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Abstract 

Quantum Chromodynamics (QCD), which models the interactions of quarks 

and gluons, forms part of the standard model, currently the best theoretical 

framework of unified particle interactions. Lattice QCD is a method of simu-

lating the theory of QCD in a discretised form on computers. This approach 

to particle physics is vitally important for providing a comparison with exper- 

imental measurements -and predicting new particle -properties. To implement ----  

lattice QCD we require very high performance computers, the latest genera-

tion of which are known as Massively Parallel Processors (MPPs). These are 

available in two main distinct architectures, Multiple Instruction Multiple Data 

(MIMD) and Single Instruction Multiple Data (SIMD). 

We present a suite of lattice QCD software intended to be portable across 

all currently available MPP platforms. This is achieved by utilising emerging 

standards in parallel programming languages. We use subset High Performance 

Fortran for SIMD machines and the PVM message passing package, with provi-

sion for the forthcoming Message Passing Interface (MPI) standard, for MIMD 

machines. Software engineering techniques are used to design and document a 

package which delivers a high output of physics results without a large invest-

ment in optimisation for new platforms. This is achieved while still preserving 

the major requirements of reducing memory demands and increasing speed and 

user understanding. Detailed procedures for testing the package and validat-

ing results are presented, without which there could be little confidence in the 

physics generated. 

To evaluate the efficiency of the software suite we present timings for important 

code sections generated on a range of MPP platforms. 
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Chapter 1 

Lattice QCD for MPP systems 

In this chapter we discuss the physics on which the MPP project is based. 

Our starting point is continuum QCD. We then proceed to place the theory on 

the lattice and examine the Monte Carlo techniques required to simulate such 

a theory. Sections 1.3 and 1.4 look at the mechanisms for generating gauge 

configurations in both the quenched and unquenched regimes. The generation 

of quark propagators in the background gauge configurations is presented in 

section 1.5, with the methods for generating the quark sources discussed in 

section 1.8. 

In sections 1.6, 1.7 and 1.9 we take a cursory look at the other elements re-

quired to generate useful physics: These elements are not all implemented on 

MPP machines, and are therefore outwith the subject of this thesis. However, 

provision must be made for them to interface with the existing applications in 

the suite. - 

Once the physics has been discussed, we examine the motivation for the creation 

of a new software suite, the Cray T3D purchased by the ABRC and the need 

to run on other platforms, then the two machine architectures on which the 

project is implemented, MIMD and SIMD, and the programming environments 

available. We finally present the principles guiding the creation of the new suite 

of software and the base for its development. 
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1.1 From continuum to lattice 

Several excellent references for a general introduction to lattice QCD are [1, 2, 

3, 4]. 

1.1.1 Continuum QCD 

Quantum Chromodynamics (QCD), part of the standard model of particle 

interactions, models the interaction between quarks and gluons. The theory 

can be expressed in terms of the QCD Lagrangian £QCD [5] , the fields A. 

represent gluons and qk,k represent quarks of fiavour, k. 

ni  

£QCD = _ Tr FWFMV  + 	 - mk)qk 
k 

F, = ÔM AV - ÔL,A M  - ig [A M , A s,] 

Dqk = (OM  - igA)qk 
aAa 8 

AM= E 	 (1.1) 
a=1 

where the )s are Gell-Mann matrices satisfying the SU(3) commutation rela- 

tion 

[

Aa  Ab 

--, 	

fabC Ac .... 	 (1.2) 

and normalisation condition 

Tr (A-A) = 28 ° 	 (1.3) 

The quantum mechanical expectation value of an operator O(, q, A) may be 

written as a functional integral in Euclidean spacetime 

(0) = 
- f d[]d[q]d[A]O(, q, A)e_s 4 ) 	 ( 1.4) 

where Z is the partition function, defined by the condition (1) = 1, 

Z = J d[]d[q]d[A]e 5 " 4 	 (1.5) 
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and S is the action, S = f d4 XCQCD. 

Since numerical/ computational treatment of the integrals over the grassman-

nian variables and q is not efficient, we integrate them out. If the form of the 

action is 

S = SG(A) + M(A)q, 	 (1.6) 

where SG is the part of the action depending only on the gauge fields and M 

is the fermion matrix, the integrated result is 

Z = J d[A] det M(A) e _SO 4) 	 ( 1.7) 

The problem with simulating this on a computer is that det M is highly non-

local and requires enormous amounts of computer time to calculate. We shall 

see how to perform this simulation in section 1.4, however a simpler solution 

exists. The quenched approximation consists of setting 

det M = 1 
	

(1.8) 

which corresponds physically to the removal of virtual quark loops in the back-

ground gluon fields, or letting the masses of the virtual quarks tend to infinity. 

Part of the work of lattice QCD research is to evaluate the effects and signifi-

cance of the quenched approximation. 

1.1.2 Lattice QCD 

Computers cannot deal with continuous variables so some form of discreti-

sation needs to be effected in order to extract numerical results. Wilson [6] 

discovered how to do this by defining a Euclidean 4-D hypercubic lattice i.e. 

space and time are treated equally. A natural regularisation is then introduced 

which ensures convergence of integrals when calculating physical quantities and 

preserves gauge invariance. 
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The gluons are formulated by elements of the gauge group SU(3). One asso-

ciates a gauge variable UM(x)  with every link in the lattice connecting the site 

x to site x + A. Path ordering of the path integral requires that travelling along 

the link in the opposite direction gives 

U_,(x + j) = U(x). 	 (1.9) 

Fermion fields, situated at the sites of the lattice, carry both colour and spinor 

indices; they are represented by 3 x 4 dimensional complex matrices. 

We can now approximate the functional integral by multiple integrals over the 

group-valued link elements 

Z = . f rl dUie-sglul 	 (1.10) 

1.1.3 Gauge invariance and the lattice action 

1.1.3.1 Gauge invariance 

As in the continuum theory gauge invariance dictates the form of the lattice 

action. On the lattice the effect of an independent gauge rotation at each site 

is 

q(x) - V(x)q(x) 

(x) - 	(x)V(x) 

V(x)U(x)Vt(x+/i)U(x), 	(1.11) 

where V(x) is a gauge rotation, V(x) E SU(3), in the same representation as 

The only gauge-invariant quantities which can be constructed from gauge fields 

alone are Wilson Loops, and are calculated by taking the trace over colour 

indices of the product of gauge fields around a closed loop e.g. the 1 x 1 Wilson 
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Loop or plaquette 

Tr UM(x)Up(x+/)U,i(x+)UJ(x) = Tr Ucj ,(x) 	(1.12) 

To verify the gauge invariance of this and similar objects simply substitute 

equation 1.11 into equation 1.12. The comparison of gauge invariant quantities 

before and after a gauge rotation provides us with a valuable method for testing 

code, as we shall see later. 

1.1.3.2 Lattice action 

The choice of action is crucial, bringing in such topics as fermion doubling and 

the problems associated with it. We shall not discuss them here and merely 

present the chosen action. 

The action S is composed of gauge and fermion parts 

S=SG+SF- 	 (1.13) 

The gauge action S0 is given by 

SG = PEE  (i - ReTr U0(x)) 	 (1.14) 
x <L/ 

where 
2N 6 

/3 = .- j-  = - for SU(3).  

The gauge action is equivalent to 

= Jd4 x 	+ O(a2 )1 	(1.16) 

where 

= 	- 811 A + ig [A u , A,,] 	 (1.17) 

i.e. the continuum Yang-Mills action with a discretisation error of order a2 , 

where a is the lattice spacing. The 8—value (see equation 1.15) is important in 
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lattice gauge theory as it specifies the strength of the coupling in the theory 

and hence the strength of the colour force. 

The lattice fermion action SF is constructed from the Wilson term [6] and aN 

additional term to remove discretisation errors of 0(a), the Sheikholeslami-

Wohiert (SW) term [7, 8, 9]. The action can be written in the bilinear form 

SF = (x)Mq(x). 	 (1.18) 

where M is the fermion matrix. 

The fermion matrix can be written as 

M=A — rcL 	 (1.19) 

where A is the SW term, and —r.A is the Wilson term. The lattice hopping 

parameter ic is related to the quark mass m by 

1 

'2mq+8 	
(1.20) 

The hopping term A is defined by 

(zq) (x) = E(1 - )U(x)q(x + j)  + (1 + y)U(x - fi)q(x - fi), (1.21) 

and is related to the amplitude that a quark will hop between neighbouring 

lattice sites. 

The SW term A is defined by 

A = 1 - KC7 M F v 	 (1.22) 

where the coefficient C allows variation of the action from Wilson (C = 0) to 

SW (C = 1). Other values can be used, such as 1.4 from mean field improve-

ment to remove tadpole diagrams in [10], but will not be considered here. The 

field strength F,, can be written 

Q,(x) - Qt(x ) 
(1.23) F,,(x) =  

21 
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where the Q, (see figure 1.1), defined as 

Q(x) = 	 (1.24) 
4 i=1,4 

give this action the name 'Clover'. 

To calculate matrix elements under the 0(a)-improvement scheme we must use 

rotated quark fields. These are obtained by applying the following transforma-

tion 1  

1k— 
(x)(1 + 

1 - 
q(x) -p (1 - ],D)q(x) 	 (1.25) 

for 0(a) improvement, where 

(q) (x) = 	-yU(x)q(x + 2) - y,U(x - ji)q(x - j2) 	(1.26) 

This only involves next-to-nearest-neighbour communication and is therefore 

V 

. 	4 	 1 

2 

Figure 1.1: Definition of Q , . Point z is at the centre of the Clover-leaf. The sense of 

orientation of the plaquettes used for calculating Q4,,,  is taken such that the first gauge field 

in the plaquette product is leaving point x. 

relatively easy to implement on a parallel machine. The c, and -y matrices 

used are defined in Appendix A. 

'The implementation of the rotations is discussed in more detail in Appendix C. 
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1.1.4 Monte Carlo methods 

To calculate the integral in equation 1.10 we need to integrate over several 

million variables. This is not possible to do exactly, so we are forced to approx-

imate the integral by a sum over a sample of points in variable space. Further 

information about use of Monte Carlo methods in statistical physics can be 

found in [11, 12]. 

If we generate some configurations of the gauge links U with probability distri-

bution oc exp(—S(U)), a method known as importance sampling, then we can 

calculate the expectation value of a suitable observable 0 by averaging over 

the configurations generated i.e. 

(0) = -E0(U). 	 (1.27) 

This is explained further in section 1.3. 

1.1.4.1 Gauge configurations 

Computers cannot simulate a continuous object such as a link, so gauge vari-

ables must be represented at points. A gauge configuration then, is an array of 

SU(3) matrices, one for each direction at each site of the lattice. 

1.2 Overview of physics elements 

The logical order in which the different lattice QCD physics elements in the 

MPP software suite fit together is shown in figure 1.2. Only GAUGE, SOLVER 

and SOURCE will be discussed in detail as part of this thesis. 
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Quenched gauge 
configurations 

Gauge-fixing of 
configurations 

GAUGEFIX 

Generation of 
quark propagators 

SOLVER 

Generationof 	 Extraction of 
particle correlators 	physics results 

CORRELATE 	ANALYSE 

Unquenched gauge 
configurations 

HMC 
Creation of quark 
sources 

SOURCE 

Figure 1.2: The interconnection of the various physics elements in the MPP software suite. 

1.3 Generating quenched gauge configurations 

In section 1.1.1 we saw that by setting det M = 1, the quenched approxima-

tion, the amount of computer time required to calculate expectation values is 

reduced. 

In order to obtain a meaningful average using Monte Carlo methods we need 

to sample statistically uncorrelated configurations. This is done by creating a 

Markov chain of configurations. The probability distribution generated tends 

to that required if the Metropolis algorithm is used [13, 14]: 

Propose a random update and evaluate action change SS. 

Accept updated configuration with probability 

Pacc = min(1, exp(—SS)) 
	

(1.28) 

We are left with choosing the random update method in such a way that 

the acceptance rate is sufficiently large. The method used is a combination 

of heatbath and over-relaxed updates and will be described in the following 

sections. 
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1.3.1 Heatbath update 

We successively place each link of the lattice in contact with a 'heat-bath' 

which selects a new link variable stochastically with Boltzmann probability 

P(U) exp(—SG(U)). This is explored fully in Appendix B. 

1.3.2 Over-relaxed update 

The heatbath update explores the group manifold at a relatively slow rate if the 

configurations are to be accepted with any reasonable probability. The aim of 

over-relaxation is to maximise the change in the gauge links while minimising 

the change in the action. In practice the action stays constant, removing the 

need for an accept/reject stage. This is explained fully in Appendix B. 

1.3.3 Lattice decomposition 

To update more than one link at a time we use the fact that the gauge action 

couples only next-nearest neighbours and can be written as 

SG = —ReTr UR, 	 (1.29) 

where R is the sum of staples around UM  (see figure 1.3). For details of how 

to calculate the staple sum see section B.3. 

Since the staple links have to be held constant while the chosen link is updated, 

the number of links that can be simultaneously updated is restricted to half of 

the links in a certain direction (see figure 1.4). 

This is a form of red-black (or odd-even) decomposition. In practice this is 

achieved by doubling up the lattice in the x-direction'. The two sub-lattices 

'The choice of direction is arbitrary, although the t-direction is avoided to aid time-slicing. 
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g] 

A C 

U 

F 

E 

Figure 1.3: Two staples ABC and DEF in the plane around link U to be updated. 

Figure 1.4: Only the thick links in the x-direction may be updated at the same instant. This 

leads to the division of the lattice into two sub-lattices of ODD and EVEN parity. 
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thus generated are labelled by pa7ity3 . 

So to update all links the procedure is as follows 

loop over parity (odd/even) 
loop over direction (x,y,z,t) 

calculate staple sum R,h (x) for particular UM(x) 
update U,(x) 

1.3.4 Hybrid update algorithm 

The Markov chain of configurations is generated by successive sweeps through 

the lattice, each sweep is referred to as a 'hybrid' or 'compound' update'. The 

compound update consists of the following 

0 A local gauge transformation. 

0 One or more update stages, each consisting of... 

K> Heatbath (Cabibbo-Marinari) updates. 

K> Over-relaxed updates. 

0 A unitarisation of the gauge matrices. 

The gauge transform is a new element to the update proposed by S. Booth 

at Edinburgh. The idea is to remove any bias in the way the unitarisation is 

performed. 

The unitarisation is performed in order to correct any numerical rounding errors 

which creep in while performing the updates. The matrices are forced back onto 

the SU(3) manifold. Full details are given in section B.5. 

'Parity is always defined in these codes by x + y + z + t MOD 2. Since coordinates start 

from zero, the origin is of even parity. 

'This update algorithm is similar to that in [15]. 
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Since we do not want to correct for numerical errors too often, as a unitarisation 

takes time to perform, the Cabibbo-Marinari and over-relaxed update stages 

may be performed more than once per hybrid update. 

1.3.5 Initialising, thermalising and selecting configura-
tions 

We must start off this Markov chain of configurations in some way. There are 

two methods supported by our package. 

Ordered start. Set all gauge matrices to the unit matrix. 

Disordered start. Set all matrices to independent random values such 

that U E SU(3). 

Before we select any configurations we must allow the chain to become ther-

malised, i.e. the configurations are in equilibrium with the heatbath. Once 

thermalised we must select statistically uncorrelated configurations by evolv -

ing the hybrid update for 0(100) iterations. The criterion for this interval 

between samples is determined by auto-correlations of an observable [16] 6 has 
if 

a complicated dependence on lattice size, ,8 and the size of the operator j4 is 

left to the user to establish. 

1.4 Generating unquenched gauge 
configurations 

As explained in section 1.1.1 the quenched approximation is used to eliminate 

the extensive time required to calculate det M. Although unquenched simu-

lations consume more computer time, they are still performed as they give us 

an idea of the effect of quenching on the physics generated. As quenching is 

an uncontrolled approximation we must at some point revert to the full theory 
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to extract realistic physics. The most commonly used simulation technique is 

'Hybrid Monte Carlo' (HMC) [17] and will be described briefly below. 

The HMC algorithm uses molecular dynamics to evolve the system through 

a fictitious time variable 'T ' , the simulation time. The molecular dynamics 

update introduces systematic errors through the integration of the equations of 

motion by finite timesteps. This error is removed by a Metropolis accept/reject 

decision based on the change in the Hamiltonian for the configuration. 

1.5 Generation of quark propagators: the solver 

When considering an operator of the form 0 = r(U)q, the lattice equivalent 

of equation 1.4 can be written as 

(0) = ffJduM_ 1 r(U)e_sG(U) 	 (1.30) 

With a quark source 77 we need to solve the equation 

- (Mi 
\1 

- 	ap) 	1a 	 (1.31) 

fora single column of the full quark propagator matrix; we do not usually 
16 

have sufficient memory space to solve for the full quark propagator. The indices 

i, a are the source colour/spin and j, 3 the sink colour/spin. The solution of this 

large sparse system of linear equations must be performed using an iterative 

scheme as discussed in [16, chapter 2]. 

1.5.1 Preconditioning 

Experience within UKQCD has shown that two types of preconditioning im-

prove convergence of the linear equation solver; our package has both built in 

as standard. The first is due to [18] and reduces the off-diagonal elements of 

the fermion matrix in the following way. 
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We define 

M' = (A—K 2 A 1 f) 

77'= ( 1 + icLA 1 )77 	 (1.32) 

such that M'.' = ii'. The hopping term A is defined in equation 1.21. 

The second method is that of red-black preconditioning. As in section 1.3.3 we 

split the lattice into 2 sub-lattices labelled by parity p and P. The Clover term 

A connects sites of equal parity and L connects sites of opposite parity. We 

can therefore solve 

M'cb = lip + A -1 n 
= 77; 	 (1.33) 

and reconstruct the opposite parity solution from 

= A` ( ,q + ic) 	 (1.34) 
FP 

This means we can save time and storage space when solving the system. For 

more details of the derivation of the above preconditioning see [16]. 

1.6..Gauge fixing 

The action defined in section 1.1.3 contains an inherent degeneracy arising 

from its gauge invariant nature. Any term in the action containing a total 

derivative of the gauge fields will vanish in the equations of motion. Gauge 

fixing introduces a term in the action which breaks this invariance, satisfying 

a new gauge fixing condition e.g. 

f(A) = (,91.,A " )2 = 0 	(Lorentz gauge) 	 (1.35) 

This condition is implemented in practice by iteratively minimising a known 

function of the gauge fields. 
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The gauge fixing procedure is not needed for measuring gauge-invariant quan-

tities, e.g. particle correlators, but is essential for measurement of e.g. gluon 

propagators [19]. An excellent review of lattice gauge fixing can be found in 

[20]. 

1.7 Correlators 

A quark propagator is the correlation function 

= (OIq(x,t)(0)I0) 	 (1.36) 
Oto 

of the quark fields q, where i, j are colour indices and a,,3 are spin indices. A 

propagator for a particle such as a meson is given by 

C(,) = (o111(, t )111(0)I0) 	 (1.37) 

where 11(x) = 4(x)Fq(x) and 1' is one of the 16 linearly independent 7-matrix 

combinations 1, 'YM, 'YY, giving the required quantum numbers under 

charge conjugation and parity. 

It can be shown [16, chapter 4] that inserting a complete set of spatial momenta 

and particle states, transforming to momentum space and summing over the 

spatial volume gives 

C(t) = 

	

= 	(Fne' + Bne_mT_t)) 	 (1.38) 

M & 
for t </2 where F and Bn  are the amplitudes of the forward and backward 

propagating particles. As t -* oo and T - t -+ oo we are left with the lightest 

state with a non-zero overlap with the operator H. The particle mass can then 

be extracted. 
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We see therefore that the correlator, C(i), is vital for later analysis. Baryon 

correlators are calculated in a similar way using three valence quarks 

IIB(x) f'.d e, k (q(x)Pq3 (x))qk(x) 	 (1.39) 

1.7.1 Smearing 

To improve the overlap of the lightest state, or an excited state, with the 

operator we smear the quark source and/or sink [21, 22, 23, 24]. The smearing 

procedure effectively extends the quark source or sink over a finite spatial 

volume. Many different techniques can be used; see the references for further 

details. 

1.8 Quark sources 

To create quark propagators we solve the equation 

Mç&=i 
	

(1.40) 

for the propagator b. The simplest source, 77, used in practice is the 'point' 

source, a local spin/colour source of strength 2r. placed at a single site on the 

lattice (usually the origin). We then use the quark propagators generated to 

make correlation functions as discussed in section 1.7. 

Three-point functions are quantities calculated to determine the matrix ele-

ments of flavour changing currents. In this section we will only present the 

algorithmic elements needed to create such functions, for full details of the 

technique refer to [25, Chapter 11. To calculate a three-point function we need 

to use an 'extended propagator' and a normal propagator as described in the 

reference. An extended propagator is calculated by applying the following 

steps. 
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Calculate a quark propagator for hopping parameter value icr. 

Multiply the propagator by a. plane-wave momentum factor 

Multiply the propagator by a r matrix factor defining the interaction. 

Use a single time-slice of the above propagator as the source for a new 

propagator with hopping parameter 2•  This is now an extended propa-

gator. 

1.9 Analysis 

Analysis is a generic umbrella for all processing of correlators needed to generate 

physics results e.g. masses, decay constants and form factors. The theory 

of these diverse areas will not be discussed here, for further information see 

[1, 2, 3, 4]. 

1.10 The targeted system: the need for portable 
lattice QCD software 

The Advisory Board to the Research Councils (ABRC) began a procurement 

for an MPP system in September 1992 to be used for Grand Challenge projects. 

The system, a Cray T3D 5 , was delivered in April 1994 and UKQCD aimed to 

be in a position to have codes ready to run as soon as service began. 

As this was such a major purchase a benchmarking exercise was performed 

involving real application codes running on as many platforms as possible. In 

order to take part in the exercise and to have the ability to run codes on other 

available platforms, UKQCD decided to design a new suite of lattice QCD 

software. 

'This is not surprising as 41.3% of the supercomputers in the world are manufactured 
by Cray Research Inc. (Source: The World's Most Powerful Supercomputers 6/6/94, 
newsgroup cornp.sys.super on usenet) 
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There is currently a wide variety of both dedicated QCD computers, those 

designed specifically for QCD computation, and commercial parallel comput-

ers used for QCD. Dedicated QCD computers usually gain high performance 

through finely tuned assembly level code, with little investment in high level 

compiler technology, largely precluding portability of software. Commercial 

machines, however, must adhere to at least minimal standards in their pro-

gramming environments in order to attract a wide customer base. Although 

portability has not been emphasised in past years, emerging standards are be-

ginning to form a wide portability base for applications. 

1.11 MPP architectures 

There are two main architectures, identified by Flynn's taxonomy [26], used 

for MPP systems: SIMD, single instruction stream multiple data stream, and 

MIMD, multiple instruction stream multiple data stream. 

1.11.1 SIMD: single instruction multiple data 

SIMD machines are characterised by a large number (typically up to 64K) of 

processing nodes receiving common instructions broadcast from a central host 

processor. Synchronism is achieved by utilising a common clocking signal, thus 

removing the need for synchronization in the software layer and simplifying user 

application software. Examples of SIMD machines are GF11 [27] and APE [28] 

(dedicated) or Thinking Machines CM-200 [29] (commercial). 

1.11.2 MIMD: multiple instruction multiple data 

MIMD machines typically have more powerful node processors with greater 

memory capacity than the corresponding SIMD elements. Nodes can run inde- 
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pendent instructions with synchronism implemented through 'message passing' 

between them. Memory access is usually private, off-processor data is sent or 

received by passing messages. Examples of private memory MIMD machines 

are Columbia [30, 31], CP-PACS [32], 0.5 Teraflops [33], Teraflops [34], QCD-

PAX [35, 36] and ACPMAPS [37] (dedicated) or Thinking Machines CM-5 

[38], Cray T31) [39], Intel Paragon [40], Fujitsu [41, 42] and Meiko CS-2 (com-

mercial). Shared memory architectures also exist, e.g. KSR [43], but are not 

common due to the reduction of speed from memory access conflicts and the 

difficulty of designing a communications network to overcome them. They do 

however obviate the need for message passing resulting in simpler user software. 

Our use of MIMD machines is to run the same program on all processors, 

although not all of them will execute the same conditional branches. This 

programming model is known as SPMD (single program, multiple data). 

1.11.3 Convergence of architectures 

The two architectures discussed above are currently distinct, though becoming 

less so. Machines like the CM-5 and T3D, although MIMD, support SIMD-style 

operation implemented through the improved communications networks used 

for synchronisation. This trend is likely to increase as the vendors attempt to 

capture the markets for both message passing and data parallel programming 

environments as discussed below. Reviews of QCD machines can be found in 

[44, 45, 46, 47, 48, 49 7  50]. 

1.12 Programming environments 

For the applications software engineer, programming environments are of far 

greater importance than architecture. The environments supplied again fall 

into two groups reflecting the underlying architecture: Data Parallel imple- 
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mented on SIMD machines and Message Passing on MIMD machines. 

Most MPP platforms support both C and Fortran compilers, but as it is sen-

sible to write codes in only one language we must select either C or Fortran. 

There is little published data on the relative performance of C/Fortran gen-

erated code, so our choice must be motivated by other criteria. A look at 

published benchmark data [51, 52, 53, 54] shows that nearly all floating point 

benchmarks are written in Fortran, while C is primarily reserved for string 

and integer applications'. Vectorising compilers, as discussed in [50, section 

6.21 and [56], have traditionally been for Fortran because of its prolific use in 

numerical simulation and easy analysis of loops compared with C. For these 

reasons dialects of Fortran for data parallel and message passing are used. 

There will of course be some platforms to which it will be impossible to port 

code. For example the APESE environment on the APE100 processor, an 

object-oriented programming environment [57]ç,.j 6,e. 4,j ti 

W( VWtkko..4 QMn.L€ 

1.12.1 Data parallel: High Performance Fortran 

The data parallel paradigm has been implemented in several dialects, for ex-

ample CM Fortran [58, 59], Fortran D and Vienna Fortran, based on the array 

handling constructs of Fortran 90 [60] with added directives for distributing 

data objects across processor topologies. 

As discussed in [61] a standard, High Performance Fortran (HPF), has emerged 

with major vendors pledging support: 

0 Announced product: Applied Parallel Research, Kuck and Associates, 

PGI, Intel, Meiko, Digital. 

0 Announced effort: TMC, IBM, nCube, NEC, PSR, NASoftware, ACE, 

6 An exception to this is the NAS parallel benchmarks [55] which are specified in a language 
independent way. 
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Lahey, MasPar, Archipel, Convex. 

0 Announced interest: Cray, Hewlett-Packard, Fujitsu, Silicon Graphics, 

Hitachi, SUN. 

Copies of the specification can be obtained by anonymous ftp [62], in published 

literature [63, 64, 65] or through the World Wide Web [66]. 

A subset of the language specification [62, section 8] (CHPF) has been identified 

as 'being capable of being implemented more rapidly than the full HPF. . . [and] 

is intended to be a minimal requirement'. The elements of full HPF omitted 

from cHPF do not impose any restrictions on lattice QCD, resulting in the 

adoption of cHPF as our data parallel standard. All mention of 'HPF' from 

this point refers to the subset unless 'full' is stated explicitly. 

1.12.2 Message passing: PARMACS, PVM and MPI 

Where the implicit synchronism of SIMD machines leads to only a few Fortran 

dialects (all based on Fortran 90) and a standard language, the wide variety 

in the design of MIMD machines has resulted in a plethora of message-passing 

systems for different platforms; Express, PVM, NX/2, Vertex, PARMACS, 

P4, CHIMP, Zipcode, IBM EUI, CS-tools, LINDA, Canopy and CMMD. A 

comparison of some of these packages is presented in [67]. Of these packages 

the most highly standardised are PARMACS [68, 69, 70] and PVM [71, 721, 

both of which have been ported to a wide range of platforms. 

Because of this variety, standardisation has not been as fast as for data par-

allel programming. However a standard has emerged, MPI [73, 74, 751, along 

the same lines as HPF and has been implemented by IBM, Argonne National 

Laboratory (on top of Chameleon, P4 and PVM) [76], Edinburgh Parallel Com-

puting Centre (on top of CHIMP) [77] and Ohio Supercomputer Centre (on 

top of LAM, a UNIX cluster package) [78]. A book, advertising clear examples 
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on the use of MPI, is in the process of being written [79]. 

Since MPI has not yet been implemented widely, PARMACS was chosen as the 

standard for our MPP message-passing layer with Fortran 77 for computation 7 . 

However problems have been found porting PARMACS because of licencing 

restrictions and differing implementation features. PVM has since become far 

more widespread as a standard so we have adopted it also. These changes 

illustrate that the message-passing code in the MPP package must be kept as 

simple, flexible, contained and low-level as possible to facilitate change. As we 

see in Appendix E, which explains the message-passing features used in the 

MPP codes in terms of PVM, this containment is relatively easy to achieve. 

1.12.3 Shared memory/single processor 

Shared memory computers are often programmed in normal Fortran 77. No 

message passing is needed as all memory is accessible from all processors. A 

'single processor' version of the message-passing codes can therefore be used. 

J This requires no,ode other than that used for testing: the single-processor 

/ code is vital as a first stage in debugging message-passing code. 

1.12.4 Convergence of programming models.. . the future 

As mentioned earlier, SIMD and MIMD designs are converging in the Cray T3D 

and Thinking Machines CM-5. This convergence is mirrored in the program-

ming environments; CRAFT [81] (Cray Research Adaptive Fortran) currently 

supports message passing only but advertises data parallel extensions in the 

~itumn of 1994, the CM-5 can be programmed in either data parallel (CM For-

tran [58, 59]) or message passing (CMMD [82]) modes. The HPF specification 

7PARMACS has been proposed as a porting standard by other computational physics re-
searchers, e.g.[80] in meteorology. 
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[62] states its aim as being '[to] provide support for high performance program-

ming on a wide variety of machines, including massively parallel SIMD and 

MIMD systems and vector processors', so we can once again see convergence. 

But what of the relative merits of data parallel and message passing codes? 

In data parallel programming, once the arrays have been distributed actual 

computation is straightforward, requiring a minimum of code. Communications 

are also easily implemented on the periodic lattices required for QCD through 

the Fortran 90 'CSHIFT' command, as demonstrated in Appendix D. Both of 

these features are in marked contrast to the complicated mechanisms required 

for message passing and multiple nested loops of Fortran 77. 

HPF is therefore most useful for code development and testing; its simpler 

coding style introduces fewer bugs. Message passing is required for the fastest 

machines to get high performance; the accuracy of the code can be validated 

in a single processor mode and against HPF code. 

1.12.5 Parallel 1./0 

The main feature of MPP programming which is not discussed in any standards 

is that of parallel input and output (I/O). Desirable features and benchmarking 

of I/O have been discussed in [83], but we conclude that parallel file access 

must of necessity be machine specific because of the varying topologies of MPP 

platforms and designs of I/O systems. 

1.13 Development base 

The UKQCD collaboration has been running lattice QCD codes for several 

years now; it would be foolish to ignore the codes and algorithms developed 

and implemented. We present a .brief summary of this material in table 1.1. 
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As can be seen, the Maxwell codes are far more efficient than those on the 

Connection Machine. This is a necessity; Maxwell is used for production, 

whereas the CM is primarily for development work. 

Platform  
Maxwell Euclid non-MPP 

Features  
Vendor Meiko Thinking Machines Varied 

Model CS-1/860 CM-200 Varied 

No. Nodes 64 512 1 

Node type i860+2xT800 1x32-bit custom+ Varied 
lxWeitek 3132 

Topology 4-D hypercube 9-D hypercube Single proc. 

Architecture MIMD SIMD Single proc. 

Memory (GByte) 1 0.5 Varied 

Speed (peak/ 5/2 8/1 Varied 

sustained) Gflop/s 
Language C, Ass., CS-tools CM Fortran C/Fortran 

Application  
GAUGE x 

SOLVER V X 

HMC V x x 

GAUGEFIX x •1 
SMEAR V .  
SOURCE X 

CORRELATE x x 

ANALYSE 	. x x 

Table 1.1: Existing UKQCD codes. 

As the codes have been written by many people there is much duplication, with 

diverse styles of design and coding used. As algorithms have progressed, codes 

have evolved to form a sprawling, tangled maze. Formal documentation has 

been extremely limited [84] and is in part responsible for the duplication and 

diversity. 
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1.14 Conclusions: the new software suite 

Given the need to run lattice QCD codes on the T3D and other platforms, the 

creation of a new set of codes is clearly required. These have to adhere to the 

following principles: 

D The code should be modular in order to minimise redundancy between 

applications and incorporate new physics in as short a time as possible. 

• The requirement for both message-passing and data-parallel program-

ming models implies that the design should be kept independent of pro-

gramming language as far as possible. 

• To improve the learning curve for new personnel all codes should be 

accompanied by complete and clearly-written documentation. The codes 

should have a common user interface requiring no specialist programming 

knowledge. 

0 The languages to be used for the MPP codes are 

'O Data parallel: CHPF with testing performed in CM Fortran on a 

TMC CM-200. 
PVH 	PVI- 

Message passing: Fortran 77 with ARMAc. The PA-MACS 

layer should be isolated for easy conversion toT 	MPJ etc. 
i%it1, C 

Shared memory/single processor : Fort4n 77. This is the 

same as above with 	CS calls replaced\ by local boundary 

processing. 	
PVP 

El The kernel of codes for benchmarking should be ab1 to be completed 

in nine months (assuming two people working full-ti e) including docu-

mentation, testing and operating procedures. 

hi?I /ok4 Thrii, 

((kJ 	
stA€ 
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These criteria are by no means impossible to fulfil... as long as a sensible 

method of software engineering commensurate with available resources' is used. 

As Loken says [85] 

'The real need in software engineering is not for a set of tools or 
languages. It is rather for an approach to understanding the soft-
ware problem and developing the optimum solution based on the 
best available technology.' 

In the next chapter we expound a practical solution to this problem. 

'Human, time, financial and equipment. 



Chapter 2 

Design and implementation of the MPP 
software suite: global issues 

In the previous chapter we introduced the need for a new set of lattice QCD 

codes. The 'waterfall' method of software engineering, as described briefly in 

section 2.1, is the canonical software development model for medium to large 

scale projects and is used to design the MPP codes. 

We consider the global issues, affecting the whole MPP project, in section 2.2 

which provides an example of the waterfall method in use. The user interface 

to the suite is discussed in section 2.3, of vital importance to the successful 

operation of the suite to produce physics results. 

28 
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2.1 The waterfall method of software 
engineering 

2.1.1 Introduction 

'Software engineering is the science and art of specifying, designing, 
implementing and evolving - with economy, timeliness and ele-
gance - programs, documentation and operating procedures where-
by computers can be made useful to man.' 

John A. McDermid 
Software Engineer's Reference Book 

There are many different software development models described in standard 

texts [86, 87, 88]; e.g. prototyping, waterfall, exploration, formal transforma-

tions and reassembly. Of these we will discuss only prototyping and the water-

fall method; the others are either irrelevant or inappropriate. 

'Prototyping' is mainly used to establish the requirements of a system through 

construction of a prototype code skeleton. The requirements identified by this 

process can then be used as the starting point for a more structured method 

e.g. waterfall. The use of prototypes in physics packages is common for new 

physics, where different algorithms need to be evaluated, but of little relevance 

to the MPP codes. 

The 'waterfall' method of software engineering [89], the canonical method, is 

highly structured while at the same time retaining sufficient flexibility to be 

useful for all sizes of project and design team. Documentation is intrinsic to 

the method, providing information sharing between team members and a per-

manent record of both concepts and design details. There are several distinct 

phases of engineering, as shown in figure 2.1, which can be considered sep-

arately even though they normally overlap in practice. This method is well 

suited to academic use as it can be implemented without any special tools 1 : a 

'CASE (computer aided software engineering) packages can be used to increase productivity 

I 
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drawing package and word-processor are sufficient for the design phases. 

As software engineering methods are uncommon in computational physics re- 

search we present a brief outline of the waterfall method in the following sec- 

tions. For more details and background refer to the references mentioned above. 

2.1.2 Requirements analysis and specification 

The first stage in a project is to ascertain the users' requirements, often through 

a set of brainstorming sessions followed by a rationalisation to formulate achiev-

able elements. The rationale behind concepts should be included; it is par-

ticularly useful in later stages of design and implementation and should be 

documented with the requirements in the 'Requirements specification docu-

ment'. This record contains all functionality provided by the system and any 

constraints thereon. 

2.1.3 Standards 

As more than one person will be working on the MPP project we need a c 7nsis-

tent procedure for writing code and documentation. The standards document 

covers everything from identifier naming to versions of compilers to be used, 

but should be kept as clear and simple as possible. 

2.1.4 Design principles 

Design is performed in a top-down fashion beginning with the splitting of the 

system into major sub-systems, the physics application codes. Once major 

applications have been identified they can be further divided into functional 

modules and finally units. If the design is documented at all stages with the 

but are expensive and non-essential. 
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Figure 2.1: The waterfall method of software engineering. 
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interfaces between applications and modules specified in detail, people can work 

on different areas at the same time. 

Documentation of the design is achieved through layered dataflow diagrams, as 

described in [88], with textual comments where needed. Examples are given in 

section 2.2.4. As time is limited, documentation of the lower levels of design, 

units within a module, should be kept as brief as possible. An example is shown 

in section 4.2. 

Since the MPP codes will be implemented in two versions, data-parallel and 

message-passing, the design is to be kept free of implementation details as far 

as possible, concentrating on the essential physics and algorithms. 

2.1.5 Implementation, coding and testing the design 

To obtain a working package from our design we must implement it in both 

data-parallel and message-passing models. It is vital to document problems 

with different versions of the supplied compilers and libraries and iterate design 

stages if necessary to cater for these differences. 

The testing of the code should focus on the physics required. Lower level 

tests, such as validating the operation of the maths routines, are useful before 

attempting to test a large complicated module, e.g. the solver. 

2.1.6 Operational issues 

In order for the MPP codes to be useful, they must be easy to operate in the 

real environment of the targeted MPP machine. This environment incorporates 

the data storage, batch queuing system and user interface. 

Although the data storage and queuing systems will vary across platforms, the 

user interface can, and should, be kept simple and consistent for all of the MPP 
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applications. This interface includes file formats for long-term storage, which 

should be rigidly defined and documented. 
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2.2 Global project engineering issues 

2.2.1 Introduction 

In this section we consider engineering issues carried through the entire MPP 

project. Standards used to record, implement and test all designs are detailed 

in section 2.2.2 followed by requirements on the functionality of the communi-

cation and file systems with necessary constraints in section 2.2.3. 

The MPP system is split into major subsystems in section 2.2.4 and the princi-

ples guiding the design and implementation of all subsystems are brought out 

in section 2.2.5. 

The full design and implementation documentation set, [90, 91, 92, 93], is far 

too large (over 1000 pages) to be discussed in detail in this thesis. We therefore 

present only the important features of the design and implementation. 

2.2.2 Standards2  

We have two main types of code: those running on an MPP machine, the pro-

duction physics applications, and those running on a workstation, the analysis 

package and the user interface. These will be considered separately. 

2.2.2.1 MPP codes 

The codes running on the MPP platforms are all written in a Fortran dialect, 

either Fortran 77 with PARMACS for message-passing or CHPF for data- 

parallel. The motivation for using these languages is discussed in section 1.12. 

'The format of the actual standards document is more formal and subdivided than that 
given here, but less appropriate for a PhD thesis: the full standards document is [90, 

MPP-GEN-0003]. 
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2.2.2.2 Workstation codes 

The codes running on the workstations are all written in ANSI C. The departure 

from Fortran is taken because these codes will need to handle files, strings and 

memory more often than numerical data. The 'C' language is well suited to 

these tasks and offers a seamless interface with the UNIX operating system 

where necessary. 

The use of YA CC and LEX 3  when parsing files is not allowed. Although these 

extensions to C enable shorter file handling code to be written, therefore less 

prone to errors, they reduce the possibility that the codes can be extended 

easily, one of the major requirements of the workstation codes. 

2.2.2.3 Fortran 77 standard and pre-processing 

The message passing MPP codes are implemented in Fortran 77 with PAR-

MACS. This precludes the use of any of the standard military extensions to 

the language [94], such as 'ENDDO' and long identifiers. Since short identifiers 

lead to incomprehensible code we make use of a pre-processor (written in C by 

Stephen Booth) to compress long identifiers to the standard length. Any com-

pilers which allow long identifiers will not need this stage. The C pre-processor 

'CPP' is used for all source files, and any of its features may be used. Header 

files should only include other header files if absolutely necessary in order to 

keep the structure straightforward. 

Implicit typing for variables should not be used. All variables should be de-

clared explicitly, with 'IMPLICIT NONE' or its analogue used. As not all 

compilers support the use of 'IMPLICIT NONE', a header file should be in-

cluded in all routines to mimic this operation as closely as possible. 

ILEX is a lexical analyser and YACC a grammar parser. They are standard packages, often 
used to parse text files. 



Chapter 2. Design and implementation: global issues. 	 36 

2.2.2.4 Identifiers 

Identifiers can be up to 31 characters long, and this available length should 

be used to construct meaningful names. The standard extended character set 

(alphanumeric plus underscore) is used with the following restrictions. 

0 Constants, as defined by the Fortran 'PARAMETER' statement, have a 

leading capital letter. All other characters are lower case e.g. 'Pi-by-2'. 

o Variable and subprogram names are entirely lower case e.g. 'write2col- 

umniormat'. 

o Language elements are written in capitals e.g. 'SUBROUTINE'. 

As Fortran is not case sensitive, care must be taken not to use the same name 

for a variable and constant in the same routine e.g. 'Colour' and 'colour'. The 

compiler should pick up most instances of this, as their usage would be different, 

and multiple definitions are not allowed. 

2.2.2.5 Comments and revision control 

All source files should have a comment header block at the beginning containing 

the name of the source file, its purpose, the author(s), documentation references 

and revision information. All subprograms should have a comment header block 

summarising the algorithm and parameters, and if possible a reference to the 

documentation for further information. The comments within the code should 

refer only to algorithm stages defined in the subprogram header and any subtle 

implementation points, care should be taken not to use unnecessary comments 

which would confuse the code. 

2.2.2.6 Numerical precision 

Real numbers should be defined as being of either 'Fpoint' (single-precision) or 

'Dpoint' (double-precision); two macros defined in a header file. This enables us 

to switch precision simply by redefining the macros. Macros are also provided 
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to convert to required types, 'FtypeQ' and 'DtypeQ', and evaluate their storage 

requirements in bytes, 'Fsize' and 'Dsize'. 

Fortran 77 does not allow double-precision complex numbers, so all complex 

numbers in the message-passing codes must use two-component 'Fpoint' or 

'Dpoint' arrays. This restriction does not exist in HPF, and the macros 'Cf-

point', 'Cdpoint', 'Cftype', 'Cdtype', 'Cfsize' and 'Cdsize' can be used. 

2.2.2.7 Array indexing 

Although Fortran 77 arrays are indexed from 1. . . N by default, this can be 

changed. C does not allow this flexibility; arrays must be indexed from 0 to 

N - 1. For this reason we also force Fortran to adopt this rule: all array 

indexing starts from zero. 

2.2.3 Requirements 4  

There are several requirements on all of the MPP codes which must be incor-

porated from the beginning. These can be split into distinct areas. 

Accommodation of lattice in memory 

We want to be able to accommodate the whole target lattice size in 

memory at the same time. This approach simplifies the code design and 

implementation, reducing the need for highly efficient I/O routines to 

swap lattice segments. 

File system 

As discussed in section 1.12.5, parallel file access will be platform specific. 

However we can identify a number of common requirements for a file 

system. 

4  A with the standards section, these requirements are in a slightly less formal style than 
would be used in practice. The actual requirements document is [90, MPP-GEN-0002]. 
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Only the large datasets, e.g. gauge configurations and quark propagators, 

will be stored in a binary format to save space. All other files will use 

a text format which, although less economical on space, is easy to read 

without using special utilities and avoids problems with floating point 

format and byte ordering. The text files can provide information to enable 

the physics application to sort out the byte order and float format of the 

large binary datasets 5 . 

Each binary dataset will have an accompanying textual information file 

containing all information relevant to the history, creation and validation 

of the dataset. These files will be mainly read and written by the user 

interface and must therefore be in a standardised form. The storage of 

data in the binary datasets must be arranged so that the data can be 

read in both 4-1) and 3-1) formats for timeslicing. Any data files ported 

between platforms must be 'flattened', converted from a format contain-

ing machine-specific parallel distribution information to a standard serial 

format accessible from any processor topology. 

The physics application codes must be kept as small as possible in order 

to work on large datasets. One way of achieving this is to ensure that all 

files read/written by an application are in a fixed format, requiring no 

validation. The user interface can again be used to automate this process. 

3. Communications 

Communications are only of relevance in the message passing model. We 

must test for failures whenever possible; parallel machines are complex 

and cannot be assumed to operate without error. Since we cannot re-

cover from communications errors in most circumstances, an error mes-

sage should be generated and program flow aborted. 

'An example of this could be to use the value of the gauge configuration checksum to 
establish the byte order, and the plaquette average to establish the floating point format. 
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4. Timing and other measurement 

Timing should be provided in the form of a single routine 'TIMER' con-

forming to that used in the GENESIS benchmarking suite [95]. Top-level 

components, e.g. a compound update or single solver inversion, should 

have built-in timing; all other timing should be switchable. 

Floating point operation counts (flop counts) should be built into all code, 

with the same metric used as [96] and shown in table 2.1. From these 

numbers a performance rating can be measured for the timed sections in 

units of Gflop/s. 

r Operation Count (flop) 

Real add, subtract, multiply 1 
Real divide, square root 4 
Exp, Sine etc. 8 
Complex add, subtract 2 
Complex multiply 6 

Table 2.1: Floating point operation metric. 
It is useful to have a means for measuring a high-water mark for the 

memory usage. This only needs to be calculated once for each of the 

data-parallel and message-passing versions and does not always need to 

be included in the code; some compilers supply this capability. If we do 

need to perform this operation in the code it is straightforward. 

Lattice size 

The lattice size must be a factor of two in all dimensions in order to 

implement red-black precondititioning. 

Random number generators 

We require a system for generating pseudorandom numbers uniformly dis- 

tributed between 0 and 1 for both lattice arrays and scalar variables. The 

actual random number generator (RNG) used should be easily changeable 

as different RNGs are suitable for different applications. The RNG used 
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in production should satisfy all of the standard tests discussed in [97, 

98, 99, 100]. The design of random number generators is considered in 

section 2.2.4. 

Random gauge transformation 

An excellent method for testing code is to construct gauge invariant quan-

tities, e.g. the plaquette average, and then perform a. gauge transforma-

tion on the fields with a. set of random STJ(3) matrices. If the same answer 

is obtained before and after the transformation, we can be fairly confi-

dent that that section of the code is working. We therefore need a module 

capable of implementing both local and global gauge transformations. 

Error logging 

Error messages are to be written to a logfile with as much information as 

possible present to facilitate recovery and debugging. No other messages 

are to be written to this logfile so that errors can be detected quickly. 

The system must indicate that it has terminated with or without an error 

condition being generated, e.g. by a non-zero exit code, so that the parent 

process can act accordingly. 

2.2.4 System context and design 

Before discussing the design of the system, we must consider its boundaries. 

These are shown in figure 2.2. As can be seen, the codes only need to interact 

with the user and data stores. 

The physics application codes are identified by main functional blocks. They 

interact as shown in figure 2.3. This is an example of a 'dataflow diagram' such 

as is used later to represent the essential design. Ovals are the main processes, 

parallel lines represent datastores and arrows show data flowing between data 

stores and processes. 
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Serial Data Core H 	Paral Data Store 

Figure 2.2: View of the MPP codes system boundaries. 

Note that code to analyse gauge configurations, e.g. to measure glueball masses, 

is expected to constitute a separate application or applications. This may not 

be the case in reality if relative computational and I/O speeds promote in-line 

computation requiring GAUGE or HMC to be modified. 

2.2.5 Design and implementation issues 

The main features in the design of the MPP codes are the need for high speed 

and as large a lattice as possible. These principles require us to keep memory 

usage to a minimum, to maximise the available lattice size, and keep the number 

of floating point operations to a minimum, maximising the speed. Of course, life 

is rarely simple: in order to reduce computation we often need more workspace; 

compromise is clearly required. 
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Figure 2.3: The physics applications comprising the MPP system and their interrelations; 

dotted applications are not considered in this thesis. The user interface ECU and treatment 

of messages to the user have been omitted. 



Chapter 2. Design and implementation: global issues. 	 43 

2.2.5.1 Minimising memory usage and controlling allocation 

There are several ways in which memory usage can be minimised. 

o By grouping together into one unit only those operations which absolutely 

need to be together we keep the unit size small. If a single unit is then 

implemented in a single file, only that code needs to be incorporated into 

the final application; no wastage occurs. 

o By delegating all complicated file handling td the ECU application, the 

control utility, we keep the code space required for file handling to a 

minimum. 

o If we can modify an algorithm to only require temporary workspace for 

a single matrix element or single row, we keep heap  memory usage, the 

most crucial area, to a minimum. We must, however, balance this against 

the requirement for high speed. 

o Stack' space is not particularly important in an MPP platform as it is a 

tiny portion of the available memory. However, we wish to minimise the 

depth to which subroutines are nested in order to reduce the overhead 

from calling and returning from subroutines; this requirement must be 

balanced against the need for a large number of small units to provide 

flexibility and a reusable toolkit of operations. If in doubt, keep the unit 

size small, code can be optimised for a particular platform later. 

Since we have several people working on the codes at the same time, usually on 

separate modules, we need to be careful how workspace memory is allocated. 

A simple heap-based model is assumed; each routine reserves heap memory 

as required and frees it on exiting the routine. All of the compilers we have 

''Heap' memory is that used for allocation of temporary (or automatic) variables within a 
routine. The memory is usually freed when the routine terminates. 

"Stack' memory is that used for passing parameters between subroutines and the return 
values from functions. 



Chapter 2. Design and implementation: global issues. 	 44 

encountered have this model of memory management, which makes it easy for 

modules to be implemented independently. 

An alternative model which might possibly arise is that of static memory allo-

cation. In this model, the memory is not freed when a routine finishes resulting 

in the program running out of memory and crashing. Provision has been made 

for this outcome: at the start of the program execution a large block of mem-

ory is reserved and made common to all routines. An internal heap is then set 

up to allocate and free the space as required. This method requires a signifi-

cant amount of work to implement as allocation/deallocation calls need to be 

made explicitly. For this reason, and also because we hope never to encounter 

this type of compiler, the memory management calls have not been inserted 

although the routines to implement them have been supplied. This model of 

memory management cannot be used in cHPF as we need to know information 

about the distribution of arrays over the platform. 

Common blocks and global variables 

Use of globally-accessed memory space can be useful in reducing the amount 

of memory used for both heap and stack variables. However, the code then 

becomes far more inter-dependent and less modular. As we want to construct 

a range of applications from a common library of modules we need a modular 

design and therefore avoid common blocks and global variables as far as possible 

outside a particular module. 

2.2.5.2 Platform specific variations 

For several areas of the MPP codes, the implementation will depend on the 

particular platform; these areas can be identified as parallel file I/O, timing, 

communications and random number generation. In order to maximise porta-

bility we have to isolate the platform dependent sections. This can be easily 

achieved as shown in chapter 3. 
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2.2.5.3 Data distribution in HPF 

In CHPF data distribution is straightforward. The lattice indices are dis-

tributed over the abstract processors of the platform, while all matrix in-

dices e.g. spin or colour are local to a. processor. An example is shown in 

section 2.2.5.5 where the distribution of gauge and fermion fields is specified. 

2.2.5.4 Data distribution in Message passing 

For the message-passing mode of operations we assume a regular 4-D problem 

distributed over a 4-1) grid of processors, each processor being responsible for 

a 4-1) sub-lattice. We make the following restrictions on the communications• 

and distribution system: 

0 Only nearest-neighbour and global-sum communications are assumed. 

These are all we need to implement a local grid-based problem. 

• The lattice is assumed to be larger than the grid so that we have no idle 

processors. The sub-lattices may be different sizes on different processors 

as long as neighbouring processors have the same size for their common 

boundaries. 

• To implement red-black preconditioning we need the local sub-lattice to 

be at least two sites wide in the fastest changing index. We address the 

local sites using a parity-site scheme. 

• All processors are assumed to be executing the same program with differ-

ent data, the SPMD model. This allows the communications routines to 

be called by all processors in the same order at approximately the same 

time. 

• To simplify the number of parameters characterising the distribution we 

require that at least two of the local boundary dimensions are even, so 

that both parities of the local lattice have equal lengths. This is a much 

simpler situation to handle than if the two parities had different lengths; 
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we would require separate parameters to describe each parity instead of 

one for both parities. 

C3 One of the local even dimensions should be the fastest changing index, 

e.g. the x-direction. This simplifies parallel file access. 

The MPP codes should arrange the distribution automatically to satisfy these 

requirements. 

Communications 

To shift arrays one lattice site in any direction we use neighbour tables, gather-

scatter tables and boundary tables. 

A neighbour table on a particular processor contains the processor number of 

adjoining processors so we know where to send or receive data. An example 

2-D array of processors, with periodic boundary conditions, is shown in figure 

2.4. 

Figure 2.4: An example of neighbour tables in a 2-1) problem. Periodic boundary conditions 

are implemented here. 



Chapter 2. Design and implementation: global issues. 	 47 

When shifting data distributed across processors the boundary sites need to be 

moved to an adjoining processor. This can be implemented by 'scattering' the 

local data into workspace with a 'tail' region, communicating the tail to the 

neighbouring processor in direction p. (and receiving the tail from the neigh-

bouring processor in direction —p.), then copying the data from the received 

boundary into the body of the workspace region. The workspace area now 

contains the shifted data. The scatter into the workspace moves data which 

remains on the processor to the correct array locations, and data to be moved 

off-processor into the tail region using the gather-scatter tables. Elements com-

posing the boundary can be found using the boundary tables. An example of 

these tables is shown for a single processor of a 2-D problem in figure 2.5. 

Compressed gather-scatter tables 

Conventional gather-scatter tables will contain long sequences of consecutive 

numbers which can be encoded as start and stop indices. The gather-scatter 

operations can then be implemented as a pair of nested loops; the outer loop 

reads the table to find the loop limits used by the inner loops. Both methods 

need to be provided for optimal performance on different architectures and shift 

directions. 

Single processor code 

When the processor grid is only one processor wide in any direction we need 

the ability to ignore the tail and implement local periodic boundary conditions 

directly using the gather-scatter tables. 

2.2.5.5 Data types 

The main data types used in the codes are gauge fields and fermion (4-spinor) 

fields. To see how to implement them we need to consider all indices required. 

Gauge fields 
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The gather-scatter table lists the 
site indices from which to gather 
data in a particular direction. Off-
array elements are mapped into the 
tail. Notice that the parity index of 
the gather-scatter table matches 
that of the source data. This is the 
opposite parity to that of the target 
array, as moving one lattice site 
always involves changing parity. 
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a gather operation, data is gathered 
from the source body and tail into 
the target body. When performing a 
scatter operation, data is scattered 
from the source body and tail into 
the target body. The relevant 
boundary needs to have been copied 
into the tail previously. 

Target array 

Array cell contents 

Site index 	Parity index  

The boundary table lists the site indices 
for those sites on the boundary in a 
particular direction. Notice that the 
parity index of the boundary table 
element matches that of the main array 
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Figure 2.5: Example gather-scatter and boundary tables in two dimensions. 
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Gauge fields can be written with all indices explicit as UM ,(x), and are complex. 

Since the staple sum and other operations need to be red-black decomposed we 

need to split the fields into two parities, even and odd. The gauge configuration 

can then be written in HPF as 

Cfpoint, DIMENSION (0:Nco1our-1,0:Nco1our-1, 

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) :: 
$ gauge_xevn, gauge_yevn, gauge_zevn, gauge_tevn, 

$ gauge_xodd, gauge_yodd, gauge_zodd, gauge_todd 
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK',BLOCK) ONTO QCDPROCS 
!HPF$$ gauge_xevn, gauge_yevn, gauge_zevn, gauge_tevn, 
!HPF$$ gauge_xodd, gauge_yodd, gauge_zodd, gauge_todd 

where Ncolour is the number of colour components, i.e. 3, and Nxby2, Ny, 

Nz and Nt specify the size of the lattice. The mapping, QCDPROCS, onto the 

physical processors must be made for all arrays; for this reason it is stored in 

a header file. An example of such a mapping is 

!HPF$ PROCESSORS QCDPROCS (4,4,4,8) 

which distributes the lattice sizes over the 4 x 4 x 4 x 8 = 256 processors. 

We use a different array for each direction and parity because, as discussed in 

section D.2.2, Connection Machine Fortran does not let us pass a portion of an 

array, as an argument to a subroutine. 

The message-passing version of the gauge field declaration is in many ways 

simpler. The entire set of gauge fields is declared as 

CFTRANS gauge :site :1 :1 :1 
Fpoint gauge(O :Max_array-1, 

$ O:Ncoinp1ex-1,O:Nco1our-1,O:Nco1our1,O:Npar1, O:Ndim-1) 

where the indices are in order; site (the x-index moves fastest, followed by y, z 

then finally ), complex (real then imaginary), colour-row, colour-column, par-

ity (even then odd) and direction. The CFTRANS line allows our pre-processor, 

FTRANS which is also used to compress long identifier names, to rearrange the 

indices as needed for optimisation. By default, the site index is always taken to 

be fastest changing for efficient vectorisation. On cache-based machines it can 
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be more efficient to make the site index move slowest. The indices are divided 

into three types 

The site index, as indicated by ':site'. 

Indices that may be re-ordered, as indicated by ':1'. These are always 

moved together so that the site index is either faster or slower moving 

than all of them. 

Indices that may not be re-ordered, as indicated by':'. These are usually 

used for passing sections of arrays to subroutines, e.g. a single parity or 

direction of a gauge field. 

The site index for the gauge fields incorporates a tail for communications. 

Notice that in HPF we must hard-wire the lattice size into all of the code and 

re-build the executable images whenever the size changes. In message passing 

we can be more flexible, we specify a maximum size, Max-array, at build-time 

and as long as that accommodates the local run-time lattice size we have no 

problems. The reason for this inflexibility in HPF is the CSHIFT operation, 

which shifts array elements cyclically. If we declared our arrays to be larger 

than needed, junk at the unused end of the array would be shifted into the 

space we do use during a CSHIFT. The use of gather-scatter and boundary 

tables in message passing obviates this problem. 

Spinor fields 

The fermion 4-spinor fields are declared in much the same way. In HPF we 

have 

Cfpoint, DIMENSION (0:Nco1our-1,0.:Nspin4-1, 

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) 
$ psi_evn, psi-odd 

!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 
!HPF$$ psi_evn, psi-odd 

where Nspin4 is defined to be '4' as expected. Because the main 4-spinors 

are never used for communication in the message passing codes we do not 
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need a tail space. When we do need to communicate spinors we either use 

2-spinors with tails (for the delta-term routine) or temporary 4-spinors with 

tails (for the dslash routine as discussed in section 5.2). The main 4-spinors 

are therefore 

CFTRAMS psi :site :1 :1 :1 
Fpoint psi (O:Max_body-1, 

$ O:Ncomplex-1,O:Ncolour-1,O:Nspin4-1,0:Npar-1) 

All other data types are introduced as needed in the remainder of this chapter. 
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2.3 The user interface: 
the ECU application 

2.3.1 Introduction 

The user interface is one of the most important from the design point of view 

because often novice users need to use, extend and modify the package in as 

short a time as possible. The design therefore needs to be kept simple while 

at the same time remaining flexible. The complexity of the system introduces 

a large number of different types of file used for information storage; some for 

communicating with the user, some for communicating with the applications 

and others for long-term data storage. There will be a large number of data 

elements common to several file types; this data needs to be easily accessible 

in a variety of formats with strict validation built in for the package to operate 

successfully. 

2.3.2 Design and implementation 

The ECU application is written in ANSI C for portability and strong memory, 

string and file handling abilities. As inexperienced programmers need to work 

on the code we avoid any complicated language extensions such as LEX, YACC 

and C++. 

File system: system context 

The whole file system is shown in figure 2.6. The detailed file formats are 

defined in [90, 93] if required. 

The files requiring most parsing are those read/written by the user. To keep 

the general format under control we apply the following restrictions. 

0 The files are textual with comments (lines beginning with '#') and com- 

mand/parameter pairs. 
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.crun>.ere 
ECU results file. 
Describes operation of 
the run and what 
occurred. 

<r.m>.sig 
Sinal file. A mach- 

<nipp-path><dataset> 
Parallel binary dataset. These files contain 

anism for the user to the raw data, e.g. gauge configuration, 
interrupt a running from the MPP machine. The dataset name 
application in a controlled is created from the relevant physics 
way. parameters. Each of these files will have an 

accom_panying information file constructed 
by ECU when the application terminates. 

<run>.ain 
Application instructions. Simple 
list of instructions indicating 
what the application is to do. 
Created by ECU and optionally 
removed after ECU terminates. 

I Random number 
I state information. 

ECU APPLICATION I This vanes with 
I I I G and platform. <run>.are 

Application results. Simple coded I I 
I list of results from application e.g.I I 
I sweep numbers save 	gauge I I 
Iconfigurations with plaquette I I I values for validation. Optionally I I removed when ECU terminates. I 

.crun>.eri 
Run instructions from 
User. Text file contain-
ing comments and 
command/parameter 
pairs. 

<dataset>.edi 
Data information file, 
one accompanies each 
parallel data file. 
Created by ECU 
from application 
instructions and histor 

<run>.Iog 
A logfile containing only error 
messages generated by ECU and 
the application. Kept small so that 
errors are easy to spot. 

Figure 2.6: The MPP file system. 



Chapter 2. Design and implementation: global issues. 	 54 

o There can only be one command with following parameter per line. The 

command must be separated from the parameter by one or more tabs or 

spaces. Tabs and spaces leading the command or trailing the parameter 

are ignored. 

C3 Blank lines are legal and are ignored. 

• Upper and lower cases are considered identical except within quoted 

strings or paths. 

• The maximum length of a command is 24 characters. The maximum 

length of a line is 80 characters. 

o Information from other applications can be included, e.g. a propagator file 

will include information about the gauge configuration used to generate 

it and the source, and is represented as 

<included-app> { 
<included-command-i> <included-parameter-i> 
<included-command-2> <included-parameter-2> 

These included blocks are parsed to check that <included-app> is legal 

for the file type and that the commands and parameters are valid. These 

blocks cannot be nested. 

Overall design of ECU 

The design of the ECU application is shown in figure 2.7. Notice that ECU runs 

in two modes, before and after the physics application has run. 

Routines for reading user text files, one for each application, all make use of 

a common routine to parse the files and process the data. The advantages 

of this are that the files are constrained to a common format —entirely non-

overlapping routines always result in subtle differences in format— and by 

having a common routine we are forced to use some sort of list of legal elements 
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Figure 2.7: Overall design of ECU. 
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in the files, easy to update and understand. Even when we do not have a 

common routine for file I/O with different applications we still use lists of items 

to reduce code complexity and improve understanding making extensions easier 

to implement. 

The data repository 

At the heart of ECU is the data repository. This is a single module which 

provides a central storage area for all data read from or written to files. Limit 

checking, format conversion, default selection and optional arguments are all 

implemented for scalar or vector quantities in a highly consistent way. In 

addition, automatic consistency checking is built in for when the data structure 

is extended or modified. 

The data is stored in an array of records, each with the following structure. 

name 	A lowercase word (optional '_'s) describing the data element, e.g. 

lattice.ic the lattice extent in the x-direction. 

type 	An enumerated constant defining the data type. Legal types are 

string, path (a string with enforced trailing I), int, float, cho-

ice (different choices e.g. point and loaded for src_type), tsli-

ced_int and tsliced.±loat (time-sliced vector quantities), sct-

sliced_mt and sctsliced.Iloat (spin, colour and time-sliced in-

dexed vector quantities). 

index 	An enumerated type used for all references outside of this module. 

By including this number in the list we can check that all elements 

are in the correct order on first using the DR. 

mm 

max 	String representations of the lower and upper limits on a quantity. 

def it 	The default value to use if we want to read the value of an element 

without first having inserted some data. 
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choices If type is set to choice then this element of the record points to a 

list of strings that may be used for the field. For example, boolean 

variables are represented as a choice between 'no' and 'yes'. 

depend 

depval 	Some choice elements will require different data for the various 

choices, e.g. source type for SOLVER: for a point source we want to 

know the location (psrc...x, psrc_y, psrc.z and psrc_t), whereas 

for a loaded source we want to know the name (lsrc..naxne) and 

the time-slices to use (between tslice..max and tsliceinin). So 

in this example, for psrcx we would have depend and depval as 

src_type and point respectively. 

This facility saves having unnecessary elements in files read/written 

by the user, improving clarity. 

format 	A normal C format string specifying precision used and type of 

output, e.g. pion propagator values have a format of '%13. 10f 1 . 

action An enumerated type defining the action to be taken when a value 

to be inserted into the DR disagrees (or agrees in a few cases) with 

a previous value. Either an error or warning condition is raised. 

result The value of the data element stored as a string. By defining this 

record element as a 'void *' we can easily implement scalar or 

vector quantities. 

A single header file containing a list of enumerated indices and prototypes for 

functions intended for external use provide the only access to this module. The 

use of enumerated types is ideal for validation as most compilers check these 

types strictly. 

Routines exist for the following 

insert 	We can insert a data value by name or index. Insertion can be 
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forced (even if the values disagree) and specify whether data is 

coming from the application or user to get the correct format. 

read 	We can optionally clear the result after reading a data element and 

specify whether the data is going to the application or user. 

display 	It is useful to be able to print out all details about an item in the 

DR to save time finding the documentation. Higher level routines 

can print out all options for a file type or application. 

reset 	If needed, all data elements can be reset to empty. 

Vector type elements can only be accessed after the relevant DR items source-- 

spin, source-colour and time_slice have been set to the correct index values. 

2.3.3 Operation 

Use of the ECU application is usually wrapped up in a shell script as there are 

three main stages. 

Run ECU in 'before' mode to convert user-style run instructions and 

previously written data information files to a form easily understood by 

the application; the application instructions file. Full validation takes 

place during the conversion. Auxiliary files, binary datasets and RNG 

state information, are checked for existence if possible; the ability to 

check for their existence depends on the parallel file system in question. 

Run the application to generate physics. 

Run ECU in 'after' mode to convert the application results log into user-

readable form and write the necessary data information files to accom-

pany the parallel datasets. 

Each production run of an application should be uniquely labelled, this run 

name is given to ECU and the application as sole input; all filenames are derived 
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from this or the relevant physics parameters. 

2.3.4 Operation example: generating a gauge configura-
tion 

As an example of the input and output files used, consider the following input 

file used to create a gauge configuration. 

# Example run instruction file 'example.eri' for GAUGE 

# Set the lattice size to be 164 
lattice_x 16 
lattice_y 16 
lattice_z 16 
lattice_t 16 

# Specify the physics parameters used. 
beta 6.0 

# Specify the starting point and duration of simulation. 
* We use a disordered/random start and generate 5 compound 

* sweeps through the lattice. 
start-type hot 
compound-sweeps 5 

U Specify algorithmic parameters for a single sweep. 

U We use (in order) 
* Random gauge transform. 
U 3 update sweeps, each consisting of 
* 	2 Cabibbo-Marinari updates and 
* 	2 Over-Relaxed updates 
* A reunitarisation. 
gauge-transform yes 
update-sweeps 3 
cm-sweeps 2 
or-sweeps 2 
reunitarise yes 

* Save the plaquette average on every update sweep. 
plaquette_interval 1 
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# Save the configuration every 5th compound sweep, i.e. 
# at the end of the simulation for this run. 
checkpoint-interval 5 

# Seed for initialisation of the random number generator 
* for the hot-start and updates. 
mg-seed 38234765 

* Specify where to put the parallel data files. 
gauge_mpp_path /scratchl/qcd/npstan/ 

It Specify where to put the data information files. 
gauge_fe_path /home2/npst an/example/data! 

To run the application we must first convert the run instructions by issuing the 

command 

ecu -agauge -rexample -mbef ore 

which. produces the file 'example. am' for the GAUGE application. If we then 

run GAUGE giving it the run name 'example' the gauge configurations will 

be generated. We expect the configuration number generated to be 5 x 3 x 

2 x 2 = 60 from the algorithmic parameters and number of compound sweeps 

generated. At the end of the run the parallel data files are left in directory 

'/scratchl/qcd/npstan/' as required. A file is generated for each time-slice, 

i.e. 

Q60U000060TOO Q60U000060T04 Q60U000060T08 Q60U000060T12 
Q60U000060TO1 Q60U000060T05 Q60U000060T09 Q60U000060T13 
Q60U000060T02 Q60U000060T06 Q60U00006OT10 Q60U000060T14 

60UO0006OT03 Q 6 OUO 0006 0T07 Q60U00006OT11 Q60U000060T15 

and possible the lattice RNG data if using the data-parallel code. To tidy up 

after the application we issue the command 

ecu -agauge -rexample -mafter 

which analyses the application results file 'example. are' and produces data 

information files in directory '/home2/npstan!example!data/' as requested. 

Again there is one file for each time-sliced data file and a random number state 
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file if using the message-passing codes:- 

Q60U000060.rng 
Q60U000060T00.edi 
Q60U000060TO1 .edi 
Q60U000060T02.edi 
Q60U000060T03 .edi 
Q60U000060T04 . edi 

Q60U000060T05.edi 
Q60U000060T06.edi 
Q60U000060T07.edi 
Q60U000060T08 . edi 
Q60U000060T09.edi 
Q60U00006OT10 . edi 

Q60U00006OT11 .edi 
Q60U000060T12 . edi 
Q60U000060T13.edi 
Q60U000060T14.edi 
Q60U000060T15 . edi 

The data information files will be of the form 

latti.ce_x 16 

lattice_y 16 

lattice_z 16 

lattice_t 16 

beta 6.0 

update-sweeps 3 

cm-sweeps 2 

or-sweeps 2 

reunitarise yes 

gauge-transform yes 

mg-seed 38234765 

swap-row-col no 
gauge_mpp_path I scratch 1/qcd/npst an! 

gauge_fe_path !home2/npstaxi!example/data! 

sweep-number 60 
plaquette_real 0.5917322655 

plaquette_imag 0.0000462752 

gauge-version 1 

ecu_version 1 

time-slice 0 

tplaquette_real 0.5876517477 

tplaquette_imag 0.0003444789 

gtcsum 42556 

i.e. a record of the algorithmic and physics parameters with the average pla-

quette value for the configuration, versions of applications, time-slice data and 

checksum. A simple record of what has been written is left in file 'example. ere' 

Written gauge configuration Q60U000060 

This could be expanded in the future to include other useful information. 
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If we then wanted to use this configuration to generate others, the next run 

would have to have a modified run instructions file, 'exainplel . en' 

# Example run instruction file 'exainplel.eni' for GAUGE 

# Set the lattice size to be 164 
lattice_x 16 
lattice_y 16 
lattice_z 16 
lattice_t 16 

# Specify the physics parameters used. 
beta 6.0 

# Specify the starting point and duration of simulation. 
# We use the previously generated configuration, number 60, 
# and perform 100 sweeps through the lattice. 
start-type old 
start-sweep 60 
compound-sweeps 100 

# Specify algorithmic parameters for a single sweep. 
# We use (in order) :- 
* Random gauge transform. 
#3 update sweeps, each consisting of 

* 	2 Cabibbo-Marinari updates and 
* 	2 Over-Relaxed updates 
* A reunitarisation. 
gauge-transform yes 
update-sweeps 3 
cm-sweeps 2 
or-sweeps 2 
reunitanise yes 

* Save the plaquette average on every update sweep. 
plaquette_interval 1 

* Save the configuration every 20th compound sweep. 
* This run should therefore generate 100/20=5 configurations. 
checkpoint-interval 20 

# Seed for initialisation of the random number generator 
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# for the hot-start and updates. The zero means that we 
# want to use the saved RNG state information. 
mg-seed 0 

# Specify where to read/write parallel data files 
gauge_mpp_path /scratchl/qcd/npstan/ 

# Specify where to read/write data information files. 
gauge_fe_path /home2/npstan/example/data/ 

# Indicate that we want full validation of input data 
# files. We check the plaquette average for all time-slices, 
# and the whole configuration. A checksum for the data 
# files is calculated and verified against that written in the 
# edi' files shown above. 
validate_plaquettes yes 
validate_tplaquettes yes 
validate_gtcsum yes 

2.3.5 Future extensions 

There are several features which could be added to this application to save 

space and labour. For example 

o The ability to create the next instruction file for the next run, taking 

into account anomalous exit via user signals (implemented through the 

'sig' file). This is particularly useful for running GAUGE where endless 

configurations need to be generated. Automating this stage reduces the 

load on the user when starting new runs. 

o The ability to compress/ decompress data files as needed for a run and 

convert formats if necessary. 



Chapter 3 

Design and implementation: modules common 
to multiple applications 

To make the MPP applications easy to implement we use a library of common 

routines divided into the following areas 

El Communications 

o Parallel I/O 

o Maths 

o Random numbers 

o Timing 

3.1 Communications 

There are two main types of communication used by the MPP codes: local, 

shifting whole arrays one lattice site in a particular direction, and global, sum-

ming a quantity over all lattice sites and processors to give a vector or scalar 

result. Point-to-point communications are not needed in lattice QCD and will 

not be considered. 

HPF implementation 

The HPF implementations of both communication types are relatively straight-

forward: the global sum is provided by the intrinsic routine 'SUM', e.g. 

INTEGER t 
Cfpoint psi (0:Nco1our-1,0:Nspin4-1, 

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) 
!HPF$ DISTRIBUTE psi (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 

Cfpoint, DIMENSION tslice_average (O:Nt-1) 
!HPF$ ALIGN tslice_average(t) WITH psi(O,O,O,O,O,t) 

64 
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C sum over a time-slice. 

FORALL (t0:Nt-1) 
$ tslice_average(t) = SUM(psi(: ,:,:,: ,: ,t)) 

calculates a simple time-sliced sum over all other indices. 

The local communications in HPF are simple in all directions except the x- 

direction because of our parity assignments. Consider figure 3.1 showing both 

the 4-parity used to split the lattice and a 3-parity MOD(y + z + i). Notice 

Abstract proc. (0,1) 

o 	0 

	

0 . 	 E• 

	

(0,1) 	 (1 1 1) 

	

(01 1) 	 (01 1) 

y.direction 	E 	E 

	

E. 	0• 

	

(010) 	 (1 10) 

	

(010) 	 (0,0) 

Abstract proc. (0,0) 

x-direction 

Abstract proc. (1,1) 

o 	0 
0 . 	 E• 

(2,1) 	 (3,1) 
(1,1) 	 (1,1) 

E 	E-3.parity 

E. 	O.4parity 
coordinates  

(2,0) sub-lattice coords 
(1,0) 

Abstract proc. (1,0) 

Figure 3.1: Parity assignments for an xy slice through the origin. The grid lines show the 

abstract processor boundaries. 

that to go from global coordinates (1,0) to (0, 0) does not require any commu-

nications since the two points are on different parity sub-lattices with the same 

sub-lattice coordinates. We can extract a general rule from this diagram if we 

calculate the logical quantity 'decision' where 

decision = (par .EQ. EvenAND. updown .EQ. Negative) 
.OR.(par .E. Odd .AND. updown .EQ. Positive) 

= Dl .OR. D2 

where 'par' is the parity of the source array and 'updown' indicates the direction 

of shifting. The possibilities can be tabulated 
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par updown Dl D2 decision 
Even Positive 0 0 0, Odd 
Odd Positive 0 1 1, Even 

Even Negative 1 0 1, Even 
Odd Negative 0 0 0, Odd 

From the 3-parity equivalents of 'decision' given in this table we can see from 

the first row that if we wish to shift an even 4-parity array in the positive 

x-direction we only wish to communicate those elements where the 3-parity is 

Odd (i.e. global coordinates (1, 1) or (3, 1)). 

To implement these 3-parities we use masks set to '.TRUE. 'on even 3-parity (an 

arbitrary but crucial convention). Because of a restriction in the CM compiler 

we use a different mask for each associated data type. For example, with gauge 

fields we have 

LOGICAL gauge-mask (0 :Ncolour-1 ,O :Ncolour-1, 

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) 
!HPF$ DISTRIBUTE gauge_mask (*,* ,BLOCK,BLOCK,BLOCK,BLOCK) 
!HPF$$ ONTO QCDPROCS 

CALL setup-gauge-mask (gauge-mask) 

where the routine 'setup-gauge-mask' must be called before any communica-

tions take place. 

To hide all details of the x-direction communications from the user we provide 

a set of routines, one for each data type, to perform all shifting operations. For 

example, with gauge fields we would use subroutine 'shift..3by3' defined as 

SUBROUTINE shift _3by3 (gauge-mask, 
$ source, par, dir, updown, dest) 

#include 
#include 
#include 
# include 
#include 
#include 

"implicit .h" 
"build_size .h" 
"build_constants .h" 
"processors .h" 
"precision .h" 
"shift .h" 

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1, 
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$ O:Nxby2-1,0:Ny-1,O:Nz-1,O:Nt1) 

$ source, dest 
INTEGER par, dir, updown, shift_dir 
LOGICAL decision 
LOGICAL gauge-mask (0 :Ncolour-1 ,O :Ncolour-1, 

$ O:Nxby2-1,0:Ny-1,O:Nz1,O:Nt1) 
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 
IHPF$$ source, dest, gauge-mask 

C Convert x,y,z,t into correct indices for shifting arrays. 
C X_shift is defined in shift.h to be 3 

shift_dir = dir - X_index + X_shift 

C move the gauge fields, no matter which direction. 
dest = CSHIFT (source, SHIFT=updown, DlMshift_dir) 

C check whether to set gauge fields back to what they were 
C on certain parities for the x-direction. 

IF (shift_dir .EQ. Xshift) THEN 
decision = (par.EQ .Even_parity .AND. updown.EQ .Negative) 

$ 	.OR. 	(par.EQ.Odd_parity .AND. updown.EQ.Positive) 
dest = MERGE (source, dest, gauge-mask .NEQV. decision) 

END IF 

RETURN 
END 

As an example of use consider the following equation fragment 

res0 (r) = srce (r + ) 

which would be implemented as 

CALL shift_3by3 (gauge_mask, src, Even-parity, 

$ X_index, Negative, res) 

where all constants are defined in header files for ease of use. Note that for any 

other direction than x the parity is ignored as you always change parity. 

MP implementation: initialisation 

The communications details for MP with PVM are dealt with in Appendix E. 

In this section we present a portable interface to the MP communications. 
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Before we can perform any actual communications calls we need to initialise 

all data structures and establish which processor is running which segment of 

the lattice. A portable interface is provided to implement this 

SUBROUTINE init_comius (grid-size, grid_pos, 
$ 	 proc_id, boss_proc) 

INTEGER grid_size(O:Ndim-1), grid_pos(O:Ndim-1), 
$ 	proc_id, boss_proc 

where the parameters are shown in table 3.1. 

grid-size The size of the processor grid in each direction. A size of 8 pro-
cessors is returned as '8', not '7'. 

grid_pos The position of the local processor in the grid. Positions run from 
'0'. 

proc_id A unique number labelling the local processor. 
boss_proc A nominated boss processor. Any operations which should only be 

performed by one processor are performed by the boss processor. 

Table 3.1: Parameters for the init_conuns routine. 

Each process finds the above information from the boss processor. A loader 

program, e.g. pvmgrid for PVM as described in Appendix E, spawns the pro-

cesses and sends the necessary information to them. 

Once we know the local processor position and ID, the boss processor reads in 

the parameters for the application run; F77 file handling is performed by one 

processor only. As we have been told the boss processor and local processor 

numbers it is trivial to tell whether the local processor is the boss or not. 

Parameters are set in other processors .using the routines shown in table 3.2 

Routine Data type 
ig_set integer 
ivg_set vector of integers 
ig_set logical 
lvg_set vector of logicals 
g_set single precision real 
vg-set vector of single prec. reals 
dg-set double precision real 
dvg_set vector of double prec. reals 

Table 3.2: Routines to set data elements on all processors. 
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The interfaces to these routines are as straightforward as you would expect, 

e.g 

Fpoint kappa, v_real(0:9) 

CALL g_set (kappa) 
CALL vg_set (10, v_real) 

Before we make any references to lattice coordinates we need to initialise the 

common block containing all information about the decomposition. This is 

done by calling routine grid-start with the following interface 

SUBROUTINE grid-start (grid-size, grid_pos, 

$ global_latt, proc_id, boss_proc) 

C extents of the global lattice. 
INTEGER global_latt(0 :Ndim-1) 

all other parameters are as specified above for init_comms. The grid-start 

routine sets up the parameters defined in table 3.3. 

Dimension Ndim=4 
localJ.att The local lattice size in each direction. 
is-local Set to TRUE if the grid is only one processor wide in a particular 

dimension. 
local-start Global coordinates of the first local lattice point. 
local-end Global coordinates of the last local lattice point. 
n_bound Number of sites in each boundary. 
np_bound Number of boundary sites of each parity. 

lAs np..comm np_bound except if is-local is TRUE there is no communica- 
tions in this direction so np_comm equals zero. 

Dimension Ndim*Max_w idth 

grid_latts All local sizes. 
gr.starts All local starts. 
gr.ends All local ends. 

Scalars 
base-parity Parity of the first local site. 
n_sites Number of local sites. 
np_sites Number of local sites of each parity. 
g_sites Number of global sites. 
gp..sites Number of global sites of each parity. 

Table 3.3: Parameters initialised by grid-start. 

Now we know the characteristics of the local lattice we can define the shift 
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(gather-scatter) and boundary tables as introduced in section 2.2.5.4. As be-

fore, we have a routine to do this, i.e. 

CALL make-table (is-local, shift-table, 

$ 	 boundary_table) 
CALL cony-shift-tables 0 

acting on the common block variables defined in a header file for ease of use. 

Routine conv_sh if t _t able s only implements compressed gather-scatter tables 

if desired at build-time. Everything is now set up ready for the application. 

MP implementation: global sums 

Global sums are calculated by passing local values up to the boss processor 

creating a cumulative sum. The final value is then broadcast back to the local 

processors, either using the _set routines discussed earlier or a package specific 

method. We use a different routine for each data type as we did with the global 

setting routines, e.g. 

Fpoint r, vr(0:9) 
INTEGER 1, vi(0:12) 

CALL g_surn (r) 
CALL vg_sum (10, vr) 
CALL ig_sum (i) 
CALL ivg_sum (13, vi) 

MP implementation: local shift 

All processors are running the same program so boundary transfers always 

come in pairs; an outgoing send and incoming receive in opposite directions. 

For each communication we make two subroutine calls; one to initialise the 

communication, fstart_com for reals or istart_com for integers, and one to 

end it, fend_corn or iend_com. Between these calls the processor is free to 

perform any other work provided the buffers are not disturbed. The call to end 

the communication will not return until all data is safely received. 

The syntax for these calls is 
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SUBROUTINE fstart_com (len, idir, icmp, ocmp, ilen, 

$ 	 f input, olen, foutput) 
SUBROUTINE fend-corn 	(len, idir, icrnp, ocrnp, ilen, 

$ 	 f input, olen, f output) 
SUBROUTINE istart_corn (len, idir, icmp, ocmp, ilen, 

$ 	 iinput, olen, ioutput) 
SUBROUTINE iend_com 	(len, idir, icrnp, ocmp, ilen, 

$ 	 iiñput, olen, ioutput) 

INTEGER len, idir, icmp, ocmp, ilen, olen, 

$ 	iinput (O:icmp-1,O:ilen-1,0:ocmp-1), 

$ 	ioutput(O:icmp-1,0:olen-1,0:ocmp1) 
Fpoint finput (O:icrnp-1,0:ilen-1,0:ocrnp-1), 

$ 	foutput(O:icmp-1,0:olen-1,0:Ocmp1) 

where the parameters are explained in table 3.4. 

len The length of the communication will be lenx icmp. 
idir Direction of the communication. Values 0, 1, 2, 3 represent a shift 

in the positive x, y, z and t directions; values 4, 5, 6, 7 represent 
negative shifts. 

icmp Number of components inside the length index. 
ocnp Number of components outside the length index. 
Olen Length of the output array. 

I i>output Output array for the send. 
ilen I Length of the input array. 
<f I i> input Input array for the receive. 

Table 3.4: Parameters for the communications routines. 

An example of use is 

INTEGER length 
PARAMETER (length 10) 

Fpoint fin_buff (O:length-1), fout_buff(O:length-1) 
INTEGER iin_buff(0 :length-1), iout_buff(O:length-1) 

C start communication in positive Z-direction 
CALL f start_corn (length,2,1,1,length,f,  in_buff, 

$ 	 length,fout_buff) 

C start communication in negative T-direction 
CALL istart_corn (length,7,1,1,length,iin_buff, 

$ 	 length, iout_buff) 
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C wait for both cornins to end. 
CALL fend-corn 	(length,2,1,1,length,f ,  in_buff, 

$ 	 length,fout_buff) 
CALL iend_coin 	(length,7,1,1,length,iin_buff, 

$ 	 length, iout_buff) 

Further examples are shown in the later sections of this chapter.. 

MP implementation: tidying up 

When the application has finished we need to provide a tidy way to terminate 

the communications package. The routine provided is finish_cornms, i.e. 

CALL finish_cornrns 0 
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3.2 Parallel I/O 

As HPF does not define a standard for parallel I/O we cannot discuss porta-

bility; there is none. All of the platform-specific routines for handling parallel 

I/O operations are therefore concentrated into a few isolated routines as dis-

cussed for the GAUGE application in figure 4.3. We keep the format for the 

large scale data files used on the MPP machines free so that the platform can 

use the fastest I/O possible. For example, on the Connection Machine we use 

the 'fixed machine size' I/O commands which do not pad out the data files 

sis at a premium on most mass-data stores) and allow fast I/O access from 

a. DataVault. When the configurations are used on another machine for post-

processing we must convert the format into the standard flat format defined 

for all applications in the MPP suite. 

We do not have a generic layer of I/O routines in HPF for any data type 

because of the strong type checking; it is easier to have a different routine for 

each data type. An example of the call structure is given in figure 4.3. 

pio_ read _array/ 
pio_write_array 

pio 

	

READ 	BOSS: WRITE 	SLAVE: READ SLAVE: WRITE 

	

init_buft'_file 	load_buff 	dump_buff 
	

file 
FILE HANDLING 

	

block _push 	 block_pull 
MESSAGE PASSING 

	

DATA CONVERSION 	
addsum <unjack> 	qiack> addS sum 	<unpack> 	<pack> 

Figure 3.2: Call structure of the generic message passing I/O routines. 

As the message passing codes use F77 as the Fortran layer, we can use generic 

routines for all data types. The structure is shown in figure 3.2. These routines 

use normal Fortran I/O on a single nominated node, the boss processor. This 
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approach is portable, and in use on the Cray T3D, but not necessarily efficient 

for all machines, especially if they supply routines to perform I/O from multiple 

processors simultaneously. Each call to a 'write' routine creates a new file 

specified by name. We do not support appending to existing files as this would 

again reduce portability. The I/O routines assume that all data associated 

with a single lattice site is located in a contiguous section of the data file: an 

'atom'. To pull data from memory into this atomic form, or vice-versa, we use 

a packing or unpacking routine which is passed down to 'pio_array'. These 

(un)packing routines allow for the index swapping needed to optimise code for 

vectorisation and are specific to a particular data type. For example, 'pack-- 

gauge' and 'unpack-gauge' are used to implement the two-row format needed 

for a gauge configuration. 

The file is opened by the boss processor using routine 'mit_buff_file', a 

normal F77 'OPEN' statement together with any platform-specific qualifiers. 

Operation then depends on whether the file is being read or written. For 

reading files the boss processor loops over the data file indices, reads in a 

block of data contiguous to a certain processor using 'load-buff', adds the 

contents to the checksum and then either unpacks it (local memory) or sends 

the block to a remote processor using 'block-push'. The message passing layer 

is implemented directly in terms of the message passing primitives as shown in 

Appendix E. The remote processors receive the sent block and then unpack 

the contents to local memory. Writing a file is the opposite sequence of events. 

The file formats used are straightforward: for gauge configurations the loop 

ordering is: Real part of complex (fastest moving), Imaginary part of complex, 

Colour row (0-1), Colour column (0-2), Direction a, X, Y, Z (slowest moving). 

And for quark propagators: Real part of complex (fastest moving), Imaginary 

part of complex, Colour (0-2), Spin (0-3), X, Y, Z (slowest moving). 
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3.3 Parallel I/O performance 

We have measured the speed of the I/O systems on various platforms as shown 

in table 3.5 1 . 
 

App. Platform Size Precision 
12 4 

Speed Efficiency 
MB/s % peak 

 16 
Speed Efficiency 
MB/s % peak 

G CM200 8K D 0.140 0.56 0.127 0.51 
G CM200 8K S 0.095 0.38 
G CM5 16 D 0.216 0.68 1.144 3.58 
G CM5 32 D 0.277 0.87 0.561 1.75 

G T3D 8 D 1.62 5.1 2.29 7.2 

G T3D 16 D 1.56 4.9 1.97 6.2 

S CM200 8K S 0.197 

10.355 

0.79 0.162 0.65 
S CM200 8K D 0.181 0.73 
S CM5 16 5 1.11 
S CM5 32 S 0.168 0.53 
S CM5 32 D 0.322 1.01 
S T3D 8 D 1.05 3.28 
S T3D 16 D 0.9101 2.84  

Table 3.5: Performance data for parallel I/O on various platforms. The top part of the table 
shows data from the GAUGE application, the bottom section shows data from the SOLVER 

application. 

It can immediately be seen that the efficiency of these operations is extremely 

low, at most 7% of the peak rate. The main reason for this poor performance is 

that the fields are saved in time-sliced form. This increases the number of files 

which need to be opened and close, with the opening and closing operations 

validated. Our timings are for the whole configuration, not a single read/write 

operation so these extra elements become important. The need to increase 

the length of single data transfers is shown by the increase in performance for 

larger lattices and the reduction in speed for more nodes. 

The CM200 (peak I/O rate of 25 MB/s) and CM5 (peak I/O rate of 32 MB/s) 

timings use the 'fixed memory size' I/O routines which do not pad out files 

to huge lengths, a useful saving in disk space. They can only be read back 

'The platforms are discussed in section 3.6. 
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into a machine of the same size as they were written from, usually not too 

big a restriction as lattice QCD tends to need the whole machine to get high 

performance for computation. 

The T3D (peak I/O rate of 32 MB/s) is an factor of 10 better in performance, 

although still only 7% of peak at best. This poor performance is due to the 

communication between the T3D and its YMP front-end. Test code on the 

YMP can achieve almost peak I/O transfers [101]. The I/O is performed in 

an asynchronous way, the I/O takes place in the background once started so 

that communications with other processors can occur concurrently. This I/O 

method has yet to be optimised; applications programmers at Edinburgh Par-

allel Computing Centre expect a large improvement in the near future. 
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3.4 Maths 

Throughout the MPP codes we need to perform matrix operations, mainly 

multiplication and addition, on a variety of data types. By channeling such 

operations through subroutines, rather than performing them in-line, we incur 

a slight slowing down through the routine call and return but gain by reducing 

code space and providing an easy target area for platform-specific optimisa-

tions. We form the routines into a library as they are not likely to change in 

the future, except for optimisations, and should be isolated from the higher-

level routines. 

SU(3) matrices 

The largest number of routines are associated with the gauge fields used thr-

oughout all codes. In HPF we always operate on a single parity sub-lattice, 

the smallest unit passed around the codes, and in MP we use a variable length 

vector of SU(3) matrices adaptable to all situations. 

There are only two unary operations on gauge fields, taking the trace over colour 

indices and daggering (taking the hermitian conjugate). The implementation 

and use of these routines is straightforward in either HPF or MP model. For 

example in HPF 

Cfpoint, DIMENSION (0:Nco1our-1,0:Nco1our-1, 
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) 
$ a, b 

!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 

!HPF$$ a, b 
Cfpoint, DIMENSION t ( 

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) 
!HPF$ DISTRIBUTE t (BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 

C t = Trace (a) 
CALL trace_3by3 (a, t) 

C b = hermitian conjugate of 'a' 
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CALL dagger_3by3 (a, b) 

C a = hermitian conjugate of 'a' 
CALL r....dagger_3by3 (a) 

Note that we use a convention that the rightmost parameter(s) contain the 

results of the operation. The 'r_' prefix denotes a form of in-place operation, 

this notation is expanded for binary operations as shown below. 

Binary operations on gauge fields are more complicated. Matrix multiplication 

can be used to combine daggered or undaggered matrices and the result can 

be placed in a new matrix, the left operand or right operand. The various 

possibilities are tabulated below. 

hh_3by3 a = bt * c 
hm_3by3 a = bt * c 
mh...3by3 a = b * c 
mm_3by3 a = b * c 

lrJih_3by3 b = W * c 
1rJim_3by3 b = bt * c 
1r..inh_3by3 b = b * c 
1r.inm_3by3 b = b * c 

rriih...3by3 	c = bt * ct 
rr...hm_3by3 	c = bt * c 
rrmh_3by3 c = b * c 
rrinm_3by3 	c = b * c 

In the MP approach we have a further complication in the addressing mode. 

Routine names are written as 

[dest] [operation] [addr mode]_3by3 (n, {T}, 1b,  b, l, c, {l a}, {a}) 

Optional parameters are shown in '{... }'. The 'n.' parameter is the number 

of SU(3) matrices to operate on, 'T' is a gather-scatter table and 'l,' is the 

length of vector x. The destination for the result, '[dest]' can be any of 

'lr_', 'rr_'}, the multiplication operation can be any of {'hh', 'hm', 'mh', 'min'} 

and the addressing mode '[addr mode]' can take any of the following values 

The result is scattered using table T. 

Matrix b is gathered using table T. We cannot use this in conjunc-

tion with destination 'lr_'. 

Matrix c is gathered using table T. We cannot use this in conjunc-

tion with destination 'rr_'. 

Matrix b is a single matrix rather than a vector and is used for all 
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elements of c. We cannot use this with the destination 'lr_'. 

Matrix c is a single matrix rather than a vector and is used for all 

elements of c. We cannot use this with the destination 'rr_'. 

No indirect addressing. 

The are so many possibilities that we only implement those needed according 

to the naming scheme above. 

In HPF, addition of matrices is trivial since the code 

Cfpoint, DIMENSION (0:Nco1our-1 ,O:Ncolour-1, 

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) :: a, b, c 
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 
!HPF$$ a, b, c 

ab+c 

operates on all elements of a, b and c. It is more tedious to do this with the 

MP code as we have four indices to loop over and the possibilities of gather-

ing/scattering arrays. We therefore use subroutines, extending the previous 

naming scheme to incorporate the 'add' operation. An example of such a rou-

tine is '1r_add_rg3by3'. 

SU(2) matrices 

We perform gauge update algorithms using SU(2) subgroups as described in 

Appendix B. To reduce space needed and speed up computation we represent 

these complex 2 x 2 matrices as four real Pauli parameters i.e. 

M22 = m0 1 + im.o• 

e.g. in HPF 

C Npauli is defined to be 4 
Fpoint, DIMENSION (O:Npauli-1, 

$ O:Nxby2-1,O:Ny--1,O:Nz-1,O:Nt-1) :: a 
!HPF$ DISTRIBUTE a (*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 

We only need to perform a few operations on these data objects and they are 
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all local, i.e. no gather-scatter needed. The routines supplied are 

mm_su2 	a = b * c 
dagger....su2 a = bt 
square_su2 a = b * b 

Spinors 

The routines which act on 4-spinors form the basic toolkit for constructing 

different solver algorithms and, as such, are discussed in section 5.2. 

Mixed data-type operations 

All operations performed on mixed types are forced to be local, simplifying 

their interfaces. We summarise the required operations below; ik is a 4-spinor, 

X  a 2-spinor and U an SU(3) matrix. 

su3Jivv 	Xa Ub * Xc 
su3.invv. 	Xa = Ub * Xc 

su3Jkv4 	= (4 * 
su3mv4 	Oa = Ub * ?I)C 

xpgammay Ox = i/ + y& 
xmgammay Ox = Ox - 
gammax 	Ox = 

mm_su2_su3 U = m2X2U 

3.5 Testing the maths routines 

When testing maths routines we need known results generated in as indepen-

dent a way as possible from the production codes. In practice we use the serial 

'gcc' C compiler on a SUN workstation. 
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C ,ç3 
3.5.1 	tt('34jmatrix testing 

The first routines to test are those which operate on SU(3) matrices. If these 

do not work properly, nothing else will. The two matrices 

1.2 	1 r 	11 5.6 9.10 
3.4i 	II 7.8i 	II 11.12i 

13.14 	1 r 	17.18 	1F 21.22 
- 

A= 15.16i 	I I 	19.20i I 	23.24i D 25.26 	it 29.30 	1 33.34 
27.28i 	j [ 	

31.32i 	j 
[ 	

35.36i 

2.3 	11 6.7 	11 10.11 
4.51 I I 	8.9i I I 	12,13i 

B= 14.15 	1F 18.19 	1 r 	22.23 (3.1) 
- 16.17i I 	20.211 I I 	24.25i 

26.27 	1 t 	30.31 	1 t 	34.35 
28.291 if 	32.33i  if 	36.37i 

give the following results when the code works correctly. 

1.2 13.14 25.26 
-3.4i -15.16i -27.28i 

At_ 5.6 17.18 29.30 
- -7.81 -19.20i -31.32i 

9.10 21.22 33.34 
-11.12i -23.24i -35.36i 

0.067973 0.317208 0.515463 
0.192591i 0.441826i 0.629885i 
0.737817 0.118322 -0.305720 

Asu(3)= 0.561411i 0.114478i -0.140976i 
-0.023573 0.020323 -0.000000 
0.313332i -0.822588i 0.473502i 

71 A= 
:;: 	

] 

2.3 14.15 26.27 
-4.5i -16.17i -28.291 

Bt_- 6.7 18.19 30.31 
 -8.9i -20.21i -32.33i 

10.11 22.23 34.35 
-12.13i -24.251 -36.371 
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-134.954 11 -205.375 11 -281.004 1\ 
-813.943i Ji -1827.823i II -2863.356i I I 

- 	-161.683 
A * B 

r -230.585 1 F -306.214 1 I 
- -996.736i II -2304.147i I L-3642. 1 94ii I 

-185.621 1 r -251.066 1 I 	-324.513 	I I 
_1172.996ij [-2750.635ij [-4367.200ij) 

1884.460 1[ 11 	1\ 2231.293 	2572.961 
-6.5001 	I i 	-32.502i 	I I 	-56.542i 	I 'I 

2257.295 1 At B- * F 2708.135 1 I• 3144.305 1 I 
- 19.5011 	I I 	-6.500i 	I I 	-31.332i 	J 

2623.200 1 3169.334 ii 	3693.449 I I  
43.937i ft 	18.727i 	ii 	-6.121i  ) 
351.887 	11 11 	1\ 803.413 	1266.639 
6.880i I I 	83.9351 	I I 	161.7451 

880.863 	1 * A Bt - 
r 2166.895 1 	3489.672 1 I 

 -70.966i I 	6.121i 	I 	79.568i 	j I 
1421.900 1 F 3563.119 	1 5767.262 I 	I 
-148.777i ft -67.327i  ft 	6.121i 	j) 
-134.954 

919.768i 	 1071.063 i 763.703i J  'I 
 -205.375  -230.585 	-251.066  i 

A*B = 	1854.307i 2305.421i 	2726.152i  I 
-281.004 

	

-161.683 	-185.62 1 

	

-306.214 	-324.513  

• 

 

I 
2965.469i L  3719.098i 	4416.165i ) 

3.4 \ 
0.Oi  8.08i I 

I 

	

(3.2) 
 i  

 11.48 
Ahen

- 

[ 

	

11.48 	19.20 	

1J 

	

19.20 	27.28 
 0.Oi 0.Oi 	4.04i  

19.20 F 	27.28 	
1 	

35.36 I 	I 
-8.08i j { 	-4.04i 	0.Oi j) 

3.5.2 Spinor testing 

The routines at the core of the solver perform the matrix operations 

A'=A*D 

All = A t * D 	 (3.3) 

where A is an SU(3) matrix and D is a 2-spinor. Only the colour indices of 

D are involved so if we use our previous definition of A, and define the colour 

indices of D to be 
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37.38 
39.40i 

D 	
I 

41.42 1 I 
[ 	1\ 

= 	43.44i 	I I 	 (3.4) 

45.46 1 I 
47.48i 

then we obtain the results 

/1-310.2756 1\ 
I I 1678.2952iI 
I I -367.353 •1 I 

A*D= 	

4689.9756i1 I 
-440.8045 1 I 

I. 7775.4854ij) 

/1 3825.1992 1 \ 
I 177.7416i I 
14881.34281 I 

At * D= 	_152.5320iJ I 	 (3.5) 

r 5861.2930 I I 
L -122.4120ij) 

3.5.3 Gauge update matrix testing 

When performing gauge updates we use SU(2) subgroups. To test the SU(2) 

maths routines we use the known SU(2) matrices parametrised in terms of Pauli 

matrices 

E = (1,4,3,2) 

F = (5,8,7,6) 	 (3.6) 

which multiply to give 

E * F = (- 60,-24,30,12) 	 (3.7) 

We can then use the previous definition of A to test the multiplication by 

subgroups to get SU(3) matrices: 
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-26.82 	11 -35.26 	11 -42.44 
103.84i 	I I 	145.32i 	I I 	183.92i '1 
26.26 	1 r 	7.58 	1 r 	-4.08 I 

- E*A01- -16.52i 	I I 	-16.16i 	ji -16.16i I 
25.26 	1 I• 	29.30 	I t 	33.34 I 
27.28i 	j [ 	31.32i 	j [ 	35.36i  ) 

1.2 	11 5.6 9.10 
3.4i II 	7.8i I 	11.12i 'I 

-50.52 	1 F 	-58.60 	1 F 	-66.68 I 
- * E Al2- 224.32i 264.72i 305.12i 

-20.24 	1 t 	-36.40 r 	-52.56 I 
-16.16i 	j -16.16i 	] -16.16i  ) 
-38.94 	11 -47.38 	11 -54.56 	1 \ 
188.68i I I 	230.16i I I 	268.761 'I I 

- 
E * A02- 

13.14 	1 r 	17.18 	1 r 	21.22 	1 I (3.8) 
 15.16i I I 	19.20i 	j I 	23.24i 	j 

62.62 	1 r 1 	32.28 

J -28.64i 	j [ 	-28.28i 	j{ -28.281  j 

The final test of the gauge update maths routines is to ensure that Ic and Ui 

required in section B.1.1 are calculated correctly. If we use a complex 2 x 2 

matrix 

0.104820 0.314485 
0.209657i 0.419314i - 
0.684738 0.171185 
0.556348i 0.171185i 

we should get a resultant SU(2) matrix (Pauli parametrised) 

= (0.2555314 1  -0.9032891 )  0.3427882, -0.0356182) 

(3.9) 

(3.10) 

and a Ic of 2.7774645 x 
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3.6 Maths routine performance 

The performance of the maths routines is easily compared on different MPP 

platforms by timing the 'nun_3by3' and 'su3iivv' routines. The first of these, 

'xnm_3by3', is heavily used in the GAUGE application code, and multiplies to-

gether two SU(3) matrix arrays over a single-parity sub-lattice, taking 198 

floating point operations (flops) per lattice site. The second routine, 'su3Jivv', 

forms the core of the SOLVER application, multiplying together a daggered 

SU(3) matrix and a two-spinor. This routine takes 132 flops per lattice site 

and, again, operates on a single-parity sub-lattice. 

Connection Machine CM-200 performance 

The Thinking Machines Connection Machine CM-200 is a data-parallel machine 

running CM Fortran, similar to HPF as explained in Appendix D. The CM-200 

used has 16384 (16K) single-bit processors which are grouped into groups of 32-

bit compound processors. Each of these 32-bit processors has a double-precision 

Weitek floating-point-accelerator processor connected to it. The result is, in 

effect, a 512 processor SIMD computer with a peak speed of 8 Gflop/s. The 

CM-200 can be operated as a single partition of 512 processors or two partitions 

of 256 processors (8K single-bit processors) each with a peak speed of 4 Gfiop/s. 

The software used was CM Fortran Slicewise version 2.1.1-2 (SPARC). 
- 

Size 
- 

Prec. 
12 	lattice  16 	lattice 

Time Speed Efficiency Time Speed Efficiency 
- (secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak) 

- 

8K D 0.852e-2 0.24 6.0 0.161e-1 0.40 10.1 

8K 5 0.674e-2 0.30 7.6 
16K S 0.586e-2 0.35 4.4 0.686e-2 0.946 11.8 

Table 3.6: Performance data for the 'nuu_3by3' routine on a Thinking Machines CM-200 
computer. The CM-200 used to generate this data was clocked at 8MHz for a peak speed 

(16K processors) of 8Gflop/s. 

In tables 3.6 and 3.7 we present data for the performance of the 'mxn_3by3' and 

'su3...hvv' routines on the CM-200 for differing machine sizes and precision. 
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Size Prec. 
121  lattice  iô 	lattice 

Time Speed Efficiency Time Speed Efficiency 
- (secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak) 

8K S 0.331e-2 0.42 10.4 0.555e-2 0.78 19.5 
8K D 0.519e-2 0.26 6.6 

16K* S 0.303e-2 0.45 5.6 0.409e-2 1.06 13.2 
8K* S  .10,. 657e-21 0.66 16.5 

Table 3.7: Performance data for the 'su3_hvv' routine on a CM-200 computer. Entries with 

a are calculated from code with unrolled serial-index loops. 

We can see that the 12 4  lattice does not give as high performance as the 16 

lattice. The CM-200 distributes the arrays across its processors so that each 

dimension is a power of two. This is straightforward in the 16 4  case, the 

decomposition is shown in table 3.8. Note that we are using single-parity sub-

lattices, so the x direction has half the extent of the other directions. The 

12 4  lattice however is padded in the z- and t-directions. This padding results 

in a direct reduction of perform'ance as the padded elements must be avoided 

during computation. The same problem applies to the case of 16K processors. 

124  lattice  16 	lattice 
Direction Physical Local I Phys .*Local Physical Local Phys .*Local 

1 6 6 2 4 8 

Y 4 3 12 4 4 16 
Z 8 2 16 4 4 16 
t 8 2 16 8 2 16 

Table 3.8: Decomposition of the lattice onto the CM-200 processor array (8K processors, or 
256 compound processing elements). The physical extents are forced to be powers of two; the 
product of these must equal the number of compound processing elements (1 x 4 x 8 x 8 = 256). 

The fairly low performance on the CM-200 (only 20% of peak at best) is par-

tially due to not being able to perform both an addition and multiplication on 

each cycle. There are no communications in these two routines, so that cannot 

be reducing performance. Another contributing factor is load on the front-end 

from other users. Since the front-end is responsible for broadcasting instruc-

tions to the processor array performance will be degraded if the front-end is 

required to perform other operations. The CM-200 used is extremely heavily 

'tmed resulting in some loss of performance. 



Chapter 3. Design and implementation: common modules. 	 87 

The increase in performance for the 'su&hvv' routine over 'min_3by3' is probably 

due to the layout of the serial indices in memory. The gauge fields are declared 

as 

Cfpoint gauge (0:2,0:2, 
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt1) 

and addressed in the order row, column. The two-spinor fields are declared as 

Cfpoint chi (0:2,0:1, 
$ 0:Nxby2-1,0:Ny-1,0:Nz1,0:Nt1) 

where the first index is the colour index and the second is the two-spinor index. 

The 'su&.hvv' routine only operates on the colour indices. To obtain a single 

element in a gauge field from multiplying two gauge fields together we loop 

over the columns in the first field and the rows in the second field as shown 

below. 
fXXX\fX. 

	

L..I=I• 	. 	.IIx.. 
. 	..) 	. 	. 	.)'\ X.. 

CM Fortran uses the C convention for fastest-moving index; the column index 

moves fastest. When we use the daggered matrix for the 'su3iivv' operation 

we are in effect doing 

fX.\ fX..\*IX. 

I. 	.I=Ix..Hx. 
. 	 .1 x..)\x. 

so the memory is accessed with the same stride for all arrays, a more efficient 

operation. 

Connection Machine CM-5 performance 

The Connection Machine CM-5 is intended for MIMD programming, although 

it can run the same data-parallel CM Fortran code as the CM-200; no alter-

ations are necessary. It is in this SIMD mode that we use the platform. Each 

node consists of a SPARC processor and 4 vector processors for floating-point 

arithmetic. The peak speed of a node is 160 Mflop/s (for a clock speed of 
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8MHz) resulting in a peak speed for the machine used of 5.12 Gfiop/s (32 

nodes). The machine can be operated as a single partition of 32 nodes, or two 

partitions of 16 nodes each. The software used to create the following data 

was CMOST version 7.3 Final 1 Rev 3 and CM Fortran version 2.1.1-2 (CM5 

VecUnit). 

In tables 3.9 and 3.10 we present data for the two routines under consideration. 

We can see that good efficiency is obtained from the vector processors without 

any optimisation. The 12 lattice is not as big a problem as it was on the CM-

200, the arrays are distributed as shown in table 3.11. There is no padding, 

and therefore no empty elements to worry about. 

- - 

 

Size Prec. 
121  lattice  16 	lattice 

Time Speed Efficiency Time Speed Efficiency 
- (secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak) 

16 D 0.224e-2 0.92 35.7 0.678e-2 0.96 37.4 
16 S 0.496e-2 1.31 51.1 
32 D 0.123e-2 1.67 32.6 0.342e-2 1.90 37.1 

Table 3.9: Performance data for the 'mm_3by3' routine on a Thinking Machines CM-5 com-
puter. The CM-5 used to generate this data was clocked at 8MHz for a peak speed (32 

nodes) of 5.12Gflop/s. 

- 

Size Prec. 
12 	lattice  16 	lattice 

Time Speed Efficiency Time Speed Efficiency 
- (secs) (Gflop/s) (% peak) (secs) (Gfiop/s) (% peak) 

- 

32 S 0.815e-3 1.68 32.8 0.203e-2 2.13 41.6 
32 D 0.100e-2 1.37 26.7 
16 S 0.138e-2 0.99 38.7 

16* S 0.123e-2 1.11 43.5 0.354e-2 1.22 47.7 

Table 3.10: Performance data for the 'su3..hvv' routine on a CM-5. 

Changing from single-precision to double-precision does not halve performance 

as the floating-point vector units operate on 64-bit data. The reduction in 

performance comes from the increased memory-access time required. 

A notable improvement in performance comes from unrolling serial-index loops 

in the code, as indicated by the 16*  entry in table 3.10. The 'DO' loops over 

colour and two-spinor indices are removed completely increasing the code space 
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Direction 
12 	lattice  16 	lattice 

Physical Local Phys .*Local Physical Local Phys .*Local 

X 1 6 6 2 4 8 

Y 4 3 12 2 8 16 
Z 4 3 12 4 4 16 
t 4 3 12 4 4 16 

Table 3.11: Decomposition of the lattice onto the CM-5 processor array (16 nodes). The 
physical extents are forced to be powers of two; the product of these must equal the number 

of vector processors, 4 per node (1 x 4 x 4 x 4 = 64). 

required considerably, but at the same time increasing performance by a few 

percent. The figures for the 'mm_3by3' code are all calculated from unrolled 

code. 

Some our our figures are higher than those obtained by the Wuppertal group 

using vector unit assembler code on the same CM-5 computer [102]. They 

achieve speeds of 1.8 Gflop/s on a single-precision 24 x 48 lattice. One reason 

for this is that the compilers have improved over the last few years to the 

point where it is as good to program the CM-5 in CM Fortran as it is in 

assembler. This is good news for our code portability; we do not have to 

sacrifice performance to gain portability if the compiler technology is as good 

as this. 

Cray T3D performance 

The Cray T3D is a MIMD computer, running our message-passing codes under 

PVM. Each node consists of two DEC-ALPHA processors running at 150 MHz 

with other hardware for communications. The peak speed of a node is 300 

Mfiop/s giving a peak speed for the platform of 38.4 Gflop/s (128 nodes or 

256 processors). The machine can be operated in a large number of partition 

sizes. We use only two sizes, 8 processors and 16 processors. The software used 

to generate the following data was UNICOS version 8.0.2.1, UNICOS MAX 

version 1.1.0.2 and CF77 version 6.1. The hardware used was a T3D/MC256-8 

with a Y-MP4E/264 front-end. 
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In tables 3.12 and 3.13 we present data for the two routines under consideration. 

The T3D uses 64-bit words throughout so there is no advantage in using single-

precision; only double-precision data is presented. 

- - 

 

Size Prec. 
121  lattice 16 4  lattice 

Time Speed Efficiency Time Speed Efficiency 
- (secs) (Gfiop/s) (% peak) (secs) (Gflop/s) (% peak) 

8 D 0.942e-2 0.22 18.2 0.297e-1 0.22 18.3 
16 D 0.468e-2 0.44 18.3 0.148e-1 0.44 18.3 

Table 3.12: Performance data for the 'nun_3by3' routine on a Cray T3D computer. The T3D 

used to generate this data has a peak speed (128 nodes) of 38.4Gflop/s. 

- 

Size Prec. 
12 	lattice 16 4  lattice 

Time Speed Efficiency Time Speed Efficiency 
- (secs) (Gfiop/s) (% peak) (secs) (Gflop/s) (% peak) 

- 

8 D 0.642e-2 0.22 18.3 0.195e-1 0.22 18.5 
16 

1 	
D 0.318e-2 0.43 17.9  

Table 3.13: Performance data for the 'su3iivv' routine on a Cray T3D computer. The T3D 

used to generate this data has a peak speed (128 nodes) of 38.4Gflop/s. 

Overall, efficiency of the code is low at 18% of peak. This is because of the slow 

memory access of the ALPHA processor; memory access takes 24 chip cycles 

as there is no pipe-lining. This is a feature that Cray aim to improve on with 

the T3E computer, but there is little that can be done at present. Because 

there is no padding of the arrays for the 12 4  lattice, performance is extremely 

steady. There is no improvement obtained from the differing memory access 

described above for 'su3hvv' and 'mm_3by3' as the memory-access redundancy 

dominates timing. 
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3.7 Random numbers 

One of the most controversial questions in lattice simulations is: 'which ran-

dom number generator should I be using?' Monte Carlo simulations require 

extremely long period generators with low bit-level and lattice correlations. In 

this section we do not attempt to answer the question, but instead accept that 

the RNG used by the MPP codes must be easily changeable. In order to keep 

the code usable, however, we must maintain a standard interface to the RNGs 

in some way. 

There are two types of RNG potentially used in the codes; lattice and single 

generators. When creating, for example, a local random gauge transformation 

we need a different random SU(3) matrix at each lattice site, hence the need 

for a lattice generator. If we wanted a global gauge transformation however, 

we only need a single SU(3) matrix which is then communicated to all points 

on the lattice for use. The distinction is not so great for the message-passing 

approach, where we can have the same random number generator running on 

all processors with different seeds. 

In the 11FF implementation we have several problems to contend with. Firstly, 

we do not want to have to run a single generator on the host processor and 

then loop over all lattice sites broadcasting numbers as this would be painfully 

slow. We do not have a portable access to the physical processors however, so 

we cannot run a single generator on each processor as is possible in message 

passing. This leaves us two options: we either run a single RNG per lattice site 

or use a machine-specific generator and sacrifice portability. The first option 

must be exercise with caution, the RANMAR [103] modified lagged-fibonacci 

generator used by previous UKQCD message-passing code requires a state table 

of 97 words. Since a quark propagator only requires 24 words per lattice site we 

can see that using RANMAR in this way is not always possible and certainly 
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not practical. There are some generators which can be used in this way, for 

example a simple linear congruential multiplier generator [104, p.2841 which 

only requires 1 word per lattice site, but they are not as likely to have a long 

period. 

A further problem arises in both programming models: how do we initialise 

the generator over the lattice to reduce correlations? Obviously we need to 

give the generator a different seed on each processor or lattice site to extract 

distinct number sequences, but how do we guarantee that the sequences are 

not correlated in some way? This problem is more relevant in HPF when 

using a different generator on each lattice site. The essence of data-parallel 

programming is that all processors execute the same code at the same time; any 

correlations in the random number sequences at the beginning of the simulation 

will remain for the entirety of the simulation. 

We do not have any hard and fast answers to these questions as they vary for 

different generators and become an in-depth research subject themselves. In- 

stead we present a brief survey of the available literature for more information. 

The theory of pseudorandom number generators is best obtained from histor-

ical work by Knuth [105] and Marsaglia [106, 971 or a more recent review by 

Vattulainen et. al. [98]. The various portable RNGs in use are discussed by 

James [107], Marsaglia [103] (one of the few generators with tests included for 

accuracy of implementation), Liischer [108, 109] (implemented on the APE100 

but available in portable Fortran), Cray Research [110] (their RANF generator 

relies on bit-level operations for portability, fine for HPF but not necessarily 

for all F77 implementations) and Vattulainen et. al. (a good review of popular 

generators). Tests which can be performed on RNGs are discussed by Vat-

tulainen et. al. [111, 112, 100, 98] (a comprehensive selection from bit-level 

to Monte Carlo tests), Marsaglia [97], Coddington [99] and Ferrenberg [113]. 
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Random number generators for parallel machines are discussed by Anderson 

[114], Deak [115] and Aluru et. al. [116]. 

Implementation of the module. Since we can pass array sections to sub-

routines in F77, the RNGs are easy to implement for message-passing systems. 

A single routine is needed which selects the required generator, either at build-

time or run-time, and fills the offered array with random numbers. Because we 

cannot pass such array sections in HPF (due to restrictions from some com-

pilers) we need a separate routine for each type of object we are filling with 

random numbers. Seeding the generators is best done through a single com-

mon block variable, used for all generators, so that the driver routine for the 

application does not need to be changed for each application. All of the RNG 

modules can be made to be self- initialising through use of 'SAVE'ed variables. 

3.8 Timing 

We use only one timing routine, 'timer', which conforms with the interface 

used for GENESIS [95]. The interface is 

SUBROUTINE timer (seconds) 
Dpoint seconds 

i.e. the current time in seconds is returned. We only ever use the timer to 

measure time differences so the absolute value is never needed. The insides of 

this routine will need changing for different platforms. 



Chapter 4 

Generating quenched gauge configurations: the 
GAUGE application 

4.1 Requirements 

The pure gauge application, GAUGE, must be able to provide the following 

functionality (see figure 4.1) 

Figure 4.1: Functionality required from the GAUGE application. 

94 
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Initialisation of Markov chain. As discussed in the theory section 

1.3.5 we need to be able to initialise the gauge fields with either an ordered 

start (unit matrices), disordered start (random SU(3) matrices) or load 

a previously saved configuration. 

Update algorithm. As specified in section 1.3.4. We require a local 

gauge transformation, heatbath and over-relaxed updates, and unitarisa-

tion of gauge fields (also useful for creating random SU(3) matrices in a 

disordered start). 

Input and output. We need the ability to load and save gauge configu-

rations in time-sliced form and the accompanying random number state 

information. To save space we store gauge fields in a two-row format (the 

first two rows) and reconstruct the third row on loading. 

There are three possible mechanisms for validating gauge configurations: 

Calculating a 16-bit checksum on the binary data file. This provides 

information on the byte-ordering of the data file if required. It is not 

possible to calculate such a checksum on the Thinking Machines CM-

200 or CM-5, but it is possible on the Cray T3D and workstations. 

The checksum is calculated to agree with the UNIX 'sum' command. 

Calculating a time-sliced plaquette average. This quantity can be 

used to detect the floating-point format of the gauge configuration 

(although most machines conform to IEEE standards now). We 

need a time-sliced average in case any analysis routines need to read 

in a single timeslice only, e.g. when smearing. 

Calculating a plaquette average on the whole configuration. This 

is useful as it is only a single complex number and therefore easy 

to compare with a previously calculated value. The average on the 

whole configuration also tells us whether the time-slices have been 
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read in the correct order. 

There is no easy way to validate random number state information in 

general. Different random number generators have completely different 

sizes and type of state information, and it is not always accessible e.g. 

the FAST...RNG generator on the Connection Machine. The only way to 

check that the I/O works is to periodically check that restarting from a 

loaded configuration yields an identical plaquette average to what would 

have been obtained if updating had not been interrupted. 

Plaquette value saving. We must be able to save plaquette values by 

plane to a separate file. The plaquette is a statistical quantity and can 

only be verified using a separate package; to extract them from the logfile 

in the correct format would be tedious. Information is given in section 4.3 

about testing the plaquette values. 

Emergency termination. We require a mechanism to cause the GAUGE 

application to terminate operation after the current compound update, 

having saved the configuration and random number information. The 

need for this function comes from running batch jobs: if we normally 

save every 200 compound sweeps for example, and the batch job is only 

going to generate 198 sweeps for some unusual reason, then we do not 

want to lose the hours of computer time used. 
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4.2 Design and implementation 

The design of the GAUGE application can be easily seen to break into modules 

on top of underlying common layers (or libraries) as shown in figure 4.2. The 

important features of the design are discussed in order of the modules shown 

in the figure. 

DRIVER 

READ 
	

GAUGE 
	

GAUGE 
	

BROOM 
PARAMETERS 
	

START 
	

SAVE 
	

UPDATE 

ORDERED 
START 

DISORDERED 
START 

I REUNITARISE 

GAUGE 110 

STAPLE/ 

	

PLAQUE1TE 	
RANDOM I/O 

GAUGE 	I I  STAPLE/ 	I 
TRANSFORM 	PLAQUETFE 	REUNITARISE f CABIBBO- 

MARINARI 

REUNITARISE I 

OVER-
RELAXED 

COMMON LIBRARY ROUTINES 

Figure 4.2: Overview of GAUGE design structure. 

4.2.1 Read parameters 

This section of the design is intended to be as sparse and simple as possible 

as it is only intended to convert parameters to a useful form, e.g. integer 0/1 

to boolean . TRUE./. FALSE.. Only vital parameters such as the lattice size or 

beta value are to be validated and displayed. Because Fortran, unlike C, does 
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not provide a standard mechanism for accessing command line arguments, we 

use the shell to provide the 'run-name' on the standard input channel from 

which all filenames for I/O are derived. 

A common block is used to implement the storage of all parameters. We do 

this as there are so many parameters in the list a function declaration would 

become impossibly long. These common block variables are not guaranteed to 

exist outside of 'DRIVER' and 'READ-PARAMETERS' in order to keep the 

design localised. 

The I/O can be implemented in standard Fortran 77 using 'READ' commands for 

both DP and MP approaches. The parameters read in by this module are iden-

tical for both programming environments since the processor decomposition, 

of relevance only for MP, is specified prior to execution of the application. 

4.2.2 Disordered start 

The easiest implementation of this function is to fill the first two rows of all 

gauge matrices with random numbers distributed uniformly in [0, 1], then pass 

the result to 'REIJNITARISE' to convert to STJ(3). 

4.2.3 Gauge I/O 

We need to be able to load and save gauge fields in two-row time-sliced form 

with validation as described in section 4.1 using checksums and/or plaquette 

averages. All primitive I/O operations should be validated since high band-

width data stores can be extremely unreliable. We require timing of the data 

rate for loading and saving of gauge fields as this can become an important 

statistic if checkpointing is performed often. 

When saving a gauge configuration we also write an entry into the gauge 'appli- 

cation results file', which records the progress of GAUGE. Information written 
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includes the version of GAUGE, sweep number and configuration validation 

data. This can be written in Fortran 77 and used for both MP and DP ap-

proaches without alteration. 

Because there is stronger type checking available in HPF than F77 we write 

more subroutines, one for each data type. This implies that there is no generic-

type I/O layer and a large GAUGE I/O layer for HPF, and vice-versa for 

MP. The implementation outline for both of the programming environments is 

shown in figure 4.3. 

An operational issue raised by this module is: when is it safe to save a gauge 

configuration and guarantee reproducible results? Because we save in two-

row form and reconstruct the third row using the 'reunitarise' module it is 

sensible only to save when we have performed a reunitarisation on the whole 

configuration. This is guaranteed by the 'driver' and 'broom update' modules 

which ensure that the last element of a compound update is a reunitarisation, 

and the configuration may only be saved at the end of such a compound update. 

We use a machine-specific file format for parallel data storage as this can usually 

be implemented with a far higher data bandwidth. We require a separate 

utility, easily written in terms of the available library, to transfer files from this 

machine-specific format to a portable flat format. 

Message-passing features. Because of the requirement for optimisation for 

vectorising compilers we need to be able to change the order of the indices 

for the gauge fields and hence the internal storage format. Since the external 

storage format needs to be held constant we have a set of packing/unpacking 

routines to perform conversion. These are discussed in more detail in section 3.2 

HPF features. As can be seen in figure 4.3 we have isolated a set of routines 

underneath the heading 'gauge-parallel-save'. This is done so that the HMC 

application can avoid duplicating code to save its gauge configurations. All 
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gauge_data

- 

 save 

I  

construigauge_name 	gau 	
I 

name creation 	
ge_paraIeI_save 	I RANDOM 110 I 	gaugeai 

	

I 	 11/0 PRIMITIVES 
construct_gauge_are_name  
name creation 	 P77: open, close, I 

	write 

construct_gauge_pbd_name 	I 	I 	I name creation 
IIJOPRIMITIVES I 	I I STAPLE/ 
I Machine specific: I 	I 	PLAQUETTE 

open, close 	 I gauge_par_ 1ave_single 

I I/O PRIMITIVES I 
I Machine specific: I 

	

write 	 HPF implementation 

gauge_dita_save 

construct_gau'ge_name I tslice Thrmat 	I 	I RANDOM I/O I I 	 I 
name creation 	 I 	name creati 

construct_gauge_pM_name 	 + 	i 	I i 	gauge are save 

FSTAPLE~  
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I

!are_n[0MI
TI

V
QUETFE 

i P77: open, close, 

	

GENERIC I/O 	 construct gauge LJ 
name creation 

MP implementation 

Figure 4.3: The structure of the gauge I/O routines. Routines labelled 'name creation' are 

implemented in F77 and used in identical form for both HPF and MP systems. 
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application specific code, i.e. filenames and 'are' file format, is executed above 

this heading. There is an option to swap row and column indices when loading 

and saving the gauge fields in HPF for backwards compatibility with earlier 

Connection Machine code. This is not required for MP as there are no flat 

configurations in that format. 

Dataset names are kept as short as possible and reflect the important physics 

content. The gauge dataset name is of the format 

name root 
10 

bUuuuuuTtt 

where 'Q'  represents quenched, 'bb' is INT(/3 x 10), 'Uuuuuuu' is the elemental 

update number and 'Ttt' is the time-slice number. All numeric fields are zero 

padded. 

4.2.4 Reunitarise 

The theory of this module is discussed in section B.5 and the structure shown 

in figure 4.4. The structure shown is duplicated for routines to handle a sin-

gle SU(3) matrix, rather than a lattice full, as is needed by the global gauge 

transform. The module is designed as a set of operations on row vectors so 

they can be re-used as necessary. Regeneration of gauge fields is performed by 

using 'cross3vec' after loading in the two-row formatted fields. 

4.2.5 Staple/plaquette 

The staple and plaquette calculation, as discussed in section B.3, forms the core 

of the GAUGE update mechanism and contains all of the local communications 

used in the application. Although there are several stages to the algorithm, 

it is easily built in terms of the maths and communications layers defined 

previously. The call structure of the module is shown in figure 4.5. Note that 
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reunitanse_gauge 1. 
Operates on whole 
configuration (HPF). 

reunitarise_3by3 
Operates on single parity 
sub-lattice (HPF) or 
whole configuration (MP). 

regenerate_gauge 
UP only. 

Row I i 
Utilities 	norm_3vee 	 orthog3vec cross_3vec 

Normalises a 3-vector 	Creates a vector 'v' Creates the third row 
as in equation D.10. 	orthogonal to vector u' as the conjugate cross 

as in equation D.12. product o the first two 
rows as in equation 
D.13. 

Figure 4.4: Structure of the reunitarise module. 

the message-passing version is far more complex due to the need to explicitly 

start, wait for, and stop communications. This introduces the need for a wider 

range of maths routines to perform in-line gathers of communicated arrays. 

The implementation in both DP and MP models is shown below. 

One feature of the design of the staple sum is that the plaquette can be cal-

culated from a single parity in-line with the staples. The plaquette value thus 

obtained is therefore that at the start of the update, rather than at the end 

as would normally be calculated. However if the user does not mind this un-

orthodox method of presentation a large amount of time is saved from having 

to recalculate the staple explicitly for the plaquette. 

HPF implementation. In HPF this algorithm is easily implemented as fol-

lows (routine any-staple in file staplegun . HPF). We are working in the jt, ii 

plane; refer to figure 4.6 for labels used in the following discussion. 

Top staple 

1. Move 3toA. 

CALL shift_3by3 (gauge-mask, u_mu_notpar, 
$ notpar, flu, Negative, tempi) 
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• staple sum 
control 

stapl_gun plaqttette 
selects Correct gauge creates plaquetle averages 
sub-lattices for the 
plane selected 

from staples 
fields 

and gauge 

any staple 
creates top and MATHS LAYER: 
bottom staples hh_3by3, mm_3by3, 

I COMMS LAYER: I 	MATHS 
shift_3by3 	 hh_3by3, 

	

trace_3by3 	 i 
LAYER: 	i mm_3by3 	I 

HPF implementation 

MATHS LAYER: 	I 	
extractJ)laquetta 

add_rg_3by3, lr_add_3by3, 
rr_mm 3by3, hh_rg_3by3, I lr_add_rg_3by3 	 I MATHS LAYER: 	I COMMS LAYER: 

I tre_3by3 	i 	I dvg_sum 

copy 	bound! 	queue_gaige_boundI 	t1nish_gaue_bound/ _gaige I MATHS LAYER: 
copy_staple)ound 	queue_staple_bound 	finish_stap1e_bound hm_3by3, hh_19_3by3, 

I 	 I  I rr_ into _lg_3by3 

ICOMMS LAYER: 	I 
I gather—generic, fstart_com, 	I 
I fend_corn 	 I 

MP implementation 

Figure 4.5: Call structure of the staple sum and plaquette module for both HPF and Message 

Passing implementations. 
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B 	 1.-c 

TOP 
2 	STAPLE 

A 	 tD 

5 
	

7 

17 
	

P 

6 

Figure 4.6: Labelling of links as used in the algorithmic description of the creation of the 

staples. 

Multiply 3t x 

CALL hh_3by3 (tempi, u_flu_par, temp2) 

Move 4 to A. 

CALL shift_3by3 (gauge-mask, u_nu_notpar, 

$ notpar, mu, Negative, staple-bottom) 

Multiply 4 x (3t  x  2t). 

CALL min_3by3 (staple-bottom, temp2, staple-top) 

Bottom staple 

Move 7 to F. 

CALL shift_3by3 (gauge-mask, u_flu_par, 

$ par, mu, Negative, temp2) 

Multiply 7t  x 

CALL hh_3by3 (temp2, u_mu_flotpar, tempi) 

Multiply (7t  x  6t)  x 5. 

CALL miu_3by3 (tempi, u_nu_notpar, temp2) 

Move bottom staple to A. 
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CALL shift_3by3 (gauge-mask, temp2, notpar, 

$ nu, Positive, staple-bottom) 

MP implementation. Using the message-passing model we can overlap com-

munications on one staple with calculation on the other as follows (routine 

make-staple-pair in file staple-sum. F). 

Send 3 to A. 

C set up communications direction (-ye nu) 
comdir = nu + Ndim 

C .perp is a perpendicular direction to the plaquette 
C plane, whose tail is used as workspace. 

CALL copy_gauge_bound(perp,mu,notpar,np_comin(flu), 

$ 	 boundary_table(0,comdir,notpar) ,u) 
CALL queue_gauge_bound(comdir ,perp ,mu ,notpar ,n 

$ 	 p_comm(nu) ,u) 

Meanwhile, calculate 6t x 5. 

CALL hm_3by3(np_sites, 
$ 	Max-array, u(0,0,0,0,notpar,mu), 

$ 	Max-array, u(O,O,O,O,notpar,nu), 

$ 	Max-array, down-staple) 

Wait for 3 to finish sending, store the communication number for the 

multiply. 

CALL finish_gauge_bound(comdir,perp,mu, 

$ 	notpar,np_comm(nu) ,u) 
lastcom = comdir 

Send 7 to F. 

comdir = mu + Ndim 
CALL copy_gauge_bound(perp,nu,par,np_conun(mu), 

$ 	 boundary_table(0,comdir,par) ,u) 
CALL queue_gauge_bound(comdir,perp ,nu ,par, 

$ 	 np_comm(mu),u) 

Meanwhile calculate 3 1  x 2 ,  gathering 3 as needed. 

CALL hh_lg_3by3(np_sites, 
$ 	shift_table (O,lastcom,notpar), 

$ 	Max-array, u(0,0,0,0,notpar,mu), 

$ 	Max_array, u(O,O,O,0,par,nu), 
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$ Max-body, up-staple) 

Wait for 7 to finish sending, store the communication number for next 

multiply. 

CALL finish_gauge_bound(comdir,perp,nu, 

$ 	par,np_comm(mu) ,u) 
lastcom = comdir 

Send 4 to A. 

comdir = mu + Ndim 
CALL copy_gauge_bound(perp,nu,notpar,np_coinin(mu), 

$ 

	

	 boundary_table(O,comdir,notpar) ,u) 
CALL queue_gauge_bound(comdir ,  , perp , nu , notpar, 

$ 	 np_comm(mu),u) 

Meanwhile multiply 'if  x  (6 1  x 5), gathering 7 as needed. 

CALL rr_hm_lg_3by3(np_sites, 

$ 	shift_table (O,lastcom,par), 

$ 	Max-array, u(0,0,0,0,par,nu), 

$ 	Max-array, down-staple) 

Wait for 4 to finish sending. 

CALL finish_gauge_bound(comdir,perp,nU, 

$ 	notpar,np_comm(mu) ,u) 
lastcom = comdir 

Send lower staple to A. 

comdir = nu 
CALL copy_staple_bound(np_comm(nu), 

$ boundary_table(0,comdir,notpar), 

$ 	u(0,0,0,0,notpar,perp), down-staple) 
CALL queue_staple_bound(np_coinm(nu) ,comdir, 

$ 	u(0,0,0,0,notpar,perp),down_staple) 

Meanwhile calculate upper staple = 4 x (3t  x  2t),  gathering 4 as needed. 

CALL rr_mm_lg_3by3(np_sites, 

$ 	shift_table(0,lastcom,notpar), 

$ 	Max-array, u(0,0,0,0,notpar,nu), 

$ 	Max-body, up-staple) 

Wait for lower staple to finish sending. Leave the routine which uses the 

staples to gather in. 
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CALL finish_staple....bound(np_COUUU(flU) ,comdir, 

$ 	u(O,O,O,O,notpar,perp) ,down_staple) 

4.2.6 Random I/O 

The random number I/O is relegated to a separate module from gauge I/O as 

there could be several optional RNGs requiring different I/O handling. If we 

are using a machine-specific RNG supplied through a library, e.g. 'FASLRNG' on 

the Connection Machine, we may have very little control over the I/O, having 

to use a couple of supplied functions. If we are using a portable RNG, the state 

information data structures still vary enormously. For this reason we provide 

a separate implementation of the I/O for each random number generator used. 

HPF implementation note. The 'FASL.RNG' generator mentioned above 

introduces further subtle problems. In our testing of the HPF codes on the 

Connection Machine this has been our chosen generator, for reasons discussed 

in section 3.7, but using a larger state table than the default for better perfor-

mance. As we are not using the default sizes we must initialise the generator 

before loading the old state tables so the sizes are set correctly as shown in the 

following code fragment, otherwise the library assumes you want the default 

sizes and gives non-reproducible results. This subtle bug took a long time to 

track down! We advise use of portable generators where possible to avoid such 

problems. 

C initialise the generator with our state table size 
CALL cmf_lattice_init_rng 0 

C 'path' contains the full path to the saved RNG 
C state information. Open the file. 

CALL CMF_FILE_OPEN (in_unit, path, ios) 
IF (ios .LT. 0) THEN 
WRITE (mess_buff,20) in_unit,ios, path 

20 	FORMAT ('Unit : 1 ,12,' ios : 1 ,13,' Path : ', A) 
CALL status-message (mess-buff, 'cmf_rng_load') 
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CALL error-message ('Error opening file.', 

$ 	'cmf_rng_load', Err-file-error) 

END IF 

C seek to the beginning of the file and read in the 

C data. 
CALL CMF_FILE_REWIND (in_unit, ios) 
CALL RESTORE_FAST_RNG_TEMPS (in_unit , ios , ier) 
IF (ier .NE. 0) THEN 

WRITE (mess_buff,30) ios, ier, path 

30 	FORMAT ('ios : 1 ,I3,' ier : 1 ,I3,' path 	',A) 
CALL status-message (mess-buff, 'cmf_rng_load') 
CALL error-message ('Error opening/reading file.', 

$ 	'cmf_rng_load', Err_file_error) 
ELSE 

WRITE (mess_buff,462) ios 

462 	FORMAT ('RESTORE_FAST_RNG_TENPS read ',IlO,' bytes') 
CALL status-message (mess_buff, 'cmf_rng_load') 

END IF 

C close the file. 
CALL CMF_FILE_CLOSE (in-unit, ios) 
IF (ios .LT. 0) THEN 

WRITE (mess_buff ,20) in_unit, los ,path 
CALL status-message (mess-buff, 'cmf_rng_load') 
CALL error-message ('Error closing file.', 

$ 	'cmf_rng_load', Err-file-error) 

END IF 

The initialisation is performed by 

C Need to set up the weedy random number generator first to 
C put values in the state tables for fast-mg. Important 

C that the seed 
C for weedy random number generator is reproducible. 

dummy = RAND (mg-seed) 
CALL CMF_RANDOMIZE(mng_seed) 

C Now set up the fast mg. 
CALL INITIALIZE_FAST_RNG( 

$ 	cmf_rng_table_lag, cmf_mng_short_lag, 

$ 	cmf_mng_width, error-code) 
init_cmf_rng = .TRUE. 
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4.2.7 Gauge transform: U(x) -* V(x)U, tL (x)Vt(x + j2) 

As with the staple sum, this is easy to implement in terms of the maths and 

communications layers. In HPF this would be written 

C Even parity sub-lattice 
CALL shift_3by3 (gauge-mask, trans-odd, Odd-parity, 

$ 	mu, Negative, tempi) 
CALL mh..3by3 (U_mu_evn, tempi, temp) 
CALL mxn_3by3 (V_evn, temp, U_mu_evn) 

C Odd parity sub-lattice 
CALL shift_3by3 (gauge-mask, V_evn, Even_parity, 

$ 	mu, Negative, tempi) 
CALL mh_3by3 (U-mu-odd, tempi, temp) 
CALL mm_3by3 (V-odd, temp, U_mu_odd) 

while in MP we would write 

C copy low bound of v(notpar) to v(par) tail. 
C dir' is the correct communications direction 

CALL copy_t_bound(par, np_comm(mu), 

$ boundary_table(0,dir,notpar) , v) 

C queue send in -ye mu dir v(par) tail -> v(notpar) tail 
CALL queue_t_bound(dir, par, npcomm(mu), v) 

C U  = v  u  
CALL rr_inxn_3by3 (np_sites, 

$ Max_array, v(0,0,0,0,par), Max-array, 

$ u(0,0,0,O,par,mu)) 

C finish send 
CALL finish_t_bound(dir, par, np_comm(mu), v) 

C U  = u 	v (x+mu) 
CALL lr_mh_rg_3by3(np_sites, 

$ shift_table(O,dir,notpar), Max-array, 

$ u(0,0,0,0,par,mu), Max_array, 

$ v(0,0,0,0,notpar)) 
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4.2.8 Cabibbp-Marinari update 

There are two points of interest in this module. 

The creation of the random a 0  lattice, see theory in section B.1.2, can be 

performed using only two temporary vectors as shown in the following 

HPF code. 

C generate R 
CALL lattice...fpoint_rng (mg-get-routine, 

$ epsilon, tempi) 
C generate R' 

CALL lattice_fpoint_mng (mg-get-routine, 
$ epsilon, temp2) 

C X=-ln(R) *alphainv 
templ=-LOG(templ)*alphainv 

C C = cos - 2 (2*PI*R') 
temp2CDS (two_pi*temp2) 
temp2temp2*temp2 

C A=X*C 
tempi = tempi * temp2 

C generate R' 
CALL lattice_fpoint_rng (mg-get-routine, 

$ epsilon, temp2) 
C X'-ln(R')*alphainv 

temp2 =-LOG(temp2)*alphainv 
C delta = X'+A 

tempi = tempi + temp2 
C generate R''2 

CALL lattice_fpoint_rng (mg-get-routine, 
$ epsilon, temp2) 
temp2 = temp2 * temp2 

C T = 1-delta/2 
tempi = 1.0-(temp.1*0.5) 

When implementing the local Metropolis accept/reject stage in HPF it is 

inefficient to loop over the lattice sites as this would happen on the front-

end processor causing a. bottleneck to occur. Instead we create whole 

lattices of random numbers at a time and insert new numbers to pass the 

accept/reject where failures occur using the 'ANY' and 'WHERE' intrinsics. 
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C Generate the first arrays of random numbers in 
C 'dest' and 'compare'.. 

CALL test_aO (mg_get_routine, 

$ alphainv, dest, compare) 

C While any sites fail the test generate fresh test 
C numbers. 

DO WHILE (ANY (compare .GT. dest)) 

C We need to setup array everywhere for reject because WHERE 
C can only have assignment operations inside clause, no 
C function calls. 

CALL test_aO (mg_get_routine, alphainv, 
$ 	temp_aO, temp-compare) 

C Replace the failing numbers 
WHERE (compare .GT. dest) 

compare = temp-compare 
dest = temp_aO 

END WHERE 

C Keep going until all pass. 
END DO 
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4.3 Gauge testing 

4.3.1 Over-relaxation testing 

The over-relaxation algorithm, as described in sections 1.3.2 and B.2, should 

preserve the value of (ReTr uOMV) (averaged over all planes jL, ii). This can 

be seen clearly in real plaquette data as shown in figure 4.7. Of course, if the 

over-relaxed algorithm does nothing at all the same output will be obtained, so 

we must examine other quantities as well: the imaginary part of the plaquette 

should be randomly distributed around zero as shown in figure 4.8 and the 

values of the real part of the plaquette for single planes should fluctuate as 

shown in figure 4.9. 
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Figure 4.7: Real part of plaquette averaged over all planes. This data was obtained from a 

Thinking Machines CM-5 using one Cabibbo-Marinari (heatbath) elemental sweep and four 
over-relaxed elemental sweeps per compound sweep with ,3 = 3.0. The plaquette is conserved 

between over-relaxed sweeps as can be seen in the expanded graph on the right hand side. 
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Figure 4.8: Imaginary part of plaquette averaged over all planes. This data is from the same 

run as that in figure 4.7. The plaquette is not conserved between over-relaxed sweeps. 

Figure 4.9: Real part of plaquette for the xy-plane only. This data is from the same run 

as that in figure 4.7. Note that the plaquette for the single plane is not conserved between 

over-relaxed sweeps. 
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4.3.2 Heatbath testing 

The Cabibbo-Marinari heatbath updates are intrinsically difficult to test as 

they use random numbers to create the required distribution P(ao)dao  as shown 

in sections B.1 and B.1.2. We can however easily test that the distribution 

generated is correct for a range of parameters. This test is shown in figure 4.10. 

L;J 

2 

0 L1 	I 	I 	I 

—1.0 	—0.5 	0.0 	0.5 	1.0 
X 

Figure 4.10: Random number distribution for Cabibbo-Marinari heatbath update. The 

distribution shown is P(x) = N'V'l - x 2e, where the normalisation factor N = 
Both the ideal distribution and one generated by the MPP codes are shown. 

To test the rest of the heatbath algorithm, we need to examine the plaquette 

values as a function of 3. To find data to compare with we examine the strong 

coupling expansion, for low 48, and data produced by Lepage and Mackenzie 

[10] for high 6. Note that we do not expect to agree exactly with the figures 
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quoted because of differences in lattice size and algorithmic parameters, the 

plaquette is a statistical quantity which will fluctuate. However the plaquette 

values should agree within errors over the whole range of test data from /3 = 3.0 

to /3 = 9.0. If we get good agreement over this wide range we can be certain 

that the code is working. 

4.3.3 Strong coupling expansion: validation at low 0 

The strong coupling expansion is a power series in 8 valid for high values of 

the coupling g, hence low values of 6= ±-. The coefficients in the series for 

the free energy have been presented by Edgar et. al. [117] (0(13 6)) and Balian 

et. al. [118, 119] (Q(/316)) from summation of graphs as 
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in d dimensions, where =-L. By making the substitution 8 = 6, we can 

calculate the average value of the plaquette in 4 dimensions to be 

(ReTo) = 
1dF(3) 
6d/3 
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This expansion has been plotted in figure 4.11 for various orders in order to 

establish a threshold for the accuracy of the expansion. By comparing measured 

plaquette values against those obtained from the expansion, we can validate 

the software at low values of /3. Suggested 8 values and plaquette averages are 

shown in table 4.1. 

(ReTr uOM) 

2.0 0.12881138(1) 
2.5 0.1659980(4) 
3.0 0.205047(5) 
3.5 0.24629(5) 
4.0 0.2907(4) 

Table 4.1: Plaquette averages from the strong coupling expansion for several 6 values. The 
values presented are calculated from the average of the 14th and 15th order expansions. 

Plaquette data measured on different platforms with various algorithms are 

shown in figure 4.12. We plot both symmetric and squashed lattice data for 

comparison. The squashing should raise the effective /3 value and hence the pla-

quette average over the squashed planes. This gives us information on whether 

the individual directions are treated correctly in the code. The x-axis values 

have the following meanings 

A: Reference data from the strong coupling expansion. 
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Figure 4.11: The strong coupling expansion of the average plaquette plotted against /1 = 

where g 2  is the coupling constant for QCD. Plots are shown for the expansions up to order 
N-1 It can be seen that the 10th and 15th order expansions are only valid up to i 3  = 4.0. 
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B: Data from the MPP codes with a symmetric lattice. 

C-F: Data from the MPP codes on various platforms (both message-passing 

and data-parallel) squashed in the x, y, z and t directions respectively. 

The crosses show data on a 16 x 2 lattice averaged over those planes 

containing the squashed axis. The diamonds are data on the same lattice 

averaged over planes not containing the squashed axis. The bursts show 

data on a 16 x 4 lattice averaged over squashed planes, and the squares 

show the unsquashed planes for the same lattice. 

The data for ',3 = 3.0 is not affected by the squashed lattices as would be 

expected, whereas for /3 = 4.0 the squashing is changing the effective /3 value. 

The deviation of the MPP data for /3 = 4.0 from the strong coupling expansion 

could be caused by the breakdown of the expansion at that 3 value. The 15th 

order expansion shown in figure 4.11 is higher than the 10th order so this could 

explain why the theoretical value shown is higher than the Monte Carlo data. 

4.3.4 Lepage and Mackenzie data 

In [10] Lepage and Mackenzie discuss lattice perturbation theory and present 

Monte Carlo plaquette data to compare with their coupling constants. Their 

data is presented in table 4.2. 

The data from the MPP codes running both message-passing and data-parallel 

on different platforms is presented in figures 4.13 and 4.14. The x-axis is 

explained in the previous section. 

We can see that the symmetric lattice data from the MPP codes agrees with 

the data from Lepage and Mackenzie (both were measured on 16 lattices). On 

asymmetric lattices the plaquette values for squashed planes are higher than 

the unsquashed planes. The size of this difference increases with 8 and the 
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Figure 4.12: Plaquette data for 8 = 3.0 and j3 = 4.0. See text for explanation. The data 
on these graphs was generated with differing update parameters on different platforms; the 

results are consistent within errors indicating that the code is working properly. 
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/3 in 	(ReTr UD,LV) (ReTr U0 ,) 
5.7 0.5995 0.5491 
6.0 0.5214 0.5937 
6.1 0.5025 0.6050 
6.2 0.4884 0.6136 
6.3 0.4740 0.6225 
6.4 0.4610 0.6306 
9.0 0.2795 0.7562 
12 0.1954 0.8225 
18 0.1224 0.8848 

Table 4.2: Lepage and Mackenzie plaquette data. This was calculated on a 16 lattice. 
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Figure 4.14: Plaquette data for /3 of 9.0. See text for explanation. 
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extent of the squashing as expected. 

Our simulation data agrees well with Lepage and Mackenzie's numbers for the 

unsquashed lattices at all /3 values, indicating that the code is working properly. 

The squashed lattice data shows that the expected planes receive the higher 

plaquette average so we know that the different directions are treated correctly. 
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4.4 Gauge performance 

The performance of the GAUGE application is of great interest as it is used 

for long periods of time to generate gauge configurations. Slight increases in 

the speed of code can result in a few more configurations being generated. In 

this section we present data for the timing and efficiency of different elements 

of the update algorithm on the three platforms discussed in section 3.6; the 

Cray T3D, Connection Machine CM200 and Connection Machine CM5. We 

generated the data at a 8 value of 5.9 with a disordered start on 12 and 16 

lattices. 

Random Local Gauge Transform 
12 	lattice 1 	iô 	lattice 

Platform Size Precision Time Speed Efficiency Time Speed Efficiency 
(secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak) 

CM200 8K D 0.44 0.084 2.1 0.405 0.289 7.3 
CM200 8K S 0.25 0.150 3.8  

CM5 16 D 0.079 0.466 18.2 0.229 0.511 20.0 
CM5 16 S 0.163 

10.122 
0.718 28.0 

CM5 32 D 0.050 0.741 14.5 0.957 18.7 
T3D 8 D 0.639 0.058 4.8 1.05 0.111 9.3 
T3D 16 D L0.545 0.068 2.8 L0.752 0.156 6.5 

Table 4.3: 

Cabibbo-Marinari update  
12 	lattice 16 	lattice 

Platform Size Precision Time Speed Efficiency Time Speed Efficiency 
(secs) (Gflop/s) (% peak) (secs) (Gfiop/s) (% peak) 

CM200 8K D 5.38 0.0691 1.8 5.64 0.209 5.3 
CM200 8K S 3.26 0.114 2.9  

CM5 16 D 1.01 0.368 14.4 2.97 0.396 15.5 
CM5 16 5 2.19 0.537 21 
CM5 32 D 0.64 0.584 11.4 1.61 0.729 14.2 
T313 8 D 3.77 0.099 8.3 10.1 0.116 9.7 
T3D 16 D 2.32 0.160 6.7 5.52 0.213 8.9 

Table 4.4: 

Observations about scaling performance with lattice size, machine size and 

precision have already been made in section 3.6, they hold for these results as 

well 
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Over-relaxed update  
121  lattice 16 	lattice 

Platform Size Precision Time Speed Efficiency Time Speed Efficiency 
(secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak) 

CM200 8K D 4.53 0.0686 1.7 3.89 0.252 6.3 
CM200 8K S 2.47 0.126 3.2  

CM5 16 D 0.667 0.466 18.2 2.03 0.483 18.9 
CM5 16 5 

10.413 
1.36 0.720 28.1 

CM5 32 D 0.753 14.7 1.09 0.898 17.5 

T3D 8 D 2.17 0.143 11.9 6.74 0.146 12.2 

T3D 16 D 1.13 0.275 11.5 343 0.286 11.9 

Table 4.5: 

Reunitarise  
12 	lattice  16 	lattice 

Platform Size Precision Time Speed Efficiency Time Speed Efficiency 
(secs) (Gflop/s) (% peak) (secs) I(Gflop/s) (% peak) 

CM200 8K D 0.0639 0.203 5.1 0.108 0.370 9.3 

CM200 8K 5 0.0472 0.275 6.9  
CM5 16 D 0.0224 0.580 22.7 0.0651 0.614 24.0 
CM5 16 S 0.0627 

10.0352,  
0.638 24.9 

CM5 32 D 0.0123 1.057 20.6 1.136 22.2 

T3D 8 D 0.159 0.0818 6.8 0.502 0.080 6.7 
T3D 16 D 10.0796, 0.163 6.8 0.251 0.159 6.6 

Table 4.6: 

Compound update (GT+2CM+20R+RE) 
124  lattice 16 	lattice 

Platform Size Precision Time Speed Efficiency Time Speed Efficiency 
(secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak) 

CM200 8K D 21.4 0.0660 1.7 20.2 0.221 5.6 
CM200 8K S 12.18 0.115 2.9  

CM5 16 D 3.86 0.366 14.3 10.78 0.414 16.2 
CM5 16 S 7.81 0.572 22.3 

CM5 32 D 2.73 0.524 10.2 5.99 0.745 14.6 

T3D 8 D 13.1 0.0992 8.3 35.7 0.115 9.6 
T3D 16 D 7.92 0.164 6.8 19.3 

1 	
0.213 8.9 

Table 4.7: 
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There are several notable features in the performance data shown. The Cab-

ibbo-Marinari update is slower than either the gauge transform or over-relaxed 

update on the CM200 and CM5. The reason for this is the need to generate 

whole lattices of random numbers to implement the accept/reject stage as 

discussed earlier in this chapter. On the T3D the message-passing code need 

only generate single random numbers; a far more efficient process. The over-

relaxed update stands out as the most efficient routine for the T3D. The most 

likely reason for this is that it is the only routine which does not involve maths 

functions (e.g. SIN, COS, LOG, SQRT) to a high degree. 

Note that the Cabibbo-Marinari update performance dominates that of the 

compound update. This is because over 50% of the time is spent performing the 

Cabibbo-Marinari update. This will not necessarily be the case in production, 

e.g. a compound update consisting of 1 Cabibbo-Marinari update and 5 over-

relaxed updates has been used over the last few years by UKQCD. 



Chapter 5 

Generation of quark propagators: the SOLVER 
application 

5.1 Requirements 

The solver application, SOLVER, must be able to provide the following func-

tionality (see figure 5.1). 

Figure 5.1: Functionality required from the SOLVER application. 

126 
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Gauge field initialisation. Although we only need to initialise the 

gauge fields by loading an old configuration (not the RNG information) 

in production, for testing we also require the ability to use an ordered, 

disordered or crossed start'. These extra starts should be disabled by a 

build-time flag when production code is built to minimise code space. 

Quark propagator initialisation. The quark propagators are to be 

initialised by setting them equal to a point source. This is used as an 

initial guess for the solver and is as. good as most other initial guesses 

without taking any time to implement and execute. 

Linear equation solver. The package must be capable of supporting 

more than one linear solver algorithm so that we can re-start a propaga-

tor calculation if convergence fails. The solvers should all be red-black 

preconditioned and have a common interface for simplicity. We also re-

quire the ability to swap from red-black to black-red, i.e. solve on either 

even or odd parity and regenerate the opposite, in order to validate code 

sections as we described fully in section 5.3.1. 

Clover terms. The Clover term 'C' is to be adjustable at run-time, 

although if a value of 0 ± 0.01' is requested the Clover terms should not 

be calculated in order to save time. There should also be a build-time 

option to disable the Clover terms (and force C to be zero) in case we 

want to use the Wilson action and save space usually used for the Clover 

terms. 

Only one parity of each term is to be stored, as this is all that is required 

for the solvers. The residue calculation (see below) will require both 

parities, but time is non-critical here and we can calculate each parity as 

needed. The terms are stored in the block form defined in section C.2 

'The crossed configuration is used for testing Clover code and is described in section 5.3 

'This value is arbitrary. 
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as this takes less memory. We must be must be careful where in the 

call-tree we create the Clover terms; their creation takes a large amount 

of temporary work space. 

Source creation. The SOLVER application should only be able to create 

point sources; any other type should be read in from disk and created by 

the SOURCE application (see section 5.5) so that we again reduce code 

space required in SOLVER. 

Residue calculation. Once the propagator has been calculated, the 

package should calculate an algorithmically independent measure of the 

accuracy of the solution, the residue, which should also be independent 

of the source normalisation. We define the residue to be 

rI= 	 (5.1) 
In  

Pion propagator. We require the pion propagator to be calculated for 

each source spin/colour of the inversion and also a cumulative sum over 

all source spin/colour components. This is used for validating the results 

of the solver and quark propagator files. The algorithm to implement 

this is given in section C.3. 

Input and output. A separate file is to be used for each source spin 

and colour component and time-slice of the propagator. When gauge 

fields are loaded from disk, we do not need to read the random number 

information. 

The quark propagator files loaded/saved are to be validated by two pos-

sible methods: 

(a) Calculating a 16-bit checksum on the files. This is to be done in the 

same ways as for the GAUGE application and is subject to the same 

restrictions. 
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(b) Calculating the time-sliced pion propagator summed over space, sink 

spin and spin colour, i.e. a value for each timeslice, source spin and 

source colour. 



Chapter 5. The SOLVER application. 	 130 

5.2 Design and implementation 

The design of the SOLVER application can be easily seen to break into modules 

on top of the underlying libraries as shown in figure 5.2. The important features 

of the design are discussed below. 

5.2.1 Driver 

The necessary gauge and quark propagator (psi) fields are declared here. It is 

worth noting that if the Clover action is used, 2.8 times more memory than 

the GAUGE application uses is needed. The gauge fields require 72 words per 

lattice site, the quark propagator fields are 96 words p.l.s. and the Clover terms 

108 words p.i.s.. For this reason the workspace used matters far more than it 

did for the GAUGE application. 

5.2.2 Gauge start 

For production purposes we restrict the types of start to loaded gauge con-

figurations. For testing and debugging purposes the ordered, disordered and 

crossed starts can be used. A build-time flag is the simplest way to implement 

these two possibilities. 

5.2.3 Implement Boundary Conditions 

Initially we only intend to implement periodic and anti-periodic boundary con-

ditions (BCs). The periodicity is implemented through the communications 

library in the construction of the gather-scatter and neighbour tables or use of 

CSHIFT as described previously. Anti-periodic boundary conditions require the 

positive boundary in the direction chosen to bring a factor of -1 into calcula-

tions with the fermion fields. Since these fields always occur multiplied by a 
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Figure 5.2: Overview of SOLVER design structure. 



Chapter 5. The SOLVER application. 	 132 

gauge field it is easier to throw this factor of -1 onto the gauge configuration; 

in practice we do this once after the gauge fields have been initialised. Note 

that this does not affect the Clover term constructed from the gauge fields 

since they consist of closed plaquette sums; any plaquette extending over the 

lattice boundary containing the anti-periodic BCs will have two factors of -1 

incorporated, hence no net effect. 

In the future, other types of boundary condition may need to be implemented, 

e.g. Dirichiet which require no periodicity and off-lattice values of the fermion 

fields set to zero. These require such a different implementation that they need 

to be applied far lower down the call tree where the fermion fields are evaluated. 

For this reason the variable(s) identifying the BCs should be passed down the 

tree whether currently used or not. 

5.2.4 Clover term construction and application 

As we do not need the inverse Clover term in the residue calculation we 

must have the ability to create the Clover term separately to save time and 

workspace. 

We implement the data structures 	L and D defined in section C.2 since they 

require less storage space and time to calculate than a more naïve implementa-

tion. The relevant signs, hermicities and i-values needed by equation C.16 to 

create UMJ,FM L, 
are most easily implemented through three lookup tables. The 

plaquettes needed to make up the Clover leaves are calculated using the library 

routines discussed in section 4.2 for the staple sum. The most important point 

to remember when constructing the plaquettes is the order of multiplication of 

the gauge fields, defined in figure 1.1. 

The Clover term and its inverse are stored in a common block; specifying them 

as explicit parameters passed down through the call tree would mean we must 
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allocate space for them, but we want to avoid this for the Wilson action (no 

Clover terms). 

It might appear that we need both parities of the Clover term since we use 

A and A' in the solver. We can however create A, then A' from it and 

finally A. This takes longer but since we only create the Clover terms in non 

time-critical sections the memory saving is more important. 

5.2.5 Make source 

We have two possibilities for the quark source 

Point source 

We are trying to solve the equation 

2,c 

for the point source. This is easier to calculate if the normalisation factor 

2r. is transferred to the right hand side of the equation. Therefore a 

single spin/colour element of the fermion field is set to 2K, the rest of the 

fermion field is set to zero. 

Loaded source 

The loaded sources are implemented with the same routines as are used 

to load and save quark propagators for simplicity. This implies a need for 

a time-slice range in the I/O routines and a general method for passing 

in the source name. 

After creating the source we have the possibility to rotate it as defined in 

sections 1.1.3.2 and C.4. 
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5.2.6 Rotate and Ds1ash'() 

The main problem associated with the rotation is the workspace needed by 

both it and DSLASH, where 4-spinors are communicated (we cannot perform 

a decomposition to 2-spinors such as is possible for the hopping/delta term i). 

This is most apparent in the SOLVER module where the solver workspace also 

has to be accommodated. Luckily the source does not need to be created on 

every solver iteration, only on entry and when creating the missing parity of the 

solution. Since time is not critical in the calls we could sacrifice speed to save 

memory in the P . This possibility must be balanced against over complicating 

the ?'D  to save a few bytes and not giving up too much speed. 

The 'D 'operation is very easily implemented in terms of the maths and com-

munication layers discussed already. For example, in HPF the y-direction cal-

culation 

2(,)(x) = -y {u,(x)(x  + 0 - Ut(x - )&(x - 9)} 

is implemented as 

CALL shift_4spin (spin4_mask, src, p, Y_index, 

$ Negative, tmpl) 
CALL su3_mv4 (gauge_ynp, tmpl, tmp2) 
CALL xpgainmay (Y-index, tmp2, res) 

CALL su3_hv4 (gauge_yp, src, tmpl) 
CALL shift_4spin (spin4_mask, tmpl, p. Y_index, 

$ Positive, tmp2) 
CALL xmgammay (Y-index, tmp2, res) 

The message passing version is similar 

C copy the source into the workspace vector 
CALL copy_generic(np_sites, (Ncomplex*Nco].our*Nspin4), 

$ 	O,Max_body,psi, O,Max_array,phil) 

C copy the fermion vector from x+mu to phi2 
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CALL grab_generic(Ncmp, (mu+I'Idim), par, phil, phi2) 

C perform the Udagger multiplication. 
CALL su3_r_hv4(np_sites, 

$ 	 Max-array, gauge(O,O,O,O,par,mu), 

$ 	 Max-array, phil) 

C perform the multiplication of phi2 by U on site notpar 
CALL su3_r_mv4(np_sites, 

$ 	 Max-array, gauge(O,O,O,O,notpar,mu), 

$ 	 Max-array, phi2) 

C copy phil from par to notpar 
CALL grab_generic(Ncmp, mu, par, phil, phi3) 

C contruct the result from phi2, phi3 with the gamma algebra 
CALL construct_res(mu, left, phi2, phi3, res) 

5.2.7 Solver 

Since we need to be able to implement any solver satisfying the requirements 

in section 5.1 we cannot be specific about the design or implementation. All of 

the solvers considered are constructed from a number of common routines. 

The red-black quark source .77 ' , defined by 

ii' = (1 + IcLA')?7 

To generate this we need both parities of the non-red-black source since 

77P =  + 

The red-black fermion matrix M', defined by 

M' = (A - 	 A-1 A
L_lp

_ \ 
pp-f_' p) 

which does not mix parities. This operation contains the major compu- 

tational effect in SOLVER as it needs to be performed at least once per 
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iteration. For some solvers, e.g. Conjugate gradient, we need to act with 

M't on a 4-spinor. Since A is hermitian we write this as 

M't - 1A - 	 )  
lip pp pp ppkPP 

Once we have solved for a single red-black parity we need to construct 

the complete solution by the equation 

= A( + i.czb) TP 

Linear algebra routines, e.g. 

faxpy: y = ax + y fcaxpy: 	y = ax + y 
faxpz: y=ax+z fca.xpz: 	y=ax+z 
faypx: y = ay + x fcaypx: 	y = ay + x 
fysx: y = y - x f zero: 	y = 0.0 V sites 
fmod2: >I:/3,.  y (r)2 
fcdot: 

where a e R, a E C and x, y and z are 4-spinors. Some of these routines 

are used in other parts of the solver code and therefore live in the maths 

library. They closely mimic the standard BLAS routines so that the 

names can be easily changed to use an optimised BLAS package for a 

particular platform. 

In case the red-black decomposition introduces a small numerical error through 

the Clover term or modified source, we allow the solver to restart itself. Most 

solver algorithms involve two main steps; an initialisation and then iteration. 

The minimal residual algorithm for example 

initialisation 

ro = 

iteration: repeat the following until convergence 

s = On 
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= 
w(s,r2) 

, w is the over-relaxation parameters 
(s ) s) 

?/j41 = i,b+ar 

r1 —as 

The source is only involved once, in the initialisation. Restarting the solver 

with V50  as the tentative solution forces a 'realignment' of the solution with the 

source. This normally only needs to be done once but we allow a maximum of 

4 restarts for safety. 

When we implement the solver algorithms, workspace is one of the major issues. 

The minimal residual solver described above requires two workspace vectors r 

and .s plus space for the red-black source. This is a small memory requirement; 

other solvers such as conjugate gradient least norm and biconjugate gradient 

require far more workspace. We reduce this demand in two ways. Firstly the 

source storage is written over by the red-black source. Since I/O is assumed 

to be fast, loaded sources can be reconstructed quickly when needed. If I/O is 

particularly fast in comparison with the calculation it might be better to save 

the rotated source the first time it is used (outside solver in the call tree) and 

then read it in from disk on successive uses. This removes all of the workspace 

associated with source creation and rotation from the solver call tree thereby 

reducing overall memory requirements. This method has not yet been tried as 

we have not been that short on memory. The second way in which we reduce 

workspace is to use the opposite parity of &, i.e. çt', for calculations, e.g. as .s 

in the minimal residual algorithm. 

5.2.8 Hopping or Delta term (Lx) 

The hopping, or delta, term defined by equation (1.21) 

(Lq) (x) = 	(1 - )U(x)q(x + %) + (1 + 7)U(x - fi)q(x - 
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forms the core of the solver as it is the only unit requiring local communi-

cations. The decomposition into 2-spinors is well described in section C.1. 

The construction of the term is extremely similar to that of the P described 

previously in terms of the communications and maths libraries. The subrou-

tines most in need of optimisation if possible are su3.iuvv and su3iivv which 

multiply a quark field by U or Ut. 

The message-passing implementation allows more possibilities than HPF. If we 

have enough memory we can overlap communications in all four directions and 

hopefully speed up the solver. 

5.2.9 Residue 

Because the residue is independent of the solver algorithm we calculate it out-

side the solver module. The creation of the Clover term and source requires a 

large amount of workspace which, when added to that needed for the fermion 

matrix M and the residue itself, becomes the maximal memory usage in the 

SOLVER application. 

This can be avoided by introducing a second layer to the residue call structure 

'residue-par' as shown below in figure 5.3. The workspace for making the 

Clover term is now subtracted from the maximum needed. 

residue 

make 'clover 	 residue_par 

mak_source 	Ier,iiion ' inatrix 

Figure 5.3: Call structure of the residue module. 
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5.2.10 Solver I/O 

All of the points raised for the gauge field I/O apply to this module. An added 

feature is to use limits on the time-slices loaded and saved so that quark sources 

can be implemented easily. The dataset names for the propagators reflect the 

different sources which may be used and the mode in which the gauge field was 

generated. The format 

<gauge><source>kkkk< act ion>scTtt 

is used. The gauge name <gauge>.is simply passed in to the SOLVER appli-

cation without processing, to simplify the interface. The other elements in 

the name are the kappa value kkkk equal to INT(ic x iO) - iO, the action 

type <action> which is usually equal to 'W' for the Wilson action or 'C' for the 

Clover action, the source spin 's', the source colour 'c' and the time-slice 'tt'. 
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5.3 Solver testing 

5.3.1 General tests 

There are several general tests (applying to any input parameters) which can 

be applied to the SOLVER application. 

The pion propagator can be compared with values generated by an ana-

lytic algorithm as shown in section 5.3.2. 

The pion propagator should be independent of the solver convergence 

parameters as long as sufficient precision is used to compare results. 

The pion propagator should be invariant under colour conjugation 

U — + U* 

Having a non-zero Clover parameter should not affect the results for a 

unit gauge configuration or transformed unit gauge configuration. This 

is because the plaquettes will all be equal to the identity matrix; when 

the trace is subtracted off as is needed in the Clover algorithm we are left 

with zero in all elements of the 

Solving on the even-parity sub-lattice should give identical results for the 

pion propagator as solving on the odd-parity sub-lattice. 

The quark propagator should be satisfy the following symmetry condition: 

,01  = 751/Vy5. 

Tests of more specific input parameters are discussed in section 5.3.3. 

5.3.2 Analytic pion 

The theory in this section below is taken from the paper by Carpenter and 

Baillie [120], with the notation slightly altered. 
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The Euclidean lattice fermion propagator can be written 

1111 
OW = 	 Ee2 zI.(k) 	 (5.2) 

LZLLZLt k 

where 

V(k) 
= rnq  +>1 M  vy,L sin  kM + (1— cos k,,)

(53) 
>sin 2 kM + [mg  +>(1  —coskM )] 2  

The 	matrices are taken to be hermitian (see equation A.1) 

and the momentum sum is over 

• - 2(nM  + M) 	n = 0, 1, ...LM - 1 	 (5.4) 

where 6M 	0 for periodic boundary conditions and 8Mfor  antiperiodic 

boundary conditions in the t-direction. 

Once the quark propagator has been calculated, equation (C.23) is used to 

calculate the pion propagator. 

5.3.3 Crossed configurations 

Following [120], the quark propagator with the Clover action can be written in 

terms of a Fourier series [121] 

euIctt 
(t) = >IR (M ± P_etkt + P+e_ikt)' 1?.-- (5.5) 

where 

	

M = 	 eik 

	

r- 	rte 
= 1+;:—_ + 

= 2 PM 
27r (

;i+ )1
8 =0 
S = 	antiperiodic b.c. 

	

k = 	 ' 
	periodic b.c. 
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Mem = 	+ 

- 

= —U(1+) 

= 	—U 11 (1—l $ ). 

Using the same method as section 5.3.2 we can perform the Fourier sum to 

obtain an independent measure of the time-sliced pion propagator which can 

be compared with values obtained from the MPP SOLVER application. 

The crossed configuration, i.e. a constant background chromo-magnetic field, 

which we use is defined by the gauge algebra 

A 	= (1,3,0,7,0,2 1 2,0) 

A 	= (0, 0, 0, 0, 0, 0, 0, 0) 

A 	= (0,2,0,0,4,0,5,0) 

= (0,0,0,0,0,0,0 ) 0) 	 (5.6) 

or the group elements 

= e 4 
	

(5.7) 

where A a are the Gell-Mann matrices specified in Appendix A and the Aa are 

those in equation 5.6. The y and t directions yield the unit matrix, while the 

x and z gauge fields are shown in table 5.1. 

The time-sliced pion propagator values obtained using this initial configuration 

are shown in tables 5.2 (44  lattice) and 5.3 (12 lattice) and figure 5.4. 
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Row,Col Real part 	I 	Imag. part 
x-direction 

0,0 -0.15014863014 0.22101625075 
0,1 0.25635275245 -0.30382781143 
0,2 0.25006130338 0.84145614691 
1,0 -0.55907303095 0.29258449693 
1,1 0.40063261986 0.53186789570 
1,2 0.33964949846 -0.20755708838 
2,0 0.37136927247 0.62651712892 
2,1 -0.38087511063 0.50350385177 
2,2 -0.12328124791 0.23617974562 

z-direction 
0,0 0.96045821905 -0.00000002002 
0,1 0.08339362592 0.00000003994 
0,2 0.26564168930 -0.00000001131 
1,0 -0.16247718036 0.00000003301 
1,1 0.94266444445 -0.00000000361 
1,2 0.29152178764 0.00000002325 
2,0 -0.2260999232.5 -0.00000002516 
2,1 -0.32315522432 0.00000000593 
2,2 0.91893935204 0.00000001828 

Table 5.1: Gauge elements for the crossed configuration used for the analytic pion propagator 

with the Clover action. Values are given for the x and z directions only, the y and t directions 

are unit matrices. 

Timeslice Wilson Clover Clover 
Unrotated Rotated 

0 0.710589902901e 0 0.711207983145e 0 0.119130162633e 1 
1 0.363996054550e-1 0.367609728443e-1 0.254744013994e 0 
2 0.105703566630e-1 0.109063074722e-1 0.222617573491e-1 
3 0.363996054550e-1 0.367609728443e-1 0.254744013994e 0 

Table 5.2: Time-sliced pion propagator summed over all spin/colour indices for 44  lattice, 

r. = 0.113636. Boundary conditions are periodic for the spatial directions and antiperiodic 

for the i-direction. The target residue was lx 10- 16  and the solver was started three times for 

each spin/colour index. These values were first compared with those from the analytic code 
of [121] to 4 significant figures. Once the code was validated, these figures were generated. 
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Figure 5.4: The pion propagator for the crossed configuration. Diamonds mark the. Wilson 
action, octagons the unrotated Clover action and squares the rotated Clover action. 
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Timeslice Wilson Clover 
Unrotated 

Clover 
Rotated 

0 0.718904188921e 0 0.719738715575e 0 0.122801635116e 1 
1 0.344682975303e-1 0.347212612766e-1 0.228273178229e 0 
2 0.444216279213e-2 0.453409840230e-2 0.182428204944e-1 

3 0.858280502130e-3 0.895657737452e-3 0.245341606706e-2 
4 0.221687794206e-3 0.238508627968e-3 0.544681966919e-3 
5 0.741372603559e-4 0.830073090671e-4 0.176177532160e-3 
6 0.444284442156e-4 0.511879553088e-4 0.106104264043e-3 
7 0.741372603559e-4 0.830073090671e-4 0.176177532160e-3 
8 0.221687794206e-3 0.238508627968e-3 0.544681966919e-3 
9 10.858280502130e-3 0.895657737452e-3 0.245341606706e-2 
10 0.444216279213e-2 0.453409840230e-2 0.182428204944e-1 
11 0.344682975303e-1 0.347212612766e-1 0.228273178229e 0 

Table 5.3: Time-sliced pion propagator summed over all spin/colour indices for 12 4  lattice, 

r. = 0.113636. Initial conditions were as for table 5.2. These values were obtained from the 

MPP codes after they had been validated against analytic values from the 44  lattice. 
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5.4 Solver performance 

The best measure of the performance of the SOLVER application is the time 

taken per iteration as these iterations dominate all runs of the application. 

Timings on the CM200, CM5 and T3D are presented in table 5.4. 

12 	lattice  16 	lattice 

Platform Size Precision C Time Speed Efficiency Time Speed Efficiency 
(secs) (Gflop/s) (% peak) (secs) (Gflop/s) (% peak) 

CM200 8K S 0.0 0.315 0.146 3.7 0.315 0.465 11.7 

CM200 8K D 0.0 0.542 0.085 2.1 
CM200 8K S 1.0 0.380 0.184 4.6 0.416w 0.518 13.0 

CM200 16K S 1.0 0.363 0.188 2.4 0 . 207* 1.04 13.0 

CM5 16 S 0.0 0.083 0.538 21.0 
CM5 16 S 1.0 0.121 0.562 22.0 0 . 264* 0.815 31.8 

CM5 32 S 0.0 0.056 0.796 15.5 0.110 1.28 25.0 

CM5 32 D 0.0 0.070 0.638 12.5 
CM5 32 5 1.0 0.067 1.01 19.7  

T3D 8 D 0.323 0.097 8.1 0.977 0.102 8.5 

T3D 16 D 
1 0.0 1  
0.0 0.173 0.181 7.5  

Table 5.4: Timing data for the minimal residual solver on various platforms for Wilson 

(C = 0.0) and Clover (C = 1.0) actions. The times shown are for a single iteration of the 

solver. Entries with a were generated using code with serial loops unrolled. 

From the table we can see that the Clover action is more efficient than Wilson 

since the application of the Clover term does not involve any communications. 

Efficiency in general is better than that of the GAUGE code for the Connection 

Machines because there are no trigonometric maths functions used at all. The 

CM5 performance is increased- by a large degree by unrolling serial loops as 

explained in section 3.6; an efficiency of 31% for a real application is extremely 

good for a parallel processor. 

As the solvers are built from a generic toolbox of operations we supply timings 

for these lower-level functions in tables 5.5, 5.6 and 5.7. They should be of some 

use in predicting the run-time of new solvers and guidance for optimisation. 
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12 	lattice 	16 	lattice 
Operation 	Time 	Efficiency 	Time 	Efficiency I  (secs) 	I  (% peak) 	(secs) 	(% peak) 

8K processors, 	 C = 0.0 _single _precision, 
rb_source 0.669 0.7 	0.435 3.7 
rb_matrix 0.273 3.7 	0.261 12.0 
fermion_matrix 0.394 1.3 	0.293 10.9 
fmod2 0.616e-2 4.1 	0.104e-1 7.6 
fysx 0.183e-2 3.4 	0.303e-2 6.5 
faxpy 0.199e-2 6.3 	0.320e-2 12.3 
fcdot 0.106e-1 

10.195e-2 

2.4 	0.130e-1 6.1 
fcaxpy 0.226e-2 11 	0.375e-2 21.0 
faypx 6.4 	0.113e-1 3.5 
faxpz 0.202e-21 6.2 	0.336e-21 11.7 

8K processors, 	 _C = 1.0 _single _precision, 
rb_source 0.254 3.1 0.337 k  73 
rb_matrix 0.338 4.7 0.360 13.9 
fermionmatrix 0.268 3.1 0.172 15.0 
make A,A' 4.45 2.4 4.05k 8.3 
make A 1.63 3.0 2.04 7.6 
make A' 0.112 7.7 0 . 190* 14.3 

16K processors, single precision, C = 1.0, unrolled loops 
rb_source 1.44 0.3 0.422 2.9 
rbmatrix 0.177 4.5 0.193 12.9 
fermion_matrix 0.083 4.9 0.091 14.1 
make A, A' 3.27 1.6 3.96 4.2 
make A 1.20 2.0 2.07 3.7 
make A' 0.057 7.6 0.097 14.0 
fmod2 0.247e-2 5.0 0.288e-2 17.2 
fysx 0.283e-2 1.1 0.251e-2 

10.230e-1 
3.9 

faxpy 0.527e-1 0.1 0.9 
fcdot 0.492e-2 2.5 0.635e-2 6.2 
fcaxpy 0.261e-2 4.8 0.310e-2 12.7 
faypx 0.113e-2 5.5 0.175e-2 11.2 

Table 5.5: CM200 solver toolkit performance. 
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12 	lattice 16 	lattice 
Operation Time I Efficiency Time Efficiency 

(secs) (% peak) (secs) (% peak) 

16 nodes, single precision, C = 1.0, unrolled loops 
rb_source 0.168 7.2 0.249 15.4 
rb_matrix 0.102 24.2 0.251 31.1 
fermion_matrix 0.040 31.5 0.116 34.7 
make A, A - ' 0.862 19.3 2.02 26.0 
make A 0.390 19.6 0.913 26.4 
make A' 0.101 13.3 0.186 22.8 
fmod2 0.862e-3 45.1 0.222e-2 55.4 
fysx 0.689e-3 14.1 0.181e-2 17.0 
faxpy 0.809e-3 24.1 0.220e-2 27.9 
fcdot 0.213e-2 18.3 0.474e-2 25.9 
fcaxpy 0.100e-2 38.9 0.279e-2 44.0 
faypx 0.951e-3 20.5 0.231e-2 26.6 

32 nodes,single precision, C = 0.0 
rb_source 0.136 2.9 0.063 19.7 
rb_matrix 0.359e-1 21.7 0.182 13.5 
fermion..matrix 0.438e-1 9.0 0.730e-1 17.0 
fmod2 0.123e-1 1.6 0.233e-2 26.4 
fysx 0.693e-3 7.0 0.115e-2 13.4 
faxpy 0.727e-3 13.4 0.134e-2 22.9 
fcdot 0.234e2 8.3 0.370e-2 16.6 
fcaxpy 0.885e-3 22 0.167e-2 36.8 
faypx 0.733e-3 13.3 0.1380e-2 23.6 
faxpz 0.818e-3 11.9 0.138e-2 22.3 

Table 5.6: CM5 solver toolkit performance. 
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124  lattice 	16 	lattice 
Operation Time Efficiency 	Time jEfficiency 

(secs) 	I  (% peak) 	(secs) 	I (% peak) 

8 processors, double precision, C = 0.0 
rh_source 0.182 9.2 0.468 11.3 
rb_matrix 0.283 11.7 0.853 12.3 
fermion_matrix 0.157 10.7 0.466 11.4 
fmod2 0.157e-1 5.3 0.316e-1 8.3 
fysx 0.160e-1 1.3 0.505e-1 1.3 
faxpy 0.179e-1 

10.11le-1 
2.3 0.563e-1 2.3 

fcdot 7.5 0.335e-1 7.8 
fcaxpy 0.121e-1 6.9 0.377e-1 7.0 
faypx 0.192e-1 2.2 0.607e-1 2.2 
faxpz 0.207e-1 2.0 0.655e-1 2.0 

16 processors, double precision, C = 0.0 
rb_source 0.117 7.2 
rb_matrix 0.150 11.1 
fermion_matrix 0.851e-1 9.9 
fmod2 0.123e-1 3.4 
fysx 0.810e-2 1.3 
faxpy 0.888e-2 2.3 
fcdot 0.613e-2 6.8 
fcaxpy 0.602e2 6.9 
faxpz 0.104e-1 2.0  

Table 5.7: T3D solver toolkit performance. 



Chapter 5. The SOLVER application. 	 150 

5.5 Quark sources: 
the SOURCE application 

The source creation application, SOURCE must be able to provide the func-

tionality shown in figure 5.5. 

Figure 5.5: Functionality required from the SOURCE application. 

Momentum injection. We must be able to inject momentum into the 

propagator through the inclusion of a plane-wave factor, e. 

Gamma matrices. We require the ability to multiply the propagator 

by 'a generic r matrix (one of 1, 'ye, 'y,, 75YL) 

Smearing. We require the ability to smear a propagator over a time-slice 

as described in section 1.7.1. 

The design of this application draws on several of the modules discussed pre-

viously; no new features require discussion. 
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Conclusions 

In this thesis we have shown that it is possible to design and implement a 

suite of lattice QCD software for message-passing and data-parallel massively 

parallel processors using software engineering methods. The codes that we 

have produced will run on any platform supporting PVM or cHPF with little 

or no alteration and in some cases, e.g. 50% of peak speed on the Connection 

Machine CM5, produce extremely high performance without optimisation as 

shown in chapters 4 and 5. The SOLVER kernel has been recently incorporated 

into the PARKBENCH [122] benchmarking suite, a suite of parallel application 

kernels from various disciplines requiring high performance computing. As the 

kernel has only recently been included, no results are available yet. However, 

the codes in this suite will be tested on all parallel platforms supporting PVM 

and HPF, the current standards for portability. 

The software engineering methods used are not at all common in most physics 

research establishments, but have been of enormous aid in structuring and 

documenting the design of the software, sharing the work amongst project 

members, and detailing the interfaces to the implementation for other members 

of the group. Mike Peardon, a research student at Edinburgh, has made use 

of the documentation set and software library described in this thesis to write 

• Hybrid Monte Carlo simulation code in High Performance/ CM' Fortran in 

• short time, less than two months. His project proved valuable for both 

field-testing our software and documentation and demonstrating the need for 

a library of portable lattice QCD software and relevant background manuals 

which are easy to use by people with no previous knowledge of the project. 
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Software engineering does have its negative aspects. Iteration in the design and 

implementation phases of the project require the documentation to be kept up 

to date so that everyone knows what the others are doing. This requires a high 

degree of organisation and discipline which is not usually present in a physics 

research department; people usually focus on a narrow area at a time, produce 

a minimal amount of documentation in order to extract the maximum yield 

of results in the given time and then move on to another area. Researchers 

on large software projects need to xa-1y consider how to make their work 

easily accessible to people with little specialised knowledge. In our experience 

however, the extra time and effort required to keep the documentation up to 

date is easily balanced by the time saved by having all relevant information at 

hand and the legacy of an easily accessible package. 

Some of the portability of the package remains to be tested. The lack of 

availability of an HPF compiler means that our code has yet to be testing 

with that standard. 11FF compilers are only now emerging on a few platforms 

with several more in development. MPI is another such problem. Again, a 

few implementations have been developed, as discussed in chapter 1, but these 

are mainly built on top of other message-passing systems. The addition of 

this further layer is good for distributing the standard as widely as possible, 

but sacrifices some performance through an extra set of function calls. Only 

once MPI has been implemented as the native message-passing package for a 

platform will the desired performance be achieved; until that time it is better 

to stick with established packages, e.g. PVM, whose functionality can be easily 

converted to MPI at a later date. 



Chapter 6. Conclusions. 	 153 

The future 

There are elements to the MPP codes which have yet to be designed and im-

plemented; gauge-fixing in both message-passing and data-parallel and hybrid 

Monte Carlo in message-passing. These elements should be as easy to construct 

from the available library as Mike Peardon's data-parallel hybrid Monte Carlo 

codes. 

Extensions can always be made to existing software to enhance performance on 

particular platforms; particularly the Cray T3D, UKQCD's main production 

platform for the next few years. Most of these optimisations will be possible 

without any re-designing of the software due to the modular construction and 

isolation of critical sections of code as described in this thesis. 

It would be most useful to port the message-passing layer to MPI when it 

becomes widely available. This should only be a matter of a few weeks work 

for someone familiar with message-passing systems. So many people use PVM 

at present that a guide to conversion from PVM to MPI will no doubt appear 

in the near future. New platforms will most likely undertake to implement 

MPI or HPF as the standard package as they have become so widely accepted 

among the high performance computing community. 
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Mathematical conventions 

A.1 'y-matrix definitions 

The 'y-matrices used are 
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A.2 Gell-Mann matrix definitions 

We follow the definitions in [123, Appendix F]. The Gell-Mann matrices A. 

satisfy the relation 

Tr A aAb = 28ab 	 (A.3) 

The definitions are 

10 1 0 
A1 	= 1 0 0 

0 0 0 

10 0 1 
A4 = 0 0 0 

ki 0 0 

(0 0 0 
A7 = 0 0 —i 

'\ 0 *1 0 

/0 —i  

A2 	7, 	0.0 	3 (010 

	

\0 0 0) 	\o 	0 0) 

.10  

	

X5=(00 0 	A6 =(00 

	

0 0) 	\O 10) 

	

/1 1 	0\ 

	

0 1 	0 1 	(A.4) 
\0 0 —2) 



Appendix B 

Generating quenched gauge configurations: 
technical details 

B.1 Heatbath update 

In the heatbath algorithm (see section 1.3.1) the new values of the link vari-

ables are independent of the old ones. The quasi-heatbath method consists 

of performing heatbath updates on a sequence (we use 3) of SU(2) subgroups 

of the group SU(3). Reference [124] is more general, describing SU(N). The 

main reason for using subgroups is that while the sum of SU(2) matrices is 

proportional to an SU(2) matrix this does not hold for SU(3) matrices. 

We write the Wilson pure gauge action in the form 

S = constant - ReTr U.R 

where U is the matrix of the link to be updated and R is the sum over staples 

(see figure 1.3). 

In the following, 3 x 3 matrices are denoted by capital letters (e.g. U, X), and 

2 x 2 matrices by lowercase letters (e.g. u, x). So we have 

X=UR 

x = (U. R) 2 2 a submatrix 

One can parametrise the 2 x 2 complex matrix x as (see section B.1.1) 

x = ku1  + ik'u 2 	 (B.1) 

where .k, k' E 7?. and u1 , u2  are SU(2) matrices. We then use the property that 

for any SU(2) matrix h one can write 

ReTr (h.x) = IcTr (h.u i ) 
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Remember also that an SU(2) matrix h can be parametrised in terms of Pauli 

matrices 

0`0 =122 LTI
=( 

	) 0'2( 	
_i) 	

3 ( 01  01  _) 	
(B.2)  

h = h0.122 + ih 	 (B.3) 

with 

h 2 o  + h = 1 and h0 , h 12 ,3  E R 	 (B.4) 

Now suppose we choose 

h=au 

with u defined via equation B.1 and a an SU(2) matrix so that h is itself an 

SU(2) matrix. Then the configuration probability 

dP(hu) c e4 	(hx)dh = 4kTr (hul)dh = e Tr (a)dh 

= e cyk. 2aoda  (B.5) 

since a is SU(2), and we have used the invariance of the SU(2) Haar measure. 

The problem is now reduced to generating a0  with the distribution 

P(ao )dao  o e0dao(1 - a) 2 	 (B.6) 

where we used 

da = dao d3a6(1 - a 2 -a) 

which in polar coordinates is 

a2, a3)6(1 - a - da0  drd9dq5 
ô(r, 9, ) 

= (1 - adaodrd9dcbsin 98(r - (1 - 

The ai  are then generated uniformly on a 2-sphere of radius (1 - a)h/2. The 

procedure for generating these random matrices is described in section B.1.2. 
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We perform 3 hits of this kind taking 3 different 2 x 2 submatrices of X' = UR, 

i = 1,2,3 

fx 	x 1  0\ 	(1 0 
X1 = x 0  X 1,0 	X2 = 0 x 0  

	

0 1) 	 0 X10 

and U' denotes 

U° =U, U'=hU° , U2 =h 

o \ 	fx o 
 0 4)(B.7) X01 	 = 	0 1 0  

21 	 3 	1) 	3 
X11 j 	 \ x10 J 11 

2 u1, U' = U3  = h3 U2 	(B.8) 

The 

h I=  (au), 

are enlarged to SU(3) matrices by putting a 1 in the diagonal element and 0's in 

the off-diagonal elements. The staple sum R,h remains unchanged throughout. 

Summary 

The Cabibbo-Marinari update of UM(x)  can be summarised as follows 

loop over hits i from 1 to 3 step +1 
let X = Ut.R 
choose 2 x 2 complex submatrix to be x 1 ,x2  or x 3  

parametrise x i  to get k and ut 
generate a 0  and aj  according to distribution (13.6) 

let Ut = (aut)j Ut_ 1  

B.1.1 Parametrisation of a complex 2 x 2 (C22) matrix. 

Given 

x=(a 	)E c22 

we want to write 

x = ku1  + ik'u2 
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with Ic E R. and u1  € SU(2). We only need to calculate Ic and u1 . So 

x = ku1  + ik'u2  = k(eo l22  + ië) + ik'(f0 1 22  + 
if. a) 

 

with e + ë2  1 and fo2 + J2 = 1. Then 

X = (Iceo  + ik'f0 )1 22  + i(kê+ ik'f).ó 

M. 
= XO.12x2 + 	= XO.12x2 + 

where x o ,x2  E C for j = 1,2,3. We then have 

- 

SM = 
1 

 Tr (x.) 

for IL = 0, 1,2,3. This then gives 

= (a + d) = keo  + ik'fo  

= —Tr (x.a)=ke+ik'f 

so that 

ke 0  = Re(a+d), 1cei =Im(b+c) 

Ice 2  = 	Re (b - c), ke 3  = Im (a - d) 	 (B.9) 

Use e + ë-'2  = 1 to get 

Ic = ~jRe2 (a + d) + Re2 (b - c) + 1m2  (b + c) + 1m2 (a - d)} 	(B.10) 

Finally, 	
( eo + ie3  e2  + ie1 

) 	 (B.11) 
= —e2  + ie1  e0  - 

B.1.2 Generating the pseudo-random numbers a0 

The full working for this algorithm is shown in [125]. To generate a random 

number a0  with the distribution 

P(ao ) = N1J1 - ao 2 e '0, (-1 < a0  < 1) 
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Generate two uniformly distributed pseudo-random numbers R and R' in 

the unit interval. 

Set X=—,X'=—. 
of 

Set C = cos 2 (2irR"), with R" another uniform random number in (0, 1]. 

Let A=XC. 

Let S = X'+ A. 

If R"2 > 1 - for R" pseudo-random and uniform in (0, 1], go back to 

step 1. 

Set a0 =1—S. 

Note that in step 4 using B = X - A will generate an independent result for 

a0  

B.1.3 Generating the random numbers a 1 , a2 , a3  

Now that the a 0  have been generated we still need to calculate the a 1 , a2  and 

a3  on the SU(2) manifold. We require that 

a 2 + a 
2 

+ a 2 = 1— a 

The procedure is as follows 

Let r1  be Ji - a 

Let r" be uniformly distributed random number in [-1, 1] 

a3  = rr1  

Let r2  be 'i -- r "2  

Let r' be uniformly distributed random number in (0, 1] 

a1  = r1 r2  cos(27rr') 

a2  = r1 r2  sin(27rr') 
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B.2 Over-relaxed update 

The rationale for using over-relaxed techniques is explained in section 1.3.2. 

We shall first explain the method for SU(2). In practice, as with Cabibbo-

Marinari, the hits are performed on SU(2) subgroups of SU(3). 

B.2.1 Over-relaxation with SU(2). 

We want to update the gauge field U E SU(2). The action is 

Su — ReTr (U.R) 

In STJ(2) we can write the sum over staples as a multiple of another SU(2) 

matrix 

R = >(staples) 

=k.0 

where Ic E R, and U is SU(2). 

We then define U0  to be the SU(2) matrix which minimises the action 

Su,, = —ReTr (U0  U) 

= —Tr (U0  U) 

So clearly letting 

U0  = 0-1  

gives 

Su0 = — 2 = —fik 

Then let the new link be 

U' = U0U1U0 
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The new element U' now lies on the opposite side of the group manifold from 

element U0 . Note that U0 , whilst minimising the action, does not depend on 

U. With this choice 

Su, = 	—Tr (U'U) 

= —Tr (U-1  U-1 ) 

= —Tr (UtUt) 

= —Tr (UU)t 

= —Tr (UU) 

= Su (B.12) 

i.e. the action remains unchanged and the update is always accepted. 

B.2.2 Over-relaxation with SU(3). 

As in the Cabibbo-Marinari method we perform 3 hits on SU(2) subgroups. 

We have 

Su—-ReTr (U. R) 

and we need to find an element U' such that 

Su = Su' 

where U and U' differ by a multiple of an STJ(2) subgroup. 

With 

X=U.R 

x = (U.R)22  submatrix E C 

= kui+ik'u2 
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Let 

Uo =v.0 

where 
( v00 Vol  0 

V=I v 1 0 v11 0 
0 	01 

and v E SU(2). We choose v to minimise the action Su 

( v00 Vol  0 \ 

Smin = - ReTr 	v 10  v 11  0 U.R 
0 1) 

= —ReTr (v.x)+constarit 

Choosing v = u = uj' minimises the action 

sinin = = — ReTr (u'(ku i  + ik'u2 )) 

= —2.k 

So let the new link be 

U' = U0 U- 'Uo  

vUU -1 vU 

=v2 U 
/ I t\2 	I t\2 
I Ui)oo 	U1j01  

= I (u) 	(u) 	0 U 

\ 0 	0 	1 

(B.13) 

This choice leaves the action unchanged and reduces to the SU(2) result if U 

is an SU(2) matrix. 

The 3 hits are performed with the same subgroups as for the Cabibbo-Marinari 

update. And, as can easily be seen, the computation is almost identical as for 

the Cabibbo-Marinari update. 
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B.3 Calculation of the staple sum 

The requirement for the staple sum is explained in section 1.3.3. 

B.3.1 Theory 

0 
X 	

UM(x) 	p x+f 

Figure B.1: The two plaquettes containing the link to be updated. The direction of evaluation 

of the links is also shown. 

The plaquette action in the a,v plane is (see figure B.1) 

ReTr IU,,(x)U.(x + ji)Ut(x + 11)UJ(x)} 	 (B.14) 

for the top plaquette and 

ReTr f U t  (x) Uj (X — ) U—)U(x _+)} 	(B.15) 

for the bottom plaquette. So summing top and bottom plaquettes over all 

planes (iw, /p, tr) yields 

ReTr UM  (x) 	U(x+12)U,i(x+1)U(x) 
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+ UJI 
 I 	U(x - I)UM(x - I)U(x - + 

] } 	
(B.16) 

But for any 3 by 3 complex matrix 

ReTr U=ReTr UI 	 (B.17) 

so that defining the staple sum R M (x) as 

RM (x) = 	U(x+)L4 	 )U( (x+)Ut (x)+ U(x —+)U(x —x ) 

(B.18) 

the sum of plaquette actions around UM (x) is 

ReTr {U(x)R(x)} 	 (B.19) 

B.3.2 Algorithm 

The algorithm for creating the top and bottom staples is as shown below (see 

figure B.2 for labelling of links and points used). 

B 

TOP 
2 	STAPLE 

Al 	 JD 
5 
	BOTTOM 	7 

STAPLE 

F 
6 

Figure B.2: Labelling of links as used in the algorithmic description of the creation of the 

staples. 

Top Staple 
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Move 3toA. 

Multiply 3t  x 

Move 4 to A. 

Multiply 4 x (3t  x 2t) 

Bottom Staple 

Move 7toF. 

Multiply 7t  x 

Multiply (7t  x 6t)  x 5. 

Move (7t  x 6t x 5) to A. 

B.4 Calculation of the plaquettes 

Plaquettes can be calculated in-line with a staple sum or on a stand-alone basis. 

The number returned is obtained in the following way 

Multiply gauge link by the staple sum. 

Calculate trace of plaquette product at all sites. 

Sum over the plane of interest. 

Divide by the lattice volume and no. of colours 

resulting in a number in the interval [-1, 1]. 

B.5 Reunitarisation 

The requirement for reunitarisation is given in section 1.3.4. 

SU(3) matrices can be written in the form 

(u  
I 	I 	 (B.20) 

'¼ (iZ x j7)* 

\ 

) 
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where t7, are three-vectors of complex numbers. They obey the constraints 

= 1 

iZ.i = 0 	 (B.21) 

Therefore the method used to reunitarise 

fiZ\ 	liz' 
IiiI-+ I ii' 
\u) 	k' 

is 

1. Normalise ii - iZ' s.t. 

iZ'iZ' = 1 	 (B.22) 

z. e. 

lul 

where 

IA = Juui  + uu2  + uu3 	 (B.24) 

Use the Gram-Schmidt orthogonalisation process to construct a vector iz 

orthogonal to iz' i.e. 

=,Y 	(ii. iZ*)iZ 	 (B.25) 

Normalise iz -* v' as in 1 above. 

Construct 

= (iZ' x 	 (B.26) 



Appendix C 

Generation of quark propagators: technical 
details 

C.1 Hopping term algorithm 

C.1.1 Introduction 

The hopping, or delta, term arises in the fermion matrix as shown in sec-

tion 1.1.3. The fermion matrix is defined as 

M=A — ,cZ 	 (C.1) 

where A is the Clover term (see Appendix C) and A is the hopping term. 

C.1.2 Non-daggered 

The delta term is the most compute-intensive part of the whole propagator code 

and is therefore worth spelling out in detail. The operation to be performed is 

(4') (x) = >(1 - 	U,(x)b(x + i) + ( 1 + y,)U(x - )x - p) (C.2) 

For gamma matrix definitions refer to equation A.1. This is the lattice differ-

ence operator which corresponds to .D in the continuum limit. 

It is possible to perform the gamma matrix algebra and shifts as given i.e. with 

as a four-spinor. However this is slow and a faster method has been found 

(and used with great effect in the Maxwell code). 

Since the y  matrices act only on the spin indices we can commute them through 

the gauge fields. With the substitutions 

x(x+it) = (1--y(x+i) 

11411-11 
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x(x—,i) = (1+'yb(x—) 	 (C.3) 

we get the four-spinors ., x' which can be written as 

2 	0 	00 2& 
0 	2 	0 	0 - 	 - 20 

Xo - 	o o o o 	02 	- o 
o 	o 	0 	0 	03  0 

1 	0 	0 	i 
01  - çbi + it'2  - 

Xi 	- 	o 	—i 	1 	o 	b2  - 	—i(0 1  + 42 ) 
—i 	0 	0 	1 	03 — 400+43) 
1 	0 	0 	1 	/'o I'O+1'3 

- 
X2 	0 	—1 	1 	0 	02  - 	—(0 1  - 02 ) 

1 	0 	0 	1 

1 	0 	i 	0 	00  Oo +i1'2  
o 	1 	0 	—i 

X3 = = 	
C.4 

—i 	o 	1 	o —i(çbo+i&2) 
o 	i 	o 	1 - 43 ) 

These four spinors only have two independent components each so therefore 

can be written as two-spinors without any loss of information. The two-spinors 

can then be sent or received by processors with half of the communication time 

(ignoring overheads) and recombined. Since the gamma matrix operations are 

simply permuting indices and multiplying by factors of 'i' there is no great 

overhead in computation time. 

If we write 

ll(x) = UM(x)x(x + i) 

• l1 a (X) = (C.5) 

where IL E 0.3 is the direction index and ce = O..1 is the 2-spinor index, then 

the delta term can be written as 

/ —ill 1  + II1Xo —ll 	+ '1,ci zll 0  + +ll 	\ 

L(x) = 
2 	+ ri 1  +i-i 	+ +i1I2i  + +ri 1  

(C.6) 
II 	- +11 	- II' +11 	- +11 

- ill 0  +ll 	+ ll; +ll 	+ ill 1  +ll 	I 
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C.1.3 Daggered 

The daggered equation is needed for some solvers. It can be written as 

	

(t) (x) = 	(1 + 7M )UM (x)b(x + ) + (1 - 	- i'(x - 
JA 

	

= 	AMa+A 	 ( 0 . 8 )JAa 
JA 

where 

AAa = UM(X)X ' a(X + ) 	 (0.9) 

A' - - U(x - ii)x(x - 

The daggered delta term can then be written as 

/ 	A0 - iA 1  +A 	- A' yo 	yi +A 0  - iA 1  +A 0  

t(x) 
= 

A1 - iA 0  -i-A1 + A' 0  +A 1  - iA 0  +A 1  

) 	

(0.10) 
—iA 1  + A 0  —A 1  + A 0  —iA 0  + A 0  +A 0  
—iA 0  + A 1  +A0 + A 1  +iA 1  + A 1  +A 1  

C.2 Clover term implementation 

C.2.1 Introduction 

The Clover term in the action is defined in section 1.1.3 to be 

A = 1 - ,cCcrM,,FM , 	 ( 0.11) 

where ic is the quark hopping parameter, C is the Clover coefficient for adjusting 

the action, 0Mv  are defined in Appendix A and FMV  is the field strength, defined 

by 

QM(x) - QMt(x) 

- 
 

21 

Q M (x) = 	UOAV 	 (0.12) 
i=1,4 

with the QMV  shown in figure 1.1. 

W 
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C.2.2 Matrix definitions 

Because all of the plaquettes are calculated in the same direction (see figure 

1.1), F has the following anti-symmetry 

F, = —F 	 (0.13) 

With these definitions we can see that the matrix 	can be written as 

	

-F12 	-F23 - iF13  

	

- -F23 + iF13 	F12  

	

- L03 	-101i.L02 

	

—F01  - iF02 	F03  

Note that we have only summed over it 

counted. By defining the following quanti 

	

—F03 	—FO i +iFo2 1 
—F01  - iF02 	F03  

(0.14) 

	

—F12 	—F23 —iF13  I 
—F23 +iF1 3 	F12 	] 

< ii so that planes are not double 

ties 

Wo  = F21  

W1 = F32+iF31 

TilT2  = F30  

W3 = F10 +iF02 	 (C.15) 

we see that 
wo w1 	w2  w3  

= 4' 	— WO W —W2 
(0.16) 

W2 	W3 	WO W1 
W3t 	W2  W —W 0  

It is the elements of W 	which are stored by the program, this form requires a 

quarter of the memory of storing the full Clover term. 

C.2.3 The decomposition of A - ' 

A decomposition of A is performed to make the multiplication by A 1  easier 

(and indeed to find A more easily) [126]. The following equation is being 

solved 

Ax=y 
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so that by setting 

A=LtDL 

we ensure that 

LDL.x = y 

or 

x = (L)'.(D)l.(Lt)l. y  = A.y 

where L is a lower triangular matrix and D is a diagonal matrix. In fact the 

matrices L 1  and D 1  are stored. This is simply the action of Clover inverse 

on a quark propagator field as required. This decomposition can be performed 

because of the hermicity properties of A. 

C.2.4 Decomposition algorithm 

The decomposition is performed by the following algorithm (in the following 

we let i,j stand for both the spin indices cz,,@ and the colour indices a, b, so 

that Ndiag is equal to 12). 

DO i = Ndiag-1 TO 0 STEP -1 
DOj=iTOO STEP -1 

LET t=A 3  
DO k = 41 TO Ndiag-1 (not for i =Ndiag-1) 

LET t = t - L* Dk.Lkj lei 

EN D DO 
IF(i =j )THEN 

LET D=t 
ELSE 

LET L 1 =t/D 
ENDIF 

ENDDO 
LET Di = 11D (gives us D') 

EN D DO 
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C.2.5 Multiplying by A - ' 

To multiply a quark propagator field by A 1  the following algorithm is used 

First multiply by (Lt) 
On entry: x is the vector to be multiplied, y is the result. 

LET y = x (Do not do in-place calculation.) 
DO i = Ndiag-1 TO 0 STEP -1 

DO j = Ndiag-1 TO i+1 STEP -1 (not for i =Ndiag-1) 
LET yj  = yj -  

j i 
EN D DO 

EN D DO 

Now multiply by (DL)'... 

DO I = 0 TO Ndiag-1 STEP 1 
LET y, = * D 
DO j = 0 TO i-i STEP 1 (Do nothing when i = 0) 

LET yj  =yi - L ij *yj  
ENDDO 

ENDDO 

C.3 The in-line pion propagator 

The in-line pion propagator is calculated after the solver has calculated the 

quark propagator as a check on a physical quantity. This should be gauge 

invariant (a useful check when random gauge transform of unity is applied). 

The quark propagator can be written as 

=(C.17) 

where i,j are colour indices and a, ,8 are spin indices. The quark propagator 

is evaluated for different values of the quark mass m q , which is related to the 
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hopping parameter ic by 
1 

= 2mq  + 8 	
(C.18) 

The pion correlation function is the quantity which we wish to measure and is 

denoted by 

C(, ) = (OIir(, t)irt(0)1O) 	 (C.19) 

where 

irt = (( q t y0 ) y5q)t = q t y5 .y0q  

so that 

C(x) = 

= 

= 	 O)V)j i 	x) 	 (C.20) 

The lattice Dirac equation gives 

ji 
'O; x) = (614(0; x)(ys ) 	 (C.21) 

so that 

C(x) = 	( y5)c43Iy(x; 
O)(5)),5(y5)5p/42(O; 

 )() 

= Tr 

= Ti' [?k (X; 0).V) t (0; X)] 

= t(x;O)I 2 	 (C.22) 

What is done in practice is to calculate the modulus squared of the quark 

propagator for a particular source spin (8) and colour (j), then sum over sink 

spin (a), colour (i) and spatial indices () to get a value for the time-slice, this 

is a real number. We finally sum over the source spin and colour to obtain a 

single real value for each time-slice. 

- pion prop(t) = 	 100ijee (x,t)I 2 	(C.23) 
j3 ta 
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C.3.1 Free field pion 

When performing calculations in unit gauge (or gauge transformed unit gauge) 

e.g. test code, the full pion (with source summed over all spin and colour) 

can be constructed from just one spin and colour using the periodic boundary 

conditions and spin symmetry. 

C.4 Rotations in the Clover action 

As shown in section 1.1.3, we need to rotate the fermion fields according to 

1 -+ 

- 

1 - 
and i/ -' ii" = (1 + 2 P) = 	 ( C.24) 

where the lattice covariant derivatives are defined by 

-+ 	 1 
(D f)(x) = j (U,(x)f(x + j2) - U(x - /2)f(x - 2)) 

1 
and (f D,)(x) = 	(f(x + ui)Ut(x) - f(x - j2)U(x - /2)) (C.25) 

If we write these derivatives as full matrices with f a column vector and 1T 

the corresponding row vector, then 

(D. f)(x) = > 	(x,y)f(y) 

and (f T 	)(x) = 	f(y) B A  (y,x) 	 (C.26) 

so that we can write 

D. (x, Y) = 	 - U(x - / 2) 61hz_il) 

I- 	 1 
similarly D (y, x) = 	(U(X)S y , z+il  - UM (x - 

4- 	 1 
or D (x, Y) = 	(—U(x)6 y ,x+il+ U(X/2)Sy,z_il) 

= - D. (x, Y) 	 (C.27) 
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i. e. when viewed as full matrices which can act in either direction, we have that 

- D,, 	 (0.28) 

which implies that 

1-i 
R1 = (1—D) 

1 
D)) 

1+- 
= (1+D) 

R, =— R 	 (C.29) 

i.e. the two rotations are exactly the same matrix. 

The Clover action is invariant under the rotation to terms of order a 2 , hence 

(y)Mciover(y, x)q(x) - 	(y)RR' McioverR1  Rq(x) + 0(a2 ) 

= q(x)MIqR(x) + 0(a 2 ) 	 ( 0.30) 

So the improved quark propagator is given by 

<qR(x)q(y) >= M71 (x,y) 	 (0.31) 

We therefore need to compute 

M'(x,y) = RM ver(X,Y)R 	 (0.32) 

We cannot compute the whole .propagator matrix since it is too large, so we 

fix point y at the origin and restrict ourselves to calculating a single column 

of the propagator. So if we let (y) = &,,o be the usual source vector, we can 

apply the rotation R to 77 and solve 

>Mciover(y,x)çb(x)Rii(y) 	 (0.33) 

for 0, i.e. 

(C.34) 
1/ 
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If we apply the rotation again to the solution 0 , we obtain the required quark 

propagator field 

(x) = Rçb(x) 

= 	RM ver(X,y)Ri7(y) 

= RM ver(X,O)R 	 (0.35) 

which is the required result. 

In summary, the procedure used is 

Apply the rotation R to the source q - 	= Ri7. 

Solve Mciover4' = i' for q. 

Compute çb = Rq. 



Appendix D 

F90 and HPF: Important language features 

D.1 Introduction 

In this appendix we explain the most important features of Fortran 90, High 

Performance Fortran (HPF) and Connection Machine Fortran (CMF). These 

features are related to array handling in Fortran. Only the features used in 

this project have been documented-here (a very small subset). 

An early description of migration from CM Fortran to HPF is described in 

[127]. This has several omissions which have been inserted in this discourse. 

D.2 Relevant Fortran 90 features 

In this section we present not only the Fortran 90 features which are used 

extensively, but also those which have not been used because their use may be 

misleading, or lead to problems. For further details of these features, refer to 

[60] 

D.2.1 Array declarations 

Arrays are declared in the following way 

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1, 
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt1) 
$ 
$ gauge_xevn, gauge_xodd 

Cfpoint single-gauge (0:Ncolour-1,0:Ncolour-1, 
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) 

178 
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which shows the declaration of multiple arrays of the same type (first statement) 

or a single array (second statement). The single declaration can be put in the 

same form as the multiple with only a single variable name after the ': :' if 

desired. Both of the arrays are of type Cfpoint, single precision complex. Note 

that CMF allows the use of ARRAY as well as DIMENSION, but HPF does not; 

the latter should always be used. 

D.2.2 Arithmetic operations on arrays and array sections 

When arrays are of the same type, arithmetic operations can be performed on 

whole arrays with a simple statement e.g. 

INTEGER, DIMENSION (0:4,0:4) :: a, b, c 

a= b + c 
a= a* 6 

adds the elements of b to those of c and places the result in a, and then 

multiplies all elements of a by a scalar. If you wish to only do the first element 

in the first dimension but all the elements in the second dimension, the 

notation can be used e.g. 

INTEGER, DIMENSION (0:4,0:4) :: a, b, c 

a(0,:) = b(0,:) + c(0,:) 

this notation should not be used for local indices, only distributed, as CMF 

cannot implement it properly. 

Although HPF allows you to pass out sections of arrays to functions, e.g. 

INTEGER, DIMENSION (0:9) :: pass-out 

CALL operate(pass_out(0:8:2)) 

which would pass out elements 0, 2, 4, 6, 8 of the array pass-out, CMF does 

not; this feature must not be used. 
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D.2.3 Index ordering and 'fastest index' 

Fortran 90 does not define which index moves fastest i.e. the layout in memory 

of the array. In Fortran 77 it is defined to be the leftmost index. This means 

that passing an array element to a function (as is done in Fortran 77) to use 

as a 'pointer' to the part of the array you are interested in cannot be done. 

Subroutines must either be given the whole array and select a section of it, or 

a section must be copied into workspace and passed to the subroutine. The 

Fortran 77 code 

#include "implicit.h" 
#include "build_size .h" 
#include "build_constants .h' 
#include "precision.h" 

INTEGER big (O:Ncolour1,0:Ncolour-1,O:Npar-1) 

CALL junk(big(0,0,1)) 

which passes the second parity of the array big to the subroutine junk, would 

have to be coded in Fortran 90 as 

#include "implicit .h" 
#include "build_size. h" 
#include "build_constants. h" 
#include "precision.h" 

INTEGER big (0:Ncolour-1,O:Ncolour1,0:Npar1) 
INTEGER temp (O:Ncolour-1,O:Ncolour-1) 

INTEGER row,col 
DO rowO,Ncolour1 

DO colO,Ncolour-1 
temp (row,col) = big (row,col,1) 

END DO 
END DO 

CALL junk(temp) 
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As we often need to operate on single parities of the fields, we use a separate 

array for each parity in order to reduce the amount of copying to temporary 

arrays. 

D.2.4 Number of indices allowed 

Only 7 indices are allowed in HPF to ensure backwards compatibility with 

Fortran 77. For this reason a set of gauge fields has to have a separate array 

for each direction and parity. 

D.2.5 Array intrinsics used in MPP codes 

These are operations on arrays. Some result in a derived quantity such as a 

sum, others transform the array e.g. CSHIFT. The following intrinsics operate 

in the same way on arrays as they do on scalars 

• ABS - take the absolute value (modulus) of an array of numbers. 

• REAL - take the real part of an array of complex numbers. 

• AIMAG - take the imaginary part of an array of complex numbers. 

• CONJG - take the complex conjugate of an array of complex numbers. 

D.2.5.1 The SUM intrinsic 

This intrinsic sums the elements of an array. It can have options specifying a 

mask and the dimension to sum over, but we only use a very simple form 

#include "implicit .h" 
#include "build_size. h" 
#include "build_constants .h" 
#include "precision.h" 

Cfpoint tmp (0:Ncolour-1,0:Ncolour-1, 

$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) 
Cfpoint sum_tmp 
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sum_tmp SUM (tmp) 

which sums every element of tmp. 

D.2.5.2 The ANY intrinsic 

This intrinsic returns a LOGICAL value, depending on a test e.g. 

#include "implicit .h" 
#include "build.size.h" 
#include "build_constants.h" 
#include "precision.h" 

Fpoint tmp (0:Ncolour-1,0:Ncolour-1, 
$ 0:Nxby2-1,0:Ny-1,0:Nz-1,0:Nt-1) 

IF (ANY(tmp .NE. 0.0)) THEN 
WRITE (*,*) 'Non-zero element found' 

END IF 

which displays a message if any element of tmp contains a non-zero value. 

D.2.5.3 The CSHIFT intrinsic 

This intrinsic is used for moving data in an array by Cyclic SHIFTing, exactly 

the operation needed to implement periodic boundary conditions. The syntax 

is 

<dest> = CSHIFT (<source>, SHIFT=<dir>, DIM<dim>) 

where <dest> is the resultant array, <source> is the array to be operated 

on, <dir> is the direction and amount to shift the array and <dim> is the 

dimension of the array to shift. Note that the CM Fortran version of CSHIFT 

reverses the last two arguments if the SHIFT and DIM keywords are not put 

in. To be portable you must specify these keywords. The direction and 

amount <dir> is only ever set to +1 or —1. 

As an example of its use consider the array 

(i 23 
source =4 

5 6 
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All arrays are addressed throughout our software as (row,col) so the command 

source = CSHIFT (source, SHIFT-1, D1M2) 

changes source to 
(3 1 2 

4 5 

i.e. the matrix has been shifted in the increasing column direction. Note that 

<dim> starts counting from 1, not 0 as our array indices do. 

D.2.5.4 Masks 

A mask is simply an array of logicals which indicates where a conditional oper-

ation is to take place. For example with the matrix source above, the matrix 

source-mask 

source-mask 
= ( .TRUE. .FALSE. .TRUE. ) 

.FALSE. 	.TRUE. 	.FALSE. 

can be used to enable operations on source only where the mask is .TRUE.. 

See the sections on MERGE and WHERE for details of use. 

D.2.5.5 The MERGE intrinsic 

The MERGE intrinsic merges together two arrays depending on the value held in 

a mask. The syntax is 

<dest>=MERGE(<t source)!, <f source> ,<mask>) 

Consider the following example of its use with the matrices tarray, f array, 

tfmask. 
i 2 3\ 

tarray=4 5 6) 

farray= 
( 

 10 11 12 ) 

I .TRUE. 	.FALSE. .TRUE. 
tfmask= 	

.FALSE.  .TRUE. .FALSE. 

with the following command 

result = MERGE (tarray, f array, tf mask) 
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The matrix result would be set to 

183 
tarray= 

(

10 5 12 

D.2.5.6 The WHERE statement 

The WHERE statement can operate on arrays according to the value of the mask. 

It can be used in one of two forms 

The WHERE statement. 

WHERE (<mask>) <statement> 

The WHERE. . . ELSEWHERE... ENDWHERE construct. 

WHERE (<mask>) 
<statement 1> 

ELSEWHERE 
<statement2> 

END WHERE 

The statements enclosed must operate on arrays of the same shape and size as 

<mask>. They may not call subroutines or functions (except intrinsics). 

Note that on the Connection Machine MERGE is used more often as it is faster 

(by a factor of 2!). This may not be true for all compilers and should be 

investigated on the machine in question. The following two statements are 

equivalent 

result = MERGE (tarray,farray,tfmask). 

and 

WHERE (tfmask) 
result = tarray 

ELSEWHERE 
result = f array 

END WHERE 

If all matrix shifting is placed in a single subroutine for each matrix type, 

switching between MERGE and WHERE is simplified. 
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D.2.6 Features not used, or not allowed 

D.2.6.1 The INTERFACE block 

These blocks (which declare the interface to a subroutine or function and allow 

greater type checking within the compiler) are not used. This is because the 

source, files become extremely long and the compilers on the Connection Ma-

chine cannot cope. An additional pain is that the interface blocks would have 

to be put in header files; if a header file is included but the relevant routine 

is not called a whole slew of warning and error messages are generated by the 

compiler. 

D.2.6.2 The CASE statement 

This is disallowed by the CHPF, on the grounds that it is non-essential. The 

construct IF.. .THEN. . .ELSE IF; .. must be used. 

D.2.6.3 The SYSTEM-CLOCK intrinsic 

This intrinsic is not used to perform timing because of the ambiguity in what is 

being timed. When time-sharing on machines the system clock on the front-end 

bears no relation to the processor time on the machine. Machine-dependent 

timing is expected. 

D.2.6.4 The RANDOM-NUMBER and RANDOM-SEED intrinsics 

The use of these intrinsics is not forced so that users have greater flexibility in 

choosing a random number generator. The RNG selected by these defaults is 

not a standard across compilers or machines - the performance is an unknown 

- so use of these intrinsics is also not encouraged. 
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D.3 Subset High Performance Fortran 

The use of cHPF requires additions to the Fortran 90 features discussed above, 

not changes. 

D.3.1 HPF directives 

HPF directives start with 

!HPF$ <directive> 

The only directives we use are 

• PROCESSORS 

• DISTRIBUTE 

which are explained below. 

D.3.1.1 The PROCESSORS directive 

This directive specifies the mapping of arrays elements (abstract or virtual 

processors) onto the physical processors (or processing elements). Since all of 

our arrays are distributed on a 4-D lattice, the usage is 

'HPF$ PROCESSORS <name> (<x>,<y>,<z>,<t>) 

which specifies that the mapping, called <name>, uses (<x>,<y>,<z>,<t>) pro-

cessors along each direction. In practice this should be defined in a header file 

which is included by all subroutines. 

D.3.1.2 The DISTRIBUTE directive 

This directive specifies how the array is laid out on the machine. The usage is 

!HPF$ DISTRIBUTE <name> (<layout>,...) ONTO <mapping> 

for single arrays, or 

!HPF$ DISTRIBUTE (<layout>,...) ONTO <mapping> 
!HPF$$ <nainel>,... 

for multiple arrays. 
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An example of use is 

#include "implicit .h" 
#include "build_size. h" 
#include "build_constants .h" 
#include "processors .h" 
#include "precision.h" 

Cfpoint, DIMENSION (0:Ncolour-1,0:Ncolour-1, 

$ O:Nxby2-1,0:Ny-1,O:Nz-1,O:Nt-1) 

$ 
$ gauge_evn, gauge-odd 

'HPF$ DISTRIBUTE (*,*,BLOcK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 

!HPF$$ gauge_evn, gauge-odd 

which will cause all colour components to live on the same abstract processor 

(because of the '*'), and the x, y, z and t components to be distributed over 

different abstract processors. Each space-time point will have a separate SU(3) 

matrix on a separate abstract processor in effect. 

D.3.2 The FORALL statement 

This allows you to perform several loops simultaneously. The syntax used is 

FORALL (<loopvar><lowlim>:<highlim> .... ) <statement> 

e.g. 

• #include "implicit.h" 
#include "build_size.h" 
#include "build_constants . li" 
#include "precision.h" 
#include "processors .h" 

INTEGER y, z, t 
• LOGICAL spin2_mask (0:Ncolour-1,0:Nspin4-1, 

$ O:Nxby21,0:Ny-1,O:Nz-1,O:Nt1) 
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 

!HPF$$ spin2_mask 

FORALL (y0:Ny-1, z0:Nz-1, tO:Nt1) 

$ spin2_mask (:,:,:,y,z,t) = MOD(y+z+t,2) .EQ. 0 
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D.4 Connection Machine Fortran 

The only differences from the features discussed earlier are those of layout and 

common block location. The following code fragment illustrates the differences 

(the addition of CMF$ directives). The use of FEONLY specifies that the common 

block lives on the front end; if the common block is intended to be on the MPP 

machine, omit this line. 

#include "implicit .h" 
#include "build_size. h" 
#include "build_constants. h" 
#include "processors . h" 
#include "precision.h" 

INTEGER common_var 
COMMON /var_common/ common_var 

CMF$ COMMON FEONLY /var_common/ 
Cfpoint, DIMENSION (O:Ncolour-1,O:Ncolour-1, 

$ O:Nxby2-1,0:Ny-1,O:Nz-1,O:Nt-1) 
$ 
$ gauge_evn, gauge-odd 

CMF$ LAYOUT gauge_evn (:SERIAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS) 
CMF$ LAYOUT gauge_evn (:SERIAL, :SERIAL, :NEWS, :NEWS, :NEWS, :NEWS) 
!HPF$ DISTRIBUTE (*,*,BLOCK,BLOCK,BLOCK,BLOCK) ONTO QCDPROCS 
!HPF$$ gauge_evn, gauge-odd 

Note that there is no way of declaring multiple variables in a single CMF 

directive. Since directives are legal Fortran comments, the MPP codes have 

both sets of directives left in place. 

D.5 The x-direction with regard to parity 

The layout of the arrays is particularly important when considering which array 

elements are on each virtual processor. Note that the important concept in this 

section is the virtual processor (VP) - not the processing element (PE). Array 

elements from two arrays situated on the same VP involve no inter-processor 
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communications by definition. This speeds up the execution of such elements 

by an order or so. 

This is most useful when considering the splitting up of the lattice into two 

sub-lattices labelled by parity. A point on each lattice with the same logical 

coordinate is on the same VP. 

The x-direction is a special case. Neighbouring points in the x-direction may 

or may not need communication e.g. case (1) in figure(D.1) requires communi-

cation whereas case (2) does not. For this reason, all matrix shifting should be 

performed using subroutines which check the direction and parity. 

P(0):L(0) 	P(1):L(0) 	P(2):L(1) 	P(3):L(1) 	P(4):L(2) 	P(5):L(2) 

. 	• 	I 	. 	. 	I 	• 	 -4X 

I 	 I 	 I 	 I 
case 1 	 case 2 

VP1 	 VP2 
EVEN 	ODD I  EVEN 	ODD 'I EVEN 	ODD 

	

J 	 I 

Figure D.1: The siting of points on the same or different VPs determines whether commu-

nication is required. Case 1 potentially. requires communication whereas case 2 does not. 



Appendix E 

Message passing packages: important features 

The code presented in this appendix was written by Stephen Booth. We assume 

that the reader has some prior knowledge of PVM. We do not aim to explain 

all of the structures underlying the code; it is merely included as an example 

of implementation of the message-passing layer in PVM. 

E. 1 Header files 

There are several options which can be implemented throughout the message-

passing code if required. To ease the selection of required options, all relevant 

build-time flags are defined in a single file, 'pvm_opt ions. h' as shown below. 

C options file for the PVM versions of the comms routines. 
C 

C 
C leave data in place. 
C 
#undef INPLACE 

C put in barriers at the start and end 
C of all boundary communications 
#undef BOUND-BARRIER 
#ifdef INPLACE 
C we need the barriers if we are doing in-place pvm 
#define BOUND-BARRIER 
#endif 
C 

C Use broadcast or multicast. 
C 
#undef BCAST 

C use the binary tree to return gsum results rather than 
C using the set functions 
#undef TREE-SEND 

190 
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C 
C complete boundary comms in the start call 
C instead of waiting for the end call 
C 
#undef NO-OVERLAP 

All constants, common MP variables and data sizes are declared in the header 

file 'pvmcomms . h'. This file is included by all communications routines. 

C 
C Include file for PVM version of the comins 
C 

C first we need the standard pvm file 
#include <fpvm3 . 

C position of parameters packed in the initialisation block. 
INTEGER Block-size 
INTEGER X_size, Y_size, Z_size, T_size 
INTEGER X_pos, Y_pos, Z_pos, T_pos 
INTEGER Boss_pid, My_pid 

PARAMETER(Block_size = 10, 
$ 	X._size = 	1, Y_size = 2, 
$ 	Z_size = 3, T_size = 4, 
$ 	X_pos = 5, Y_pos = 6, 
$ 	Z_pos = 7, T_pos = 8, 
$ My_pid9, Boss_pidlO) 

C 	parameters for the comms. 
INTEGER Nbranch, Encoding, Bound-encode 
PARAMETER(Nbranch=2, EncodingPVMRAW) 

#ifdef INPLACE 
PARAMETER (Bound_encodePVMINPLACE) 

#else 
PARAMETER (Bound_encodePVMRAW) 

#endif 

CHARACTER*(*) g_group 
PARAMETER(g_group = 'ggrp') 

C parameters for message tags 
INTEGER Fgsum_tag, Dgsum_tag, Igsum_tag 
INTEGER Fgset_tag, Dgset_tag, Igset_tag 
INTEGER Pio_tag, Pio_req_tag 
INTEGER Bound-base, mit_tag 

PARAMETER(Bound_base = 10, 
$ 	mit_tag = 1, 
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$ 	Fgsum_tag  

$ 	Dgsum_tag  

$ 	Igsum_tag  

$ 	Fgset_tag  

$ 	Dgset_tag  

$ 	Igset_tag  

$ 	Plo_tag = 8, 

$. 	Pio_req_tag=9) 

INTEGER tidtable, neighbours, n_proc, myid, dir_tag 
LOGICAL send_ok 

COMMON /PVMTAB/ 
$ 	tidtable(O:Max_proc-1), 

$ 	neighbours(O:Ndir-1), 

$ n_proc, myid, 
$ 	dir_tag(O:Ndir-1), 

$ 	send_ok(O:Ndir-1) 

#ifndef PVMTYPE 
#deine PVMTYPE 
C declare FTYPE DTYPE ITYPE to match precision.h 
#if (Fsize == 4) 
#deine FTYPE REAL4 
#endif 
#if (Fsize == 8) 
#define FTYPE REAL8 
#endif 
#if (Dsize == 4) 
#deine DTYPE REAL4 
#endif 
#if (Dsize == 8) 
#define DTYPE REAL8 
#endif 
#if (Isize == 4) 
#define ITYPE INTEGER4 
#endif 
#if (Isize == 8) 
#define ITYPE INTEGER8 
#endi 
#endif 

E.2 Loader program: pvmgrid 

To get the application running on the nodes of the MPP we need to spawn the 

individual processes in a 4-D torus. We use the model where the host process 
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plays no part in the calculation so this program only has to fire up the node 

programs and tell them their position in the processor array. 

C host has to have the same integer format as nodes 
#include "precision. 

PROGRAM pvmgrid 
#include "implicit .h" 
#include "build_constants . 
#include "build_size .h" 
#include "pvmcomms . h" 

INTEGER Max-node 
PAFtAMETER(Max_node = Max_proc) 
CHARACTER*80 name 
INTEGER size(0:3) 
INTEGER mytid 
INTEGER count 
INTEGER i,x,y,z,t,bufid,status 
INTEGER info(Block_size) 

C functions 
INTEGER procpos 

C macro defs 

C check the task ID 
CALL pvmfmytid(mytid) 
IF (mytid .LT. O)THEN 

CALL pvmfperror( 'pvmgrid' ,status) 
CALL pvmfexit(info) 
STOP 

END IF 

C set automatic error printing to ON 
CALL pvmfserror(1, 

name = SLAVE_PROG 
#ifdef AUTO-SIZE 
C AUTO-SIZE can be set in the pre-processor flags. If 
C set, the user must hard-wire in the processor grid size 
C and lattice size. 

size(X_index) = X_proc 
size(Y_index) = Y...proc 
size(Z_index) = Z_proc 
size(T_index) = T_proc 

#else 
C Otherwise we must read in the grid from the user 
C at run-time; more flexible, but less efficient in 

C some cases. 
WRITE(*,*) 'grid size ?' 
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READ(*,*) (size(i), i=O,Ndim - 1) 
#endif 

WRITE(*,*) 'loading program ' , name 
WRITE(*,2) (size(i), i0,Ndim- 1) 

2 	FOFtMAT('onto 1 ,12,' * '12,' * '12,' * '12) 
DO 5, i=0,3 

IF(size(i) .LT. 1)THEN 
WRITE(*,*) 'illegal grid size, size(',i,') = ', 

$ 	size(i) 
STOP 

END IF 
5 	CONTINUE 

n_proc = size(0) * size(1) * size(2) * size(3) 
IF ((n_proc .LT. 1) .OR. (n_proc .GT. Max_node))THEN 
WRITE(*,*) 'illegal grid size',size 
STOP 

END IF 
C start the 'n_proc' new processes on any machine (PVMDEFAULT), 
C the task ID's are returned in 'tidtable'. 'Count' is the number 
C of actual processes started. 

CALL pvmfspawn(name ,PVMDEFAULT, ' ',n_proc,tidtable ,count) 
IF(n_proc .NE. count)THEN 

C couldn't start enough processes.... die 
WRITE(*,*) ' error loading program' 
DO 6, i=O,n_proc 
WRITE(*,*) tidtable(i) 
IF (tidtable(i) .LT. O)THEN 

CALL pvmfperror( 'pvmgrid' ,tidtable(i)) 
END IF 

6 	CONTINUE 
C leave gracefully after printing error messages... 

CALL pvmfexit(status) 
STOP 

END IF 

WRITE(*,*) 'load ok' 

C now send id information to each processor. 
C 

C grid size 
info(X_size) = size(X_index) 
info(Y_size) = size(Y_index) 
info(Z_size) = size(Z_index) 
info(T_size) = size(T_index) 

C Tell the slave processes who's boss (proc. 0) 
info(Boss_pid) = 0 

C Generate a unique Processor ID for each grid position, 
C info(4y_pid).  See subsection on 'Processor layout' for 
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C algorithm. 
DO 70, t0,size(T_index)-1 

DO 65, z0,size(Z_index)-1 
DO 60, y0,size(Y_index)-1 

DO 55, x0,size(X...index)-1 
info(X_pos) = x 
info(Y_pos) = y 
info(Z_pos) = z 
info(T_pos) = t 
i = proc_pos(x,y,z,t,size) 
info(My.pid) = i 

C Send info block and task ID's for all processors to 
C each processor. Uses the 'raw' transfer, i.e. no 
C encoding. 

WRITE(*,*) 'starting proc ',i 
CALL pvmfinitsend(Encoding,bufid) 
IF (bufid .LT. 0)THEN 

CALL pvmfperror( 'pvmgrid' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
CALL pvmfpack(ITYPE,info,Block...SiZe,1,StatUs) 
IF (status .LT. 0) THEN 

CALL pvmfperror('pvmgrid' ,status) 
CALL pvmfexit(status) 
STOP 

END IF 
CALL pvmfpack(ITYPE,tidtable ,n_proc, 1, status) 
IF (status .LT. 0) THEN 

CALL pvmfperror('pvmgrid' ,status) 
CALL pvmfexit(status) 
STOP 

END IF 
WRITE(*,*) 'sending to ',tidtable(i) 
CALL pvmfsend(tidtable(i) ,Init_tag,status) 
IF (status .LT. 0) THEN 

CALL pvmfperror('.pvmgrid' ,status) 
CALL pvmfexit(status) 
STOP 

END IF 
55 	 CONTINUE 
60 	CONTINUE 
65 	CONTINUE 
70 	CONTINUE 

WRITE(*,*) 'pvmgrid exiting' 
CALL pvmfexit(status) 

STOP 
END 
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E.2.1 Processor layout 

We need to tell the processors how they are arranged in the 4-D torus. This 

function, 'proc_pos' does this using a simple algorithm. 

INTEGER FUNCTION proc_pos(x, y, z, t, size) 
#include "implicit .h" 
#inc].ude "build_constants . 

INTEGER size(O:Ndim-1), x,y,z,t 
INTEGER pos(O:Ndim-1) 

pos(X_index) = MOD(size(X_index) + x , size(X_index)) 
pos(Y_index) = MOD(size(Y_index) + y , size(Y_index)) 
pos(Z_index) = MOD(size(Z_index) + z , size(Z_index)) 
pos(T_index) = MOD(size(T_index) + t , size(T_index)) 

proc_pos = pos(X_index) + 
$ 	(size(X_index) * (pos(Y_index) + 

$ 	(size(Y_index) * (pos(Z_index) + 

$ 	(size(Z_index) * pos(T_index)))))) 

RETURN 
END 

E.3 Initialising the communications system 

As described in section 3.1 we need to initialise the communications system 

and find out where we are using the information sent by the loader program. 

SUBROUTINE init_comins(grid_size, grid_pos, 
$ proc_id, boss_proc) 

#include "implicit .h" 
#include "build_constants .h" 
#include "build_size .h" 
#include "pvmcomius . 

INTEGER grid_size(O:Ndim-1) 
INTEGER grid_pos(O Ndim- 1) 
INTEGER proc_id, boss_proc 
INTEGER mess(Block_size) 
INTEGER mytid, parent, bufid, stat, myinst 
INTEGER count,i, t,z,y,x 
INTEGER proc_pos 

CALL pvmfmytid(mytid) 
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C If we were using a machine which did not utilise a 
C loader program 'pvmgrid' to spawn the processes, we could 
C whether there was a parent process here, and spawn any others 
C needed in the same way as 'pvmgrid' does. 

C recieve the data from the parent process. 

CALL pvmfrecv(parent ,Init_tag,bufid) 
IF (bufid .LT. 0) THEN 
CALL pvmfperror('init_comms' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
CALL pvmfunpack(ITYPE,mess,Block_size,1,stat) 
IF (stat .LT. 0) THEN 
CALL pvnifperror('init_comms' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 

C check where we are, who we are, and who the boss is. 
proc_id = mess(My_pid) 
myid = proc_id 
boss_proc = mess(Boss_pid) 
grid_size(X_index) = mess(X_size) 
grid_size(Y_index) = mess(Y_size) 
grid_size(Z_index) = mess(Z_size) 
grid_size(T_index) = mess(T_size) 
grid_pos(X_index) = mess(X_pos) 
grid_pos(Y_index) = mess(Y_pos) 
grid_pos(Z_index) = mess(Z_pos) 
grid_pos(T_index) = mess(T_pos) 
n_procgrid_size(X_index) * grid_size(Y_index) * 

$ 	grid_size(Z_index) * grid_size(T_index) 
CALL pvmfunpack(ITYPE,tidtable ,n_proc, 1, stat) 
IF (stat .LT. 0) THEN 
CALL pvmfperror('init_comms' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 

C set up the neighbour table (see next code fragment) 
CALL init_bound(proc_id,grid_pos ,grid_size) 

C wait for everyone to catch up. 
CALL pvmfsetopt(PVMFASTBARR, 1, stat) 
CALL pvmfbarrier(g_group,n_proc ,stat) 
RETURN 
END 

C111 
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The neighbour tables are set up so that the torus is implemented in software. 

SUBROUTINE init_bound(proc_id, grid_pos, grid...size) 
#include "implicit .h" 
#include "build_constants .h" 
#include "build_size.h" 
#include "pvmconuns . 

INTEGER proc_id 
INTEGER grid_pos(0:Ndim-1) 
INTEGER grid_size(0:Ndim-1) 
INTEGER i, n 

C 	functions 
INTEGER proc_pos 

DO 15, i=0,Ndir-1 
send_ok(i) = .TRUE. 
dir_tag(i) = 0 

15 	CONTINUE 

DO 20, i=0,Ndim-1 
C define the neighbour in the positive direction. 

grid_pos(i) = grid_pos(i) + 1 
n = proc_pos(grid_pos(X_index), grid_pos(Y_index), 

$ 	 grid_pos(Z_index), grid_pos(T_index), 
$ 	 grid-size) 

neighbours(i) = tidtable(n) 
C define the neighbour in the negative direction. 

grid_pos(i) = grid_pos(i) 	2 
n = proc_pos(grid_pos(X_index), grid_pos(Y_index), 

$ 	 grid_pos(Z_index), grid_pos(T_index), 
$ 	 grid-size) .  

neighbours(i+Ndim) = tidtable(n) 
grid_pos(i) = grid_pos(i) + 1 

20 	CONTINUE 

RETURN 
END 

E.4 Global sum 

C{{{ SUBROUTINE g_suin(rval) 
C 
C -g-sum single precision global sum 
C 

SUBROUTINE g_suni(rval) 
#include "implicit. 
#include "messages. h" 
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#include "build_constants .h" 
#include "build_size. h" 
#include "pvmcomms . 

Fpoint rval 
Fpoint sum, tmp 
INTEGER i, parent, son, bufid,stat 

C If there's only one process, we don't have much to do 
IF(n_proc .EQ. 1) RETURN 

sum = rval 
C{{{ get from Sons - we are using a binary tree, 
C (Nbranch2) 

DO 10, i1,Nbranch 
son= (Nbranch*myid) + i 
IF (son .LT. n_proc) THEN 

C we do have a son, receive message into tmp 
CALL pvmfrecv(tidtable(son) ,Fgsum_tag,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvmfperror( 'g_sum' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
CALL pvmfunpack(FTYPE,tmp, 1, 1,stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror('g_sum' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
C add to cumulative sum 

sum = sum + tmp 
END IF 

10 	CONTINUE 
C}}} 

C check we are not at the top of the tree, then 
C send cumulative sum to the parent. 

IF (myid .NE. 0) THEN 
parent= (myid-1 ) /Nbranch 

C{{{ send to parent 
CALL pvmfinitsend(Encoding,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvmfperror('g_sum' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
CALL pvmfpack(FTYPE,sum,1,1,stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror( 'g_suxu' ,stat) 
CALL pvmfexit(stat) 
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STOP 
END IF 
CALL pvmfsend(tidtable(parent) ,Fgsum_tag,stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror( 'g_suln' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
c}}} 

#ifdef TREE-SEND 
C we want to send the final result back down the tree. 
c{{{ receive from parent, only executes this bit if 
C we are not process 0. 

CALL pvmfrecv(tidtable(parent) ,Fgsum_tag,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvmfperror( 'g_sum' ,bufid) 
CALL pvmf exit (bufid) 
STOP 

END IF 
CALL pvmfunpack(FTYPE, sum, 1,1, stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror( 'g_sum' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
C}}} 

END IF 
c{{{ send back down tree 

DO 20, i=1,Nbranch 
son (Nbranch*myid) + i 

IF (son .LT. n_proc) THEN 
C 	send message 

CALL pvmfinitsend(Encoding ,bufid) 
CALL pvmfpack(FTYPE,sum,1, 1,stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror( 'g_sum' ,stat) 
CALL pvmfexit(stat) 

STOP 
END IF 
CALL pvmfsend(tidtable(son),Fgsum_tag,stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror('g_sum' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
END IF 

20 CONTINUE 
C}}} 
#else 
C otherwise use the global set routine to broadcast the 
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C result. 
END IF 
CALL g_set(sum) 

#endif 

rval = sum 
RETURN 
END 

C}}} 

E.5 Global set 

We often want to set a variable on a processors to the value on the boss proces-

sor, e.g. a global sum result. This is implemented with a suite of functions, as 

shown in section 3.1, one of which is 'g_set' which operates on a single-precision 

real number. 

SUBROUTINE g_s et (rval) 
#include "implicit .h" 
#include "messages . 
#include "build_constants . h" 
#include "build_size .h" 
#include "grid_def . h" 
#include "pvmcoIluuS 

Fpoint rval 
INTEGER bufid, stat 

C only one processor, so not much to do! 
IF(n_proc .EQ. 1) RETURN 

C 	send message 
IF(myid .EQ. O)THEN 

CALL pvmfinitsend(Encoding,bufid) 
CALL pvmf pack (FTYPE , rval, 1,1, stat) 

	

IF (stat L.T.. 	0) THEN 
CALL pvmfperror('g_set' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
#ifdef BCAST 

CALL pvmfbcast(g_group,Fgset_tag, stat) 
#else 

CALL pvmfmcast(n_proc,tidtable ,Fgset_tag,stat) 
#endif 

IF (stat .LT. 0) THEN 
CALL pvmfperror('g_set' ,stat) 
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CALL pvmfexit(stat) 
STOP 

END IF 
ELSE 

C receive message 
CALL pvm:frecv(tidtable(boss_id) ,Fgset_tag,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvinfperror( 'g_set' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
CALL pvmfunpack(FTYPE,rval, 1, 1, stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror( 'g_set' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
END IF 
RETURN 
END 

E.6 Boundary communications 

Most array shifting is implemented through the 'start-corn' and 'end-corn' 

routines described in section 3.1. They are implemented in PVM as follows 

(only the single-precision real version is shown). 

SUBROUTINE fstart_coiu(length, idir, icmp, ocmp )  

$ 	 ilen, input, olen, output) 
#include "implicit .h" 
#include "build_size.h" 
#include "build_constants .h" 
#include "messages.h" 
#include "pvmcomms . 

INTEGER length, idir, icmp, ocmp, ilen, olen 
Fpoint input(O: (icmp*ilen)-1,O:ocmp-1) 
Fpoint output(0:(icmp*olen)-1,0:ocmp1) 
INTEGER i, bufid, stat 

#ifdef BOUND-BARRIER 
CALL pvmfbarrier(g_group,n_proc, stat) 

#endif 
IF( .NOT. send_ok(idir))THEN 

CALL error_message('outstanding comnis not finished', 

$ 	 'f start_corn' ,Mess_local,Err_logic_error) 
END IF 
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IF(length .GT. 0)THEN 
CALL pvmfinitsend(Bound_encode ,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvmfperror( 'f start_corn' ,bufid) 
CALL pvrnfexit(bufid) 
STOP 

END IF 
DO 10, i=O,ocrnp-1 
CALL pvmfpack(FTYPE,input(0,i),(leflgth*iCmP),1,Stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror( 'fstart_com' ,stat) 
CALL pvrnfexit(stat) 

	

STOP 	 - 
END IF 

10 	CONTINUE 	 - 
dir_tag(idir)dir_tag(idir)+ 1 
CALL pvmfsend(neighbours(idir), 

$ 	dir_tag(idir)+Bound_baSe, stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror( 'f start_corn' ,stat) 
CALL pvrnfexit(stat) 
'STOP 

END IF 
END IF 

#ifdef BOUND-BARRIER 
CALL pvmfbarrier(g_group,n_proC ,stat) 

#endif 

#ifdef NO-OVERLAP 
C complete communications in the start call, do not 
C wait for the end-corn. 

CALL real_f end_corn(length, idir, icmp, ocmp, 

$ 	 ilen, input, olen, output) 

#endif 
RETURN 
END 

SUBROUTINE fend_com(length, idir, icmp, ocrnp, 

$ 	 ilen, input, olen, output) 

#ifdef NO-OVERLAP 
C complete communications in the start call 
C instead of waiting for a separate end call. 
#include "implicit .h" 

INTEGER length, idir, icmp, ocrnp, ilen, olen 
Fpoint input(0: (icmp*ilen)-1,0:ocmp-1) 
Fpoint output(0:(icmp*olen)-1,0:ocmp-1) 

RETURN 
END 
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SUBROUTINE real_f end_com(length, idir; icmp, oclup, 

$ 	 ilen, input, olen, output) 

#endif 
C11) 
#include "implicit .h" 
#include "build_size .h" 
#include "build_constants . h" 
#include "rnessages.h" 
#include "pvmconims .h' 

INTEGER length, idir, icrnp, ocmp, ilen, olen 
INTEGER bufid, stat 
Fpoint input(0:(icmp*ilen)-1,0:ocmp-1) 
Fpoint output(0:(icmp*olen)-1,0:ocrnp-1) 
INTEGER i, rdir 

#ifdef BOUND-BARRIER 
CALL pvrnfbarrier(g_group,n_proc, stat) 

#endif 
IF(length .GT. 0)THEN 
rdir = MOD(idir + Ndirn, Ndir) 
CALL pvmfrecv(neighbours(rdir), 

$ 

	

	dir_tag(idir)+Bound_base ,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvrnfperror( 'fend_corn' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
dir_tag(idir) = dir_tag(idir) - 1 
DO 10, i0,ocmp-1 
CALL pvmfunpack(FTYPE,output(0,i), 

$ 	(icmp*length) , 1, stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror( 'fend_corn' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
10 	CONTINUE 

END IF 
C 	once recv is started must flush all outstanding data. 

send_ok(idir) = (dir_tag(idir) .EQ. 0) 

#ifdef BOUND-BARRIER 
CALL pvrnfbarrier(g..group,n_proc ,stat) 

#endif 
RETURN 
END 
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E.7 Parallel file I/O support routines 

When we perform parallel file I/O we have to move blocks of data to the boss 

processor, which performs all I/O. The routines to do are 'block-push' and 

'block-pull'. 

SUBROUTINE block_push(pos ,size,buff) 
#include "implicit .h" 
#include "build_size .h" 
#include "build_constants .h" 
#include "messages. h" 
#include "pvmcomms . h" 

INTEGER p05, size 
Fpoint buff(O:size-1) 

INTEGER bufid, stat, rsize 

C wait for a request for data. 
CALL pvmfrecv(tidtable(pos) ,Pio_req_tag,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvmfperror( 'block_push' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
CALL pvmfunpack(ITYPE,rsize,1,1, stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror ( 'block_pull' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
IF(rsize .NE. size)THEN 

CALL error_message('wrong size message requested', 

$ 	'block_push' ,Mess_local,Err_logic_error) 
END IF 
CALL pvmfinitsend(Encoding ,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvmfperror( 'block_push' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
CALL pvmfpack(FTYPE,buff,size,1 ,stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror('block_push' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
CALL pvmfsend(tidtable(pos) ,Pio_tag,stat) 
IF (stat .LT. 0) THEN 
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CALL pvmfperror('f start_corn' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 

RETURN 
END 

SUBROUTINE block_pull (pos ,size,buff) 
#include "implicit .h" 
#include "build_size .h" 
#include "build_constants . 
#include "messages .h" 
#include "pvmcornxus . h" 

INTEGER pos, size 
Fpoint buff (O:size-1) 

INTEGER bufid, stat 

C send a request for data 
CALL pvmfinitsend(Encoding ,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvmfperror( 'block_pull' ,bufid) 
CALL pvmfexit(bufid) 
STOP 

END IF 
CALL pvmfpack(ITYPE,size, 1,1,stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror('block_push' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
CALL pvmfsend(tidtable(pos) ,Pio_req_tag,stat) 
IF (stat .LT. 0) THEN 

CALL pvrnfperror('f start_corn' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
C 	receive the data 

CALL pvmfrecv(tidtable(pos) ,Pio_tag,bufid) 
IF (bufid .LT. 0) THEN 

CALL pvmfperror('b].ock_pull' ,bufid) 
CALL pvinfexit(bufid) 
STOP 

END IF 
CALL pvmfunpack(FTYPE,buff ,size, 1,stat) 
IF (stat .LT. 0) THEN 

CALL pvmfperror('block_pull' ,stat) 
CALL pvmfexit(stat) 
STOP 

END IF 
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END 

E.8 Finishing up after the end of the program 

When we have finished, we must tidy up cleanly. 

SUBROUTINE finish_conuus() 
#include "implicit .h" 
#include "build_constants .h" 
#include "build_size .h" 
#include "pvmconuus .h" 

INTEGER code 

CALL pvmf exit (code) 

RETURN 
END 
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