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Abstract

The research presented in this thesis focuses on planning a parts mating task

by formulating a plan for a motion in contact. Specifically, it deals with the

problem of moving a 3-dimensional polyhedral object while maintaining contact

with a set of stationary obstacles. An algorithm has been developed and imple-.

mented which derives a motion plan as as sequence of contacts that have to be

established during a motion from some initial to some final contact state.

A configuration space approach to motion planning has been adopted. In

planning a motion in contact, a subset of the configuration space, the contact

space, is of relevance. The contact space is decomposed into faces of various

dimensions and adjacency relations between the faces are determined. For a

path-connected contact space, if the 0-dimensional faces (vertices) are connected

by 1-dimensional faces (edges), then the motion planning problem is reduced to

the problem of searching for a path in the graph of vertices and edges.

The algorithm has two stages. In the first stage, the graph of the surfaces

of various dimensions, on which the faces of the contact space lie, is found, and

in the second stage, the vertices and edges are determined. The implemented

algorithm makes use of a spatial reasoning system for finding the intersections

of surfaces and a solid modeller for checking physical interference.

Spatial relationships are used to represent the constraints on the relative

location of objects imposed by contacts. Using a spatial reasoning system based

on the RAPT inference engine, it is possible to associate a spatial relationship

with every contact state. The spatial relationship is arrived at by considering

conjunctions of 5 degree of freedom spatial relationships which describe the basic

types of contact among polyhedral objects.

The plan for a motion in contact is thus formulated in terms of the inter-

actions between features of objects. A method for transforming the plan into a

sequence of motions with sensory involvement could follow naturally from such

a formulation of the problem.

Part of the work presented in this thesis is described in [Koutsou 85].
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Chapter 1

Introduction

1.1 Motivation

Over the last few years there have been some impressive advances in the de-

sign of robots for industrial use. There are now robots in industry capable of

performing a large number of diverse tasks such as materials-handling, welding

and painting. Yet, with respect to one of the most important of manufacturing

processes - assembly operations— the pace of advance has been relatively slow.

Currently, only a small proportion of robots in industry are being used for as-

sembly tasks. One of the major problems that remain largely unresolved in the

area of robotics is the planning and execution of parts mating operations, that is,

actually bringing parts into contact with each other in the desired configuration.

If there were no uncertainty as to the position and shape of the parts, and

if the motions of the robot itself were absolutely accurate, then parts mating

would be a relatively straightforward operation. In that ideal world, to ensure

that a parts mating task would be executed successfully, it would be sufficient

to instruct the robot to move through some specified sequence of positions. In

the presence of uncertainty, however, describing and executing a task solely in

terms of positions is inadequate.

It is generally accepted that what is needed for the successful completion

of parts mating operations is a robot system that is capable of taking into ac-

count the interactions of the parts, i.e. the contacts, and complying with the

constraints imposed by them. A robot capable of performing this function must

1



Chapter 1. Introduction	 2

be equipped with tactile sensors. This thesis is concerned with the problem of

planning parts mating operations and in the approach I propose to follow, the

sensors are employed with a view to using the physical constraints of the task

to guide a part to its destination. Following this line of thought, parts mating

is viewed as an operation that can be accomplished by moving the part to be

mated while maintaining contact with the rest of the assembly.

1.2 Objective

The research presented in this thesis focuses on planning a parts mating task by

means of a plan for a motion in contact. Such a plan should be formulated in

terms that would allow it to be transformed into an executable robot program.

Having established that for parts mating operations it is not sufficient to consider

solely the positions of the objects, it follows that the plan has to be formulated in

terms of the interactions between features of the objects. In effect, my objective

is to produce a plan for a motion in contact as a sequence of contact states.

A method for transforming the plan into a sequence of motions with sensory

involvement follows naturally from such a formulation of the planning problem.

The issue of deriving and executing a sequence of motions falls outside the scope

of this research.

In this research, the parts considered are restricted to be three dimensional

rigid polyhedral objects with six degrees of freedom of motion. It will also be

assumed that only one part can be moved at a time.

After introducing some of the basic concepts used, the developed system for

planning a motion in contact will be overviewed.
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1.3 Elements of the Approach and Representa-

tion of the Problem

In the last few years the issue of motion planning has been considered extensively

in robotics research, while the issues of planning a motion in contact and assem-

bly planning have also received some attention. A detailed survey of research

in these areas can be found in Chapter 2. In this section I shall outline the

basic conceptual tools which I shall be using to tackle the problems of motion

in contact, namely the notions of configuration spa Ce, contact space and spatial

relationships. Before this, I shall illustrate through an example how the notion

of degrees of freedom of motion of the objects will be used in this research in

order to plan a motion in contact.

1.3.1 Degrees of Freedom

When two objects are brought into contact, their relative motion is constrained

and the number of degrees of freedom (d.o.f.) of motion is reduced. The d.o.f.

of a contact state are the d.o.f. of motion permitted with full contact still being

maintained. It has to be emphasised that this is different from the natural d.o.f.

of motion, i.e. the possible ways in which a part can be moved irrespectively of

whether contact is maintained or broken. For example, the situation of a block in

a corner is described by a contact state with zero d.o.f. - any motion of the block

would result in breaking the contact with the corner. The block, however, is not

physically constrained to be in the corner - it could still be moved upwards or

sideways. Similarly, the situation of a block on a table is described by a contact

state with three d.o.f. - one rotational and two translational d.o.f.

One approach to the construction of the motion plan is to reduce gradually

the d.o.f. of the moving part by gradually increasing the number of features

that are in contact. For example, a plan for placing a block in a corner would

entail the following motions (see Figure 1-1): (a) lowering the block until some
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vertex comes into contact with the top surface; (b) rotating about that vertex

until an edge comes into contact with the top surface; (c) rotating about this

edge until the whole face comes into contact with the top surface; (d) translating

along the the top surface until a vertex comes into contact with one of the walls;

(e) rotating until the whole face comes into contact with the wall; (f) finally,

translating until the block comes into contact with the other wall. In this case,

the d.o.f. are reduced one by one until the destination is reached.

In more complex cases, it is more difficult to reach the desired destination.

An example is shown in Figure 1-2. In this case, the presence of the obstacle

makes it more difficult to move the block to the corner. A plan for accomplishing

such a parts mating task would then entail: (a) establishing some initial contact;

(b) constraining the part to a zero d.o.f. contact state (Figure 1-2a); (c) moving

the part to its destination through a sequence of zero and one d.o.f. contact

states (Figure 1-2b). In this way, the transitions between the contact states of

the plan would be simple one d.o.f. motions during which the part remains as

constrained as possible.

1.3.2 Configuration space

A common conceptual tool for addressing problems related to motion planning is

the notion of configuration space [Lozano-Perez 83]. A configuration of a system

is the set of parameters required to specify a system completely. A point in

configuration space corresponds to some configuration of the system. In the

case of rigid objects, the configurations of the objects can be specified by their

loctions. In this thesis, the motion of a 3-dimensional rigid object with 6 d.o.f.

is considered. A configuration can thus be specified by a 6-tuple and the resulting

configuration space is 6-dimensional. Using this approach the problem of moving

a 3-dimensional object in a 3-dimensional space is transformed into the problem

of moving a point in a 6-dimensional space. As a result, the problem of planning

a motion is reduced to the problem of finding a path in configuration space.



(b

Ir

(e) c.c)

0

_napter 1. Thtroduction	 0

Figure 1—i: Placing the block in a corner by gradually reducing its d.o.f
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(_. \

Figure 1-2: Manoeuvring a block around a corner

1.3.3 Contact Space

The notion of contact space ( [Hoperoft and Wilfong 84a]) is used to denote the

set of configurations for which the objects are in contact but do not overlap with

each other. The contact space is thus a subspace of the configuration space.

Using the notion of the contact space the problem of finding a motion in contact

is reduced to the problem of finding a path in the contact space.

The contact space consists of faces of various dimensions. Informally, a face

consists of configurations which satisfy some particular contact constraints, that

is to say, it consists of configurations belonging to the same contact state. The

dimension of a face corresponds to the d.o.f. of motion allowed while the contacts

are maintained, i.e. to the d.o.f. of the corresponding contact state.

The approach which will be followed in this thesis is to decompose the contact

space into faces of various dimensions, to establish the adjacency relations of the

faces and then to find a motion plan as a path on the faces of the contact space.
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1.3.4 Spatial relationships

Spatial relationships among features of objects are used as a means of spec-

ifying the relative locations of objects ([Popplestone, Ambler, and Bellos 80J).

Examples of such spatial relationships would be "the bottom face of the block

is against the top of the table" or "the right face of the block is parallel to the

wall". Of special interest for the approach I propose to follow are spatial re-

lationships which describe the interactions between features of objects. Spatial

relationships of this kind specify the constraints on the location of the objects

imposed by the contact situation.

A system which reasons about spatial relationships has been used in this

research in order to decompose the contact space. The spatial reasoning system

makes inferences related only to the locations of features and objects but not to

their physical extent. In order to reason about contacts and physical interference

it is necessary, however, to be able to make inferences related to the space occu-

pancy of the parts. In this research I shall propose a method for decomposing

the contact space in such a way that the issue of the constraints on the locations

of the objects can be considered separately from the issue of physical occupancy.

A spatial reasoning system will be employed for dealing with the first problem,

i.e. the 'kinematics' of a task, and a solid modeller will be employed in order to

deal with the second problem, i.e. the physical interference.

1.4 Planning a Motion in Contact

In this research I have developed and implemented an algorithm for finding

a ath for a motion in contact along the 1-dimensional faces of the contact

space. The algorithm is based on a decomposition of the contact space into

faces of various dimensions. The proposed decomposition is an enlargement of

the decomposition in [Hoperoft and Wilfong 84b] for the case of 3-dimensional

objects which can rotate and translate. This alternative decomposition makes a

clear distinction between the 'kinematics' of contacts and body occupancy. In
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addition, by introducing some additional 1-dimensional faces, it overcomes, in

most cases, the problem of 0-dimensional faces of the contact space which are

not connected by 1-dimensional faces.

The algorithm for the decomposition of the contact space makes use of a

spatial reasoning system which handles constraints on the locations of objects

imposed by physical contact, that is to say, it deals with the 'kinematics' of con-

tacts. Issues related to body occupancy are handled by a solid modeller. The

developed spatial reasoning system is an extension of the RAPT inference engine

([Corner, Ambler, and Popplestone 83]). With the use of the particular reason-

ing system, it is not necessary to resort to the solution of algebraic equations

while planning a motion. General solutions of the algebraic equations have been

formulated in terms of geometric relations between coordinate systems embed-

ded in objects and their features. This approach differs significantly from the

approach in [Donald 84], where an algebra system is employed.

Having decomposed the contact space into faces, the problem of planning a

motion in contact is transformed into the problem of finding a sequence of faces

that have to be traversed, given some initial and final contact state. In the case

when the initial and final states are contact states with 0 degrees of freedom,

i.e. 0-dimensional states, a path can be found along the 1-dimensional faces. A

graph searching algorithm is used for searching the graph of 0- and 1-dimensional

faces and for finding, therefore, a plan for a motion in contact as a sequence of

1-dimensional contact states.

The developed system has been tested for an example similar to the one

shown in Figure 1-2.
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1.5 Contents

In Chapter 2 the problem of planning parts mating is placed in the perspective

of assembly planning, motion planning and fine motion planning. Research in

these areas is reviewed and the relation of this thesis to other work is described.

Chapter 3 addresses the theoretical issues related to the motion of a 3-

dimensional polyhedral object while maintaining contact with a set of stationary

polyhedral objects. A mathematical framework is presented for describing the

structure of the contact space - its faces and their connectivity. A decompo-

sition of the contact space into faces is formulated in terms of the interactions

among the features of the objects. Finally, an algorithm is outlined for achieving

such a decomposition.

In Chapter 4 a system which reasons about spatial relationships between

features of objects is presented. The spatial reasoning system is based on the

RAPT inference engine ([Corner, Ambler, and Popplestone 83j). Given a pair of

spatial relationships between two objects, the system is able to decide whether

the constraints on the locations of the objects implied by the two relationships

can be satisfied at the same time. If this is the case, then the system infers a more

constrained relationship, which is equivalent to the original pair of relationships.

In Chapter 5 the issue of developing a plan for a motion in contact is con-

sidered. By bringing together the theoretical themes developed in Chapters 3

and 4, a method is developed for using the spatial reasoning system in order to

construct a model of the contact space. The algorithm outlined in Chapter 3 for

the decomposition of the space is described in more detail and its implementa-

tion is discussed. Using the constructed graph of the space, the development of

a plan for a motion in contact is examined. Finally, ways in which the plan can

be transformed into a sequence of motions are discussed.

Finally, in Chapter 6 the contributions and the limitations of the presented

research are discussed and suggestions for future research are made.



Chapter 2

Review of Related Work

The issue of parts mating is one of the problems which have to be addressed

for the purposes of automated assembly. The approach taken in this thesis is

to bring the parts together through a sequence of motions such that the parts

are first brought into contact and then their positions are further constrained

by establishing more contacts until the desired relative positions are attained.

Therefore, planning parts mating operations becomes an instance of the general

motion planning problem, that of planning a motion of an object while maintain-

ing contact with a set of stationary objects. When dealing with parts mating,

apart from the issue of avoiding collisions with obstacles, problems arising from

the presence of uncertainty in the environment become of major importance.

For this reason, parts mating can be regarded as an instance of what is usually

called fine-motion planning.

In this chapter the problem of planning parts mating operations will be placed

in the perspective of assembly planning, motion planning and fine-motion plan-

ning. Research related to these areas will be reviewed and the relation of this

thesis to other work will be outlined.

10
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2.1 Assembly planning

Industrial robots currently in use are mostly programmed on-line by guiding

them through a sequence of positions (teach mode). Research has been carried

out for a number of years now towards higher level robot programming and

off-line programming and there have been experimental systems developed ex-

ploring the issues involved in higher level programming such as AL [Mujtaba

and Goldman 79], RAPT [Popplestone, Ambler, and Bellos 78], LM [Latombe

and Mazer 81], AML [Taylor, Summers, and Meyer 82]. For the purposes of

automated assembly some of the problems that have to be solved are:

. how are the robot and the environment to be modelled;

. at what level and how can a task be specified;

. where and how should each part be grasped;

. how is a part to be transferred without colliding with other objects;

. how is a part to be brought to some specified relation to the assembly;

. how to deal with parts tolerances and uncertainties;

. how to recover from failure;

. how can sensors be used?

we are moving to higher level systems, more of the above tasks are per-

formed automatically and less has to be programmed explicitly. All of the above

issues are currently being dealt with in robotics research and although proposals

have been made for systems which are able to perform all these functions auto-

matically (AUTOPASS [Lieberman and Wesley 77], LAMA [Lozano-Perez 76]),

no integrated system exists at the moment.
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[Lozano_Perez 82] divides task planning into three phases: modelling, task

specification and manipulator program synthesis. The objective of an assembly

planner is to transform a task specification into a manipulator program.

A task is specified by a number of goals (states) and perhaps by informa-

tion on how they can be achieved. The higher the level of programming the

fewer states that would have to be described. These states are described in

terms of the positions of all the objects in the environment. The positions of

the objects can be specified either explicitly, in terms of the position of the

manipulator, or implicitly, in terms of the effects on the objects. The latter ap-

proach is referred to as object-level programming or task-level programming

(RAPT [Popplestone, Ambler, and Bellos 78], LAMA [Lozano-Perez 76], LM-

GEO [Mazer 83]). Within the framework of task-level programming, the task

is specified using spatial relationships among the features of the objects. For

example, 'Facel AGAINST Face2'. These spatial relationships are then used for

obtaining position constraints.

A system which derives position information from spatial relationships is

the RAPT system described in [Ambler and Popplestone 75], [Popplestone, Am-

bler, and Bellos 80]. In that system, statements about spatial relationships

are transformed into position equations and these equations are solved in or-

der to obtain real values for the positions. An alternative system described in

[Popplestone and Ambler 83], [Corner, Ambler, and Popplestone 83] is capable

of recognising standard combinations of relationships between two objects and

applying standard solutions. As a result, this system is more efficient by com-

parison to its precursor.

[Taylor 76] also considers the issue of spatial relationships. He extends the

conbct relationships treated in the RAPT system to non-contact relationships,

resulting in inequality constraints on the positions. He restricts himself to cases

involving one rotation and linearises the resulting equations by dividing up the

range of the rotation.

A system of reasoning about spatial relationships based on [Popplestone and

Ambler 83] will be described in detail in Chapter 4.
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Motion planning lies at the core of manipulator program synthesis. During

the assembly process, or any other robotics process, the manipulator has to pick

up objects (grasping), transfer them and place them at appropriate positions

(parts mating). In the case of transfer movements, the main difficulty is to

avoid collisions with obstacles. In the case of grasping and parts mating, apart

from the issue of avoiding collisions with obstacles, other issues also have to

be considered, arising mainly from the need to have some objects coming into

contact. Then, the issues of forces, friction, errors in the models and the control

system of the robot have to be taken into account. We therefore make the

distinction between motion planning and fine-motion planning. Issues related

specifically with the problem of grasp planning ([Wingham 773, fLozano-Perez

81], [Mason 82b], [Brady 82b]) will not be considered in this review.

Although I will be dealing with the problem of parts mating, some of the

general approaches to motion planning are relevant and applicable. In Section

2.2 the general area of motion planning will be considered as a geometrical

problem and forces, friction and uncertainty will be ignored. In Section 2.3 the

issue of fine-motion planning will be examined.

2.2 Motion Planning

2.2.1 Formulation of the Problem

The general motion planning problem can be formulated as follows: given the

description of the robot and the environment, find a path for the robot from

some initial to some final location such that the robot avoids collisions with the

various obstacles in the environment.

The term 'path' in the above definition is used to denote a 'physical' path

which can be described in terms of positions. When the path is described in terms

of positions, velocities and accelerations it is usually referred to as trajectory,

although the two terms have been used interchangeably in the literature. A
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review of the work on trajectory planning can be found in [Brady 82a}. In this

section issues related to control theory, kinematics and dynamics will be ignored.

What will concern us here is the issue of motion planning as a geometrical issue.

The general motion planning problem can be divided into various classes by

varying all of the following characteristics ([Yap ss]):

. Dimension of the space: Although the underlying space of the motion

planning problem is three dimensional, sometimes it can be sufficiently

realistic to consider two dimensional problems.

• Geometry of the robot: Various cases can be characterised according to

whether the robot is: (a) rigid; (b) it consists of a number of joints (Carte-

sian, revolute etc) or (c) there are more than one independent robots, in

which case we talk about 'coordinated motion'.

• Boundaries of the objects: Various approximations can be used to model

the objects and the robot, the most common being polyhedral approxima-

tions. A larger class of objects can be modelled using algebraic surfaces.

• Motion objective: Usually, the objective is to reach some specific location.

Alternatively, the objective could consist of a set of locations with a com-

mon property. For example, the objective could be to place a box anywhere

on a table.

• Optimality criteria: Most common criteria are shortest path, maximum

clearance and minimum time. Usually, however, no optimality criteria are

used.

• Degrees of Freedom: In the general case, our aim is to solve the motion

planning problem for an arbitrary robot system which implies that we are

dealing with an arbitrary number of degrees of freedom. Usually, however,

we are concerned with a particular robot system and hence a fixed number

of d.o.f. In this case, the motion planning problem is referred to as the

basic motion planning problem.
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In the next section I will review the various approaches and algorithms for

the general motion planning problem and for specific instances of the problem

according to the above classification.

2.2.2 Approaches to Motion Planning

The motion planning problem has been considered within the fields of robotics,

A.I., computer science and, accordingly, various approaches have been taken.

The problem has also been given various names such as mover's problem, piano

mover's problem, collision avoidance, obstacle avoidance and find-path. The first

discussion started with the work on autonomous vehicles. Later on, research

began with respect to manipulator arms, and more recently there has been an

interest in algorithmic motion planning.

Hypothesize/test

This is the earliest method for dealing with motion planning as introduced by

[Pieper 68]. In general the algorithm consists of three basic steps: (a) generate

a path (b) test the path for collisions; (c) if a collision is found, examine the

objects colliding and propose a modified motion. The process is repeated for

the modified motion. The two operations required for the algorithm are first,

detection of potential collisions and second, modification of the path. The first

operation is called, in the literature, collision detection or clash detection or

dynamic interference detection. Static interference detection is the ability to

detect non-null intersections between objects, and is now part of the repertory

of most geometric modelling systems. The problem of potential collisions is

handled by one of the following methods: (a) multiple interference detection

[Meyer 81]; (b) sweeping volums [Boyse 79]; (c) four dimensional interference

detection [Cameron 84]; (d) constraints [Canny 85]. The main problems of this

method are related to the second operation, the modification of the path, and

they are a result of a lack of a global view of the problem. Path searching suffers

from the drawbacks of the hill-climbing method. It can result in unnecessarily
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complicated paths, or it can fail to find a path since it relies on approximations of

objects. The main advantage of this method lies in its simplicity and efficiency.

Collision detection can be used to test user defined paths and to help the user

modify the paths.

Explicit representation of free space

Almost all the research on motion planning which falls outside the generate/test

paradigm has concentrated on the problem of representing explicitly the set of

locations which are collision free - the free space - and examining its connec-

tivity. In most cases, the free space, or a subset of the free space, is represented

as a graph with nodes representing connected regions of the space and edges

representing adjacency between the regions. Path planning is thus reduced to

graph searching. The various methods differ in the way they partition the free

space and the degree of approximations they use. The fundamental drawback

of the method is that explicit construction of the free space is computationally

expensive. First, some of the implemented or partially implemented algorithms

will be reviewed.

Grown obstacles

Widdoes [Widdoes 74] and Udupa [Udupa 77a], [Tjdupa 77bj developed free-

space algorithms for the Stanford arm, an arm consisting of a 'boom' and a

'forearm', both approximated by cylinders. Udupa first formulated the motion

planning problem in terms of an obstacle transformation. Intuitively, motion

planting for a robot among obstacles is reduced to the problem of motion plan-

ning of a robot shrunken by some amount to a point among obstacles grown by

the same amount into 'grown obstacles'. Grown obstacles represent the positions

of the robot at which it collides and the free space is thus the space outside the

grown obstacles. Using such a transformation Udupa computed an approxima .

-tion of the free space for the boom as a set of adjacent rectangles of varying
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dimensions. Then he used heuristic methods to determine the path for the rest

of the manipulator.

The method of grown obstacles was generalised by Lozano-Perez and Wes-

ley [Lozano-Perez and Wesley 79]. They considered the motion of a polyhedral

object amidst polyhedral obstacles. They present an algorithm for the planar

case with fixed orientation and heuristics for generalising to more complex cases.

The general algorithm restricts the rotational motion of the polyhedron so that

it can only rotate at some discrete positions.

Other algorithms related to the grown obstacle idea are described in

[Nilison 69], [Moravec 80] and [Chatila 82].

Configuration Space

The grown obstacles method is stated formally in [Lozano-Perez 81], [Lozano-

Perez 83], where the term configuration space was introduced in motion planning.

A point in configuration space corresponds to the position/orientation (config-

uration) of the moving object/s. The grown obstacles, now called configuration

space obstacles, correspond to sets of configurations for which the moving object

overlaps one or more obstacles. [Lozano-Perez 81] calculates the exact configura-

tion space obstacles for a cartesian manipulator under pure translational motion.

One rotational d.o.f. is handled by splitting the rotation range into a number of

slices and bounding the grown obstacle within each slice by a polyhedron. Free

space is represented as a tree of polyhedral cells at varying resolution. The main

drawbacks of the algorithm is that it is limited to Cartesian manipulators and

that it uses approximations of constraints on rotations.

The method in [Brooks and Lozano-Perez 83] is based on the configuration

space approach but it presents a more adequate treatment of rotations. Brooks

and Lozano-Perez implemented an algorithm for moving a polygonal object in

the plane with two translational and one rotational d.o.f. The algorithm uses a

hierarchical subdivision of the 3-dimensional configuration space into cells which

are defined to be ifiled, empty or mixed. The algorithm can be quite expensive
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and can not be easily generalised. [Gouzenes 84] also uses the configuration

space approach for planning the motion of a 2 d.o.f. revolute manipulator.

The main idea in the grown obstacles/configuration space approach is that

the free space can be computed as the complement of the grown obstacles. Free

space is tesselated into a number of cells and represented as a graph. Different

methods use different techniques for the tesselation of the space and different

approximations.

The main advantage of the configuration space method over the local (hy-

pothesize/test) technique is that it guarantees to find a path in the calculated

subset of the free space if such a path exists. The configuration space based

algorithms described so far compute only approximations of the free space, and

therefore, there is no guarantee that a path can be found even if one exists.

The main problem is related to the computation of the grown obstacles in the

case of rotation, because then the grown obstacles have to be embedded in a

higher dimensional space and they have non-planar surfaces. All the algorithms

described so far have approximated the grown obstacles in order to be able to

deal with rotations and even then it has not been easy to consider more than

one rotation. The problem of planning with 6 d.o.f. is treated in [Donald 84].

He has implemented an algorithm for planning paths using operators that slide

parallel to five dimensional surfaces in configuration space and parallel to the

intersection of such surfaces.

The configuration space approach and related issues are further examined in

chapter 3.

Freeways

[Brooks 83b] has implemented an algorithm for a two-dimensional planner. Free

space is modelled as the overlapping union of generalised cones, called freeways.

Each cone has a spine and left and right width functions. A motion consists of

translations along the spines of the cones and re-orientations at the points where

the spines intersect.
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(Brooks 83a} extended the above method for the case of 4 d.o.f. motion, three

translational d.o.f. and one rotational d.o.f. Each cone is swept vertically in

order to build prisms at horizontal slices through the workspace. The algorithm

is reported to be fast and to run well when the space is relatively uncluttered.

The main problem seems to be that it can not be easily extended to non-convex

moving objects or to more than one rotational d.o.f.

Algorithmic motion planning

The characteristics of algorithmic motion planning are: (a) the algorithms are

non-numeric and exact (non-heuristic); (b) the basic tools are computational

geometry and asymptotically efficient techniques. It should also be noted that,

in contrast to the research reviewed so far, the algorithms which will be presented

next have not been implemented.

The first paper to appear from the view point of complexity theory is [Reif

79], where he sketches a polynomial time algorithm for moving a polyhedral

body. The paper [Schwartz and Sharir 83b] put the idea of configuration space

and grown obstacles on general mathematical foundations. Schwartz and Sharir

provided a theoretical formulation for the general motion planning problem with

an arbitrary number of d.o.f. and they described an algorithm for the decomposi-

tion of the free space based on Collins decomposition of semi-algebraic cells. The

algorithm is polynomial time in the number of obstacle surfaces but exponential

time in the number of degrees of freedom. The algorithm is only of theoretical

interest because of its high time complexity (0(n1024) for six degrees of freedom).

It mainly serves as an existence proof for a polynomial time algorithm for the

motien planning problem with a fixed number of degrees of freedom.

A detailed presentation and discussion about algorithmic motion planning

can be found in [Yap ss]. He distinguishes between two general techniques that

can be used for motion planning: decomposition and retraction. With reference

to research reviewed so far, these two approaches correspond, loosely speaking,

to the grown obstacle and the freeways methods respectively.
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Decomposition method

The algorithm for the general motion planning problem described in [Schwartz

and Sharir 83b] was entirely impractical because of its high time complexity. For

this reason, variants of the decomposition method described in that paper have

been considered and applied to more specific instances of the motion planning

problem (lower dimensions, simpler objects , etc.) yielding much more efficient

algorithms. [Schwartz and Sharir 83a] and [Sharir and Leven 85] examine the

case of a straight segment moving along polygons, [Schwartz and Sharir 83c] ex-

amine the coordinated motion of discs among polygons, [Sharir and Ariel-Sheffi

84] examine the motion of a two dimensional robot consisting of several arms

jointed at a common endpoint and [Schwartz and Sharir 84] the case of a rod

moving amidst polyhedral walls. All these algorithms are based on the idea of re-

cursive decomposition of the free space using critical curves: by considering one

or more of the degrees of freedom fixed, the free space is projected into a space

of lower dimension. This space is then partitioned into maximal connected re-

gions by considering 'critical' positions, that is positions where there are multiple

contacts established. The above algorithms are shown to be computationally effi-

cient but have not been implemented. The main difference of this approach to the

one in [Lozano-Perez 81], [Lozano-Perez 83] and [Brooks and Lozano-Perez 83],

is that, while in the former the free space is quantised into cells,in the latter it

is decomposed into maximal connected cells. The limitation of the quantisation

method lies in the fact that a collision free motion may not be found, even if one

exists, if the parameters chosen for the quantisation are do not provide sufficient

details.

Voronoi diagrams - Retractions

The use of Voronoi diagrams for motion planning first appeared in [Rowat 79].

For a finite set of points P on the plane, the Voronoi diagram partitions the plane

into regions such that all points in a region are closer to some particular point in

P than to another. The points on the edges of the diagram are equidistant from

-
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two points in F, while the points on the vertices of the diagram are equidistant

from three points in P. The Generalised Voronoi diagram (GVD) [Drysdale 82]

is an extension of the Voronoi diagram to deal with a set of polygons instead

of a set of points: points on the GVD are equidistant from two or three poly-

gons. The concept can be extented to Voronoi diagrams in configuration space

[Donald 84], so that points on the diagram are equidistant from two or more

obstacles. Planning a path on a Voronoi diagram corresponds, thus, to finding

a path with maximal clearance from the obstacles.

Definitions and algorithms for the use of Voronoi diagrams in motion plan-

ning can be found in [O'Dunlaing and Yap 85], [O'Dunlaing, Sharir, and Yap

83], [O'Dunlaing, Sharir, and Yap 84], (Yap 84a], [Yap 84b}, [Yap ss], [Donald

84] and [Canny 85], but an algorithm for the 6 d.o.f. motion planning problem

has not been developed yet. This approach is also called the retraction approach

([Yap ss]), since motion planning is done in a lower dimensional space than the

original problem, that is, the edges of the Voronoi diagram. A more detailed

account of retractions is given in chapter 3.

Motion in Contact

The problem of moving one or more objects while maintaining contact with the

stationary objects is examined in [Hoperoft and Wilfong 84a] where they prove

a theorem concerning the existence of motion in contact. The theorem states

that if there exists a free motion between two configurations where the objects

are in contact, then there exists a motion such that the objects remain in contact

throughout the motion. In configuration space, the space where the objects are

in contact is a subspace of the free space of lower dimension. It consists of faces

which intersect in lower dimensional faces, which in turn intersect in still lower di-

mensional faces. [Hop croft and Wilfong 84bJ considered the 2-dimensional case

of rectangles which are allowed only to translate. They proved that, in this case,

if there is a motion in contact between two 0-dimensional faces, then there is a

motion along 1-dimensional faces. The two papers are examined in more detail

in chapter 3.
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Computational Complexity

The goal of computational complexity theory is to classify computational prob-

lems according to their inherent complexity. There are three important classes

of problems: (a) those that can be solved in polynomial time (F); (b) those

that can be solved nondeterministically (NP); (c) those that can be solved in

polynomial space (PSPACE) (P C NP C PSPACE).

A problem is hard for a class if every problem in that class is reducible to

it. So, if a problem is NP-hard it means that it is at least as hard as any other

problem in NP. Proving that a problem is hard in a class means that we derive a

lower bound for its inherent complexity. An upper bound on its complexity can

be placed if we can prove that a problem is in a class. If we can place both lower

and upper bounds, then the problem is complete for that class. For example, a

problem is NP-complete if it is in NP and it is NP-hard.

A deterministic polynomial time algorithm is said to be efficient while a

deterministic exponential time algorithm is inefficient. If a problem can only be

solved in exponential time then we say that it is computationally intractable.

PSPACE contains many problems for which no efficient solutions are known.

Therefore a PSPACE-hard problem is computationally intractable for the case

of an algorithm that will solve all problem instances.

With respect to the general motion planning problem with an arbitrary num-

ber of d.o.f. the following lower bounds have been found for the reachabil-

ity problem, that is the decision whether a motion exists from some initial to

some final position: [Reif 79] showed PSPACE-hard lower bound for a certain

many-jointed three-dimensional motion planning problem. [Hoperoft, Schwartz,

and Sharir 84] showed FSPACE-hardness for the case of moving rectangles.

[Hoperoft and Wilfong 84b] showed that the problem is in PSPACE for the case

of rectangles which can only translate. [Hoperoft, Joseph, and Whitesides 84]

showed that the problem is NP-hard for a planar many-linked arm. Finally,

[Spirakis and Yap 841 showed NP-hardness for moving many discs.
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With respect to the problem with fixed degrees of freedom, sometimes called

the basic motion planning problem, it is known ([Schwartz and Sharir 83b]) that

a polynomial time algorithm exists. As an indication of the complexity of some

of the algorithms for specific motion planning instances, the following results are

summarised, where ii is the number of 'walls':

• 2D,discs, polygonal obstacles: O(nlogn) for one moving body 0(n2) for

two moving bodies [Yap 84a]

• 2D, straight segment, polygonal obstacles : O(n2 logn) [Sharir and Leven

85]

• 2D, 'k-spiders', polygonal obstacles: o ( k+4) [Sharir and Ariel-Sheffi 84]

2.2.3 Summary and Conclusions

While reviewing research in the field of motion planning, it was indicated that

the following distinctions can be made among the various approaches: (a) ex-

plicit representation of free space vs. hypothesis/test; (b) decomposition vs.

retraction; (c) critical curves vs. grown obstacles. An algorithm can be also

characterised according to whether it is heuristic or non-heuristic (complete),

what kind of approximation it uses, either for modelling the objects or for com-

puting the free space, and according to whether it is local or global. The con-

cept of local motion planning has been used in different ways. [Lozano-Perez 82]

makes the distinction local vs. explicit free space, local implying the absence

of global information about the free space. [Donald 84] makes the distinction

local vs. global to differentiate between the decomposition technique and the

retraction technique. In the latter case, global information on the connectivity

of the free space is available. Finally, [Yap ss] uses the term local planning to

imply local experts which are able to find a path in specific situations, such as

moving through a door.

Research has been carried out on both theoretical and practical algorithms.

The general motion planning problem has been proven to be computationally



Chapter 2. Review of Related Work	 24

intractable. However, a polynomial time algorithm has been described for the

basic motion planning problem, that is the problem of planning for a fixed robot

system [Schwartz and Sharir 83b]. The complexity of that algorithm makes it

inefficient for any practical use. In order to reduce the complexity of the problem

and to produce efficient and practical algorithms, researchers have concentrated

on more specific instances of motion planning. The complexity of the problem

can be reduced if (a) a 2-dimensional world is considered; (b) the number of

degrees of freedom is reduced, either by considering manipulators with less than

six d.o.f. or by considering some of the d.o.f. fixed; (c) the geometry of the objects

is simplified (discs, rectangles, rods, polyhedra etc). Although some of these

simplifications may seem unrealistic, they can be useful, firstly, because they

provide insight into some of the issues of the problem, and secondly, because they

yield efficient algorithms which can be of practical use. For example, enclosing

the objects in spheres could be a useful approximation in the case of relatively

uncluttered environments.

It has been indicated that a lot of research on motion planning has adopted

the method of considering a generally higher dimensional space, called configu-

ration space, where each point corresponds to a particular configuration of the

objects. A path in configuration space corresponds to some motion of the ob-

jects. The regions in configuration space representing configurations which are

forbidden are called configuration space obstacles. The motion planning problem

is, then, reformulated as the problem of finding a path in configuration space

outside the obstacles. This approach to motion planning has been particularly

helpful in formalising the motion planning problem and developing the necessary

conceptual and mathematical tools. The main difficulties with this approach are

associated with the explicit computation of the configuration space obstacles,

especially when more than one rotational degree of freedom is allowed.

We can conclude that algorithms for various instances of the motion planning

problem have been considered both from the theoretical and practical point of

view. Relatively efficient algorithms exist for some specific classes of problems,

mainly for motion planning in two dimensions or motion planning with only one
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rotational degree of freedom. At the moment, because of the inefficiency of the

algorithms which employ an explicit representation of the free space, it is the

hypothesize/test method, if any, that is used in practice.

2.3 Fine-Motion Planning

2.3.1 Uncertainty

One of the main problems in robot planning in general and motion planning in

particular is to enable the robot to achieve a desired goal despite the presence

of uncertainty in the environment. The main sources of uncertainty are:

• Errors in the input model (modelling errors): imperfect parts, positioning

errors.

• Errors in control: position and sensor errors.

• Computational inaccuracy.

The above description of uncertainty covers the cases when the actual state

of the world differs from the model or the computed state within some known

bounds. For example, parts are usually manufactured within stated tolerances.

However, there could be defective parts outside the specified tolerances or there

could be events which could not have been foreseen during planning. In the rest

of this thesis, we will concentrate on the issue of 'expected' uncertainty, where

'expected' implies that it can be bounded. In the case of unexpected events, the

problem is usually referred to as error recovery [Gini, Gini, and Somalvico 80].

Motion planning is, therefore, a problem of planning with incomplete infor-

mation. Research in A.I. has considered the problem of planning with uncer-

tainty. In the field of robotics the issue has been more neglected. [Taylor 76]
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and [Brooks 82] have proposed and implemented schemes for dealing with

tainty. These are reviewed in section 2.3.3. Uncertainty resulting from tolerances

of parts has also been considered ([Requicha 83], [Fleming 85]).

When dealing with gross motion, uncertainty can be dealt with by enlarging

the obstacles and the robot by a given amount. This method can be satisfactory

if the environment is not too cluttered. Unfortunately, we can not use this

technique when dealing with grasping or parts mating, since the objective is to

bring some objects into contact. In this case, uncertainty can be reduced by

introducing force sensing.

2.3.2 Compliance and Force Control

Most robots ar position controlled. Such robots can successfully perform tasks

which can be adequately expressed as a sequence of positions. Spot welding, ma-

chine loading and spray painting fall in this category. Moreover, the positional

accuracy required for these tasks is generally lower than the robot's accuracy.

There are, however, manipulator tasks which cannot be adequately described as

a sequence of positions. Examples of such tasks are inserting a peg in a hole,

sliding along a surface, closing a door and many others. Parts mating falls within

this class of tasks. The common characteristic of the above examples is that they

require motions which have to comply with certain physical constraints. Motions

which are constrained by external constraints imposed by the geometry of the

task are called compliant motions. Consider as an example the task of sliding

along a surface from some initial to some final position. This task could be de-

scfibed as a sequence of positions, but it could only be accomplished successfully

if the model, the trajectory planner and the controller are perfectly accurate. In

the presence of uncertainty the task could only be performed successfully if

the trajectory is constantly modified by tactile information. The ability of the

manipulator to perform compliant motions is, therefore, closely related to the

introduction of sensing into the manipulator program and the controller.



Chapter 2. Review of Related Work	 27

In compliant motion the manipulator has to maintain contact between some

surfaces. Another class of motions which are also constrained by external con-

straints, are guarded motions [Will and Grossman 75]. These are motions used

when the manipulator is about to establish some contact, for example when

placing a box on a table. A compliant-guarded motion is a motion during which

some contacts have to be maintained while others are about to be established or

broken. As an example, consider the task of inserting a peg in a hole until the

tip of the peg touches the bottom of the hole.

There are two primary methods for producing compliant motion. The first

one is using passive mechanical compliance built in the manipulator. An exam-

ple of passive compliance is the Remote Centre Compliance (RCC) device used

for insertion tasks [Whitney and Nevins 79]. The second method is the use of

active compliance in the control ioop of the manipulator. This method is called

force control. Its main advantage over passive compliance is its programmability.

There are two different approaches to force control: explicit feedback and hybrid

(position/force) control. The explicit feedback scheme is based on the idea of gen-

eralised stiffness or generalised damping. Sensed forces are sent back to the posi-

tion controller which corrects the position accordingly [Nevins and Whitney 74],

[Whitney 82], [Salisbury 80], [Hanafusa and Asada 77]. The hybrid control

scheme controls positions along some specified d.o.f. and independently controls

forces along the remaining d.o.f. ([Paul and Shimano 76], [Mason 81], [Raibert

and Craig 81]).

A thorough review on the issues of compliance and force control can be found

in [Mason 82a]. The point that we would like to make here is that pure position

control is not adequate for fine motions because of uncertainty. Compliant and

guarded motions require force control and the use of force sensors. Using com-

pliant and guarded motions, we make use of the geometry of the environment

to guide the motions. In the previous section the goal of motion planning was

to find a path as a sequence of positions. In this chapter, where we are dealing

with fine-motion planning, the objective is to describe a path not only in terms

of positions but also in terms of forces.
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2.3.3 Approaches to Parts Mating

The various methods for dealing with the parts mating problem can be cate-

gorised in five different classes: static analysis, information approach, skeleton

programs, learning strategies and configuration space approach. Almost all the

research has concentrated on the peg-in-hole insertion problem and all comments

will be made with reference to that problem.

Static Analysis

The first method concentrates on the analysis of the geometry and statics of

the task in detail ([Simunovic 75], [Drake 77], [Ohwovoriole 80], [Whitney 82]).

Through this analysis, the conditions under which 'jamming' and 'wedging' can

occur are formulated. The Remote Center Compliance (RCC, [Whitney 82])has

been built as a result of this analysis. Similar analysis is described in [Inoue 74],

[Goto, Inoyarna, and Takeyasu 80] and led to the development of heuristic strate-

gies for the peg-in-hole insertion.

Information Approach

Simunovic [Simunovic 79] uses what he calls an information approach to parts

mating. Having defined the assembly problem as the problem of accurately

positioning the parts with respect to each other, he then proceeds to develop

a method for correcting the errors in the relative position of the parts being

assembled. The method is based on the gathering of information generated

during the assembly process. Both positional information and force information

resulting from the interactions of the objects is used. This information is analysed

and fed back into a positioning device.

This approach can be seen as an extension of the static analysis method, since

it also relies on the analysis of the geometry of a task and is, therefore, highly

dependent on the particular task being examined. Its fundamental limitation
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is that it views the assembly task as a positioning problem and pure position

control is assumed.

Skeleton Programs

Taylor [Taylor 76] and Lozano-Perez [Lozano_Perez 76] were the first to explore

the area of automatic synthesis of fine motions, the fine-motion planning prob-

lem. The key idea is that partially specified strategies, known as skeletons, are

used. Skeletons are parameterised robot programs for particular tasks. They

include motions, error tests and computations, but many parameters for motion

and tests remain unspecified.

Taylor [Taylor 76] developed an algebra system which deals with position

constraints, which model the effect of error and uncertainty. These error esti-

mates are propagated and they are used to make decisions for choosing a strategy

and filling in the values of the parameters.

The method of propagating constraints was further extended by [Brooks 82].

This system is able to handle symbolic constraints and it can also propagate

constraints backwards, so that besides error estimates the value of plan variables

can be also specified. The system developed by Brooks deals in general with the

problem of robot planning with uncertainty and it is not specific to the fine-

motion planning problem.

[Lozano-Perez 76] proposed a method for selecting the parameters in a strat-

egy by computing the range of positions that the relationship among the parts

entails, as specified in the strategy.

Learning Strategies

The approach taken by Dufay and Latombe [Dufay and Latombe 84] is also

based on strategies. It differs significantly from the two previously described

methods ([Taylor 76] and [Lozano-Perez 76]) in the fact that strategies are ex-

panded into programs through a sequence of experiments. Specifically, partial
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local strategies, described by a collection of rules, are extended to full strate-

gies by considering the multiple traces of executed plans. The process consists

of two phases: the training phase, which generates execution traces, and the

induction phase which transforms traces into programs. The system has been

implemented.

By contrast to Taylor's method ([Taylor 76]), which is also based on error es-

timates, this system explicitly tests for different motion outcomes resulting from

uncertainty. For this reason, it is not constrained by the worst case uncertainty

behaviour which might lead to overcautious plans. One possible limitation of

the system is that it requires knowledge of the actual contacts achieved by each

motion. Such information could be ambiguous because of errors in measuring.

The last two approaches, skeletons and learning strategies share some corn-

mon characteristics. The most important assumption that they make is that

there is a basic repertory of common operations which can be described in some

abstract way. The synthesis of a fine-motion program would then require the se-

lection of an appropriate strategy and of the values of the parameters. The main

weakness of these approaches lies precisely in this assumption. Small changes in

the geometry can affect drastically the structure of the strategy. Lozano-Perez

([Lozano_Perez 82]) presents examples of various peg-in-hole insertions where a

slight change in the geometry of the parts would require a different strategy.

Configuration Space Approach

[Lozano-Perez, Mason, and Taylor 84] present a formal approach to the problem

of planning fine-motions, based on the configuration space approach to motion

planning. The task is transformed into a task in configuration space. In the

transformed problem, surfaces represent set of positions which are constrained by

external constraints (contacts). Motion along these surfaces, called C-surfaces,

corresponds to compliant motion, while motion from one surface to another cor-

responds to compliant- guarded motion as described in [Mason 81]. Given a goal,

described as a set of positions on some C-surface, and bounds on errors in position
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and sensing, they propose a method for computing sets of positions from which

the goal can be successfully reached using a single compliant-guarded motion.

Such a set of positions is called the pre-image of a goal. Mason in [Mason 83]

addresses some of the theoretical issues of this formalism. The formalism has

been partially implemented as described in [Erdmann 84]. The main weakness

of this approach lies in the difficulties inherent for a full implementation.

2.4 Relation of this Thesis to Reviewed Work

The problem that this thesis focuses upon is that of planning parts mating

operations. It has been established that in planning parts mating operations the

forces arising from contact and the presence of uncertainty are of considerable

importance and need to be taken into account. It is, nevertheless, possible to

approach the problem in a manner such that the issues of forces and uncertainty

are considered only indirectly. Specifically, insofar as the direction of forces

can be inferred from the geometry of the environment, it is possible to treat the

problem of planning parts mating operations as a problem in geometric planning.

The approach that is taken in this thesis is to bring the parts together through

a sequence of motions such that the parts are first brought into contact and

then their positions are further constrained by establishing more contacts until

the desired relative positions are attained. Therefore, planning parts mating

operations becomes an instance of the general motion planning problem, that

of planning the motion of an object while maintaining contact with a set of

stationary objects. This alternative approach underlies the specific emphasis

that I have chosen to place in the review of related work. In this Section, I shall

first relate the work in this thesis to work in the field of motion planning by

specifying what is the particular problem that concerns my work and how the

approach relates to the basic approaches to motion planning outlined in Section

2.2.2. Then, I shall consider the relation of this work to other approaches to

parts mating.



Chapter 2. Review of Related Work 	 32

In Section 2.2.1 a formulation of the general motion planning problem was

presented and various of the characteristics according to which different fanii-

lies of problems arise were indicated. It was also indicated that there is strong

evidence that the solution to the general motion planning problem is compu-

tationally intractable. On the other hand though, it was shown that the basic

motion planning problem - i.e. the problem of planning with a fixed robot

system - is tractable.

The observations made in Section 2.2 with regard to the general motion

planning problem also hold true in the case of the motion in contact problem,

that is, the problem of moving one or more objects while maintaining contact

with obstacle surfaces. That is to say, in the case of the motion in contact

problem as well, there exist different families of problems while the evidence

strongly suggests that the problem in its general form is computationally hard.

In view of these observations there is a strong case for narrowing the problem

down. Specifically, I shall consider the problem of the motion in contact of an

arbitrary, rigid, three dimensional polyhedral object amidst polyhedral obsta-

cles. The moving object then, will have three translational and three rotational

degrees of freedom.

In the relevant literature, the problem of planning in three dimensions re-

mains open. Moreover, the problem of motion planning with three rotational

degrees of freedom is far from having been considered extensively. In effect, the

only detailed examination of this problem is to be found in [Donald 84]. With

the exception of [Schwartz and Sharir 83b], where the general motion planning

problem is considered, in all the work that has been done in this area, the objects

are taken to be polygonal or discs, in the two dimensional case, or polyhedral or

spheies, in the three dimensional case, or more specific instances of these. For

example, some of the classes of objects which have been considered are discs,

straight segments, rectangles and spheres. In this thesis, the restriction to poly-

hedral objects will be made, which is not an unreasonable one insofar as a large

class of objects can be modelled as polyhedral.

Having, thus, specified the particular problem that will be considered, I shall
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next outline the approach in relation to motion planning. As it has been indi-

cated, almost all the approaches to motion planning are based on the transforma-

tion from physical space to configuration space [Lozano-Perez and Wesley 79].

In configuration space, every point represents the position and orientation (con-

figuration) of the moving object/s. Those points in configuration space repre-

senting positions for which one or more objects overlap form the configuration

space obstacles. The problem of moving objects among obstacles can then be

reformulated as the problem of moving a point among obstacles in configuration

space. In this thesis, the configuration space approach to motion planning is

followed. Since we are interested in motion in contact, we are interested in that

subspace of the configuration space which corresponds to the set of configura-

tions for which the objects are in contact, the contact space. The contact space

corresponds to the surface of some generalised configuration space obstacle.

[Lozano-Perez, Mason, and Taylor 84] proposed a method for planning fine-

motions based on the configuration space approach. They indicated that fine-

motions correspond to motions on the surfaces of the configuration space obsta-

cles. My approach differs significantly from [Lozano-Perez, Mason, and Taylor

84] and [Erdmann 84] in the ways listed below:

1. Representation of the space: the method employed by Lozano-Perez et al.

is based on an explicit representation of the configuration space obstacles.

However, when rotational degrees of freedom of motion are permitted, only

approximations of the grown obstacles are computed. This thesis presents

an alternative representation for the configuration space obstacles.

2. Forces and uncertainty: by contrast to the approach followed in [Lozano-

Perez, Mason, and Taylor 84], [Erdmann 84] in this thesis these issues are

only treated implicitly.

3. Objective: while [Lozano-Perez, Mason, and Taylor 84] and [Erdmann 84]

compute a set of initial positions for which a given single motion will

guarantee the attainment of the desired state, I will aim in deriving a
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sequence of motions which will achieve the transition from some initial to

some desired state.

[Donald 84] also considers the problem of sliding along the surfaces of the

configuration space obstacles, called C-surfaces. The principal difference between

the approach taken by Donald and that employed in this thesis can be located

at the level of representation of the C-surfaces and for the computation of their

intersections. Specifically, Donald's approach is based on the use of 'C-functions'

in order to model the C-surfaces and to compute, algebraically, their intersection.

By contrast, the approach taken in this thesis is premissed upon the use of spatial

relationships both for the representation of the surfaces and the computation of

their intersections. By the use of a spatial reasoning system the computation,

by algebraic means, of the intersections of the C-surfaces is no longer required.

To these differences I shall return in Chapters 3 and 4.

The problem of motion in contact has also been considered in [Hoperoft and

Wilfong 84a], [Hoperoft and Wilfong 84b]. The approach that is followed in this

thesis is similar to the approach in [Hoperoft and Wilfong 84b] insofar as the

contact space is decomposed into faces of various dimensions and the connectivity

of these faces is considered. The work by Hoperoft and Wilfong considers the

two-dimensional case of rectangles which are only allowed to translate. In this

thesis, the approach will be generalised and modified to account for the problems

resulting from the introduction of rotations. In addition, an implementation of

the algorithm for the decomposition of the space will be presented based on a

geometrical reasoning system which reasons about spatial relationships among

the features of the objects.

In the beginning of this Section it was argued that the parts mating problem

can be regarded as a problem in geometric planning. Geometric planning is pre-

missed upon information about the geometry of the environment. In this thesis,

this information is formulated in terms of spatial relationships among features

of objects. Such a formulation of the problem is the major distinction between

the work described in this thesis and the reviewed work. The reasoning system
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developed in this thesis is an extension of the inference engine of the RAPT sys-

tem [Popplestone and Ambler 83], [Corner, Ambler, and Popplestone 83]. The

system is extended to deal with a large number of spatial relationships among

polyhedral objects. Spatial relationships have been used so far in order to de-

scribe an assembly task. The objective of the reasoning system has been to

deduce the relative positions of the objects. Here, spatial relationships are used

in a different way. They are used firstly, to decompose and model the search

space during the formulation of the plan and secondly, to extract information

about positions, forces and motions during execution of the plan.



Chapter 3

Theory of Motion in Contact

3.1 Introduction

In this chapter I shall consider the theoretical issues related to the problem

of moving a 3-dimensional polyhedral object while maintaining contact with a

set of stationary polyhedral objects. To address this problem, the notion of

contact space will be considered. The contact space is the set of locations of the

moving object for which it is in contact with, but does not overlap, one or more

stationary objects. The objective is to decompose this space into a number of

components and to build the connectivity graph of the space, that is a graph

where vertices represent the components and edges represent adjacency between

components. In this way, the motion planning problem is reduced to a graph

searching problem.

The approach taken is based on the configuration space approach to motion

planning. In configuration space the moving object is shrunk to a point, repre-

senting the position of some reference vertex of the object, and the stationary

objects are grown into configuration space obstacles, representing the locations

where the moving object overlaps one or more stationary objects. The problem

of moving an object among obstacles is, thus, transformed into the problem of

moving a point among the grown obstacles in a higher dimensional space. Infor-

mally, the contact space is the boundary of the grown obstacles and, therefore,

a surface of dimension less than n, where n is the dimension of the configuration

space.

36
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Object B is the moving object, u are its vertices and e its edges. Its location is specified by the

coordinates of vertex v 1 and the angle 9. Object E is the stationary object, v are it8 vertices

and e are its edges.

Figure 3-1: A 2-dimensional example
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For a given orientation 9 the configuration of B is specified by the coordinates of v 1 . The

grown obstacle consists of configurations for which B and E overlap. For a given orienta-

tion, the grown obstacle is obtained by sliding B around E and marking the coordinates of v1

([Lozano-Perez 83fl. A 1 consists of locations for which v1 touches e, B1 of locations for which

v touches e 4 , A 2 of locations for which v4 touches 4 etc.

Figure 3-2: Slices of configuration space obstacle
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A point on the surface of the grown obstacle represents a configuration for which B and E are

in contact. The z and y coordinates represent the location of v 1 . The angle 9 represents the

orientation of B. Slices of the grown obstacle for various values of 9 are shown in Figure 3-2

Figure 3-3: Configuration space obstacle

Let us illustrate the approach by considering a two-dimensional example. In

Figure 3-1 the moving object B and one stationary object E are shown. There

are three degrees of freedom of motion, two translational, x and y, and one

rotational 0. The configuration space is, therefore, three dimensional. Figure 3-

2 shows slices of the grown obstacle for various values of rotation angle 6. The

whole grown obstacle is shown in Figure 3-3. Informally, the boundary of the

grown obstacle is the contact space.

It can be seen from Figure 3-3 that the contact space consists of faces of

various dimensions: 0-dimensional faces, which will be referred to as vertices,
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1-dimensional faces (edges), and 2-dimensional faces. Each face consists of con-

figurations which satisfy some specific contact constraint among the features of

the objects. For example, the face labeled A 1 consists of configurations which

satisfy the constraint "vertex v 1 of B is on edge e'3 of E" 1, while for the face A4

the constraint is "vertex v2 of B is on edge e'3 of E". The dimension of a face is

equal to the degrees of freedom of motion imposed by the contact constraint. For

example, in the case of vertex to edge contact in two dimensions, there are two

degrees of freedom, one rotational and one translational. Informally, faces meet

in faces of lower dimensions and configurations lying on the intersections of faces

satisfy the conjunction of the constraints. For example, the intersection of faces

A 1 and A4 consists of configurations for which both v1 and v2 are on the edge e,

as shown in Figure 3-4. This set of configurations lies on a 1-dimensional face

of the space, which belongs to the boundary of A1 and to the boundary of A4.

The 'topological' structure of the contact space can be represented as a graph,

where the nodes in the graph represent the faces of the space and arcs represent

adjacency relationships among faces. A fragment of the graph for the above

example is shown in Figure 3-5.

Having constructed such a graph of the space, we can plan a motion in contact

as a path in this graph, where the only type of motion permitted is a motion

from a face to another face which is on its boundary, or vice versa. In particular,

it will be shown how a path can be found along the edges of the contact space.

In order to be able to derive such a plan we have to ensure that the vertices of

the space are edge-connected.

As can be seen from the above example, even for the case of two very simple

2-dimisional objects, the 'geometry' of the contact space is complicated, since

rotations result in curved surfaces. The approach taken is to use a system which

1 1n the rest of this thesis, features of the stationary object(s) will be marked by a

dash, e.g. 4.
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A configuration for which both v1 and u2 are on e lies on the intersection of the faces A 1 and

A 1 (see Figure 3-3).

Figure 3-4: Intersection of the faces of grown obstacle
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Fragrent of the graph of the faces of the contact space for the objects in Figire 3-1. A 1 , A2,

H1 etc are 2-dimensional faces. Their intersections, A1 fl A2 etc, are 1-dimensional faces (edges)

and the intersections of the edges are the vertices of the contact space.

Figure 3-5: Topological structure of contact space



Chapter 3. Theory of Motion in Contact 	 41

can handle interactions among features of objects in order to derive the 'topology'

of the contact space, that is its faces and their connectivity.

Some of the questions that will be addressed in this chapter are the following:

. How can we use interactions among features of objects to decompose the

contact space into various dimensional faces?

. Is there a decomposition such that the vertices of the space are connected

by edges?

. How do we find intersections of faces?

The chapter is structured as follows: in Section 3.2 some basic concepts are

defined. In Section 3.3 the concept of decomposition of a topological space is

formally introduced and a decomposition with specific properties is considered

(cell complexes). In Section 3.4 two slightly different methods for decomposing

the contact space are developed and, finally, in Section 3.5 an algorithm for the

decomposition is presented.
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3.2 Basic Concepts

3.2.1 Models of objects

A rigid solid may be modelled as a subset of the 3-dimensional Euclidean space,

. However, not all subsets of e 3 model physical solids. In [Requicha 77] the

properties of a 3-dimensional physical solid are identified, and the mathematical

implications of these properties are considered. It is argued that suitable models

of solids are subsets of e 3 that are bounded, closed, regular, and semi-analytic

or semi-algebraic. These sets are called R-sets. In the rest of this section a

brief overview of R-sets is presented. A more thorough account can be found in

[Requicha 77] and [Brown 81]. Following this, the definition of the models of the

objects considered in this research is presented.

A subset X of 6 is a closed regular set if it equals the closure of its interior,

i.e. X = cl(int(X), where int(X) denotes the interior of a set X, and cl(X) its

closure. The regularised union of two sets, denoted by the symbol U*, is defined

by

XU*Y = cl(int(XUY)).

The regularised intersection and difference are similarly defined. The class of

compact (clos?d and bounded) regular sets is closed under the regularised set

operators. It can be used to model solids which are of finite extent. However,

there is no guarantee that the solids are finitely describable or that their bound-

aries are 'well-behaved'. For this reason, some sub-class of compact regular sets

has, to be considered.

Semi-algebraic sets are set-theoretical combinations of regions of f whose

points satisfy inequalities of the form f1 (x, y, z) ^ 0, where f is any polyno-

mial function on & . A semi-analytic set is similarly defined. The only dif-

ference is that f1 is any analytic function. Semi-algebraic sets are triangulable

and, therefore, finitely describable. Also, they are closed under the regularised
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set operations. Compact, regular semi-algebraic sets (R-sets) are finite sub-

polyhedra of e , that is, they are polyhedrally embedded in e , and, therefore,

their boundaries are 'well-behaved'. Intuitively, R-sets are curved polyhedra

with 'well-behaved' boundaries. They are not necessarily connected and they

may have holes.

In this thesis, the problem considered is the motion of a 3-dimensional polyhe-

dral object in contact with a set of 3-dimensional polyhedral obstacles. The mod-

els of objects which will be considered are subsets of R-sets. First of all, instead

of semi-algebraic sets, I will consider sets which are regularised set-theoretical

combinations of regions of whose points satisfy inequalities f(x, y, z) ^ 0,

where f are linear functions. Secondly, I will consider connected subsets of .

Definition 3.2.1 An object is a compact, regular, connected 3-dimensional

polyhedron with planar faces.

Only one object is allowed to move, and it is called the moving object, B.

Stationary objects are called obstacles, A. It will be assumed that all obstacles

are supported by some other obstacle, that is to say, the obstacles are connected,

i.e. Vi j : A n A• 0. As it will be shown in future sections, by making

this assumption, we are able to guarantee the existence of a motion in contact

between any two locations for which the moving object is in contact with the

obstacles.

Definition 3.2.2 The environment E is the regularised union of the station-

ary objects (obstacles), E = U, *A1

Since the obstacles are connected, and the class of compact regular sets is

closed under the regularised set operations, it follows that E is also an object.

3.2.2 Transformations, Configurations, Configuration

Space

Transformations are used to define the locations of the objects in space.
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Definition 3.2.3 A rigid transformation, Z, in	 is a mapping of onto

itself which preserves distances and signed angles.

A transformation Z can be specified by the 6-tuple	 The

space of rigid transformations in c is thus 6-dimensional. A common method

for representing transformations is by means of a 4 x 4 matrix which is the

product of a rotation and a translation. Transformations are presented in detail

in Section 4.2.1.

Each object has a coordinate system affixed to it. The point at which the

origin of the coordinate system is affixed is called the origin of the object. The

configuration or location of the object is specified by the position of its origin

and the orientation of the affixed coordinate system with respect to the reference

coordinate system in .

Definition 3.2.4 The configuration or location Z of an object is a rigid

transformation from the reference coordinate system to the coordinate system of

the object. The configuration of an object is specified by a vector

Z= (x,y,z,O,cb,i,b).

Definition 3.2.5 The configuration space C is the space of all configurations

of the moving object.

Thus in our case the configuration space is 6-dimensional.

Let Z be a point in configuration space. Then for any point p in , p©Z

will denote the Z transformation of p. For any object B, or any subset of an

object, B©Z denotes the region in f occupied by object B at configuration Z,

that is

B©Z = {p©Zp E B}.
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3.2.3 Contact Space

In this section various subsets of the configuration space will be classified ac-

cording to body interference. The following definitions are derived from the

definitions presented in [Hoperoft and Wilfong 84a].

Definition 3.2.6 The moving object B at configuration Z and the environment

E overlap if the intersection of their interiors is non-empty. Let OVERLAP

denote the set of configurations at which B overlaps E, i.e.

OVERLAP = {Zjint(B©Z) fl int(E) O}.

Note that OVERLAP is open in configuration space.

Definition 3.2.7 A configuration Z is legal if B©Z does not overlap the envi-

ronment. Let LEGAL denote the set of all legal configurations,

LEGAL = {ZIint(B©Z) n int(E) = O}.

Note that LEGAL is the complement of OVERLAP in configuration space and

hence closed.

Definition 3.2.8 The moving object B at configuration Z is in contact with

the environment if the intersection of B©Z and E is nonempty but B does not

overlap E. The contact space, CONTACT, is the set of all such configurations,

CONTACT = {Zlint(B©Z) fl int(E) =0 A B©Z fl E O}.

It has be shown [Hoperoft and Wilfong 84a] that

CONTACT = cl(OVERLAP) - OVERLAP

= cl(OVERLAP) fl LEGAL

	

= bdry(OVERLAP),	 (3.1)
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B is 2-dimensional object which is allowed only translational motion and E is stationary. The

dimensions of B are such that it fits exactly into the hole of E. In (b), the various subsets

of the configuration space are shown. The configurations on e are in CONTACT but not in

cl(OVERLAP) [Hoperoft and Wilfong 84aJ.

Figure 3-6: The subsets of the configuration space

where bdry(A) denotes the boundary of a set A.

The set cl(OVERLAP) is what is sometimes called the grown obstacle

[Lozano-Perez 81]. It has to be noted that the contact space is the bound-

ary of OVERLAP (Equation 3.1) and this is different from the boundary of

cl(OVERLAP). The contact space is not, therefore, the boundary of the grown

obstacle. This observation is illustrated in Figure 3-6. Figure3-6a shows a two

dimensional object B, which is allowed to translate but not to rotate, and a

two dimensional stationary object E. The dimension of B is such that it can

exactly slide in the hole. In Figure 3-6b the corresponding subsets of configura-

tion space are shown. While configurations where B is in the opening of E are

in CONTACT, they are not in'the boundary of cl(OVERLAP).

3.2.4 The Existence of Motion in Contact

In Section 2.2.2 it was mentioned that [Hoperoft and Wilfong 84a] have consid-

ered the problem of motion in contact and have proved a theorem concerning the
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existence of motion in contact. In its simplest form the theorem states that if

two objects in contact can be moved to another configuration for which they are

in contact, then there is a way to move them such that they remain in contact

throughout the motion.

Let us first give the formal definition of a motion:

Definition 3.2.9 A motion or path m in configuration space between two con-

figurations Z1 and Z2 is a continuous function from the unit interval to the con-

figuration space C,

m: [0, 1] i- C

such that m(0) = Z1 and m(1) = Z2 . A motion is legal if m(t) e LEGAL for

0 ^ t < 1. A motion is in contact if m(t) E CONTACT for 0 ^ t < 1.

The theorem concerning the motion of objects in contact can be restated as it

applies to the restricted case of one moving object, and. connected environment

as follows:

Theorem 3.1 If there is a legal motion between two configurations in the contact

space, then there is a motion in contact [Hoperoft and Wilfong 8aj.

In the proof of this theorem the Meyer-Vietoris sequence [Massey 78] is used

in order to prove that the number of path-connected components of CONTACT

is equal to the number of path-connected components of LEGAL. In order to use

this sequence, a certain subspace of the configuration space had to be contractible

to a point. For this to be the case, a rotation of 2ir can not be identified with no

rotation at all. Furthermore, in order for that subspace to be path-connected,

each parameter corresponding to an orientation can only vary within some closed

and bounded interval. The resulting restricted configuration space for which the

theorem is valid does not impose any problems in its use.

A second point to be noted with respect to that theorem is that it is not valid

if only rotations are allowed. As an example of a situation for which the theorem
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Object B is allowed to rotate about v 1 but not to translate, and object E is stationary. Although

there is a legal motion from 8 = a to 0 = 2ir - a, there is not a motion which keeps the objects

in contact [Hoperoft and Wilfong 84a1.

Figure 3-7: Pure rotational motion

does not hold is shown in Figure 3-7. In this case, when only rotational motion is

permitted, there is no motion in contact between the two configurations shown,

although there is a legal motion. This problem arises because, if only rotations

are allowed, the resulting configuration space is not contractible to a point.

3.2.5 Interactions among features of objects

Th boundary of a polyhedral object is composed of three types of geometric

entities: plane faces, edges, and vertices. These entities will be referred. to

as features . There are tluee basic types of contact between the features of a

polyhedral object and a polyhedral obstacle:

1. a vertex of the object lies on a plane of the obstacle (Figure 3-8);
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2. a vertex of the obstacle lies on a plane of the object (Figure 3-9);

3. an edge of the object intersects an edge of the obstacle (Figure 3-10).

It is easy to see that any other type of contact in the case of polyhedra can

be expressed as a conjunction of contacts of the above form. For example, an

edge on a plane contact will either be expressed as two vertices on a plane, if

the whole edge lies on the face, or a vertex on a plane and an edge intersecting

an edge, if only part of the edge lies on the face (Figure 3-11).

In Section 3.4 the basic types of contact and the ways of expressing any

contact between polyhedral objects are formally defined. A contact between the

moving object and its environment imposes a constraint on the configuration of

the object. In Chapter 4 the concept of spatial relationships between features

of objects will be introduced in order to define the constraints on the relative

locations of the objects imposed by each specific type of contact. For the moment

let us just assume that if the moving object at configuration Z is in contact with

the environment, then Z satisfies some equation of the form 1(Z) = 0, where

f is a 'smooth' real-valued function on the configuration space, and its form

depends on the type of contact. In Section 4.3.2 the form of these functions will

be examined.

3.2.6 Surfaces of the Contact Space

If the object is in one of the basic types of contact with the environment then its

configuration is constrained to lie on a 5-dimensional manifold in the configura-

tion space. That is, each basic type of contact among the features of polyhedral

objects defines a 5-dimensional manifold (surface) 2 in configuration space. It fol-

lows from [Lozano-Perez 83,Canny 84b] that these manifolds form the boundary

of the OVERLAP and thus the Contact Space.

2 Aii n-dimensional manifold is a Hausdorif space such that each point has an open

neighbourhood horneomorphic to the open n-dimensional disc [Massey 67].
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Vertex v of moving object lies on plane 1' of obstacle.

Figure 3-8: Vertex-plane contact

Vertex u' of obstacle lies on plane I of moving object.

Figure 3-9: Plane-vertex contact

Edge e of moving object intersects edge e' of obstacle.

Figure 3-10: Edge-edge contact
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In (a) The edge e to plane f' contact can be expressed as 	 on plane f' and v2 on plane f'"

In (b) the contact can be expressed as	 on plane f' and e intersects e'"

Figure 3-11: Two cases of edge-plane contact
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Since every type of contact can be described as a conjunction of the three

basic types of contact, every configuration at which the object is in contact lies

on the intersection of some 5-dimensional manifolds. The intersection of two

or more 5-dimensional manifolds lies on manifolds with dimension ii = 0, ... , 5.

The dimension of the manifold is equal to the degrees of freedom of motion of

the object, if its configuration is constrained to lie on the manifold, that is if its

motion is constrained so that certain features are kept in contact.

The manifolds (surfaces) of the contact space and their intersections are

examined at various points in this thesis. In Section 3.5.2 the intersections of

the surfaces are considered. In Section 4.3.2 the equations of the surfaces are

established by means of spatial relationships. Finally, in Chapter 5 an algorithm

is presented for constructing the surfaces of the space.
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3.3 Decompositions and Retractions of Topo-

logical Spaces

In Section 2.2.2 two general techniques for motion planning were identified: the

decomposition approach and the retraction approach. In the first case, the space

in which a path has to be found is decomposed into connected regions, where

each region is represented by a vertex in a graph. If two regions are adjacent then

there is an edge in the graph connecting the vertices which correspond to the

regions. The path-planning problem is transformed, thus, into a graph searching

problem.

Using the retraction approach, the problem of searching for a path in a

space is reduced into the problem of searching for a path in a lower dimensional

subspace. For this to be possible, there must be a specific relation between the

path-connected components of the space and its subspace. Retractions exhibit

this property.

In this section, the concepts of decompositions and retractions will be defined.

Furthermore, a special case of decomposition, cell complexes, will be considered.

3.3.1 Cell Decompositions

A cell decomposition of a compact topological space S is a finite collection K

of disjoint connected subsets c of S, called cells, whose union is S [Massey 78J.

Two cells b, c are adjacent if

cl(b) flc)U(bflcl(c)) 	 O.

The adjacency graph of K is the graph G(K) with vertices corresponding to the

cells and with edges connecting two vertices when the cells are adjacent. Then,

a path between two points P1,P2 exists if and only if there is a path in G(K)

between c 1 , c2 , where c 1 contains Pi and c2 contains P2. Thus, the path planning

problem is reduced to a graph searching problem.
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A decomposition method for path planning requires: (a) a decomposition

algorithm to find the cells; (b) an adjacency test to construct the adjacency

graph; (c) a cell location algorithm to find the cell in which a point is contained;

(d) a graph searching algorithm.

A special case of cell decomposition is a cell complex.

3.3.2 Cell Complexes

The definition of a cell complex is given below [Cooke and Finney 67]:

Definition 3.3.1 A finite cell complex consists of a compact topological space

I 
K and a sequence of subspaces called skeletons and denoted by lKd l, d =

—1,0,1,.. .,ri, which satisfy:

1. 0 = K_ il, 1K_ i l C IKol C Ku... C lKI, lKl = IKI.

2. Each lKd l is closed in IKI.

5. lKl =Uo^d^lKdl.

. For each d ^ 0, the components c 1 ,c2 ...c of lKdl - IKa_ul are open cells in the

relative topology of lKdl. They are referred to as the d-cells of IKI.

5. For each d-cell, c of IKI, there exists a continuous map I from the closed unit

ball B of dimension d to the closure of c, cl(c) , where I when restricted to the

interior of B, is a horneomorphism onto c.

A cell complex is shown in Figure 3-12.

Definition 3.3.2 A cell complex is regular if there exists a homeomorphism

from the closed unit ball onto the closure of c, cl(c).

The cell complex in Figure 3-12 is regular, while the cell complex in Figure 3-

13 is irregular.
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-1-skeleton
IK_ 11 -	 B

1k 0 1 -	 C	 B-skeleton

Cl

1K jI -	 1-skeleton

c

ci

1K 21 - C	 2-skeleton

c

A regular cell complex consisting of one 2-cell (cf), three 1-cells ( c t, 4, 4) and two 0-cells (c, c).

IKd l denotes a d-skeleton, consisting of cells of dimension less than or equal to d ([Agoston 761).

Figure 3-12: A regular cell complex

An irregular cell complex consisting of one 2-cell (cf), three 1-cells (cj, 4, 4) and two 0-cells

(4, c) (see [Cooke and Finney 67[).

Figure 3-13: An irregular cell complex
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Definition 3.3.3 The boundary of a cell, bdry(c) is defined to be:

bdry(c) = cl(c) - c

The following properties of cell complexes either follow from the definition

or can be proved (see [Cooke and Finney 67]):

1. K is called the underlying space of the complex and it is the union of all

cells: KI = Uc = Ucl(c).

2. The d-skeleton IKd I of IKI is the union of cells of dimension less or equal

to d: IKd I	 Ui,q	 for q d.

3. The d-cells are the components of IKd I - IKdlI.

4. The cells c are disjoint

5. If c is a d-cell, then cl(c) C IKdI.

6. The boundary of a d-cell c, lies in the union of cells of dimension lower

than the dimension of the cell, bdry(c) = cl(c) - c = cl(c) fl tKd...lr.

7. The boundary of a d-cell is connected if d ^ 2.

8. If K is a cell decomposition of a compact topological space into disjoint

d-dimensional cells and for each cell:

(a) there exists a continuous mapping from the closed unit ball B to the

closure of c which maps the interior of B homeomorphically onto c,

(b) the boundary of a d-cell, c lies in the union of cells of dimension lower

than that of c,

then K is a cell complex.

9. If c is a cell of a regular cell complex then cl(c) contains at least one vertex.
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10. For a regular cell complex, if c is a d-cell and C2 is a (d - 2)-cell in the

boundary of c 1 , then there are precisely two (d - 1)-cells, c3 , c'3 on the

boundary of c 1 , such that c 2 is on the boundary of both c 3 and c'3.

From the above properties it follows that if a space is decomposed into cells

c which form a regular cell complex, then there is a path in the space between

points Pi in c1 and p in c if and only if there is a chain i -+ c2 - . .. c... -p c,,

such that C+1 belongs to the boundary of c 1 or vice versa. Therefore, in order

to find a path we need: (a) a decomposition algorithm to find the cells; (b) a

test to find whether a d-ceIl belongs to the boundary of a (d + 1)-cell; (c) a cell

location algorithm; (d) a graph searching algorithm.

In comparison with a general cell decomposition, cell complexes have more

structure, and the homology groups of the space can be found by examining

the structure of the complex. A cell complex would have, normally, fewer cells

than a simplicial complex, but more cells than a general decomposition where

the cells need not be homeomorphic to open balls. Therefore, the properties of

the complex have been introduced at the expense of adding more cells.

3.3.3 Retractions

Definition 3.3.4 Let A c X. Then A is said to be a retract of X if there exists

a continuous map r : X i-^ A such that the restriction of r to A is the identity.

r is called a retraction [Massey 78].

Using retractions, the problem of path-planning in a space can be reduced

to the problem of path planning in a lower dimensional subspace, that is in a

retraet of the space:

Let A C X and A be a retract of X. Then if there exists a path p(t) in X

between two points t 1 and t2 in A, then there is path in A.

Yap [Yap ss] defines a retraction-like map and then proceeds to show that for

cell-complexes IKd_1J is a retract of IKd I. Then he shows that:
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Theorem 3.2 The vertices of a cell complex are edge-connected 1ff the underly-

ing space of the cell complex is path-connected.

Proof

See [Yap ss]. 0

Using Voronoi diagrams for path-planning is an example of the retraction ap-

proach to motion planning. Intuitively, the points on the 1-dimensional skeleton

of a Voronoi diagram represent configurations where the objects have maximum

clearance. In this research, we are interested in the 1-dimensional skeleton of

the Contact space, that is, the configurations where the objects have minimum

clearance.
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3.4 Decomposition of the Contact Space

In this section a decomposition of the contact space will be described, which is

an extension to three dimensions and rotations of the decomposition in {Hoperoft

and Wilfong 84b].

3.4.1 Clauses

A feature (an edge, face, or vertex) of the moving object is in contact with a

feature of the environment at some configuration if their intersection is nonempty.

The concept of a clause is introduced to describe the basic types of contact. In

the next section, conjunction of clauses will be used to describe all possible types

of feature interactions.

Definition 3.4.1 A clause c is a pair (11,12), where either

1. fi is a vertex of moving object B, f2 is a face of environment E or

2. Ii is a face of moving object B, 12 is a vertex of environment E or

S. fi is an edge of moving object B, 12 is an edge of environment E

By convention f always belongs to the moving object.

Definition 3.4.2 A configuration Z satisfies a clause if the features in the

clause are in contact, that is

f1©Znf2O.

With each clause c there is an associated 'smooth'3 real valued function on

configuration space C:

3continuously differentiable
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f:C—.

At the moment I will not be concerned with the form of the functions but

only with their geometric significance. The form of the functions is discussed

in Section 4.3.2. It has to be noted though that the form of the functions

depends heavily on the representation of rotations. If rotations are represented

by Euler angles, then the functions are not algebraic, since they include cos and

sin. [Canny 84b,Canny 85] uses quaternion representation of rotations to derive

algebraic functions.

If a configuration Z satisfies the clause c, then the associated function is

zero-valued, f(Z) = 0, that is it lies within the kernel of the function Ker(f),

Ker(f) = {Zf(Z) o}.

However the function can be zero-valued and yet the clause may not be satisfied.

In the case of vertex-face contact, that would mean that the vertex lies on the

plane containing the face but not on the face itself. Similarly, in the edge-edge

case, the lines would intersect but not the edges. This is illustrated in Figure 3-

14.

The sign of the function at a configuration is of particular importance. In the

case of vertex-face contact it indicates whether the vertex lies above or below

the plane of the face. In Section 3.4.6 the sign of the functions will be used in

the decomposition of the space.

The sign of a function can also be used to find out if the objects overlap

[Canny 84a], [Lozano-Perez 83]: the half-space (or half-hyperspace more pre-

cisely) associated with a clause c is the set of all configurations where f ^ 0,

= {ZIf(Z) ^ o}

The union of intersections of a number of such half-spaces define the region

cl(OVERLAP) , that is, the grown obstacles (see [Canny 84a]).
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The vertex v1 of B lies on the plane f but not on the face f . In this case f(Z) = 0, where

c = (UI, fj, but Z does uot satisfy the clause c.

Figure 3-14: A configuration which does not satisfy a clause



Chapter 3. Theory of Motion in Contact 	 62

3.4.2 Descriptors

In the previous section a clause was defined in terms of the three basic types of

contact. All other types of contact between polyhedral objects can be expressed

in terms of clauses.

Definition 3.4.3 A descriptor D is a predicate that is a formal conjunction

of clauses c1,

D =

Each c 1 is said to be in D.

Definition 3.4.4 A configuration satisfies a descriptor if it satisfies all the

clauses of the descriptor. Let SD be the set of all configurations which satisfy the

descriptor D,

SD = {ZlZsatis lies c,V c in D}.

Since for each clause there is an associated function f, and for all configura-

tions which satisfy the clause, f(Z) 0, then with each descriptor there is an

associated system of equations. If a configuration satisfies a descriptor then it

satisfies the system of equations associated with the descriptor. The converse is

not true.

Definition 3.4.5 HD is the set of configurations which satisfy the system of

equations associated with the descriptor D,

HD = { Z If(Z) = 0,Vc in D}.

Note that SD c HD . The variables in the system of equations are the trans-

lational and the rotational degrees of freedom of motion. The dimension of the

solution space of the system of equations is equal to to the number of degrees of

freedom of the motion of the object.
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v1

2

The descriptor D = ( v i, ffl A (v 1 , f) describes a contact situation which is unattainable.

Figure 3-15: An inconsistent descriptor

Definition 3.4.6 The dimension of a descriptor is equal to dimension of the

solution space of the system of equations of the descriptor.

From the above we can conclude that a configuration satisfies a descriptor if

1. the configuration satisfies the system of equations associated with the de-

scriptor

2. the features in each clause of the descriptor have non-empty intersection

at the configuration

While (2) is a necessary and sufficient condition, ( 1) is only a necessary condition.

If the system of equations of a descriptor has no solutions, then the descriptor

describes a contact situation which is unattainable. In this case the descriptor

is called inconsistent. If the system of equations of a descriptors has at least one

solution, then the descriptor is called consistent.

Definition 3.4.7 A descriptor D is consistent if HD 0.
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(a) D 1 = (vi, ffl A (v2, ffl A (V3, ffl (b) D2 = (v1, ffl A (Cj, n A ( e 2, 4)

The systems of equations of the two descriptors have the same sets of solutions: the descriptors

are kinematically equivalent.

Figure 3-16: Equivalent descriptors

Figure 3-15 shows a case of an inconsistent descriptor. Clearly a vertex

can not be in contact with two parallel planes simultaneously. The system of

equations of the descriptor D = (v i , ffl A (vi, ffl has no solutions. Whether or not

the system of equations has any solution does not depend at all on the physical

extent of the objects. The system of equations can be seen as a definition of some

kinematic mechanism. Distinguishing between a configuration which satisfies a

descriptor and a configuration which satisfies the system of equations implies

distinguishing between a configuration which satisfies a descriptor in terms of

physical contact and a configuration which satisfies a descriptor in the 'kinematic'

sense. Therefore, a system which handles transformations can be used to deal

with the equations, while a system with knowledge about space occupancy can

be used to deal with the task of physical contact.

It can also be observed that two different descriptors may describe two contact

situations which are kinematically equivalent. In Figure 3-16, D1 = (v1 , ffl A

(v2, ff) A (v3, ff) and D2 = (v1, ffl A (e1, 4) A (e2, 4) . Both descriptors describe

the same planar mechanism: the plane of f must be against the plane of If.

U
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Zj satisfies the descriptor D = (v1, ffl A ( u2, ffl but is illegal, since B(Z1 overlaps E. Z2 satisfies

the system of equations of D, since v 1 and u2 are on the plane of f, but 2'2 does not satisfy D.

The descriptor D = (v1 , If) A (v2 , If) is fflegal it is not satisfied by any legal configurations.

Figure 3—iT: An illegal descriptor

In this case we say that D 1 and D2 are equivalent, meaning equivalent in the

kinematic sense.

Definition 3.4.8 The descriptors D1 and D2 are equivalent, D1 .- D2 , if

HD 1 HD2.

Let us now consider physical interference between objects. In Figure 3-17

configuration Z1 satisfies the descriptor D = (v i , ffl A (v2 , ffl but it is physically

impossible. It can also be seen that in this case there are no legal configurations

that satisfy the descriptor, although there are legal configurations which satisfy

the system of equations (e.g. Z2).

Definition 3.4.9 A descriptor is legal if it is satisfied by at last one legal con-

figuration.
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Both configurations Z1 and Z2 satisfy exactly the descriptor D = (vi, f') A (v2, f') A (v3, f') but

they belong to different path-connected components of ED.

Figure 3-18: Path-connected components of ED

As is shown in Figure 3-11 (page 51), a configuration can satisfy more than

one descriptor. Configuration Z1 satisfies D (v1, ffl, D2 (v2, ffl and D3 =

( v i , f) A (V2, ffl.

The last two observations are captured by the following definition:

Definition 3.4.10 A configuration Z exactly satisfies a descriptor D if Z is

legal and Z does not satisfy any clauses not included in the descriptor. Let ED

be the set of legal configurations which satisfy D exactly,

ED={ZjZESDflLEGALAVc=(fl,f2)D:fl©Zflf2=O}.

Finally, it can be noted that the set ED is not necessarily path-connected.

In Figure 3-18, both Z1 and Z2 satisfy exactly the descriptor D = (v1 , f') A

(v2, fl A (v3, f') and both are legal. Therefore Z1 , Z2 E ED. There is not

a path however in ED that connects Z1 and Z2. Since we are interested in

path-connected components of CONTACT, ED should be partitioned into its

path-connected components.
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Definition 3.4.11 PD(i) is defined as a path connected component of ED.

Let's summarise what has been achieved so far:

1. Every type of contact has been described in terms of the three basic types

of contact by means of clauses and descriptors.

2. The set HD of configurations which satisfy the system of equations of the

descriptor has been considered.

3. Various subsets of 11D have been classified: PD(i) c ED C SD c HD

• SD : set of configurations which satisfy the descriptor.

• ED : set of configurations which exactly satisfy the descriptor and are

legal.

• PD (i) : set of configurations which exactly satisfy the descriptor, are

legal and path connected.

The definitions are illustrated collectively in the example shown in Figure 3-

19.

In the next section it will be shown that the path-connected components of

all possible consistent descriptors form a decomposition of the Contact Space.
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Let the origin of B be on v 1 , and D be the descriptor specifying that v 1 and v2 lie on both faces

f and f, and 2)3 lies on f. HD is an infinite line in configuration space. SD is a closed interval

in HD and its end points are defined by configurations Z1 and Z4. At Z1 the vertex v reaches

the left end of the face fr', while at Z4 v2 reaches the right end of ft' . ED consists only of the

legal configurations of SD which satisfy D exactly. Therefore, ED does not include Z1 , Z2 , Z3

and Z4. Finally, PD(1) and PD(2) are the two path-connected components of ED.

Figure 3-19: The subsets of HD
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3.4.3 Decomposition of the Contact Space Using Descrip-

tors

Consider the set of all possible clauses for the two polyhedral objects B and E,

CLAUSES = {vert(B) x faces(E)}

U{faces(B) x vert(E)}

u{edges(B) x edges(E)}

A descriptor is a conjunction of the elements of a non-empty subset of CLAUSES.

Let DESCRIPTORS be the set of all possible consistent descriptors. It will be

shown that the collection of all the sets FDa (i), where Da is a consistent de-

scriptor, and FDa (i) is the 1th path-connected component of the set of legal con-

figurations which satisfy Da exactly, constitutes a decomposition of the contact

space.

Lemma 3.4.1 For every configuration Z in CONTACT there is exactly one

descriptor D, such that Z satisfies D exactly.

Proof

Since any contact between polyhedral objects can be expressed in terms of

the three basic types of contact, any configuration in CONTACT satisfies some

conjunction of clauses and, hence, satisfies at least one descriptor exactly. By the

definition of ED (page 66), a configuration cannot satisfy two or more distinct

descriptors exactly. Therefore there is exactly one descriptor which it satisfies

exactly. 0

Lemma 3.4.2 CONTACT = UiD PD(i), D E DESCRIPTORS.

Proof

Let Z E PD(i) . Then Z satisfies descriptor D. Let c = (11,12) be a clause

of D. Now f1 ©Z fl 12	 0 =. B©Z fl E	 0. Also Z is legal and hence
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int(B©Z) n int(E) = 0. By the definition of CONTACT (page 45) we have that

Z E CONTACT.

Let Z E CONTACT. Then Z is legal and by Lemma 3.4.1 there is a de-

scriptor that Z exactly satisfies. Therefore, Z E ED and hence Z belongs to

some path-connected component of ED, i.e. Z E PD(i).

Lemma 3.4.3 PD6(i) n PD b (j) =

Proof

Let Da = Db = D, that is PD(i) and PD(j) are path connected components

of ED and hence disjoint.

Let D0 Db and let Z E PD6 (i) fl Db (j). Then Z would satisfy exactly both

D1 and D which contradicts Lemma 3.4.1. Therefore, PD6 (1) and PD6 (J) are

disjoint.

Theorem 3.3 The collection of the sets PD6(i), where PD6(i) is the th path-

connected component of a set of legal configurations which satisfy a consistent

descriptor Da exactly, constitutes a cell decomposition of the Contact Space.

Proof

The sets PD6 (i) are path-connected (by definition), disjoint (Lemma 3.4.3)

subsets of the Contact Space whose union is the Contact Space (Lemma 3.4.2).

Therefore, they constitute a cell decomposition of the contact space (see defini-

tion page 53). 0
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3.4.4 Faces of the Contact Space and their Intersections

Having defined a decomposition of the contact space into the cells PD (i), I shall

now proceed to examine the properties of this decomposition. Working towards

this objective, the notion of faces and their boundaries will be introduced. A

face of the contact space is defined as the closure of a cell of the decomposition:

Definition 3.4.12 A face FD of the Contact Space is defined to be the closure

of a path-connected component PD in lID,

FD(i) = cl(PD(i)).

The dimension of a face FD is equal to the dimension of the descriptor D.

0-dimensional faces are called vertices and 1-dimensional faces are called edges.

Let IKd I be the collection of faces of the Contact Space with dimension less or

equal to d. IKd I is called the d-skeleton of the Contact Space.

In order to decide how the various faces are related, the concept of the bound-

ary of a face will be introduced.

Definition 3.4.13 The boundary of face FD is defined by

bdry(FD (i)) = FD(i) - PD(i).

Intuitively, the boundary of a face corresponds to configurations which lie on

the face but at which the motion of the object is further restricted by one or

more additional contacts, that is configurations which don't satisfy the descriptor

exactly. In Figure 3-20, for example, D1 = (vi, ffl and FD 1 is the unique face

of the descriptor and is of dimension 5. While Z1 satisfies the descriptor D1

exactly, Z2 and Z3 don't. Z2 satisfies the descriptors D1 , D2 = (v2, ffl and

D3 = ( vi , ffl A (v2 ,ffl. Z3 satisfies the descriptors D 1 , D4 = (vi ,ffl and D5 =

(v1 , ffl A (v1, ffl . In this case Z2 and Z3 belong to the boundary of the face

FD1 . It can also be observed that configurations Z2 and Z3 lie in 4-dimensional
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@ ZI

E ':, z3

(a) Z exactly satisfies the descriptor D 1 = (01, ff)

(b) Z2 satisfies the descriptors D 1 = (01, ffl, D2 = (02, ff) and D3 = (v1, f1') A (02, If)

(c) Z3 satisfies the descriptors D 1 = (v i , ffl, D4 = (v1 , f) and D5 = (01, ff) A (Vj, ffl

Z2 and Z3 belong to the boundary of FD1

Figure 3-20: Boundary of a face
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faces (Z2 has 2 rotational and 2 translational d.o.f., Z3 has 3 rotational and 1

translational d.o.f.). In addition, Z2 lies on the intersection of FD1 and FD2 while

Z3 lies on the intersection of FD1 and FD4. In this section, we will try to see if

the observations that have been made with reference to Figure 3-20 are valid in

general. In particular, the following questions will be examined:

Qi: Do all faces, apart from 0-dimensional faces, have non-empty boundaries?

Q2: Does the boundary of a d-dimensional face (d > 0) consist of faces of

dimension less than n?

Q3: Does the intersection of two faces consist of faces of dimension less than

the minimum of the dimensions of the two?

Q4: Do all d-dimensional faces lie on the boundary of some (d + 1)-dimensional

face (0 < d < 4)

Q5: For every face of dimension greater than one, is there a path on the bound-

ary of the face between any two configurations on its boundary?

Q 6: Are the vertices of the space edge-connected?

QT: Finally, is the decomposition a cell complex?

By answering these questions, we would be able to examine some of the prop-

erties of the decomposition. In particular, the property we are more interested

to establish is the edge-connectedness property.

If the answer to questions Q1—Q2 is yes, then the contact space can be re-

garded as a polytope. The structure of polytopes is well studied, and therefore,

it will be useful if the Contact Space could be regarded as a polytope. Polytopes

in general, however, do not exhibit the edge-connectedness property. If the de-

composition is a regular cell complex then the answer to all questions Q1—Q7

would be yes.

-
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Hoperoft and Wilfong [Hoperoft and Wilfong 84b] have examined the struc-

ture of the Contact Space in the case of 2-dimensional polyhedra and pure trans-

lational motion. Defining a decomposition of the space similar to the one pre-

sented in the previous sections, they proved that, even in the case of more than

one moving object, the vertices of the space are edge-connected. As will be

shown by some counter examples, the results do not generalise to the case of

3-dimensional objects, even if only translations are allowed.

The problems of the proposed decomposition will be illustrated by means of

some examples. In a later section, the same examples will be used to to propose

a slightly different method for decomposing the contact space which overcomes

most of the problems encountered.

Problem 1: An edge with no vertices

Consider the case shown in Figure 3-21. Object B is free to rotate about the

axis defined by vertices v 1 and v2. Since there is one degree of freedom of

motion, the face of the contact space which corresponds to this contact situation

is 1-dimensional, i.e. an edge. It can be noticed that the motion of B can

not be further constrained by additional contacts. In other words, there isn't

a configuration which satisfies D and also satisfies a clause not in D. More

formally, all configurations which satisfy the system of equations of D, satisfy D

exactly and are path-connected, i.e.

PD ED = SD HD.

This implies that D = HD . HD is both open and closed in HD, hence D is

also both open and closed, and, therefore, bdry(PD) = 0.

It can be argued that the situation of faces with empty boundaries arises

only in the case of 1-dimensional faces which correspond to one rotational d.o.f.

or 2-dimensional faces which correspond to two rotational d.o.f. If there are

translational d.o.f. then, eventually, some new contact constraint would be at-

tained, either because the object would 'hit' something, or because the boundary
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The descriptor D specifies that v 1 coincides with v'1 and v2 with v. Therefore, B is free to

rotate about the axis v 1 v2 . Z belongs to a 1-dimensional face FD with empty boundary

Figure 3-21: An edge of the contact space with empty boundary

of some feature in some clause would be reached. Similarly, if there are three

rotational d.o.f., clearly the object can not rotate without 'hitting' some obstacle

(Figure 3-22).

From this example, we can conclude that the answer to the question (Qi)

is no, that is, not all faces have non-empty boundaries. As a result, there are

faces which do not contain any vertices. This is a violation of a property of

regular cell complexes (see item 9, page 56). Therefore, we can conclude that

the decomposition is not a regular cell complex.
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B can rotate about vertex v. Z is a configuration in a 3-dimensional face FD. At some configu-

ration in the face, B comes into contact with the environment. Therefore, the boundary of FD

is not empty.

Figure 3-22: A vertex to vertex contact

Problem 2: Faces with 'holes'

Consider the situation shown in Figure 3-23. A 3-dimensional object B is allowed

only translational motion. Figure 3-23b shows the resulting contact space, which

is the boundary of the OVERLAP region. Configurations Z1 and Z2 are vertices

of the contact space. They lie on the boundary of a 2-dimensional face FD, where

D is a descriptor specifying that the vertices of face f of B lie on face f' of E.

As can be seen from the figure, configurations Z1 and Z2 cannot be connected

by a path in the boundary on the face. They can, however be connected by a

path along edges of the contact space.

A similar situation is shown in Figure 3-24. In this case though, not only

vertices Z1 and Z2 are not connected by a path in the boundary of FD, but they

are not edge-connected at all.

From the above two examples (Figures 3-23 and 3-24) we can conclude that

the answer to question (Q5) is no, that is to say, there isn't always a path on the

boundary of a d-dimensional face between two configurations on its boundary
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(h,)

(a) shows the stationary object E and the moving object B; (b) shows the resulting contact

space when only translations are allowed, assuming that the origin of B is its center point.

Configurations Z1 and Z2 are vertices of the contact space iii the boundary of the 2-dimensional

face FD. Although Z1 and Z2 are edge connected, they are not edge connected in the boundary

of the face FD.

Figure 3-23: Faces of the contact space with holes: Case 1

4-
	 (a)	 (b)

(a) shows the objects and (b) the resulting contadt space, if only translations are permitted.

Assume that the origin of B is its center point. Zj and Z2 are vertices of the contact space

which are not edge-connected.

Figure 3-24: Faces of the contact space with holes: Case 2
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(d> 2). In other words, the boundary of a d-cell (d ^ 2) of the decomposition is

not necessarily connected. This, again, is a violation of a property of cell com-

plexes (see item 7, page 56). We can conclude, therefore, that the decomposition

is not a cell complex.

The problem indicated by the above two examples arise because the cells of

the decomposition have 'holes': although a cell PD(i) has been defined to be

path-connected, its closure, FD (i), is not necessarily simply-connected. It can

be seen, therefore, that the definition of a cell complex is violated (see item 5 of

Definition 3.3.1, page 54).

Furthermore, from the second example (Figure 3-24) it can be concluded

that in the case of 3-dimensional objects, even if only translations are allowed,

the vertices of the contact space are not edge-connected. Therefore, the answer

to question (Q6) is also no.

Problem 3: A vertex of a face which does not lie on an

edge of the face

In the case shown in Figure 3-25 vertex v2 of B is restricted to lie on f and v1

must coincide with v'. In this case, the object B has two rotational d.o.f.. The

locus of the vertex v3 can be seen to be the surface of a sphere. Configuration

Z0 lies thus on a 2-dimensional face FD. Now, what happens if we constrain

the vertex v3 to be on a plane face f of E? There are two cases. In Figure 3-

25b, the distance from v1 to f is less than the length of the edge v1 v3 , that

is to say, the plane of f intersects the sphere. The locus of v3 becomes then

the circle where the plane intersects the surface of the sphere, and B has one

rotetional d.o.f. about the axis shown in the figure. Configuration Z1 lies thus

on a 1-dimensional face of the contact space, which belongs to the boundary of

FD. In Figure 3-25c, the plane of f is tangent to the sphere and the locus of v3

becomes the point where the plane is tangent to the sphere. Configuration Z2 is

thus a vertex which lies on the boundary of FD . What is of interest in this case

is the fact that if the obj ect is at configuration Z2 (vertex configuration) and the
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For illustration purposes, only the vertices v 1 , v2 and v of B are shown. v 1 coincides with u'

and v2 is on f . ( a) B has two rotational degrees of freedom. The locus of V3 is the surface

of the sphere; Z0 lies on a 2-dimensional face F0 . (b)v3 is constrained to lie on a plane f

which intersects the sphere. Z lies on a 1-dimensional face on the boundary of F0 ; (c) V3 is

consained to lie on a plane which is tangent to the sphere. Z2 is a vertex on the boundary of

F0 . Z2 is not edge-connected in the face F0 but it is edge connected in the contact space.

Figure 3-25: A vertex on a face not lying on an edge on the face
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Only vertices v 1 and v2 of object B are shown. Zo lies on a 3-dimensional face FD, where D1

specifies that v1 coincides with 4 . Z1 lies on a 1-dimensional face FD, in the boundary of FD1.

Z2 lies on a 2-dimensional face FD,, where D3 specifies that v1 is on the intersection of f and

f and v2 is on f . FD, is not connected to any edges iii the boundary of FD 1 but it is connected

to edges in the boundary of FD.

Figure 3-26: An edge on a 3-dimensional face

constraint ( v3 , 13) is relaxed, then the object is at a configuration belonging to a

2-dimensional face (FD ) and not to an edge. That is to say, there are no edges

in the boundary of the face FD connecting vertex Z2 with other vertices.

We can conclude, therefore, that the case shown in Figure 3-25c is one more

maiiifestation of the fact that, for the proposed decomposition, the boundary of a

cell is not necessarily connected. However, it has to be noticed that, similarly to

the case shown in Figure 3-23, the vertex Z2 , although it is not edge-connected

on the boundary of FD, it is edge-connected in the contact space: if B is at

configuration Z2 and the constraint (v 1 , f) is relaxed, then B could rotate about

the line v 1 v2 . Z2 lies thus on an edge of the contact space.
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A similar but higher dimensional situation is shown in Figure 3-26. Let the

initial situation be v 1 against v'1 (D1). There are 3 rotational degrees of freedom

and, therefore, the configuration Z0 lies on a 3-dimensional face, FD1. If the

constraint (v2 , f) is introduced, then there is only one rotational d.o.f. Config-

uration Z1 lies thus on a 1-dimensional face. This is an edge on the boundary of

the 3-dimensional face FD 1 which is not connected to other edges on the bound-

ary of the face. Again, this example illustrates that the boundary of a face

is not necessarily connected. As in the previous example, there are, however,

2-dimensional faces which have this edge on their boundary. For example, con-

figuration Z2 lies on such a 2-dimensional face. Therefore, although the edge

is not connected to any edges in the boundary of FD 1 , it is connected to edges

through 2-dimensional faces.

Let us summarise the implications of the last two examples (Figures 3-25 -

3-27). It has been indicated that there are cases where the addition of a

single constraint (clause) eliminates two degrees of freedom and this results in

vertices that are not connected by edges on a 2-dimensional face, edges that are

not connected by 2-dimensional faces on a 3-dimensional face etc. This implies

that the boundary of a face is not necessarily connected and, as a result, the

decomposition is not a cell complex. The answers to questions (Q5) and (Q7) in

page 73 are, therefore, no.

Problem 4: An edge which doesn't lie on the boundary of

a 2-dimensional face

Consider the case shown in Figure 3-27. Configuration Z1 lies on a 1-dimensional

edge on the boundary of a 3-dimensional face FD 1 , where D 1 specifies that v1

coincides with v. If any of the contacts (vi or v2) is broken, there would be

two extra degrees of freedom introduced. Therefore, the edge does not lie on the

boundary of any 2-dimensional face and is not connected to any edges through

2-dimensional faces.



Chapter 3. Theory of Motion in Contact 	 82

D 1 specifies that v1 and t4 coincide. D2 specifies that, in addition, v2 lies on f . FD3 is an edge

in the boundary of the 3-dimensional FD 1 . FD 3 does not lie on any 2-dimensional faces.

Figure 3-27: An edge not lying on a 2-dimensional face: Case 1
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5Z4

BZ3

CO'4TA CT

(a) The dimensions of B are such that it fits perfectly in the hole of E. Z1 satisfies the descriptor

= (v 1 , f) A (u2, ffl . In (b), the 'topology' of the resulting contact space is shown. FD is an

edge which does not lie on the boundary of any 2-dimensional face.

Figure 3-28: An edge not lying on a 2-dimensional face: Case 2
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Consider the case shown in Figure 3-28 (2-D with rotations). Object B is at

configuration Z1 in FD1 where D1 = (v 1 , ffl A (v2 , ffl (Figure 3-28a). There is

one translational d.o.f. and F1,1 is en edge of the contact space. If B fits perfectly

in the hole then none of the contacts can be broken and no extra d.o.f. gained.

The edge FD1 does not lie, thus, in the boundary of a 2-dimensional face of the

Contact Space (Figure 3-28b). In order to understand why this happens, let us

consider the descriptors D2 = (vi, ffl and D3 = (v2, ffl . Because of the tight fit,

the set of legal configurations of SD2 is equal to FD1 and ED2 = 0. Therefore,

FD2 = 0. Similarly, F1,3 = 0. Although FD1 does not lie in the intersection of

FD2 and FD3 , since these sets are empty, it does lie in the intersection of HD2

and HD3.

From the last two examples (Figures 3-27 and 3-28) it can be concluded

that there might be edges which do not lie on the boundary of a 2-dimensional

face. The answer to question (Q4) is, therefore, also no: not all d-dimensional

faces lie on the boundary of some (d + 1)-dimensional face. In the first example,

this situation has arisen because any contact broken would result in at least two

extra d.o.f. In the second example, the situation has arisen because no contact

could be broken without resulting in physical interference.

From the second example, it can also be concluded that there might be d-

dimensional faces which don't lie in the intersection of higher dimensional faces,

but all faces lie in the intersection of some higher dimensional manifolds defined

by some set HD. 'Dangling' edges, like the edge of Figure 3-28 are not allowed

in polytopes, but they don't violate any of the properties of cell complexes.



Chapter 3. Theory of Motion in Contact	 85

3.4.5 Assessment of the proposed decomposition

From the discussion in the previous section, we can conclude that the cells (PD'S)

of the decomposition do not form a cell complex and the vertices of the space

are not necessarily edge-connected. The problems encountered and the reasons

why the decomposition is not a cell complex are summarised below:

• There are cases when the boundary of a face is empty. We argued that

this happens in the case of 1-dimensional faces when there is one rotational

d.o.f. and in the case of 2-dimensional faces when there are two rotational

d.o.f.

• Although the cells are path-connected, they are not simply-connected, and

therefore, they are not homeomorphic to open d-dimensional balls. As a

result, there can be vertices that are not edge connected, although the

contact space is path-connected. This happens even in the case when only

translations are permitted.

• There can be a vertex on the boundary of a face, which does not lie on

any edges in the boundary of the same face. We argued that in this case,

although the vertices will not be edge-connected on the boundary of the

face, the vertices will be edge-connected in the contact space.

• There can be an edge on the boundary of a 3-dimensional face which does

not lie on any 2-dimensional face in the boundary of the 3-dimensional face.

In this case, the edge will not be connected to any edges on the boundary

of the 3-dimensional face. Moreover, it is possible that the edge will not

be connected to any edges at all through 2-dimensional faces.

Finally, it is possible that an edge does not lie on the intersection of higher-

dimensional faces. It was argued that it will, however, lie on the intersec-

tion of some higher-dimensional manifolds of the contact space.

The following properties of the decomposition can be proved (proofs are

similar to the proofs given in [Hoperoft and Wilfong 84b]):
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1. A configuration which lies on a face satisfies the descriptor that defines the

face.

2. A configuration which lies on the boundary of a face, lies on a face with

dimension less than that of the face.

3. The boundary of a face is exactly those configurations in the face that lie

in faces with dimensions less than the dimension of the face.

4. A configuration which lies on the intersection of two faces, lies on a face

with dimension less than the minimum of the dimensions of the two faces.

We can now present the answers to the questions posed at the beginning of

this section (page 73):

Al: Not all d-dimensional faces have non-empty boundaries (d ^ 1).

A2: The boundary of an d-dimensional face consists of faces of dimension less

than d (d ^ 1).

A3: The intersection of two faces consists of faces of dimension less than the

minimum of the dimension to the two.

A4: Not all d-dimensional faces lie on the boundary of some (d + 1)-dimensional

face (d < 4).

A5: There isn't always a path on the boundary of a face between two configu-

rations on its boundary.

A6- The vertices are not necessarily edge-connected.

AT: The decomposition is not a cell complex.

Having identified the shortcomings of the proposed decomposition, a slightly

different decomposition will be described in the next section.
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The edge of the contact space FD (see Figure 3-21) is partitioned into faces GD(i) by config-

urations which satisfy some additional constraint. (a) Z1 and Z2 lie on the intersection of FD

with HD1, where D1 = = (V3, ffl; (b) Z lies on the intersection of FD with He,, where D

consists of clauses not in D.

Figure 3-29: Partitioning a face

3.4.6 An alternative decomposition of the Contact Space

Consider again the case shown in Figure 3-21 (page 75) where object B is at

configuration Z and it is allowed to rotate about the axis v1 v2 . It was shown

that configuration Z lies on an edge FD with an empty boundary. If we imag-

ine B rotating, there will be two configurations Z1 and Z2 at which vertex v3

will lie on the plane of face f, although not on the face itself. These are the

configurations where FD intersects HD1, where D1 = c1 = (V3, ffl . Therefore,

f 1 ( Z1 ) = f 1 (Z2 ) = 0, while at every other configuration Z on the edge FD,

f(Z) <0 or f(Z) > 0 (Figure 3-29). If we consider all intersections of FD with

HD1 , where D1 consists of clauses which are not in D, then face FD will be par-

titioned into smaller edges with boundaries. Moreover, for every configuration

Z' in the interior of each of the generated smaller edges, the sign of f 1 (Z') for

each c, not in D will remain constant.

The same method could be followed in order to partition a 2-dimensional
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face with empty boundary into smaller faces with boundaries. We can con-

clude that by introducing new 0 to (d - 1)-dimensional faces which correspond

to intersections of a d-dimensional face with higher dimensional manifolds, the

problem of faces with empty boundaries (Problem 1) can be overcome. The d-

dimensional face FD is partitioned by these intersections into a number of smaller

faces GD (1) ... GD (ii), and the sign of the functions f (Z) remains invariant within

each face GD(i).

Let us now focus our attention on Problem 2, namely the problem that there

can be faces with 'holes'. As is shown in Figure 3-30, following the same method

described above, the 2-dimensional face FD can be partitioned into a set of faces

GD (1). Such a partitioning results in vertices which are edge-connected. Again

it can be noticed that the sign of the functions fe's remains invariant within each

of the new faces of the contact space.

The new decomposition will be defined by formalising the notion of sign

invariance of the functions fe 's (see also [Yap ss}).

Definition 3.4.14 A sign-assignment s is a function from the set of all clauses

CLAUSES to the set {—i3O,+i}

s: CLAUSES i-p {-1,0,+1}.

A configuration Z satisfies a sign assignment s, sat(Z, s), if for each clause c

in CLAUSES, f(Z) is negative, zero or positive according to whether s(c) is -1,

0, or +1. A cell of the contact space consists of configurations for which all the

functions f remain sign invariant:
4.,

Definition 3.4.15 A cell C3 of the contact space is a set of configurations in

the contact space which satisfy a fixed sign-assignment, s.

C3 = {ZIZ e CONTACT A .sat(Z, ․ )}.
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For each cell of the contact space there is a unique descriptor D, which is the

conjunction of all the clauses c for which s(c1) = 0. Therefore, each configuration

in a cell satisfies the system of equations of the associated descriptor of the cell

and thus C8 C HD.

Definition 3.4.16 A face GD( i) of the contact space is defined to be the closure

of a cell C3 in HD

GD(i) = cl(C,),

D=Ac, Vc1:s(c)=0.

The boundary of a face is defined to be

cl(C,) - C,.

Since all configurations in the face are in the contact space,

CD C HD fl CONTACT.

Let C, be a cell such that f1 = 0, i E I, fck <o,k E 12 and f, > 0,1 E 13,

where I, 12 ,13 are indices. It can be seen that the closure of the cell C3 , i.e.

the face, consists of those configurations for which f = 0, f ^ 0 and f ^ 0.

The boundary of a face consists of those configurations of the face for which

some of the inequalities become equalities and, therefore, belong to cells of lower

dimensions.

Let us now examine through an example how the faces of this decomposition

relate to the faces of the previous decomposition. Consider again the situation

shown in Figure 3-30a, where object B is allowed to translate but not to rotate.

Figure 3-30b shows the contact space. According to the decomposition of Section

3.4.4, FD is a 2-dimensional face, where D = c 1 = (v 1 , ffl . Let c = (v 1 , f1') . For

any configuration Z in FD:



/
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(a) Object B is only allowed to translate; the origin of B is on v 1 ; (b) The descriptor D specifies

that the bottom face of the block is on f of E. The 2-dimensional face FD of the contact space

is partitioned into 2-dimensional faces GD(i).

Figure 3-30: A sign-invariant decomposition of the space
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______ f(z)*	 fc2(z) f(z) fc4(z) f(z) fc6(z) ... fc(z)

C31 0	 +	 +	 -	 -	 -	 -
Cs9 0 	 +	 -	 -	 -	

-	 -

Cs3	 0	 +	 -	 -	 +	 -	 -

C88 0 	-	 +	 -	 -	 -	 -
C39	 0	 0	 +	 -	 -	 -

Cs10	 0	 +	 0	 -	 -	
-	 -

C311	 0	 0	 +	 -	 -	 -

= (v, f:)

Di C1 A C2, D2 = c i A c 3 , D3 = c1 A c2 Ac3

Table 3-1: A sign-invariant decomposition of the space

• f1 (Z) 0, since Z satisfies the descriptor D = c1.

• f,(Z)	 0, for 6 ^ I ^ 11, since B is always located at the same side of

thefacesf,for6<i< 11.

	

the sign of functions	 .. ., f6 varies.

According to the new decomposition, the face FD is partitioned into 2-cells

C31 ,. . . , C,8 such that configurations within each cell satisfy a unique

sign-assignment, as is shown in Table 3-1. The descriptor of these 2-cells is

D = c 1 = (v i ,ffl. The closure of each of these 2-cells C is a 2-dimensional

face GD(i), for 1 < I ^ 8. Partitioning the face FD gives rise not only to cells

of the same dimension but 1so to new cells of lower dimension. For example,

as can be seen from Figure 3-30 and Table 3-1, C39 is a new 1-cell, with de-

scriptor D1 = c1 A c2 , where c 2 = (v 1 , ffl . The closure of C59 is a 1-dimensional

face GD, (1) which lies in the intersection of the 2-dimensional faces GD (1) and

GD(8).
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We can conclude that, in the proposed new decomposition, the major prob-

lems encountered in the previous decomposition are overcome at the expense

of introducing more cells. [Yap ss] has proved that this decomposition is a cell

complex if the objects are two-dimensional, and they allowed only to translate.

The proof is based on the fact that the functions f are linear and the cells are

homeomorphic to k-dimensional polyhedra. It has to be noted, though, that for

the three-dimensional case with rotations, the situation described in Problem

3 is not changed: it is possible for there to be a vertex on the boundary of a

2-dimensional face which does not lie on an edge in the face. Therefore, this

decomposition is not a cell complex. However, as has been shown for the case of

Figure 3-25 (page 79), even though the vertex is not connected to any edges on

the boundary of the 2-dimensional face, it is connected to edges of the contact

space. I have not been able to find an example where the vertices of the space re-

suiting in this manner are not edge-connected. I believe, therefore, but have not

been able to prove, that the vertices of the space, as defined in Definitions 3.4.15

and 3.4.16 are edge-connected.
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3.5 An Algorithm for Constructing the 1-

skeleton of the Contact Space

3.5.1 Outline of the Algorithm

In this section an algorithm for the construction of the 1-skeleton of the con-

tact space will be presented, based on the decomposition of the contact space

described in Section 3.4.6.

The 1-skeleton of the contact space is the collection of 0-dimensional faces

(vertices) and 1-dimensional faces (edges) of the space. A face of the contact

space is a subset of the solution space, HD, of a system of equations f,(Z) = 0.

If the dimension of the solution space of D is zero, then HD is a 0-dimensional

surface in configuration space. If the dimension of the solution space is one, then

HD is a 1-dimensional surface in configuration space. The vertices of the contact

space are 0-dimensional surfaces which are legal configurations and for which the

objects are in contact. The edges of the contact space are legal, path-connected

components of 1-dimensional surfaces.

The construction of the 1-skeleton of the contact space is based on the fact

that the surfaces of the contact space can be found by considering only the

solutions of systems of equations in configurations, while ignoring the aspects

of physical occupancy of objects and body interference. Subsequently, the faces

can be found by identifying legal components of the surfaces.

The algorithm consists of two main stages. In the first stage only the surfaces

of th contact space are considered, by solving the systems of equations associ-

ated with the descriptors of the space. Section 3.5.2 examines how the solution

sets of the descriptors of the contact space are related and it is shown that they

form a lattice. Section 3.5.3 describes an algorithm for finding the surfaces of the

contact space. In the second stage, the vertices of the space are found by consid-

ering which 0-dimensional surfaces are legal configurations. Then the edges of
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the space are found by partitioning the 1-dimensional surfaces of the space into

path-connected, legal components. This process is described in Section 3.5.4.

3.5.2 The Surfaces of the Contact Space

It was noted in Section 3.2.6 that if the moving object is in one of the basic

types of the contact with the environment, then its configuration is constrained

to lie on a 5-dimensional connected manifold in configuration space. That is

to say, the solution set, HD, of the corresponding 5-dimensional descriptor, D,

is a 5-dimensional connected manifold or surface 4 , whose equation is given by

f(Z) = 0, where D = c. In this section it will be shown that the solutions sets

HD of all possible consistent descriptors constitute a lattice.

A partially ordered set M is called a lattice if any pair of elements of the set

has a least upper bound and a greatest lower bound [Birkhoff and MacLane 65].

The least upper bound of two elements a, b is called their join and is usually

denoted by a U b. The greatest lower bound of the two elements is called their

meet, denoted by a fl b. If every subset of the ordered set has a meet and a

join, the lattice is said to be complete. A complete lattice always has a greatest

element, which is called the unit element and a least element, which is called the

zero element. In addition, every finite lattice is complete. For the operations

meet and join of a lattice, as can be proved from the above definitions, the

commutative, associative and absorption laws hold.

Consider the set of all possible consistent descriptors

DESCRIPTORS = {D 1 ,D2 ,.. . ,D,},

so th.t HD, 0, and the set

= {C,HD1,...HD,O},

4The term n-dimensional surface will be employed to denote a n-dimensional con-

nected manifold.
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where Hr,1 is the solution set of a descriptor D, and C is the configuration space.

The set Lh is partially ordered, where the ordering is defined by set inclusion,

i .e.

HD ^ Hr,1 if h r,1 c Hr,1.

The element C is the greatest (unit) element of Lh and the empty set is the least

(zero) element of Lh. It will be shown that the set Lh constitutes a lattice.

Theorem 3.4 The set (Lh , ^) where

Lh = {C,HD1 ,.. .,Hr,,O},

HD ^ HD5 1ff HD, c Hr,1

is a lattice with the operations

HDflHDJ=HD.flHDJ

- J HD U Hr,. if	 : ck in D and Ck in D5
Hr,1 U Hr,1 - C

	 otherwise

Proof

Let a = HD, fl Hr,,. It is easy to see that Hr,1 fl Hr,1 = HD I ADJ , that it

is to say, a is the solution set to the system of equations corresponding to the

descriptor which is the conjunction of the clauses of the two descriptors. If the

descriptor D1 A D is inconsistent, then a = 0, and a is the greatest lower bound

of Hr,1 and Hr,1 . If, on the other hand, the descriptor D1 A D is consistent,

then ci is an element of Lh, since Lh includes the solution sets of all consistent

descriptors. Moreover, a is the greatest lower bound of Hr,, and Hr,1 , since the

ordering of the set Lh is defined by set-theoretic inclusion.

Let a = Hr,, U Hr,1 . If D and D, have some clauses in common, then a is the

solution set of the system of equations f, where ck is a clause both in D1 and

D. Since a subsystem of a satisfiable system of equations is always satisfiable,
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it follows that a is a member of Lh. Also, it is the least upper bound, because

the order is defined by set-theoretic inclusion. If, on the other hand, D and D,

do not have any clauses in common, then a is the whole configuration space.

With each set HD we can associate a unique set of clauses rio. The set riD

consists of all the clauses c for which the corresponding function f (Z) is zero-

valued for every configuration Z in HD . In other words, the set riD is the union

of the clauses of all descriptors D1 with solution set equal to HD. Recall that

two descriptors have been defined to be equivalent (Definition 3.4.8, page 65) if

they have the same set of solutions. The set D can thus be defined by

= U clauses(D1).	 (3.2)

DIED

where D denotes the equivalence class in DESCRIPTORS generated by D and

clauses(D) = {c11c1 iii D}.

I will assume that there isn't a configuration for which the associated func-

tions of all clauses are zero-valued, that is, I will assume that the system of all

equations f (Z) = 0 is inconsistent. The justification for this assumption is that

if this wasn't the case, then the number of vertices of the contact space would be

equal to one: the only vertex would be the configuration Z for which f (Z) = 0

for all c1 . This situation is possible but it is definitely an exceptional one. Having

made this assumption, all sets of inconsistent clauses can be mapped to the set

CLAUSES.

CQnsider now the set

= {O,nD 1 ,. ..,7iD,CLAUSES}.

The set L is partially ordered,

^ D, ff D,	 (3.3)



if D A D,is a consistent descriptor

otherwise
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The element CLAUSES is the least (zero) element of L and the empty set is the

greatest (unit) element of L. It can be seen that (La , ^) is a lattice isomorphic

to the lattice (Lh, ^). The meet and join operations of L are defined as follows:

D1AD,
D1	

= { CLAUSES

D, U	 = D,

Figure 3-31 shows a 2-dimensional example. In Figure 3-31a, the moving

and the stationary objects are shown. In Figure 3-31b, a part of the lattice is

shown. For each element HD, of the lattice Lh the corresponding element Dm

of the lattice L is also shown. From the figure it can be seen, for example, that:

HD fl H,,3 = HD8 = HDZAD2AD3,

HD10 n	 = 0

HD8 U H 0 = HD5

HD5 U HD7 = C

From the above discussion it can be concluded that all the solution sets can

be found by considering the solution sets of all 5-dimensional descriptors and

their intersections. In the next section, an algorithm is sketched which performs

these operations. It has to be noted, that the intersection of two 5-dimensional

manifolds is not necessarily a manifold. In addition, even if the intersection is

a manifold, it is not necessarily a connected manifold. Since we are interested in

path-connected components of the contact space, we are interested in identifying

those subsets of a solution set HD which are connected manifolds. As an example,

consier the set HD5 in Figure 3-3 1. It can be seen, that the configurations in

HD5 lie on three lines: x = O,y = 0; y = 0,0 = 0; y = 0,0 = 180. In cases

5 The class of manifolds in not closed under set operators. They are closed under the

operation called connected sum.
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(EL)	
L	 .2

Ày

e1

C

(b)
	

I 0')

H 01 -	 02 - (ZIycosxs1ng}	 Hoa -(Z I y- lslnO -8} H O4 - CZ I Xcosa+ys1na -8 H0 -

(c2} )	 ( "03 (c3})	 (nD4 - Cc4})	 (no -01	
(n 02

H06 - (ZJ1s1n&o-xFf05 -(ZIy-8xs1ne}

(n05	 [cic2})	 (006	 {c2

H00 - (Z l y-8 , slnB e} 	 H09	 xB,y-ø}

( n o8 - £cl.c2c3}) Cc1c2c4})

"018 - CI x-e,y.e,sl,*-e}

(n Dig - Ccl,c2,c3, c4})

4.-	 ( CLAUSES - (ci,c2,c3,c4,cl))

In (a) the two objects are shown. The configuration of B is specified by Z = (x, y, 0), where x

and y are the coordinates of vertex v1 with respect to the axes Oxy. In (b), part of the lattice of

the solution sets is shown. 1, a are constants. With each solution set HDm there is an associated

set of clauses riDm . c is some clause such that the solution set HD L AD 3 AD 3 AD 4 AD I is the empty

set, e.g. c = (v3, 4).

Figure 3-31: Lattice of the solution sets HD

.e	 Ff07 -

(n 07 - (Ca, c4})
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I'D1	 £cl}
	

r102- (c2}
	

" 03 - (c3
	

r4- £c4

L/ 
v1	 //

n 08 - £ci,c2,c3}	 n00- CcI,c2,c3}	 flog- (cl,c2,c4}

vi	 v2 1

- (cl,c2,c3,c4}	 D18 (cl,c2,c3,c4}

2H
See also Figure 3-31. The meet of the elements ri 1 and 1D2 consists of three elements. The node

HD S of Figure 3-31 is represented by these three elements, while the node HD 1 is represented

by the two elements marked D• Note that the labelling by means of clauses is not unique. The

graph in this figure is not a lattice.

Figure 3-32: Graph of the surfaces of the contact space

like this, we wish to represent separately these subsets of the solution set, so

that 1-dimensional manifolds can be parameterised and partitioned into edges.

If such a representation is employed, however, then the resulting structure is not

a lattice. This can be seen from the fact that two elements could meet in more

than one element (see Figure 3-32). In addition, the labelling of the elements

by means of the sets fl is no longer unique.

In Chapter 4, where the solution of the system of equations is considered,

it will become clear when and why situations similar to the one depicted in

Figure 3-32 occur. Moreover, it will be shown how the subsets of a set HD are

chosen.
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3.5.3 An algorithm for finding the surfaces of the contact

space

Starting from the set of all possible clauses (CLAUSES), the algorithm has

to find all possible consistent combinations of clauses and to establish which

combinations are equivalent. The algorithm is summarised below:

1. Find all clauses, CLAUSES. All 5-dimensional descriptors are thus found

and inserted in the graph.

2. Repeat ford=5,4,...,1:

For each pair of an d-dimensional descriptor D1 with a 5-dimensional de-

scriptor D, set ?iD = clauses(D1 ) U clauses(D,) and

(a) examine if the descriptor D = D A D3 is consistent. If it is not

consistent then riD is discarded.

(b) If it is consistent, examine if D is equivalent to the descriptor of some

element Tk of the graph. In the case that such an element is found,

then k becomes the union of the clauses of the equivalent descriptors.

(c) If D is consistent and it is not equivalent to any descriptors already

in the graph, then:

i. if the solution set HD is a connected manifold, then D is a new

element in the graph.

ii. otherwise find the connected subsets of HD, and for each one of

them create a new element in the graph.

From the above we can conclude the following operations are required by the

algorithm:

1. Deciding whether a descriptor is consistent, i.e. whether a system of equa-

tions is consistent.

2. Deciding whether two descriptors are equivalent.
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3. Finding the dimension of a descriptor

4. Finding the connected subsets of a solution set.

These operations are performed by examining the system of equations of the

descriptors. In Chapter 4 a spatial reasoning system is presented, which is able

to perform the above operations.

The algorithm, described in this section is further refined and explained in

Chapter 5, after the spatial reasoning system has been presented.

3.5.4 Finding the edges and vertices of the space

The faces of the contact space are path-connected components of the surfaces of

the contact space, such that every configuration in a face is a configuration for

which the two obj ects are in contact but do not overlap. According to the formal

definition of a face (Definition 3.4.16), for every configuration in the interior of

a face the sign of each function f remains invariant, unless the function is zero-

valued. That is, if Z1 , Z2 are two arbitrary configurations in the interior of

a face, then either f 1 (Z1) = f 1 (Z2) = 0 or f,(Z1) < 0 and f,(Z2) < 0 or

f,(Z1 ) > 0 and f,(Z2 ) > 0. Furthermore, it has been claimed (Section 3.4.6)

that the boundary of a face consists of those configurations for which some of

these inequalities become equalities. That is, every configuration in the boundary

of a face lies in the intersection of the surface of the face with some 5-dimensional

surface. Therefore, a surface of the contact space is partitioned into faces by the

intersections of the surface with 5-dimensional surfaces.

In this section I will examine the problem of finding the vertices and edges

of the contact space. As it will become clear, the method can not, however, be

generalised to higher dimensional cases. The vertices of the space can be found

by examining whether the configuration of each 0-dimensional surface is in the

contact space, that is by examining whether it is a legal configuration for which

the objects are in contact. In order to find the edges of the contact space which

lie on some 1-dimensional surface, first we have to find all the configurations
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which are the boundaries of the edges. Then, these configurations are used to

partition the 1-dimensional surface into edges.

The boundaries of the edges on some 1-dimensional surface are simply the

vertices which lie on the surface. Having constructed the lattice of the contact

space, we can easily establish whether or not a vertex lies on 1-dimensional

surface by examining if the element of the lattice corresponding to the vertex is

a lower neighbour of the element corresponding to the 1-dimensional surface.

It will now be shown that if Z1 and Z2 are vertices which lie on a 1-dimensional

surface such that there is not another vertex 'between' these two and if some

arbitrary configuration 'between' the two vertices is a configuration in the contact

space, then the open interval on the surface defined by Z1 and Z2 is an edge of

the space. First it will shown that if all configurations on the interval are in the

contact space then the interval is an edge.

Definition 3.5.1 Let P(t) be the parametric equation of 1-dimensional surface

of the space and 2'1 = P(t1 ), Z2 = P(t2) be vertices such that ti ^ t2 and

Z = P(t1 ) is not a vertex forall t, : t1 < t, < t2 . The set S is defined to be

S{ZIZP(t1), Vt,: t1<t<t2}.

Lemma 3.5.1 If S C CONTACT then S is an edge.

Proof

Let r D be the element in the lattice corresponding to the surface. Let us

assume that there is a configuration Z in S for which f (Z) = 0 and e, is not a

member of D• Then D U {c,} is a lower element of D and Z is a 0-dimensional

surface which lies on the surface and since Z E CONTACT, Z is a vertex. This

is contrary to the assumption that S does not contain any vertices. Thus

VZ E 5, f 1 (Z) = 0 if C, E D



Chapter 3. Theory of Motion in Contact 	 103

Let us now assume that there are two configurations Z', Z" such that f, (Z') <

0 and ft,. (Z") > 0 for some clause c not in riD . Since the functions f are contin-

uous, then there must be a configuration Z in S for which f,(Z) = 0. As it has

been proved this is not possible. Therefore, all functions ft,, remain sign-invariant

in S and S is an edge.

It can also be seen that if there is an illegal configuration and a legal con-

figuration in S, then there must be a legal configuration in S for which some

function becomes zero-valued. Intuitively, this happens because during a tran-

sition from a legal to an illegal configuration some contact has to be made first.

Similarly for the case of a transition from a configuration in the contact space

to a configuration in the free space. Since we have assumed that there are no

vertices in 5, if there is a configuration Z in S which is both legal and one for

which the objects are in contact, i.e. Z is in CONTACT, then all configurations

in S must be in CONTACT:	 -

Claim: If Z E CONTACT fl S then S C CONTACT.

Theorem 3.5 If Z e CONTACT fl 5, then S in an edge.

Proof

It follows directly from Lemma 3.5.1 and the above claim. 0

In section 3.4.6 it was has been argued that the boundary of an edge consists

of exactly two vertices. An algorithm for finding the edges which lie on a 1-

dimensional surface can now be outlined:

1. Find the vertices which lie on the surface.

2. Find the value of the parameter of the surface for each vertex.

3. Order the values of the parameters.

4. Partition the surface into intervals, according to the values of the param-

eters.
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5. For each interval, examine if an arbitrary configuration is a configuration

in the contact space. If this is the case, then the interval defines an edge

on the surface.

In order to find the vertices and edges of the space, we need to be able to de-

dde whether some configuration is in CONTACT. I the implemented algorithm,

as it will be described in more detail in Chapter 5, a solid modeller has been

employed for this purpose.
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3.6 Summary

Two methods have been proposed for decomposing the contact space into faces

of various dimensions, using interactions among the features of the moving object

and the environment. All such interactions can be expressed as conjunctions of

three basic types of interactions: (a) vertex-face; (b) face-vertex; (c)edge-edge.

Each basic interaction was called a clause and conjunctions of clauses were called

descriptors. With each clause there is an associated function. Configurations for

which this function is zero-valued lie on some d-dimensional manifold. Inter-

secting these manifolds, we partitioned the contact space into faces of various

dimensions. 0-dimensional faces were called vertices and 1-dimensional faces

were called edges. The boundary of each face consists of faces of lower dimen-

sions.

The first decomposition is an extension to 3-dimensions and rotational mo-

tion of the decomposition described in [Hoperoft and Wilfong 84b}. According

to that method, a transition from one face to a face on its boundary or vice-.

versa would imply that at least one contact had been established or broken.

This method gave rise to 0-dimensional faces which were not connected by 1-

dimensional faces. In the second decomposition, we introduce the idea of 'imag-.

mary faces', in order to partition a face into smaller faces. In this case, the

transition from a face to a face on its boundary does not necessarily imply that

a contact has been established or broken, but that the value of the function

corresponding to some contact becomes zero.

Neither of the proposed decompositions is a cell complex. However, through a

seriesof examples, it was argued that the second decomposition results in vertices

that are edge-connected, with the possible exception of some pathological cases.

Finally, an algorithm has been outlined for finding the vertices and edges

of the contact space according to the second decomposition. The algorithm

consists of two stages. In the first stage the lattice of the surfaces of the space is

constructed and in the second stage the vertices and edges are found. In the first
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stage a spatial reasoning system is used in order to find the intersections of the

surfaces of the space. In the second stage, a solid modeller is used in order to

decide whether a configuration is legal. The algorithm and its implementation

is described in more detail in Chapter 5, after the spatial reasoning system is

presented.



Chapter 4

A Spatial Reasoning System

4.1 Introduction

The spatial reasoning system presented in this chapter is used in this research

for the construction of the 1-skeleton of the contact space, as described in the

previous chapter. The requirements placed upon the system by the algorithm

presented in Section 3.5 are twofold:

• Given a pair of constraints on the relative location of two objects, to check

if these constraints can be satisfied simultaneously, and, if this is the case,

to replace them by an equivalent one.

• To parameterise all constraints with one degree of freedom in the rela-

tive location of the objects, so that the range of the parameter can be

partitioned into intervals, corresponding to sets of locations for which the

objects do not interfere.

The spatial reasoning system is based on RAPT [Corner, Ambler, and Pop-

plestone 83]. RAPT is a robot programming language, in which an assembly

task !s described in terms of spatial relationships holding among features of ob-

jects. The RAPT system is centered around an inference engine which infers

the locations of objects from the specified spatial relationships. There are two

versions of the RAPT system: the algebraic system and the Cycle Finder. In the

algebraic system [Popplestone, Ambler, and Bellos 80] spatial relationships are

transformed into location equations and these equations are then solved. In the

107
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Cycle Finder [Popplestone and Ambler 83], the assembly description is regarded

as a graph where nodes represent 'body instances', that is, objects at particular

locations, and the arcs represent relationships among 'body instances'. When

the relative location of two body instances becomes known, then they are merged

into one conglomerate object. Since the objective of the system is to find the

relative locations of all body instances with respect to some reference object, the

objective of the Cycle Finder is to merge all the nodes to one node, representing

the reference object.

This process involves two basic operations. The first one requires the sub-

stitution of two relationships holding between the features of two objects by an

equivalent more constrained relationship. A 2-cycle of relationships in the graph

is, thus, substituted by a single arc. If the inferred relationship is a relationship

which does not allow any relative motion between the objects, that is, if the

relationship can be expressed as some constant relative location, then the two

nodes are merged. Given a pair of relationships between two body instances

with a third one, the second operation involves the inference of a relationship

holding between these two body instances. The two operations are performed by

means of tables. In the first table, which will be referred to as the Substitution

Table, there is an entry for various combinations of two types of relationships.

For each such pair, there are rules, based on the geometry of the situation, for

the inference of the type of the equivalent relationship and the location of the

features between which the new relationship holds. The second table is similarly

defined.

The spatial reasoning system described in this chapter is an extension of

the Substitution Table of the RAPT inference engine. A formal method has

been .developed for defining all types of spatial relationships among polyhedral

objects and for defining the rules which determine when a relationship which is

equivalent to a pair of relationships between two objects may be found.

The use of a table is preferable to the use of an algebraic system which would

solve the location equations because it increases significantly the speed of the

operation. Although the system is basically a geometric system, in the sense
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that the rules are described in terms of geometric relations between features,

the substitution table has been constructed partially by the algebraic solution

of location equations.

The substitution table clearly fulfills the first requirement for the reasoning

system in this research, as specified in the beginning of this section. The second

requirement, the parameterisation of one degree of freedom relationships will be

treated separately.

Locations of objects and spatial relationships among their features are repre-

sented in terms of transformations. In Section 4.2 an overview of transformations

and their representations in this research is presented. Section 4.3 introduces

the concept of spatial relationships. Section 4.4 presents an algebraic method

for finding a relationship equivalent to a pair of relationships, while Section 4.5

presents a geometric method. The two methods are compared in Section 4.6.

The parameterisation of one degree of freedom relationships is described in Sec-

tion 4.7. Finally, the constructed Substitution Table and its implementation is

described in Section 4.8.

The substitution table and the main geometric functions it invokes, can be

found in Appendix A.
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4.2 Homogeneous Transformations

4.2.1 Definitions

Homogeneous transformations can be used to describe the position and orienta-

tion of coordinate systems in space. The position and orientation of an object

can be described in terms of transformations by embedding a coordinate system

in it.

In general, a homogeneous transformation H in	 is a mapping from

onto itself and is represented by a 4 x 4 matrix. A homogeneous transformation

can describe rotation, translation, stretching and perspective transformations.

In motion planning for rigid objects, we are interested in rigid transformations,

i.e. transformations which preserve distances and signed angles. Specifically,

we are interested in rotation and translation transformations. In this section,

I will summarise some of the basic definitions and present the notation used in

this thesis. A thorough account of transformations in relation to robotics can be

found in [Paul 81]. The notation used here follows the conventions described in

[Ambler and Popplestone 75].

A point vector

V = al + bj + ck

is represented in homogeneous coordinates as a row vector

(x, y, z, w),

where a = x/w, b y/w and c = z/w. The shorthand notation (x, y, z) will be

used to denote a row vector (x, y, z, 1).
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Given a vector v, its transformation u by H is represented by the matrix

product1

u=vH.

A transformation corresponding to a translation by a vector d = ai + bj + ck

is represented by the matrix

10 00

trans(d) = trans(a, b, c) = 
01 00	

(4.1)
00 10

ab cl

A transformation corresponding to a rotation about a vector u by an an-

gle 0 is denoted as Rot(u, 0). In this thesis, a rotation by 0 about the x-

axis is denoted by twix(0) and a rotation by ir/2 about the z-axis by XTOY

[Popplestone, Ambler, and Bellos 80},

1	 0	 0 0

	

Rot(x,0) = twzx(0) = 
0 cos0 sin0 0	

(4.2)
0 —sin0 cos0 0

0	 0	 0 1

0100

Rot(z, ir/2) XTOY 
= —1 0 0 0	

(4.3)
0010

0001

The elements of a transformation matrix can be interpreted as four vectors

describing a coordinate system. Therefore, a coordinate system 0 1 x1 y1 z1 is

represented by the matrix

1 Note that throughout this thesis postfix notation for matrix multiplication is used,

as a result of this definition.
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xi

yi

zi

01

where x1, Yi and z 1 are the direction vectors of the x, y and z axes respectively

and o is a point vector representing the origin. In particular,

1001	 i

0101	 jw=	 =
0011	 k

0001	 0

represents the reference coordinate system, the "world" axes.

Given two coordinate systems with the same origin, the orthonormal matrix

( Tn T12 r13 0'
I r21 r22 r23 0

11=1

I r31 r32 r33 0

0 0 0 1J

represents a rotation from the first coordinate system to the second, where r3

is the cosine of the angle between the axis of the rotated coordinate system

and the j' axis of the original system. An orthonormal matrix will be denoted

by the symbol being accented (e.g. E).

We will refer to a homogeneous transformation which is the product of a

translation and a rotation as a location. From Equations 4.1 and 4.4 it follows

that the general form of a location is

( p11	 12 Ti3

I 21	 22 T23 0 1

H = ultrans(d) = I

	

	 I

r31 r32 r33 0 I

b	 c

(4.4)

(4.5)
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If W1 is a coordinate system and p a location, then W1 p is the coordinate system

W1 transformed by p.

The transformations corresponding to a rotation about the x axis by 6 and a

rotation about the z axis by ir/2 are given by Equations 4.2 and 4.3 respectively.

In the next section it will be shown that a rotation about any vector can be

represented in terms of these two types of rotations. Then, in Section 4.2.3

it will be shown that a rotation between two coordinate systems can also be

represented in terms of twix and XTOY.
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4.2.2 Rotation about a vector

The transformation representing a rotation Rot(u, 0) about an arbitrary vector

u = (ks , k, k) located at the origin is given by the matrix [Paul 81] 2,

kkvers9 + cos 0 kkvers0 + k sin 0 kkversO - k sin 0 0

kkvers0 - k sin 0 kkversO + cos 0 kkvers0 + k sin 0 0

kkvers0 + k sin 0 kkvers0 - k sin 0 k2kversO + cos 9 0

0
	

0
	

0	 1

where versO = (1 - sin 9). In this section it will be shown that the only two kinds

of rotations needed for the representation of rotations are those transformations

of the form twix(cx) and XTOY (Equations 4.2 and 4.3).

Theorem 4.1 The group of all rotations in 3-space can be generated by the set

{twix(a)}ae U {XTOY}.

Proof [Arai 81]

Let u be a unit vector located at the origin, a the oriented angle between

the i axis and u, and /3 the oriented angle between the j axis and the projection

of u on the i = 0 plane (see Figure 4-1). Then u = iQ, where Q is the

transformation

Q = XTOYtwix(a)XTOY'twix(—(ir/2 -	 (4.6)

Substituting for twix and XTOY from Equations 4.2 and 4.3 into Equation 4.6

and then multiplying out,

cos a sinacos/3 sinasin/3 0

0
	 sin/3	 —cos/3 0

- sin a cosacos/3 cosasin8 0

0
	

0	 0
	

1

2 The matrix in [Paul 81] has been transposed.
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Figure 4-1: Rotation about a vector u

A rotation by 9 about u can be expressed as

Rot(u,9) = Q'twix(9)Q.	 (4.7)

Using Equations 4.6 and 4.7, we obtain

Rot(u, 0) = twix(ir/2 - /3)XTOYtwix(—a)XTOY' 	
(4 8

twix(9)XTOYtwix(a)XTOY'twiz(—ir/2 + 3).

Since

XTOY' = twix(ir)XTOYtwix(ir),	 (4.9)

from Equation 4.8 it follows that a rotation about any vector can be represented

in terms of the transformations twix and XTOY. 0
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4.2.3 General Representation of a Rotation

Theorem 4.2 Any transformation, which is the product of a rotation and a

translation, between two coordinate systems can be represented by

in = twix(tb)XT0Ytwix(çb)XTOYtwix(0)trans(d).	 (4.10)

Proof [Arai 81]

Consider two coordinate systems 01 x1 y1 z1 and 02 x2 y2 z2 . Let m be a transfor-

mation from the coordinate system 01 x1 y1 z1 to the coordinate system 02x2y2z2.

I will first consider the rotational part of m, th.

Let us first examine the case when the x axes of the coordinate systems are

not parallel. Let

XI XX2 = y30,

YiYs = cosa,

x1 . x2 = cosfl,

Y3Y2 = cos

(4.11)

where a, 3, -i are oriented angles as shown in Figure 4-2. It will be proved that

= twix(-y - ir)XTOYtwix(f3 - ir)XTOYtwix(a).

Consider the coordinate systems 03x3y3 z3 and 04x4y4z4 , where x3 = x1,

X4 = X2, = and 03 = 04 is the foot of the perpendicular from 0 to the

intersection of the x = 0 planes of 01 z1 y 1 z1 and 02 x2 y2 z2 . The transformation

m is the composite of the transformations H1 , 112 and H

H1	 H2,-	 H301 x1 y1 z1 -+ 03x3y3z3 -* i 4x4y 4z. -* 02x2y2z2

and, thus,

th = 111 112 113 .	 (4.12)
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Figure 4-2: Transformation from coordinate system 0 1 z1 y1 z1 to 02z2y2z2

It can be seen that

ft1 = twic(c),

H2 = Rot(y3,13),	 (4.13)

H3 = Rot(x4 , -y)

and, thus,

th = twiz(c)Rot(ys,/3)Rot(x4,i).
	 (4.14)

Since

= yi twix(a) = xiXTOYtwix(cz)

we can substitute Q = XTOYtwix(cz) in Equation 4.7 and express Rot(y 3 , 8)

as

Rot(y3, ) = (XTOYtwix(cr))'twix(/3)(XTOYtwiz(a)) .	 (4.15)
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Similarly we obtain

Rot(x4 , -y) = (Rot(y3, /3)) 'twix(-y) (Rot(y3 , 3)).

From Equations 4.14, 4.15 and 4.16 follows that

= twiz(a)Rot(y3,fl)Rot(x4,)

= twiz(a+-y)Rot(y3,/3)

= twix('l)XTOY'twix(/3)XTOYtwix(cx).

Using Equation 4.9, Equation 4.17 can be rewritten as

th twix(i ir)XTOYtwix(/3 - ir)XTOYtwix(a).

Finally, substituting 0 = a , = 3— r and & = 1 — r we obtain

twix(ib)XT0Ytwix()XT0Ytwix(0).

(4.16)

(4.17)

(4.18)

(4.19)

The case when the z axes of the coordinate systems are parallel has to be

considered separately since xi x x2 = 0. In this case we choose y 3 = Yi and 03

the same as 0 (Figure 4-3). Then, Yi y3 = 1 and a = 0. If x2 = x1 then

x2 x 1 = 1 and /3 0, while if x2 = -xi then x2 . x1 = —1 and /3 = ir. Therefore,

the rotational part of the transformation between two coordinate systems with

parallel x axes can be represented by

th = twixfry) ifx2.xi=1,	 (4.20)

= twix(-1 - ir)XTOYXTOY if x2 x1 = —1.	 (4.21)

can be seen that Equation 4.20 can be obtained from Equation 4.19 by

substituting 0 = a = 0 , = /3 - r = 0— r = —ir and t = - ir. Then

= twix(1 - ir)XTQYtwiz(ir)XTOY

= twix('y),

since
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/i

	
* 2t

02(\

Y2

Yt ,Y

Figure 4-3: Transformation in case of parallel x axes

XTOYtwix(ir)XTOY twiz(ir).

Similarly, Equation 4.21 can be obtained from Equation 4.19 if we substitute

0 = = 0, = - = 0 and t' = - ir. Therefore, from Equations 4.19 -

4.21 it follows that any transformation, which is the product of a rotation and

a translation, between two coordinate systems can be represented by

rn = twix(ç1')XTOYtwix()XTOYtwix(0)trans(d), 	 (4.22)

where d is a vector from the origin of 0 1 x1 y1 z1 to the origin of 02x27,i2z2.

In the case of perpendicular z axes, 8 = 2r/2,the rotational part of the trans-

formation between the coordinate systems can be represented by

th = twix('çb)XTOYtwix() if x2 x 1 = 0.	 (4.23)
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4.3 Spatial Relationships

4.3.1 Objects, Features and Spatial Relationships

The geometric reasoning system presented in this thesis is based on the no-

tion of spatial relationships holding between features of objects. In this sec-

tion, the definition of spatial relationships will be presented, as described in

[Ambler and Popplestone 75].

Definition 4.3.1 The location of an object, p, is defined to be the location

that will transform the reference coordinate system, W, to a particular coordinate

system embedded in the object. Therefore, the axes of an object are represented

by Wp.

Each object is composed of a number of geometric features. In order to be

able to talk about spatial relationships between features of objects, we need to

define the locations of the features of each object.

Definition 4.3.2 The location f of a feature F of an object is defined to be

the location that will transform the object coordinate system into the coordinate

system of the feature.

Polyhedral objects have three types of features: plane faces, edges and ver-

tices. Coordinate axes are embedded in features according to the following rules:

let F be a feature of object B and let the location p of B be equal to the identity

element of locations, i.e. p = I. Then

1. F is a plane face: the axes represented by Wf have their origin lying in

the plane and the x-axis of Wf points along the outward normal of the

plane.

2. F is an edge: the axes represented by WI have their origin somewhere on

the edge and the x-axis of Wf points along the edge.
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Fl

zl

Figure 4-5: Face F1 against face F2

The relative location of two objects can thus be expressed in terms of a spatial

relationship holding between the features of the objects.

As an example, consider two objects B1 and B2 with plane faces F1 and F2

respectively and let F1 be "against" F2 , where the relationship "against" implies

that the two faces are coplanar with opposed normals. The situation is depicted

in Figure 4-5.

Let Ii be the location of F1 , 12 the location of F2 , Pi the location of B1 and

P2 the location of B2 . Then the coordinate system 01 z 1 yj1 z1 of F1 is represented

by Wf1 p1 and the coordinate system O2 z2 y2 z2 of F2 by Wf2 p2 . The "against"

relationship is a transformation

E = Etrans(d)

between these two coordinate systems. It specifies that x 1 x2 = — 1 and that

the origin O lies on the y1z1 plane. The rotational part of E is derived from

Equation 4.21,
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E = twix(b)XT0YXTQY = XTOYXTQYtwIx(0) 	 (4.26)

where 0 = —1'. Since 02 lies on the y1 z1 plane, the vector d from 0 to 02 can

be expressed as

d= (O,y,z)
	

(4.27)

Therefore, from Equations 4.26 and 4.27,

E = XTOYXTOYtwIx(0) trans (0, y, z)
	

(4.28)

Since B2 is free to rotate about its x axis, variable & of Equation 4.26 is a

free variable and it corresponds to the rotational degree of freedom of B2 allowed

by the "against" relationship. Similarly, the variables y and z correspond to the

translational degrees of freedom of B2 relative to B1.

It has to be noted that the given definition of a spatial relationship completely

ignores the physical extent of features. In the given example, the two faces would

still be "against" each other even if there was no physical contact.
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4.3.2 Spatial relationships and Surfaces of the Configu-

ration Space

Spatial relationships between features of objects can be seen as constraints on

the relative locations of the objects. The set of relative locations which satisfy a

spatial relationship lies on some surface of the configuration space. The dimen-

sion of the surface is equal to the degrees of freedom of relative motion of the

objects implied by the relationship.

More specifically, let E be a spatial relationship between features with loca-

tions f and f2. Recall that Equation 4.25 gives the relative location of the two

objects,

P2P11 = f'Ef1.

The above equation can be regarded as the parametric representation of a surface

of the configuration space consisting of all relative locations of the two objects

which satisfy the spatial relationship E.

As an example, I will consider the case in which the configuration space is

3-dimensional, with two translational degrees of freedom and one rotational, and

I will derive the form of the equation of the surface for the case of vertex to edge

contact. Let the allowed motions be translation along the y and z axes and

rotation about the x axis.

Consider the case depicted in Figure 4-6, where a vertex F2 of moving object

B2 is "against" an edge F1 of object B1 . Let Ii be the location of F1 and 12 the

location of F2 as shown in the figure. Then we can find p, A so that the "against

vertex edge" relationship is described by the transformation3

E = twix(p)tran.s(O,A,O),

3This relationship will be referred to as the ROTYLIN relationship. Note also that,

in this 2-dimensional case, the convention for the axes of the edge have not been followed.
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k/pa

y	
ai

The vertex F2 (location f2 = twix($)trana(O,b j ,bz)) of B3 (location P2) is on the edge F1

(location f = twiz()tran3(O, a 1 , a2 )) of B1 (location P1).

Figure 4-6: A vertex against an edge in 2 dimensions

where p, A are free variables.

The equation

P2Pi 1 = f'twix(p)trans(O,A,O)f1	(4.29)

is the parametric representation of the two dimensional surface defined by the

set of locations which satisfy the relationship.

The explicit equation of the surface can be found by eliminating p and A from

the bove equation:

Let

P2121 1 = twix(6)tran.s(O,y,z)

fi = twix(a)trans(O,ai,a2)

12 = twix(/3)trans(O, b 1 , b2),
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where a,/3,a1 ,a2 ,b1 and b2 are constants (see Figure 4-6). Then Equation 4.29

becomes

twix(9)trans(0,y,z) =

twiz(-/3) trans(0, -b1 , -b2 )twix(p) trans(0, A, 0)

twix(a)trans(0,a i , a2 ).	 (4.30)

Using the following property of transformations,

Rot(a, 0) trar&s(d i )Rot(b, 0)tran.s(d 2 ) =

Rot(a, 0) Rot(b, 0) trans(d i Rot(b, 0) + d2),

Equation 4.30 is rewritten as

twix(0)trans(O,y,z) =

twix(-/3 + p + a)

trans((0, -b1 , -b2 )twix(p + a) + (0, A, 0)twix(a) + (0, a1 , a2)).

Carrying out the matrix multiplications in the second part of the above equation

we obtain

twix(0)trans(0, y, z) =

twix(-+p+a)

trans(0, -b1 cos(p + a) + b2 sin(p + a) + A cos a + a1,

-bi sin(p+ a) - b2cos(p+ a) + Asina + a2).

Separating the rotational and translational parts of the above equation we get

0 = -/+p+a	 (4.31)

y = -bi cos(p+a)+b2 sin(p+a)+Acosa-i-ai	 (4.32)

= -bi sin(p+a) -b2 cos(p+a) +Asina+a2 .	 (4.33)

From Equation 4.31, p + a = 0 + 3. Finally, eliminating A from Equations 4.32

and 4.33 and substituting for p + a = 0 + /3, we get

y sin a - z cos a =

bi sin(0 - 3 - a) + b 2 cos(0 -/3 - a) +a1 sina - a2cosa
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Therefore, for any relative location p = p(O, y, z) which satisfies the spatial
relationship E:

f(y,z,9) =

z cos a - y sin a + b 1 sin(O - - a)

+b2 cos(9 -Ø - a) +a 1 sina - a 2 cosa = 0	 (4.34)

Equation 4.34 is the equation of the surface specified by Equation 4.29. '

Sutstituting for y = z, z = y, a =	 - 90, fi = 0, a	 fl	 cos(,), a =11	 II

sin( 1), b	 a3 cos() and 62 = a sin(i 1 ) into Equation 4.34 we get

f(z, y,O) = xcos(,) + ysin( 5)— II	 II cos(9 + t7s - 4i,)— b1 cos( -

which is the formula given in [Brooks and Lozano-Perez 83] for a Type B constraint.
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4.3.3 Taxonomy of Spatial Relationships

Five degree of freedom relationships

In the work presented in this thesis, we are interested in spatial relationships

among polyhedral objects which imply contact. If two objects are in contact,

then the maximum number of translational degrees of freedom in the relative

location of the obj ects is two, while the maximum number of rotational degrees of

freedom is three. There are two types of 5 d.o.f. relationships among polyhedral

objects which imply contact:

1. A plane face of an object is against a vertex of another object. Such a

relationship will be denoted by AGPV , which stands for "against plane

vertex". The inverse of this relationship is AGVP, "against vertex plane".

2. An edge of an object intersects an edge of another object Such a relationship

will be denoted by AGEE, "against edge edge".

Let us consider first the AGPV relationship. Let F1 be a plane with a coordi-

nate system 01 x1 y1 z1 and F2 a vertex with coordinate system 02 z2 y2 z2 and let

the vertex be on the plane. The situation is shown in Figure 4-7. Let a, 3, '7, 03

be as defined in Section 4.2.3. In addition, let a = 102 03 1 and b 101 03 1. From

Equation 4.22, the rotational part of the AGPV relationship can be expressed

as

E = twix(i - ir)XTOYtwix( 18 - ir)XTOYtwix(a), 	 (4.35)

where a, fi and 'y are free variables. The vector d from 0 to 02 can be expressed

d = (0, —a, b)twix(a) = (0, y, z),	 (4.36)

5The conventions for naming relationships are based on RAPT
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the two vertices must lie on that plane too and, thus, the equivalent relationship

is "against plane to edge", denoted AGPE. On the other hand, if the same vertex

is involved in the two relationships, then the vertex is constrained to lie on the

intersection of the two planes and, thus, the equivalent relationship is "against

edge to vertex", denoted AGEV.

The set of all types of spatial relationships can be derived by considering the

different cases arising from conjunctions of a 5 d.o.f. relationship with an i d.o.f.

relationship, where i = 5, 4,. . . , 1. The method will be presented in the rest of

this chapter.

Degrees of freedom of relationships

Consider a spatial relationship E holding between features with locations Ii and

12,

P2 = fç1Ef1p1.

According to Theorem 4.2, any spatial relationship E, since it is defined to be a

transformation expression between two coordinate systems, can be represented

by

E = twix(t,b) XTOYtwix(cb) XTOYtwix(9)trans(x, y, z),	 (4.40)

where , , O,x, y, and z are expressions in the free variables of the equation. In

the above equation b, and 0 specify the relative orientation of the two objects

and x, y and z the relative translation.

In the case of an AGPV relationship, for example, we have derived that

E = AGFV = twix(b)XTOYtwix(cb)XTOYtwix(0)trans(0,y,z).

Let the vertex belong to the moving object B2 . In this case b, ç5, 0, y, and z are

free variables. The free variables 0, and 1' correspond to the three rotational

degrees of freedom implied by the relationship and the free variables y and z
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correspond to the two translational degrees of freedom of B2 : B2 is permitted

to rotate about the x, y and z axes and to translate along the y and z axes of

Wfipi.

In the case of an AGVP relationship, Equation 4.38 can be rewritten as

E = AGVP = twix(t1b)XTOYtrans(x,0,z)twix(q)XTOYtwix(9).

Let the plane face belong to the moving object B2 . The AGVF relationship can

be interpreted as: B2 is permitted to rotate about the three axes of Wfipi and

to translate along the x and z axes of Wtwix(cb)XTOYtwix(0)fip1 . The above

equation can also be rewritten as

E = AGVP = trans(0, y', z')twix(t,b)XTOYtwix(çb)XTOYtwix(0),

where , , 0, y' and z' are free. Expressed in this form, the relationship can be

interpreted as a relationship according to which B2 is allowed to rotate about

the axes of Wf1p1 and to translate along the y and z axes of Wf2p2.

In general, if a spatial relationship is expressed in the form of Equation 4.40,

E = twx(t1b) XTOYtwix(cb) XTOYtwix(0)trans(x, y, z),

then the free variables in the expression would correspond to the degrees of

freedom of motion allowed by the relationship. Whether , ü, x, y or z are

free variables or expressions depends on the locations of the coordinate axes of

the features between which the relationship E holds. The number of degrees of

freedom of a relationship is equal to number of free variables in the above expres-

sion and, thus, it is equal to the dimension of the surface in configuration space

represented by the equation P2P1 = f'Ef1 . In the next sections a method is

presented for solving location equations in order to derive a relationship equiv-

alent to a pair of relationships. The coordinate axes of the features between

which the equivalent relationship holds are chosen in such a way, if possible,

that t}b, , 0, x, y or z are either constants or free variables. If this is the case,

then the d.o.f of the relationship are independent.
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Since the features are fixed on the bodies, the relationship between two features

on the same body is a fixed transformation. Let

F1 = a2 aj = i'1trans(ui),

F2 = b2b' P2trans(u2),

E1 = Eitran.s(cIi),

E2trans(d2).

Substituting Equatiozis 4.44 - 4.47 in Equation 4.43, we get

(ft2trans(u2)Y ' (E2trans(d 2 ))(Pj trans(ui))(E1 trans(d 1 ) ) ' = I

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

Using the following property of transformations,

Rot(a, 0) trans (d 1 ) Rot (b, 8) trans (d 2 ) =

Rot(a,0)Rot(b,0)trans(d 1 Rot(b,0) + d2),

Equation 4.48 can be rewritten as

E2fti trans(d 2ft1 + u 1 ) = F2 Ei trans(u2 E1 + d1)

Finally, separating the rotational and the translational parts of the above

equation we get the following two equations:

Rotation : P2 'E2 F1 E1 ' I
	

(4.49)

Translation : d2 P1 - d1 = u2 E1 - u1	 (4.50)

The relationships E1 and E2 in general include variables, each variable corre-

sponding to a degree of freedom of motion implied by the relationship. Solving

Equations 4.49 and 4.50 we obtain the values for some of the free variables. If

we then substitute these values back into one of the original Equations 4.41 or

4.42, we obtain a new equation of the form
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P2 = b1Eapi,	 (4.51)

where Ee is a relationship equivalent to the conjunction of E1 and E2 and a

and be are the locations of the new features. In the next pages we will discuss

the solution of Equations 4.49 and 4.50 and methods for finding the equivalent

relationship E, and the new features, a and b.
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4.4.2 Degrees of Freedom

Let riRl and Lj denote the number of the rotational and the translational d.o.f.

respectively of a relationship E. The following observations can be made con-

cerning the relation between the degrees of freedom of the initial relationships

and the equivalent relationship:

1. 7 R1 ^ 3,	 3 and Rj + 12 L1 ^ 6

2. R3 < min(nRl,nR2) and L3 ^ min(nLl,nL2)

where E3 is a relationship equivalent to the conjunction of E1 and E2. In the

rest of this section it will be assumed that we have chosen E1 and E2 so that

R1 ^ R2•

1. Rotational Equation

The general form of the rotational equation is given by Equation 4.49. This

equation can always be reduced to the form [Ambler and Popplestone 75]

twix(li)a i twix(l2)...a_ i twix(1) = c,	 (4.52)

where a1 and e are all constant matrices which cannot be expressed in the form

twix(a) or XTOYXTOYtw1x(cx) , and 1 are linear expressions. The solution of

this equation for m < 3 is discussed in [Ambler and Popplestone 75]. The results

are summarised below:

1 ii	 1

twix(0) = a.

Soluble if a11 = 1. Choose 0 so that

= a22 + Ia23 .	 (4.53)



Chapter 4. A Spatial Reasoning System	 137

2. n=2

twix(9)btwix(çb) = a
	

(4.54)

Soluble if a11 b 11 . Choose 0 so that

= (a12 + iai3)/(b12 + 1b13).	 (4.55)

3. n.=3

twix(i/)ctwix(ct)btwix(0)	 a.

Soluble if (a11 - b1ic ii ) 2 < (1 -	 - c 1 ). Choose so that

( c 12 b21 + ci3bsi ) cos + (c12b31 - cisb2i) sin4 = c11 - a11b11	 (4.56)

which has two solutions. Choose 0, 1' using Equation 4.54 for each value

of q5.

When n > 3 then Equation 4.52 is underdetermined, and therefore the

solutions are expressed in some of the variables. However, we can make inferences

about the dependency between the degrees of freedom of the initial and the

equivalent relationships.

The number of rotational degrees of freedom of the equivalent relationship

depends on the constant matrices F1 and F2 . Of particular interest is the case

when F1 , F2 can be expressed in the forrxi twix(0) or XTOYXTOYtwIx(0).

This condition occurs if the z axes of the features of body A are parallel, or the

x axes of the features of body B are parallel.

As an example consider the following case:

= twix(0),	 (4.57)

P22 = twix(-y)XTOYtwiz(/?)XTOYtwix(a).	 (4.58)

Then Equation 4.49 becomes

F2 twzx('y)XTQYtwzz(/3)XTQYtwzx(a)Fi twzx(-9) = I.	 (4.59)
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Let us consider the case when the x axes of A are parallel. Then [F1 ] 11	 ±1

and P1 = twix(i) or P1 = twix(i)XTOYXTOY, where i is a free variable.

Equation 4.59 becomes

P2 ' t1(1)XTOYtwi(/3)XTOYtW1x(e) = I,

where = a + i7 ± 0. Using Equations 4.56 and 4.54 we obtain values for 8, -

and and, thus,

0 = a + constant.

Therefore, we can express 0 as a linear expression in a, but we cannot find a value

of 0 using the rotational equation. The same applies for the case of [F2 ] 11 = ±1.

In general, the remaining rotational variables will appear in the translational

equation. Using Equations 4.53 - 4.56 and the above observations Table 4-1 has

been constructed which summarises the relation between the rotational degrees

of freedom in the solution and the initial relationships. In this table only the

rotational equation is considered. As it will be shown, the value of rotational

variable(s) can sometimes be obtained through the solution of the translational

equation. Therefore, Table 4-1 should be considered in conjunction with the

translational equation.

2. Translational Equation

The translational equation 4.50 will be solved by transforming d 1 and d2 into

canonical form as defined below:

=

d2 =

where 6 is of the form (x1 , 0,0) or (x1 , y, 0). As an example, consider the case

of the AGPV relationship (Equation 4.37):

= (0,y,z).
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d.o.f. in
d.o.f. in solutions

equations

R1	 R2	 R3

(i eneral	
[F1]11 or [F2 ] 11 = ±1 [F1 ] 11 and [F2 ] 11 = ± 1

____________ Case	 ______________________ ________________________
o	 1	 0	 0	 0

o	 2	 0	 0

o	 3	 0*	 0*	 0

1	 1	 0	 1

1	 2	 0*	 X

1	 3	 1*	 1L*

2	 2	 1*	 1L*	 2L

2	 3	 2*	 2* (1L + 1*)	 2L*

3	 3	 3*	 3* (1 L* + 2*)	 3* (2L* + 1*)

x: insoluble

* : 2 solutions (see item 3, 137)
n variables can be expressed as a linear form, e.g. 2*(1 L + 1)

means that there are two free variables in the solution, e.g. 0 and

ç5 , and one of them can be expressed as a linear form, e.g. 0 =

c + constant

Table 4-1: Rotational d.o.f. of equivalent relationship
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The above equation can be rewritten as

d 1 = (y,z,0)twix(ir/2)XTOY.

Therefore, in this case

51 = (xi,yi3O),

where x1 = y and Yi = z and

= twix(ir/2)XTOY.

In the case of the AGVP relationship (Equation 4.38),

d 1 = (a,0,b)twix(ir - f3)XTOYtwix(—'y).

By setting x 1 = a, Yi = b, = 3ir/2 - t3 and 0 = —y, d is transformed into

canonical form:

d 1 = (z 1 , 0, y1)twix(—ir/2)twix(çt)XTOYtwix(0)

= (z' , Yi, O)twix(cb)XTOYtwix(0),

and

Si = (x,yi3O)

= twix(cb)XTOYtwiz(0).

It can be observed that H will sometimes include some of the rotational

variables of the relationship, as in the case of AGVP.

Having transformed d 1 and d 2 into the above defined canonical form, we can

rewrite Equation 4.50 as

52Q - 1 = (u2 E1 - u1 )ft1 ',
	 (4.60)
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where t =

Equation 4.60 can be solved as a system of linear equations if both and

(u2 Ei - ui )Ej' are constants. The following cases can be distinguished:

1. If is a constant matrix then

(a) if E is also a constant matrix then Equation 4.60 can be solved as a

system of linear equations in the translational variables.

(b) If [E1 ] 11 = ±1 and u2 = (1 22, 0, 0), then (u2 E1 - u 1 ) is constant and,

therefore, Equation 4.60 can again be solved as a system of linear

equations.

(c) Otherwise Equation 4.60 will include the rotational variables of E1 for

which no values could be obtained by considering the rotational equa-

tion (4.49). In this case, the condition of solubility of Equation 4.60

can be used to obtain values for the remaining rotational variables of

E1.

2. If Q is not constant then Equation 4.60 cannot be solved as a system of

linear equations. In this case the equivalent relationship will be found

geometrically, as it will be explained in Section 4.5.

Table 4-2 summarises the relation between the translational degrees of free-

dom of the original and the equivalent relationships, in the case of linear equa-

tions.
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d.o.f. in	 d.o.f. in solution

equations_____________ _______________
General Case Special Cases

L 1	 L2	 L3	 Condition

o	 i

o	 2

o	 3	 0	 -	 -

1	 0

2	 0

3	 0

1	 1	 0	 1 Q=±1

1	 2	 0	 1	 Q3=0

2	 1	 0	 1	 Q3=0

2	 2	 1	 2 Q33=±1

Table 4-2: Translational d.o.f. of equivalent relationship in case of linear

equations
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4.4.3 Procedure for the solution of the equations

In Section 4.4.1 the following two equations were derived (4.49 and 4.50):

-1 '.	 -1
Rotation : F2 E2 F1 E1 = I

Translation : d2 P1 - d1 = u2 E1 - u1.

In this section the method which has been followed for the solution of these

equations will be outlined.

Let us consider the case that E2 is the AGPV relationship (Equation 4.37):

= AGPV = twix(i)XTOYtwix(/3)XTOYtwix(a)trans(0, Y2, z2).

In general E1 will be of the form

E1 = Eitrans(xi,yi,zi).

Let

hi fi2 us 0

121 122 123 0

131 132 133 0

112 113 1

U2 = (121,122,123),

(4.61)

(4.62)

and

U1 = (111,112,113).
	 (4.63)

Substituting Equations 4.61 - 4.63 into Equations 4.49 and 4.50 we obtain:

Rot : fr2 twix(-j) XTOYtwix(/3)XTOYtwix(a) PiE = I	 (4.64)
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hi f12 f13

Tram : (O,y2,z2)	 121 122 f23	 - (x1 ,y1 ,z1 ) =

131 132 133

(1 21 , 122 , 1 23)E1 -	 112, 113).	 (4.65)

Let

(A1 ,A2 ,A3) = (121 ,122 ,123)E1 - (111,112,113).

In solving Equations 4.64 and 4.65, we try to find the values of the free

variables of E1 and to obtain the equivalent relationship by substituting these

values into E1.

1. First we consider the rotational equation:

From Table 4-1 follows that in this case we can not use Equation 4.64 to

obtain any values for the rotational variables of E1 . If nj + R2 ^ 3 then

the rotational equation could be used in order to determine the rotational

variables of E1.

2. Translation Equation:

Only the case when d 1 = (x1 , yj, zi) is independent of the rotational van-

ables of E1 will be considered. Let

k = (A1,A2,A3).

The following cases can be considered according to the number of transla-

tional degrees of freedom L1 of E1:

(a) L1 = 0

The condition for solubility of Equation 4.65 is

f11 A 1 + f12 A2 + f13A3 = 0.	 (4.66)



Chapter 4. A Spatial Reasoning System	 145

It can be seen from Equation 4.65 that k is a constant if (i) E1 is

constant; (ii) [E1 ] 11 = ±1 and 122 = 123	 0 or (iii) 121 = 122	 123 = 0.

In the above cases, Equation 4.66 will determine the conditions under

which E1 and E2 are consistent. Otherwise, k will include some of the

rotational variables of E1 and Equation 4.66 can be solved to obtain

values for these variables.

(b) 7 L1 = 1

In this cased 1 = (xi3O,0).

D = 0: We examine first the case that the determinant of Equa-

tion 4.65 is zero, which means that the translational variable x1

is free. The condition for solution is again

f11 A1 + f12 A2 + f13A3 = 0

We follow the same procedure as in case (a) to decide when k is

constant. If k is not a constant then the above equation can be

used to find, the values of some of the rotational variables.

D 0: In this case, we can not determine the values of any of the ro-

tational variables of E1 . If k is constant then the solution will not

depend on the rotational variables. Otherwise the translational

variable of E1 will depend on the rotational variables of E1.

(c) L2 = 2

In this case d 1 = (xi ,yi3 O). First we observe that we can not de-

termine the values of both x 1 and y. Therefore, in all cases, the

equivalent relationship will have a translational degree of freedom.

Let us choose Yi to be the free variable.

D = 0: We examine the case when the determinant of Equation 4.65

is zero, in which case z1 will also be free. The condition for the

solubility of the equation is given again by

f11 A1 + f12 A2 + f13A3 = 0

As in the previous cases this equation can be used to find values

for the rotational variables if k is not constant.
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D 0: In this case a value for x 1 can be found. As in case (b), xi

may or may not depend on the rotational variables according to

whether k is constant or not.

Following the above procedure, we can determine the conditions under which

we can obtain values for all, some or none of the rotational and translational

variables of E1 and we can find the values of these variables in terms of F1 and

F2 . These values are then substituted back into the original equation describing

the relative location of the two objects in terms of E1 (Equation 4.41)

P2 = b'E1a1p1.

The equivalent relationship and the location of the features between which the

equivalent relationship holds are found by transforming the equation in a suitable

way. For example, even if a solution for a translational variable of E1 has been

obtained in terms of the rotational variables of E1 , the equation can sometimes

be transformed so that the translational variables of the equivalent relationship

will be independent of the rotational variables.
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4.4.4 Example: FITS -AGPV

The procedure described in Section 4.4.3 will be applied for the case of FITS-

AGPV, where FITS denotes a relationship with one rotational degree of freedom

about the x axis and one translational degree of freedom along the x axis. A list

of spatial relationships and their algebraic form can be found in Table A-13 in

Appendix A.

E1 = FITS = twix(0)trams(x,0,0).	 (4.67)

E2 = AGPV = twix()XTOYtwix(/3)XTOYtwix(a)trans(O,y,z). (4.68)

Substituting for E1 into Equation 4.41 we get

P2 = b'twix(0)trans(x,O,0)aipi.	 (4.69)

Substituting for E2 into Equation 4.42 we get

P2 = b'twiz() XTOYtwix( j3)XTOYtwiz(a)trans(O, y, z)a2 pi .	 (4.70)

The translation and rotation equations (Equations 4.49 and 4.50) become

Rot : P2'twiz('7)XTQYtWiZ(/3)XTQY

twix(a)fri twix(-9) = I
	

(4.71)

Trans : (0,y,z)P1 - (x,0,0) = u2 twix(0) - u 1 ,	 (4.72)

where

a2 a 1 = Pitrans(ui)

and

= F2trans(u2).



Chapter 4. A Spatial Reasoning System	 148

Equations 4.71 and 4.72 will be used in order to determine, if possible, the values

of 9 and x.

1. Rotational equation

From Table 4-1, we deduce that we cannot use Equation 4.71 to obtain a

value for 0. Therefore, for the moment, 0 is free.

2. Translational equation

Since

—1 0 0

(O,y,z)Pi - (z,0,0)	 (z,y,z)	 121 122 123

f3l 132 133

Equation 4.72 can be rewritten as

0 0

(x,y,z) fi f	 I =
\ 131 132	 )	

(4.73)

(121 - 111, 1 22 cos0	 123 sinO -1 12 ,122 sin0 + 123 cosO	 113).

Let

(A 1 ,A2 ,A3) =

(121 - 111,122 cos 0— 123 sinO - 112 ,122 sinO + 123 cos0 - 113).

Equation 4.73 can be solved as a system of linear equations in x, y and z.

The determinant of the system is

D=_L"22 f23

132 133

F1 is an orthonormal matrix and therefore

122 123fii
132 f33
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Therefore,

D =

Using Cramer's rule,

x =

where

D 1 = f11 A1 + f12 A2 + f13A3.

149

(4.74)

(4.75)

We will examine first various special cases and then the general case.

(1) First we examine the case when the determinant of Equation 4.73 is zero,

D = 0, which implies that (_f = 0. In this case x is free. The solubility

condition is D1 = 0. From Equation 4.75,

Solubility Condition.: f12 A2 + f13A3 = 0.	 (4.76)

Equation 4.76 will be used to find the value of 0. The following cases can

be distinguished:

(1.1) 122 = 123	 0

In this case

= f12112 - 113113.

Since D 1 is independent of 0, we can not use the solubility condition to•

determine the value of 0 and, thus, 0 remains a free variable. The solubility

condition (Equation 4.76) becomes:

112112 + f13 1 13	 0.

Therefore:
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If In. = 0 and 122 = 123 = 0 then:

E = FITS

ae = a1

be=bi

Condition : f12 1 12 + 113113 = 0

(1.2) 1 122	 0 and 123	 0

In this case the solubility condition can be used to fix 0. Equation 4.76

can be rewritten as

(112 122 + 113 123) cos 0 + ( 113122 - 112123) sin 0 =

112 1 12 + 113113
	

(4.77)

Equation 4.77 has either one or two solutions. The two cases are examined

separately below:

(1.2.1) f12112 + f13 l13	 /1 2 + 13

By setting

-e - J12 + if13, e' = (122 + il23)/(./1 2 + 123),

Equation 4.77 can be rewritten as

cos(a—f3—O) =1=O=a—fi.

Substituting the value of 0 into Equation 4.69,

P2	 b'twix(a—/3)trans(z,0,0)a1pi

btwix(—/3)trans(x, 0, 0)twix(cx)aipi
.fr

= b'Eeaepi.

Let LIN denote a spatial relationship with one translational degree of

freedom (see Table A-13),

LIN = trans(x,0,0).
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We can conclude that

If hi = 0 and 112 1 12 + f131i3 = SJ122 + 1223 then:

E=LIN

a = twix(a)ai

be = twix(/3)b

1(1.2.2) f12 112+f13 h 13 < \/	 23j

Set

= 112 + ifi3,

= (122 + i123)/(Ji	 13)

and

= (-112 1 12 + 113 1 13)/\/1222 + 123 + irn,

where rn is a constant. Equation 4.77 can now be rewritten as

cos(a—fl—O)=—cos(i)O=a—/3±'y+ir.

Substituting into Equation 4.69 we get

P2 = bjtwix(a - 3 ± 'y + ir)trans(z, 0, 0)aipi

= bjtwix(ir/2 ± '7) twix ( —I3)trans(x, 0, O)twiz(r/2 + a)aipi.

We observe that in this case there are two solutions. This fact is denoted

by an asterisk next to the name of the relationship. We can conclude:

If Iii = 0 then.:

= LIN*

a = twix(7r/2)twix(a)ai

= twix(—ir/2 ± '7)tWiZ(fl)bi

Condition : f12112 + 113113 < /1 + 123
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(2) Now we examine the general case when D 0

In this case we can not determine the value of 0. Therefore the equivalent

relationship has at least one rotational degree of freedom.

(2.1) 122 =l2S=0

Equation 4.75 becomes

Dl = 111( 121 - l) - 112 112 113113.

Substituting for D1 into Equation 4.74 we get

D 1 	 Jul11 + fl2112 + fl3ll3

=	 =	 hi	
- 121 = p. - 121.

Substituting in Equation 4.69,

P2	 bj'twix(0)trans(p. - 121,0, 0)aupu

= [trans(lz i , 0,0) b1 'twix(0) [trans( /2, 0, 0)aipi.

Therefore:

If 122 = 123 = 0 then:

EROT

a = traris(/2,0,0)a1

be = trans(121,0,0)b1

(2.2) f12=f1s=0=(fu1=±1I

Using Equations 4.75 and 4.74 we get

X =	 - 121,.fr

and substituting in Equation 4.69 we get

P2	 [tran.s(12u, 0, 0) b i ] 1 twix(0) [trans(l ii , 0, 0) ai]p1.

Therefore:
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.	 = ±1 then:

EROT

= trans(1ii3O,0)ai

be = traris(121,0,0)b1

(2.3) Finally in the general case:

x = (f1 + 112112 + 113113 - 111121)/Ill

-(112 122 + f13l23) cos 0/111

-(113122 - 112123) sin O/fii

= acos0+bsin0+c,

where a, b, c are constants. Substituting in Equation 4.69 we get

P2 = [trans(l21 , 0, 0)bi]twix(0)trans(a cos 0 + b sin 0, 0,0)

[trans(c, 0, 0)ai]pi.

Therefore:

General

ECSCR

a = tran.s(c,0,0)ai

be = trans(l21,O,0)bi

We observe that in this case x is a function of 0, that is, there is one

rotational variable and one translational variable which depends on the

rotational.
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4.5 Geometric Method for Replacing a 2-cycle

of Relationships

In Section 4.4 it was shown how a relationship equivalent to a 2-cycle of re-

lationships can be found by solving the location equations. In this section, I

will outline a different procedure. Through an example, I will show how the

equivalent relationship can be inferred by examining the geometry of the sit-

uation, that is the geometric relation between the coordinate axes of the fea-

tures. This is the technique that has been used in the RAPT cycle finder system

[Popplestone, Ambler, and BeIlos 801.

Let us consider again the case FITS-AGPV. The FITS relationship is a re-

lationship between two edges, which are located in such a way that their x axes

are aligned, as shown in Figure 4-10. Let E 1 =FITS hold between two edges

with coordinate systems a 1 and b1 respectively and E2=AGPV hold between a

plane face with coordinate system a 2 and a vertex with coordinate system b2'.

Various constraints on the geometric relation between a 1 , a2 , b 1 and b2 will be

considered. In particular, we are interested in the relations between the normal

of the plane (z axis of a2 , denoted by Za2), the origin of the vertex (origin of b2,

denoted by 0b2), and the direction of the edges x axis of a 1 , denoted by x01

and x axis of a 2 , denoted by Xa2). Different geometric relations between these,

give rise to different equivalent relations. The equivalent relationship and the

features between which the new relationship holds will be inferred by examining

how the addition of the AGPV constraint affects the degrees of freedom of the

FITS relationship.
.fr

Consider first the case that the x axes of a 1 and a2 are perpendicular and the

origin of b2 is on the axis of b1 . This situation is depicted in Figure 4-11. The

7Recall that the coordinate system of a feature F is represented by Wfp, where f is
the location of the feature and p the location of the object to which it belongs
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a

A relationship between two edges such that their z axes are aligned:

FITS = twiz(9)tran3(x,O,O)

Figure 4-10: FITS relationship

/"	
- . Ub2

Xa2	 /

I - 	 Xbj - "b.

a1 Xae	 /

Only the coordinate axes of the features of the objects are shown. x axes of a 1 and

a2 are perpendicular (x-a-perp) and origin of b 2 is on the x axis of b 1 (ob2-on-xbl):

= FITS, a = a 1 , be =

Figure 4-11: FITS-AGPV: x-a-perp, ob2-on-xbl
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relationship is, thus, a relationship with one translational degree of freedom and

no rotational degrees of freedom. Such a relationship is denoted by UN and

holds between two edges.

The new coordinate system ac can be constructed by making the following

observations:

1. Its origin lies on the x axis of a1.

2. Its x axis has the same direction as the x axis of ai.

3. Its y axis has the same direction as the x axis of a2.

Let us choose the origin of the new coordinate system to coincide with the origin

of a and let olxlx2(pl,p2) be a function with the coordinate systems p1 and

p2 as arguments which constructs a new coordinate system satisfying the above

conditions. Tables A-5 - A-6 in Appendix A summarise the conventions for

naming functions used to construct new features. Then,

= olxlz2(ai,a2).

Similarly, for the case of be we can observe that

1. Its origin lies on the x axis of b1.

2. Its x axis has the same direction as the x axis of b1.

3. Its y axis has the direction of the perpendicular from the origin of b2 to

the x axis of b1.

Let olxlxo(pl,p2) be a function with the coordinate systems p1 and p2 as argu-

ments which constructs a new coordinate system satisfying the above conditions.

Then,

= olxlxo(bi , b2).

The rest of the special cases and the general case are depicted in Figures 4-

13 - 4-16.
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4.6 Combining the Algebraic and the Geomet-

ric Method

The advantage of the geometric method is obvious : it is an easier method.

However, it relies completely on intuition and it is, therefore, error prone. In

addition, it is not possible to decide if all the special cases have been considered.

Using the algebraic method, on the other hand we can systematically define the

equivalent relationship and the new coordinate systems and deduce the relation

between obtained solutions and geometry. The solution of the algebraic equa-

tions can be, however, quite troublesome, especially in the case of more than

four degrees of freedom.

The actual approach used in this research is a combination of both methods:

geometric intuition is used to guide the solutions of the position equations. In

addition, once the solutions are derived, they are transformed into geometric

functions. This can be done by defining the algebraic equivalent of a geometric

function.

There are two cases when we wish to find the algebraic form of a geometric

function:

1. in the case of a geometric constraint among the axes of the features which

gives rise to special cases in the combination of a certain pair of relation-

ships;

2. in the case of the construction of the new features between which the

equivalent relationship holds.

As an example of the first case, let us consider the condition that the distance

from the origin of Wa1 to the z = 0 plane of Wa2 , denoted by d-op(ai , a2), is

equal to the distance from the origin of Wb2 to the x axis of Wb1 , denoted by

d-xo(bi , b2 ). From Figure 4-17 it can be seen that
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:

-	
__ I

The direction of the normal to the plane P is given by the vector (Iii, 112, 113) . The vector from

01 to 02 is u2 =	 112, 113). Therefore, the distaixce from 01 to the plane P is:

d-op(a 1 , a2) = — (fu lu + 112112 + 113113)

Figure 4-lr: Distance from origin of Wa1 to plane of Wa.2 (d-op)

d-op(a j , a2 ) = -(fii lii + 112112 + 113113), 	 (4.78)

and from Figure 4-18 it can be seen that

d-xo(bi , b2) = \/122 + 13,	 (4.79)

where

F1 = a2a = [

lu 112 113 0

121 122 123 0

131 132 133 0

1 11	 1J2	 113 1

F2 = b2br' = .E'2 trans(l21 , 122, 123).

Tables A-i - A-4 in Appendix A, list the geometric functions which have

been used for defining the conditions under which special cases arise. In these

tables, both the algebraic and the geometric interpretations are given.
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-	 o(b1.b2)

'2

d-xo(b, b2 ) = %/122 + 1231

Figure 4-18: Distance from origin of Wb2 to x axis of Wb1 (d-xo)

As an example of a geometric function for constructing the new features, let

us consider the case of the function olxlxo(p 1 ,p2 ), where P1 and P2 are coordinate

systems with axes 0 1 x 1 y1 z1 and 0 2 z2 y2 z2 respectively, as shown in Figure 4-19.

We wish to define a coordinate system 03x3y3z3 such that 0 3 coincides with 01,

x3 has the same direction as x 1 and y has the direction of the perpendicular

from 02 to z1 . From Figure 4-19 it is clear that

PS = twix(8)p1,

where

= (1 + il23)/(/i 2 + 1k).

Therefore,

olxlxo(p i , p2) = twix(j3)p1.
	 (4.80)

Similarly, it can be seen that

olzlx2(pi , p2 ) = twiz(cr)p1,
	 (4.81)
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Ii ,3

23

The axes of p =olxlxo(pi, P2) are O3 z3 y3z3 such that 03 coincides with 01, x3 has the same

direction with x and y has the direction of the perpendicular from 02 to z1.

Figure 4-19: Constructing a location: olxlxo(p i , P2)

where

= 112 + his.

We can now compare the results obtained by the algebraic and geometric

methods in the case (see Figure 4-12)

FITS - AGPV, x-a-perp, ed-op-xo

From Equations 4.78 - 4.81 and from the results in page 151 we can see that

the solutions are equivalent:

If In = 0 (x-a-perp) and 112 1 12 + 113113 =	 + 1 (ed-op-xo) then:

EeLIN

a = twix(a)ai olxlx2(al,a2)

be = twix(/3)bi = olxlxo(bi,b2)
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4.7 Parameterising one degree of freedom rela-

tionships

One of the problems the described geometric system has to deal with, is the par-

titioning of the space of locations satisfying a relationship into legal 8 connected

sets (cells), as described in Section 3.6. For the reasons explained there, we are

only interested in one degree of freedom relationships. A one degree of freedom

relationship is partitioned into intervals by a set of locations which satisfy some

additional relationship. For a detailed description of the process refer to Section

3.6. Here we will only be concerned with the requirements which such operations

put on the geometric reasoning system. The required capability is summarised

below:

Given a relationship holding between two objects, and a relative lo-

cation of the objects which satisfies the relationship, we wish to find

the value of the free variables of the relationship at that particular

location.

Let p be a relative location of the objects A and B which satisfies a relation-

ship E1 holding between features with locations a 1 and b 1 . Then from Equation

4.25

p = bj' E1 a1.

The above equation can be rewritten as

a2 = E1 a1.
	 (4.82)

where a2 is the location b 1 transformed by p, i.e. a2 = b 1 p. Let

8 Legality implies no body interference
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( lu 112 113 o'\

121 122 f23 0 I
F1=a2a'= I	 I.

I f3 132 133 0 I

111	 l J	 113

Equation 4.82 can now be rewritten as

F1=E1.	 (4.83)

The parameters of the relationship are found by solving Equation 4.83.

The method will be illustrated by an example. Consider the case of a UN

relationship,

= LIN = traris(x, 0,0).

Then,

F1 = tran.s(z, 0, 0).

The conditions for the solution of the above equation are:

hi = 1

122 = 1

112	 0

1 3 = 0

and the solution is

x = 1i.

The conditions for solutions specify the conditions under which a location

satisfies a spatial relationship. From Tables A-3 - A-4 it can be seen that the

geometric interpretation of the above conditions are:

x-a-eq A y-a-eq A oa2-on-xal,
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while the geometric interpretation of the solution is

x =d-op(a2,a1)

Table A-32 describes the conditions under which a location satisfies a one

degree of freedom relationship and the value of the parameter of the relationship

at that location.
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4.8 Results and Implementation

In this chapter a spatial reasoning system has been presented which deals with

the problem of substituting a pair of spatial relationships holding among features

of polyhedral objects by an equivalent, more constrained relationship. A substi-

tution table has been constructed which has entries for various combinations of

types of relationships and rules according to which the equivalent relationship

and the location of the features between which it holds can be established.

The process by which the table has been constructed is surnmrised below:

1. The types of all possible five degrees of freedom spatial relationships among

the features of two polyhedral objects were first established. These are:

against vertex to plane (AGPV), against plane vertex (AGVP) and against

edge edge (AGEE)

2. All possible pairwise combinations among these types were considered. For

each such pair, all possible types of relationships which can be equivalent

to the conjunction of the pair were found, the conditions under which the

conjunction gives rise to a particular type of relationship were determined,

and rules for the construction of the coordinate systems of the features

between which the new relationship holds were developed. All this infor-

mation was entered in the substitution table.

3. For each new type of relationship, its conjunction with each type of a five

degree of freedom relationship was examined, and, as before, an entry in

the substitution table was made. This process was followed until all types

of relationships were considered.

The method that has been used is based on the algebraic solution of the

pair of location equations arising from the spatial relationships. It was shown in

Section 4.4.1 that the two equations are of the form (Equations 4.41 and 4.42)

P2 = b'E1a1p1,
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P2 = b'E2a2pi,

where E1 is a relationship between a feature of object A with location a and

a feature of object B with location b, and Pi, P2 are the locations of objects a

and B respectively. Solving these equations, we obtain values for some of the

variables of E1 . Substituting these in Equation 4.41 we obtain a new equation

of the form

P2 = b'Eap1,

where E6 is a relationship equivalent to the conjunction of E1 and E2 and a

and be are the new features.

The solution of the equations has been guided by examining the geometric

relation of the coordinate systems of the features, as described in Section 4.5.

Finally, the conditions under which a specific type of equivalent relationship Ec

arises and the location of the new features a and b, were transformed with

suitable geometric functions.

The obtained results are presented in the Appendix A. As it can observed,

the constructed substitution table (Tables A-14 - A-30), as it currently stands,

is not complete, in the sense that there are no entries for some combinations of

relationships. In particular, it does not deal extensively with relationships where

there is some interdependence between the degrees of freedom. Although the sit-

uations in which such relationships arise have been established, their conjunction

with another five degree of freedom relationship has not been pursued. An ex-

ception has been made in the case of such relationships of one degree of freedom

An example is the 'ladder' relationship, denoted by LAD, which is shown in Fig-

ure 4-20. As it can be seen from the figure, although there is both a rotational

and a translational degree of freedom, they are not independent. The algebraic

form of the equation can be found in Table A-13 in Appendix A.

It also has to be observed that, in contrast with the substitution table of the

RAPT system, only combinations with a five degree of freedom relationship have

been considered. This is a result of the requirements placed upon the spatial

reasoning system from the motion planning algorithm presented in this thesis.
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LAD = twiz(G)trans(O,Isin8,O)

Figure 4-20: The 'ladder' relationship, LAD

The substitution table, as described in this chapter and in Appendix A, has

been implemented in POP11 [Barrett, Ramsay, and Sloman 85].



Chapter 5

Planning a Motion in Contact

5.1 Introduction

In this chapter I come finally to the problem of developing a plan for a motion in

contact. Working towards this objective there are three distinct and interrelated

stages.

1. I start by bringing together the theoretical themes developed in Chapters

3 and 4. In Chapter 3 I presented a theory for decomposing the contact

space into faces of various dimensions. Following from that I developed

an algorithm for constructing the graph of 0-. and 1-dimensional faces. In

Chapter 4 I presented a spatial reasoning system which handles spatial

relationships among features of objects. In this chapter I address the ques-

tion of how the spatial reasoning system can be used to construct a model

of the decomposed contact space. Specifically, I examine ways in which

spatial relationships can be used as a means of representing the surfaces

of the contact space and finding their intersection.

2. The next step is to discuss the implementation of the algorithm for building

the graph of the space. It is in this context that the importance of the

spatial reasoning system becomes apparent. The system is used in the

first stage of the algorithm, building the graph of surfaces. Once this is

accomplished, the algorithm moves on to the building of the graph of 0-

dimensional faces (vertices) and 1-dimensional faces (edges) of the space

by using a geometric solid modelling system.

170
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3. At this stage the model of the space has been constructed. The decomposed

contact space is represented as two graphs: a graph of vertices and edges

and a graph of surfaces. Next I use these graphs to plan a motion in

contact. A motion in contact is a path in the contact space. Having

decomposed the space into path-connected faces, the object of planning

a motion in contact becomes finding a sequence of faces that have to be

traversed, given some initial and final contact state. If the initial and final

states correspond to vertices or edges of the contact space, then a path can

be found by searching the graph of vertices and edges. If on the other hand

the initial and/or final states correspond to higher dimensional faces, the

graph of surfaces is used in order to plan a motion from the initial state to

some vertex or edge and from the final state to some vertex or edge.

At the close of the chapter I examine ways in which the information en-

compassed in these two graphs can be used for the purpose of transforming

the path into a sequence of motions.
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5.2 Constructing a Model of the Contact Space

In Chapter 3 a theory was developed for decomposing the contact space into

faces of various dimensions, the properties of the decomposition were explored

and an algorithm was presented for finding the graph of edges and vertices of the

space. Each n-dimensional face of the space is a region of some n-dimensional

manifold (surface). The algorithm is based on the fact that all these surfaces

of the space can be found by considering the 5-dimensional surfaces and their

intersections. The algorithm consists of two main steps:

1. Find the surfaces of the space, by considering all possible intersections of

5-dimensional surfaces.

2. Find the 1-skeleton of the space, that is the 0- and 1-dimensional faces of

the space.

It was pointed out in Section 3.5 that a spatial reasoning system would be

used for dealing with the problem of intersections of surfaces and for representing

a model of the thus decomposed contact space.

Having presented the spatial reasoning system, we are now in a position to

revise and extend the algorithm of Section 3.5. In Section 5.2.1 spatial relation-

ships are put into the context of the concepts introduced in Chapter 3. Section

5.2.2 deals with the problem of finding the surfaces of the space using the spatial

reasoning system. In Section 5.2.3 an algorithm is presented for constructing the

1-skeleton of the space, using a solid modelling system. FInally, the developed

model of the space is overviewed in Section 5.2.4.



Chapter 5. Planning a Motion in Contact
	

173

5.2.1 Clauses, Descriptors and Spatial Relationships

Clauses and 5 d.o.f. spatial relationships

In Section 3.4.1 the notion of a clause was introduced to describe the three basic

types of contact among polyhedral objects (Definition 3.4.1). More specifically,

a clause c was defined to be a pair (F1 , F2 ), where F, and F2 are features of two

objects and either F1 is a vertex and F2 is a plane face, or F, is a plane face and

F2 is a vertex or, finally, both F1 and F2 are edges. In Section 4.3.2 the three

basic types of contact were defined by means of three types of five degrees of

freedom spatial relationships, the AGPV, AGVP and AGEE relationships.

The important difference in the two definitions is that if a location satisfies a

clause then the features in the clause are in contact, while this is not necessarily

so if the location satisfies a spatial relationship'. This distinction was introduced

in Section 3.4.1 by associating with each clause c a real valued function f on

location space, such that for every location p which satisfies the clause, f (p) = 0.

Let, for example, c = (F1 , F2 ) be a clause, where F, is a vertex of the moving

object and F2 is a plane face of the environment. The set of locations p which

satisfy the clause lie on a surface of the contact space. The equation f(p) = 0

is the equation of this surface.

In Section 4.3.2 it was shown that spatial relationships describe surfaces in

location space, defined by the set of locations which satisfy the relationship. Let

R be a spatial relationship "against plane vertex" (AGPV) between the vertex

F, of the moving object and the plane face F2 of the environment and let fi and

12 be the locations of features F, and F2 respectively. Then from the equation

(Equation 4.37)

p = fj'twix(0)XTOYtwix(çi)XTOYtwix(t,b)trans(O, y, z)f2,

'By location we mean the relative location of the objects, or the location of the

moving object in the case where there is only one moving object.
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where p is the location of the moving object, the equation of the surface defined

by the set of locations satisfying the relationship can be derived.

The relation between the function f associated with a clause c = (F1,F2)

and a five degree of freedom spatial relationship R holding between the features

F1 and F2 now becomes apparent: they can be both used to represent the space

of locations which satisfy the clause, if the features F1 and F2 are considered to

be of infinite extent (in the case when the features are edges or plane faces). We

can, therefore, associate with each clause a spatial relationship, replacing the

function f. Let R = (R, fi, 12) be the 5 degree of freedom spatial relationship

R holding between features F1 and F2 corresponding to a clause c = (F1,F2),

where fi and 12 are the locations of F1 and F2 respectively.

Descriptors and spatial relationships

The notion of a descriptor D was introduced in order to express all types of

contact among polyhedral objects. A descriptor was defined to be a predicate

that is a conjunction of clauses. With every descriptor there is an associated

system of equations of the form f = 0, where c 1 is a clause of the descriptor.

If a location p satisfies the descriptor then it satisfies the system of equations

= 0 for c1 in D.

Since for every clause there is an associated 5 degrees of freedom spatial

relationship, every location which satisfies the descriptor D, satisfies the rela-

tionships R, for c, in D. The set of locations HD which satisfy the system

of equations lies on the intersection of the five dimensional surfaces defined by

f, = 0. The equation of the intersection can be found from the equation

p=f'Rf1,

where R is a relationship equivalent to the conjunction A	 and f and 12 are

the locations of the features between which R holds. Thus

lID ={plp=fç1Rf1}.
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In this way spatial relationships can be used to represent the set of locations

satisfying the system of equations of a descriptor. Therefore, we can associate

with a descriptor D, instead of the system of equations of the form = 0, a

spatial relationship. Let RD = (R, fi, 12) be the spatial relationship associated

with a descriptor D.

Two descriptors have been defined to be equivalent if the associated systems

of equations have the same set of solutions. Therefore, two descriptors D1 , D2

are equivalent if the associated relationships are equivalent,

D1 - 12 if RD 1 RD2.

Seen in this context, the substitution table presented in Chapter 4 can be used

in order to find the parametric equation of the intersection of a five dimensional

surface with a n-dimensional surface (n ^ 5). Therefore, spatial relationships

and the substitution table can be used to find the intersection of the surfaces

of the contact space or, in other words, sets of locations HD which satisfy the

system of equations of a descriptor D.
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5.2.2 The Surfaces of the Contact Space

This section deals with the first phase of the algorithm presented in Section 3.5.

In the first phase, starting from the 5-dimensional surfaces, the n-dimensional

surfaces are found by considering intersections of (n + 1)-dimensional surfaces

with 5-dimensional surfaces. The process is summarised below:

1. Find all sets ED where D is a 5-dimensional descriptor, i.e. do 1(D) = 5;

2. Find all consistent descriptors, their dimension and the corresponding sets

ED by the following method:

Repeat for n = 5,4,. .., 1: For each D = D1 A D2 where dof(Di) = n and

do 1(D2) = 5 find the set HD. If ED is empty, then D is an inconsistent

descriptor and can be discarded.

As was shown in Section 3.5.2 the solution sets ED of all consistent descriptors

constitute a lattice. It was also noted that we wish to find the connected subsets

of the sets H, and to associate with each such subset a spatial relationship

RD = (R, Ii, 12). The objective of the above algorithm is to construct the graph

of the surfaces of the contact space.

Representation of the graph of the contact space

The elements of the graph of the contact space are the surfaces of the space, An

element of the graph will be represented as a node, nodeD . A node consists of:

1. A descriptor D;

2. The spatial relationship of the descriptor RD = (R, f, 12).

The clauses of the descriptor of nodeD will be denoted by clause.s(node D) and

the spatial relationship by Rel(nodeD). For every node the following informa-

tion is thus available: (1) the 5-dimensional surfaces on whose intersection the

surface represented by the node lies; (2) the parametric equation of the surface
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(implicitly). The dimension of a node is equal to the dimension of the surface

which it represents. This is also equal to the dimension of the descriptor and

the degrees of freedom of the spatial relationship:

dim(node D) = dirn(D) = dof(RD).

I will use the term level of the graph to refer to the set of nodes of the same

dimension. There are six levels of the graph. Let Ld denote the dt level of the

graph, that is the set of nodes of dimension d,

= {node D jdim(nodeD) = d}.

A node nodeD1 is descendant of a node nodeD2 if the set of configurations

which satisfy the spatial relationship of nodeD1 is a subset of the set of config-

urations which satisfy the relationship of nodeD2 . For this to be the case, we

require that (a) the set of clauses of D1 is a superset of the set of clauses of D2,

clauses(nodeD 1 ) clauses(nodeD2);

(b) some configuration which satisfies the relationship Rel(node i) also satis-

fies the relationship Rel(node2). The first requirement follows from Equation

3.3 (page 96). As has been explained in Section 3.5.2, there are cases where

two nodes have the same sets of clauses, but different spatial relationships.

This situation arises when there are more than one solutions to a pair of lo-

cation equations. For this reason, it is not sufficient to examine the clauses of

a node. The second requirement is placed so as to guarantee that the node1

is a descendant of nodeD2 . As an example, consider the situation shown in

Figure 3-32 (page 99). The node D10 is not a descendant of D8, although

clluses(nD 10 ) D clauses(nD8).

Algorithm for constructing the graph

Having established the relation between clauses, descriptors, surfaces and spatial

relationships, the algorithm can now be reformulated in terms of spatial rela-
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tionships. The algorithm for constructing the graph of spatial relationships is

given below.

1. Find all the clauses of the contact space and the corresponding spatial

relationships and construct thus the fifth level of the graph, L5.

2. Repeat ford=5,4,3,2 and 1:

For each pair of a d-dimensional node with a 5-dimensional node:

(a) Using the substitution table examine if the spatial relationships of

the two nodes can be satisfied simultaneously. If they can, find the

equivalent relationship and the features between which it holds.

(b) If an equivalent relationship has been found, create a new node whose

descriptor is the conjunction of the descriptors of the initial nodes and

whose spatial relationship is the spatial relationship equivalent to the

the conjunction of the relationships of the initial nodes.

(c) Obtain the degrees of freedom of the relationship of the new node

from a table (see Table A-13) and insert the node at the appropriate

level of the graph, i.e. if do 1(R) = 4 then insert the new node in L4.

This algorithm, which will be referred to as Algorithm GRA, is presented in

more detail in Figure 5-1. The algorithm is explained in more detail below by

examining separately some issues.

1. The clauses of the contact space

lit' the first step of the algorithm the set of all possible clauses of the space are

found and a node is created for each clause. This means that all. vertices, edges

and faces of the moving object and the environment have to be found, and the

appropriate pairs constructed. Transforming the clauses into spatial relation-

ships requires that the locations of these features be known. The locations of

the features can be found using a solid modelling system. The current system
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begin

1. construct L5;

for n - 5 down to 1 do

for all i in L" do

for all n2 in L5 do

begin

D3 ^- clauses(n i ) U clauses(n2);

if clauses(n) clau8es(nl) and

D3 is not in FOUND and

D3 of a member of INCONSISTENT then

use substitution table to find Rel(n i ) A Rel(n2);

2. if inconsi8tent(Rel(n i) A Rel(n2 )) then

insert D 3 in INCONSISTENT

else

3. if Rel(n i ) A Rel(n2 ) has been solved then

begin

4. R3 ^- Rel(nj ) A Rel(n2);

5. d	 dof(R3);

6. if R3 p-. ReI(n 5) where n is a node in FOUND then

clauses(ns) i- clauses(ns) U D3

else

begin

make new node: D = D3 and RD =

insert node in Ld;

insert D3 in FOUND;

end

end

end
fr

end

Figure 5-1: An algorithm for constructing the graph of the contact

space(GRA)
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though uses the RAPT input system for defining the models of objects in terms

of their features.

Problems may arise from the fact that the number of nodes that is generated

can be very large so that the number of vertices of the contact space would

be astronomical. One possible way of dealing with this problem would be to

construct the model of the space incrementally. That is to say, only a subset of

the clauses is initially considered and then clauses are added as required. This

issue is discussed in Sections 5.4 and 6.3.2.

2. Keeping track of inconsistent combinations

The algorithm GRA keeps track of inconsistent combinations of clauses so that

not all possible descriptors would have to be considered. If for example, D =

A c, is found to be inconsistent, then all descriptors which contain the clauses c

are inconsistent and do not have to be examined. For this reason every time an

inconsistent descriptor is found, the set of the clauses of the descriptor is entered

into the set of inconsistent sets of clauses, INCONSISTENT.

3. Dealing with an incomplete substitution table

It is clear that a descriptor c 1 Ac2 Ac 3 is equivalent to a descriptor c2 Ac3 Ac 1 , that is

to say, the order of the clauses is not important. Therefore, it would be sufficient

to examine all combinations of clauses, and not all ordered combinations of

clauses.

As it has been mentioned in Chapter 4, the substitution table of the spa-

tial reasoning system is not complete. As a result, the order in which a certain

combination of clauses is considered is of importance. In some cases the combi-

nation of a certain pair of relationships cannot be handled by the system. For

example, the spatial reasoning system may be able to deal with the combination

c 1 A (c 2 A c3) but not with the combination (c 1 A c2 ) A c3.

For this reason, algorithm GRA considers different ordered combinations

until the substitution table can produce a solution. Specifically, each node node1
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is conjoined with all 5-dimensional nodes node2 which yield combinations for

which no nodes in the model exist yet, that is clau.ses(node i ) U clauses(node2)

is not in FOUND, where

FOUND = U{clauses(node)} Vnode 1 E L.

There is no guarantee, however, that the substitution table will always find an

equivalent relationship or determine that the combination is inconsistent. As a

result, there might be cases when there are no nodes for some surfaces of the

graph, especially for high dimensional surfaces.

4. Double solutions

In chapter 4 it has been shown that there are cases when there are two sets of

solutions for a combination of two relationships. Geometrically this means that

there are two different surfaces of intersection. In this case both solutions have

to be retained. Therefore, there are nodes where the descriptors are the same

but the relationships are not equal. In most cases, one node would consist of

illegal locations. This is illustrated in Figure 5-2. In both cases shown in this

figure, the bottom vertices (bvl, bv2, bv3) of the block B are 'against' the top face

(top) of the obstacle and vertex bvl of the block is 'against' the back face of the

obstacle E. This results in a ROTYLIN relationship between the two objects.

The difference between (a) and (b) is that in (a) the x axis of the bottom face

of the block points downwards, that is the block rests on the obstacle, while in

(b) the x axis points upwards. Case (b) shows an illegal location.

5. Degrees of freedom

The degrees of freedom of a relationship determine the level of the graph at

which a new node should be inserted. Usually, the conjunction of a n d.o.f.

relationship with a 5 d.o.f. relationship will give an (n 1) d.o.f. relationship.

As can be seen from the substitution table, there are special cases where a

fri - 2) relationship can be produced. Therefore, although we would expect the
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descriptor of a n-dimensional node to be a conjunction of (6—n) clauses it could

be the conjunction of less than 6 - n clauses.

As an example of this, refer back to Figure 3.25 (page 79), when the problem

of whether the decomposition of the contact space is a cell complex was examined.

In this case the conjunction of a ROT2 relationship (two rotational degrees of

freedom) with an AGPV relationship, gives a FIX relationship (zero degrees of

freedom) as can be seen from the substitution table.

Algorithm GRA obtains the number of the degrees of freedom of a relation-

ship using a table which assigns a number to each type of relationship (Table

A-13).

6. Equivalent Relationships

In order to have only one node representing each surface of the contact space, we

have to deal with the problem of equivalent descriptors. Two descriptors have

been defined to be equivalent (Definition 3.4.8) if the corresponding systems

of equations have the same sets of solutions, i.e. the surfaces are identical.

Therefore, two descriptors D1 and D2 are equivalent if the associated spatial

relationships are equivalent, i.e. RD 1 - RD2.

Let D3 = D1 A D2 , where dim(D2 ) = 5, and D3 is a consistent descriptor. As

can be seen from the substitution table, in some special cases the new relationship

is equal to one of the initial relationships, i.e. RD3 = RD 1 , which means that

relationships RD1 and RD3 are relationships of the same type and have the same

feature locations. In this case, D3 is equivalent to D1 , D1 D3 . Intuitively, this

happens when the addition of a contact does not affect the degrees of freedom of

motion. The geometric interpretation is that the surface HD1 lies on the surface

LID3 . An example is shown in Figure 5-3.

The above case occurs when a constraint is superfluous. There is also the

possibility that two descriptors of the same dimension have the same set of so-

lutions. Intuitively, this happens when two different combinations of contacts
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= (Vt, Pt) A (u2 , Pt) A (v3 , pt), RD 1 = (AGPP f, 12)

D2 = (U41 Pt), RD2 = (AGPV,f11 f3 )	 -

D3 =D 1 AD2(vt,p)A(v2 1 pj)A(v31 p1 )A(v41 pj), RD 2 =RD1

The relationships RD1 and RD3 are eqna and1 therefore, the descriptors D1 and D3 are equiv-

alent, D -

Figure 5-3: Eqtiivalent Relationships - 1
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z

RD2 = (LIN,f3,f4)

RD 1 RD2 according to Table A-31. Therefore D1 D2.

Figure 5-4: Equivalent Relationships - 2

give rise to the same situation. As an example, consider the case shown in Fig-

ure 5-4, where the two LIN relationships are equivalent and thus the associated

descriptors are equivalent.

Table A.31. in Appendix A is used to determine if two relationships are equiv-

alent. Let RD 1 = (R, fj, 12) and RD2 = (R, 13, 14) be two relationships of the

same type. Table A.31 gives the conditions on the locations of the features 11,12,

13,14 which have to be tested in order to determine if the two relationships are

equivalent.

In both cases, algorithm GRA does not create a new node for a relationship

which is equivalent to some relationship already in the graph. Instead, it updates

the clauses of the node to be the union of the clauses of the two equivalent

descriptors. Therefore, when the graph is finally built, the clauses of a node

noder, will be (cf. Equation 3.2, page 96),

Clau3es(flodeD) = U c1auses(D).
DEb
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Although not shown in Figure 5-1, the algorithm also keeps track of the various

subsets of the clauses of a node which are equivalent. For example, in the case

shown in Figure 5-3, the clauses of the node will be the set of all four clauses

(vi , P1), 1 = 1 . . . 4. It will also be known that a combination of any three of

them gives a descriptor equivalent to the descriptor of the node. In this way, a

node can be accessed by specifying a sufficient but not necessary complete set

of clauses.

An example

Figure 5-5 shows two objects and the names of some of their features. A partial

model of the contact space was first constructed: a set of ten 5 d.o.f. relationships

was specified between the objects shown in the figure resulting to the following

set of clauses:

CLAUSES =

{(bvl, bot), (bv2, bot), (bv3, bot), (bv4, bot), (bvl, left),

(bvl, back), (bv2, left), (bv4, back), (bv4, left), (bv4, right)}

The constructed graph of the contact space consists of a total of 216 nodes.

The CPU time for constructing the graph was 187 secs.
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Figure 5-5: The models of two objects used in the example
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5.2.3 Vertices and Edges of the Contact Space

In the previous section it was shown how the surfaces of the contact space can

be found using the spatial reasoning system. The surfaces were represented

as a graph of nodes, where for each node there is a descriptor and a spatial

relationship. The problem which will be considered now is partitioning these

surfaces into the faces of the contact space.

Let us recapitulate the definition of a face of the space (see Section 3.4.6). A

n-dimensional face is subset of a n-dimensional surface of the the contact space

such that:

1. all locations on the face are legal locations for which the objets are in

contact.

2. the face is path-connected

3. all locations in the interior of the face satisfy a unique sign-assignment.

It has been shown in Section 3.5.4 that a n-dimensional surface is parti-

tioned into n-dimensional faces which fulfil the above requirements by (n - 1)-

dimensional surfaces which lie on the intersection of the surface with some 5-

dimensional surface. Here we will only be concerned with the problem of finding

the 0- and 1-dimensional faces of the space, i.e. the vertices and the edges of

the space. As will become clear, the technique cannot be generalised to higher

dimensional faces.

Let us first consider the vertices of the contact space. A 0-dimensional face

consists of a single location. Therefore requirements 2 and 3 are redundant and

thus a 0-dimensional surface is a vertex of the space if the location is a legal

location, i.e. it does not result in body interference. The location corresponding

to a 0-dimensional node nodeD is given by

p = f'fi,
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procedure Findvertices(L6):

begin

for all ri in L6 do

if tegal(n) then

make new vertex v from n

insert new vertex v in Vertices

end

Figure 5-6: A procedure for finding the vertices of the contact space

where RD = (FIX, Ii, 12) is the spatial relationship of the node. A 0-dimensional

node node D is legal if the moving object at location p does not overlap the

environment. A vertex v is thus created for each legal 0-dimensional node nodeD.

With each vertex v we associate a node nodeD and a set of edges on which the

vertex lies. The second operation is performed after the edges of the space are

determined.

In the implemented system, a solid geometric modeller has been employed for

dealing with the problem of body interference [Cameron 84]. Given a solid model

of the moving object and the environment and a location of the moving object,

the modeller is able to decide whether the object overlaps the environment by

considering whether or not the regularised intersection of the two is null or not.2

The procedure for finding the vertices of the space is shown in Figure 5-6.

Figure 5-7a shows a legal 0-dimensional surface, which is, therefore, a vertex

pf the contact space, while Figure 5-7b shows a 0-dimensional surface which is

2 1n order to check whether two objects are in contact, the modeller should check

whether the intersection of the interiors of the objects is null, while the intersection of

the objects is not null. This is outside the current capabilities of the employed modelling

system.
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illegal. In both cases the descriptor is the same: the bottom vertices of B are

against the top face of E, vertex bv4 is against the left and back faces of E and

vertex bvl is against the left face of E. The two locations shown are the two

solutions of the descriptor (cf. Figure 5-2).

Having thus found the vertices of the contact space we now proceed to find

the edges of the space. A 1-dimensional surface is partitioned into intervals by

the vertices which lie on the surface. The vertices which lie on the surface can be

found by considering the descendants of the 1-dimensional node corresponding

to the surface. Each such interval can be characterised either as legal or as illegal

by examining the legality of some arbitrary point in the interval (Section 3.5.4,

Theorem 3.5). Each legal open interval corresponds to an edge of the contact

space.

The algorithm for finding the edges of the space is given in Figure 5-8. The

steps of the algorithm are explained in more detail below:

Let nodeD be a 1-dimensional node of the graph and RD = (R, fi, 12) be the

1 d.o.f. relationship of the node, where R E {LIN, ROT, LAD, SCR} and D is

the descriptor of the node. Let p = p(x) be the parametric equation of the node,

i.e.

p(x) = f'Rf1.

1. The descendants desc of a 1-dimensional node nodeD are the vertices which

lie on the 1-dimensional surface of the node. Thus a vertex v corresponding

to a node node is a descendant of the node nodes if

clauses(node) D clauses(nodeD),

and if the configuration of v satisfies the spatial relationship Rd (nodeD).

Let dese = {v 1 , v2 . . . v}.

2. For every vertex v in desc, the value of the parameter of the relation-

ship defining the surface is calculated. This is done using Table A-32 of

Appendix A. Let P be the set of values obtained thus.
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procedure F indedges(L5 ,Ver tices):

begin

for all n in L5 do

1.	 desc	 finddescendants(n,Vertices);

2.	 P +-. pararneterise(r&, de8c);

3. P0 4- sort(P);

4. I - partition(P0);

for all i in I do

begin

rn i- midpoint of 1;

5.	 if legal(p(rrz)) then

begin

6.	 make new edge e from n;

7.	 find boundary vertices v 1 , v2 of e;

mark vertices v1 , V2 as incident on the edge e;

insert edge e in Edges;

end

end

Figure 5-8: A procedure for finding the edges of the contact space
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3. The set P is ordered. Let P0 be the ordered sequence.

4. The sequence P0 = {x1 , 2:2, . . . x1 .. . xn} is partitioned into intervals

11 = [2:1,2:2], . . . ,	 = [si_i, xi ], I	 [z, xi+i], . . . , jn.. i = [x_ 1 , Zn].

If the parameter of the relationship RD corresponds to a rotational degree

of freedom then the interval i, = [x,, xi ] has to be considered also. Let I

be the set of intervals,

5. The midpoint in = (x + x^)/2 of each interval i is considered. If the

location corresponding to m is legal, i.e. if p(m) is a legal location, then

all the locations in the interval (p(Zj),p(Xj+i)) are legal (Theorem 3.5). In

this case we say that the interval i is legal.

6. For all legal intervals i1 , an edge e is generated. The equation of the edge

is given by the equation p(x) and the endpoints are given by p(xt) and

7. The bounding vertices of the edge are the vertices whose locations are

and p(xj+i) . These vertices are marked as incident on the edge e.

Figure 5-9 shows how the 1-dimensional surface corresponding to a UN re-

lationship is partitioned into edges.

The 1-skeleton of the subspace of the contact space for the case of the example

of the previous section consists of four vertices and four edges. The CPU time

for constructing the 1-skeleton is 78 secs.
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5.2.4 Overview of the Constructed Model of the Contact

Space

In the previous sections algorithms have been presented for generating (a) the

surfaces the contact space and (b) the 1-skeleton of the contact space. Before

proceeding to discuss how this model of the contact space can be used for plan-

ning a motion in contact let us briefly overview the constructed model.

The following geometric and topological information is known about each

surface of the space.

1. The parametric equation of the surface by means of an associated spatial

relationship between features of the moving object and the environment.

2. The dimension n of the surface which is equal to the degrees of freedom of

the corresponding relationship.

3. The rn-dimensional surfaces of the space which lie on the surface, where

m < ii and the k-dimensional surfaces on which the surface lies, where

k > n. This informs.tion can be found by examining the clauses of the

descriptors of the surfaces, which describe the basic types of contact.

The following information is available for each vertex.

1. A location.

2. A descriptor and thus the generating 5 d.o.f. relationships.

3. The edges on whose boundary it lies.

The following information is available on each edge.

1. A spatial relationship giving the parametric equation of the edge.

2. A descriptor, and thus the generating 5 d.o.f. relationships.

3. The two bounding vertices.
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This model of the space will be used for planning a motion in contact. For

planning a motion we need to be able to identify the surface or face on which a

location lies, that is, we need to be able to map locations to nodes of the graph

of surfaces and the graph of the 1-skeleton.

The solution to this problem can be briefly sketched as follows: starting

from vertices and working all the way up to 5-dimensional surfaces, check if the

location satisfies the parametric equation of the surface by checking if a location

satisfies the spatial relationship associated with the corresponding node in the

graph of the surfaces.
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5.3 Planning a Path in the Contact Space

In Chapter 3 it was argued that, in the proposed decomposition of the space, if

the contact space is connected, then the vertices of the contact space will be edge-

connected. The cases where some vertices might not be edge-connected were also

indicated. If we assume that the vertices of the space are edge-connected then

an algorithm for finding a path in the contact space can can be formulated as:

1. Find a path from the initial location to some vertex of the contact space

2. Find a path from the goal location to some vertex of the contact space

3. Find a path from the first vertex to the final vertex along the edges of the

contact space.

In Section 5.3.1 the problem of finding a path along the edges of the space

is considered. Section 5.3.2 deals with the problem of reducing the initial and

final locations to vertices. Finally, in Section 5.3.3 the problem of transforming

a path in contact space into a motion plan is considered.

5.3.1 Moving along the edges of the Contact Space

In Section 5.2.3 an algorithm was presented for finding the vertices and edges

of the contact space and their adjacency relations. The problem that will be

considered here is the following:

Given two vertices v1 , v2 of the contact space, find a path in the graph

of the 1-skeleton of the contact space from v1 to v2.

The vertices of the graph G(V, E) of the 1-skeleton of the contact space are

the vertices of the contact space and the edges are the edges of the space. That

is, two vertices of the graph G(V, E) are adjacent, if the corresponding vertices

of the contact space are the boundary vertices of an edge.
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A number of graph searching algorithms can be used. In choosing an algo-

rithm two points have to be considered: assigning a cost function to the edges of

the graph and using the information we have about how close two vertices are.

A cost function can be assigned to the edges of the graph according to:

1. The type of motion required to traverse an edge. For example, a linear

motion (an edge with a LIN relationship) should have a smaller cost than

a motion where both a translation and a rotation are involved (e.g. an

edge with a LAD relationship).

2. The length of the edge of the contact space, if it is an edge corresponding

to a UN relationship.

The above information can be extracted from the model of the contact space.

In addition, from the model a measure of 'closeness' of vertices can be derived by

examining how many contacts the two vertices share. In moving along the edges

of the space, a shortest path corresponds to a motion where as few contacts as

possible are broken or established. Therefore, the proximity of vertices can be

established by examining the clauses, that is, the five degree of freedom relation-

ships associated with the vertices. More specifically, let v 1 , v2 , v3 be vertices of

the graph and C1 , C, C3 be the sets of clauses of the vertices. Then v1 is closer

to v2 than to v3 if the cardinality of C1 fl C2 is greater than the cardinality of

Ci fl C3. If the vertices are further apart, then the intersection of the sets of

clauses would be empty, and thus no measure of proximity could be inferred.

The implemented algorithm is a depth-first algorithm, with no cost func-

tion assigned to the edges, which makes use of the above observation about the

prximity of vertices: starting from a vertex v, the next vertex to be tried is

an adjacent vertex which has as many common clauses with the goal vertex as

possible.

The initial and final vertices can be specified either by a location or by a set

of clauses, i.e. the five d.o.f. relationships that have to be satisfied. The path

consists of a sequence of nodes which are vertices and edges of the contact space.
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(a) the starting verte; u j ; (b) a location on the edge e; e 1 corresponds to a LAD relationship;

(c) the Vertex V2.

Figure 5-10: A path along edges - 1
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(a) a location on the edge e2 , an instance of a LIN relationship; (b) the final vertex, v3.

Figure 5-11: A path along edges - 2
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Figures 5-10 - 5-11 show a path found by the algorithm. The path consists

of three vertices and two edges of the contact space. The first edge, corresponds

to a LAD spatial relationship and the second edge corresponds to a UN spatial

relationship. The path is thus

v1-9e1---v2--+e2--9v.

Figure 5-10 (b) shows an arbitrary location on the edge e1 . Similarly for Fig-

ure 5-11 (a). The information in the model about the path is shown in Fig-

ures 5-12 - 5-13.
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Vertex tJj

Location:
0.0 1.0 0.0

-1.0 0.0 0.0

0.0 0.0 1.0

10.0 0.0 0.0
Descriptor.
D = (bvl,bot) A (bv2,bot) A (bv3,bot) A (bv4,bot) A ('bvl,left) A (bv4,back)

A (bv4,left)

Figure 5-12: A path along the edges: First vertex, v1
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Spatial Relationship: LAD

Feature 1

Dimension: 10.0

Location:	 0.0	 0.0

	

-1.0	 0.0

0.0 -1.0

	

0.0	 0.0

Feature 2

Dimension: 0.0

1.0 Location:	 0.0 0.0 1.0

1.0	 0.0 -1.0 0.0

0.0	 1.0	 0.0 0.0

0.0	 0.0	 0.0 0.0

Parameter interval: (1.5708,3.141593)

Bounding vertices: Vj, U2

Descriptor.

D = (bvl,bot) A (bv2,bot) A (bv3,bot) A (bv4,bot) A (bvl,Ieft) A (bv4,back)

Figure 5-13: A path along edges: First edge, e1
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5.3.2 Reaching a Vertex of the Contact Space

In the previous section I considered the problem of finding a sequence of edges

which connect two vertices of the contact space. In this section I consider the

problem of finding a path from an arbitrary location to some vertex. If this

problem is solved then a path between any two arbitrary locations can be found.

If the graph of all the faces of the contact space had been constructed, this

problem would again be a graph searching problem in the graph of faces. A

motion plan would then correspond to a sequence of faces of the contact space.

By choosing an arbitrary location in each face, we would have a description of

the plan as a sequence of locations. However, for the reasons explained, only the

graph of edges and vertices has been constructed. For higher dimensional faces,

we only know the surfaces on which they lie. Let us, therefore, first consider the

problem of finding a sequence of surfaces of the contact space which have to be

traversed from some initial location to an arbitrary vertex of the contact space.

The problem is stated as follows:

Given an initial contact state, find a sequence of surfaces of the con-

tact space which have to be traversed in order to reach some 3 vertex

of the contact space

The initial contact state can be described in the following ways:

1. As a location

2. As a set of basic types of contacts that have to be satisfied (5 d.o.f. rela-

tionships)

3Perhaps instead of reaching an arbitrary vertex we want to reach a vertex which is

as close to the goal state as possible. The described algorithm can be easily adjusted so

that it chooses the vertex which shares the most contacts with the goal state. Similarly

for the goal state.
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3. As an explicit spatial relationship.

The algorithm for this problem is summarised below:

1. Identify the surface of the contact space for the initial state and find the

corresponding node n1 in the lattice of the contact space.

2. Find a vertex of the space whose clauses ( 5 d.o.f. relationships) includes

the clauses of the node n1 . Let nj be the node of the lattice corresponding

to this vertex.

3. Find the chain in the graph from n1 to ri.

However, a plan consisting only of a sequence of surfaces is not sufficient.

The problems arise because a sequence of surfaces cannot be transformed into

a sequence of locations, since there is no guarantee that an arbitrary location

would correspond to a legal location or to a location for which the objects are

in contact.

One solution to the problem would be of course to partition the surfaces into

faces. Whether this can be done, however, remains an open issue.

Another way of overcoming the problem is, instead of describing a motion

plan as a sequence of locations, to describe it only by means of directions of

motions and conditions that have to be specified during the motion and at the

end of the motion. This problem is related to the problem of transforming a

path in the contact space into a sequence of compliant-guarded motions, which

is the subject of the next section.
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5.3.3 A Motion Plan as a Sequence of Compliant-guarded

Motions

Up to now I have considered the problem of finding a sequence of surfaces of the

contact space which have to be traversed in order to reach some final contact

state from some initial contact state. The issue considered here is how from such

a sequence of surfaces a motion plan can be derived.

Motion in contact involves motions which comply with constraints imposed

by the geometry of the task. Such motions are called compliant motions. Also,

motion in contact involves guarded motions, that is motions during which a new

contact is established. As it has been argued in Section 2.3.2, a plan for a

motion in contact cannot be adequately expressed as a sequence of locations. In

the presence of uncertainty, force sensing is necessary so that a set of desired

contacts are maintained during the motion. A motion plan can thus be expiessed

as a sequence of compliant-guarded motions. Each compliant-guarded motion

can be specified by a template of the form: [Mason 81] [Paul and Shirnano 76]

[Will and Grossman 75]

MOVE TO [location] WITH [compliance] UNTIL [condition]

The compliance is specified by defining force and torque sensing in the coor .

-dinate system of the task, e.g.

FORCE X=O

FORCE Y=O

TORQUE X=0

TORQUE Z=O

The final condition can be specified by defining the force which has to be

sensed in the coordinate system of the task, e.g.

FORCE Z=1
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Mason [Mason 81] examined the relation between compliant motions and

the surfaces of the contact space: motion on a surface of the contact space

corresponds to a compliant motion, where freedom of motion occurs along the

surface tangents, while freedom of force occurs along a surface normal. A guarded

motion occurs when traversing the interface between two surfaces of different

dimension. A path in the contact space can be decomposed thus into a sequence

of compliant motions joined together by guarded motions.

From the above remarks it follows that a path from a location in some face

of the space to a location on the boundary of the face can be translated into a

compliant-guarded motion. A path along the edges of the contact space can be

translated into a sequence of compliant-guarded motions, where each elementary

motion corresponds to a compliant motion along the edge until the next vertex

is reached.

In order to formulate the compliant-guarded motions the following informa-

tion is necessary:

1. A goal location

2. The compliance axes

3. The force condition for stopping the motion

Let us examine through an example how the compliance axes can be in-

ferred from the spatial relationship which is associated with a face of the contact

space. Consider the case of planar motion (Figure 5-14). Then, the associated

relationship would be an "against plane plane" (AGPP) relationship,

P2 = f'twix(9)trans(0,y,z)f1.

The free variables correspond to degrees of freedom of motion expressed in the co-

ordinate system of the feature of the first object, that is in the coordinate system

of f, as shown in the figure. Thus freedom of motion can occur along the y and

z axes and about the x axis. The non-compliant axes are then the y-translation,
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Fr..dc of .otlon	 Fr..dc of forc.

Figure 5-14: Planar motion: freedom of motion, freedom of force

z-translation and z-rotation. 4 The remaining axes, that is y-rotation, z-rotation

and i-translation, are the compliant axes. As a result, the compliance for a

planar motion can be specified by setting

FORCE X=0

TORQUE Y=O

TORQUE Z=0

From the above example it can be concluded that the compliant-axes of a

motion can be inferred from the spatial relationship of the node in the model

representing the traversed surface of the contact space.

In Iraversing the interface from a surface to a surface of lower dimension, one

or more degrees of freedom of motion are lost. The condition for terminating a

4The 6 axes in 6-dimensional configuration space are: x-translation, y-translation

z-translation, z-rotation, y-rotation and z-rotation [Mason 811.
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UNTIL FORCE X = -1

In the above discussion it has been assumed that the spatial relationships

correspond to 'real' constraints, that is, the degrees of freedom of motion are

physically constrained by actual contacts, as in the examples used above. How-

ever this is not necessarily the case, since 'imaginary' faces have been introduced

for partitioning the contact space. An example can be found in Figure 3.30, page

90.

It can be concluded that the constructed model of the space can provide some

of the information needed for transforming a path of the contact space into a

sequence of compliant-guarded motions. There are still though some outstanding

issues that have to be considered, but these fall outside the objective of this

research.
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5.4 Conclusions

In Chapter 5 we have been concerned with deriving a plan for a motion in

contact. Working towards this objective the first stage has been to establish the

necessary links between the spatial reasoning system and the decomposition of

the contact space proposed in Chapter 3. The second stage has been to tackle the

issue of implementation of the algorithm for decomposing the space into various

dimensional surfaces using the spatial reasoning system. The decomposition of

the space reduces the motion planning problem into a graph searching problem.

The third and final stage has been to use the model of the space constructed

previously to plan a motion in contact.

What has been accomplished is the construction and implementation of an

algorithm which finds a path along the edges of the contact space, given an initial

and final contact state which correspond either to vertices or edges. In addition,

ways have been suggested for using the constructed model of the space in order

to find a path between any initial and final states.

The problem of motion in three dimensions with rotations has the intrinsic

difficulty that the constraints on the locations of the objects which are in contact

are non-linear. What I have demonstrated in this chapter is that it is possible to

deal with this problem without having to resort to the solution of algebraic equa-

tions. This approach has been made feasible by the use of the spatial reasoning

system in the decomposition of the space.

Without doubt there are steps that could be taken that would enhance the

efficiency of the algorithm. In particular, what needs to be considered is that

the number of vertices of the contact space could be astronomical. Faced with

this state of affairs, a possible solution would be to construct the contact space

incrementally. This would entail considering a subset of the basic types of contact

among the two objects, constructing the model of the contact space for that

subset and then adding more relationships until a path can be found. As it

stands, the algorithm can easily accommodate this process of building the model
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of the space incrementally. The initial subset of constraints can be chosen so that

it is the union of the constraints of the initial and the final states. Choosing which

constraints to add could be problematic. One possible way of dealing with this

is to examine the boundaries of the objects.

The algorithm, as it has been developed, is based on the assumption that the

vertices of the space are edge—connected and, therefore, if there is a motion in

contact between two vertices, then there is a motion in contact along the edges.

Whether this property holds has been considered extensively in Chapter 3 and it

was argued that it is only in exceptional cases that a vertex of the space wouldn't

lie on the boundary of an edge. If the initial or final states correspond to such

vertices then it would be necessary to find a path along a higher dimensional

face.

This brings us to the issue of moving along higher dimensional faces of the

space. As the implemented algorithm currently stands, the issue of finding this

type of path has not been completely resolved. In Section 5.3.2 it has been

suggested that perhaps this should be considered in conjunction with the ques-

tion of transforming a path along the faces into a sequence of compliant-guarded

motions and the execution of the motion. This latter question has only briefly

been touched upon. In Section 5.3.3. I focussed on whether there is information

available in the constructed model to effect this transformation and in what form

of representation this information is to be found. In so far as it was shown that

such information does exist and, moreover, in a form that is readily accessible,

the prospects for effecting the transformation are encouraging.



Chapter 6

Conclusions and Further Research

This thesis has been concerned with the problem of moving a 3-dimensional

polyhedral object while maintaining contact with a set of stationary obstacles.

The issue of planning a motion in contact arises from the problems encountered

in planning parts mating operations in the presence of uncertainty. In an en-

vironment about which there is incomplete information, planning parts mating

entails planning also the use of force and touch sensors. In this context, motion

in contact assumes paramount importance since it allows us to incorporate force

information in the planning process.

What has been achieved in this research is the development and implementa-

tion of an algorithm which derives a motion plan as a sequence of contacts that

have to be established during a motion from some initial to some final contact

state. More specifically, the motion plan is a sequence of 0- and 1-dimensional

faces of the contact space which have to be traversed.

In this chapter, I shall first recapitulate the salient features of the research

and indicate the contributions made, and then I shall suggest areas for further

reearch.

213
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6.1 Summary

6.1.1 The Decomposition of the Contact Space

In the literature, the problem of motion planning has usually been formulated

using the notion of configuration space. When dealing with the problem of

motion in contact, what is of relevance is a subset of the configuration space, the

contact space, i.e. the set of configurations for which the objects are in contact.

The contact space is composed of faces which intersect at lower dimensional

faces which, in turn, intersect in still lower dimensional faces. The introduction

of the notion of the contact space and its faces has allowed us to reduce the

problem of planning a motion in contact to the problem of finding a path on the

faces of the contact space.

Following this approach, my objective in this research has been deftned as

decomposing the contact space into faces and determining the boundary rela-

tions which hold between them. For a path-connected contact space, if the

0-dimensional faces (vertices) are shown to be connected by 1-dimensional faces

(edges), then the motion planning problem is reduced to the problem of reaching

some vertex and then traversing the edges of the space until the final vertex con-

figuration is reached. Accordingly, I have sought to formulate the decomposition

in terms such that the property of edge-connectedness obtains. In developing

this formulation my starting point has been the work of Hoperoft and Wilfong

[Hoperoft and Wilfong 84b].

Hoperoft and Wilfong have examined the case of one or more 2-dimensional

p1ygonal moving objects amidst polygonal obstacles, where the only motions

allowed are translations. They proved that for this case the edge-connectedness

property holds. In this research, I have sought to extend their approach so

as to accommodate the case of 3-dimensional polyhedral objects, when both

translations and rotations are allowed. At the same time, I have restricted the

number of moving objects to one.
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As in [Lozano-Perez 83], [Donald 84], [Canny 84a], three basic types of con-

tact among polyhedral objects are identified. Configurations for which such con-

tacts hold lie on some 5-dimensional surface of the configuration space, which is

defined by the constraint equation. The distinction between a configuration for

which the objects are actually in contact and a configuration which satisfies the

constraint equation of the contact has been formulated in [Hoperoft and Wilfong

84b]. Informally, I refer to this second class of configurations as configurations

which satisfy a contact 'kinematically', where by 'kinematics' I refer to equations

relating the locations of the objects.

Through a series of counter examples it has been shown that the edge-

connectedness property does not hold when the decomposition in [Hoperoft

and Wilfong 84b] is extended to 3-dimensional polyhedral objects and rota-

tions. Faced with this problem, I have sought to modify the decomposition.

In the modified decomposition I have proposed, the contact space is parti-

tioned into faces by considering the 5-dimensional surfaces defined by the basic

types of contact and their intersections. On the basis of the decomposition in

[Hoperoft and Wilfong 84b], transition from a face to its boundary implies that

one or more contacts have been established or broken. On the basis of the a!-

ternative decomposition I have proposed, this may be true but not necessarily

so. All that it is required is that one or more additional constraints hold for a

configuration in the boundary. The alternative decomposition thus yields a finer

partition of the contact space. Through a series of examples, it was argued that

this finer partition results in vertices that are edge-connected, with the possible

exception of some pathological cases.

It should be noted that a similar approach for the decomposition of the

contact space is proposed in [Yap ss], where the case of 2-dimensional polygonal

objects which are allowed only to translate is considered.

At a theoretical level, the significance of the decomposition I have proposed is

twofold. On the one hand, it has been shown that the vertices of the space will be,

in general, edge-connected. This allows us to reduce the original search space -

the contact space— to a 1-dimensional subspace —the 1-dimensional skeleton of the
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contact space. On the other hand, the decomposition I have proposed is based on

the distinction between configurations at which the objects are actually in contact

and configurations which satisfy the 'kinematic' equation implied by the contact.

This distinction allows us to treat separately the problem of 'kinematics', i.e. the

problem of equations in the locations of the objects, from the problem of space

occupancy.

6.1.2 The Algorithm for Planning a Motion in Contact

Having defined the decomposition, an algorithm was then presented for finding

the faces of the contact space. The algorithm comprises two stages. In the first

stage, the graph of the surfaces of various dimensions, on which the faces of the

contact space lie, are found. In the second stage, the vertices and edges of the

contact space are found.

In the first stage, the implemented algorithm makes use of a spatial reasoning

system for finding the intersections of surfaces, while in the second stage it

employs a solid modeller for checking physical interference. The introduction of

the spatial reasoning system in my approach has been premised precisely upon

the fact that it is possible to decouple theoretically the problems of 'kinematics'

from the problems related to body occupancy.

Finally, an algorithm has been developed for finding a path between two

vertices along the edges of the contact space.

6.1.3 The Spatial Reasoning System

Spatial relationships have been used in this research to represent the constraints

on the relative locations of the objects imposed by contacts. Put in a different

way, what this means is that a configuration for which two objects are in contact

satisfies some spatial relationship between some features of the two objects.

The objective of the spatial reasoning system is to find the spatial relationship

and the location of the features between which it holds, for any contact state.
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This spatial relationship is arrived at by considering conjunctions of 5 degrees

of freedom spatial relationships which describe the three basic types of contact.

The spatial reasoning system presented in this thesis is derived from the more

general spatial reasoning system of the RAPT system [Corner, Ambler, and Pop-

plestone 83], which I have adapted to suit the task at hand. The spatial reasoning

system is based on a substitution table which holds rules for substituting a pair

of spatial relationships by an equivalent, more constrained relationship. The

table has entries for various combinations of types of relationships and geomet-

ric rules for finding the equivalent relationship and the location of the features

between which it holds.

The construction of the table has been premised on the algebraic solution of

location equations. The process of solving these equations has been guided by

examining the geometric relations of the coordinate systems of the objects.

The substitution table derived in this research differs from the substitution

table of the RAPT system primarily insofar as it includes a greater number of

types of relationships and it examines an almost complete set of combinations.

In contrast with the substitution table of RAPT, the derived table deals only

with combinations with a 5 d.o.f. relationship, since this has been sufficient for

this research. In addition to these differences, there are certain differences in the

methodological approach. In particular, I have arrived at an iterative method

for constructing the substitution table. Moreover, insofar as I have developed

an algebraic method for finding the equivalent relationship, it became possible

to examine carefully all the different cases that may arise from a combination of

certain types of relationships.
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6.2 Significance and Originality

In this research I have developed and implemented an algorithm for finding a

path for a motion in contact along the edges of the contact space. The principal

significance of the research lies in the fact that the algorithm deals with 3-

dimensional polyhedral objects which are allowed both to translate and to rotate.

It is also significant that the algorithm has been developed without resorting to

linear approximations of the constraints resulting from rotations.

In addition, several other methodological contributions have arisen from the

research:

1. I have proposed the enlargement of the decomposition in [Hoperoft and

Wilfong 84b] for the case of 3-dimensional objects which can rotate and

translate. This alternative decomposition makes a clear distinction be-

tween the 'kinematics' of contacts and body occupancy. It also overcomes,

in most cases, the problem of vertices which are not edge-connected.

2. I have introduced the use of a spatial reasoning system in motion plan-

ning. With the use of the particular reasoning system, it is not necessary

to resort to the solution of algebraic equations while planning a motion.

General solutions of the algebraic equations have been formulated in terms

of geometric relations between coordinate systems embedded in objects

and their features. This approach differs significantly from the approach

in [Donald 84], where an algebra system is employed.

3. I have extended the spatial reasoning system of the RAPT system to the

point that it can handle a significantly more extensive range of spatial

relationships, though still not complete.
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6.3 Suggestions for Further Research

In this section I discuss the limitations of the work reported in this thesis and I

suggest some possible ways to overcome them. In addition, I indicate topics for

further research related to this thesis. In particular, I suggest ways in which this

work can be extended towards a practical system which can be used for parts

mating operations.

The topics presented in this section examine questions which can be classified

into four main categories.

• Implications of the restriction on the domain of the problem: What hap-

pens if non-polyhedral objects are considered?

. Direct extensions: Is it necessary to construct the whole graph of the

contact space? What are the implications of an incomplete Substitution

Table?

• Introducing force sensing: How can optimal paths be found? How can a

plan for a motion from some initial contact to some vertex be formulated?

How can a sequence of compliant motions be derived?

. Other possible directions: Can the algorithms developed be used for plan-

fling a motion in free space?

6.3.1 Non-polyhedral objects

1n the research reported in this thesis only polyhedral objects have been con-

sidered. The problem of examining the motion in contact of non-polyhedral

objects arises from the fact that it is not easy to characterise the possible types

of contact and the corresponding d.o.f. of motion. Since one can use polyhedral

approximations to model some class of 'real' objects, it is theoretically possible

to use the approach described here. There are two main problems in doing this:
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(a) the graph of the contact space would consist of a very large number of nodes,

since the number of edges and vertices of the objects would be very large; (b)

force data could not be used in following a non-real edge, e.g. some edge on the

curved surface of a cylinder. The first problem could be partially overcome by

building the contact space incrementally, as it is described in Section 6.3.2. A

possible solution to the second problem would be to avoid, if possible, curved

surfaces.

6.3.2 Building the 1-skeleton Incrementally

It was pointed out in Section 5.4 that the number of vertices of the contact

space could reach an astronomical value. This, however, does not present an

insurmountable problem, since it is not necessary to construct the entire graph

of vertices and edges. The graph can be built incrementally by considering

initially a subset of all the possible 5 d.o.f. relationships and then adding more

5 d.o.f. relationships to this subset until a path can be found. The initial set

of relationships should definitely include the relationships which are present in

the initial and final states. If a sequence of contact states from some initial to

some final state cannot be found, then the graph of the contact space can be

extended, by adding more 5 d.o.f. relationships. Deciding which relationships

to add means deciding which features are likely to be brought into contact. The

process of enlarging the set of relationships involves, thus, the examination of

the features in the boundaries of the objects. Clearly, the features which are

more likely to interact would be features in the vicinity of the features already

included in the set. A method for choosing features and relationships to be

added for enlarging the graph of the contact space could form the subject of

further research.

6.3.3 Extension of the Substitution Table

The substitution table of the spatial reasoning system developed in this research

is not complete: firstly, it cannot deal with all possible types of relationships,
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and secondly, it cannot deal with all possible combinations of relationships. In

particular, it does not deal extensively with relationships for which the degrees

of freedom are interdependent. Such relationships are not only computationally

difficult, but they are also practically difficult, in the sense that deciding the

force sensing required to execute such a compliant motion would be a compli-

cated procedure. For this reason, in planning a motion in contact, it would be

preferable to avoid contact states corresponding to these type of relationships.

This could be achieved by leaving entries out of the table, but this is not an

entirely satisfactory approach. Ideally, the table would be completed, so that

a path would always be found if one existed. The criteria described in Section

6.3.4 would then be used to select the best path, so that awkward contact states

would be avoided.

The substitution table presented in this thesis has been developed with a

view to be used in planning a motion in contact. For this purposes, it has been

sufficient to consider combinations of relationships with 5 d.o.f. relationships.

While this makes it possible for all types of contact to be represented, it might

sometimes be convenient to have an extended table which directly coded combi-

nations of more constrained spatial relationships. RAPT itself uses an extended

table so that the programmer can easily describe contact states such as one

plane face being against another. However, the, extended substitution table is

incomplete. It could be completed by using the methods presented in Sections

4.4-4.6.

6.3.4 Choosing a Path Along Edges

The"algorithm for finding a path along the edges of the contact space has not

considered the problem of optimality. The search for an optimal path can be

accomplished if cost functions are assigned to the edges of the graph (i.e. the

edges of the contact space). Some criteria for assigning cost functions have been

suggested in Section 5.3.1. In particular, two types of optimality criteria have

been suggested. The first type is related to the length of the edge and the second
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type is related to the cost of force sensing that would be necessary in order to

execute the motion. The cost of force sensing clearly depends on the type of

motion required to traverse the edge.

In order to derive a more efficient plan for a motion in contact, further

research is needed in the following areas: (a) deciding which optimality criteria

should be applied; (b) deciding on an appropriate metric which can be used in

rotation space; (c) evaluating the cost of force sensing required for a motion.

6.3.5 Moving on Higher-dimensional Surfaces

In this research I have sought to decompose the space in such a way that the

vertices of the space will be edge-connected. This method of decomposition has

been chosen with a view to avoiding motion on higher dimensional surfaces.

There is still, however, the problem of reaching some vertex or edge from the

initial and final states. The problem has been examined in section 5.3.2, where

a method for achieving this transition was outlined.

The problem of moving on higher dimensional surfaces would be solved if

the surfaces of the contact space were partitioned into faces. Developing an

algorithm for partitioning the surfaces into connected regions is not a trivial

problem, even if the boundaries of the regions can be identified. Moreover, it is

not certain that this would be the most efficient way for tackling this problem,

since only the transition from the initial state to a vertex has to be considered.

The approach I have outlined involves deciding on the type of motion and

on the direction of motion, and then executing the motion until some additional

contact is established. For this reason, I believe that the issue of reaching some

vertex should be considered in relation with the issue of deriving a sequence of

compliant-guarded motions.
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6.3.6 Deriving a Motion Plan as a Sequence of

Compliant-guarded Motions

The problem of transforming a sequence of contact states into a sequence of

compliant-guarded motions has been discussed in Section 5.3.3. It was pointed

out that this transformation can be achieved by considering the types of spatial

relationships and the locations of the features. There are still, however, a number

of outstanding issues. For example, it is unclear how the compliant axes would

be defined in the case when the degrees of freedom of motion are interdependent.

Furthermore, it is not clear what type of sensing should be used in the case of

'imaginary' edges, that is, in the case where the d.o.f. of motion are not actually

constrained by physical contact.

A broad approach for deriving a sequence of compliant-guarded motions has

been suggested in Section 5.3.3. The extension of this research in that direction

would be the first step towards using the system presented in this thesis for parts

mating operations.

6.3.7 Extension to motion in free space

Research in collision-free motion ([Lozano-Perez 83], [Donald 84]) has considered

the boundaries of the grown obstacles (the contact space) in order to decompose

the free space into connected regions. In this research, a model of the contact

space has been constructed. It would be interesting to consider whether the

model of the contact space developed in this thesis can be used to decompose

the free space into connected regions, and then to investigate planning a motion

in free space using the intersections of the surfaces of the contact space.
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6.4 Conclusion

This thesis has suggested a method for planning a path for a motion in contact

as a sequence of contact states, and presented a partial solution to the parts

mating problem in the case of polyhedral objects. Further work along the lines

suggested in this chapter should make it possible for a practical solution to the

problem to be reached.
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Appendix A

The Substitution Table

The conventions used in the following tables are summarised below.

(lu 112 113 0"

I121 122 123 0 I
1. pos2posl' = I	 I

I f3 132 133 0

11	 1	 13 i)

2. E1 is a relationship between features with locations a and b1 of objects A

and B respectively.

(fuu 112 113 0"

I121 122 123 0 I
3. F1 = a2aj' =	 I

I 131 132 133 0 I

ill 112 lj3 1 )

(i; 112 113 O

I122 f3 0 I
,4.	 F2=b2b'= I	 I.

f1 132 133 0 I

121 122 123 1 )

236
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A.1 Geometric functions

Tables A—i - A-4 present a set of geometry functions which are used in

the substitution table for checking the conditions under which two relationships

can be substituted by an equivalent relationship. Both the geometric and the

algebraic interpretation of the functions are presented.

Function Geometric 	 Algebraic Interpretation

Interpretation

distance from origin of	
+ +d-oo

posi to origin of pos2

distance from origin of

d-op	 posi. to x=O plane of	 _(fhi + 11212 + 11313)

_________ pos2	 ___________________________________

distance from origin of	
+d-xo

pos2 to x-axis of posi

distance from origin of

d-oi	 posi to intersection of (ii + 11212 + fl3 l3)/jf2 + fi3
x=O planes of posi and

_________ pos2	 ___________________________________

distance from origin

d-xi	
of posi to intersection	

luiili + 11212 + 11313)/fill
of x-axis of posi with

_________ x=O plane of pos2 	 ________________________________

distance from origin of

posi to intersection of
d-yi	 Chili + fl2 lZ + 11313)1/121

y-axis of posi with

_________ x=O plane of pos2	 ________________________________

length of common per-	 ________

d-cm	 pendicular between x	 (f12l3 - f13 12 )/\/b122 +

_________ axes of posi and pos2 ________________________________

Table A—i: Geometry Functions
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Name	 Geometric	 Algebraic Interpretation

Interpretation

x axes of body A arex-a-par f	 hi = ± 1
parallel

x-a-eq	 x axes of body A are equal hi = 1

x axes of body A are	 I = ±1 A 112 = 113 = 0x-a-collin t
collinear

x axes of body A arex-a-perp t	 fii = 0
perpendicular

x axes of body A arex-a-coplan t	 hi = ±1 V 112 113 = 113l12
coplanar

y axes of body A arey-a-par f	 122 = ± 1
parallel

y axes of body A arey-a-perp t	 122 = 0
perpendicular

cos(angle between x
is-0-a12	 axis of a2, y axis of al)	 112 = 0

_________ =0	 _____________________
cos(angle between x

is-0-a13 t	 axis of a2, z axis of ai)	 113 = 0

_________ =0	 ______________________
angle between x axes of

a1 and a2 = angle be-eq-x-angle	 lii =
tween x axes of b1 and

________________ b 2	 _____________________________________
x-axis of a2 is equal toeq-x-axis	 f11f1 + h12f2 + f13f = 1
x axis of a

y-axis of a is equal toeq-y-axis	 f21fi + 122 122 + 123123 = 1
y-axis of a

origin of a1 is coinci-

eq-a-origin t dent with origin of a2,	 1 =	 = 1 3 = 0

___________ d-oo(ai, a2) =0	 _________________________

t Similarly for body B. Substitute 1,', for f,, and 12, for 11,

a = b2b1a1

Table A-2: Geometric Boolean Functions - 1



Appendix A. The Substitution Table
	

239

Name	 Geometric	 Algebraic Interpretation

Interpretation

origin of a2 on x axis
oa2-on-xal f	 112 = 113 0

of a1, d-xo(a i ,a2 ) = 0

origin of a2 on y axis of
oa2-on-yal t	 111 = 113 0

a1

origin of a2 on z axis of
oa2-on-zal t	 lii	 = 0

a1

origin of a2 on x=0
oa2-on-plxal t	 111 = 0

plane of ai

origin of a2 on y0
oa2-on-plyal t	 112 = 0

plane of ai

origin of a2 on z0
oa2-on-plzal f	 l3 = 0

plane of a1

origin of ai on x=0
oal-on-pla2 f	 111111 + 112 112 + 113113 = 0

plane of a2

origin of a on x=0 fii hii + 112 112 + 113113 =
oan-on-pla2

plane of a2	 111121 + 112 122 + 113123

t Similarly for body B. Substitute 1,', for f,, and l2j for 115

a, = b26j'a1

Table A-3: Geometric Boolean Functions - 2



Appendix A. The Substitution Table	 240

Name	 Geometric	 Algebraic Interpretation

Interpretation

d-op(a 1 , a2)	 fiilii + /12112 + 113113 =ed-op-op
d-op(b 1 , b2)	 fhl2l + 112 122 + 113123
d-op(a 2 ,ai ) =

ed-po-po	 111 = 121d-op(b 2 , b)

12 -d-xo(a i ,a2 ) =	 V'112+ 13ed-xo-xo
12d-op(bi,62)	 \1l22+ 23

d-oo(ai , a2) =	 /1li + 112 + 113 =
ed-oo-oo

d-oo(bi , 62)	 \/1j + l + 1223

d-cm(ai , a2) =	 (/12113 - f13l12)/ .t/f?2 + 113ed-cm-cm
d-cm(bi,b2)	 (ff2123 - fl3 !22)/\/fd + f

d-op(a 1 , a2)	 lfiitii + /12112 + /131131 =
ed-op-oo

d-oo(b i , 62)	 •'q.1 + 122 + 123

d-op(ai , a2) <	 jfiilii + /12112 + /131131 <
ld-op-oo t

d-oo(b1 , 62 )	 + 122 + 123

d-opaj ,a2 ) =	 ______
'2ed-op-xo

	

	 Ifiilii + /12 112 + 1131131 = V'22 + 23d-xo(bi , 62)

d-oi(a 1 ,a2) =	 (fiilii+fi2li2+fi3li3)//f?2 +f23 =
ed-oi-oo	 ____________

d-oo(bi , 62)	 \J11 + 122 + '23

d-oi(a,a2 ) 1	 (f11(l11 - 121) + /12 112 + 113113)/\/1122 + 113 =ed-om-xo
d-xo(bi , 62)	 i/122 + '23

f Similarly for Id-op-xo, ld-oi-oo, id-op-op, ld-om-xo, ld-xi-xp

= trans(l21 , 0, 0)ai

Table A-4: Geometric Boolean Functions - 3
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A.2 Constructing the new features

Tables A-5 - A-12 present a set of functions for constructing the locations of

the features of bodies A and B between which the equivalent relationship holds.

The locations of the features between which the equivalent relationship holds

(a3 and b3) are constructed from the locations a1 , b1 , a2 and b2 . In most cases

the location of the new feature a3 of body A will only depend on a1 and a2 . In

the cases, however, that there two sets of solutions to the equations, the location

a3 will also depend on b 1 and b2.

The new features are constructed using a set of functions which take as

arguments two or four locations and produce one or two new locations. The

following conventions are used for naming the geometric construction functions:

1. The function names are made up from six characters. The first two define

the new origin, the next two define the new x-axis and the final two define

the new y-axis. Let us denote a function name by O0XbYC.

2. A function name starting with 'o', takes two arguments (posi and pos2)

and constructs one new location (pos3). A function name starting with 'q',

takes four arguments (posi, pos2, p053, pos4) and constructs two new loca-

tions (pos3, pos4). A function name starting with 'd', takes as arguments

two locations and constructs two new locations.

It can be noted that since reversing the x-axes with the y-axes of a location

corresponds to the transformation twix(ir)XTOY, if

O0XbYc - trans(d).k

then

OaYcXb = trans(d)twiX(7r)XTOYR
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Tables A-5 - A-6 present the geometric interpretation of the construction

functions. Tables A-7 - A-12 present the algebraic interpretation of the

functions.

ol origin of posi

qi origin of posi, two solutions

di origin of posi, two solutions

o2 origin of pos2

oi some point of intersection of x=O planes of

posi and pos2

op intersection of x-axis of posi with x=O plane

of pos2

oy intersection of y-axis of posi with x=O plane

of pos2

00 intersection of x-axis of posi with the plane

perp to x-axis of posi and through the origin

of pos2

ox intersection of x-axis of posi with the plane

perp to x-axis of posi and containing x-axis

of pos2

on intersection of x-axis of posi with x=n plane

of posi

Table A-5: Naming conventions for origin of constructed location

.fr



Appendix A. The Substitution Table	 243

xl x-axis of posi

x2 x-axis of pos2

xc direction from posi to pos2

xi direction of intersection of x=O planes

xp direction of common perp between x-axes

xj direction of common perp between parallel x-

axes

xo direction of perp from o2 to xi

yl y-axis of posi

zi z-axis of posi

ya any y direction

yc crossvec of x-axis of posi with direction of line

joining origin of posl to origin of pos2

Table A-6: Naming Conventions for axes of constructed location
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Function(posl, pos2) = twix(a) posl

Function	 e	 Condition

olxlyl	 0	 -

olxlyt	 e	 -

olxlx2	 112+1113	 f=O

olxlxm (f12+ifl3)/'Jfl2 +fi3 fii^±l

olxlxp (-113 + 1112)/sJf?2 + fi2 hi ^ ±1

olxlxo	 (12 + 113)/\/i22 + 1	 -

olxlyc	 (-13 + 112)/it/122 + 13	 -

olxlxj	 (12 + ils)//1 + l	 hi = ±1

olxlzl	 ei2	 -

f t is a constant

Table A-7: Geometric Constructions - 1
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Function(posl, pos2) = trans(x,y,z) posi

Function	 x	 y	 z Condition

o2xlyl	 11	 12	 13	 -

onxlyl	 n.f	 0	 0	 -

ooxlyl	 Ii	 0	 0	 -

oxxlyl	 11	 0	 0	 fi = 0

opx]yl	 (fii li + 112 12 + 113 13)/ill	 0	 0	 -

oyxlyl	 0	 (fl + 112 12 + 11313)/112 0	 -

otxlyl	 1 t	 -

t constant

Table A-8: Geometric Constructions - 2

Function(posl, pos2) = twix(ir + cx)XTOYtwix(15)posl

Function	 e

olxpx2	 Ill +	 + f]3	 (-/13 + f12)/\,/f122 + 113

olycxc	 (l +	 + 1 . )//1 + 1 + 1	 (-13 + il2)/.t/1 + i

olyizi	 e_iI2

Table A-9: Geometric Constructions - 3

fr

Function(posl, pos2) = trans(O,O,d)twix(c)pos1

Function	 d

oixlxi	 (-/13 + $ f12)/\/fJ2 + fi	 -(mu + f12 l2 + f13 l3)//f122 + 113

Table A-1O: Geometric Constructions - 4
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Function(posl, pos2, pos3, pos4) =twix(±fl)twix(a)posl

Function

qixips	 (123 - il22 )/(\/1 2 + 123)	
- fI1(111-121)+f12112+f13113+i...

1i21i3V2223

qlxlpd	 (112 + i fl3)/\/f?2 + fl3	
fiiiii+f12112+f13113+i...

\/fl2+fl3V'12i12223

qixipi	 (122 +	 + 12 )
	

fiilii+f121t2+f13113+i...
23

Table A—li: Geometric Constructions - 5

d-functions

dlylxl(posl ,pos2)
	 = olyixi (twix(±r/2) twix(ir/2) posl,pos2)

dlycxl (posi ,pos2)
	

= olycxl(twix(±ir/2) twix(ir/2) posl,pos2)

dlzlyl(posl,pos2)
	 = [XTOY XTOY] olzlyl(posl,pos2)

dlxoxl(posl,pos2)
	

= [XTOY XTOY] olxoxl(posl,pos2)

dnxlyl(posl,pos2,k,n) = trans(k ± n) posi

Table A-12: Geometric Constructions - 6

246
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A.3 Spatial Relationships

Table A-13 presents the set of spatial relationships which has been derived in

the process of constructing the substitution table. The following conventions

have been followed for naming the spatial relationships:

. The letters 'AG' stand for 'against'.

. The letters 'P', 'E', and 'V' stand for 'plane', 'edge' and 'vertex' respec-

tively. For example 'AGPV' stands for 'against plane vertex'.

. The letters 'ROT' or 'R' imply a rotational degree of freedom. For example,

the relationship 'ROT2' has two rotational degrees of freedom.

The letters 'UN' or 'L' imply a translational degree of freedom. For exam-

pie the relationship 'RRL' has two rotational and one translational degrees

of freedom.

• A relationship name starting with the letter 'G' implies that the relation-

ship is a 'general' form of some other relationship. For example the rela-

tionship denoted by 'GAGPE' is a general form of the 'AGPE' relationship

in the sense that the axes of rotations are not necessarily perpendicular.

• If a relationship name starts with the letter 'F' then the degrees of freedom

of the relationship are interdependent.

Figures A—i - A-4 show some of these relationships.
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d.o.f.	 Name	 Algebraic Form

R T

3	 2	 AGPV	 twix (9) XTOYtwlx(çb)XTOYtwix(i,b) trans (0, y, z)

3	 2	 AGVP	 twlx(9)XTOYtrans(x, 0, z)twix(cb)XTOYtwix(b)

3	 2	 AGEE	 twix(9)XTOYtwix(cb)XTOYtran8(x, 0, z)twix(t,b)

3	 1	 AGEV	 twix(9)XTOYtwix(cb)XTOYtwix(i,b)trans(x, 0,0)

2	 2	 AGPE	 twix(9)XTOYtwix(qS)trans(0,y,z)

2	 2	 GAGPE	 twlx(0)Etwix()trans(0,y,z) *

3	 0	 AGVV	 twix(9)XTOYtwlx(q')XTOYtwix(t)

2	 1	 RRL	 twix(9)XTOYtwix(çb)trans(0, y, 0)

2	 1	 GRRL	 twlx(9)Etwix(cb)trans(0, y, 0)

1	 2	 AGPP	 twix(0)trans(0,y,z)

2	 0	 ROT2	 twix(9)XTOYtwix(cb)

2	 0	 GROT2	 twix(9)Etwix(ç1)

1	 1	 ROTYLIN	 twix(9)trans(0, y, 0)

1	 1	 FITS	 twix(9)trans(x,0,0)

1	 1(1)** ROTLIN t 	 twix(0)trans(x,y(x),O)

1(1) 1	 FROTLIN t twix(9)XTOYtwir(çb(9))trans(0,y,0,)

2	 0(1)	 ROTLAD f twix(9)XTOYtwix(q5)trans(0,y(qS),0)

1	 0	 ROT	 twix(9)

1	 0(1)	 LAD	 twix(9)trans(0,acos9 + bsin8,0)

1	 0(1)	 SCR	 twix(9)trans(a cos 9 + b sin 0, 0,0)

1(1) 0	 FROT t	 twix(9)XTOYtwix(c6(0))

1(1) 0	 GFROTf	 twix(0)Etwix(çb(9))

0	 1	 LIN	 trans(x,0,0)

* E is a constant matrix: E = XTOYtwix(w)XTOY, eIW = a + lb

** (n) means n dependent variables

f This relationship has been derived but is not used in the substitution table

Table A-13: Set of Spatial Relationships
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twix(0) XTOYtwix() XTOYtwix(ib) tran3(x, 0,0)

Figure A—i: AGEV relationship

twix(0)XTOYtwx(c6)trans(o, y, z)

Figure A-2: AGPE relationship
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twix(9)XTOYtwtz(có)tran3(O, y, 0)

Figure A-3: RRL relationship

twiz(0)trans(O, y, 0)

Figure A-4: ROTYLIN relationship
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A.4 The Substitution Table

Tables A-14 - A-30 present the rules for substituting two relationships by

an equivalent relationship. The interpretation of the table is explained below.

1. A table is selected by matching the pair of relationships to E1 and E2.

2. A row is selected by examining the entries in the column 'Condition 1'

until a match is found.

3. If 'Condition 2' is satisfied then the relationships are consistent. In this

case the equivalent relationship is given by Ee and the new features are

constructed using the functions in the column 'New Features'.

4. If 'Condition 2' is not satisfied then the two relationships are inconsistent.

"3
E1	 Condition 1 Condition 2 New Features

AGPV AGPV AGPV	 x-a-par	 oal-on-pIa2 a1

__________ eq-b-origin _____________ _________________

AGPE	 x-a-par	 a

_________ oal-on-pla2	 olxcyc

AGPP	 x-a-par	 a

ed-op-oo	 olxcyc

GAPPEt x-a-par	 ld-op-oo	 a1

olxcyc

AGEV	 eq-b-origin	 oixixl

-	 general

t The constants of the relationship are given by:

a=d-op(ai , a2 )/d-oo(b 1 , b2 ) and b	 - a2

Table A-14: Substitution Table: AGPV-AGPV
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E1 	E2	 Ee	 Condition 1 Condition 2 New Features

AGPE AGPV AGPE x-a-par 	 oal-on-pIa2 a1

ob2-on-xbl

AGPP x-a-par	 a1

ed-op-xo	 olxoxl

ACPP* x-a-par	 ld-op-xo	 a1

________ ___________ ___________ qlplxl

RRL	 ob2-on-obl	 oixlxi

________ ___________ ___________ o2xlyl

-	 general	 -

* An asterisk denotes that there are two sets of solutions

Table A-15: Substitution Table: AGPE-AGPV

E1 	E2	 Condition 1 Condition 2 	 New Features

GAGPE 1 AGPV GAGPE x-a-par	 oan'-on-pla2 f a1

ob2-on-xbl	 b1

AGPP	 x-a-par	 a1

ed-oi-oo	 ______________ olycxl

AGPP* x-a-par	 ld-oi-oo	 al

GRRL	 general	 -
1 a and b are the constants of the relationship

ta'	 trans(—a 121, 0, 0)ai

Distance from origin of a 1 to intersection of x = 0 plane of a2 with x = a121

plane of a1

Table A-16: Substitution Table: GAGPE-AGPV



Appendix A. The Substitution Table	 253

"3
E2	 E	 Condition 1 Condition 2 New Features

_________ _________ ______________ ______________ _______________ 	 b

AGEV AGPV AGEV	 x-a-perp	 oal-on-pla2 a

___________ eq-b-origin _____________ b1

RRL	 x-a-perp	 olx2xl

___________ oal-on-pla2 ___________ olxcyc

ROTYLIN x-a-perp	 olx2xl

ed-op-oo	 olxcyc

GRRLt	 x-a-perp	 ld-op-oo	 olx2xl

olxcyc

AGVV	 eq-b-origin	 opxlyl

-	 general	 -

t The constants of the relationship are given by:

a=d-op(ai , a2 )/d-oo(b i , b2 ) and 6 = /1 - a2

Table A-17: Substitution Table: AGEV-AGPV
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"3
E1	E2	 E	 Condition 1 Condition 2 New Features

_________ _________ ____________ ______________ ______________	 63

AGVV AGPV AGVV	 eq-b-origin oal-on-pla2 a

____________ ______________ ______________ 61

ROT2	 oal-on-pla2	 olx2yc

ob2-on-xbl

ROT2	 oal-on-pla2	 olx2yc

olxcyc

ROT	 ed-op-oo	 olx2yc

ob2-on-xbl

ROT	 ed-op-oo	 olx2yc

olxcyc

GROT2t general	 id-op-co	 olx2yc

olxcyc

t The constants of the relationship are given by:

a=d-op(ai, a2 )/d-oo(b1 , b2 ) and 6 = /1 -

Table A-18: Substitution Table: AGVV-AGPV
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p3
E1	E2	 Condition 1 Condition 2 New Features

_______ _________ ________________ ________________ _______________	 b3

RRL AGPV RRL	 x-a-par	 oal-on-pIa2 a1

ob2-on-xbl

ROTYLIN	 x-a-par

ed-op-xo	 olxoxl

ROTYLIN* x-a-par	 ld-op-xo	 aj

____________ ____________ ___________ qipixi

RRL	 is-O-a12	 oal-on-pla2 a1

_____________ eq-b-origin ____________ ________________

FITS*	 is-O-a12	 dlylxl

ob2-on-xbl

_____________ oal-on-pIa2 ____________

ROTYLIN	 is-O-a12	 olzlxl

- ob2-on-xbl

ed-oi-oo

ROTLIN*	 is-O-a12	 ld-oi-oo	 qlpdxl

ob2-on-xbl	 b1

ROTYLIN** is-O-a12	 dlzlyl, a1

x-a-perp	 b1 , dixoxi

ob2-on-plxbl

_____________ oal-on-pla2 ____________ ________________

FROTLIN	 is-O-a12	 -

ROT2	 eq-b-origin	 oyxlyl

________________ ________________ _______________ b1

ROTLAD	 ob2-on-xbl	 -

-	 general	 -

** Four sets of solutions

Table A-19: Substitution Table: RRL-AGPV
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p3
E1	E2	 Condition 1 Condition 2 	 New Features

___________ _________ _______________ _______________ _________________ 	 b3

GRRL 1 AGPV GRRL	 x-a-par	 oan'-on-pla2	 a

ob2-on-xbl	 b1

GRRL	 is-O-a12	 oal-on-pla2	 a1

_____________ eq-b-origin _______________ _________________

ROTYLIN x-a-par	 a1

ed-oi-oo	 olycxl

ROTYLIN* x-a-par	 ld-oi-oo t	 al

FITS	 is-O-a12	 Ea1

ob2-on-xbl

-	 general	 -

1 a and b are the constants of the relationship

ta = trarz8(—a121,O,O)ai

Distance from origin of a 1 to intersection of x = 0 plane of a2 with x = a121

plane of a1

Table A-20: Substitution Table: GRRL-AGPV

"3
E2	 Condition 1 Condition 2 New Features

AGPP AGPV AGPP	 x-a-par	 oan-on-pla2 a

______________ b1

ROTYLIN general	 oix1xi(a, a2)t

_______ _______ ___________ ___________ ___________ o2xlyl

ta = trans(121,0,0)ai

Table A-21: Substitution Table: AGPP-AGPV
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(3
E1	E2	 Condition 1 Condition 2 New Features

ROT2 AGPV ROT2 eq-b-origin oal-on-pla2 a

________ _______________ _______________ b1

ROT ob2-on-xbl	 olxlxm

ed-oi-oo

ROT x-a-par	 a1

ed-op-xo	 olxoxl

ROT* ob2-on-xbl ld-oi-oo	 qlpdxl

ROT* x-a-par	 ld-op-xo

______ ___________ ___________ qipixi

ROT x-a-perp	 olx2xl

_______ ed-op-op	 ___________ ________________

FIX	 ed-op-oo	 olx2yc

FROT general	 -

Table A-22: Substitution Table: ROT2-AGPV
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U3

E2	E	 Condition 1 Condition 2	 New Features
______________ _________ ___________ _______________ __________________	 b

GROT2 1 AGPV GROT2 eq-b-origin oal-on-pla2	 a

GROT2 x-a-par	 oan'-on-pla2 f ai

ob2-on-xbl

ROT	 ob2-on-xbl	 Eolxlxp

ed-oi-oo	 _____________ ________________

ROT*	 ob2-on-xbl ld-oi-oo	 qixips

ROT*	 general	 -

1 a and b are the constants of the relationship

fa = trans(—a121,O,O)ai

Distance from origin of a1 to intersection of x = 0 plane of a 2 with x = a121

plane of a1

Table A-23: Substitution Table: GROT2-AGPV
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U3

E1	 E2	 Ee	 Condition 1 Condition 2 New Features
_______________ __________ _______________ ________________ ________________ 	 b3

ROTYLIN AGPV ROTYLIN x-a-par 	 oan-on-pla2 a1

ROTYLIN is-O-a12	 oan-on-pla2 a1

ob2-on-xbl	 b1

LIN	 is-O-a12	 olyixi

ed-om-xo	 olycxl

LIN*	 is-O-a12	 ld-om-xo	 olyixi

__________ ___________ ___________ qlpsxl

ROT	 ob2-on-xbl	 oyx1y1(a,a2)f

___________ ____________ ____________ o2xlyl

LAD	 general	 oyx1y1(a, a2)f

___________	 __________ ___________ ___________ ooxlyl

f a = 63b11a1

The constants of the relationship are given by:

a = - (112 122 + 113123)/112

b = (112 123 - 113122)/112

Table A-24: Substitution Table: ROTYLIN-AGPV
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U3

E1	E2	 Condition 1 Condition 2 New Features

FITS AGPV FITS x-a-perp 	 oal-on-pIa2 a

ob2-on-xbl

LIN	 x-a-perp	 olxlx2

ed-op-xo	 olxlxo

LIN* x-a-perp	 ld-op-xo	 olxlxp

_____ ___________ ___________ qlxlps

ROT ob2-on-xbl	 opxlyl

______ ___________ ___________ o2xlyl

ROT x-a-par	 opxlyl

______ ___________ ___________ ooxlyl

SCR general	 opxlyl

______ _______ ______ ___________ ___________ ooxlyl

Table A-25: Substitution Table: FITS-AGPV

"3
E1	E2	 E	 Condition 1 Condition 2 New Features

_______ _________ _______ ______________ ______________ 	 b3

ROT AGPV ROT ob2-on-xbl oan-on-pIa2 a

ROT x-a-par	 a1

FIX x-a-perp	 olxlx2

ed-op-xo	 olxlxo

FIX* x-a-perp	 ld-op-xo	 olxlxp

______ ___________ ___________ qixips

FIX ed-om-xo	 olxlxp

______ ___________ ___________ olxlyc

FIX* general	 ld-om-xo	 olxlxp

_____ _______ _____ ___________ ___________ qixips

260

Table A-26: Substitution Table: ROT-AGPV
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p3
E1	E2	 Ee	 Condition 1 Condition 2 New Features

LIN AGPV UN x-a-perp 	 oan-on-pla2 a

FIX x-a-par	 opxlyl

_____ ___________ ___________ ooxlyl

FIX ob2-on-x-bl	 opxlyl

_____ ___________ ___________ ooxlyl

FIX general	 opx1y1(a,a2)t

____ _______ _____ ___________ ___________ o2xlyl

ta = b3bj'ai

Table A-27: Substitution Table: LIN-AGPV

P3
E1	E2	 E	 Condition I Condition 2 New Features

_______ _________ _______ _______________ _______________ 	 b3

LAD AGPV LAD x-a-par	 oan-on-pIa2 aj

LAD is-O-a12	 oan-on-pla2 ai

ob2-on-xbl

FIX is-O-a12	 onyixif

ed-om-xo	 olycxl

FIX* is-O-a12	 dnylxlf

_____ oan-on-pla2 ___________ dlycxl

FIX* is-O-a12	 ld-om-xo	 dnylxlf

______ ___________ ___________ qlpsxl

FIX* general	 -

Similarly for the case is-O-a13.

Substitute b for 14 = trar&s(O, —a, b) b1,

where a, b are the constants in E1

t n (—al, + bl22)/Jl 2 + 123

261

Table A-28: Substitution Table: LAD-AGPV
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p3
E2	 Condition 1 Condition 2 New Features

AGEE AGEE AGEE x-a-collin	 a1

x-b-collin	 b1

AGPE x-a-par	 olycxl

x-b-colin

AGPE x-a-coplan	 olxlxp

x-b-collin	 b1

AGPE x-b-par

x-a-colin	 olycxl

AGPE x-a-coplan	 a1

x-b-collin	 olxlxp

Table A-29: Substitution Table: AGEE-AGEE

P3
E1	E2	 Ee	 Condition 1 Condition 2 New Features

AGPV AGEE AGPE oa2-on-plal 	 a1

x-a-perp	 62

obl-on-xb2

-	 general	 -

Table A-30: Substitution Table: AGPV-AGEE
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A.5 Equivalent Relationships

Table A-31 presents the rules for deciding whether or not two relationships are

equivalent. The interpretation of this table is similar to the interpretation of the

substitution table, i.e. relationships E1 and E2 are equivalent if 'Condition 1' is

satisfied. If 'Condition 1' is satisfied but 'Condition 2' is not satisfied then the

relationships are inconsistent.
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E1	 P22	 Condition 1 Condition 2

UN	 LIN	 LIN	 x-a-par	 oan-on-pla2

ROT	 ROT	 ROT	 x-a-collin	 x-b-collin

__________ __________ _________ ___________ ed-po-po

LAD t	 LAD	 LAD	 x-a-par	 x-b-par

y-a-par	 oan-on-pla2

ob2-on-xbl oa2-on-plzal

FITS	 FITS	 FITS	 x-a-collin	 x-b-collin

ROTYLIN ROTYLIN ROTYLIN x-a-par 	 ed-po-po

y-a-par	 oa2-on-plzal

ob2-on-xbl

ROT2	 ROT2	 ROT2	 x-a-par	 eq-a-origin

x-b-par

___________ __________ __________ eq-b-origin _____________

AGPP	 AGPP	 AGPP	 x-a-par	 ed-po-po

RRL	 RRL	 RRL	 x-a-par	 oa2-on-yal

x-b-par

eq-b-origin

___________ ___________ ___________ y-a-par 	 _____________

AGVV	 AGVV	 AGVV	 eq-a-origin eq-b-origin

AGPS	 AGPS	 AGPS	 x-a-par	 oal-on-pla2

____________ ___________ ___________ eq-b-origin ______________

AGEE	 AGEE	 AGEE	 x-a-collin

x-b-collin
t Similarly or the case x-a-par and y-a-perp. The same conditions

apply if b1 is substituted for 14 = trans(O, —a, b) bi, where a, b are

the constants of E1

Table A-31: Equivalent Relationships
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A.6 Parameters of One Degree of Freedom Re-

lationships

Given a one degree relationship E holding between features with locations a1

and b1 and a location p, Table A-32 summarises the conditions under which

the location satisfies the relationship and the value of the parameter of the

relationship at that location. Let a 2 be the location b transformed by p, i.e.

a2	 bp.

E1	 Condition	 Parameter

UN x-a-eq	 x =d-op(a2 , ai)

y-a-eq

oa2-on-xal

ROT eq-a-origin	 cosO = 122

x-a-eq	 sine = 123

LAD x-a-par	 cos B = f22

oa2-on-yal	 sine = 123

112 a 122 = b f23

Table A-32: Parameterising one degree of freedom relationships
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