boundary Gather-scatter for Boundary
direction x —f4 table direction x+} table
6 9 7 6 6 7 6 9 7 5
sfol] E] 7[o[7[E}[1] O s[o] 6]] 7]of 7[E[}l o] 0 6] o] 6]] 7ol 7[E][1] 0
4 9 5 4 4 5 4 9 5 7
4[E] 4] o] s[e] s{o][1| E 4[E] 4] o] s] s[O]l ol E 4] E] a]o] s|ef s|of[1 E
2 8 3 2 2 3 2 8 3 1
2[o 2{ E] 3] o] 3] E]| o] O 2] o] 2] E] 3] o] 3{EJ}| 8] O 2] o] 2} e} 3] of 3]E}| o] O
0 8 1 0 0 1 0.1 8 1 3
of el of o] JJE] 1] o} [o] E o] of o] 1[E] 1] O]|[8 E o[E] o] o] 1| E] 1] O] [of E
Main data arrays: when performin)
a gather operation, data is gathered sYE] 8T Ol STE[910 Tail: there is sufficient tail space for
from the source bo’dy and tail into : s £ one boundary. The dotted tail is for
the target body. When performing a f visual aid only.
scatter operation, data is scattered
from the source body and tail into a 2 3 3 1
the target body. The relevant
boundary needs to have been copied sfol e[] 7[o] 7[E]| 1O
into the tail previously. 2 2 3 3 1 Source array
Targetarray | 4| E] [Of S| E] 5[0 1| E
Array cell contents 0 0 1 1 0 M
2fof 2[E] 3] o] 3] E]f of O
K3 8| 8909 0 n
- of E- o[E] o] of 1f E] 1] o} ol E
R Gather-scatter for Boundary Orientation
Site index Parity index direction x- v table

Figure 2.5: Example gather-scatter and boundary tables in two dimensions.

Chapter 2. Design and implementation: global issues. 49

Gauge fields can be written with all indices explicit as U,;;(z), and are complex.
Since the staple sum and other operations need to be red-black decomposed we
need to split the fields into two parities, even and odd. The gauge configuration
can then be written in HPF as

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

$ gauge_xevn, gauge_yevn, gauge_zevn, gauge_tevn,

$ gauge_xodd, gauge_yodd, gauge_zodd, gauge_todd
'HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS ::
'HPF$$ gauge_xevn, gauge_yevn, gauge_zevn, gauge_tevn,
'HPF$$ gauge_xodd, gauge_yodd, gauge_zodd, gauge_todd

where Ncolour is the number of colour components, i.e. 3, and Nxby2, Ny,
Nz and Nt specify the size of the lattice. The mapping, QCDPROCS, onto the
physical processors must be made for all arrays; for this reason it is stored in
a header file. An example of such a mapping is

'HPF$ PROCESSORS QCDPROCS (4,4,4,8)

which distributes the lattice sizes over the 4 X 4 x 4 x 8 = 256 processors.
We use a different array for each direction and parity because, as discussed in
section D.2.2, Connection Machine Fortran does not let us pass a portion of an

array as an argument to a subroutine.

The message-passing version of the gauge field declaration is in many ways
simpler. The entire set of gauge fields is declared as

CFTRANS gauge :site :I :I :I :
Fpoint gauge(0:Max_array-i,
$ O0:Ncomplex-1,0:Ncolour-1,0:Ncolour-1,0:Npar-1, 0:Ndim-1)

where the indices are in order; site (the z-index moves fastest, followed by y, 2
then ﬁnally t), complex (real then imaginary), colour-row, colour-column, par-
ity (even then odd) and direction. The CFTRANS line allows our pre-processor,
FTRANS which is also used to compress long identifier names, to rearrange the
indices as needed for optimisation. By default, the site index is always taken to

be fastest changing for efficient vectorisation. On cache-based machines it can

Chapter 2. Design and implementation: global issues. ‘ 50

be more efficient to make the site index move slowest. The indices are divided
into three types

1. The site index, as indicated by ‘:site’.

2. Indices that may be re-ordered, as indicated by ‘:I’. These are always
moved together so that the site index is either faster or slower moving
than all of them.

3. Indices that may not be re-ordered, as indicated by ‘:’. These are usually
used for passing sections of arrays to subroutines, e.g. a single parity or
direction of a gauge field.

The site index for the gauge fields incorporates a tail for communications.

Notice that in HPF we must hard-wire the lattice size into all of the code and
re-build the executable images whenever the size changes. In message passing
we can be more flexible, we specify a maximum size, Max_array, at build-time
and as long as that accommodates the local run-time lattice size we have no
problems. The reason for this inflexibility in HPF is the CSHIFT operation,
which shifts array elements cyclic&lly. If we declared our arrays to be larger
than needed, junk at the unused end of the array would be shifted into the
space we do use during a CSHIFT. The use of gather-scatter and boundary

tables in message passing obviates this problem.
Spinor fields

The fermion 4-spinor fields are declared in much the same way. In HPF we
have

Cfpoint, DIMENSION (0:Ncolour-1,0:Nspin4-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

$ psi_evn, psi_odd
'HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS ::
'HPF$$ psi_evn, psi_odd

where Nspin4 is defined to be ‘4’ as expected. Because the main 4-spinors

are never used for communication in the message passing codes we do not

Chapter 2. Design and implementation: global issues. 51

need a tail space. When we do need to communicate spinors we either use
2-spinors with tails (for the delta term routine) or temporary 4-spinors with
tails (for the dslash routine as discussed in section 5.2). The main 4-spinors
are therefore

CFTRANS psi :site :I :I :I :
'Fpoint psi (0:Max_body-1,
$ O:Ncomplex-1,0:Ncolour-1,0:Nspin4-1,0: Npar-1)

All other data types are introduced as needed in the remainder of this chapter.

Chapter 2. Design and implementation: global issues. 52

2.3 The user interface:
the ECU application

2.3.1 Introduction

The user interface is one of the most important from the design point of view
because often novice users need to use, extend and modify the package in as
short a time as possible. The design therefore needs to be kept simple while
at the same time remaining flexible. The complexity of the system introduces
a large number of different types of file used for information storage; some for
communicating with the user, some for communicating with the applications
and others for long-term data storage. There will be a large number of data
elements common to several file types; this data needs to be easily accessible
in a variety of formats with strict validation built in for the package to operate

successfully.

2.3.2 Design and implementation

The ECU application is written in ANSI C for portability and strong memory,
string and file handling abilities. As inexperienced programmers need to work
on the code we avoid any complicated language extensions such as LEX, YACC

and C++.
File system: system context

The whole file system is shown in figure 2.6. The detailed file formats are
defined in [90, 93] if required.

The files requiring most parsing are those read/written by the user. To keep
the general format under control we apply the following restrictions. -
O The files are textual with comments (lines beginning with ‘4’) and com-

mand /parameter pairs.

Chapter 2. Design and implementation: global issues. 53

<run>.eri

Run instructions from
User. Text file contain-
ing comments and
command/parameter
pairs.

<run>.sig
Signal file. A mech-
anism for the user to

<mpp-path><dataset>

Parallel binary dataset. These files contain
the raw data, e.g. gauge configuration,
from the MPP machine. The dataset name
is created from the relevant physics
parameters. Each of these ﬁrs will have an
accorgﬂanying information file constructed
by ECU when the application terminates.

<dataset>.edi

Data information file,
one accompanies each
parallel data file.
Created by ECU

from application
instructions and history.

<run>.ere
ECU results file.
Describes operation of
the run and what
occurred.

ECU

interrupt a running
application in a controlled
way.

<run>.ain

Application instructions. Simple
list of instructions indicating

what the application is to do.
Created by ECU and optionally
removed after ECU terminates.
<rng-file(s)>
Random number
state information.
APPLICATION | This varies with
<runs.are RNG and platform.
Application results. Simple coded
list of results from a;y)lication e.g.
sweep numbers saved for gauge
configurations with plaquette
values for validation. Optionally
removed when ECU terminates.
<run>.log
A logfile containing only error
messages generated by ECU and
the application. Kept small so that
errors are easy to spot.

Figure 2.6: The MPP file system.

Chapter 2. Design and implementation: global issues. 54

O There can only be one command with following parameter per line. The
command must be separated from the parameter by one or more tabs or
spaces. Tabs and spaces leading the command or trailing the parameter
are ignored.

O Blank lines are legal and are ignored.

D Upper and lower cases are considered identical except within quoted
strings or paths.

O The maximum length of a command is 24 characters. The maximum
length of a line is 80 characters.

O Information from other applications can be included, e.g. a propagator file
will include information about the gauge configuration used to generate
it and the source, and is représented as

<included-app> {
<included-command-1> <included-parameter-1>
<included-command-2> <included-parameter-2>

}
These included blocks are parsed to check that <included-app> is legal

for the file type and that the commands and parameters are valid. These

blocks cannot be nested.

Overall design of ECU

The design of the ECU application is shown in figure 2.7. Notice that ECU runs

in two modes, before and after the physics application has run.

Routines for reading user text files, one for each application, all make use of
a common routine to parse the files and process the data. The advantages
of this are that the files are constrained to a common format —entirely non-
overlapping routines always result in subtle differences in format— and by

having a common routine we are forced to use some sort of list of legal elements

" Chapter 2. Design and imp]ementaﬁon: global issues. 55

IRead eri | i Write erl ——a
[..o....i DEW CTI

eri
data

Read eri I
-] Read edi
di data l:——l

D.R.cleared
—_— =P TIME

Figure 2.7: Overall design of ECU.

Chapter 2. Design and implementation: global issues. 56

in the files, easy to update and understand. Even when we do not have a
common routine for file I/O with different applications we still use lists of items
to reduce code complexity and improve understanding making extensions easier

to implement.
The data repository

At the heart of ECU is the data repository. This is a single module which
provides a central storage area for all data read from or written to files. Limit
checking, format conversion, default selection and optional arguments are all
implemented for scalar or vector quantities in a highly consistent way. In
addition, automatic consistency checking is built in for when the data structure

is extended or modified.

The data is stored in an array of records, each with the following strﬁcture.

name A lowercase word (optional ‘_’s) describing the data element, e.g.
latticex the lattice extent in the z-direction.

type An enumerated constant defining the data type. Legal types are
string, path (a string with enforced trailing /), int, float, cho-
ice (different choices e.g. point and loaded for src_type), tsli-
ced_int and tsliced float (time-sliced vector quantities), sct-
sliced_int and sctsliced float (spin, colour and time-sliced in-
dexed vector quantities).

index An enumerated type used for all references outside of this module.
By including this number in the list we can check that all elements

are in the correct order on first using the DR.

min
max String representations of the lower and upper limits on a quantity.
deflt The default value to use if we want to read the value of an element

without first having inserted some data.

Chapter 2. Design and implementation: global issues. 57

choices

depend
depval

format

action

result

If type is set to choice then this element of the record points to a
list of strings that may be used for the field. For example, boolean

variables are represented as a choice between ‘no’ and ‘yes’.

Some choice elements will require different data for the various
choices, e.g. source type for SOLVER: for a point source we want to
know the location (psrcx, psrc.y, psrc_z and psrc_t), whereas
for a loaded source we want to know the name (1src_name) and
the time-slices to use (between tslicemax and tslicemin). So

in this example, for psrc_x we would have depend and depval as

src_type and point respectively.

This facility saves having unnecessary elements in files read /written
by the user, improving clarity.

A normal C format string specifying precision used and type of
output, e.g. pion propagator values have a format of ‘%13.10f’.
An enumerated type defining the action to be taken when a value
to be inserted into the DR disagrees (or agrees in a few cases) with
a previous value. Either an error or warning condition is raised.
The value of the data,‘ element stored as a string. By defining this
record element as a ‘void *’ we can easily implement scalar or

vector quantities.

A single header file containing a list of enumerated indices and prototypes for

functions intended for external use provide the only access to this module. The

use of enumerated types is ideal for validation as most compilers check these

types strictly.

Routines exist for the following

insert

We can insert a data value by name or index. Insertion can be

Chapter 2. Design and implementation: global issues. 58

forced (even if the values disagree) and specify whether data is
coming from the application or user to get the correct format.
read We can optionally clear the result after reading a data element and
specify whether the data is going to the application or user.
display It is useful to be able to print out all details about an item in the
DR to save time finding the documentation. Higher level routines
can print out all options for a file type or application.

reset If needed, all data elements can be reset to empty.

Vector type elements can only be accessed after the relevant DR items source_-

spin, source_colour and time_slice have been set to the correct index values.

2.3.3 Operation

Use of the ECU application is usually wrapped up in a shell script as there are
three main stages.

1. Run ECU in ‘before’ mode to convert user-style run instructions and
previously written data information files to a form easily understood by
the application; the application instructions file. Full validation takes
place during the conversion. Auxiliary files, binary datasets and RNG
state information, are checked for existence if possible; the ability to
check for their existence depends on the parallel file system in question.

2. Run the application to genérate physics.

3. Run ECU in ‘after’ mode to convert the application results log into user-
readable form and write the necessary data information files to accom-

pany the parallel datasets.

Each production run of an application should be uniquely labelled, this run

name is given to ECU and the application as sole input; all filenames are derived

Chapter 2. Design and implementation: global issues. 59

from this or the relevant physics parameters.

2.3.4 Operation example: generating a gauge configura-
tion

As an example of the input and output files used, consider the following input
file used to create a gauge configuration.

Example run instruction file ‘example.eri’ for GAUGE

Set the lattice size to be 1674
lattice_x 16
lattice_y 16
lattice_z 16
lattice_t 16

Specify the physics parameters used.
beta 6.0

Specify the starting point and duration of simulation.

We use a disordered/random start and generate 5 compound
sweeps through the lattice.

start_type hot

compound_sweeps 5

Specify algorithmic parameters for a single sweep.
We use (in order) :- '
Random gauge transform.
3 update sweeps, each consisting of ...
2 Cabibbo-Marinari updates and
2 Over-Relaxed updates
A reunitarisation. ‘

gauge_transform yes

update_sweeps 3

cm_sweeps 2

or_sweeps 2

reunitarise yes

Save the plaquette average on every update sweep.
plaquette_interval 1

Chapter 2. Design and implementation: global issues. 60

Save the configuration every 5th compound sweep, i.e.
at the end of the simulation for this run.
checkpoint_interval 5

Seed for initialisation of the random number generator
for the hot-start and updates. "
rng_seed 38234765

Specify where to put the parallel data files.
gauge_mpp_path /scratchi/qcd/npstan/

Specify where to put the data information files.

gauge_fe_path /home2/npstan/example/data/

To run the application we must first convert the run instructions by issuing the
command

ecu -agauge -rexample -mbefore

which. produces the file ‘example.ain’ for the GAUGE application. If we then
run GAUGE giving it the run name ‘example’ the gauge configurations will
be generated. We expect the configuration number generated to be 5 x 3 X
2 x 2 = 60 from the algorithmic parameters and number of compound sweeps
generated. At the end of the run the parallel data files are left in directory

‘/scratchi/qcd/npstan/’ as required. A file is generated for each time-slice,

l.e.

Q60U000060TO0 Q60U000060T04 Q60U000060T08 Q60U000060T12
Q60U000060T01 Q60U000060TO5 Q60U000060T09 Q60U000060T13
Q60U000060T02 Q60U000060T06 Q60U000060T10 Q60U000060T14
Q60U000060TO3 Q6B0U000060TO7 Q60U000060T11 Q60U000060T15

and possiblg the lattice RNG data if using the data-parallel code. To tidy up
after the application we issue the command

ecu -agauge -rexample -mafter

which analyses the application results file ‘example.are’ and produces data
information files in directory ‘/home2/npstan/example/data/’ as requested.

Again there is one file for each time-sliced data file and a random number state

Chapter 2. Design and implementation: global issues. 61

file if using the message-passing codes:-

Q60U000060 .rng Q60U000060T05.edi Q60U000060T11.edi
Q60U000060T00.edi (Q60U000060T06.edi Q60U000060T12.edi
Q60U000060T01 .edi Q60U000060TO7 .edi Q60U000060T13.edi
Q60U000060T02.edi Q60U000060T08.edi Q60U000060T14.edi
Q60U000060T03.edi Q60U000060T09.edi Q60U000060T15.edi
Q60U000060T04.edi Q60U000060T10.edi

The data information files will be of the form

lattice_x 16
lattice .y 16
lattice_z 16
lattice_t 16
beta 6.0
update_sweeps 3
cm_sweeps 2
or_sweeps 2
reunitarise yes
gauge_transform yes
rng_seed 38234765

swap_row_col
gauge_mpp_path
gauge_fe_path
sweep_number
plaquette_real
plaquette_imag
gauge_version
ecu_version
time_slice
tplaquette_real
tplaquette_imag
gtcsum

no

/scratchi/qcd/npstan/
/home2/npstan/example/data/
60 : :

0.5917322655

.0000462752

.56876517477
.0003444789
42556

0
1
1
0
0
0

i.e. a record of the algorithmic and physics parameteré with the average pla-

quette value for the configuration, versions of applications, time-slice data and

checksum. A simple record of what has been written is left in file ‘example.ere’
Written gauge configuration Q60U000060

This could be expanded in the future to include other useful information.

Chapter 2. Design and implementation: global issues. 62

If we then wanted to use this configuration to generate others, the next run
would have to have a modified run instructions file, ‘examplel.eri’

Example run instruction file ‘examplel.eri’ for GAUGE

Set the lattice size to be 1674
lattice_x 16
lattice_y 16
lattice_z 16
lattice_t 16

Specify the physics parameters used.
beta 6.0 :

Specify the starting point and duration of simulation.

We use the previously generated configuration, number 60,
and perform 100 sweeps through the lattice.

start_type old

start_sweep 60

compound_sweeps 100

Specify algorithmic parameters for a single sweep.
We use (in order) :- '
Random gauge transform.
3 update sweeps, each consisting of ...
2 Cabibbo-Marinari updates and
2 Over-Relaxed updates
A reunitarisation. :

gauge_transform yes

update_sweeps 3

cm_sweeps 2

or_sweeps 2

reunitarise yes

Save the plaquette average on every update sweep.
plaquette_interval 1 '

Save the configuration every 20th compound sweep.
This run should therefore generate 100/20=5 configurations.

checkpoint_interval 20

Seed for initialisation of the random number generator

Chapter 2. Design and implementation: global issues.

for the hot-start and updates. The zero means that we
want to use the saved RNG state information.
rng_seed 0

Specify where to read/write parallel data files
gauge_mpp_path /scratch1/qcd/npstan/

Specify where to read/write data information files.
gauge_fe_path /home2/npstan/example/data/

Indicate that we want full validation of input data

files. We check the plaquette average for all time-slices,
and the whole configuration. A checksum for the data

files is calculated and verified against that written in the
‘edi’ files shown above.

validate_plaquettes yes

validate_tplaquettes yes

validate_gtcsum yes

8 # R

2.3.5 Future extensions

There are several features which could be added to this application to save

space and labour. For example ...

O The ability to create the next instruction file for the next run, taking
into account anomalous exit via user signals (implemented through the
‘sig’ file). This is particularly useful for running GAUGE where endless
configurations need to be generated. Automating this stage reduces the
load on the user when starting new runs.

O The ability to compress/decompress data files as needed for a run and

convert formats if necessary.

Chapter 3

Design and implementation: modules common
to multiple applications

To make the MPP applications easy to implement we use a library of common
routines divided into the following areas

0O Communications
O Parallel I/O
0O Maths
0O Random numbers
O

Timing
3.1 Communications

There are two main types of communication used by the MPP codes: local,
shifting whole arrays one lattice site in a particular direction, and global, sum-
ming a quantity over all lattice sites and processors to give a vector or scalar
result. Point-to-point communications are not needed in lattice QCD and will

not be considered.
HPF implementation

The HPF implementations of both communication types are relatively straight-

- forward: the global sum is provided by the intrinsic routine ‘SUM’, e.g.

INTEGER t :
Cfpoint psi (0:Ncolour-1,0:Nspin4-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
'HPF$ DISTRIBUTE psi (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS
Cfpoint, DIMENSION tslice_average (0:Nt-1)
IHPF$ ALIGN tslice_average(t) WITH psi(0,0,0,0,0,t)

64

Chapter 3. Design and implementation: common modules. 65

C sum over a time-slice.

FORALL (t=0:Nt-1)
$ tslice_average(t) = SUM(psi(:,:,:,:,:,t))

calculates a simple time-sliced sum over all other indices.
The local communications in HPF are simple in all directions except the z-

direction because of our parity assignments. Consider figure 3.1 showing both

the 4-parity used to split the lattice and a 3-parity MOD(y + z +t). Notice

Abstract proc. (0,1)

Abstract proc. (1,1)

(0] (o) (0] (0]

(0] ® E () (0] ® E ()
©,1) @D . @1 G,
D ;1)) @y

y-direction
E E E E* TT——3.parity
"Eg@ o9 E 0'6—\4-parity .

©,0) 1,0 2,0) B0 e Sonedts
©,0) 00 (1,0) (1,0)a—"

Abstract proc. (0,0)

Abstract proc. (1,0)

x-direction

Figure 3.1: Parity assignments for an zy slice through the origin. The grid lines show the
abstract processor boundaries.

that to go fronﬁ global coordinates (1,0) to (0,0) does not require any commu-
nications since the two points are on different parity sub-lattices with the same
sub-lattice coordinates. We can extract a general rule from this diagram if we
calculate the logical quantity ‘decision’ where

decision = (par .EQ. Even .AND. updown .EQ. Negative)
.OR.(par .EQ. 0dd .AND. updown .EQ. Positive)
= D1 .OR. D2

where ‘par’ is the parity of the source array and ‘updown’ indicates the direction

of shifting. The possibilities can be tabulated

Chapter 3. Design and implementation: common modules. 66

par | updown |Di|D2|decision
Even|Positive|0 {0 | O, 0dd
0dd {Positivel 0 {1} 1, Even
Even|Negative{ 1| 0| 1, Even
0dd |Negative{ 0|0 | 0, 0dd

From the 3-parity equivalents of ‘decision’ given in this table we can see from
the first row that if we wish to shift an even 4-parity array in the positive
z-direction we only wish to communicate those elements where the 3-parity is

0dd (i.e. global coordinates (1,1) or (3,1)).

To implement these 3-parities we use masks set to ‘. TRUE. on even 3-parity (an
arbitrary but crucial convention). Because of a restriction in the CM compiler
we use a different mask for each associated data type. For example, with gauge
fields we have

LOGICAL gauge_mask (0:Ncolour-1,0:Ncolour-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
IHPF$ DISTRIBUTE gauge_mask (*,*,BLOCK,BLOCK,BLOCK, BLOCK)
'HPF$$ ONTO QCDPROCS

CALL setup_gauge_mask (gauge_mask)

where the routine ‘setup_gauge mask’ must be called before any communica-

tions take place.

To hide all details of the z-direction communications from the user we provide
a set of routines, one for each data type, to perform all shifting operations. For
example, with gauge fields we would use subroutine ‘shift_3by3’ defined as

SUBROUTINE shift_3by3 (gauge_mask,
$ source, par, dir, updown, dest)

#include "implicit.h"
#include "build_size.h"
#include '"build_constants.h"
#include "processors.h"
#include "precision.h"
#include "shift.h"

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1,

Chapter 3. Design and implementation: common modules. 67

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
$ source, dest
INTEGER par, dir, updown, shift_dir
LOGICAL decision
LOGICAL gauge_mask (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
IHPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS ::
IHPF$$ source, dest, gauge_mask

C Convert x,y,z,t into correct indices for shifting arrays.
C X_shift is defined in shift.h to be 3
shift_dir = dir - X_index + X_shift

C move the gauge fields, no matter which direction.
dest = CSHIFT (source, SHIFT=updown, DIM=shift_dir)

C check whether to set gauge fields back to what they were
C on certain parities for the x-direction.
IF (shift_dir .EQ. Xishift) THEN
decision = (par.EQ.Even_parity .AND. updown.EQ.Negative)

$.OR. (par.EQ.0dd_parity .AND. updown.EQ.Positive)
dest = MERGE (source, dest, gauge_mask .NEQV. decision)

END IF

RETURN -

END

As an example of use consider the following equation fragment
res,(r) = src.(r +)

which would be implemented as

CALL shift_3by3 (gauge_mask, src, Even_parity,
$ X_index, Negative, res)

where all constants are defined in header files for ease of use. Note that for any

other direction than z the parity is ignored as you always change parity.
MP implementation: initialisation

The communications details for MP with PVM are dealt with in Appendix E.

In this section we present a portable interface to the MP communications.

Chapter 3. Design and implementation: common modules. 68

Before we can perform any actual communications calls we need to initialise
all data structures and establish which processor is running which segment of
the lattice. A portable interface is provided to implement this
SUBROUTINE init_comms (grid_size, grid_pos,
'$ proc_id, boss_proc)
INTEGER grid_size(0:Ndim-1), grid_pos(0:Ndim-1),
$ proc_id, boss_proc

where the parameters are shown in table 3.1.

grid_size|The size of the processor grid in each direction. A size of 8 pro-
cessors is returned as ‘8’, not ‘7".

grid pos |The position of the local processor in the grid. Positions run from
‘0.

proc_id A unique number labelling the local processor.

boss_proc | A nominated boss processor. Any operations which should only be
performed by one processor are performed by the boss processor.

Table 3.1: Parameters for the init_comms routine.

Each process finds the above information from the boss processor. A loader
program, e.g. pvmgrid for PVM as described in Appendix E, spawns the pro-

cesses and sends the necessary information to them.

Once we know the local processor position and ID, the boss processor reads in
the parameters for the application run; F77 file handling is performed by one
processor only. As we have been told the boss processor and local processor
numbers it is trivial to tell whether the local processor is the boss or not.

Parameters are set in other processors using the routines shown in table 3.2

Routine | Data type

ig_set |integer

ivg_set|vector of integers

1g_set {logical

lvg.set|vector of logicals

g-set |single precision real

vg-set [vector of single prec. reals
dg-set |double precision real
dvg._set | vector of double prec. reals

Table 3.2: Routines to set data elements on all processors.

Chapter 3. Design and implementation: common modules. 69

The interfaces to these routines are as straightforward as you would expect,
e.g. '
Fpoint kappa, v_real(0:9)
CALL g_set (kappa)
CALL vg_set (10, v_real)
Before we make any references to lattice coordinates we need to initialise the
common block containing all information about the decomposition. This 1s
done by calling routine grid_start with the following interface
SUBROUTINE grid_start (grid_size, grid_pos,
$ global_latt, proc_id, boss_proc)
C extents of the global lattice.
INTEGER global_latt(0:Ndim-1)
all other parameters are as specified above for init_comms. The grid_start

routine sets up the parameters defined in table 3.3.

Dimension Ndim=4
local latt [The local lattice size in each direction.
islocal _ |Set to TRUE if the grid is only one processor wide in a particular
dimension.
local_start|Global coordinates of the first local lattice point.
local_end [Global coordinates of the last local lattice point.

n_bound Number of sites in each boundary.
np.-bound Number of boundary sites of each parity.
np_comm As np_bound except if is_local is TRUE there is no communica-

tions in this direction so np_comm equals zero.
Dimension Ndim*Max_width

grid_latts |All local sizes.

grstarts |All local starts.

gr_ends All local ends.

- Scalars
base_parity|Parity of the first local site.
n_sites Number of local sites.
np.sites Number of local sites of each parity.
g-sites Number of global sites.

gp-sites Number of global sites of each parity.

Table 3.3: Parameters initialised by grid_start.

Now we know the characteristics of the local lattice we can define the shift

Chapter 3. Design and implementation: common modules. _ 70

(gather-scatter) and boundary tables as introduced in section 2.2.5.4. As be-
fore, we have a routine to do this, t.e.

CALL make_table (is_local, shift_table,
$ boundary_table)
CALL conv_shift_tables ()

acting on the common block variables defined in a header file for ease of use.
Routine conv_shift_tables only implements compressed gather-scatter tables

if desired at build-time. Everything is now set up ready for the application.
MP implementation: global sums

Global sums are calculated by passing local values up to the boss processor
creating a cumulative sum. The final value is then broadcast back to the local
processors, either using the _set routines discussed earlier or a package specific
method. We use a different routine for each data type as we did with the global
setting routines, e.g.

Fpoint r, vr(0:9)

INTEGER i, vi(0:12)

CALL g_sum (r)
CALL vg_sum (10, vr)
CALL ig_sum (i)
CALL ivg_sum (13, vi)

MP implementation: local shift

All processors are running the same program so boundary transfers always
come in pairs; an outgoing send and incoming receive in opposite directions.
For each communication we make two subroutine calls; one to initialise the
communication, fstart_com for reals or istart_com for integers, and one to
end it, fend_com or iend_com. Between these calls the processor is free to
perform any other work provided the buffers are not disturbed. The call to end

the communication will not return until all data is safely received.

The syntax for these calls is

Chapter 3. Design and implementation: common modules.

SUBROUTINE fstart_com (len, idir, icmp, ocmp,
$ finput, olen, foutput)
SUBROUTINE fend_com (len, idir, icmp, ocmp,
$ " finput, olen, foutput)
SUBROUTINE istart_com (len, idir, icmp, ocmp,
$ iinput, olen, ioutput)
SUBROUTINE iend_com (len, idir, icmp, ocmp,
$ iinput, olen, ioutput)

INTEGER len, idir, icmp, ocmp, -ilen, olen,

$ iinput (0:icmp-1,0:ilen-1,0:o0cmp-1),
$ ioutput(0:icmp-1,0:0len-1,0:0cmp-1)
Fpoint finput (O:icmp-1,0:ilen-1,0:o0cmp-1),
$ foutput (0:icmp-1,0:0len-1,0:0cmp-1)

where the parameters are explained in table 3.4.

ilen,
ilen,
ilen,

ilen,

len The length of the communication will be lenxicmp.

negative shifts.

icmp Number of components inside the length index.
ocmp - Number of components outside the length index.
olen . |Length of the output array.
<f|i>output{Output array for the send.

ilen Length of the input array.

<f|i>input |Input array for the receive.

idir Direction of the communication. Values 0, 1, 2, 3 represent a shift
' in the positive z, y, z and ¢ directions; values 4, 5, 6, 7 represent

Table 3.4: Parameters for the communications routines.

An example of use is

-INTEGER length
PARAMETER (length=10)

Fpoint fin_buff(0:length-1), fout_buff(0:length-1)
INTEGER iin_buff(0:length-1), iout_buff(0:length-1)

C start communication in positive Z-direction
CALL fstart_com (length,2,1,1,length,fin_buff,
$ length,fout_buff)

C start communication in negative T-direction
CALL istart_com (length,7,1,1,length,iin_buff,
$ length,iout_buff)

71

Cbaptér 3. Design and implementation: common modules. 72

C wait for both comms to end.
CALL fend_com (length,2,1,1,length,fin_buff,

$ length,fout_buff)
CALL iend_com (length,7,1,1,length,iin_buff,
$ length,iout_buff)

Further examples are shown in the later sections of this chapter..
MP implementation: tidying up

When the application has finished we need to provide a tidy way to terminate
the communications package. The routine provided is finish_comms, i.e.

CALL finish_comms ()

Chapter 3. Design and implementation: common modules. 73

3.2 Parallel I/O

As HPF does not define a standard for parallel I/O we cannot discuss porta-
bility; there is none. All of the platform-specific routines for handling parallel
I/O operations are therefore concentrated into a few isolated routines as dis-
cussed for the GAUGE a,pplica.tioﬁ in figure 4.3. We keep the format for the
large scale data files used on the MPP machines free so that the platform can
use the fastest I/O possible. For example, on the Connection Machine we use
the ‘fixed machine size’ I/O commands which do not pad out the data files
“size is at a premium on most mass-data stores) and allow fast I/O access from
a DataVault. When the configurations are used on another machine for post-
processing we must convert the format into the standard flat format defined

for all applications in the MPP suite.

We do not have a generic layer of I/O routines in HPF for any data type
because of the strong type checking; it is easier to have a different routine for
each data type. An example of the call structure is given in figure 4.3.

pio_read_array/
pio_write_array

pio_'| rray
I I . 1 [
TIMING BOSS: READ BOSS: WRITE SLAVE: READ SLAVE: WRITE
o ;
init_buff file load_buff dump_buff finish_buf¥_file
FILE HANDLING
. block_push block_puli block_pull block_push
MESSAGE PASSING
addl sum <unpack> <;lack> add_sum <unpack> <pack>
DATA CONVERSION - -

Figure 3.2: Call structure of the generic message passing I/O routines.

As the message passing codes use F77 as the Fortran layer, we can use generic
routines for all data types. The structure is shown in figure 3.2. These routines

use normal Fortran I/O on a single nominated node, the boss processor. This

Chapter 3. Design and implementation: common modules. 74

approach is portable, and in use on the Cray T3D, but not necessarily efficient
for all machines, especially if they supply routines to perform I/O from multiple
processors simultaneously. Each call to a ‘write’ routine creates a new file
specified by name. We do not support appending to existing files as this would
again reduce portability. The I/O routines assume that all data associated
with a single lattice site is located in a contiguous section of the data file: an
‘atom’. To pull data from memory into this atomic form, or vice-versa, we use
a packing or unpacking routine which is passed down to ‘pio_array’. These
(un)packing routines allow for the index swapping needed to optimise code for
vectorisation and are specific to a particular data type. For example, ‘pack_-
- gauge’ and ‘unpack_gauge’ are used to implement the two-row format needed

for ‘a gauge configuration.

The file is opened by the boss processor using routine ‘init_buff file’, a
normal F77 ‘OPEN’ statement together with any platform-specific qualifiers.
Operation then depends on whether the file is being read or written. For
reading files the boss processor loops over the data file indices, reads in a
block of data contiguous to a certain processor using ‘load_buff’, adds the
contents to the checksum and then either unpacks it (local memory) or sends
the block to a remote processor using ‘block_push’. The message passing layer
is implemented directly in terms of the message passing primitives as shown in
Appendix E. The remote processors receive the sent block and then unpack

the contents to local memory. Writing a file is the opposite sequence of events.

The ﬁle{ formats used are straightforward: for gauge configurations the loop
ordering is: Real part of complex (fastest moving), Imaginary part of complex,
Colour row (0-1), Colour column (0-2), Direction g, X, Y, Z (slowest moving).
And for quark propagators: Real part of complex (fastest moving), Imaginary

part of complex, Colour (0-2), Spin (0-3), X, Y, Z (slowest moving).

Chapter 3. Design and implementation: common modules. 75

3.3 Parallel I/O perférmance

We have measured the speed of the I/O systems on various platforms as shown

in table 3.5.

124 16%
App. |Platform|Size|Precision | Speed | Efficiency | Speed | Efficiency
MB/s| % peak |MB/s| % peak
G | CM200 | 8K D 0.140(056 |0.127| 0.51
G | CM200 | 8K S 0.095| 0.38
G CM5 | 16 D 0.216{ 0.68 1.144| 3.58
G CM5 | 32 D 0.277| 0.87 §0.561| 1.75
G T3D 8 D 1.62 5.1 2.29 7.2
G T3D 16 D 1.56 49 1.97 6.2
S [CM200 { 8K S 0.197] 0.79 |0.162| 0.65
S | CM200 | 8K D 0.181| 0.73
S CM5 | 16 S 0.355| 1.11
S CM5 | 32 S 0.168(0.53
S CM5 | 32 D 0.322(1.01
S T3D 8 D 1.05 3.28
S T3D | 16 D 0.910| 2.84

Table 3.5: Performance data for parallel I/O on various platforms. The top part of the table
shows data from the GAUGE application, the bottom section shows data from the SOLVER
application.

It can immediately be seen that the efficiency of these operations is extremely
low, at most 7% of the peak rate. The main reason for this poor performance is-
that the fields are saved in time-sliced form. This increases the number of files
which need to be opened and close, with the opening and closing operations
validated. Our timings are for the whole configuration, not a single read/write
operation so these extra elements -become important. The need to increase
the length of single data transfers is shown by the increase in performance for

larger lattices and the reduction in speed for more nodes.

The CM200 (peak I/O rate of 25 MB/s) and CM5 (peak I/O rate of 32 MB/s)
timings use the ‘fixed memory size’ I/O routines which do not pad out files

to huge lengths, a useful saving in disk space. They can only be read back

1The platforms are discussed in section 3.6.

Chapter 3. Design and implementation: common modules. 76

into a machine of the same size as they were written from, usually not too
big a restriction as lattice QCD tends to need the whole machine to get high

performance for computation.

The T3D (peak I/O rate of 32 MB/s) is an factor of 10 better in performance,
although still only 7% of peak at best. This poor performance is due to the
communication between the T3D and its YMP front-end. Test code on the
YMP can achieve almost peak I/O transfers [101]. The I/O is performed in
an asynchronous way, the I/O takes place in the background once started so
that communications with other processors can occur concurrently. This I/O
method has yet to be optimised; applications programmers at Edinburgh Par-

allel Computing Centre expect a large improvement in the near future.

Chapter 3. Design and implementation: common modules. 77

3.4 Maths

Throughout the MPP codes we need to perform matrix operations, mainly
multiplication and addition, on a variety of data types. By channeling such
operations through subroutines, rather than performing them in-line, we incur
a slight slowing down through the routine call and return but gain by reducing
code space and providing an easy target area for platform-specific optimisa-
tions. We form the routines into a library as they are not likely to change in
the future, except for optimisations, and should be isolated from the higher-

level routines.
SU(3) matrices

The largest number of routines are associated with the gauge fields used thr-
oﬁghout all codes. In HPF we always operate on a single parity sub-lattice,
the smallest unit passed around the codes, and in MP we use a variable length

vector of SU(3) matrices adaptable to all situations.

There are only two unary operations on gauge fields, taking the trace over colour
indices and daggering (taking the hermitian conjugate). The implementation
and use of these routines is straightforward in either HPF or MP model. For
example in HPF A

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

$ a, b '
'HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS ::
'HPF$$ a, b

Cfpoint, DIMENSION t (

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
'HPF$ DISTRIBUTE t (BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS

C t = Trace (a)
CALL trace_3by3 (a, t)
C b = hermitian conjugate of ‘a’

Chapter 3. Design and implementation: common modules. 78

CALL dagger_3by3 (a, b)
C a = hermitian conjugate of ‘a’

CALL r_dagger_3by3 (a)
Note that we use a convention that the rightmost parameter(s) contain the
results of the operation. The ‘r_’ prefix denotes a form of in-place operation,

this notation is expanded for binary operations as shown below.

Binary operations on gauge fields are more complicated. Matrix multiplication
can be used to combine daggered or undaggered matrices and the result can |
be placed in a new matrix, the left operand or right operand. The various

possibilities are tabulated below.

hh_3by3 a=blxct 1rhh 3by3 b=>bt*ct rrhh 3by3 c=0blxc
hm3by3 a=>blxc 1rhm3by3 b=>bl*c rrhm3by3 c=blxc
mh.3by3 a=>bxcl 1rmh3by3 b=bx*xc! rrmh3by3 c=bxc
mm_3by3 a=bxc lrmm3by3d b=b%xc rrmm3by3 c=bxc

In the MP approach we have a further complication in the addressing mode.

Routine names are written as
[dest][operation][addr ﬁode]_Bby3 (n, {T}, b, b, I, ¢, {l.}, {a})

Optional parameters are shown in “{...}’. The ‘n’ parameter is the number
of SU(3) matrices to operate on, ‘7T’ is a gather-scatter table and ‘l;’ is the
length of vector z. The destination for the result, ‘(dest]’ can be any of {“,
‘lr_’, ‘rr_’}, the multiplication operation can be any of {‘nd’, ‘hm’, ‘mh’, ‘mm’}
and the addressing mode ‘[addr mode]’ can take any of the following values
‘_s’ The result is scattered using table 7.

‘lg’ Matrix b is gathered using table 7. We cannot use this in conjunc-

tion with destination ‘lr_’.
‘_rg’ Matrix c is gathered using table 7. We cannot use this in conjunc-

tion with destination ‘rr_’.

‘1c? Matrix b is a single matrix rather than a vector and is used for all

Chapter 3. Design and implementation: common modules. 79

elements of c. We cannot use this with the destination ‘1r_’.

-rc’ Matrix c is a single matrix rather than a vector and is used for all
elements of c. We cannot use this with the destination ‘rr_’.

¢ | No indirect addressing.

The are so many possibilities that we only implement those needed according

to the naming scheme above.

In HPF, addition of matrices is trivial since the code

Cfpoint, DIMENSION (0:Ncolour-1 ,O-: Ncolour-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) :: a, b, c
IHPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS ::
{HPF$$ a, b, ¢

a=b+c
operates on all elements of a, b and c. It is more tedious to do this with the
MP code as we have four indices to loop over and the possibilities of gather-
ing/scattering arrays. We therefore use subroutines, extending the previous

naming scheme to incorporate the ‘add’ operation. An example of such a rou-

tine is ‘lr_add_rg-3by3’.
SU(2) matrices

We perform gauge update algorithms using SU(2) subgroups as described in
Appendix B. To reduce space needed and speed up computation we represent

these complex 2 X 2 matrices as four real Pauli parameters i.e.
szz = mol + im.o

e.g. in HPF

C Npauli is defined to be 4
Fpoint, DIMENSION (0:Npauli-1,
$ O0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) :: a
IHPF$ DISTRIBUTE a (*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS

We only need to perform a few operations on these data objects and they are

Chapter 3. Design and implementation: common modules. . 80

all local, 1.e. no gather-scatter needed. The routines supplied are
mn_su2 a=bxc

daggersu2 a= bt
squaresu2 a=>bxb

Spinors
The routines which act on 4-spinors form the basic toolkit for constructing
different solver algorithms and, as sﬁch, are discussed in section 5.2.

Mixed data-type operations

All operations performed on mixed types are forced to be local, simplifying
their interfaces. We summarise the required operations below; % is a 4-spinor,
x a 2-spinor and U an SU(3) matrix.

su3_hvv Xa = Ug * X
sudmvv . Xa = Up * Xc

su3_hv4 Yo = Ug * P
su3_mv4 Yo = Up * 9,

xpgammay Yz = ¥ + Yutby
xmgammay Pz = Pz — Yty
gammax Yo = 7#1/’3:

mm_su2_su3 U = myyU

3.5 Testing the maths routines

When testing maths routines we need known results generated in as indepen-
dent a way as possible from the production codes. In practice we use the serial

‘gec’ C compiler on a SUN workstation.

Chapter 3. Deéign and implementation: common modules.

C

3.5.1 Watrix testing

81

The first routines to test are those which operate on SU(3) matrices. If these

do not work properly, nothing else will. The two matrices

\

1.2
3.4i
13.14
15.16i
25.26
27.281 ||

2.3
4.5i
14.15
16.17i
26.27
28.291 ||

5.6
7.8i
17.18
19.20i
29.30
31.32i

6.7
8.9i
18.19
20.21i
30.31
32.331

9.10 \
11.12i

21.22
23.24i
33.34
35.361 |/

10.11]\
12.13
22.23
24.25
34.35
36.37i |/

give the following results when the code works correctly.

Al=

Asy(3)=

Tr A=

Bi=

r

1.2
-3.4i
5.6
-7.81
9.10
-11.12i

[0.067973]
0.192591i
[0.737817 |
0.561411i
[-0.023573 |

4P

o+ b

13.14
-15.161
17.18
-19.201
21.22
-23.24i

[0.317208]
0.441826i
[0.118322 |
0.114478i
[0.020323]

| 0.313332i |

51.72
57.961

2.3 W
-4.51
6.7
-8.9i
10.11

-12.13i

| -0.822588i |

14.15
-16.17i
18.19
-20.21i
22.23
-24.251

-

25.26
-27.28i
29.30
-31.321
33.34
-35.361

0.629885i
[-0.305720 |
-0.140976i
[-0.000000]

: 0.515463 :\

| 0.473502i

26.27
-28.291
30.31
-32.331
34.35
-36.37i

(3.1)

Chapter 3. Design and implementation: common modules.

At x Bt =

At « B=

AxBi=

Ax B=

Aperm=

3.5.2 Spinor testing

The routines at the core of the solver perform the matrix operations

A =

A”

[-134.954][-205.375]
-813.943i || -1827.823i
[.161.683 1[-230.585
-996.736i | | -2304.147i
[-185.621 |[-251.066 |
| -1172.996i | | -2750.635i |
[1884.460][2231.293]
-6.500i -32.502i
[2257.295 1[2708.135]

19.501i -6.500i |
| 2623.200 |[3169.334
| 43.937i || 187270 |
[351.887][803.413]
6.880i 83.935i
[880.863 |[2166.895]
-70.966i 6.121i
[1421.900 1[3563.119
| -148.777i || -67.327i |
[-134.954][-161.683]
763.703i 919.768i
[.205.375 1[-230.585]
1854.307i | | 2305.421i
[-281.004 [-306.214]
| 2965.469i1 | | 3719.098i | |
[3.4 [1148][
0.0i 377 |
[11.48 19.20
0.0 0.0
1920 [2728]
-8.08i -4.04i

AxD
A« D

[-281.004]
-2863.356i
[-306.214 |
-3642.194i
[-324.513 |
| -4367.200i |

-56.542i
[3144.305 |
-31.332i
[3693.449
-6.121i |

[1266.639]
161.7451
[3489.672 |
79.5681 |
[5767.262

| 6.121i

[-185.621]
1071.063i
-251.066 |
2726.152i
[-324.513
4416.165i |

19.20
8.081
27.28
4.04i
35.36

[2572.961] \

a
—

\

0.0i

82

(3.2)

(33)

where A is an SU(3) matrix and D is a 2-spinor. Only the colour indices of

D are involved so if we use our previous definition of A, and define the colour

indices of D to be

Chapter 3. Design and implementation: common modules. 83

37.38)
39.40i
41.42
43.44i
45.46
47.481 |/

(3.4)

then we obtain the results

([-310.2756] \
| 1678.2952i
-367.353

4689.9756i

[-440.8045 |

\ [7775.4854i] /

/[3825.19927
-177.7416i

[4881.3428

-152.5320i

[5861.2930 |

\ | -122.4120i |)

Ax D=

Al D= (3.5)

3.5.3 Gauge update matrix testing

‘When performing gauge updates we use SU(2) subgroups. To test the SU(2)
maths routines we use the known SU(2) matrices parametrised in terms of Pauli

matrices

E = (1,4,3,2)
F = (58,7,6) (3.6)

which multiply to give

E * F = (—60,—24,30,12) (3.7)

We can then use the previous definition of A to test the multiplication by

subgroups to get SU(3) matrices:

Chapter 3. Design and implementation: common modules. 84

([-2682][-3526 [-42.44]

103.84i || 14532 || 183.92i |
_ 26.26 7.58 -4.08

ExAn=|1 1652 || -1616i || -16.16i |
25.26 29.30 33.34

\| 2728 || 3132i |[35360 [/

([12 [56][910]\

|34 | 78 || 1120
Eed.o| | -5052 -58.60 -66.68

271 224320 || 264.72i || 305.12i |
-20.24 -36.40 -52.56

\| -16.161 || -16.16i || -16.16i |/

([-38.94][-47.38 |[-54.56 1\

188.68i || 230.16i || 268.76i |
13.14 17.18 21.22

Exdoa=|1 15061 || 10200 || 23.24i (38)

62.62 43.94 32.28

\| -28.64i || -28.28 || -28.28i |)

The final test of the gauge update maths routines is to ensure that k and u,

required in section B.1.1 are calculated correctly. If we use a complex 2 X 2

matrix

0.104820 0.314485

0.209657i | | 0.419314i (3.9)
0.684738 0.171185 ’
0.556348i || 0.171185i1

G =
we should get a resultant SU(2) matrix (Pauli parametrised)
uy = (0.2555314, —0.9032891, 0.3427882, —0.0356182) (3.10)

and a k of 2.7774645 x B71.

Chapter 3. Design and implementation: common modules. 85

3.6 Maths routine performance

The performance of the maths routines is easily compared on different MPP
platforms by timing the ‘mm_3by3’ and ‘su3_hvv’ routines. The first of these,
‘mm_3by3’, is heavily used in the GAUGE application code, and multiplies to-
gether two SU(3) matrix arrays over a single-parity sub-lattice, taking 198
floating point operations (flops) per lattice site. The second routine, ‘su3_hvv’,
forms the core of the SOLVER application, multiplying together a daggered
SU(3) matrix and a two-spinor. This routine takes 132 flops per lattice site

and, again, operates on a single-parity sub-lattice.
Connection Machine CM-200 performance

The Thinking Machines Connection Machine CM-200 is a data-parallel machine
running CM Fortran, similar to HPF as explained in Appendix D. The CM-200
used has 16384 (16K) single-bit processors which are grouped into groups of 32-
bit compound processors. Each of these 32-bit processors has a double-precision
Weitek floating-point-accelerator processor connected to it. The result is, in
effect, a 512 processor SIMD computer with a peak speed of 8 Gflop/s. The
CM-200 can be operated as a single partition of 512 processors or two partitions
of 256 processors (8K single-bit processors) each with a peak speéd of 4 Gflop/s.
The software used was CM Fortran Slicewise version 2.1.1-2 (SPARC).

12% lattice 167 lattice
Size|Prec.] Time | Speed |Efficiency] Time | Speed |Efficiency
(secs) |(Gflop/s)| (% peak) | (secs) |(Gflop/s)| (% peak)

8K| D [0.852e-2] 024 | 6.0 0.161e-1| 0.40 10.1
8K| S j0.674e-2[0.30 7.6
16K| S [0.586e-2| 0.35 4.4 0.686e-2| 0.946 11.8

Table 3.6: Performance data for the ‘mm_3by3’ routine on a Thinking Machines CM-200
computer. The CM-200 used to generate this data was clocked at 8MHz for a peak speed
(16K processors) of 8Gflop/s.

In tables 3.6 and 3.7 we present data for the performance of the ‘mm_3by3’ and

‘su3_hvv’ routines on the CM-200 for differing machine sizes and precision.

Chapter 3. Design and implementation: common modules. 86

T2% Tathice T6% Tattice
Size |Prec.{ Time | Speed [Efficiency|] Time | Speed |Efficiency
(secs) |(Gflop/s)| (% peak)| (secs) |(Gflop/s)|(% peak)

8K | S [0.331e-2| 0.42 10.4° }0.555e-2] 0.78 19.5
8K | D {0.519e-2{ 0.26 6.6
16K*| S [0.303e-2| 0.45 5.6 0.409e-2| 1.06 13.2
8K*| S 0.657e-2| 0.66 16.5

Table 3.7: Performance data for the ‘su3_hvv’ routine on a CM-200 computer. Entries with
a ‘¥’ are calculated from code with unrolled serial-index loops.

We can see that the 12* lattice does not give as high performance as the 16*
lattice. The CM-200 distributes the arrays across its processors so that each
dimension is a power of two. This is straightforward in the 16* case, the
decomposition is shown in table 3.8. Note that we are using single-parity sub-
lattices, so the z direction has half the extent of the other directions. The
12* lattice however is padded in the z- and ¢-directions. This padding results
in a direct reduction of performance as the padded elements must be avoided

during computation. The same problem applies to the case of 16K processors.

12% lattice 16* lattice
Direction | Physical| Local| Phys.*Local| Physical| Local | Phys.*Local
z 1 6 6 2 4 8
Y 4 3 12 4 4 16
z 8 2 16 4 4 16
t 8 2 16 8 2 16

Table 3.8: Decomposition of the lattice onto the CM-200 processor array (8K processors, or
256 compound processing elements). The physical extents are forced to be powers of two; the
product of these must equal the number of compound processing elements (1x4x8x8 = 256).

The fairly low performance on the CM-200 (only 20% of peak at best) is par-
tially due to not being able to perform both an addition and multiplication on
each cycle. There are no communications in these two routines, so that cannot
be reducing performance. Another contributing factor is load on the front-end
from other users. Since the front-end is responsible for broadcasting instruc-
tions to the processor array performance will be degraded'if the front-end is
required to perform other operations. The CM-200 used is extremely heavily

“used resulting in some loss of performance.

badet

Chapter 3. Design and implementation: common modules. 87

The increase in performance for the ‘su3_hvv’ routine over ‘mm_3by3’ is probably
due to the layout of the serial indices in memory. The gauge fields are declared
as

Cfpoint gauge (0:2,0:2,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

and addressed in the order row, column. The two-spinor fields are declared as

Cfpoint chi (0:2,0:1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

where .the first index is the colour index and the second is the two-spinor index.
The ‘su3_hvv’ routine only operates on the colour indices. To obtain a single
element in a gauge field from multiplying two gauge fields together we loop
over the columns in the first field and the rows in the second field as shown

below.
X .. X X X X

= e - X
X

CM Fortran uses the C convention for fastest-moving index; the column index
moves fastest. When we use the daggered matrix for the ‘su3_hvv’ operation

we are in effect doing

X . X ..\ (X
=} X .. X
X .. X

so the memory is accessed with the same stride for all arrays, a more efficient

operation.
Connection Machine CM-5 performance

The Connection Machine CM-5 is intended for MIMD programming, although
it can run the same data-parallel CM Fortran code as the CM-200; no alter-
ations are necessary. It is in this SIMD mode that we use the platform. Each
node consists of a SPARC processor and 4 vector processors for floating-point

arithmetic. The peak speed of a node is 160 Mflop/s (for a clock speed of

Chapter 3. Design and implementation: common modules. 88

8MHz) resulting in a peak speed for the machine used of 5.12 Gflop/s (32
nodes). The machine can be operated as a single partition of 32 nodes, or two

partitions of 16 nodes each. The software used to create the following data
was CMOST version 7.3 Final 1 Rev 3 and CM Fortran version 2.1.1-2 (CM5
VecUnit).

In tables 3.9 and 3.10 we present data for the two routines under consideration.
We can see that good efficiency is obtained from the vector processors without
any optimisation. The 12* lattice is not as big a problem as it was on the CM-
200, the arrays are distributed as shown in table 3.11. There is no padding,

and therefore no empty elements to worry about.

12% lattice 167 lattice
Size|Prec.] Time | Speed |Efficiency| Time | Speed |Efficiency
(secs) [(Gflop/s)|(% peak)| (secs) [(Gflop/s)|(% peak)
16 | D [0.224e-2| 0.92 35.7 [0.678e-2| 0.96 374
16| S : -10.496e-2{ 1.31 51.1
32| D j0.123e-2| 1.67 32.6 0.342e-2| 1.90 37.1

Table 3.9; Performance data for the ‘mm_3by3’ routine on a Thinking Machines CM-5 com-
puter. The CM-5 used to generate this data was clocked at 8MHz for a peak speed (32
nodes) of 5.12Gflop/s.

-

127 lattice 16* lattice
Size[Prec.| Time Speed - |Efficiency| Time | Speed [Efficiency
(secs) [(Gflop/s)|(% peak)| (secs) [(Gflop/s)| (% peak)

32| S }0.815e-3| 1.68 32.8 0.203e-2| 2.13 41.6
32| D [0.100e-2| 1.37 26.7
16 | S (0.138e-2] 0.99 38.7
16*| S [0.123e-2| 1.11 43.5]0.354e-2| 1.22 47.7

Table 3.10: Performance data for the ‘su3_hvv’ routine on a CM-5.

Changing from single-precision to double-precision does not halve performance
as the floating-point vector units operate on 64-bit data. The reduction in

performance comes from the increased memory-access time required.

A notable improvement in performance comes from unrolling serial-index loops
in the code, as indicated by the 16* entry in table 3.10. The ‘DO’ loops over

colour and two-spinor indices are removed completely increasing the code space

Chapter 3. Design and implementation: common modules. 89

12% lattice 164 lattice
Direction|Physical| Local | Phys.*Local| Physical| Local| Phys.*Local
z 1 6 6 2 4 8
v 4 3 12 2 8 16
z 4 3 12 4 4 16
t 4 3 12 4 4 16

Table 3.11: Decomposition of the lattice onto the CM-5 processor array (16 nodes). The
physical extents are forced to be powers of two; the product of these must equal the number
of vector processors, 4 per node (1 x 4 x 4 x 4 = 64).

required considerably, but at the same time increasing performance by a few
percent. The figures for the ‘mm_3by3’ code are all calculated from unrolled

code.

Some our our figures are higher than those obtained by the Wuppertal group
using vector unit assembler code on the same CM-5 computer [102]. They
achieve speeds of 1.8 Gflop/s on a single-precision 24° x 48 lattice. One reason
for this is that the compilers have improved over the last few years to the
point where it is as good to program the CM-5 in CM Fortran as it is in
assembler. This is good news for our code portability; we do not have to
sacrifice performance to gain portability if the compiler technology is as good

as this.
Cray T3D performance

The Cray T3D is a MIMD computer, running our message-passing codes under
PVM. Each node consists of two'DEC-ALPHA processors running at 150 MHz
with other hardware for communications. The peak speed of a node is 300
Mflop/s giving a peak speed for the platform of 38.4 Gﬂop/s (128 nodes or
256 processors). The machine can be operated in a large number of partition
sizes. We use only two sizes, 8 processors and 16 processors. The software used
to generate the following data was UNICOS version 8.0.2.1, UNICOS MAX
version 1.1.0.2 and CF77 version 6.1. The hardware used was a T3D/MC256-8
with a Y-MP4E/264 front-end.

Chapter 3. Design and implementation: common modules. 90

In tables 3.12 and 3.13 we present data for the two routines under consideration.
The T3D uses 64-bit words throughout so there is no advantage in using single-

precision; only double-precision data is presented.

12 lattice 16* lattice
Size|Prec.] Time | Speed |Efficiency| Time | Speed [Efficiency
(secs) |(Gflop/s)| (% peak)| (secs) {(Gflop/s)| (% peak)
8 | D [0.942e-2| 0.22 18.2 10.297e-1} 0.22 18.3
16 | D [0.468e-2] 0.44 18.3 [0.148e-1| 0.44 18.3

Table 3.12: Performance data for the ‘mm_3by3’ routine on a Cray T3D computer. The T3D
used to generate this data has a peak speed (128 nodes) of 38.4Gflop/s.

12% lattice 16% lattice
Size|Prec.[Time | Speed [Efficiencyj Time | Speed |Efficiency
(secs) |(Gflop/s)| (% peak)| (secs) |(Gflop/s)|(% peak)
8 | D [0.642e-2] 0.22 18.3]0.195e-1{ 0.22 18.5
16 | D (0.318e-2} 0.43 17.9

Table 3.13: Performance data for the ‘su3_hvv’ routine on a Cray T3D computer. The T3D
used to generate this data has a peak speed (128 nodes) of 38.4Gflop/s.

Overall, efficiency of the code is low at 18% of peak. This is because of the slow
memory access of the ALPHA processor; memory access takes 24 chip cycles
as there is no pipe-lining. This is a feature that Cray aim to improve on with
the T3E computer, but there is little that can be done at present. Because
there is no padding of the arrays for the 12* lattice, performance is extremely
steady. There is no improvement obtained from the differing memory access
described above for ‘su3_hvv’ and ‘mm_3by3’ as the memory-access redundancy

dominates timing.

Chapter 3. Design and implementation: common modules. 91

3.7 Random numbers

One of the most controversial questions in lattice simulations is: ‘which ran-
dom number generator should I be using?’ Monte Carlo simulations require
extremely long period generators with low bit-level and lattice correlations. In
this section we do not attempt to answer the question, but instead accept that
the RNG used by the MPP codes must be easily changeable. In order to keep
the code usable, however, we must maintain a standard interface to the RNGs

in some way.

There are two types of RNG potentially used in the codes; lattice and single
generators. When creating, for example, a local random gauge transformation
we need a different random SU(3) matrix at each lattice site, hence the need
for a lattice generator. If we wanted a global gauge transformation however,
we only need a single SU(3) matrix which is then communicated to all points
on the lattice for use. The distinction is not so great for the message-passing
approach, where we can have the same random number generator running on

all processors with different seeds.

In the HPF implementation we have several problems to contend with. Firstly,
we do not want to have to run a single generator on the host processor and
then loop over all lattice sites broadcasting numbers as this would be painfully
slow. We do not have a portable access to the physical processors however, so
we cannot run a single generator on each processor as is possible in message
passing. This leaves us two options: we either run a single RNG per lattice site
or use a machine-specific generator and sacrifice portability. The first option
must be exercise with caution, the RANMAR [103] modified lagged-fibonacci
generator used by previous UKQCD message-passing code requires a state table
of 97 words. Since a quark propagator only requires 24 words per lattice site we

can see that using RANMAR in this way is not always possible and certainly

Chapter 3. Design and implementation: common modules. 92

not practical. There are some generators which can be used in this way, for
example a simple linear congruential multiplier génerator [104, p.284] which
only requires 1 word per lattice site, but they are not as likely to have a long

period.

A further problem arises in both programming models: how do we initialise
the generator over the lattice to reduce correlations? Obviously we need to
give the generator a different seed on each processor or lattice site to extract
distinct number sequences, but how do we guarantee that the sequences are
not correlated in some way? This problem is more relevant in HPF when
using a different generator on each lattice site. The essence of data-parallel
prograﬁming is that all processors execute the same code at the same time; any
correlations in the random number sequences at the beginning of the simulation

will remain for the entirety of the simulation.

We do not have any hard and fast answers to these questions as they vary for
different generators and become an in-depth research subject themselves. In-

stead we present a brief survey of the available literature for more information.

The theory of pseudorandom number generators is best obtained from histor-
ical work by Knuth [105] and Ma;rsaglia, [106, 97] or a more recent review by
Vattulainen ‘et. al. [98]. The various portable RNGs in use are discussed by
James [107], Marsaglia [103] (one of the few generators with tests included for
accuracy of implementation), Liischer [108, 109] (implemented on the APE100
but available in portable Fbrtra.n), Cray Research [110] (their RANF generator
relies on bit-level operations for portability, fine for HPF but not necessarily
for all F77 implementations) and Vattulainen et. al. (a good review of popular
generators). Tests which can be performed on RNGs are discussed by Vat-
tulainen et. al. [111, 112, 100, 98] (a comprehensive selection from bit-level

to Monte Carlo tests), Marsaglia [97], Coddington [99] and Ferrenberg [113].

Chapter 3. Design and implementation: common modules. 93

Random number generators for parallel machines are discussed by Anderson

[114], Deak [115] and Aluru et. al. [116].

Implementation of the module. Since we can pass array sections to sub-
routines in F77, the RNGs are easy to implement for message-passing systems.
A single routine is needed which selects the required generator, either at build-
time or run-time, and fills the offered array with random numbers. Because we
cannot pass such array sections in HPF (due to restrictions from some com-
pilers) we need a separate routine for each type of object we are filling with
random numbers. Seeding the generators is best done through a single com-
mon block variable, used for all generators, so that the driver routine for the
application does not need to be changed for each application. All of the RNG

modules can be made to be self-initialising through use of ‘SAVE’ed variables.
3.8 Timing

We use only one timing routine, ‘timer’, which conforms with the interface

used for GENESIS [95]. The interface is

SUBROUTINE timer (seconds)
Dpoint seconds :

i.e. the current time in seconds is returned. We only ever use the timer to
measure time differences so the absolute value is never needed. The insides of

this routine will need changing for different platforms.

Chapter 4

Generating quenched gauge configurations: the
GAUGE application

4.1 Requirements

The pure gauge application, GAUGE, must be able to provide the following
functionality (see figure 4.1)

OR-update

o

—-

Random Gauge

Re-Unitarise

ST

Wilson Loops

\
{ Gauge Observables |

Figure 4.1: Functionality required from the GAUGE application.

94

Chapter 4. The GAUGE application. 95

1. Initialisation of Markov c¢hain. As discussed in the theory section
1.3.5 we need to be able to initialise the gauge fields with either an ordered
start (unit matrices), disordered start (random SU(3) matrices) or load
a previously saved configuration.

2. Update algorithm. As specified in section 1.3.4. We require a local
gauge transformation, heatbath and over-relaxed updates, and 1.1nitarisa-
tion of gauge fields (also useful for creating random SU(3) matrices in a
disordered start).

3. Input and output. We need the ability to load and save gauge configu-
rations in time-sliced form and the accompanying random number state
information. To save space we store gauge fields in a two-row format (the

first two rows) and reconstruct the third row on loading.

There are three possible mechanisms for validating gauge configurations:

(a) Calculating a 16-bit checksum on the binary data file. This provides
information on the byté—ordering of the data file if required. It is not
pbssible to calculate such a checksum on the Thinking Machines CM-
200 or CM-5, but it is possible on the Cray T3D and workstations.

The checksum is calculated to agree with the UNIX ‘sum’ command.

(b) Calculating a time-sliced plaquette average. This quantity can be
used to detect the floating-point format of the gauge configuration
(although most machines conform to IEEE standards now). We
need a time-sliced average in case any analysis routines need to read

in a single timeslice only, e.g. when smearing.

(c) Calculating a plaquette average on the whole configuration. This
is useful as it is only a single complex number and therefore easy
to compare with a previously calculated value. The average on the

whole configuration also tells us whether the time-slices have been

Chapter 4. The GAUGE application. 96

read in the correct order.

There is no easy way to validate random number state information in
general. Different random number generators have completely different
sizes and type of state information, and it is not always accessible e.g.
the FAST_RNG generator on the Connection Machine. The only Way to
check that the I/O works is to periodically check that restarting from a
loaded configuration yields an identical plaquette average to what would
have been obtained if updating had not been interrupted.

4. Plaquette value saving. We must be able to save plaquette values by
plane to a separate file. The plaquette is a statistical quantity and can
only be verified using a separate package; to extract them from the logfile
in the correct format would be tedious. Information is given in section 4.3
about testing the plaquette values.

5. Emergency termination. We require a mechanism to cause the GAUGE
application to terminate operation after the current compound update,
having saved the configuration and random number information. The
need for this function comés from running batch jobs: if we normally
save every 200 compound sweeps for example, and the batch job is only
going to generate 198 sweeps for some unusual reason, then we do not

want to lose the hours of computer time used.

Chapter 4. The GAUGE application. 97

4.2 Design and implementation

The design of the GAUGE application can be easily seen to break into modules
on top of underlying common layers (or libraries) as shown in figure 4.2. The
important features of the design are discussed in order of the modules shown

in the figure.

DRIVER
]
READ GAUGE GAUGE BROOM
PARAMETERS START SAVE UPDATE
ORDERED DISORDERED
START START GAUGEVO
1
REUNITARISE
STAPLE/
STARLE TE RANDOM 1/0
| I .]]]
GAUGE STAPLE/ CABIBBO- OVER-
TRANSFORM PLAQUETTE REUNITARISE MARINARI RELAXED
)i
REUNITARISE

COMM

Figure 4.2: Overview of GAUGE design structure.

4.2.1 Read parameters

This section of the design is intended to be as sparse and simple as possible
as it is only intended to convert parameters to a useful form, e.g. integer 0/1
to boolean .TRUE./.FALSE.. Only vital parameters such as the lattice size or

beta value are to be validated and displayed. Because Fortran, unlike C, does

Chapter 4. The GAUGE application. 98

not provide a standard mechanism for accessing command line arguments, we

use the shell to provide the ‘run-name’ on the standard input channel from

which all filenames for I/O are derived.

A common block is used to implement the storage of all parameters. We do
this as there are so many parameters in the list a function declaration would
become impossibly long. These common block variables are not guaranteed to

exist outside of ‘DRIVER’ and ‘READ-PARAMETERS?’ in order to keep the

design localised.

The I/0 can be implemented in standard Fortran 77 using ‘READ’ commands for
both DP and MP approaches. The parameters read in by this module are iden-
tical for both programming environments since the processor decomposition,

of relevance only for MP, is specified prior to execution of the application.

4.2.2 Disordered start

The easiest implementation of this function is to fill the first two rows of all

gauge matrices with random numbers distributed uniformly in [0, 1], then pass

the result to ‘REUNITARISE’ to convert to SU(3).

4.2.3 Gauge I/O

We need to be able to load and save gauge fields in two-row time-sliced form
with validation as described in section 4.1 using checksums and/or plaquette
averages. All primitive I/O operations should be validated since high band-
width data stores can be extremely unreliable. We require timing of the data
rate for loading and saving of gauge fields as this can become an important

statistic if checkpointing is performed often.

When saving a gauge configuration we also write an entry into the gauge ‘appli-

cation results file’, which records the progress of GAUGE. Information written

Chapter 4. The GAUGE application. 99

includes the version of GAUGE, sweep number and configuration validation
data. This can be written in Fortran 77 and used for both MP and DP ap-

proaches without alteration.

Because there is stronger type checking available in HPF than F77 we write
more subroutines, one for each data type. This implies that there is no generic-
type I/0 layer and a large GAUGE I/O layer for HPF, and wvice-versa for
MP. The implementation outline for both of the programming environments is

shown in figure 4.3.

An operational issue raised by this module is: when is it safe to save a gauge
configuration and guarantee reproducible results? Because we save in two-
row form and reconstruct the third row using the ‘reunitarise’ module it is
sensible only to save when we have performed a reunitarisation on the whole
configuration. This is guaranteed by the ‘driver’ and ‘broom update’ modules
which ensure that the last element of a compound update is a reunitarisation,

and the configuration may only be saved at the end of such a compound update.

We use a machine-specific file format for parallel data storage as this can usually
be implemented with a far higher data bandwidth. We require a separate
utility, easily written in terms of the available library, to transfer files from this

machine-specific format to a portable flat format.

Message-passing features. Because of the requirement for optimisation for
vectorising compilers we need to be able to change the order of the indices
for the gauge fields and hence the internal storage format. Since the external
storage format needs to be held constant we have a set of packing/unpacking

routines to perform conversion. These are discussed in more detail in section 3.2

HPF features. As can be seen in figure 4.3 we have isolated a set of routines
underneath the heading ‘gauge_parallel_save’. This is done so that the HMC

application can avoid duplicating code to save its gauge configurations. All

Chapter 4. The GAUGE application.

gauge_data_save

100

construct_gauge_name

name creation

gauge_parallel_save

ulluer

construct_gauge_pbd_name

name creation

RANDOM /O

gauge_ar

€_save

construct_gauge_are_name

name creation

/O PRIMITIVES

Machine specific:
open, close

STAPLE/
PLAQUETTE

8

auge_par_save_single

/0 PRIMITIVES
Machine specific:
write

1
I/0 PRIMITIVES
F77: open, close,
write

HPF implementation

gauge_data_save

construct_gauge_name

name creati

tslice Lormat .
0? name creatiop
construct_gauge pbd_name

name creation

RANDOM I/O

dump_gauge_tsliced

GENERIC I/O

STAPLE/
PLAQUETTE

gauge_are_save

construct_gauge are_name

name creation

1

1/0 PRIMITIVES
F77: open, close,
write

MP implementation

Figure 4.3: The structure of the gauge I/O routines. Routines labelled ‘name creation’ are
implemented in F77 and used in identical form for both HPF and MP systems.

Chapter 4. The GAUGE application. 101

application specific code, i.e. filenames and ‘are’ file format, is executed above
this heading. There is an option to swap row and column indices when loading
and saving the gauge fields in HPF for backwards compatibility with earlier
Connection Machine code. This is not required for MP as there are no flat

configurations in that format.

Dataset names are kept as short as possible and reflect the important physics
content. The gauge dataset name is of the format
name root
e N,
QbbUuuuuuuTtt
where ‘Q’ represents quenched, ‘bb’ is INT(B x 10), ‘Uuuuuun’ is the elemental

update number and ‘Ttt’ is the time-slice number. All numeric fields are zero

padded.

4.2.4 Reunitarise

The theory of this module is discussed in section B.5 and the structure shown
in figure 4.4. The structure shown is duplicated for routines to handle a sin-
gle SU(3) matrix, rather than a lattice full, as is needed by the global gauge
transform. The module is designed as a set of operations on row vectors so
they can be re-used as necessary. Regenerétion of gauge fields is performed by

using ‘cross_3vec’ after loading in the two-row formatted fields.

4.2.5 Staple/plaquette

The staple and plaquette calculation, as discussed in section B.3, forms the core
of the GAUGE update mechanism and contains all of the local communications
used in the application. Although there are several stages to the algorithm,
it is easily built in terms of the maths and communications layers defined

previously. The call structure of the module is shown in figure 4.5. Note that

Chapter 4. The GAUGE application. 102

reunitarise_gauge
Operates on whole
configuration (HPF).

reunitarise_3by3

Operates on single parity
sub-lattice (HPF) or
whole configuration (MP).
regenerate_gauge
MP only.
Row f T |
Utilities norm_3vec orthog_3vec cross_3vec
Normalises a 3-vector Creates a vector ‘v’ Creates the third row
as in equation D.10. orthogonal to vector ‘u’ as the conjugate cross
as in equation D.12. product of the first two
rows as in equation
D.13.

Figure 4.4: Structure of the reunitarise module.

the message-passing version is far more complex due to the need to explicitly
start, wait for, and stop communications. This introduces the need for a wider
range of maths routines to perform in-line gathers of communicated arrays.

The implementation in both DP and MP models is shown below.

One feature of the design of the staple sum is that the plaquette can be cal-
culated from a single parity in-line with the staples. The plaquette value thus
obtained is therefore that at the start of the update, rather than at the end
as would normally be calculated. However if the user does not mind this un-
orthodox method of presentation a large amount of time is saved from having

‘to recalculate the staple explicitly for the plaquette.

HPF implementation. In HPF this algorithm is easily implemented as fol-
lows (routine any_staple in file staple_gun.HPF). We are working in the 4, v

plane; refer to figure 4.6 for labels used in the following discussion.
Top staple.

1. Move 3 to A.

CALL shift_3by3 (gauge_mask, u_mu_notpar,
$ notpar, nu, Negative, templ)

Chapter 4. The GAUGE application. 103

. staple_sum
contro
|]
staple_gun plaquette
selects correct gauge creates plaquette averages
sub-lattices for the from staples and gauge
plane selected fields
any_staple .
crexies top and MATHS LAYER:
bottom staples hh_3b§3, mm_3by3,
trace_3by3
_]
COMMS LAYER: MATHS LAYER:
shift_3by3 hh_3by3, mm_3by3
HPF implementation
staple_sum
make_staple pair MATHS LAYER: extract_plaquette

add_rg_3by3, Ir_add_3by3,

rr_mm_3by3, hh_rg 3by3, f]

Ir_add_rg_3by3 MATHS LAYER: COMMS LAYER:

trace_3by3 dvg_sum

]

copy _ga{lge bound/ queue gnulge bound/ finish gaug‘e bound/
copy_staple_bound queue:sta[;Ie'__bound finish_staple_bound Nh:\;‘_gll;lysC&,Lh?\flgbyii,
L [m_mm_lg_3by3
COMMS LAYER:
gather_generic, fstart_com, .
fend_com
MP implementation

Figure 4.5: Call structure of the staple sum and plaquette module for both HPF and Message

Passing implementations.

Chapter 4. The GAUGE application. 104

B 3 > C
['y
TOP
2 STAPLE 4
! D
Al |
s BOTTOM 15
STAPLE
F E

6

Figure 4.6: Labelling of links as used in the algorithmic description of the creation of the

staples.

2. Multiply 3t x 21.
CALL hh_3by3 (templ, u_nu_par, temp2)
3. Move 4 to A.

CALL shift_3by3 (gauge_mask, u'_nu_notpar,
$ notpar, mu, Negative, staple_bottom)

4. Multiply 4 x (37 x 21).
CALL mm_3by3 (stapie_bottom, temp2, staple_top)

Bottom staple
1. Move 7 to F.

CALL shift_3by3 (gauge_mask, u_nu_par,
$ par, mu, Negative, temp2)

2. Multiply 7t x 61.
' CALL hh_3by3 (temp2, u_mu_notpar, templ)
3. Multiply (7t x 6') x 5.
CALL mm_3by3 (templ, u_nu_notpar, temp2)
4. Move bottom staple to A.

Chapter 4. The GAUGE application. 105

CALL shift_3by3 (gauge_mask, temp2, notpar,
$ nu, Positive, staple_bottom)

MP implementation. Using the message-passing model we can overlap com-
munications on one staple with calculation on the other as follows (routine
make_staple_pair in file staple_sum.F).

1. Send 3 to A.

C set up communications direction (-ve nu)
comdir = nu + Ndim
C perp is a perpendicular direction to the plaquette
C plane, whose tail is used as workspace.
CALL copy_gauge_bound(perp,mu,notpar,np_comm(nu),

$ boundary_table(0,comdir ,notpar) ,u)
CALL queue_gauge_bound (comdir,perp,mu,notpar,n
$ p_comm(nu) ,u)

2. Meanwhile, calculate 6_T X 5.

CALL hm_3by3(np_sites,

$ Max_array, u(0,0,0,0,notpar,mu),
$ Max_array, u(0,0,0,0,notpar,nu),
$ Max_array, down_staple)

3. Wait for 3 to finish sending, store the communication number for the
multiply.

CALL finish_gauge_bound(comdir,perp,mu,
$ notpar,np_comm(nu) ,u)
lastcom = comdir

4. Send 7 to F.

comdir = mu + Ndim
CALL copy_gauge_bound(perp,nu,par,np_comm(mu),

$ boundary_table(0,comdir,par),u)
CALL queue_gauge_bound(comdir,perp,nu,par,
$ np_comm(mu) ,u)

5. Meanwhile calculate 37 x 2f, gathering 3 as needed.

CALL hh_lg_3by3(np_sites,
$ shift_table(0,lastcom,notpar),
Max_array, u(0,0,0,0,notpar,mu),
Max_array, u(0,0,0,0,par,nu),

«H A

Chapter 4. The GAUGE application. 106

10.

11.

12.

$ Max_body, up_staple)
Wait for 7 to finish sending, store the communication number for next
multiply.

CALL finish_gauge_bound(comdir,perp,nu,
$ par,np_comm(mu) ,u)
lastcom = comdir

Send 4 to A.

comdir = mu + Ndim :
CALL copy_gauge_bound(perp,nu,notpar,np_comm(mu),

$ boundary_table(0,comdir,notpar) ,u)
CALL queue_gauge_bound(comdir,perp,nu,notpar,
$ np_comm(mu) ,u)

Meanwhile multiply 7F x (6 x 5), gathering 7 as needed.
CALL rr_hm_lg_3by3(np_sites,

$ shift_table(0,lastcom,par),
$ Max_array, u(0,0,0,0,par,nu),
$ Max_array, down_staple)

Wait for 4 to finish sending.

CALL finish_gauge_bound(comdir,perp,nu,
$ notpar,np_comm(mu) ,u)
lastcom = comdir

Send lower staple to A.

comdir = nu ,

CALL copy_staple_bound(np_comm(nu),

$ boundary_table(0,comdir,notpar),
$ u(0,0,0,0,notpar,perp), down_staple)
CALL queue_staple_bound(np_comm(nu),comdir,
$ u(0,0,0,0,notpar,perp),down_staple)

Meanwhile calculate upper staple = 4 x (3! x 21), gathering 4 as needed.
CALL rr_mm_lg_3by3(np_sites,

$ shift_table(0,lastcom,notpar),
$ Max_array, u(0,0,0,0,notpar,nu),
$ Max_body, up_staple)

Wait for lower staple to finish sending. Leave the routine which uses the

staples to gather in.

Chapter 4. The GAUGE application. 107

CALL finish_staple_bound(np_comm(nu),comdir,
$ u(0,0,0,0,notpar,perp),down_staple)

4.2.6 Random I/O

The random number I/O is relegated to a separate module from gauge I/O as
there could be several optional RNGs requiring different I/O handling. If we
are using a machine-specific RNG supplied through a library, e.g. ‘FAST_RNG’ on
the Connection Machine, we may have very little control over the I/O, having
to use a couple of supplied functions. If we are using a portable RNG, the state
information data structures still vary enormously. For this reason we provide

a separate implementation of the I/O for each random number generator used.

HPF implementation note. The ‘FASTRNG’ generator mentioned above
introduces further subtle problems. In our testing of the HPF codes on the
Connection Machine this has been our chosen generator, for reasons discussed
in section 3.7, but using a larger state table than the default for better perfor-
mance. As we are not using the default sizes we must initialise the generator
before loading the old state tables so the sizes are set correctly as shown in the
following code fragment, otherwise the library assumes you want the default
sizes and gives nbn-reproducible results. This subtle bug took a long time to
track down! We advise use of portable generators where possible to avoid such
problems.

C initialise the generator with our state table size

CALL cmf_lattice_init_rng ()

C ‘path’ contains the full path to the saved RNG
C state information. Open the file.
CALL CMF_FILE_OPEN (in_unit, path, ios)
IF (ios .LT. 0) THEN
WRITE (mess_buff,20) in_unit,ios, path
20 FORMAT (’Unit : ’,I2,’ ios : ’,I3,’ Path : ’,A)
CALL status_message (mess_buff, ’cmf_rng_load’)

Chapter 4. The GAUGE application. 108

CALL error_message (’Error opening file.’,
$ 'emf_rng_load’, Err_file_error)
END IF

C seek to the beginning of the file and read in the
C data.
CALL CMF_FILE_REWIND (in_unit,ios)
CALL RESTORE_FAST_RNG_TEMPS (in_unit,ios,ier)
IF (ier .NE. 0) THEN
WRITE (mess_buff,30) ios, ier, path
30 FORMAT (’ios : ’,I3,’ ier : ’,I3,’ path : ’,A)
CALL status_message (mess_buff, ’cmf_rng_load’)
CALL error_message (’Error opening/reading file.’,

$ ’cmf_rng_load’, Err_file_error)
ELSE
WRITE (mess_buff,462) ios
462 FORMAT (’RESTORE_FAST_RNG_TEMPS read ’,110,’ bytes’)
CALL status_message (mess_buff, ’cmf_rng_load’)
END IF

C close the file.
CALL CMF_FILE_CLOSE (in_unit, ios)
IF (ios .LT. 0) THEN

WRITE (mess_buff,20) in_unit,ios,path
CALL status_message (mess_buff, ’cmf_rng_load’)
CALL error_message (’Error closing file.’,

$ 'emf_rng_load’, Err_file_error)

END IF

The initialisation is performed by

C Need to set up the weedy random number generator first to
put values in the state tables for fast_rng. Important
that thé seed
for weedy random number generator is reproducible.

dummy = RAND (rng_seed)

CALL CMF_RANDOMIZE(rng_seed)

QaQa

C Now set up the fast rng.
CALL INITIALIZE_FAST_RNG(
$ cmf_rng_table_lag, cmf_rng_short_lag,
$ cmf_rng_width, error_code)
init_cmf_rng = .TRUE.

Chapter 4. The GAUGE application. 109

4.2.7 Gauge transform: U,(z) — V(z)Uu(z)Vi(z + i)

As with the staple sum, this is easy to implement in terms of the maths and
communications layers. In HPF this would be written

C Even parity sub-lattice
CALL shift_3by3 (gauge_mask, trans_odd, 0dd_parity,
$ mu, Negative, templ)
CALL mh_3by3 (U_mu_evn, templ, temp)
CALL mm_3by3 (V_evn, temp, U_mu_evn)

C 0dd parity sub-lattice
CALL shift_3by3 (gauge_mask, V_evn, Even_parity,
$ mu, Negative, templ)
CALL mh_3by3 (U_mu_odd, templ, temp)
CALL mm_3by3 (V_odd, temp, U_mu_odd)

while in MP we would write

C copy low bound of v(notpar) to v(par) tail.

C ‘dir’ is the correct communications direction.
CALL copy_t_bound(par, np_comm(mu) ,
$ boundary_table(0,dir,notpar) , v)

C queue send in -ve mu dir v(par) tail -> v(notpar) tail
CALL queue_t_bound(dir, par, np_comm(mu), v)

C u(x) = v(x) u(x)
CALL rr_mm_3by3(np_sites,
$ Max_array, v(0,0,0,0,par), Max_array,
$ u(0,0,0,0,par,mu))

C finish send
CALL finish_t_bound(dir, par, np_comm(mu), v)

C u(x) = u(x) v (x+mu)
CALL lr_mh_rg_3by3(np_sites,
$ shift_table(0,dir,notpar), Max_array,
$ u(0,0,0,0,par,mu), Max_array,
$ v(0,0,0,0,notpar))

Chapter 4. The GAUGE application. 110

4.2.8 Cabibbo-Marinari update

There are two points of interest in this module.
1. The creation of the random aq lattice, see theory in section B.1.2, can be

performed uéing only two temporary vectors as shown in the following
HPF code.

C generate R
CALL lattice_fpoint_rng (rng_get_routine,
$ epsilon, templ)
C generate R’ _
CALL lattice_fpoint_rng (rng_get_routine,
$ epsilon, temp2)
C X=-1n(R)*alphainv
' temp1=-L0G(temp1l)*alphainv
C C = cos™2 (2%PI*R’)
temp2=C0S (two_pi*temp2)
temp2=temp2*temp2
C A=X*C ‘
templ = templ * temp2
C generate R’
- CALL lattice_fpoint_rng (rng_get_routine,
$ epsilon, temp2)
C X’=-1n(R’)*alphainv
temp2 =-LOG(temp2)*alphainv
C delta = X’+A
templ = templ + temp2
C generate R’’"2
CALL lattice_fpoint_rng (rng_get_routine,
$ epsilon, temp2)
temp2 = temp2 * temp2
C T = 1-delta/2
templ = 1.0-(temp1%0.5)

2. When implementing the local Metropolis accept/reject stage in HPF it is
inefficient to loop over the lattice sites as this would happen on the front-
end processor causing a bottleneck to occur. Instead we create whole
lattices of random numbers at a time and insert new numbers to pass the

accept/reject where failures occur using the ‘ANY’ and ‘WHERE’ intrinsics.

Chapter 4. The GAUGE application. 111

Q

Q

aQQaQ.

Generate the first arrays of random numbers in
‘dest’ and ‘compare’..

CALL test_a0 (rng_get_routine,

$ alphainv, dest, compare)

While any sites fail the test generate fresh test
numbers.
DO WHILE (ANY (compare .GT. dest))

We need to setup array everywhere for reject because WHERE
can only have assignment operations inside clause, no
function calls.
CALL test_a0 (rng_get_routine, alphainv,
$ temp_a0, temp_compare)

Replace the failing numbers
WHERE (compare .GT. dest)
compare = temp_compare
dest = temp_al
END WHERE

Keep going until all pass.
END DO

Chapter 4. The GAUGE application. 112

4.3 Gauge testing
4.3.1 Over-relaxation testing

The over-relaxation algorithm, as described in sections 1.3.2 and B.2, should
presérve the value of <%ReTr Ugw> (averaged over all planes p,v). This can
be seen clearly in real plaquette data as shown in figure 4.7. Of course, if the
over-relaxed algorithm does nothing at all the same output will be obtained, so
we must examine other quantities as well: the imaginary part of the plaquette
should be randomly distributed around zero as shown in figure 4.8 and the
values of the real part of the plaquette for single planes should fluctuate as

shown in figure 4.9.

0.210 ————— 77] 0.210 [rrrremrprrrsrrr T
0.208 [~ - 0.208 - -

o o =]
~ ~ []
4 0.206 4 0.208 — —
2 3 [.
5 4 -]
& 0.204 & 0.204 |- -
Q o - .
=3 [+ : :
0.202 | 0.202 |~ -]
0‘200 i 1 1 I 1 | ' 1 1 o.zoo -IlllllllllIIIIIlillIIII!llIIIIIIAAlIIlIIlIlIlIIl[-

0 100 200 38 39 40 41 42 43 44 45 46 47 48

Elemental sweep Elemental sweep

Figure 4.7: Real part of plaquette averaged over all planes. This data was obtained from a
Thinking Machines CM-5 using one Cabibbo-Marinari (heatbath) elemental sweep and four
over-relaxed elemental sweeps per compound sweep with 8 = 3.0. The plaquette is conserved
between over-relaxed sweeps as can be seen in the expanded graph on the right hand side.

Chapter 4. The GAUGE application.

0.002

0.001

0.000

Im Tr Uplequctta / 3

~0.001

—0.002

100

Elemental sweep

113

Figure 4.8: Imaginary part of plaquette averaged over all planes. This data is from the same

run as that in figure 4.7. The plaquette is not conserved between over-relaxed sweeps.

0.210

©
ISy
o
©

0.206

Re Tr Ujaquette/3: Xy—Pplane
o
N
o
£

o
)
o
©

0.200

100

Elemental sweep

Figure 4.9: Real part of plaquette for the zy-plane only. This data is from the same run
as that in figure 4.7. Note that the plaquette for the single plane is not conserved between

over-relaxed sweeps.

Chapter 4. The GAUGE application. 114

4.3.2 Heatbath testing

The Cabibbo-Marinari heatbath updates are intrinsically difficult to test as
they use random numbers to create the required distribution P(ao)dag as shown
in sections B.1 and B.1.2. We can however easily test that the distribution

generated is correct for a range of parameters. This test is shown in figure 4.10.

8 T T T T ‘ i T T T T T T T T T T T
i a=16
6 —
x| |
e,
E 4 — o=8
=
2 a=4
i a=1
0 1 Il . ! { 1 1
-1.0 -0.5 0.0 0.5 1.0
X

Figure 4.10: Random number distribution for Cabibbo-Marinari heatbath update. The
distribution shown is P(z) = N~1v/1 — z%e°, where the normalisation factor N = LIi(a).
Both the ideal distribution and one generated by the MPP codes are shown.

To test the rest of the heatbath algorithm, we need to examine the plaquette
values as a function of B. To find data to compare with we examine the strong
coupling expansion, for low 3, and data produced by Lepage and Mackenzie

[10] for high B. Note that we do not expect to agree exactly with the figures

Chapter 4. The GAUGE application. ' 115

quoted because of differences in lattice size and algorithmic parameters, the
plaquette is a statistical quantity which will fluctuate. However the plaquette
values should agree within errors over the whole range of test data from 8 = 3.0
to B = 9.0. If we get good agreement over this wide range we can be certain

that the code is working.

4.3.3 Strong coupling expansion: validation at low §

The strong coupling expansion is a power series in [valid for high values of
the coupling g, hence low values of 8 = g%. The coeflicients in the series for
the free energy have been presented by Edgar et. al. {117} (O(8°)) and Balian
et. al. [118, 119] (O(B®)) from summation of graphs as

F 1—2 1 113 1, 133

dd—1) =3P 5l - ﬂ +(243 3888)'3 6480)ﬂ

5 1069 509

+ (359 51840)ﬁ +(972 77760)’6
2, 157 490757 —10

+ (6561d "~ 11664 +20995200)'B
4 , 59 435299 13

+ (2187d - 2160d+'9797760 B
1775 218824907 1682010779 .12
T 42— d

+ (354294 7255041120 © 1 19326323200)8
440 13919677 7603159 .13
— d?— d

+ (59049 604661760 +440899200)ﬁ

o 20 5 8377 , 12469727 14239256399 B
531441 2125764 5441055840 1333279180800

Lo 544 . 69331 , 106962409 , 3474317893 7
1594323 7971615 2821754880 79361856000

N 2323 . 5838272899 , 10597782658021

(1594323 220399211520 123423558451200

6402070751747 —16 . —17
~ smsmrmoosoe)’ o) (4.1)

in d dimensions, where f = 5%. By making the substitution 8 = 63, we can
calculate the average value of the plaquette in 4 dimensions to be

1dF(p)

1
<§R6T‘. UD“"> = % 48

Chapter 4. The GAUGE application. 116

9

1 1, 5 4
- 18’6'+ 216ﬂ 93312‘3 15116544
1309 2131 1091

6 7
+ 506992640° T 5441955840 ' 43535646720
1277749 o

~ 179081 oo
" 592433080565760
3052831769

21158324305920
34550697258595123200

ﬁs

93151153 1
- B+
11516899086198374400
6757393949 13
+ B
414608367103141478400
1932793007 gis
3198407403367091404800
16029793987553

21761963972509689918259200

1812

B + 0(B*) (4.2)

This expansion has been plotted in figure 4.11 for various orders in order to
establish a threshold for the accuracy of the expansion. By comparing measured
plaquette values against those obtained from the expansion, we can validate
the software at low values of 3. Suggested 3 values and plaquette averages are

shown in table 4.1.

B | (1ReTr Vo)
2.0 | 0.12881138(1)
2.5 | 0.1659980(4)
3.0 | 0.205047(5)
3.5 | 0.24629(5)
4.0 | 0.2907(4)

Table 4.1: Plaquette averages from the strong coupling expansion for several 3 values. The
values presented are calculated from the average of the 14th and 15th order expansions.

Plaquette data measured on different platforms with various algorithms are
shown in figure 4.12. We plot both symmetric and squashed lattice data for
comparison. The squashing should raise the effective value and hence the pla-
quette average over the squashed planes. This gives us information on whether
the individual directions are treated correctly in the code. The z-axis values
have the following meanings

A: Reference data from the strong coupling expansion.

Chapter 4. The GAUGE application. 117

1.0

-
-
-
p—
.

o
o}

o
o

o
IS

Illl|llllll|ll|llllllll|

Re Tr Uplaquette/ 3

<

0.2

o)}
(]

Figure 4.11: The strong coupling expansion of the average plaquette plotted against § = ;ﬁ;,
where g2 is the coupling constant for QCD. Plots are shown for the expansions up to order
BN-1. It can be seen that the 10th and 15th order expansions are only valid up to 8 ~ 4.0.

Chapter 4. The GAUGE application. 118

B: Data from the MPP codes with a symmetric lattice.
C-F: Data from the MPP codes on various platforms (both message-passing

and data-parallel) squashed in the z, y, z and ¢ directions respectively.

The crosses show data on a 16 x 2 lattice averaged over those planes
containing the squashed axis. The diamonds are data on the same lattice
averaged over planes not containing the squashed axis. The bursts show
data on a 16° x 4 lattice averaged over squashed planes, and the squares

show the unsquashed planes for the same lattice.

The data for' 8 = 3.0 is not affected by the squashed lattices as would be
expected, whereas for 8 = 4.0 the squashing is changing the effective 8 value.
The deviation of the MPP data for 8 = 4.0 from the strong coupling expansion
could be caused by the breakdown of the expansion at that 8 value. The 15th
order expansion shown in figure 4.11 is higher than the 10th order so this could

explain why the theoretical value shown is higher than the Monte Carlo data.

4.3.4 Lepage and Mackenzie data

In [10] Lepage and Mackenzie discuss lattice perturbation theory and present
Monte Carlo plaquette data to compare with their coupling constants. Their

data is presénted in table 4.2.

The data from the MPP codes running both message-passing and data-parallel
on different platforms is presented in figures 4.13 and 4.14. The z-axis is

explained in the previous section.

We can see that the symmetric lattice data from the MPP codes agrees with
the data from Lepage and Mackenzie (both were measured on 16* lattices). On
asymmetric lattices the plaquette values for squashed planes are higher than

the unsquashed planes. The size of this difference increases with # and the

Chapter 4. The GAUGE application. 119

0.2055 |— B=3.0 —]
3 I
Z I i
38 i 3
£ 0.2050 — —
o
> I i
=
A i 1
o
LA B C D E F -
0.2045 |— —
0.2915 g=4.0 —
LA B C D E F -
™ .]
~ 0.2910 — —
Q - -
8 O -
a.
D - é -
& 0.2905 — E —
A _ 1
2 - = .
s (0] _
0.2900 —

Figure 4.12: Plaquette data for 8 = 3.0 and § = 4.0. See text for explanation. The data
on these graphs was generated with differing update parameters on different platforms; the
results are consistent within errors indicating that the code is working properly.

Chapter 4. The GAUGE application. 120

0.60 [-
C g=5.7 ’
0.59 —
B X X i
™ B i
~ 0.58 [—A B C D E F —
3 []
g - -4
o o -
-g. 0.57 — —
o) i i
L. = -
B L n
o 0.56 — —
~ N]
B t -
085~ 0. @ p--------- B]
K o o]
0.54 L]
0.66

: =6.4 :
0.65 — X x]
- | i
~ : A B C D E F i
3 0.64 — —
g i]
B - -
= - 3¢ e .
& 0.63 ;—° o o & o El—_
o s |
(0 B _
0.62 |—]
| ® ©]

0.61L

Figure 4.13: Plaquette data for B of 5.7 and 6.4. See text for explanation.

. Chapter 4. The GAUGE application. 121

B |lnl(ReTr Unu) | 3 (ReTr Unw)
5.7 0.5995 0.5491
6.0 0.5214 0.5937
6.1 0.5025 0.6050
6.2 0.4884 0.6136
6.3 0.4740 0.6225
6.4 0.4610 0.6306
9.0 0.2795 0.7562
12 0.1954 0.8225
18 0.1224 0.8848

Table 4.2: Lepage and Mackenzie plaquette data. This was calculated on a 16% lattice.

0.78
X £=9.0 g,
0.77 — ' —
™ s X X X i
~ | i
3 L A B ¢ D E F -
3 - : .

o

£ 0.76 — ' -
= i M 3¢]
& i M o N R i B8
L -
2 - -
0.75 — —
- 3 3 3 i

0.74

Figure 4.14: Plaquette data for B of 9.0. See text for explanation.

Chapter 4. The GAUGE application. : 122

extent of the squashing as expected.

Our simulation data agrees well with Lepage and Mackenzie’s numbers for the
unsquashed lattices at all 3 values, indicating that the code is working properly.
The squashed lattice data shows that the expected planes receive the higher

plaquette average so we know that the different directions are treated correctly.

Chapter 4. The GAUGE application. 123

4.4 Gauge performance

The performance of the GAUGE application is of great interest as it is used
for long periods of time to generate gauge configurations. Slight increases in
the speed of code can result in a few more configurations being generated. In
this section we present data for the timing and efficiency of different elements
of the update algorithm on the three platforms discussed in section 3.6; the
Cray T3D, Connection Machine CM200 and Connection Machine CM5. We
generated the data at a 3 value of 5.9 with a disordered start on 12* and 16*

lattices.
Random Local Gauge Transform
12% lattice 16* lattice
Platform|Size|Precision| Time| Speed |Efficiency|Time| Speed |[Efficiency
(secs)|(Gflop/s)| (% peak) | (secs)|(Gflop/s)| (% peak)

CM200 | 8K D 0.44| 0.084 2.1 0.405| 0.289 7.3
CM200 | 8K S 0.25| 0.150 3.8

CM5 | 16 D 0.079| -0.466 18.2 0.229| 0.511 20.0

CM5 | 16 S - 0.163| 0.718 28.0

CM5 | 32 D 0.050| 0.741 145 [0.122| 0.957 18.7

T3D 8 D 0.639| 0.058 4.8 1.05| 0.111 9.3

T3D | 16 D 0.545| 0.068 2.8 0.752| 0.156 6.5

‘ Table 4.3:

Cabibbo-Marinari update

12* lattice 16* lattice
Platform|Size|Precision| Time| Speed [Efficiency|Time| Speed |[Efficiency
(secs) | (Gflop/s)| (% peak) |(secs) |(Gflop/s)| (% peak)
CM200 | 8K D 5.38 | 0.0691 1.8 564 0.209 5.3
CM200 | 8K S 3.261 0.114 2.9
CM5 | 16 D 1.01| 0.368 14.4 2971 0.396 15.5
CM5 | 16 S 2.19 | 0.537 21
CM5 | 32 D 0.64| 0.584 114 1.61| 0.729 14.2
T3D 8 D 3.77 | 0.099 8.3 10.1| 0.116 9.7
T3D | 16 D 2.32 | 0.160 6.7 5.52 | 0.213 8.9

Table 4.4:

Observations about scaling performance with lattice size, machine size and
precision have already been made in section 3.6, they hold for these results as

well.

Chapter 4. The GAUGE application.

Over-relaxed update
, 12% lattice 16% lattice
Platform|Size|Precision| Time| Speed |EfficiencyjTime| Speed |Efficiency
 l(secs)|(Gflop/s)| (% peak) | (secs) [(Gflop/s)| (% peak)
CM200 | 8K D 4.53 | 0.0686 1.7 3.89 0.252 6.3
CM200 | 8K S 247 0.126 3.2
CM5 | 16 D 0.667| 0.466 18.2 2.03| 0.483 18.9
CM5 | 16 S 1.36 | 0.720 28.1
CM5 | 32 D 0.413| 0.753 14.7 1.09 | 0.898 17.5
T3D 8 D 2.171 0.143 11.9 6.74| 0.146 12.2
T3D | 16 D 1.13| 0.275 11.5 3.43| 0.286 11.9
Table 4.5:
Reunitarise
124 lattice 16% lattice
Platform|Size|Precision| Time | Speed [Efficiency| Time| Speed [Efficiency
(secs) |(Gflop/s)| (% peak) | (secs) [(Gflop/s)| (% peak)
CM200 | 8K D 0.0639| 0.203 5.1 0.108| 0.370 9.3
CM200 | 8K S 0.0472] 0.275 6.9
CM5 |16 D 0.0224| 0.580 22.7]0.0651| 0.614 24.0
CM5 | 16 S 0.0627{ 0.638 24.9
CM5 | 32 D 0.0123| 1.057 20.6 0.0352| 1.136 22.2
T3D 8 D 0.159 | 0.0818 6.8 0.502{ 0.080 6.7
T3D | 16 D 0.0796f 0.163 6.8 0.251| 0.159 6.6
Table 4.6:
Compound update (GT+2CM+20R+RE)
12* lattice 16* lattice
Platform|Size|Precision Time| Speed [Efficiency|Time| Speed |Efficiency
(secs)|(Gflop/s)| (% peak) |(secs)|(Gflop/s)| (% peak)
CM200 | 8K D 21.4 | 0.0660 1.7 20.2 | 0.221 5.6
CM200 | 8K S 12.18| 0.115 2.9
CM5 | 16 D 3.86 0.366 14.3 10.78| 0.414 16.2
CM5 | 16 S 7.81| 0.572 22.3
.CM5 | 32 D 2.73 | 0.524 10.2 5.99 | 0.745 14.6
T3D 8 D 13.1 | 0.0992 8.3 35.7| 0.115 9.6
T3D 16 D 792 0.164 6.8 19.3 | 0.213 8.9

Table 4.7:

124

. Chapter 4. The GAUGE application. 125

There are several notable features in the performance data shown. The Cab-
ibbo-Marinari update is slower than either the gauge transform or over-relaxed
update on the CM200 and CM5. The reason for this is the need to generate
whole lattices of random numbers to implement the accept/reject stage as
discussed earlier in this chapter. On the T3D the message-passing code need
only generate single random numbers; a far more efficient process. The over-
relaxed update stands out as the most efficient routine for the T3D. The most

likely reason for this is that it is the only routine which does not involve maths

functions (e.g. SIN, COS, LOG, SQRT) to a high degree.

Note that the Cabibbo-Marinari update performance dominates that of the
compound update. This is because over 50% of the time is spent performing the
Cabibbo-Marinari update. This will not necessarily be the case in production,
e.g. a compound update consisting of 1 Cabibbo—Marihari update and 5 over-

relaxed updates has been used over the last few years by UKQCD.

Chapter 5
Generation of quark propagators: the SOLVER
application
5.1 Requirements

]

The solver application, SOLVER, must be able to provide the following func-

tionality (see figure 5.1).
l Disk I

Source)
[Fermion timeslice |

Gauge Field

(Regen)
|2-row Gauge I
[Fermion timeslice |

Figure 5.1: Functionality required from the SOLVER application.

Inverter

Clover term | Clover inverse |

]
make clover

126

Chapter 5. The SOLVER application. 127

1. Gauge field initialisation. Although we only need to initialise the
gauge fields by loading an old configuration (not the RNG information)
in production, for testing we also require the ability to use an ordered,
disordered or crossed start!. These extra starts should be disabled by a
build-time flag when production code is built to minimise code space.

2. Quark propagator initialisation. The quark propagators are to be
initialised by setting them equal to a point source. This is used as an
initial guess for the solver and is as. good as most other initial guesses
without taking any time to implement and execute.

3. Linear equation solver. The package must be capable of supporting
more than one linear solver algorithm so that we can re-start a propaga-
tor calculation if convergence fails. The solvers should all be red-black
preconditioned and have a common interface for simplicity. We also re-
quire the ability to swap from red-black to black-red, i.e. solve on either
even or odd parity and regenerate the opposite, in order to validate code
sections as we described fully in section 5.3.1.

4. Clover terms. The Clover term ‘C’ is to be adjustable at run-time,
although if a value of 0 & 0.01? is requested the Clover terms should not
be calculated in order to save time. There should also be a build-time
option to disable the Clover terms (and force C' to be zero) in case we
want to use the Wilson action and save space usually used for the Clover

terms.

Only one parity of each term is to be stored, as this is all that is required
for the solvers. The residue calculation (see below) will require both
parities, but time is non-critical here and we can calculate each parity as

needed. The terms are stored in the block form defined in section C.2

1The crossed configuration is used for testing Clover code and is described in section 5.3

2This value is arbitrary.

Chapter 5. The SOLVER application. 128

as this takes less memory. We must be must be careful where in the
call-tree we create the Clover terms; their creation takes a large amount
of temporary work spaée. '

5. Source creation. The SOLVER application should only be able to create
point sources; any other type should be read in from disk and created by
the SOURCE application (see section 5.5) so that we again reduce code
space required in SOLVER.

6. Residue calculation. Once the propagator has been calculated, the
package should calculate an a.lgorith_mica,lly independent measure of the
accuracy of the solution, the residue, which should also be independent
of the source normalisation. We define the residue to be

_ M —n]

|T| - |77| (51)

7. Pion propagator. We require the pion propagator to be calculated for
each source spin/colour of the inversion and also a cumulative sum over
all source spin/colour components. This is used for validating the results
of the solver and quark propagator files. The algorithm to implement
this is given in section C.3.

8. Input and output. A separate file is to be used for each source spin
and colour component and time-slice of the propagator. When gauge
fields are loaded from disk, we do not need to read the random number

information.

The quark propagator files loaded/saved are to be validated by two pos-
sible methods:

(a) Calculating a 16-bit checksum on the files. This is to be done in the
" same ways as for the GAUGE application and is subject to the same

restrictions.

Chapter 5. The SOLVER application. 129

(b) Calculating the time-sliced pion propagator summed over space, sink

spin and spin colour, i.e. a value for each timeslice, source spin and

source colour.

Chapter 5. The SOLVER application. . 130

5.2 Design and implementation

The design of the SOLVER application can be easily seen to break into modules
on top of the underlying libraries as shown in figure 5.2. The important features

of the design are discussed below.

5.2.1 Driver

The nécessary gauge and quark propagator- (psi) fields are declared here. It is
worth noting that if the Clover action is used, 2.8 times more memory than
the GAUGE application uses is needed. The gauge fields require 72 words per
lattice site, the quark propagator fields are 96 words p.l.s. and the Clover terms
108 words p.ls.. For this reason the workspace used matters far n‘lore than it

did for the GAUGE application.

5.2.2 Gauge start

For production purposes we restrict the types of start to loaded gauge con-
figurations. For testing and debugging purposes the ordered, disordered and
crossed starts can be used. A build-time flag is the simplest way to implement

these two possibilities.

5.2.3 Implement Boundary Conditions

Initially we only intend to implement periodic and anti-periodic boundary con-
ditions (BCs). The periodicity is implemented through the communications
library in the construction of the gather-scatter and neighbour tables or use of
CSHIFT as described previously. Anti-periodic boundary conditions require the
‘positive boundary in-the direction chosen to bring a factor of -1 into calcula-

tions with the fermion fields. Since these fields always occur multiplied by a

Chapter 5. The SOLVER application. 131

DRIVER
|
{ 1 1 1 1
READ GAUGE IN MAKE CLOVER| |MAKE SOURCE
PARAMETERS START };"é]s)LEMEm AND INVERSE n
| I
POINT LOADED
SOURCE SOURCE ROTATE
T SO]}S’ER DSLASH
SOLVER
I
1 1 1 i
MAKE SOURCE RB SOURCE RB MATRIX COMPLETE
»n 'n ’ M SOLUTION
| I] I I 1
INVERSE g INVERSE
CLOVER DELTAAlhRM DELTAATERM CLOVER
A-l A—l
1 1 1
INVERSE
DELTA TERM CLOVER CLOVER
A o A
|] I 1
RESIDUE ROTATE... ~ PION RoE
! 1 | I
FERMION
MAKE SOURCE
MAKE CLOVER MATRIX SOLVER
n . M
i - 1
DELTA TERM CLOVER PION
A A

Figure 5.2: Overview of SOLVER design structure.

Chapter 5. The SOLVER application. _ 132

gauge field it is easier to throw this factor of -1 onto the gauge configuration;
in practice we do this once after the gauge fields have been initialised. Note
that this does not affect the Clover term constructed from the gauge fields
since they consist of closed plaquette sums; any plaquette extending over the
lattice boundary containing the anti-periodic BCs will have two factors of -1

incorporated, hence no net effect.

In the future, other types of boundary condition may need to be implemented,
e.g. Dirichlet which require no periodicity and off-lattice values of the fermion
fields set to zero. These require such a different implementation that they need
to be applied far lower down the call tree where the fermion fields are evaluated.
For this reason the variable(s) idenfifying the BCs should be passed down the

tree whether currently used or not.

5.2.4 Clover term construction and application

As we do not need the inverse Clover term in the residue calculation we
must have the ability to create the Clover term separately to save time and

workspace.

We implement the data structures W, L and D defined in section C.2 since they
require less storage space and time to calculate than a more naive implerhenta—
tion. The relevant signs, hermicities and p-values needed by equation C.16 to
create 0,,F,, are most easily implemented through three lookup tables. The
plaquettes needed to make up the Clover leaves are calculated using the library
routines discussed in section 4.2 for the staple sum. The most important point
to remember when constructing the plaquettes is the order of multiplication of

the gauge fields, defined in figure 1.1.

The Clover term and its inverse are stored in a common block; specifying them

as explicit parameters passed down through the call tree would mean we must

Chapter 5. The SOLVER application. 133

allocate space for them, but we want to avoid this for the Wilson action (no

Clover terms).

It might appear that we need both parities of the Clover term since we use
A, and A7 ! in the solver. We can however create Az, then A7 ! from it and
finally A,. This takes longer but since we only create the Clover terms in non

time-critical sections the memory saving is more important.

5.2.5 Make source

We have two possibilities for the quark source

1. Point source

We are trying to solve the equation
(A~ kD)) =5
2k o

for the point source. This is easier to calculate if the normalisation factor
2k is transferred to the right hand side of the equation. Therefore a
single spin/colour element of the fermion field is set to 2«, the rest of the
fermion field is set to zero.

2. Loaded source

The loaded sources are implemented with the same routines as are used
fo load and save quark propagators for simplicity. This implies a need for
a time-slice range in the I/O routines and a general method for passing
in the source name.

After creating the source we have the possibility to rotate it as defined in

sections 1.1.3.2 and C.4.

Chapter 5. The SOLVER application. 134

5.2.6 Rotate and Dslash (D)

The main problem associated with the rotation is the workspace needed by
both it and DSLASH, where 4-spinors are communicated (we cannot perform
a decomposition to 2-spinors such as is possible for the hopping/delta term A).
This is most apparent in the SOLVER module where the solver workspace also
has to be accommodated. Luckily the source does not need to be created on
every solver iteration, only on entry and when creating the missing parity of the
solution. Since time is not critical in the calls we could sacrifice speed to save
memory in the J). This possibility must be balanced against over complicating

the] to save a few bytes and not giving up too much speed.

The) operation is very easily implemented in terms of the maths and com-
munication layers discussed already. For example, in HPF the y-direction cal-

culation
AP B)() = 7 {U(2)b(e +§) - Ul(= — §)b(= —)}

is implemented as

" CALL shift_4spin (spin4_mask, src, p, Y_index,
$ Negative, tmpl)

CALL su3_mv4 (gauge_ynp, tmpil, tmp2)

'CALL xpgammay (Y_index, tmp2, res)

CALL su3_hv4 (gauge_yp, src, tmpl)

CALL shift_4spin (spin4_mask; tmpl, p, Y_index,
$ Positive, tmp2)

CALL xmgammay (Y_index, tmp2, res)

The message passing version is similar

C copy the source into the workspace vector
CALL copy_generic(np_sites, (Ncomplex*Ncolour*Nspin4),
$ 0,Max_body,psi, 0,Max_array,phil)

C copy the fermion vector from x+mu to phi2

Chapter 5. The SOLVER application. 135

CALL grab_generic(Ncmp, (mu+Ndim), par, phil, phi2)

C perform the U~dagger multiplication.
CALL su3_r_hv4(np_sites,
$ Max_array, gauge(0,0,0,0,par,mu),
$ Max_array, phil)

C perform the multiplication of phi2 by U on site notpar
CALL su3_r_mv4(np_sites,

Max_array, gauge(0,0,0,0,notpar,mu),

$
$ Max_array, phi2)

C copy phil from par to notpar
CALL grab_generic(Ncmp, mu, par, phil, phi3)

C contruct the result from phi2, phi3 with the gamma algebra
CALL construct_res(mu, left, phi2, phi3, res)

5.2.7 Solver

Since we need to be able to implement any solver satisfying the requirements
in section 5.1 we cannot be specific about the design or implementation. All of
the solvers considered are constructed from a number of common routines.

1. The red-black quark source 7, defined by
7 =(1+kAA)
To generate this we need both parities of the non-red-black source since
??,', =+ “ApiA;—pl"Ti
2. The red-black fermion matrix M’, defined by
M, = (Ap — &2 DAY Agp)

which does not mix parities. This.operation contains the major compu-

tational effect in SOLVER as it needs to be performed at least once per

Chapter 5. The SOLVER application.

136

iteration. For some solvers, e.g. Conjugate gradient, we need to act with

M't on a 4-spinor. Since A is hermitian we write this as

M} = (A — s 0LAZIAL)

3. Once we have solved for a single red-black parity we need to construct

the complete solution by the equation

¥ = A‘;‘ﬁl(n? + K'Aip")bp)

4. Linear algebra routines, e.g.

faxpy:
faxpz:
faypx:

fysx:

fmod?2 :
fcdot:

y=az+y
y=azr +z
y=ayt+z
y=y—=c

zi,ﬁ,r lyb(r)lz)
Yy (r)-25(r)

fcaxpy:
fcaxpz:
fcaypx:

fzero:

y=azr+y
Yy =oar+ 2
y=ay+z
y = 0.0 V sites

where a € R, a € C and z, y and z are 4-spinors. Some of these routines

are used in other parts of the solver code and therefore live in the maths

library. They closely mimic the standard BLAS routines so that the

names can be easily changed to use an optimised BLAS package for a

particular platform.

In case the red-black decomposition introduces a small numerical error through

the Clover term or modified source, we allow the solver to restart itself. Most

solver algorithms involve two main steps; an initialisation and then iteration.

The minimal residual algorithm for example

initialisation

™o —

7' — Mo

iteration: repeat the following until convergence

S =

M i"'i",'

Chapter 5. The SOLVER application. 137

(swri)
(s’s)’
Yip1 = Yit+ar;

a = w w is the over-relaxation parameters

Ti+r = T{— QS

The source is only involved once, in the initialisation. Restarting the solver
with %o as the tentative solution forces a ‘realignment’ of the solution with the
source. This normally only needs to be done once but we allow a maximum of

4 restarts for safety.

When we implement the solver algorithms, workspace is one of the major issues.
The minimal residual solver described above requires two workspace vectors r
and. s plus space for the red-black source. This is a small memory requirement;
other solvers such as conjugate gradient least norm and biconjugate gradient
require far more workspace. We reduce this demand in two ways. Firstly the
source storage is written over by the red-black source. Since I/O is assumed
to be fast, loaded sources can be reconstructed quickly when needed. If I/O is
particularly fast in comparison with the calculation it might be better to save
the rotated source the first time it is used (outside solver in the call tree) and
then read it in from disk on successive uses. This removes all of the workspace
associated with source creation and rotation from the solver call tree thereby
reducing overall memory requirements. This method has not yet been tried as
we have not been that short on memory. The second way in which we reduce
workspace is to use the opposite parity of ¥, i.e. 95, for calculations, e.g. as s

"in the minimal residual algorithm.

5.2.8 Hopping or Delta term (A)

The hopping, or delta, term defined by equation (1.21)

(Ag) (z) = Y_(1 — 7)Uu(@)a(z +) + (1 + 7.)U}(z — 2)g(z — &)

Chapter 5. The SOLVER application. 138

forms the core of the solver as it is the only unit requiring local communi-
cations. The decomposition into 2-spinors is well described in section C.1.
The construction of the term is extremely similar to that of the J) described
previously in terms of the communications and maths libraries. The subrou-
tines most in need of optimisation if possible are su3mvv and su3_hvv which

~multiply a quark field by U or U t,

The message-passing implementation allows more possibilities than HPF. If we
have enough memory we can overia,p communications in all four directions and

hopefully speed up the solver.

5.2.9 Residue

Because the residue is independent of the solver algorithm we calculate it out-
side the solver module. The creation of the Clover term and source requires a
large amount of workspace which, when added to that needed for the fermion

matrix M and the residue itself, becomes the maximal memory usage in the

SOLVER application.

This can be avoided by introducing a second layer to the residue call structure
‘residue_par’ as shown below in figure 5.3. The workspace for making the

Clover term is now subtracted from the maximum needed.

residue

| 1
make_clover residlue _par

[.1 .
make_source ferm ion_m atrix ...

Figure 5.3: Call structure of the residue module.

Chapter 5. The SOLVER application. 139

5.2.10 Solver I/O

All of the points raised for the gauge field I/O apply to this module. An added
feature is to use limits on the time-slices loaded and saved so that quark sources
can be implemented easily. The dataset names for the propagators reflect the
different sources which may be used and the mode in which the gauge field was
generated. The format

<gauge><source>kkkk<action>scTtt

is used. The gauge name <gauge> is simply passed in to the SOLVER appli-
cation without processing, to simplify the interface. The other elements in
the name are the kappa value kkkk equal to INT(x x 10%) — 10%, the action
type <action> which is usually equal to ‘W’ for the Wilson action or ‘C’ for the

Clover action, the source spin ‘s’, the source colour ‘c’ and the time-slice ‘tt’.

Chapter 5. The SOLVER application. 140

5.3 Solver testing

5.3.1 General tests

There are several general tests (applying to any input parameters) which can

be applied to the SOLVER application.

1.

The pion propagator can be compared with values generated by an ana-
lytic algorithm as shown in section 5.3.2.
The pion propagator should be independent of the solver convergence

parameters as long as sufficient precision is used to compare results.

. The pion propagator should be invariant under colour conjugation

U-U"

Having a non-zero Clover parameter should not affect the results for a
unit gauge configuration or.transformed unit gauge configuration. This
is because the plaquettes will all be equal to the identity matrix; when
the trace is subtracted off as is needed in the Clover algorithm we are left
with zero in all elements of the o, F,..

Solving on the even-parity sub-lattice should give identical results for the

pion propagator as solving on the odd-parity sub-lattice.

. The quark propagator should be satisfy the follbwing symmetry condition:

Pl = Ys9s.

Tests of more specific input parameters are discussed in section 5.3.3.

5.3.2 Analytic pion

The theory in this section below is taken from the paper by Carpenter and

Baillie [120], with the notation slightly altered.

Chapter 5. The SOLVER application. 141

The Euclidean lattice fermion propagator can be written

1111 K
= ———— E(k .
We) = T,) (52)
where
mg+ Y., —ty.sink, + (1 —cosk
'l/)(k) — q = © [t [l (}4)2 (53)
Yusin®k, + [mq + 3 ,.(1 = cos ku)]
The -, matrices are taken to be hermitian (see equation A.1)
and the momentum sum is over
2)
k, = —"(“Z—+L) ny=0,1,..L, — 1 (5.4)
m

where §, = 0 for periodic boundary conditions and 6, = % for antiperiodic

boundary conditions in the u-direction.

Once the quark propagator has been calculated, equation (C.23) is used to

calculate the pion propagator.

5.3.3 Crossed configurations

Following [120], the quark propagator with the Clover action can be written in
terms of a Fourier series [121]
ket

P(t) = SR (M + P_e™ + Pre®) 7R N (5.5)

ke

where
M = M.+ P.e*+Pe*
iZ

ik t —ik
I‘ge P;,;e

= 4 4
i
]_ - -
= 1- EP(L)
2 _ 27 (-’5;-*- g) ' §=1 ant%pefiodic b.c.
N ! 8 =0 periodic b.c.

Chapter 5. The SOLVER application. 142

M., = 2%+CF“,,0,“,
Ly = U

Pr = —5UM1+7)
P, = —%Uu(l—%)-

Using the same method as section 5.3.2 we can perform the Fourier sum to
obtain an independent measure of the time-sliced pion propagator which can

be compared with values obtained from the MPP SOLVER application.

The crossed configuration, i.e. a constant background chromo-magnetic field,

which we use is defined by the gauge algebra

A, = (1,3,0,7,0,2,2,0)
A, = (0,0,0,0,0,0,0,0)
A, = (0,2,0,0,4,0,5,0)
A; = (0,0,0,0,0,0,0,0) (5.6)

or the group elements

U, = ¢4 (5.7)

where) are the Gell-Mann matrices specified in Appendix A and the Aj are
those in equation 5.6. The y and ¢ directions yield the unit matrix, while the

z and z gauge fields are shown in table 5.1.

The time-sliced pion propagator values obtained using this initial configuration

are shown in tables 5.2 (4* latticé) and 5.3 (12* lattice) and figure 5.4.

Chapter 5. The SOLVER application.

Row,Col] Real part [Imag. part
z-direction
0,0 [-0.15014863014| 0.22101625075
0,1 0.25635275245{-0.30382781143
0,2 0.25006130338] 0.84145614691
1,0 -0.55907303095| 0.29258449693
1,1 0.40063261986(0.53186789570
1,2 0.33964949846|-0.20755708838
2,0 0.37136927247| 0.62651712892
2,1 -0.38087511063] 0.50350385177
2,2 -0.12328124791| 0.23617974562
z-direction
0.0 | 0.06045821905|-0.00000002002
0,1 0.08339362592(0.00000003994
0,2 0.26564168930{-0.00000001131
1,0 -0.16247718036] 0.00000003301
1,1 0.94266444445(-0.00000000361
1,2 0.29152178764| 0.00000002325
2,0 [-0.22609992325|-0.00000002516
2,1 -0.32315522432(0.00000000593
2,2 0.91893935204| 0.00000001828

143

Table 5.1: Gauge elements for the crossed configuration used for the analytic pion propagator

with the Clover action. Values are given for the « and z directions only, the y and ¢ directions

are unit matrices.

Timeslice Wilson Clover Clover
Unrotated Rotated

0 0.710589902901e 0/0.711207983145¢ 0{0.119130162633e 1

1 0.363996054550e-1]0.367609728443e-1|0.254744013994e 0

2 0.105703566630e-1{0.109063074722e-1{0.222617573491e-1

3 0.363996054550e-1|0.367609728443e-1{0.254744013994e 0

Table 5.2: Time-sliced pion propagator summed over all spin/colour indices for 4* lattice,

k = 0.113636. Boundary conditions are periodic for the spatial directions and antiperiodic

for the t-direction. The target residue was 1x 107 1¢ and the solver was started three times for

each spin/colour index. These values were first compared with those from the analytic code

of [121] to 4 significant figures. Once the code was validated, these figures were generated.

Chapter 5. The SOLVER application. 144

10

L T I I T T ¥

4* lattice

S |

T T T T 1777
1

T
1

Pion propagator

0.1

Llllllll|

0.01 "

Timeslice

|llll|I]II|III,I|I]II|DIIIIII::

12* lattice

T T TTITH

T T T TTTT

—
9

)L LIien

P
o
0

11 IIIIII|

Pion propagator

1073

I T llIIIIlI T llllllll T lllll”l
| | IIII]II|

=T T TTTTT

lIIIlIIIIIIIIlIIIllllllllllll

0 2 4 6 8 10
Timeslice

Figure 5.4: The pion propagator for the crossed configuration. Diamonds mark the, Wilson
action, octagons the unrotated Clover action and squares the rotated Clover action.

Chapter 5. The SOLVER application.

Timeslice

Wilson

Clover
Unrotated

Clover
Rotated

—
CPB©®ON0umwh =o

0.718904188921e 0
0.344682975303e-1
0.444216279213e-2
0.858280502130e-3
0.221687794206e-3
0.741372603559¢-4
0.444284442156e-4
0.741372603559-4
0.221687794206e-3
0.858280502130e-3
0.444216279213e-2
0.344682975303e-1

0.719738715575¢ 0
0.347212612766e-1
0.453409840230e-2
0.895657737452¢-3
0.238508627968e-3
0.830073090671e-4
0.511879553088e-4
0.830073090671e-4
0.238508627968e-3
0.895657737452e-3
0.453409840230e-2
0.347212612766e-1

0.122801635116e 1
0.228273178229¢ 0
0.182428204944e-1
0.245341606706e-2
0.544681966919e-3
0.176177532160e-3
0.106104264043e-3
0.176177532160e-3
0.544681966919e-3
0.245341606706e-2
0.182428204944e-1
0.228273178229¢ 0

145

Table 5.3: Time-sliced pion propagator summed over all spin/colour indices for 12* lattice,

k = 0.113636. Initial conditions were as for table 5.2. These values were obtained from the

MPP codes after they had been validated against analytic values from the 44 lattice.

Chapter 5. The SOLVER application. ' 146

5.4 Solver performance

The best measure of the performance of the SOLVER application is the time
taken per iteration as these iterations dominate all runs of the application.

Timings on the CM200, CM5 and T3D are presented in table 5.4.

12% lattice 16* lattice
Platform|Size|Precision| C | Time| Speed |[Efficiency| Time| Speed |Efficiency
(secs) | (Gfiop/s)| (% peak) | (secs) |(Gflop/s)| (% peak)
CM200 | 8K S 0.0{ 0.315| 0.146 3.7 0.315} 0.465 11.7
CM200 | 8K D 0.0§ 0.542| 0.085 2.1
CM200 | 8K S 1.0] 0.380| 0.184 4.6 0.416*| 0.518 13.0
CM200 [16K S 1.0{0.363*| 0.188 24 0.207*| 1.04 13.0
CM5 | 16 S 0.0§ 0.083| 0.538 21.0
CM5 | 16 S 1.0{0.121*| 0.562 22.0 }0.264*! 0.815 318
CM5 | 32 S 0.0§ 0.056| '0.796 15.5 0.1107 1.28 25.0
CM5 | 32 D 0.0{ 0.070| 0.638 12,5
CM5 | 32 S 1.0§ 0.067| 1.01 19.7
T3D 8 D 0.0{ 0.323| 0.097 8.1 0.977| 0.102 8.5
T3D | 16 D 0.0§ 0.173{ 0.181 7.5

Table 5.4: Timing data for the minimal residual solver on various platforms for Wilson
(C = 0.0) and Clover (C = 1.0) actions. The times shown are for a single iteration of the
solver. Entries with a ‘*’ were generated using code with serial loops unrolled.

From the table we can see that the Clover action is more efficient than Wilson
since the application of the Clover term does not involve any communications.
Efficiency in general is better than that of the GAUGE code for the Connection
Machines because there are no trigonometric maths functions used at all. The
CM5 performance is increased by a large degree by unrolling serial loops as
explained in section 3.6; an efficiency of 31% for a real application is extremely

good for a parallel processor.

As the solvers are built from a generic toolbox of operations we supply timings
for these lower-level functions in tables 5.5, 5.6 and 5.7. They should be of some

use in predicting the run-time of new solvers and guidance for optimisation.

Chapter 5. The SOLVER application. 147

124 lattice 16 lattice
Operation Time |[Efficiency| Time [Efficiency
(secs) |{(% peak)| (secs) | (% peak)
8K processors, single precision, C = 0.0
rb_source 0.669 0.7 0.435 3.7
rb_matrix 0.273 3.7 0.261 12.0
fermion_matrixj 0.394 1.3 0.293 10.9
fmod2 0.616e-2 4.1 0.104e-1 7.6
fysx 0.183e-2 3.4 0.303e-2 6.5
faxpy 0.199e-2 6.3 0.320e-2 12.3
fedot 0.106e-1 2.4 0.130e-1 6.1
fcaxpy 0.226e-2 11 0.375e-2 21.0
faypx 0.195e-2 6.4 0.113e-1 3.5
faxpz 0.202e-2 6.2 0.336e-2 11.7
8K processors, single precision, C = 1.0
rb_source 0.254 3.1 0.337" 7.3
rb_matrix 0.338" 4.7 0.360" 13.9
fermion_matrixj 0.268 3.1 0.172* 15.0
make A,A! 4.45 2.4 4.05* 8.3
make A 1.63 3.0 2.04* 7.6
make A~ 0.112 7.7 0.190" 14.3
16K processors, single precision, C = 1.0, unrolled loops
rb_source 1.44 0.3 0.422 2.9
rb_matrix 0.177 4.5 0.193 12.9
fermion_matrix| 0.083 4.9 0.091 14.1
make A, A~! 3.27 1.6 3.96 4.2
make A 1.20 2.0 2.07 - 3.7
make A™?! 0.057 7.6 0.097 14.0
fmod2 0.247e-2 5.0 0.288e-2 17.2
fysx 0.283e-2 1.1 0.251e-2 3.9
faxpy 0.527e-1 0.1 0.230e-1 0.9
fedot 0.492e-2 2.5 0.635e-2 6.2
fcaxpy 0.261e-2] 4.8 0.310e-2 12.7
faypx 0.113e-2 5.5 0.175e-2 11.2

Table 5.5: CM200 solver toolkit performance.

Chapter 5. The SOLVER application. 148

12% lattice 16% lattice
Operation Time |Efficiency| Time [Efficiency
(secs) | (% peak)| (secs) |(% peak)
16 nodes, single precision, C = 1.0, unrolled loops
rb_source 0.168 7.2 0.249 15.4
rb_matrix 0.102 24.2 0.251 31.1
fermion_matrix| 0.040 315 0.116 34.7 -
make A, A~} 0.862 19.3 2.02 26.0
make A 0.390 19.6 0.913 26.4
make 47! 0.101 13.3 0.186 22.8
fmod2 0.862e-3| 45.1 0.222¢-2 55.4
fysx 0.689¢-3| 14.1 0.181e-2 17.0
faxpy 0.809e-3| 24.1 0.220e-2 27.9
fcdot 0.213e-2] 18.3 0.474e-2 25.9
- | feaxpy 0.100e-2| 38.9 0.27%-2 44.0
faypx 0.951e-3| 20.5 0.231e-2 26.6
32 nodes, single precision, C = 0.0
rb_source 0.136 2.9 0.063 19.7
rb_matrix 0.35%e-1| 21.7 0.182 13.5
fermion_matrixj0.438e-1 9.0 0.730e-1 17.0
fmod2 0.123e-1 1.6 0.233e-2| 26.4
fysx 0.693e-3 7.0 0.115e-2 13.4
faxpy 0.727e-3| 13.4 0.134e-2| 229
fedot 0.234e-2 8.3 0.370e-2 16.6
fcaxpy 0.885e-3 22 0.167e-2 36.8
faypx 0.733e-3| 13.3 [0.1380e-2| 23.6
faxpz 0.818e-3| 11.9 0.138e-2 22.3

Table 5.6: CM5 solver toolkit performance.

Chapter 5. The SOLVER application. 149

12% lattice 16* lattice
Operation Time |Efficiency| Time |Efficiency
(secs) | (% peak)| (secs) [(% peak)
8 processors, double precision, C = 0.0
rb_source 0.182 9.2 0.468 11.3
rb_matrix 0.283 11.7 0.853 12.3
fermion_matrix| 0.157 10.7 0.466 114
fmod2 0.157e-1 5.3 0.316e-1 8.3
fysx 0.160e-1 1.3 0.505e-1 1.3
faxpy 0.179%-1 2.3 0.563e-1 2.3
fedot 0.111e-1 7.5 0.335e-1 7.8
fcaxpy 0.121e-1 6.9 0.377e-1 7.0
faypx 0.192e-1 2.2 0.607e-1 2.2
faxpz 0.207e-1 2.0 0.655e-1 2.0
16 processors, double precision, C' = 0.0
rb_source 0.117 7.2
rb_matrix 0.150 11.1
fermion_matrixj0.851e-1 9.9
fmod2 0.123e-1 3.4
fysx 0.810e-2 1.3
faxpy 0.888e-2 2.3
fcdot 0.613e-2 6.8
fcaxpy 0.602e-2 6.9
faxpz 0.104e-1 2.0

Table 5.7: T3D solver toolkit performance.

Chapter 5. The SOLVER application. 150

5.5 Quark sources:
" the SOURCE application

The source creation application, SOURCE must be able to provide the func-
tionality shown in figure 5.5.

Gamna mul
Fermion timeslice | [Gauge timeslice |

V

dd momenta .
@I l I2-row Gauge timeslice J

Figure 5.5: Functionality required from the SOURCE application.

regen
\

1. Momentum injection. We must be able to inject momentum into the
propagator through the inclusion of a plane-wave factor, e e

2. Gamma matrices. We require the ability to multiply the propagator
by a generic I' matrix (one of L, Y5, Vs VY5Yus Cur)-

3. Smearing. We require the ability to smear a propagator over a time-slice

as described in section 1.7.1.

The design of this application draws on several of the modules discussed pre-

viously; no new features require discussion.

Chapter 6

Conclusions

In this thesis we have shown that it is possible to design and implement a
suite of lattice QCD software for message-passing and data-parallel massively
parallel processors using software engineering methods. The codes that we
have produced will run on any platform supporting PVM or CHPF with little
or no alteration and in some cases, e.g. 50% of peak speed on the Connection
Machine CM5, produce extremely high performance without optimisation as
shown in chapters 4 and 5. The SOLVER kernel has been recently incorporated
into the PARKBENCH [122] benchmarking suite, a suite of parallel application
kernels from various disciplines requiring high performance computing. As the
kernel has only recently been included, no results are available yet. However,
the codes in this suite will be tested on all parallel platforms supporting PVM
and HPF, the current standards for portability.

The software engineering methods used are not at all common in most physics
research establishments, but have been of enormous aid in structuring and
documenting the design of the software, sharing the work amongst project
members, and detailing the interfaces to the implementation for other members
of the group. Mike Peardon, a research student at Edinburgh, has made use
of the documentation set and software library described in this thesis to write
a Hybrid Monte Carlo simulation code in High Performance/CM Fortran in
a short time, less than two months. His project proved valuable for both
field-testing our software and documentation and demonstrating the need for
a library of portable lattice QCD software and relevant background manuals

which are easy to use by people with no previous knowledge of the project.

151

Chapter 6. Conclusions. 152

Software engineering does have its negative aspects. Iteration in the design and
implementation phases of the project require the documentation to be kept up
to date so that everyone knows what the others are doing. This requires a high
degree of organisation and discipline which is not usually present in a physics
research department; people usually focus on a narrow area at a time, produce
a minimal amount of documentation in order to extract the maximum yield
of results in the given time and then move on to another area. Researchers
on large software projects need to mainly consider how to make their work
easily accessible to people with little specialised knowledge. In our experience
however, the extra time and effort required to keep the documentation up to
date is easily balanced by the time saved by having all relevant information at

hand and the legacy of an easily accessible package.

Some of the portability of the package remains to be tested. The lack of
availability of an HPF compiler means that our code has yet to be testing
with that standard. HPF compilers are only now emerging on a few platforms
with several more in development. MPI is another such problem. Again, a
few implementations have been developed, as discussed in chapter 1, but these
are ma,inlj built on top of other méssage—passing systems. The addition of
this further layer is good for distributing the standard as widely as possible,
but sacrifices some performance through an extra set of function calls. Only
once MPI has been implemented as the native message-passing package for a
platform will the desired performance be achieved; until that time it is better
to stick with established packages, e.g. PVM, whose functionality can be easily
converted to MPI at a later date.

Chapter 6. Conclusions. ' 153

The future

There are elements to the MPP codes which have yet to be designed and im-
plemeﬁted; gauge-fixing in both message-passing and data-parallel and hybrid
Monte Carlo in message-passing. These elements should be as easy to construct
from the available library as Mike Peardon’s data-parallel hybrid Monte Carlo

codes.

Extensions can always be made to existing software to enhance performance on
particular platforms; particularly the Cray T3D, UKQCD’s main production
platform for the next few years. Most of these optimisations will be possible
without any re-designing of the software due to the modular construction and

isolation of critical sections of code as described in this thesis.

It would be most useful to port the message-passing layer to MPI when it
becomes widely available. This should only be a matter of a few weeks work
for someone familiar with message-passing systems. So many people use PVM
at present that a guide to conversion from PVM to MPI will no doubt appear
in the near future. New platforms will most likely undertake to implement
MPI or HPF as the standard package as they have become so widely accepte'd

among the high performance computing community.

(A.1)

Appendix A
Mathematical conventions

A.1 ~-matrix definitions

The ~v-matrices used are

o33 =10

022

o1

Ooo0

S OO

oo - O

o —-H OO0

- o OO

o7 7] is

i
2

so that oy,

154

Appendix A. Mathematical conventions. 155

A.2 Gell-Mann matrix definitions

We follow the definitions in [123, Appendix F]. The Gell-Mann matrices A,
satisfy the relation »

Tr XXy = 262 (A.3)

The definitions are

010 0 —i 0 (1 00
000 0 00/ \0 00
(0 0 1 00 —i (0 00

M = [000] X={00 0| X=]001
\1 0 0 : 0 0 \0 1 0
(00 O L (110

M = |00 — | X=—%=[01 0 (A.4)
\0 ¢ 0 V3l 0 —2

Appendix B

Generating quenched gauge configurations:
technical details

B.1 Heatbath update

In the heatbath algorithm (see section 1.3.1) the new values of the link vari-
ables are independent of the old ones. The quasi-heatbath method consists
of performing heatbath updates on a sequence (we use 3) of SU(2) subgroups
of the group SU(3). Reference [124] is more general, describing SU(N). The
main reason for using subgroups is that while the sum of SU(2) matrices is

proportional to an SU(2) matrix this does not hold for SU(3) matrices.
We write the. Wilson pure gauge action in the form
S = constant — %ReTr U.R

where U is the matrix of the link to be updated and R is the sum over staples

- (see figure 1.3).

In the following, 3 x 3 matrices are denoted by capital letters (e.g. U, X), and

2 x 2 matrices by lowercase letters (e.g. u,). So we have
X = UR
z = (U.R);x2 a submatrix
One can parametrise the 2 x 2 complex matrix = as 4(see section B.1.1)
z = kuy + tk'uy . (B.1)

where k, k' € R and u;,u; are SU(2) matrices. We then use the property that

for any SU(2) matrix h one can write

ReTr (h.z) = kTr (h.u;)

156

Appendix B. Gauge generation: technical details. 157

Remember also that an SU(2) matrix h can be parametrised in terms of Pauli

matrices
01 0 —2 1 0
0'0=12x2 0'1=(1 0) 0’2‘—“(1: 02) 0'3=(0 _1) (B.2)
h = ho.laxo + thio; (B.3)
with
h: 4+ h? =1 and ko, hiz123 € R (B.4)
Now suppose we choose
h= au:r

.

with uI defined via equation B.1 and a an SU(2) matrix so that h is itself an
SU(2) matrix. Then the configuration probability

dP(hu) o eWRTr (lgp = BT (ma)gp = RFTE ()gp

eWk2o0 g (B.5)

since a is SU(2), and we have used the invariance of the SU(2) Haar measure.

The problem is now reduced to generating ao with the distribution
P(ag)dap ezr%“dao(l - ag)% (B.6)

where we used
da = daod®a;6(1 — a2 — a?)

which in polar coordinates is

3(41, az, as)
a(r, 6, ¢)
= %(1 - ag)%daodrdedqb sin 86(r — (1 — ag)%)

daodrdfde §(1 — a2 —)

The a; are then generated uniformly on a 2-sphere of radius (1 — a2)'/%. The

procedure for generating these random matrices is described in section B.1.2.

Appendix B. Gauge generation: technical details. 158

We perform 8 hits of this kind taking 3 different 2 x 2 submatricesof X* = U "R_,
t=1,2,3

Tdo z O 1 0 O z3, 0 z3,
X'=|z, =z}, 0] X?*=]0 z& $§1 X3=] 0 1 0 |(B.7)
0 0 1 0 z2, =%,

and U* denotes

U°=U, U'=hU° U?=hU* U =U®=hU? (B.8)

The

are enlarged to SU(3) matrices by putting a 1 in the diagonal element and 0's in

the off-diagonal elements. The staple sum R, remains unchanged throughout.

Summary

The Cabibbo-Marinari update of U,(z) can be summarised as follows

loop over hits z from 1 to 3 step +1
let X =U'R
choose 2 x 2 complex submatrix to be z;,z; or z3

1.

parametrise z; to get k and u,
generate ag and a; according to distribution (B.6)

let U* = (auI);U“l

B.1.1 Parametrisation of a complex 2 x 2 (Cox2) matrix.

b
:B:(Z d)eczxz

T = ku1 + ?:k,‘UQ

Given

we want to write

Appendix B. Gauge generation: technical details. 159

with k € R and u; € SU(2). We only need to calculate k¥ and u;. So "
T = ku1 + ikIUQ = k(€012x2 + 265") + 'l:kl(folgxz + Zf-‘C-f)
with €2+ & =1 and f2 + f2 = 1. Then

z = (keo+ ik'fo)laxz + 4(k€+ik'f).d

= mo.lgxz + 2:1-3‘0_" = zo.lzxg + 53‘5"
where zg,z; € C for § = 1,2,3. We then have
. 1
z,=-Tr (z.0,)
2
for p = 0,1,2,3. This then gives '

1 -,
To = §(a+d)=keo+zkfo

T, = ——;—Tr (z.0,) = ke; +ik'f;
so that
| 1 1
ke = §Re (a + d), ke, = EIm (b+c¢)
ke, = %Re (b—c), kes= %Im (a —d) | (B.9)

Use €2 + €% =1 to get

- %\ﬁReZ(a +d) +R(b—c) + Im(b+ ¢) + Im¥(a—d)} (B.10)

Finally,

—es + 7:61 €o — i63

Uy = (eot+ie3 ez tier) (B.11)

B.1.2 Generating'the pseudo-random numbers ag

The full working for this algorithm is shown in [125]. ‘To generate a random

number a¢ with the distribution

P(ao) = N'l 1-— aoze“ao, (—1 S (¢ 77) S 1)

Appendix B. Gauge generation: technical details.- 160

7.

A o

. Generate two uniformly distributed pseudo-random numbers R and R’ in

the unit interval.

Set X = —nB x'— R
Set C = cos?(2r R"), with R” another uniform random number in (0, 1].
Let A= XC.

Let § = X' + A.

If R >1- %, for R pseudo-random and uniform in (0, 1], go back to
step 1.

Set Qg = 1-546.

Note that in step 4 using B = X — A will generate an independent result for

agp.

B.1.3 Generating the random numbers a;, a3, a3

Now that the ag have been generated we still need to calculate the a;, a; and

a3 on the SU(2) manifold. We requiré that

2 2 2 _ 2
ai +a3+a3=1-—ag

The procedure is as follows

1.

Let 7, be /1 —a}

. Let 7" be uniformly distributed random number in [-1, 1}
. az = 7‘”7’1

2
3
4.
5
6
7

Let r; be V1 — 2

. Let #' be uniformly distributed random number in (0, 1]
. ay = ryrp cos(2nr')

. ap = rry sin(27r’)

Apperndix B. Gauge generation: technical details. 161

B.2 Over-relaxed update

The rationale for using over-relaxed techniques is explained in section 1.3.2.
We shall first explain the method for SU(2). In practice, as with Cabibbo-
Marinari, the hits are performed on SU(2) subgroups of SU(3).

B.2.1 Over-relaxation with SU(2).

We want to update the gauge field U € SU(2). The action is
Su = ——]ﬂvReTr (U.R)

In SU(2) we can write the sum over staples as a multiple of another SU(2)

matrix

R = Zez(staples)
= kU
where k € R, and U is SU(2).
We then define Uy to be the SU(2) matrix which minimises the action
Sy, = —%ReTr (Ul

= -—%—LZTI (Uoﬁ)

So clearly letting

gives

Then let the new link be

U, = UoU_on

Appendix B. Gauge generation: technical details. 162

The new element U’ now lies on the opposite side of the group manifold from
element Uy. Note that Up, whilst minimising the action, does not depend on

U. With this choice

Sur = -%'f'rr D)
= Bre @m0
- _'%Tr @tot
= .—%Tr wint
= B o
= Sy (B.12)

i.e. the action remains unchanged and the update is always accepted.

B.2.2 Over-relaxation with SU(3).

As in the Cabibbo-Marinari method we perform 3 hits on SU(2) subgroups.
We have
Sy = —'gReTr (U.R)

and we need to find an element U’ such that
Sy = Sy

. where U and U’ differ by a multiple of an SU(2) subgroup.

With

and

z = (U.R);x2 submatrix € C

= k'u,l + ‘ikl'UQ

Appendix B. Gauge generation: technical details.

Let
Us=V.U

vgo Vo1 0
V= vio vi1 O
0 0 1

and v € SU(2). We choose v to minimise the action Sy

where

B voo vo1 O
Smin = '—gReTI' V10 V11 0 UR
0 0 1

- —%ReTr (v.z) + constant

Choosing v = uI = u]' minimises the action
Smin = = —gReTr (uit(kuy + 1k'uz))
B
= —=2.k
3

So let the new link be

U = UU-U,
— VUU-WVU
- VU

(u;{)go (ui)(2.)1 0
= (“1)%0 (u)?1 01|U
0 0 1

163

(B.13)

This choice leaves the action unchanged and reduces to the SU(2) result if U

is an SU(2) matrix.

The 3 hits are performed with the same subgroups as for the Cabibbo-Marinari

update. And, as can easily be seen, the computation is almost identical as for

the Cabibbo-Marinari update.

Appendix B. Gauge generation: technical details. 164

B.3 Calculation of the staple sum
The requirement for the staple sum is explained in section 1.3.3.

B.3.1 Theory

x-l-f/‘ ¢4}ac+/l-l-17
T ' Ul-‘(m) >lm+ﬁ
z—U Jz+p—v

Figure B.1: The two plaquettes containing the link to be updated. The direction of evaluation
of the links is also shown.

The plaquette action in the p,v plane is (see figure B.1)
ReTr {Uﬂ(x)Ul,(:z: + UL e+ o)l (m)} (B.14)
for the top plaquette and
ReTr {UJ(:::)UJ (2 — DYU(z — $)U (2 — 9 + ﬁ)} (B.15)

for the bottom plaquette. So summing top and bottom plaquettes over all

planes (pv, wp, p7) yields

ReTr {U“(:c) { S Uz + @)U (e + a)U,T(x)]

i=v,p,7

Appendix B. Gauge generation: technical details. 165

+Ul2) | ¥ Ul - U~ Uz — i+ 4)

1=v,p,T

} (B.16)

But for any 3 by 3 complex matrix
ReTr U = ReTr Ut (B.17)
so that defining the staple sum R, (z) as

Ru@)= ¥ Ue+pUle +90l@)+ Ul - 14 mul(e - yuiz -3
- | (B.18)

the sum of plaquette actions around U,(z) is

ReTr {U.(z)Ru(z)} (B.19)

B.3.2 Algorithm

The algorithm for creating the top and bottom staples is as shown below (see

_figure B.2 for labelling of links and points used).

B 3 - C
f 3

TOP

2 STAPLE 4
1

A A A D

p BOTTOM 7

STAPLE

F E

6

Figure B.2: Labelling of links as used in the algorithmic description of the creation of the
staples.

Top Staple

Appendix B. Gauge generation: technical details. 166

1. Move 3 to A.

2. Multiply 3t x 2t.

3. Move 4 to A.

4. Multiply 4 x (3t x 2t).

Bottom Staple
1. Move 7 to F.
2. Multiply 7 x 61,
3. Multiply (7t x 6') x 5.
4. Move (7' x 6 x 5) to A.

B.4 Calculation of the plaquettes

Plaquettes can be calculated in-line with a staple sum or on a stand-alone basis.
The number returned is obtained in the following way

1. Multiply gauge link by the staple sum.

2. Calculate trace of plaquette product at all sites.

3. Sum over the plane of interest.

4. Divide by the lattice volume and no. of colours

resulting in a number in the interval [—1,1].

B.5 Reunitarisation

The requirement for reunitarisation is given in section 1.3.4.

SU(3) matrices can be written in the form

() o
(T x 0)*

<L &1

Appendix B. Gauge generation: technical details. ' 167

where 4,7 are three-vectors of complex numbers. They obey the constraints

vUu=1v.9 = 1
it = 0 (B.?l)
Therefore the method used to reunitarise
U a’
g |- 7
w Ny
is
. Normalise & — u’ s.t.
ra =1 (B.22)
1.€. ,
v u .
| ,
where
la] = \Juius + whus + ujus (B.24)

. Use the Gram-Schmidt orthogonalisation process to construct a vector]

orthogonal to @’ i.e.
T=7— (5.4 (B.25)

. Normalise ¥ — ¢’ as in 1 above.

. Construct

@ = (@ x 7" (B.26)

Appendix C

Generation of quark propagators: technical
details

'C.1 Hopping term algorithm
C.l.i Introduction

The hopping, or delta, term arises in the fermion matrix as shown in sec-

tion 1.1.3. The fermion matrix is defined as
M=A—kA (C.1)

where A is the Clover term (see Appendix C) and A is the hopping term.

C.1.2 Non-daggered

The delta term is the most compute-intensive part of the whole propagator code

and is therefore worth spelling out in detail. The dperation to be performed is
(A%)(z) = (1 = W)Uu(z)d(z + 1) + (1 +71.)Ul(z — w)p(z — p) (C-2)
: n

For gamma matrix definitions refer to equation A.1. This is the lattice differ-

ence operator which corresponds to) in the continuum limit.

It is possible to perform the gamma matrix algebra and shifts as given ¢.e. with
1 as a four-spinor. However this is slow and a faster method has been found

(and used with great effect in the Maxwell code).

Since the v matrices act only on the spin indices we can commute them through

the gauge fields. With the substitutions

xu(z+p) = Q=7)P(z+p)

168

Appendix C. Generation of quark propagators: technical details. 169

Xu(z— 1) = (L+7.)p(z—p) (C.3)
we get the four-spinors x,, X}, which can be written as
(2000 o 2o
o200 ¥ | | 2%
X = 10000 v, | =] 0
\0 0 0 O ¥s 0
[1 00 3 %o Yo + 133
_ 0 1 20 (20 I Y1 + 132
Tl 0 =i 10 || g | T | =il +iha)
\ =i 00 1/ \ % —i(to + i3b3)
/1 0 01 %o Yo + 3
_ 0 1 -1 0 (2} _ Y1 — P2
X = 1o -1 10| % —(h1 — 2)
\1 0 01 Y3 Yo + ¥s3
(10 : 0O o Po + 293
_ 010 —3 P | _ Y1 — 133
X2 =1 501 0 Yo | T | —i(vo +12) (C4)
\ 0 i 0 1/ \q¢s i(3 — iths)

These four spinors only have two independent components each so therefore
can be written as two-spinors without any loss of information. The two-spinors
can then be sent or received by processors with half of the communication time
(ignoring overheads) and recombined. Since the gamma matrix operations are
simply permuting indices and multiplying by factors of ‘2’ there is no great

overhead in computation time.

If we write

Oua(z) = Uu(@)Xua(z + p)
M(z) = Ule-pwxa(z—n) (C.5)
where p € 0..3 is the direction index and a = 0..1 is the 2-spinor index, then

the delta term can be written as
_z:gxl + g%o _gyl + g;o —Z:gzo + g:zo +g§0
_ —tllzo + =1 + 40 + vl +Z z1 + z1 + t1
AME) = M-, 4T, +ILo—ill, +IL, (C6)
Iy — eIl +11,, + H;o +I1,, +2011, +II,

Appendix C. Generation of quark propagators: technical details. 170

C.1.3 Daggered

The daggered equation is needed for some solvers. It can be written as

(M%) (2) = S +7)Uu@)b(e +#) + (1 - %)UN — w)b(z — 40.7)

= S A+, (C.8)
I

where

A = Uu(m)Xﬁm(m+#) (C.9)

A, = Ul(z — p)xpalz — 1)

The daggered delta term can then be written as

Aa:O - ZA;1 +Ay0 - A;1 +Az0 - ‘LAlzl +At0
Agy —iA, +Ayu + Ay +HAa —iA, +Aa

A@) = | N, 4 ALy —Ao+ Ay —ikso+ ALy +AL (C.10)
—thzo+ AL +Ayp+ A, HiAa + AL A
C.2 Clover term implementation
C.2.1 Introduction
The Clover term in the action is defined in section 1.1.3 to be
A=1-kCo,F, (C.11)

where « is the quark hopping parameter, C is the Clover coeflicient for adjusting
the action, o, are defined in Appendix A and F,, is the field strength, defined
by

Pte) = Qo) Qut(e

Qulz) = 7 3 Ub(@) (C12)

1=1,4

with the @, shown in figure 1.1.

Appendix C. Generation of quark propagators: technical details. 171

C.2.2 Matrix definitions

Because all of the plaquettes are calculated in the same direction (see figure

1.1), F,, has the following anti-symmetry

F, =—F,, . (C.13)

With these definitions we can see that the matrix 0, F,, can be written as

—Fy, —Fy3 —1Fy3 —Fos —Fo1 + i Fp,
—Fa3 +1Fy3 Fy, —Fp, — 1Fo2 Fos
VF v — . . .14
Tuvu —Fos —Fo1 + 1 Fo2 —Fy, —Fy3 —1F3 (C.14)
—Fo1 — 1Fop Fos —Fy3 + 1Fy3 Fy,

Note that we have only summed over ¢ < v so that planes are not double

counted. By deﬁning the following quantities

Wo = Fn

Wh = F3p + 1 F5

W, = Fy

Wi = Fio+1Fo (C.15)

we see that

Wo W1 W2 W3
o R | W W W W,
e W, Ws W, W,
wi —-w, Wi —-w,

It is the elements of W* which are stored by the program, this form requires a

(C.16)

quarter of the memory of storing the full Clover term.

C.2.3 The decomposition of A~!

A decomposition of A is performed to make the multiplication by A~! easier
(and indeed to find A™! more easily) [126]. The following equation is being
solved

Az =y

Appendix C. Generation of quark propagators: technical details. 172

so that by setting
A=L'DL

we ensure that

L'DLz =y

or

z= (L)Y (D) (LY ly=A"1y
where L is a lower triangular matrix and D is a diagonal matrix. In fact the
matrices L~! and D! are stored. This is simply the action of Clover inverse

on a quark propagator field as required. This decomposition can be performed

because of the hermicity properties of A.

C.2.4 Decomposition algorithm

The decomposition is performed by the following algorithm (in the following
we let 2,7 stand for both the spin indices «, 8 and the colour indices a, b, so

that Ndiag is equal to 12).

DO i = Ndiag-1 TO 0 STEP -1
DOj=1TOOSTEP -1

LET t = A,‘j :
DO k = i+1 TO Ndiag-1 (not for ¢+ =Ndiag-1)
LETt=1t- Lii'Dk‘ij
ENDDO
IF (i =) THEN
LET D; =t
ELSE
LET L,'jzt/Dg
ENDIF

ENDDO :
LET D; = 1/D; (gives us D™1)
ENDDO

Appendix C. Generation of quark propagators: technical details. 173

C.2.5 Multiplying by A~}

To multiply a quark propagator field by A~! the following algorithm is used

First multiply by (L')™!
On entry: z is the vector to be multiplied, y is the result.

LET y = z (Do not do in-place calculation.)
DO i = Ndiag-1 TO 0 STEP -1
DO j = Ndiag-1 TO i+1 STEP -1 (not for : =Ndiag-1)
LET i = yi — L};y;
ENDDO
ENDDO

Now multiply by (DL)™!...

DO i = 0TO Ndiag-1 STEP 1
LET y; = y; x D;
DO j=0TO -1 STEP 1 (Do nothing when z = 0)
LET yi = vi — Lij » y;
ENDDO
ENDDO

C.3 The in-line pion propagator

The in-line pion propagator is calculated after the solver has calculated the
quark propagator as a check on a physical quantity. This should be gauge

invariant (a useful check when random gauge transform of unity is applied).

The quark propagator can be written as

$s(%,;0) = (0]qL(Z, t)75(0)|0) (C.17)

where 2,7 are colour indices and «, 3 are spin indices. The quark propagator

is evaluated for different values of the quark mass m,, which is related to the

Appendix C. Generation of quark propagators: technical details. 174

hopping parameter £ by

k= 2m:+ ; (C.18)
The pion correlation function is the quantity which we wish to measure and is
denoted by
C(&,t) = (0lx(z,t)n1(0)|0) (C.19)
where |
= (M oyms)t = dlsra = ~Fwsg
so that
Cla) = —(017()(s)apgh(2)T(0)(¥s)s42(0)10)
= —(75)as(15)5 (0lg5 (=) (0)[0) (017 (=)i(0)]0)
= —(¥5)as (Vs sy (2; 0)97e(0;) (C-20)

The lattice Dirac equation gives

3:0i2) = (sl (052)(15)ee (c21)

so that
C(z) = —(16)asBi(: 0) (6)ys(s)ss 2(0 2) (5 o
= Tr [7s¢(w; 0)ysystb 1 (0; m)’Ys]
= T [$(z;001(0;0)]
= [Yap(z; 0) . (C.22)

What is done in practice is to calculate the modulus squared of the quark
propagator for a particular source spin (8) and colour (j), then sum over sink
spin (a), colour (z) and spatial indices (Z) to get a value for the time-slice, this
is a real number. We finally sum over the source spin and colour to obtain a

single real value for each time-slice.

pion prop(t) = Z zﬁ: Z Z E |¢Zﬁ(5, t)? (C.23)

Appendix C. Generation of quark propagators: technical details. 175

C.3.1 Free field pion

When performing calculations in unit gauge (or gauge transformed unit gauge)
e.g. test code, the full pion (with source summed over all spin and colour)
can be constructed from just one spin and colour using the periodic boundary

conditions and spin symmetry.

C.4 Rotations in the Clover action

As shown in section 1.1.3, we need to rotate the fermion fields according to

= ¥'=(-3PW =R
andd — ¥ =p(1+ %i)) ~JR, (C.24)

where the lattice covariant derivatives are defined by

(Bu Ne) = U@ f(+4) = Ul — i)f(e = i)
and (f D)(s) = 5(f(a+BUNE) — fle — DUz — 1) (C.25)

If we write these derivatives as full matrices with f a column vector and f7

the corresponding row vector, then
(D =) = 3 Dy (2,9)f()
and (f7 Du)(=) = 3 f(y) Du (3,2) (C-26)

so that we can write

Bu (@) = 5(Uu(2yers — Ulz = A)byems)
similarly Dy (5,2) = 2(UN®)uets — Unl@ = B)oye-s)
or Du(2,9) = 3(~Uu(@)pers + Ul ~ A)6yes)

= = Du(2,9) (C.27)

Appendix C. Generation of quark propagators: technical details. 176

i.e. when viewed as full matrices which can act in either direction, we have that
" Duy=— Dy - (C.28)
which implies that

1 -
R, = (1—§D)

1 —
= (1-5(=D))
= (1+-;—5)
= R.=R (C.29)

i.e. the two rotations are exactly the same matrix.
The Clover action is invariant under the rotation to terms of order a?, hence
q(y)Mclover(y, :c)q(:c) — q(y)RR_lMcloverR_lRQ(m) + O(az)
= gr(z)Migr(z) + O(a?) (C.30)

So the improved qua,fk propagator is given by

< qr(2z)qr(y) >= M;'(z,y) (C.31)

We therefore need to compute

MI_I(:I:’y) = RMCT:vcr(z7y)R (032)

We cannot compute the whole propagator matrix since it is too large, so we
fix point y at the origin and restrict ourselves to calculating a single column
of the propagator. So if we let n(y) = 6,,0 be the usual source vector, we can

apply the rotation R to n and solve

2 Mclover(ya $)¢($) = Rﬂ(y) (033)

for ¢, i.e. A
$(z) = 3 Mgz, y)Bn(y) (C.34)

Appendix C. Generation of quark propagators: technical details. 177

If we apply the rotation again to the solution ¢, we obtain the required quark

propagator field

Y(z) = R¢(z)
= ZR Gaver(Z,¥) Bn(y)

= clover(m O)R (035)

which is the required result.

In summary, the procedure used is
1. Apply the rotation R to the source n — o’ = Ryp.
2. Solve M over = 7’ for ¢.
3. Compute ¥ = R¢.

Appendix D

F90 and HPF: Important language features

D.1 Introduction

In this appendix we explain the most important features of Fortran 90, High
Performance Fortran (HPF) and Connection Machine Fortran (CMF). These
features are related to array handling in Fortran. Only the features used in

this project have been documented. here (a very small subset).

An early description of migration from CM Fortran to HPF is described in

[127]. This has several omissions which have been inserted in this discourse.

D.2 Relevant Fortran 90 features

In this section we present not only the Fortran 90 features which are used
extensively, but also those which have not been used because their use may be
misleading, or lead to problems. For further details of these features, refer to

[60]

D.2.1 Array declarations

Arrays are declared in the following way
Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) ::
$

$ gauge_xevn, gauge_xodd

Cfpoint single_gauge (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

178

Appendix D. F90 and HPF: important features. 179

which shows the declaration of multiple arrays of the same type (first statement)
or a single array (second statement). The single declaration can be put in the
same form as the multiple with only a single variable name after the ‘::’ if
desired. Both of the arrays are of type Cfpoint, single precision complex. Note
that CMF allows the use of ARRAY as well as DIMENSION, but HPF does not;

the latter should always be used.

D.2.2 Arithmetic operations on arrays and array sections

When arrays are of the same type, arithmetic operations can be performed on
whole arrays with a simple statement e.g.

INTEGER, DIMENSION (0:4,0:4) :: a, b, ¢

,a=b+c

a=ax§©é
adds the elements of b to those of ¢ and places the result in a, and then
multiplies all elements of a by a scalar. If you wish to only do the first element
in the first dimension but all the elementé in the second dimension, the ‘:’
notation can be used e.g.

INTEGER, DIMENSION (0:4,0:4) :: a, b, ¢

a(0,:) = b(0,:) + c(0,:)
this notation should not be used for local indices, only distributed, as CMF

cannot implement it properly.

Although HPF allows you to pass out sections of arrays to functions, e.g.

INTEGER, DIMENSION (0:9) :: pass_out

'CALL operate(pass_out(0:8:2))
which would pass out elements 0, 2, 4, 6, 8 of the array pass_out, CMF does

not; this feature must not be used.

Appendix D. F90 and HPF: important features. 180

D.2.3 Index ordering and ‘fastest index’

Fortran 90 does not define which index moves fastest i.e. the layout in memory
of the ‘array. In Fortran 77 it is defined to be the leftmost index. This means
that passing an array element to a function (as is done in Fortran 77) to use
as a ‘pointer’ to the part of the array you are interested in cannot be done.
Subroutines must either be given the whole array and select a section of it, or
a section must be copied into workspace and passed to the subroutine. The
Fortran 77 code

#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include “precision.h"

INTEGER big (0:Ncolour-1,0:Ncolour-1,0:Npar-1)

CALL junk(big(0,0,1))
which passes the second parity of the array big to the subroutine junk, would
have to be coded in Fortran 90 as

#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include "precision.h"

INTEGER big (0:Ncolour-1,0:Ncolour-1,0:Npar-1)
INTEGER temp (0:Ncolour-1,0:Ncolour-1)

INTEGER row,col
DO row=0,Ncolour-1
DO co0l=0,Ncolour-1
temp (row,col) = big (row,col,1)
END DO
END DO

CALL junk(temp)

Appendix D. F90 and HPF: important features. 181

As we often need to operate on single parities of the fields, we use a separate
array for each parity in order to reduce the amount of copying to temporary

arrays.

D.2.4 Number of indices allowed

Only' 7 indices are allowed in HPF to ensure backwards compatibility with
Fortran 77. For this reason a set of gauge fields has to have a separate array

for each direction and parity.

D.2.5 Array intrinsics used in MPP codes

These are operations on arrays. Some result in a derived quantity such as a
sum, others transform the array e.g. CSHIFT. The following intrinsics operate
in the same way on arrays as they do on scalars

O ABS — take the absolute value (modulus) of an array of numbers.

O REAL — take the real part of an array of complex numbers.

O AIMAG — take the imaginary part of an array of complex numbers.

O CONJG - take the complex conjugate of an array of complex numbers.

D.2.5.1 The SUM intrinsic

This intrinsic sums the elements of an array. It can have options specifying a
mask and the dimension to sum over, but we only use a very simple form

#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include "precision.h"

Cfpoint tmp (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
Cfpoint sum_tmp

Appendix D. F90 and HPF': important features. 182

sum_tmp=SUM(tmp)

which sums every element of tmp.
D.2.5.2 The ANY intrinsic

This intrinsic returns a LOGICAL value, depending on a test e.g.

#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include "precision.h"

Fpoint tmp (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)

IF (ANY(tmp .NE. 0.0)) THEN
WRITE (*,*) ’Non-zero element found’
END IF

which displays a message if any element of tmp contains a non-zero value.
D.2.5.3 The CSHIFT intrinsic -

This intrinsic is used for moving data in an array by Cyclic SHIF Ting, exactly
the operation needed to implement periodic boundary conditions. The syntax
is

<dest> = CSHIFT (<source>, SHIFT=<dir>, DIM=<dim>)

where <dest> is the resultant array, <source> is the array to be operated
on, <dir> is the direction and amount to shift the array and <dim> is the
dimension of the array to shift. Note that the CM Fortran version of CSHIFT
reverses the last two arguments if the SHIFT and DIM keywords are not put
in. To be portable you must specify these keywords. The direction and

amount <dir> is only ever set to +1 or —1.

As an example of its use consider the array

e (123
SO'U,‘T‘C—456

Appendix D. F90 and HPF: important features. 183

All arrays are addressed throughout our software as (row,col) so the command

source = CSHIFT (source, SHIFT=-1, DIM=2)

3 1 2
6 4 5

i.e. the matrix has been shifted in the increasing column direction. Note that

changes source to

<dim> starts counting from 1, not 0 as our array indices do.
D.2.5.4 Masks

A mask is simply an array of logicals which indicates where a conditional oper-
ation is to take place. For example with the matrix source above, the matrix

source_mask

.TRUE. .FALSE. .TRUE.
.FALSE. .TRUE. .FALSE.

source_mask = (

can be used to enable operations on source only where the mask is .TRUE..
See the sections on MERGE and WHERE for details of use.

D.2.5.5 The MERGE intrinsic

The MERGE intrinsic merges together two arrays depending on the value held in
a mask. The syntax is

<dest>=MERGE (<tsource>,<fsource>,<mask>)

Consider the following example of its use with the matrices tarray, farray,

1 23
tarray = 4 5 6

7 8 9
farray = | 15 11 12

.TRUE. .FALSE. .TRUE.
.FALSE. .TRUE. .FALSE.

tfmask.

tfmask = (

with the following command

result = MERGE (tarray, farray, tfmask)

Appendix D. F90 and HPF': important features. 184

The matrix result would be set to

. _ 1 8 3
array=\10 5 12
D.2.5.6 The WHERE statement

The WHERE statement can operate on arrays according to the value of the mask.
It can be used in one of two forms
1. The WHERE statement.

WHERE (<mask>) <statement>

2. The WHERE...ELSEWHERE. .. ENDWHERE construct.

WHERE (<mask>)
<statementl>

ELSEWHERE
<statement2>

ENDWHERE

The statements enclosed must operate on arrays of the same shape and size as

<mask>. They may not call subroutines or functions (except intrinsics).

Note that on the Connection Machine MERGE is used more often as it is faster
(by a factor of 2!). This may not be true for all compilers and should be
investigated on the machine in question. The following two statements are
equivalent

result = MERGE (tarray,farray,tfmask).
and

WHERE (tfmask)
result = tarray
ELSEWHERE
result = farray
ENDWHERE

If all matrix shifting is placed in a single subroutine for each matrix type,

switching between MERGE and WHERE is simplified.

Appendix D. F90 and HPF': important features. 185

D.2.6 Features not used, or not allowed

D.2.6.1 The INTERFACE block

These blocks (which declare the interface to a subroutine or function and allow
greater type checking within the compiler) are not used. This is because the
source. files become extremely long and the compilers on the Connection Ma-
chine cannot cope. An additional pain is that the interface blocks would have
to be put in header files; if a header file is included but the relevant routine
is not called a whole slew of warning and error messages are generated by the

corﬁpiler.
D.2.6.2 The CASE statement

This is disallowed by the CHPF, on the grounds that it is non-essential. The
construct IF...THEN...ELSE IF:.. must be used.

D.2.6.3 The SYSTEM_CLOCK intrinsic

This intrinsic is not used to perform timing because of the ambiguity in what is
being timed. When time-sharing on machines the system clock on the front-end
bears no relation to the processor time on the machine. Machine-dependent

timing is expected.
D.2.6.4 The RANDOM_NUMBER and RANDOM_SEED intrinsics

The use of these intrinsics is not forced so that users have greater flexibility in
choosing a random number generator. The RNG selected by these defaults is
not a standard across compilers or machines — the performance is an unknown

— so use of these intrinsics is also not encouraged.

Appendix D. F90 and HPF': important features. 186

D.3 Subset High Performance Fortran

The use of CHPF requires additions to the Fortran 90 features discussed above,

not changes.

D.3.1 HPF directives

HPF directives start with

IHPF$ <directive> ..

The only directives we use are
0O PROCESSORS
O DISTRIBUTE

which are explained below.
D.3.1.1 The PROCESSORS directive

This directive specifies the mapping of arrays elements (abstract or virtual -
processors) onto the physical processors (or processing elgments). Since all of
our arrays are distributed on a 4-D lattice, the usage is

IHPF$ PROCESSORS <name> (<x>,<y>,<z>,<t>)

which specifies that the mapping, called <name>, uses (<x>,<y>,<z>,<t>) pro-
cessors along each direction. In practice this should be defined in a header file

which is included by all subroutines.
D.3.1.2 The DISTRIBUTE directive

This directive specifies how the array is laid out on the machine. The usage is
'HPF$ DISTRIBUTE <name> (<layout>,...) ONTO <mapping>
for single arrays, or

'HPF$ DISTRIBUTE (<layout>,...) ONTO <mapping> ::
tHPF$$ <nameil>, ...

for multiple arrays.

Appendix D. F90 and HPF': important features. 187

An example of use is

#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include '"processors.h"
#include '"precision.h"

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1i,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) ::

$:

$ gauge_evn, gauge_odd
'HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS ::
'HPF$$ gauge_evn, gauge_odd

which will cause all colour components to live on the same abstract processor
(because of the ‘¥’), and the x, y, z and t components to be distributed over
different abstract processors. Each space-time point will have a separate SU(3)

matrix on a separate abstract processor in effect.

D.3.2 The FORALL statement

This allows you to perform several loops simultaneously. The syntax used is

FORALL (<1oopvar>=<lowlim>:<high1im>, ...) <statement>

e.g.

#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include "precision.h"
#include "processors.h"

INTEGER y, 2z, t _

-LOGICAL spin2_mask (0:Ncolour-1,0:Nspin4-1,

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
'HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS ::
IHPF$$ spin2_mask

FORALL (y=0:Ny-1, z=0:Nz2-1, t=0:Nt-1)
$ spin2_mask (:,:,:,y,z,t) = MOD(y+z+t,2) .EQ. O

Appendix D. F90 and HPF: important features. 188

D.4 Connection Machine Fortran

The only differences from the features discussed earlier are those of layout and
common block location. The following code fragment illustrates the differences
(the addition of CMF$ directives). The use of FEONLY specifies that the common
block lives on the front end; if the common block is intended to be on the MPP
machine, omit this line.

#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include '"processors.h"
#include '"precision.h"

INTEGER common_var
COMMON /var_common/ common_var
CMF$ COMMON FEONLY /var_common/
Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1,
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1)
$
$ gauge_evn, gauge_odd

CMF$ LAYOUT gauge_evn (:SERIAL,:SERIAL,:NEWS, :NEWS, :NEWS, :NEWS)
CMF$ LAYOUT gauge_evn (:SERIAL, :SERIAL, :NEWS, :NEWS, : NEWS, :NEWS)
IHPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS ::
'HPF$$ gauge_evn, gauge_odd '

Note that there is no way of declaring multiple variables in a single CMF

directive. Since directives are legal Fortran comments, the MPP codes have

both sets of directives left in place.

D.5 The z-direction with regard to parity

The layout of the arrays is particularly important when considering which array
elements are on each virtual processor. Note that the important concept in this
section is the virtual processor (VP) - not the processing element (PE). Array

elements from two arrays situated on the same VP involve no inter-processor

Appendix D. F90 and HPF: important features. 189

communications by definition. This speeds up the execution of such elements

by an order or so.

This is most useful when considering the splitting up of the lattice into two
sub-lattices labelled by parity. A point on each lattice with the same logical

coordinate is on the same VP.

The z-direction is a special case. Neighbouring points in the z-direction may
or may not need communication e. g. case (1) in figure(D.1) requires communi-
cation whereas case (2) does not. For this reason, all matrix shifting should be

performed using subroutines which check the direction and parity.

P(O):L(0) P(1):L(0) = P(2):L(1) P@3):L(1) P(4):L(2) P(5):L(2)
—

N
e ° I ° ° | ™ ®
o E— | ’ ‘
case 1 case 2
VP1 ! VP2 | VP3
EVEN opD | EVEN opp | EVEN ODD
1 1

Figure D.1: The siting of points on the same or different VPs determines whether commu-
nication is required. Case 1 potentially requires communication whereas case 2 does not.

Appendix E

Message passing packages: important features

The code presented in this appendix was written by Stephen Booth. We assume
that the reader has some prior knowledge of PVM. We do not aim to explain
all of the structures underlying the code; it is merely included as an example

of implementation of the message-passing layer in PVM.

E.1 Header files

There are several options which can be implemented throughout the message-
passing code if required. To ease the selection of required options, all relevant

build-time flags are defined in a single file, ‘pvm_options.h’ as shown below.

C options file for the PVM versions of the comms routines.
c

C

C leave data in place.
c

#undef. INPLACE

‘C put in barriers at the start and end

C of all boundary communications

#undef BOUND_BARRIER

#ifdef INPLACE

C we need the barriers if we are doing in-place pvm
#define BOUND_BARRIER

#endif

C

C Use broadcast or multicast.
(o
#undef BCAST

C use the binary tree to return gsum results rather than

C using the set functions
#undef TREE_SEND

190

Appendix E. Message passing packages: important features. 191

C

C complete boundary comms in the start call
C instead of waiting for the end call

C

#undef NO_OVERLAP

All constants, common MP variables and data sizes are declared in the header

file ‘pvmcomms.h’. This file is included by all communications routines.

C
C Include file for PVM version of the comms
(o

C first we need the standard pvm file
#include <fpvm3.h>

C position of parameters packed in the initialisation block.
INTEGER Block_size
INTEGER X_size, Y_size, Z_size, T_size
INTEGER X_pos, Y_pos, Z_pos, T_pos
INTEGER Boss_pid, My_pid

PARAMETER(Block_size = 10,
X_size = 1, Y_size = 2,
Z_size = 3, T_size = 4,
X_pos = 5, Y_pos 6,
Z_pos = 7, T_pos = 8,
My_pid=9, Boss_pid=10)

(]
"

@ Ph B BB

c parameters for the comms.
INTEGER Nbranch, Encoding, Bound_encode
PARAMETER (Nbranch=2, Encoding=PVMRAW)
#ifdef INPLACE
PARAMETER (Bound_encode=PVMINPLACE)
#else »
PARAMETER (Bound_encode=PVMRAW)
#endif '

CHARACTER*(*) g_group
PARAMETER(g_group = ’'ggrp’)

C parameters for message tags
INTEGER Fgsum_tag, Dgsum_tag, Igsum_tag
INTEGER Fgset_tag, Dgset_tag, Igset_tag
INTEGER Pio_tag, Pio_req_tag
INTEGER Bound_base, Init_tag

PARAMETER (Bound_base = 10,
$ Init_tag = 1,

Appendix E. Message passing packages: important features.

- - - 4

QG&%%G’%%%

Fgsum_tag
Dgsum_tag
Igsum_tag =
Fgset_tag =
Dgset_tag
Igset_tag =
Pio_tag = 8,
Pio_req_tag=9)

-

-

N O WwN

-

b4

INTEGER tidtable, neighbours, n_proc, myid, dir_tag
LOGICAL send_ok

COMMON /PVMTAB/
tidtable(0:Max_proc-1),
neighbours(0:Ndir-1),
n_proc, myid,
dir_tag(0:Ndir-1),
send_ok(0:Ndir-1)

#ifndef PVMTYPE
#tdefine PVMTYPE

C declare FTYPE DTYPE ITYPE to match precision.h

#if (Fsize == 4)
##define FTYPE REAL4

#endif

#if (Fsize == 8)
#define FTYPE REALS

#endif

#if (Dsize == 4)
#define DTYPE REAL4

#tendif

#if (Dsize == 8)
#define DTYPE REALS

#endif

#if (Isize == 4)
##define ITYPE INTEGER4

#endif

#if (Isize == 8)
#define ITYPE INTEGERS

#tendif
#tendif

E.2 Loader program: pvmgrid

192

To get the application running on the nodes of the MPP we need to spawn the

individual processes in a 4-D torus. We use the model where the host process

Appendix E. Message passing packages: important features. 193

plays no part in the calculation so-this program only has to fire up the node

programs and tell them their position in the processor array.

C host has to have the same integer format as nodes
#include "precision.h"

PROGRAM pvmgrid
#include "implicit.h"
#include "build_constants.h"
#include "build_size.h"
#include "pvmcomms.h"

INTEGER Max_node
PARAMETER (Max_node = Max_proc)
CHARACTER*80 name
INTEGER size(0:3)
INTEGER mytid
INTEGER count
INTEGER i,x,y,z,t,bufid,status
INTEGER info(Block_size)
C functions
INTEGER proc_pos

C macro defs

C check the task ID
CALL pvmfmytid(mytid)
IF (mytid .LT. O)THEN
CALL pvmfperror(’pvmgrid’,status)
CALL pvmfexit(info)
STOP
END IF

C set automatic error printing to ON
CALL pvmfserror(1,status)

name = SLAVE_PROG
#ifdef AUTO_SIZE
C AUTO_SIZE can be set in the pre-processor flags. If
C set, the user must hard-wire in the processor grid size
C and lattice size.

size(X_index) = X_proc

size(Y_index) = Y_proc

size(Z_index) = Z_proc

size(T_index) = T_proc
#else
C Otherwise we must read in the grid from the user
C at run-time; more flexible, but less efficient in
C some cases.

WRITE(*,*) ’grid size ?’

Appendix E. Message passing packages: important features. 194

READ(*,#*) (size(i), i=0,Ndim-1)
#endif
WRITE(*,*) ’loading program ’ , name
WRITE(*,2) (size(i), i=0,Ndim-1)
2 FORMAT(’onto ?,I2,’ * ’I2,’ * °12,’ * ’I2)
Do 5, i=0,3
IF(size(i) .LT. 1)THEN
WRITE(*,*) ’'illegal grid size, size(’,i,’) = °,
$ size(i)
STOP
END IF
5 CONTINUE
n_proc = size(0) * size(1) * size(2) * size(3)
IF ((n_proc .LT. 1) .OR. (n_proc .GT. Max_node))THEN
WRITE(*,*) ’illegal grid size’,size

STOP
END IF
C start the ‘n_proc’ new processes on any machine (PVMDEFAULT),
C the task ID’s are returned in ‘tidtable’. ‘Count’ is the number

C of actual processes started.
CALL pvmfspawn(name,PVMDEFAULT,",n_proc,tidtable,count)
IF(n_proc .NE. count)THEN
C couldn’t start enough processes.... die !
WRITE(*,*) ’ error loading program’
DO 6, i=0,n_proc
WRITE(*,*) tidtable(i)
IF (tidtable(i) .LT. O)THEN
CALL pvmfperror(’pvmgrid’,tidtable(i))
END IF
CONTINUE :
C leave gracefully after printing error messages...
CALL pvmfexit(status)
STOP
END IF

(=)}

WRITE(*,*) ’load ok’

C now send id information to each processor.

C grid size
info(X_size)
info(Y_size)
info(Z_size)
info(T_size)

size(X_index)
size(Y_index)
size(Z_index)
size(T_index)

C Tell the slave processes who’s boss (proc. 0)
info(Boss_pid) = 0

(o]

Generate a unique Processor ID for each grid position,
info(My_pid). See subsection on ‘Processor layout’ for

Q

Appendix E. Message passing packages: important features.

C algorithm.

DO 70, t=0,size(T_index)-1
DO 65, z=0,size(Z_index)-1
DO 60, y=0,size(Y_index)-1

DO 55, x=0,size(X_index)-1

info(X_pos) = x
info(Y_pos) = y
info(Z_pos) = z
info(T_pos) = t
i = proc_pos(x,y,z,t,size)
info(My_pid) = i

C Send info block and task ID’s for all processors to
C each processor. Uses the ‘raw’ transfer, i.e. no

C encoding.

WRITE(*,*) ’starting proc °’,i
CALL pvmfinitsend(Encoding,bufid)
IF (bufid .LT. O)THEN
CALL pvmfperror(’pvmgrid’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
CALL pvmfpack(ITYPE,info,Block_size,1,status)
IF (status .LT. O) THEN
CALL pvmfperror(’pvmgrid’,status)
CALL pvmfexit(status)
STOP
END IF
CALL pvmfpack(ITYPE,tidtable,n_proc,1,status)
IF (status .LT. 0) THEN
CALL pvmfperror(’pvmgrid’,status)
CALL pvmfexit(status)
STOP
END IF .
WRITE(*,*) ’sending to ’,tidtable(i)
CALL pvmfsend(tidtable(i),Init_tag,status)
IF (status .LT. O) THEN
CALL pvmfperror(’pvmgrid’,status)
CALL pvmfexit(status)

STOP
END IF
55 CONTINUE
60 CONTINUE
65 CONTINUE

70 CONTINUE

WRITE(*,*) ’pvmgrid exiting’
CALL pvmfexit(status)

STOP
END

195

Appendix E. Message passing packages: important features. 196

E.2.1 Processor layout

We need to tell the processors how they are arranged in the 4-D torus. This

function, ‘proc_pos’ does this using a simple algorithm.

INTEGER FUNCTION proc_pos(x, y, z, t, size)
#include "implicit.h"
#include "build_constants.h"

INTEGER size(0:Ndim-1), x,y,2z,t

INTEGER pos(0:Ndim-1)

MOD(size(X_index)
MOD(size(Y_index)
MOD(size(Z_index)
MOD(size(T_index)

, size(X_index))
, size(Y_index))
, size(Z_index))
, size(T_index))

pos(X_index)
pos(Y_index)
pos(Z_index)
pos(T_index)

+ 4+ + +
o+ N X

proc_pos = pos(X_index) +

$ (size(X_index) * (pos(Y_index) +

$ (size(Y_index) * (pos(Z_index) +

$ (size(Z_index) * pos(T_index))))))

RETURN
END

E.3 Initialising the communications system

As described in section 3.1 we need to initialise the communications system

and find out where we are using the information sent by the loader program.

SUBROUTINE init_comms(grid_size, grid_pos,
$ proc_id, boss_proc)
#include "implicit.h"
#include "build_constants.h"
#include "build_size.h"
#include “pvmcomms.h"

INTEGER grid_size(0:Ndim-1)

INTEGER grid_pos(0:Ndim-1)

INTEGER proc_id, boss_proc

INTEGER mess(Block_size)

INTEGER mytid, parent, bufid, stat, myinst
INTEGER count,i, t,z,y,x

INTEGER proc_pos

CALL pvmfmytid(mytid)

Appendix E. Message passing packages: important features. 197

If we vere using a machine which did not utilise a

loader program ‘pvmgrid’ to spawn the processes, we could
whether there was a parent process here, and spawn any others
needed in the same way as ‘pvmgrid’ does.

aaaaa

Q

recieve the data from the parent process.

CALL pvmfrecv(parent,Init_tag,bufid)
IF (bufid .LT. O) THEN
CALL pvmfperror(’init_comms’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
CALL pvmfunpack(ITYPE,mess,Block_size,1,stat)
IF (stat .LT. O) THEN
CALL pvmfperror(’init_comms’,stat)
CALL pvmfexit(stat)
STOP
END IF

C check where we are, who we are, and who the boss is.
proc_id = mess(My_pid)
myid = proc_id
boss_proc = mess(Boss_pid)
grid_size(X_index) = mess(X_size)
grid_size(Y_index) = mess(Y_size)
grid_size(Z_index) = mess(Z_size)
grid_size(T_index) = mess(T_size)
grid_pos(X_index) = mess(X_pos)
grid_pos(Y_index) = mess(Y_pos)
grid_pos(Z_index) = mess(Z_pos)
grid_pos(T_index) = mess(T_pos)
n_proc=grid_size(X_index) * grid_size(Y_index) *
$ - grid_size(Z_index) * grid_size(T_index)

CALL pvmfunpack(ITYPE,tidtable,n_proc,1,stat)
IF (stat .LT. O) THEN

CALL pvmfperror(’init_comms’,stat)

CALL pvmfexit(stat)

STOP
END IF

C set up the neighbour table (see next code fragment)
CALL init_bound(proc_id,grid_pos,grid_size)

C wait for everyone to catch up.
CALL pvmfsetopt(PVMFASTBARR,1,stat)
CALL pvmfbarrier(g_group,n_proc,stat)
RETURN '
END :

C}}}

Appeﬁdix E. Message passing packages: important features. 198

The neighbour tables are set up so that the torus is implemented in software.

SUBROUTINE init_bound(proc_id, grid_pos, grid.size)
#include "implicit.h"
#include "build_constants.h"
#include "build_size.h"
#include "pvmcomms.h"

INTEGER proc_id
INTEGER grid_pos(0:Ndim-1) -
INTEGER grid_size(0:Ndim-1)
INTEGER i, n

C functions
INTEGER proc_pos

DO 15, i=0,Ndir-1
send_ok(i) .TRUE.
dir_tag(i) = 0

156 CONTINUE

DO 20, i=0,Ndim-1
C define the neighbour in the positive direction.
grid_pos(i) = grid_pos(i) + 1
n = proc_pos(grid_pos(X_index), grid_pos(Y_index),
$ grid_pos(Z_index), grid_pos(T_index),
$ grid_size)
neighbours(i) = tidtable(n)
C define the neighbour in the negative direction.
grid_pos(i) = grid_pos(i) - 2
n = proc_pos(grid_pos(X_index), grid_pos(Y_index),
$ grid_pos(Z_index), grid_pos(T_index),
$ grid_size)
neighbours(i+Ndim) = tidtable(n)
grid_pos(i) = grid_pos(i) + 1
20 CONTINUE

RETURN
END

E.4 Global sum

C{{{ SUBROUTINE g_sum(rval)
c
C “g_sum single precision global sum
c

SUBROUTINE g_sum(rval)
#include "implicit.h"
#include "messages.h"

Appendix E. Message passing packages: important features.

#include "build_constants.h"
#include "build_size.h"
#include "pvmcomms.h"

Fpoint rval
Fpoint sum, tmp
INTEGER i, parent, son, bufid,stat

C If there’s only one process, we don’t have much to do !
IF(n_proc .EQ. 1) RETURN

sum = rval
C{{{ get from sons - we are using a binary tree,
C (Nbranch=2)
DO 10, i=1,Nbranch
son= (Nbranch*myid) + i
IF (son .LT. n_proc) THEN
C we do have a son, receive message into tmp
CALL pvmfrecv(tidtable(son),Fgsum_tag,bufid)
IF (bufid .LT. 0) THEN
CALL pvmfperror(’g_sum’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
CALL pvmfunpack(FTYPE,tmp,1,1,stat)
IF (stat .LT. O) THEN
CALL pvmfperror(’g_sum’,stat)
CALL pvmfexit(stat)
STOP
END IF
C add to cumulative sum
sum = sum + tmp
END IF
10 CONTINUE
C}}}

C check we are not at the top of the tree, then
C send cumulative sum to the parent.
IF (myid .NE. O) THEN
parent=(myid-1)/Nbranch
C{{{ send to parent
CALL pvmfinitsend(Encoding,bufid)
IF (bufid .LT. O) THEN
CALL pvmfperror(’g_sum’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
CALL pvmfpack(FTYPE,sum,1,1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’g_sum’,stat)
CALL pvmfexit(stat)

199

Appendix E. Message passing packages: important features.

STOP
END IF
CALL pvmfsend(tidtable(parent),Fgsum_tag,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’g_sum’,stat)
CALL pvmfexit(stat)
STOP
END IF
C}}}

#ifdef TREE_SEND
C we want to send the final result back down the tree.
c{{{ receive from parent, only executes this bit if
C we are not process 0. .
CALL pvmfrecv(tidtable(parent),Fgsum_tag,bufid)
IF (bufid .LT. 0) THEN
CALL pvmfperror(’g_sum’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
CALL pvmfunpack(FTYPE,suﬁ,i,1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’g_sum’,stat)
CALL pvmfexit(stat)
STOP
END IF
C}r}}
END IF
¢{{{ send back down tree
DO 20, i=1,Nbranch
son= (Nbranch*myid) + i
IF (son .LT. n_proc) THEN
C send message
CALL pvmfinitsend(Encoding,bufid)
CALL pvmfpack(FTYPE,sum,1,1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’g_sum’,stat)
CALL pvmfexit(stat)
STOP
END IF
CALL pvmfsend(tidtable(son),ngum_tag,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’g_sum’,stat)
CALL pvmfexit(stat)

STOP
END IF
END IF
20 CONTINUE
C}}}
#telse

C otherwise use the global set routine to broadcast the

200

Appendix E. Message passing packages: important features. 201

C result.

END IF

CALL g_set(sum)
#endif

rval = sum
RETURN
END

C}}}

E.5 Global set

We often want to set a variable on a processors to the value on the boss proces-
sor, e.g. a global sum result. This is implemented with a suite of functions, as
shown in section 3.1, one of which is ‘g_set’ which operates on a single-precision

real number.

SUBROUTINE g_set(rval)
#include "“implicit.h"
#include "messages.h"
#include "build_constants.h"
#include "build_size.h"
#include “grid_def.h"
#include "pvmcomms.h"

Fpoint rval

INTEGER bufid, stat

C only one processor, so not much to do!
IF(n_proc .EQ. 1) RETURN

c send message
IF(myid .EQ. O)THEN
CALL pvmfinitsend(Encoding,bufid)
CALL pvmfpack(FTYPE,rval,1,1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’g_set’,stat)
CALL pvmfexit(stat)
STOP
END IF
#ifdef BCAST
CALL pvmfbcast(g_group,Fgset_tag,stat)
#else
CALL pvmfmcast(n_proc,tidtable,Fgset_tag,stat)
#endif
IF (stat .LT. O0) THEN
CALL pvmfperror(’g_set’,stat)

Appendix E. Message passing packages: important features. 202

CALL pvmfexit(stat)
STOP
END IF
ELSE
C receive message .
CALL pvmfrecv(tidtable(boss_id),Fgset_tag,bufid)
IF (bufid .LT. 0) THEN
CALL pvmfperror(’g_set’,bufid)
CALL pvmfexit(bufid)
STOP
END IF :
CALL pvmfunpack(FTYPE,rval,1,1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’g_set’,stat)
CALL pvmfexit(stat)
STOP
END IF
END IF
RETURN
END

E.6 Boundary communications

Most array shifting is implemented through the ‘start_com’ and ‘end_com’
routines described in section 3.1. They are implemented in PVM as follows

(only the single-precision real version is shown).

SUBROUTINE fstart_com(length, idir, icmp, ocmp,
$ ilen, input, olen, output)
#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include "messages.h" '
#include "pvmcomms.h"
INTEGER length, idir, icmp, ocmp, ilen, olen
Fpoint input(O:(icmp*ilen)-1,0:ocmp-1)
Fpoint output(0:(icmp*olen)-1,0:ocmp=1)
INTEGER i, bufid, stat

#ifdef BOUND_BARRIER
CALL pvmfbarrier(g_group,n_proc,stat)
#endif
IF(.NOT. send_ok(idir))THEN
CALL error_message(’outstanding comms not finished’,
$ ’fstart_com’,Mess_lqcal,Err_logic_error)
END IF

Appendix E. Message passing packages: important features. 203

IF(length .GT. 0) THEN
CALL pvmfinitsend(Bound_encode,bufid)
IF (bufid .LT. O) THEN
CALL pvmfperror(’fstart_com’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
DO 10, i=0,ocmp-1
CALL pvmfpack(FTYPE,input(0,i), (length*icmp),1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’fstart_com’,stat)
CALL pvmfexit(stat)
STOP
END IF
10 CONTINUE
dir_tag(idir)=dir_tag(idir)+1
CALL pvmfsend(neighbours(idir),
$ dir_tag(idir)+Bound_base,stat)
IF (stat .LT. O0) THEN
CALL pvmfperror(’fstart_com’,stat)
CALL pvmfexit(stat)
‘STOP
END IF
END IF
#ifdef BOUND_BARRIER
CALL pvmfbarrier(g_group,n_proc,stat)
#endif

#ifdef NO_OVERLAP
C complete communications in the start call, do not
C wait for the end_com.

CALL real_fend_com(length, idir, icmp, ocmp,

$ ilen, input, olen, output)

#endif

RETURN

END

SUBROUTINE fend_com{length, idir, icmp, ocmp,
$ ilen, input, olen, output)
#ifdef NO_OVERLAP
C complete communications in the start call
C instead of waiting for a separate end call.
#include "implicit.h"

INTEGER length, idir, icmp, ocmp, ilen, olen
Fpoint input(0:(icmp*ilen)-1,0:ocmp-1)
Fpoint output(0:(icmp*olen)-1,0:ocmp-1)

RETURN
END

Appendix E. Message passing packages: important features.

SUBROUTINE real_fend_com(length, idir; icmp, ocmp,
$ ilen, input, olen, output)

#endif

C}}}

#include "implicit.h"

#include "build_size.h"

#include "build_constants.h"

#include "messages.h"

#include "pvmcomms.h"

INTEGER length, idir, icmp, ocmp, ilen, olen
INTEGER bufid, stat

Fpoint input(O:(icmp*ilen)-1,0:0cmp-1)
Fpoint output(0:(icmp*olen)-1,0:0cmp-1)
INTEGER i, rdir

#ifdef BOUND_BARRIER
CALL pvmfbarrier(g_group,n_proc,stat)
#endif)
IF(length .GT. O)THEN
rdir = MOD(idir + Ndim, Ndir)
CALL pvmfrecv(neighbours(rdir),
$ dir_tag(idir)+Bound_base,bufid)
IF (bufid .LT. 0O) THEN
CALL pvmfperror(’fend_com’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
dir_tag(idir) = dir_tag(idir) - 1
DO 10, i=0,ocmp-1
CALL pvmfunpack(FTYPE,output(0,i),
$ (icmp*length),1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’fend_com’,stat)
CALL pvmfexit(stat)

STOP
END IF
10 CONTINUVE
END IF
c once recv is started must flush all outstanding data.

send_ok(idir) = (dir_tag(idir) .EQ. 0)"

#ifdef BOUND_BARRIER
CALL pvmfbarrier(g_group,n_proc,stat)
#endif
~ RETURN
END

204

Appendix E. Message passing packages: important features. 205

E.7 Parallel file I/O support routines

When we perform parallel file I/O we have to move blocks of data to the boss
processor, which performs all I/0. The routines to do are ‘block.push’ and

‘block_pull’.

SUBROUTINE block_push(pos,size,buff)
#include "implicit.h"
#include "build_size.h"
#include "build_constants.h"
#include "messages.h"
#include "pvmcomms.h"
INTEGER pos, size
Fpoint buff(0:size-1)

INTEGER bufid, stat, rsize

C wait for a request for data.
CALL pvmfrecv(tidtable(pos),Pio_req_tag,bufid)
IF (bufid .LT. 0) THEN
CALL pvmfperror(’block_push’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
CALL pvmfunpack(ITYPE,rsize,1,1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’block_pull’,stat)
CALL pvmfexit(stat) -
STOP
END IF
IF(rsize .NE. size)THEN
' CALL error_message(’wrong size message requested’,
$ *block_push’,Mess_local,Err_logic_error)
END IF -
CALL pvmfinitsend(Encoding,bufid)
IF (bufid .LT. 0) THEN
CALL pvmfperror(’block_push’,bufid)
CALL pvmfexit(bufid)
STOP
END IF
CALL pvmfpack(FTYPE,buff,size,1,stat)
IF (stat .LT. 0) THEN
CALL pvmfperror(’block_push’,stat)
CALL pvmfexit(stat)
STOP
END IF
CALL pvmfsend(tidtable(pos),Pio_tag,stat)
IF (stat .LT. 0) THEN

Appendix E. Message passing packages: important features.

CALL pvmfperror(’fstart_com’,stat)
CALL pvmfexit(stat)
STOP

END IF

RETURN

END

SUBROUTINE block_pull(pos,size,buff)

#include
#include
#include
#include
#include

“implicit.h”
"build_size.h"
"build_constants.h"
"messages.h"
"pvmcomms .h"

INTEGER pos, size
Fpoint buff(0:size-1)

INTEGER bufid, stat

C send a request for data
CALL pvmfinitsend(Encoding,bufid)

IF

(bufid .LT. 0) THEN

CALL pvmfperror(’block_pull’,bufid)
CALL pvmfexit(bufid)
STOP

END IF

CALL pvmfpack(ITYPE,size,1,1,;stat)

IF

(stat .LT. 0) THEN

CALL pvmfperror(’block_push’,stat)
CALL pvmfexit(stat)
STOP
END IF
CALL pvmfsend(tidtable(pos),Pio_req_tag,stat)

IF

(stat .LT. 0) THEN

CALL pvmfperror(’fstart_com’,stat)
CALL pvmfexit(stat)
STOP
END IF
C receive the data
CALL pvmfrecv(tidtable(pos),Pio_tag,bufid)

IF

(bufid .LT. 0) THEN

CALL pvmfperror(’block_pull’,bufid)
CALL pvmfexit(bufid)
STOP

END IF

CALL pvmfunpack(FTYPE,buff,size,1,stat)

IF

(stat .LT. O) THEN

CALL pvmfperror(’block_pull’,stat)
CALL pvmfexit(stat)
STOP

END IF

206

Appendix E. Message passing packages: important features. 207

END

E.8 Finishing up after the end of the program

When we have finished, we must tidy up cleanly.

SUBROUTINE finish_comms()
#include "implicit.h"
#include "build_constants.h"
#include "build_size.h"
#include "pvmcomms.h"

INTEGER code
CALL pvmfexit(code)

RETURN
END

References and bibliography

[1] R.D. Kenway. Non-perturbative calculations in the standard model. Rep.
Prog. Phys., 52, 1989.

[2] A.S. Kronfeld. Lattice QCD. Technical Report Fermilab-conf-92/040-T,
Fermilab preprint, 1992. Introductory lectures given at TASI Summer
School.

(3] H.J. Rothe. Lattice Gauge Theories : an introduction. World Scientific,
1992.

[4] C. Rebbi, editor. Lattice Gauge Theories and Monte Carlo Simulations.
World Scientific, 1992. |

[5] ﬁg—l:‘er Cheng and 'Errn-g-F-en-g Li. Gauge theory of elementary particle
physics. Oxford Un1vers1ty Press, 1984.

(6] K. G. Wilson. Confinement of quarks. Phys. Rev. , D10:2445, 1974.

~ [7] B. Sheikholeslami and R. Wohlert. Improved continuum limit lattice
action for QCD with Wilson fermions. Nucl. Phys., B259:572-596, 1985.

[8] G.Heatlieet al. The improvement of hadronic matrix elements in Lattice
QCD. Nucl. Phys., B352:266-288, 1991.

[9] M. Liischer and P. Weisz. On-shell Improved Lattice Gauge Theories.
Commun. Math. Phys., 97:59-77, 1985.

[10] G.P. Lepage and P. B. Mackenzie. On the viability of lattice perturbatlon
theory. Phys. Rev., D48:2250-2264, 1993. HEP-LAT 9209022, Fermilab-
Pub-91/355-T Revised, NSF-ITP-90-227.

(11) K. Binder. Introduction: Theory and “Technical” aspects of Monte Carlo
Simulations. In K. Binder, editor, Monte Carlo Methods in Statistical
Physics, chapter 1, pages 1-45. Springer-Verlag, 1979.

[12] F.James. Monte Carlo in theory and practice. Rep. Prog. Phys., 43:1145-

208

[13]

- REFERENCES AND BIBLIOGRAPHY 209

1189, 1980.
N. Metropolis et al. Equation of state calculations by fast computing

machines. J. Chem. Phys., 21:1087, 1953.

[14] %‘ya_.n_Bhanot. The Metropolis algorithm. Rep. Prog. Phys., 51:429-457,

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

1988.

A.D. Kennedy. Progress in Lattice field Theory Algorithms. In Proceed-
ings of the 1992 Symposium on Lattice Field Theory. Nuclear Physics B
Proc. Supp., 1992.

A. Simpson. Algorithms for lattice QCD. Phb thesis, Physics Depart-
ment, Univgrsity of Edinburgh, 1991.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte
Carlo. Phys. Lett., 195(2), 1987.

R. Gupta et al. QCD with dynamical fermions. Phys. Rev:, D40:2072,
1989.

C. Bernard, A. Soni, and K. Yee. Introduction to lattice gauge fixing and
effective quark and gluon masses. Technical Report LSUHEP002-1992,
LSU, 1992. Presented at Workshop én QCD Vacuum Structure, Paris,
France.

H. Suman and K. Schilling. A comparative study of gauge fixing proce-
dures on the connection machines CM2 and CM5. Par. Comp., 20:975~
990, 1994.

C. R. Allton et al. Gauge invariant smearing and matrix correlators using
Wilson fermions at § = 6.2. Phys. Rev., D47:5128-5137, 1993.

S. Collins. Gauge invariant smearing and the extraction of excited state
masses using Wilson fermions at 8 = 6.2. Nucl. Phys., B (Proc. Suppl.)
30:393-396, 1993.

C. Michael and M. Teper. The glueball spectrum in SU(3). Nucl. Phys.,
B314:347, 1989.

REFERENCES AND BIBLIOGRAPHY 210

[24] S. Giisken. A study of smearing techniques for hadron correlation func-
tions. Nucl. Phys., B (Proc. Suppl.) 17:301, 1990.

[25] H.P. Shanahan. Lattice calculations in heavy hadron physics. PhD thesis,
Department of Physics and .Astronomy, University of Edinburgh, 1994.

[26] Me&eel J. Flynn. ‘Some computer organisations and their effectiveness.
IEEE Transactions on computers, C-21:948-960, 1972.

[27] M. Kumar, Y. Baransky, and M. Denneau. The GF11 parallel computer.
Parallel Computing, 19:1393-1412, 1993.

[28] A Bartolini et al. A hardware implementation of the APE100 architec-
ture. Int. Jour. Mod. Phys., C4(5):969, 1993.

[29] Thinking Machines Corporation, Cambridge, Massachusetts. CM User’s
Guide, version 6.1 edition, October 1991.

[30] N. Christ and A. Terrano. A very fast parallel processor. I[EEE
Trans. Comput., 33:344, 1984.

[31] F. Butler. Status of the Columbia Parallel Processor. Nucl. Phys., B

(Proc. Suppl.) 9:557, 1989.

[32] Y. Oyanagi. New parallel computer project in Japan dedicated to com-
putational physics. Nucl. Phys., B (Proc. Suppl.) 30:299, 1993.

[33] I. Arsenin, D. Chen, N. Christ, R. Edwards, A. Gara, S. Hansen,
A. Kennedy, R. Mawhinney, J. Parsons, and J. Sexton. A 0.5 teraflops
machine optimised for lattice QCD. Nucl. Phys., B (Proc. Suppl.) 34:820-

822, 1994.

[34] J. W. Negele. QCD teraflops computer. Nucl. Phys., B (Proc. Suppl.)
30:295, 1993.

[35] Y. Iwasaki et al. Status of QCDPAX. Nucl. Phys., B (Proc. Suppl.)
17:259, 1990. '

[36] Y. Iwasaki et al. QCDPAX: Present status and first physical results.
Nucl. Phys., B (Proc. Suppl.) 20:141, 1991.

REFERENCES AND BIBLIOGRAPHY 211

[37] M. Fischler et al. The Fermilab lattice supercomputer project. Nucl.
Phys., B (Proc. Suppl.) 9:571, 1989.

[38] Thinking Machines Corporation. The Connection Machine CM-5 Tech-
nical Summary, January 1992.

[39] W‘rﬁe& Oed. The Cray Reséarch Massively Parallel Processor System
CRAY T8D. Cray Research GmbH, November 1993.

[40] Intel. Paragon user’s guide.' WWW URL http:// www.ccsf.caltech;edu/-
paragon/man.html.

[41] K. Akemi et al. QCD on the highly parallel computer AP1000. Nucl.
Phys., B (Proc. Suppl.) 26:644, 1992.

[42] S. Ohta. Towards lattice QCD simulation on AP1000. Nucl. Phys., B
(Proc. Suppl.) 26:647, 1992.

[43] Fames Rothnie. Overview of the KSR1 computer system. Technical
Report TR9202001, Kendall Square Research, March 1992.

[44] NUIK?;Q:TI—H- Christ. QCD machines. Nucl. Phys., B (Proc. Suppl.) 9:549,
1989. : :

[45) Nesman-B. Christ. QCD machines — present and future. Nucl. Phys.,
B (Pro'c. Suppl.) 20:129, 1991. ' v

[46] D. Weingarten. Parallel QCD machines. Nucl. Phys., B (Proc. Suppl.)
26:126, 1992. ESK‘J

[47] E. Marinari. A review talk about compufers and theoretic ph
Phgs., B (Proc. Suppl.) 30:122, 1993. |

[48] Y. Iwasaki. Computers for lattice field theories. Nucl. Phys., B (Proc.
Suppl.) 34:78, 1994.

[49] A. Trew and G. Wilson, editors. Past, Present, Parallel — A survey of

3.
ysics. Nucl.

available parallel computing systems. Springer-Verlag, 1991.
[50] Almasi and Gottlieb. Highly Parallel Computing. Benjamin-Cummings,
2nd edition, 1994.

REFERENCES AND BIBLIOGRAPHY 212

[51]

[52]

P. Weicher. A detailed look at some popular benchmarks. Par-
allel 'Computing, 17:1153-1172, 1991. Special issue: Benchmarking of
High Performance Supercomputers.

M. Berry, G. Cybenko, and J. Larson. Scientific benchmark characteri-
zations. Parallel Computing, 17:1173-1194, 1991. Special issue: Bench-

marking of High Performance Supercomputers.

[53] -Bag-}d Levine, ‘B;gr& Callahan, and Faek Dongarra. A comparative study

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

of automatic vectorising compilers. Parallel Computing, 17:1223-1244,
1991. Special issue: Benchmarking of High Performance Supercomputers.
A.J. G. Hey. The Genesié distributed memory benchmarks. Parallel
Computing, 17:1275-1283, 1991. Special issue: Benchmarking of High
Performance Supercomputers.

D. Bailey et al. The NAS parallel benchmarks. WWW URL http://-
Www.nas.nasa,.gov/RNR/Parallel/NPB/NPBindex.html.

R. W. Hockney and C. R. Jesshope. Parallel Computers 2: Architecture,
Programming and Algorithms. Adam Hilger, Bristol and Philadelphia,
1988.

A. Bartolini et al. The software of the APE100 processor. Int. Jour.
Mod. Phys., C4(5):955-967, 1993.

Thinking Machines Corporation, Cambridge, Mass. CM Fortran Pro-
grammers Guide. Version 1.1.

Thinking Machines Corporation, Cambridge, Mass. CM Fortran Refer-
ence Manual. Version 1.0.

Brainerd, Goldberg, and Adams. Programmer’s guide to Fortran 90.
McGraw-Hill /Intertext, 1990.

B.J. N. Wylie and M. G. Norman. High Performance Fortran: A perspec-
tive. Technical Report EPCC-TN92-05, Edinburgh Parallel Computing
Centre, 1992.

REFERENCES AND BIBLIOGRAPHY 213

[62] HPF Forum. High Performance Fortran Language Specification. Rice
University, Houston Texas, 1993. Version 1.0, May 3. Available by anony-
mous ftp from “titan.cs.rice.edu”.

[63] C. Koelbel and P. Mehrota. An overview of High Performance Fortran.
Fortran Forum, 11(4), December 1992.

[64] Ba;-:-d B. Loveman. High Performance Fortran. IEEE Parallel and Dis-
tributed Technology, 1(1), February 1993.

[65] High Performance Fortran Forum. High Performance Fortran Specifica-
tion. Fortran Forum, 12(4), December 1993.

[66] High Performance Fortran Forum. WWW home page. WWW URL
http://www.erc.mssta.te.edu/hpf‘f/home.html. '

[67] O. A. McBryan. An overview of message passiﬁg environments. Parallel
Computing, 20(4):417, April 1994, |

[68] R. Hempel, H.-C. Hoppe, and A. Supalov. A proposal for a PARMACS
library interface. GMD, Postfach 1316, D-5205 Sankt Augustin 1, Ger-
many, October 1992.

[69] R. Hempel. The ANL/GMD Macros (PARMACS) in FORTRAN for
Portable Parallel Programming using the Message Passing Programming
Model — User’s Guide and Reference Manual, 1991. Version 5.1.

[70] R. Calkin et al. Portable programming with the PARMACS message-
passing library. Parallel Computing, 20(4):615, April 1994.

[71] A.Beguelin et al. A user’s guide to PVM parallel virtual machine. Tech-
nical Report TM-11826, Oak Ridge National Laboratory, July 1991.

[72] V.S. Sunderam, G. A. Geist, J. Dongarra, and R. Mancheck. The PVM
concurrent computing system: evolution, experiences and trends. Parallel
Computing, 20(4):531, April 1994.

[73] D. W. Walker. The design of a standard message passing interface for dis-

tributed memory concurrent computers. Parallel Computing, 20(4):657,

REFERENCES AND BIBLIOGRAPHY 214

April 1994.

[74] MPI Forum. Document for a Standard Message-Passing Interface,
November 1993. DRAFT. Available by sending message “send index
from mpi” to “netlib@ornl.gov”.

t75] MPI Forum. Document for a Standard Message-Passing Interface. WWW
URL http://www.mcs.anl.gov/mpi/mpi-report.html.

[76] Argonne National Laboratory. ANL MPI implementation. WWW URL
http://www.mcs.anl.gov/mpi/index.html.

[77] Edinburgh Parallel Computing Centre. MPI implementation for CHIMP
v2.1. Available by anonymous ftp from host: ftp.epcc.ed.ac.uk, directory:
/pub/chimp/release, file: chimp.tar.Z.

[78] Ohio Supercomputer Centre. MPI implementation for LAM. Available
by anonymous ftp from host: tbag.osc.edu, directory: /pub/lam.

[79]' R. Lusk, B. Gropp, and A. Skjellum. Using MPI. MIT Press. To be
released.

[80] U. Gartel et al. Two strafegies in parallel computing: porting exist-
ing software versus developing new parallel algorithms — two e}famples.
Future Generation Computer Systems (FGCS), 10:257-262, 1994.

[81] D. M. Pase, T. MacDonald, and A. Meltzer. MPP Fortran Programming
Model. Cray Research Inc., October 1993. Available by anonymous ftp
from ftp.cray.com, directory: /product-info/mpp.

[82] L. W. Tucker and A. Mainwaring. CMMD: active messages on the CM-5.
Parallel Computing, 20(4):481, April 1994.

[83] S. Booth. Parallel file access. Internal report, June 1994.

[84] N. Stanford, H. Hoeber, and N. Hazel. Pure Gauge Configuration Gen-
eration on the CM-200, 1992. Version 1.

[85] -S%e:iaat C. Loken. Software Engineering: What do experiments need?
In C. Verkerk and W. Wojcik, editors, Proceedings of the International

REFERENCES AND BIBLIOGRAPHY 215

Conference on Computing in High Energy Physics, pages 87-89. CERN,
1992. CERN 92-07.

[86] 1. Sommerville. Software Engineering. Addison-Wesley, fourth edition,

871
s8]
89
9]
91]
92
93]

[94]

[95]
[96]
[97]

[98]

1992.

J. A. McDermid. Software Engineer’s Reference Book. Butterworth-
Heinemann, 1991. .

E. Yourdon. Modern Structured Analysis. Prentice Hall International,
1989.

W. W. Royce. Managing the development of large software systems. In
WESTCON, 1970.

UKQCD. Massively Parallel Processor (MPP) Project, Volume 1: Gen-
eral Documentation. University of Edinburgh, 1994.

UKQCD. Massively Parallel Processor (MPP) Project, Volume 2: Mes-
sage Passing version. University of Edinburgh, 1994.

UKQCD. Massively Parallel Processor (MPP) Project, Volume 3: High
Performance Fortran (HPF) version. University of Edinburgh, 1994.
UKQCD. Massively Pamllei Processor (MPP) Project, Volume 4: C
Workstation codes. University of Edinburgh, 1994.

US DoD. Military Standard; Supplement to the American National Stan-
dard X3.9-1978. Technical Report MIL-STD-1753, US Department of
Defense, 1978.

C. A. Addison et al. The GENESIS distributed-memory benchmarks.
Computer Benchmarks, 1993.

R. Hockney. A framework for benchmark performance analysis. Super-
computer, 48:9-22, 1992.

G. Marsaglia. A current view of random number generators. In Computer
Science and Statistics 16th Symposium on the Interface, 1984.

1. Vattulainen, K. Kankaala, J. ‘Sa,arinen, and T. Ala-Nissila. A Com-

REFERENCES AND BIBLIOGRAPHY 216

[99]

[100]

[101)
[102]
[103]
[104]
[105]
[106)

[107)

[108)

[109]

parative Study of Some Pseudorandom Number Generators. Technical
Report HU-TFT-93-22, HEP-LAT 9304008, Research Institute for The-
oretical Physics, University of Helsinki, 1993.

P. D. Coddington. Analysis of random number generators using Monte
Carlo simulation. Technical Report SCCS-526, COND-MAT 930917,
Northeast Parallel Architectures Centre, Syracuse University, Sei)tember
1993. ‘

I. Vattulainen, T. Ala-Nissila, and K. Kankaala. Physical tests for ran-
dom numbers in simulations. Technical Report HU-TFT-94-2, COND-
MAT 9406054, Research Institute for Theoretical Physics, University of
Helsinki, 1994.

S‘teghen Booth. Private Communication.

Peer Ueberholtz. Private Communication.

G. ‘Marsaglia. and A. Zaman. Towards a universal random number gen-
erator. Ann. Appl. Prob., 1:462, 1991.-

Press et al. Numerical Recipes in C : the art of scientific computing.
Cambridge University Press, second edition, 1992.

D. E. Knuth.- The Art of Computer Programming, volume 2: Seminu-
merical Algorithms. Addison-Wesley, 2nd edition, 1981.

G. Marsaglia and L. Tsay. Matrices and the Structure of Random Number
Sequences. Linear Algebra and its Applications, 67:147-158, 1985.

F. James. A review of pseddora,ndom number generators. Comp. Phys.
Comm., 60, 1990.

M. Lischer. A portable high-quality random number generator for lattice
field theory simulations. Comput. Phys. Commun., T9(DESY 93-133,
hep-lat 9309020):100-110, 1994.

M. Liischer. A random number generator for the ape-100 parallel com-

puter. Internal report. Available by anonymous ftp from 141.108.16.27

REFERENCES AND BIBLIOGRAPHY 217

[110]
[111)

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

in directory “pub/random”., June 1993.
Cray Research, Inc. CRAY RANF manual page. SR-2138, version 1.0.
K. Kankaala, T. Ala-Nissila, and I. Vattulainen. Bit Level Correlations in
Some Pseudorandom Number Generators. Technical Report HU-TFT-
93-41, HEP-LAT 9308018, Research Institute for Theoretical Physics,
University of Helsinki, 1993.
I. Vattulainen, K. Kankaala, J. Saarinen, and T. Ala-Nissila. Influence of
Implementation on the Properties of Pseudorandom Number Generators
with a Carry Bit. Technical Report HU-TFT-93-33, HEP-LAT 9306008,
Research Institue for Theorétical Physics, University of Helsinki, 1993.
M. Ferrenberg, D. P. Landau, and Y. Joanna Wong. Monte carlo
simulations: hidden errors from “good” random number generators.
Phys. Rev. Lett., 69(23), December 1992.
S. L. Anderson. Random number generators on vector supercomputers
and other advanced architectures. STAM Rev., 32(2):221-251, June 1990.
I. Deak. Uniform random number generators for parallel computers. Par-
allel Computing, 15, 1990.
S. Aluru, G. M. Prabhu, and J. Gustafson. A random number generator
for parallel computers. Parallel Computing, 18:839, 1992.
R. C. Edgar, L. McCrossen, and K. J. M. Moriarty. The specific heat of |
SU(3) lattice gauge theory. J. Phys., G: Nucl. Phys. 7:L85-L88, 1981.
R. Balian, J. M. Drouffe, and C. Itzykson. Gauge fields on a lat-
tice. III. strong-coupling expénsions and transition points. Phys. Rev.,
D11(8):2104-2119, April 1975.
R. Balian, J. M. Drouffe, and C. Itzykson. Erratum: gauge fields on a
lattice. III. strong-coupling expansions and transition points. Phys. Rev.,
D19(8):2514-2515, April 1979.
D. B. Carpenter and C. F. Baillie. Free fermion propagators and lattice

References and Bibliography o 4 218

finite size effects. Nucl. Phys., B260, 1985.

[121] Gsaig McNeile and Reb Baxter. Private Communication.

[122] Ro Hockney and M. i3erry.- Public international benchmarks for' par;
allel computers: report 1. Technical report, PARKBENCH Commit-
tee, February 1994. Available by rcp from “anon@netlib2.cs.utk.edu:-
parkbench/parkbench.ps”.

[123] 1. J. R. Aitchison and A. J. G. Hey. Gauge Theories in Particle Physics.
Adam Hilger, 2nd edition, 1989.

[124] N. Cabibbo and E. Marinari. A new method for updating SU(N) matri-
ces in computer simulations of gauge theories. Phys. Lett., B119, 1982.

[125] A. D. Kennedy and B. J. Pendleton. Improved heatbath method for
Monte Carlo calculations in lattice gauge theory. Phys. Lett., B156, 1985.

[126] J. H. Wilkinson and C. Reinsch. Linear Algebra, volume II. Springer-
Verlag, 1971.

[127] Ratriek D. Surrey and B. J. N. Wylie. High Performance Fortran Migra-
tioi (HPF and CHPF) via CM-Fortran. Technical Report EPCC-TN-
93-01, Edinburgh Parallel Computing Centre, January 1993. An early

report, has several omissions fixed by private correspondance.

[9e) ke (ideorakian | prested by Nide Goubod . Pyt

D odal for Masdwal,, Poratiih Protssers. Nudt, Plys . B
(Rec. Supgl) 2 (€)@ -1

